OSDN Git Service

2bfdb3c23e729b1bb9b1ddeeeca98139f8a20ed0
[sagit-ice-cold/kernel_xiaomi_msm8998.git] / mm / kasan / kasan.c
1 /*
2  * This file contains shadow memory manipulation code.
3  *
4  * Copyright (c) 2014 Samsung Electronics Co., Ltd.
5  * Author: Andrey Ryabinin <ryabinin.a.a@gmail.com>
6  *
7  * Some code borrowed from https://github.com/xairy/kasan-prototype by
8  *        Andrey Konovalov <adech.fo@gmail.com>
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License version 2 as
12  * published by the Free Software Foundation.
13  *
14  */
15
16 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
17 #define DISABLE_BRANCH_PROFILING
18
19 #include <linux/export.h>
20 #include <linux/interrupt.h>
21 #include <linux/init.h>
22 #include <linux/kasan.h>
23 #include <linux/kernel.h>
24 #include <linux/kmemleak.h>
25 #include <linux/linkage.h>
26 #include <linux/memblock.h>
27 #include <linux/memory.h>
28 #include <linux/mm.h>
29 #include <linux/module.h>
30 #include <linux/printk.h>
31 #include <linux/sched.h>
32 #include <linux/slab.h>
33 #include <linux/stacktrace.h>
34 #include <linux/string.h>
35 #include <linux/types.h>
36 #include <linux/vmalloc.h>
37 #include <linux/bug.h>
38
39 #include "kasan.h"
40 #include "../slab.h"
41
42 void kasan_enable_current(void)
43 {
44         current->kasan_depth++;
45 }
46
47 void kasan_disable_current(void)
48 {
49         current->kasan_depth--;
50 }
51
52 /*
53  * Poisons the shadow memory for 'size' bytes starting from 'addr'.
54  * Memory addresses should be aligned to KASAN_SHADOW_SCALE_SIZE.
55  */
56 static void kasan_poison_shadow(const void *address, size_t size, u8 value)
57 {
58         void *shadow_start, *shadow_end;
59
60         shadow_start = kasan_mem_to_shadow(address);
61         shadow_end = kasan_mem_to_shadow(address + size);
62
63         memset(shadow_start, value, shadow_end - shadow_start);
64 }
65
66 void kasan_unpoison_shadow(const void *address, size_t size)
67 {
68         kasan_poison_shadow(address, size, 0);
69
70         if (size & KASAN_SHADOW_MASK) {
71                 u8 *shadow = (u8 *)kasan_mem_to_shadow(address + size);
72                 *shadow = size & KASAN_SHADOW_MASK;
73         }
74 }
75
76 static void __kasan_unpoison_stack(struct task_struct *task, const void *sp)
77 {
78         void *base = task_stack_page(task);
79         size_t size = sp - base;
80
81         kasan_unpoison_shadow(base, size);
82 }
83
84 /* Unpoison the entire stack for a task. */
85 void kasan_unpoison_task_stack(struct task_struct *task)
86 {
87         __kasan_unpoison_stack(task, task_stack_page(task) + THREAD_SIZE);
88 }
89
90 /* Unpoison the stack for the current task beyond a watermark sp value. */
91 asmlinkage void kasan_unpoison_task_stack_below(const void *watermark)
92 {
93         /*
94          * Calculate the task stack base address.  Avoid using 'current'
95          * because this function is called by early resume code which hasn't
96          * yet set up the percpu register (%gs).
97          */
98         void *base = (void *)((unsigned long)watermark & ~(THREAD_SIZE - 1));
99
100         kasan_unpoison_shadow(base, watermark - base);
101 }
102
103 /*
104  * Clear all poison for the region between the current SP and a provided
105  * watermark value, as is sometimes required prior to hand-crafted asm function
106  * returns in the middle of functions.
107  */
108 void kasan_unpoison_stack_above_sp_to(const void *watermark)
109 {
110         const void *sp = __builtin_frame_address(0);
111         size_t size = watermark - sp;
112
113         if (WARN_ON(sp > watermark))
114                 return;
115         kasan_unpoison_shadow(sp, size);
116 }
117
118 /*
119  * All functions below always inlined so compiler could
120  * perform better optimizations in each of __asan_loadX/__assn_storeX
121  * depending on memory access size X.
122  */
123
124 static __always_inline bool memory_is_poisoned_1(unsigned long addr)
125 {
126         s8 shadow_value = *(s8 *)kasan_mem_to_shadow((void *)addr);
127
128         if (unlikely(shadow_value)) {
129                 s8 last_accessible_byte = addr & KASAN_SHADOW_MASK;
130                 return unlikely(last_accessible_byte >= shadow_value);
131         }
132
133         return false;
134 }
135
136 static __always_inline bool memory_is_poisoned_2(unsigned long addr)
137 {
138         u16 *shadow_addr = (u16 *)kasan_mem_to_shadow((void *)addr);
139
140         if (unlikely(*shadow_addr)) {
141                 if (memory_is_poisoned_1(addr + 1))
142                         return true;
143
144                 /*
145                  * If single shadow byte covers 2-byte access, we don't
146                  * need to do anything more. Otherwise, test the first
147                  * shadow byte.
148                  */
149                 if (likely(((addr + 1) & KASAN_SHADOW_MASK) != 0))
150                         return false;
151
152                 return unlikely(*(u8 *)shadow_addr);
153         }
154
155         return false;
156 }
157
158 static __always_inline bool memory_is_poisoned_4(unsigned long addr)
159 {
160         u16 *shadow_addr = (u16 *)kasan_mem_to_shadow((void *)addr);
161
162         if (unlikely(*shadow_addr)) {
163                 if (memory_is_poisoned_1(addr + 3))
164                         return true;
165
166                 /*
167                  * If single shadow byte covers 4-byte access, we don't
168                  * need to do anything more. Otherwise, test the first
169                  * shadow byte.
170                  */
171                 if (likely(((addr + 3) & KASAN_SHADOW_MASK) >= 3))
172                         return false;
173
174                 return unlikely(*(u8 *)shadow_addr);
175         }
176
177         return false;
178 }
179
180 static __always_inline bool memory_is_poisoned_8(unsigned long addr)
181 {
182         u16 *shadow_addr = (u16 *)kasan_mem_to_shadow((void *)addr);
183
184         if (unlikely(*shadow_addr)) {
185                 if (memory_is_poisoned_1(addr + 7))
186                         return true;
187
188                 /*
189                  * If single shadow byte covers 8-byte access, we don't
190                  * need to do anything more. Otherwise, test the first
191                  * shadow byte.
192                  */
193                 if (likely(IS_ALIGNED(addr, KASAN_SHADOW_SCALE_SIZE)))
194                         return false;
195
196                 return unlikely(*(u8 *)shadow_addr);
197         }
198
199         return false;
200 }
201
202 static __always_inline bool memory_is_poisoned_16(unsigned long addr)
203 {
204         u32 *shadow_addr = (u32 *)kasan_mem_to_shadow((void *)addr);
205
206         if (unlikely(*shadow_addr)) {
207                 u16 shadow_first_bytes = *(u16 *)shadow_addr;
208
209                 if (unlikely(shadow_first_bytes))
210                         return true;
211
212                 /*
213                  * If two shadow bytes covers 16-byte access, we don't
214                  * need to do anything more. Otherwise, test the last
215                  * shadow byte.
216                  */
217                 if (likely(IS_ALIGNED(addr, KASAN_SHADOW_SCALE_SIZE)))
218                         return false;
219
220                 return memory_is_poisoned_1(addr + 15);
221         }
222
223         return false;
224 }
225
226 static __always_inline unsigned long bytes_is_zero(const u8 *start,
227                                         size_t size)
228 {
229         while (size) {
230                 if (unlikely(*start))
231                         return (unsigned long)start;
232                 start++;
233                 size--;
234         }
235
236         return 0;
237 }
238
239 static __always_inline unsigned long memory_is_zero(const void *start,
240                                                 const void *end)
241 {
242         unsigned int words;
243         unsigned long ret;
244         unsigned int prefix = (unsigned long)start % 8;
245
246         if (end - start <= 16)
247                 return bytes_is_zero(start, end - start);
248
249         if (prefix) {
250                 prefix = 8 - prefix;
251                 ret = bytes_is_zero(start, prefix);
252                 if (unlikely(ret))
253                         return ret;
254                 start += prefix;
255         }
256
257         words = (end - start) / 8;
258         while (words) {
259                 if (unlikely(*(u64 *)start))
260                         return bytes_is_zero(start, 8);
261                 start += 8;
262                 words--;
263         }
264
265         return bytes_is_zero(start, (end - start) % 8);
266 }
267
268 static __always_inline bool memory_is_poisoned_n(unsigned long addr,
269                                                 size_t size)
270 {
271         unsigned long ret;
272
273         ret = memory_is_zero(kasan_mem_to_shadow((void *)addr),
274                         kasan_mem_to_shadow((void *)addr + size - 1) + 1);
275
276         if (unlikely(ret)) {
277                 unsigned long last_byte = addr + size - 1;
278                 s8 *last_shadow = (s8 *)kasan_mem_to_shadow((void *)last_byte);
279
280                 if (unlikely(ret != (unsigned long)last_shadow ||
281                         ((long)(last_byte & KASAN_SHADOW_MASK) >= *last_shadow)))
282                         return true;
283         }
284         return false;
285 }
286
287 static __always_inline bool memory_is_poisoned(unsigned long addr, size_t size)
288 {
289         if (__builtin_constant_p(size)) {
290                 switch (size) {
291                 case 1:
292                         return memory_is_poisoned_1(addr);
293                 case 2:
294                         return memory_is_poisoned_2(addr);
295                 case 4:
296                         return memory_is_poisoned_4(addr);
297                 case 8:
298                         return memory_is_poisoned_8(addr);
299                 case 16:
300                         return memory_is_poisoned_16(addr);
301                 default:
302                         BUILD_BUG();
303                 }
304         }
305
306         return memory_is_poisoned_n(addr, size);
307 }
308
309 static __always_inline void check_memory_region_inline(unsigned long addr,
310                                                 size_t size, bool write,
311                                                 unsigned long ret_ip)
312 {
313         if (unlikely(size == 0))
314                 return;
315
316         if (unlikely((void *)addr <
317                 kasan_shadow_to_mem((void *)KASAN_SHADOW_START))) {
318                 kasan_report(addr, size, write, ret_ip);
319                 return;
320         }
321
322         if (likely(!memory_is_poisoned(addr, size)))
323                 return;
324
325         kasan_report(addr, size, write, ret_ip);
326 }
327
328 static void check_memory_region(unsigned long addr,
329                                 size_t size, bool write,
330                                 unsigned long ret_ip)
331 {
332         check_memory_region_inline(addr, size, write, ret_ip);
333 }
334
335 void kasan_check_read(const void *p, unsigned int size)
336 {
337         check_memory_region((unsigned long)p, size, false, _RET_IP_);
338 }
339 EXPORT_SYMBOL(kasan_check_read);
340
341 void kasan_check_write(const void *p, unsigned int size)
342 {
343         check_memory_region((unsigned long)p, size, true, _RET_IP_);
344 }
345 EXPORT_SYMBOL(kasan_check_write);
346
347 #undef memset
348 void *memset(void *addr, int c, size_t len)
349 {
350         check_memory_region((unsigned long)addr, len, true, _RET_IP_);
351
352         return __memset(addr, c, len);
353 }
354
355 #undef memmove
356 void *memmove(void *dest, const void *src, size_t len)
357 {
358         check_memory_region((unsigned long)src, len, false, _RET_IP_);
359         check_memory_region((unsigned long)dest, len, true, _RET_IP_);
360
361         return __memmove(dest, src, len);
362 }
363
364 #undef memcpy
365 void *memcpy(void *dest, const void *src, size_t len)
366 {
367         check_memory_region((unsigned long)src, len, false, _RET_IP_);
368         check_memory_region((unsigned long)dest, len, true, _RET_IP_);
369
370         return __memcpy(dest, src, len);
371 }
372
373 void kasan_alloc_pages(struct page *page, unsigned int order)
374 {
375         if (likely(!PageHighMem(page)))
376                 kasan_unpoison_shadow(page_address(page), PAGE_SIZE << order);
377 }
378
379 void kasan_free_pages(struct page *page, unsigned int order)
380 {
381         if (likely(!PageHighMem(page)))
382                 kasan_poison_shadow(page_address(page),
383                                 PAGE_SIZE << order,
384                                 KASAN_FREE_PAGE);
385 }
386
387 /*
388  * Adaptive redzone policy taken from the userspace AddressSanitizer runtime.
389  * For larger allocations larger redzones are used.
390  */
391 static size_t optimal_redzone(size_t object_size)
392 {
393         int rz =
394                 object_size <= 64        - 16   ? 16 :
395                 object_size <= 128       - 32   ? 32 :
396                 object_size <= 512       - 64   ? 64 :
397                 object_size <= 4096      - 128  ? 128 :
398                 object_size <= (1 << 14) - 256  ? 256 :
399                 object_size <= (1 << 15) - 512  ? 512 :
400                 object_size <= (1 << 16) - 1024 ? 1024 : 2048;
401         return rz;
402 }
403
404 void kasan_cache_create(struct kmem_cache *cache, size_t *size,
405                         unsigned long *flags)
406 {
407         int redzone_adjust;
408         int orig_size = *size;
409
410         /* Add alloc meta. */
411         cache->kasan_info.alloc_meta_offset = *size;
412         *size += sizeof(struct kasan_alloc_meta);
413
414         /* Add free meta. */
415         if (cache->flags & SLAB_DESTROY_BY_RCU || cache->ctor ||
416             cache->object_size < sizeof(struct kasan_free_meta)) {
417                 cache->kasan_info.free_meta_offset = *size;
418                 *size += sizeof(struct kasan_free_meta);
419         }
420         redzone_adjust = optimal_redzone(cache->object_size) -
421                 (*size - cache->object_size);
422
423         if (redzone_adjust > 0)
424                 *size += redzone_adjust;
425
426         *size = min(KMALLOC_MAX_SIZE, max(*size, cache->object_size +
427                                         optimal_redzone(cache->object_size)));
428
429         /*
430          * If the metadata doesn't fit, don't enable KASAN at all.
431          */
432         if (*size <= cache->kasan_info.alloc_meta_offset ||
433                         *size <= cache->kasan_info.free_meta_offset) {
434                 cache->kasan_info.alloc_meta_offset = 0;
435                 cache->kasan_info.free_meta_offset = 0;
436                 *size = orig_size;
437                 return;
438         }
439
440         *flags |= SLAB_KASAN;
441 }
442
443 void kasan_cache_shrink(struct kmem_cache *cache)
444 {
445         quarantine_remove_cache(cache);
446 }
447
448 void kasan_cache_shutdown(struct kmem_cache *cache)
449 {
450         quarantine_remove_cache(cache);
451 }
452
453 size_t kasan_metadata_size(struct kmem_cache *cache)
454 {
455         return (cache->kasan_info.alloc_meta_offset ?
456                 sizeof(struct kasan_alloc_meta) : 0) +
457                 (cache->kasan_info.free_meta_offset ?
458                 sizeof(struct kasan_free_meta) : 0);
459 }
460
461 void kasan_poison_slab(struct page *page)
462 {
463         kasan_poison_shadow(page_address(page),
464                         PAGE_SIZE << compound_order(page),
465                         KASAN_KMALLOC_REDZONE);
466 }
467
468 void kasan_unpoison_object_data(struct kmem_cache *cache, void *object)
469 {
470         kasan_unpoison_shadow(object, cache->object_size);
471 }
472
473 void kasan_poison_object_data(struct kmem_cache *cache, void *object)
474 {
475         kasan_poison_shadow(object,
476                         round_up(cache->object_size, KASAN_SHADOW_SCALE_SIZE),
477                         KASAN_KMALLOC_REDZONE);
478 }
479
480 static inline int in_irqentry_text(unsigned long ptr)
481 {
482         return (ptr >= (unsigned long)&__irqentry_text_start &&
483                 ptr < (unsigned long)&__irqentry_text_end) ||
484                 (ptr >= (unsigned long)&__softirqentry_text_start &&
485                  ptr < (unsigned long)&__softirqentry_text_end);
486 }
487
488 static inline void filter_irq_stacks(struct stack_trace *trace)
489 {
490         int i;
491
492         if (!trace->nr_entries)
493                 return;
494         for (i = 0; i < trace->nr_entries; i++)
495                 if (in_irqentry_text(trace->entries[i])) {
496                         /* Include the irqentry function into the stack. */
497                         trace->nr_entries = i + 1;
498                         break;
499                 }
500 }
501
502 static inline depot_stack_handle_t save_stack(gfp_t flags)
503 {
504         unsigned long entries[KASAN_STACK_DEPTH];
505         struct stack_trace trace = {
506                 .nr_entries = 0,
507                 .entries = entries,
508                 .max_entries = KASAN_STACK_DEPTH,
509                 .skip = 0
510         };
511
512         save_stack_trace(&trace);
513         filter_irq_stacks(&trace);
514         if (trace.nr_entries != 0 &&
515             trace.entries[trace.nr_entries-1] == ULONG_MAX)
516                 trace.nr_entries--;
517
518         return depot_save_stack(&trace, flags);
519 }
520
521 static inline void set_track(struct kasan_track *track, gfp_t flags)
522 {
523         track->pid = current->pid;
524         track->stack = save_stack(flags);
525 }
526
527 struct kasan_alloc_meta *get_alloc_info(struct kmem_cache *cache,
528                                         const void *object)
529 {
530         BUILD_BUG_ON(sizeof(struct kasan_alloc_meta) > 32);
531         return (void *)object + cache->kasan_info.alloc_meta_offset;
532 }
533
534 struct kasan_free_meta *get_free_info(struct kmem_cache *cache,
535                                       const void *object)
536 {
537         BUILD_BUG_ON(sizeof(struct kasan_free_meta) > 32);
538         return (void *)object + cache->kasan_info.free_meta_offset;
539 }
540
541 void kasan_init_slab_obj(struct kmem_cache *cache, const void *object)
542 {
543         struct kasan_alloc_meta *alloc_info;
544
545         if (!(cache->flags & SLAB_KASAN))
546                 return;
547
548         alloc_info = get_alloc_info(cache, object);
549         __memset(alloc_info, 0, sizeof(*alloc_info));
550 }
551
552 void kasan_slab_alloc(struct kmem_cache *cache, void *object, gfp_t flags)
553 {
554         kasan_kmalloc(cache, object, cache->object_size, flags);
555 }
556
557 static void kasan_poison_slab_free(struct kmem_cache *cache, void *object)
558 {
559         unsigned long size = cache->object_size;
560         unsigned long rounded_up_size = round_up(size, KASAN_SHADOW_SCALE_SIZE);
561
562         /* RCU slabs could be legally used after free within the RCU period */
563         if (unlikely(cache->flags & SLAB_DESTROY_BY_RCU))
564                 return;
565
566         kasan_poison_shadow(object, rounded_up_size, KASAN_KMALLOC_FREE);
567 }
568
569 bool kasan_slab_free(struct kmem_cache *cache, void *object)
570 {
571         s8 shadow_byte;
572
573         /* RCU slabs could be legally used after free within the RCU period */
574         if (unlikely(cache->flags & SLAB_DESTROY_BY_RCU))
575                 return false;
576
577         shadow_byte = READ_ONCE(*(s8 *)kasan_mem_to_shadow(object));
578         if (shadow_byte < 0 || shadow_byte >= KASAN_SHADOW_SCALE_SIZE) {
579                 kasan_report_double_free(cache, object,
580                                 __builtin_return_address(1));
581                 return true;
582         }
583
584         kasan_poison_slab_free(cache, object);
585
586         if (unlikely(!(cache->flags & SLAB_KASAN)))
587                 return false;
588
589         set_track(&get_alloc_info(cache, object)->free_track, GFP_NOWAIT);
590         quarantine_put(get_free_info(cache, object), cache);
591         return true;
592 }
593
594 void kasan_kmalloc(struct kmem_cache *cache, const void *object, size_t size,
595                    gfp_t flags)
596 {
597         unsigned long redzone_start;
598         unsigned long redzone_end;
599
600         if (gfpflags_allow_blocking(flags))
601                 quarantine_reduce();
602
603         if (unlikely(object == NULL))
604                 return;
605
606         redzone_start = round_up((unsigned long)(object + size),
607                                 KASAN_SHADOW_SCALE_SIZE);
608         redzone_end = round_up((unsigned long)object + cache->object_size,
609                                 KASAN_SHADOW_SCALE_SIZE);
610
611         kasan_unpoison_shadow(object, size);
612         kasan_poison_shadow((void *)redzone_start, redzone_end - redzone_start,
613                 KASAN_KMALLOC_REDZONE);
614
615         if (cache->flags & SLAB_KASAN)
616                 set_track(&get_alloc_info(cache, object)->alloc_track, flags);
617 }
618 EXPORT_SYMBOL(kasan_kmalloc);
619
620 void kasan_kmalloc_large(const void *ptr, size_t size, gfp_t flags)
621 {
622         struct page *page;
623         unsigned long redzone_start;
624         unsigned long redzone_end;
625
626         if (gfpflags_allow_blocking(flags))
627                 quarantine_reduce();
628
629         if (unlikely(ptr == NULL))
630                 return;
631
632         page = virt_to_page(ptr);
633         redzone_start = round_up((unsigned long)(ptr + size),
634                                 KASAN_SHADOW_SCALE_SIZE);
635         redzone_end = (unsigned long)ptr + (PAGE_SIZE << compound_order(page));
636
637         kasan_unpoison_shadow(ptr, size);
638         kasan_poison_shadow((void *)redzone_start, redzone_end - redzone_start,
639                 KASAN_PAGE_REDZONE);
640 }
641
642 void kasan_krealloc(const void *object, size_t size, gfp_t flags)
643 {
644         struct page *page;
645
646         if (unlikely(object == ZERO_SIZE_PTR))
647                 return;
648
649         page = virt_to_head_page(object);
650
651         if (unlikely(!PageSlab(page)))
652                 kasan_kmalloc_large(object, size, flags);
653         else
654                 kasan_kmalloc(page->slab_cache, object, size, flags);
655 }
656
657 void kasan_poison_kfree(void *ptr)
658 {
659         struct page *page;
660
661         page = virt_to_head_page(ptr);
662
663         if (unlikely(!PageSlab(page)))
664                 kasan_poison_shadow(ptr, PAGE_SIZE << compound_order(page),
665                                 KASAN_FREE_PAGE);
666         else
667                 kasan_poison_slab_free(page->slab_cache, ptr);
668 }
669
670 void kasan_kfree_large(const void *ptr)
671 {
672         struct page *page = virt_to_page(ptr);
673
674         kasan_poison_shadow(ptr, PAGE_SIZE << compound_order(page),
675                         KASAN_FREE_PAGE);
676 }
677
678 int kasan_module_alloc(void *addr, size_t size)
679 {
680         void *ret;
681         size_t scaled_size;
682         size_t shadow_size;
683         unsigned long shadow_start;
684
685         shadow_start = (unsigned long)kasan_mem_to_shadow(addr);
686         scaled_size = (size + KASAN_SHADOW_MASK) >> KASAN_SHADOW_SCALE_SHIFT;
687         shadow_size = round_up(scaled_size, PAGE_SIZE);
688
689         if (WARN_ON(!PAGE_ALIGNED(shadow_start)))
690                 return -EINVAL;
691
692         ret = __vmalloc_node_range(shadow_size, 1, shadow_start,
693                         shadow_start + shadow_size,
694                         GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
695                         PAGE_KERNEL, VM_NO_GUARD, NUMA_NO_NODE,
696                         __builtin_return_address(0));
697
698         if (ret) {
699                 find_vm_area(addr)->flags |= VM_KASAN;
700                 kmemleak_ignore(ret);
701                 return 0;
702         }
703
704         return -ENOMEM;
705 }
706
707 void kasan_free_shadow(const struct vm_struct *vm)
708 {
709         if (vm->flags & VM_KASAN)
710                 vfree(kasan_mem_to_shadow(vm->addr));
711 }
712
713 static void register_global(struct kasan_global *global)
714 {
715         size_t aligned_size = round_up(global->size, KASAN_SHADOW_SCALE_SIZE);
716
717         kasan_unpoison_shadow(global->beg, global->size);
718
719         kasan_poison_shadow(global->beg + aligned_size,
720                 global->size_with_redzone - aligned_size,
721                 KASAN_GLOBAL_REDZONE);
722 }
723
724 void __asan_register_globals(struct kasan_global *globals, size_t size)
725 {
726         int i;
727
728         for (i = 0; i < size; i++)
729                 register_global(&globals[i]);
730 }
731 EXPORT_SYMBOL(__asan_register_globals);
732
733 void __asan_unregister_globals(struct kasan_global *globals, size_t size)
734 {
735 }
736 EXPORT_SYMBOL(__asan_unregister_globals);
737
738 #define DEFINE_ASAN_LOAD_STORE(size)                                    \
739         void __asan_load##size(unsigned long addr)                      \
740         {                                                               \
741                 check_memory_region_inline(addr, size, false, _RET_IP_);\
742         }                                                               \
743         EXPORT_SYMBOL(__asan_load##size);                               \
744         __alias(__asan_load##size)                                      \
745         void __asan_load##size##_noabort(unsigned long);                \
746         EXPORT_SYMBOL(__asan_load##size##_noabort);                     \
747         void __asan_store##size(unsigned long addr)                     \
748         {                                                               \
749                 check_memory_region_inline(addr, size, true, _RET_IP_); \
750         }                                                               \
751         EXPORT_SYMBOL(__asan_store##size);                              \
752         __alias(__asan_store##size)                                     \
753         void __asan_store##size##_noabort(unsigned long);               \
754         EXPORT_SYMBOL(__asan_store##size##_noabort)
755
756 DEFINE_ASAN_LOAD_STORE(1);
757 DEFINE_ASAN_LOAD_STORE(2);
758 DEFINE_ASAN_LOAD_STORE(4);
759 DEFINE_ASAN_LOAD_STORE(8);
760 DEFINE_ASAN_LOAD_STORE(16);
761
762 void __asan_loadN(unsigned long addr, size_t size)
763 {
764         check_memory_region(addr, size, false, _RET_IP_);
765 }
766 EXPORT_SYMBOL(__asan_loadN);
767
768 __alias(__asan_loadN)
769 void __asan_loadN_noabort(unsigned long, size_t);
770 EXPORT_SYMBOL(__asan_loadN_noabort);
771
772 void __asan_storeN(unsigned long addr, size_t size)
773 {
774         check_memory_region(addr, size, true, _RET_IP_);
775 }
776 EXPORT_SYMBOL(__asan_storeN);
777
778 __alias(__asan_storeN)
779 void __asan_storeN_noabort(unsigned long, size_t);
780 EXPORT_SYMBOL(__asan_storeN_noabort);
781
782 /* to shut up compiler complaints */
783 void __asan_handle_no_return(void) {}
784 EXPORT_SYMBOL(__asan_handle_no_return);
785
786 /* Emitted by compiler to poison large objects when they go out of scope. */
787 void __asan_poison_stack_memory(const void *addr, size_t size)
788 {
789         /*
790          * Addr is KASAN_SHADOW_SCALE_SIZE-aligned and the object is surrounded
791          * by redzones, so we simply round up size to simplify logic.
792          */
793         kasan_poison_shadow(addr, round_up(size, KASAN_SHADOW_SCALE_SIZE),
794                             KASAN_USE_AFTER_SCOPE);
795 }
796 EXPORT_SYMBOL(__asan_poison_stack_memory);
797
798 /* Emitted by compiler to unpoison large objects when they go into scope. */
799 void __asan_unpoison_stack_memory(const void *addr, size_t size)
800 {
801         kasan_unpoison_shadow(addr, size);
802 }
803 EXPORT_SYMBOL(__asan_unpoison_stack_memory);
804
805 #ifdef CONFIG_MEMORY_HOTPLUG
806 static int kasan_mem_notifier(struct notifier_block *nb,
807                         unsigned long action, void *data)
808 {
809         return (action == MEM_GOING_ONLINE) ? NOTIFY_BAD : NOTIFY_OK;
810 }
811
812 static int __init kasan_memhotplug_init(void)
813 {
814         pr_info("WARNING: KASAN doesn't support memory hot-add\n");
815         pr_info("Memory hot-add will be disabled\n");
816
817         hotplug_memory_notifier(kasan_mem_notifier, 0);
818
819         return 0;
820 }
821
822 core_initcall(kasan_memhotplug_init);
823 #endif