OSDN Git Service

arm64: Implement array_index_mask_nospec()
[android-x86/kernel.git] / mm / khugepaged.c
1 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
2
3 #include <linux/mm.h>
4 #include <linux/sched.h>
5 #include <linux/mmu_notifier.h>
6 #include <linux/rmap.h>
7 #include <linux/swap.h>
8 #include <linux/mm_inline.h>
9 #include <linux/kthread.h>
10 #include <linux/khugepaged.h>
11 #include <linux/freezer.h>
12 #include <linux/mman.h>
13 #include <linux/hashtable.h>
14 #include <linux/userfaultfd_k.h>
15 #include <linux/page_idle.h>
16 #include <linux/swapops.h>
17 #include <linux/shmem_fs.h>
18
19 #include <asm/tlb.h>
20 #include <asm/pgalloc.h>
21 #include "internal.h"
22
23 enum scan_result {
24         SCAN_FAIL,
25         SCAN_SUCCEED,
26         SCAN_PMD_NULL,
27         SCAN_EXCEED_NONE_PTE,
28         SCAN_PTE_NON_PRESENT,
29         SCAN_PAGE_RO,
30         SCAN_LACK_REFERENCED_PAGE,
31         SCAN_PAGE_NULL,
32         SCAN_SCAN_ABORT,
33         SCAN_PAGE_COUNT,
34         SCAN_PAGE_LRU,
35         SCAN_PAGE_LOCK,
36         SCAN_PAGE_ANON,
37         SCAN_PAGE_COMPOUND,
38         SCAN_ANY_PROCESS,
39         SCAN_VMA_NULL,
40         SCAN_VMA_CHECK,
41         SCAN_ADDRESS_RANGE,
42         SCAN_SWAP_CACHE_PAGE,
43         SCAN_DEL_PAGE_LRU,
44         SCAN_ALLOC_HUGE_PAGE_FAIL,
45         SCAN_CGROUP_CHARGE_FAIL,
46         SCAN_EXCEED_SWAP_PTE,
47         SCAN_TRUNCATED,
48 };
49
50 #define CREATE_TRACE_POINTS
51 #include <trace/events/huge_memory.h>
52
53 /* default scan 8*512 pte (or vmas) every 30 second */
54 static unsigned int khugepaged_pages_to_scan __read_mostly;
55 static unsigned int khugepaged_pages_collapsed;
56 static unsigned int khugepaged_full_scans;
57 static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
58 /* during fragmentation poll the hugepage allocator once every minute */
59 static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
60 static unsigned long khugepaged_sleep_expire;
61 static DEFINE_SPINLOCK(khugepaged_mm_lock);
62 static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
63 /*
64  * default collapse hugepages if there is at least one pte mapped like
65  * it would have happened if the vma was large enough during page
66  * fault.
67  */
68 static unsigned int khugepaged_max_ptes_none __read_mostly;
69 static unsigned int khugepaged_max_ptes_swap __read_mostly;
70
71 #define MM_SLOTS_HASH_BITS 10
72 static __read_mostly DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
73
74 static struct kmem_cache *mm_slot_cache __read_mostly;
75
76 /**
77  * struct mm_slot - hash lookup from mm to mm_slot
78  * @hash: hash collision list
79  * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
80  * @mm: the mm that this information is valid for
81  */
82 struct mm_slot {
83         struct hlist_node hash;
84         struct list_head mm_node;
85         struct mm_struct *mm;
86 };
87
88 /**
89  * struct khugepaged_scan - cursor for scanning
90  * @mm_head: the head of the mm list to scan
91  * @mm_slot: the current mm_slot we are scanning
92  * @address: the next address inside that to be scanned
93  *
94  * There is only the one khugepaged_scan instance of this cursor structure.
95  */
96 struct khugepaged_scan {
97         struct list_head mm_head;
98         struct mm_slot *mm_slot;
99         unsigned long address;
100 };
101
102 static struct khugepaged_scan khugepaged_scan = {
103         .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
104 };
105
106 #ifdef CONFIG_SYSFS
107 static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
108                                          struct kobj_attribute *attr,
109                                          char *buf)
110 {
111         return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
112 }
113
114 static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
115                                           struct kobj_attribute *attr,
116                                           const char *buf, size_t count)
117 {
118         unsigned long msecs;
119         int err;
120
121         err = kstrtoul(buf, 10, &msecs);
122         if (err || msecs > UINT_MAX)
123                 return -EINVAL;
124
125         khugepaged_scan_sleep_millisecs = msecs;
126         khugepaged_sleep_expire = 0;
127         wake_up_interruptible(&khugepaged_wait);
128
129         return count;
130 }
131 static struct kobj_attribute scan_sleep_millisecs_attr =
132         __ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
133                scan_sleep_millisecs_store);
134
135 static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
136                                           struct kobj_attribute *attr,
137                                           char *buf)
138 {
139         return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
140 }
141
142 static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
143                                            struct kobj_attribute *attr,
144                                            const char *buf, size_t count)
145 {
146         unsigned long msecs;
147         int err;
148
149         err = kstrtoul(buf, 10, &msecs);
150         if (err || msecs > UINT_MAX)
151                 return -EINVAL;
152
153         khugepaged_alloc_sleep_millisecs = msecs;
154         khugepaged_sleep_expire = 0;
155         wake_up_interruptible(&khugepaged_wait);
156
157         return count;
158 }
159 static struct kobj_attribute alloc_sleep_millisecs_attr =
160         __ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
161                alloc_sleep_millisecs_store);
162
163 static ssize_t pages_to_scan_show(struct kobject *kobj,
164                                   struct kobj_attribute *attr,
165                                   char *buf)
166 {
167         return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
168 }
169 static ssize_t pages_to_scan_store(struct kobject *kobj,
170                                    struct kobj_attribute *attr,
171                                    const char *buf, size_t count)
172 {
173         int err;
174         unsigned long pages;
175
176         err = kstrtoul(buf, 10, &pages);
177         if (err || !pages || pages > UINT_MAX)
178                 return -EINVAL;
179
180         khugepaged_pages_to_scan = pages;
181
182         return count;
183 }
184 static struct kobj_attribute pages_to_scan_attr =
185         __ATTR(pages_to_scan, 0644, pages_to_scan_show,
186                pages_to_scan_store);
187
188 static ssize_t pages_collapsed_show(struct kobject *kobj,
189                                     struct kobj_attribute *attr,
190                                     char *buf)
191 {
192         return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
193 }
194 static struct kobj_attribute pages_collapsed_attr =
195         __ATTR_RO(pages_collapsed);
196
197 static ssize_t full_scans_show(struct kobject *kobj,
198                                struct kobj_attribute *attr,
199                                char *buf)
200 {
201         return sprintf(buf, "%u\n", khugepaged_full_scans);
202 }
203 static struct kobj_attribute full_scans_attr =
204         __ATTR_RO(full_scans);
205
206 static ssize_t khugepaged_defrag_show(struct kobject *kobj,
207                                       struct kobj_attribute *attr, char *buf)
208 {
209         return single_hugepage_flag_show(kobj, attr, buf,
210                                 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
211 }
212 static ssize_t khugepaged_defrag_store(struct kobject *kobj,
213                                        struct kobj_attribute *attr,
214                                        const char *buf, size_t count)
215 {
216         return single_hugepage_flag_store(kobj, attr, buf, count,
217                                  TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
218 }
219 static struct kobj_attribute khugepaged_defrag_attr =
220         __ATTR(defrag, 0644, khugepaged_defrag_show,
221                khugepaged_defrag_store);
222
223 /*
224  * max_ptes_none controls if khugepaged should collapse hugepages over
225  * any unmapped ptes in turn potentially increasing the memory
226  * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
227  * reduce the available free memory in the system as it
228  * runs. Increasing max_ptes_none will instead potentially reduce the
229  * free memory in the system during the khugepaged scan.
230  */
231 static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
232                                              struct kobj_attribute *attr,
233                                              char *buf)
234 {
235         return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
236 }
237 static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
238                                               struct kobj_attribute *attr,
239                                               const char *buf, size_t count)
240 {
241         int err;
242         unsigned long max_ptes_none;
243
244         err = kstrtoul(buf, 10, &max_ptes_none);
245         if (err || max_ptes_none > HPAGE_PMD_NR-1)
246                 return -EINVAL;
247
248         khugepaged_max_ptes_none = max_ptes_none;
249
250         return count;
251 }
252 static struct kobj_attribute khugepaged_max_ptes_none_attr =
253         __ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
254                khugepaged_max_ptes_none_store);
255
256 static ssize_t khugepaged_max_ptes_swap_show(struct kobject *kobj,
257                                              struct kobj_attribute *attr,
258                                              char *buf)
259 {
260         return sprintf(buf, "%u\n", khugepaged_max_ptes_swap);
261 }
262
263 static ssize_t khugepaged_max_ptes_swap_store(struct kobject *kobj,
264                                               struct kobj_attribute *attr,
265                                               const char *buf, size_t count)
266 {
267         int err;
268         unsigned long max_ptes_swap;
269
270         err  = kstrtoul(buf, 10, &max_ptes_swap);
271         if (err || max_ptes_swap > HPAGE_PMD_NR-1)
272                 return -EINVAL;
273
274         khugepaged_max_ptes_swap = max_ptes_swap;
275
276         return count;
277 }
278
279 static struct kobj_attribute khugepaged_max_ptes_swap_attr =
280         __ATTR(max_ptes_swap, 0644, khugepaged_max_ptes_swap_show,
281                khugepaged_max_ptes_swap_store);
282
283 static struct attribute *khugepaged_attr[] = {
284         &khugepaged_defrag_attr.attr,
285         &khugepaged_max_ptes_none_attr.attr,
286         &pages_to_scan_attr.attr,
287         &pages_collapsed_attr.attr,
288         &full_scans_attr.attr,
289         &scan_sleep_millisecs_attr.attr,
290         &alloc_sleep_millisecs_attr.attr,
291         &khugepaged_max_ptes_swap_attr.attr,
292         NULL,
293 };
294
295 struct attribute_group khugepaged_attr_group = {
296         .attrs = khugepaged_attr,
297         .name = "khugepaged",
298 };
299 #endif /* CONFIG_SYSFS */
300
301 #define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB)
302
303 int hugepage_madvise(struct vm_area_struct *vma,
304                      unsigned long *vm_flags, int advice)
305 {
306         switch (advice) {
307         case MADV_HUGEPAGE:
308 #ifdef CONFIG_S390
309                 /*
310                  * qemu blindly sets MADV_HUGEPAGE on all allocations, but s390
311                  * can't handle this properly after s390_enable_sie, so we simply
312                  * ignore the madvise to prevent qemu from causing a SIGSEGV.
313                  */
314                 if (mm_has_pgste(vma->vm_mm))
315                         return 0;
316 #endif
317                 *vm_flags &= ~VM_NOHUGEPAGE;
318                 *vm_flags |= VM_HUGEPAGE;
319                 /*
320                  * If the vma become good for khugepaged to scan,
321                  * register it here without waiting a page fault that
322                  * may not happen any time soon.
323                  */
324                 if (!(*vm_flags & VM_NO_KHUGEPAGED) &&
325                                 khugepaged_enter_vma_merge(vma, *vm_flags))
326                         return -ENOMEM;
327                 break;
328         case MADV_NOHUGEPAGE:
329                 *vm_flags &= ~VM_HUGEPAGE;
330                 *vm_flags |= VM_NOHUGEPAGE;
331                 /*
332                  * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
333                  * this vma even if we leave the mm registered in khugepaged if
334                  * it got registered before VM_NOHUGEPAGE was set.
335                  */
336                 break;
337         }
338
339         return 0;
340 }
341
342 int __init khugepaged_init(void)
343 {
344         mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
345                                           sizeof(struct mm_slot),
346                                           __alignof__(struct mm_slot), 0, NULL);
347         if (!mm_slot_cache)
348                 return -ENOMEM;
349
350         khugepaged_pages_to_scan = HPAGE_PMD_NR * 8;
351         khugepaged_max_ptes_none = HPAGE_PMD_NR - 1;
352         khugepaged_max_ptes_swap = HPAGE_PMD_NR / 8;
353
354         return 0;
355 }
356
357 void __init khugepaged_destroy(void)
358 {
359         kmem_cache_destroy(mm_slot_cache);
360 }
361
362 static inline struct mm_slot *alloc_mm_slot(void)
363 {
364         if (!mm_slot_cache)     /* initialization failed */
365                 return NULL;
366         return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
367 }
368
369 static inline void free_mm_slot(struct mm_slot *mm_slot)
370 {
371         kmem_cache_free(mm_slot_cache, mm_slot);
372 }
373
374 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
375 {
376         struct mm_slot *mm_slot;
377
378         hash_for_each_possible(mm_slots_hash, mm_slot, hash, (unsigned long)mm)
379                 if (mm == mm_slot->mm)
380                         return mm_slot;
381
382         return NULL;
383 }
384
385 static void insert_to_mm_slots_hash(struct mm_struct *mm,
386                                     struct mm_slot *mm_slot)
387 {
388         mm_slot->mm = mm;
389         hash_add(mm_slots_hash, &mm_slot->hash, (long)mm);
390 }
391
392 static inline int khugepaged_test_exit(struct mm_struct *mm)
393 {
394         return atomic_read(&mm->mm_users) == 0;
395 }
396
397 int __khugepaged_enter(struct mm_struct *mm)
398 {
399         struct mm_slot *mm_slot;
400         int wakeup;
401
402         mm_slot = alloc_mm_slot();
403         if (!mm_slot)
404                 return -ENOMEM;
405
406         /* __khugepaged_exit() must not run from under us */
407         VM_BUG_ON_MM(khugepaged_test_exit(mm), mm);
408         if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
409                 free_mm_slot(mm_slot);
410                 return 0;
411         }
412
413         spin_lock(&khugepaged_mm_lock);
414         insert_to_mm_slots_hash(mm, mm_slot);
415         /*
416          * Insert just behind the scanning cursor, to let the area settle
417          * down a little.
418          */
419         wakeup = list_empty(&khugepaged_scan.mm_head);
420         list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
421         spin_unlock(&khugepaged_mm_lock);
422
423         atomic_inc(&mm->mm_count);
424         if (wakeup)
425                 wake_up_interruptible(&khugepaged_wait);
426
427         return 0;
428 }
429
430 int khugepaged_enter_vma_merge(struct vm_area_struct *vma,
431                                unsigned long vm_flags)
432 {
433         unsigned long hstart, hend;
434         if (!vma->anon_vma)
435                 /*
436                  * Not yet faulted in so we will register later in the
437                  * page fault if needed.
438                  */
439                 return 0;
440         if (vma->vm_ops || (vm_flags & VM_NO_KHUGEPAGED))
441                 /* khugepaged not yet working on file or special mappings */
442                 return 0;
443         hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
444         hend = vma->vm_end & HPAGE_PMD_MASK;
445         if (hstart < hend)
446                 return khugepaged_enter(vma, vm_flags);
447         return 0;
448 }
449
450 void __khugepaged_exit(struct mm_struct *mm)
451 {
452         struct mm_slot *mm_slot;
453         int free = 0;
454
455         spin_lock(&khugepaged_mm_lock);
456         mm_slot = get_mm_slot(mm);
457         if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
458                 hash_del(&mm_slot->hash);
459                 list_del(&mm_slot->mm_node);
460                 free = 1;
461         }
462         spin_unlock(&khugepaged_mm_lock);
463
464         if (free) {
465                 clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
466                 free_mm_slot(mm_slot);
467                 mmdrop(mm);
468         } else if (mm_slot) {
469                 /*
470                  * This is required to serialize against
471                  * khugepaged_test_exit() (which is guaranteed to run
472                  * under mmap sem read mode). Stop here (after we
473                  * return all pagetables will be destroyed) until
474                  * khugepaged has finished working on the pagetables
475                  * under the mmap_sem.
476                  */
477                 down_write(&mm->mmap_sem);
478                 up_write(&mm->mmap_sem);
479         }
480 }
481
482 static void release_pte_page(struct page *page)
483 {
484         /* 0 stands for page_is_file_cache(page) == false */
485         dec_node_page_state(page, NR_ISOLATED_ANON + 0);
486         unlock_page(page);
487         putback_lru_page(page);
488 }
489
490 static void release_pte_pages(pte_t *pte, pte_t *_pte)
491 {
492         while (--_pte >= pte) {
493                 pte_t pteval = *_pte;
494                 if (!pte_none(pteval) && !is_zero_pfn(pte_pfn(pteval)))
495                         release_pte_page(pte_page(pteval));
496         }
497 }
498
499 static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
500                                         unsigned long address,
501                                         pte_t *pte)
502 {
503         struct page *page = NULL;
504         pte_t *_pte;
505         int none_or_zero = 0, result = 0, referenced = 0;
506         bool writable = false;
507
508         for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
509              _pte++, address += PAGE_SIZE) {
510                 pte_t pteval = *_pte;
511                 if (pte_none(pteval) || (pte_present(pteval) &&
512                                 is_zero_pfn(pte_pfn(pteval)))) {
513                         if (!userfaultfd_armed(vma) &&
514                             ++none_or_zero <= khugepaged_max_ptes_none) {
515                                 continue;
516                         } else {
517                                 result = SCAN_EXCEED_NONE_PTE;
518                                 goto out;
519                         }
520                 }
521                 if (!pte_present(pteval)) {
522                         result = SCAN_PTE_NON_PRESENT;
523                         goto out;
524                 }
525                 page = vm_normal_page(vma, address, pteval);
526                 if (unlikely(!page)) {
527                         result = SCAN_PAGE_NULL;
528                         goto out;
529                 }
530
531                 /* TODO: teach khugepaged to collapse THP mapped with pte */
532                 if (PageCompound(page)) {
533                         result = SCAN_PAGE_COMPOUND;
534                         goto out;
535                 }
536
537                 VM_BUG_ON_PAGE(!PageAnon(page), page);
538                 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
539
540                 /*
541                  * We can do it before isolate_lru_page because the
542                  * page can't be freed from under us. NOTE: PG_lock
543                  * is needed to serialize against split_huge_page
544                  * when invoked from the VM.
545                  */
546                 if (!trylock_page(page)) {
547                         result = SCAN_PAGE_LOCK;
548                         goto out;
549                 }
550
551                 /*
552                  * cannot use mapcount: can't collapse if there's a gup pin.
553                  * The page must only be referenced by the scanned process
554                  * and page swap cache.
555                  */
556                 if (page_count(page) != 1 + !!PageSwapCache(page)) {
557                         unlock_page(page);
558                         result = SCAN_PAGE_COUNT;
559                         goto out;
560                 }
561                 if (pte_write(pteval)) {
562                         writable = true;
563                 } else {
564                         if (PageSwapCache(page) &&
565                             !reuse_swap_page(page, NULL)) {
566                                 unlock_page(page);
567                                 result = SCAN_SWAP_CACHE_PAGE;
568                                 goto out;
569                         }
570                         /*
571                          * Page is not in the swap cache. It can be collapsed
572                          * into a THP.
573                          */
574                 }
575
576                 /*
577                  * Isolate the page to avoid collapsing an hugepage
578                  * currently in use by the VM.
579                  */
580                 if (isolate_lru_page(page)) {
581                         unlock_page(page);
582                         result = SCAN_DEL_PAGE_LRU;
583                         goto out;
584                 }
585                 /* 0 stands for page_is_file_cache(page) == false */
586                 inc_node_page_state(page, NR_ISOLATED_ANON + 0);
587                 VM_BUG_ON_PAGE(!PageLocked(page), page);
588                 VM_BUG_ON_PAGE(PageLRU(page), page);
589
590                 /* There should be enough young pte to collapse the page */
591                 if (pte_young(pteval) ||
592                     page_is_young(page) || PageReferenced(page) ||
593                     mmu_notifier_test_young(vma->vm_mm, address))
594                         referenced++;
595         }
596         if (likely(writable)) {
597                 if (likely(referenced)) {
598                         result = SCAN_SUCCEED;
599                         trace_mm_collapse_huge_page_isolate(page, none_or_zero,
600                                                             referenced, writable, result);
601                         return 1;
602                 }
603         } else {
604                 result = SCAN_PAGE_RO;
605         }
606
607 out:
608         release_pte_pages(pte, _pte);
609         trace_mm_collapse_huge_page_isolate(page, none_or_zero,
610                                             referenced, writable, result);
611         return 0;
612 }
613
614 static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
615                                       struct vm_area_struct *vma,
616                                       unsigned long address,
617                                       spinlock_t *ptl)
618 {
619         pte_t *_pte;
620         for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) {
621                 pte_t pteval = *_pte;
622                 struct page *src_page;
623
624                 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
625                         clear_user_highpage(page, address);
626                         add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
627                         if (is_zero_pfn(pte_pfn(pteval))) {
628                                 /*
629                                  * ptl mostly unnecessary.
630                                  */
631                                 spin_lock(ptl);
632                                 /*
633                                  * paravirt calls inside pte_clear here are
634                                  * superfluous.
635                                  */
636                                 pte_clear(vma->vm_mm, address, _pte);
637                                 spin_unlock(ptl);
638                         }
639                 } else {
640                         src_page = pte_page(pteval);
641                         copy_user_highpage(page, src_page, address, vma);
642                         VM_BUG_ON_PAGE(page_mapcount(src_page) != 1, src_page);
643                         release_pte_page(src_page);
644                         /*
645                          * ptl mostly unnecessary, but preempt has to
646                          * be disabled to update the per-cpu stats
647                          * inside page_remove_rmap().
648                          */
649                         spin_lock(ptl);
650                         /*
651                          * paravirt calls inside pte_clear here are
652                          * superfluous.
653                          */
654                         pte_clear(vma->vm_mm, address, _pte);
655                         page_remove_rmap(src_page, false);
656                         spin_unlock(ptl);
657                         free_page_and_swap_cache(src_page);
658                 }
659
660                 address += PAGE_SIZE;
661                 page++;
662         }
663 }
664
665 static void khugepaged_alloc_sleep(void)
666 {
667         DEFINE_WAIT(wait);
668
669         add_wait_queue(&khugepaged_wait, &wait);
670         freezable_schedule_timeout_interruptible(
671                 msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
672         remove_wait_queue(&khugepaged_wait, &wait);
673 }
674
675 static int khugepaged_node_load[MAX_NUMNODES];
676
677 static bool khugepaged_scan_abort(int nid)
678 {
679         int i;
680
681         /*
682          * If node_reclaim_mode is disabled, then no extra effort is made to
683          * allocate memory locally.
684          */
685         if (!node_reclaim_mode)
686                 return false;
687
688         /* If there is a count for this node already, it must be acceptable */
689         if (khugepaged_node_load[nid])
690                 return false;
691
692         for (i = 0; i < MAX_NUMNODES; i++) {
693                 if (!khugepaged_node_load[i])
694                         continue;
695                 if (node_distance(nid, i) > RECLAIM_DISTANCE)
696                         return true;
697         }
698         return false;
699 }
700
701 /* Defrag for khugepaged will enter direct reclaim/compaction if necessary */
702 static inline gfp_t alloc_hugepage_khugepaged_gfpmask(void)
703 {
704         return khugepaged_defrag() ? GFP_TRANSHUGE : GFP_TRANSHUGE_LIGHT;
705 }
706
707 #ifdef CONFIG_NUMA
708 static int khugepaged_find_target_node(void)
709 {
710         static int last_khugepaged_target_node = NUMA_NO_NODE;
711         int nid, target_node = 0, max_value = 0;
712
713         /* find first node with max normal pages hit */
714         for (nid = 0; nid < MAX_NUMNODES; nid++)
715                 if (khugepaged_node_load[nid] > max_value) {
716                         max_value = khugepaged_node_load[nid];
717                         target_node = nid;
718                 }
719
720         /* do some balance if several nodes have the same hit record */
721         if (target_node <= last_khugepaged_target_node)
722                 for (nid = last_khugepaged_target_node + 1; nid < MAX_NUMNODES;
723                                 nid++)
724                         if (max_value == khugepaged_node_load[nid]) {
725                                 target_node = nid;
726                                 break;
727                         }
728
729         last_khugepaged_target_node = target_node;
730         return target_node;
731 }
732
733 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
734 {
735         if (IS_ERR(*hpage)) {
736                 if (!*wait)
737                         return false;
738
739                 *wait = false;
740                 *hpage = NULL;
741                 khugepaged_alloc_sleep();
742         } else if (*hpage) {
743                 put_page(*hpage);
744                 *hpage = NULL;
745         }
746
747         return true;
748 }
749
750 static struct page *
751 khugepaged_alloc_page(struct page **hpage, gfp_t gfp, int node)
752 {
753         VM_BUG_ON_PAGE(*hpage, *hpage);
754
755         *hpage = __alloc_pages_node(node, gfp, HPAGE_PMD_ORDER);
756         if (unlikely(!*hpage)) {
757                 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
758                 *hpage = ERR_PTR(-ENOMEM);
759                 return NULL;
760         }
761
762         prep_transhuge_page(*hpage);
763         count_vm_event(THP_COLLAPSE_ALLOC);
764         return *hpage;
765 }
766 #else
767 static int khugepaged_find_target_node(void)
768 {
769         return 0;
770 }
771
772 static inline struct page *alloc_khugepaged_hugepage(void)
773 {
774         struct page *page;
775
776         page = alloc_pages(alloc_hugepage_khugepaged_gfpmask(),
777                            HPAGE_PMD_ORDER);
778         if (page)
779                 prep_transhuge_page(page);
780         return page;
781 }
782
783 static struct page *khugepaged_alloc_hugepage(bool *wait)
784 {
785         struct page *hpage;
786
787         do {
788                 hpage = alloc_khugepaged_hugepage();
789                 if (!hpage) {
790                         count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
791                         if (!*wait)
792                                 return NULL;
793
794                         *wait = false;
795                         khugepaged_alloc_sleep();
796                 } else
797                         count_vm_event(THP_COLLAPSE_ALLOC);
798         } while (unlikely(!hpage) && likely(khugepaged_enabled()));
799
800         return hpage;
801 }
802
803 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
804 {
805         if (!*hpage)
806                 *hpage = khugepaged_alloc_hugepage(wait);
807
808         if (unlikely(!*hpage))
809                 return false;
810
811         return true;
812 }
813
814 static struct page *
815 khugepaged_alloc_page(struct page **hpage, gfp_t gfp, int node)
816 {
817         VM_BUG_ON(!*hpage);
818
819         return  *hpage;
820 }
821 #endif
822
823 static bool hugepage_vma_check(struct vm_area_struct *vma)
824 {
825         if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
826             (vma->vm_flags & VM_NOHUGEPAGE))
827                 return false;
828         if (shmem_file(vma->vm_file)) {
829                 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
830                         return false;
831                 return IS_ALIGNED((vma->vm_start >> PAGE_SHIFT) - vma->vm_pgoff,
832                                 HPAGE_PMD_NR);
833         }
834         if (!vma->anon_vma || vma->vm_ops)
835                 return false;
836         if (is_vma_temporary_stack(vma))
837                 return false;
838         return !(vma->vm_flags & VM_NO_KHUGEPAGED);
839 }
840
841 /*
842  * If mmap_sem temporarily dropped, revalidate vma
843  * before taking mmap_sem.
844  * Return 0 if succeeds, otherwise return none-zero
845  * value (scan code).
846  */
847
848 static int hugepage_vma_revalidate(struct mm_struct *mm, unsigned long address,
849                 struct vm_area_struct **vmap)
850 {
851         struct vm_area_struct *vma;
852         unsigned long hstart, hend;
853
854         if (unlikely(khugepaged_test_exit(mm)))
855                 return SCAN_ANY_PROCESS;
856
857         *vmap = vma = find_vma(mm, address);
858         if (!vma)
859                 return SCAN_VMA_NULL;
860
861         hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
862         hend = vma->vm_end & HPAGE_PMD_MASK;
863         if (address < hstart || address + HPAGE_PMD_SIZE > hend)
864                 return SCAN_ADDRESS_RANGE;
865         if (!hugepage_vma_check(vma))
866                 return SCAN_VMA_CHECK;
867         return 0;
868 }
869
870 /*
871  * Bring missing pages in from swap, to complete THP collapse.
872  * Only done if khugepaged_scan_pmd believes it is worthwhile.
873  *
874  * Called and returns without pte mapped or spinlocks held,
875  * but with mmap_sem held to protect against vma changes.
876  */
877
878 static bool __collapse_huge_page_swapin(struct mm_struct *mm,
879                                         struct vm_area_struct *vma,
880                                         unsigned long address, pmd_t *pmd,
881                                         int referenced)
882 {
883         pte_t pteval;
884         int swapped_in = 0, ret = 0;
885         struct fault_env fe = {
886                 .vma = vma,
887                 .address = address,
888                 .flags = FAULT_FLAG_ALLOW_RETRY,
889                 .pmd = pmd,
890         };
891
892         /* we only decide to swapin, if there is enough young ptes */
893         if (referenced < HPAGE_PMD_NR/2) {
894                 trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0);
895                 return false;
896         }
897         fe.pte = pte_offset_map(pmd, address);
898         for (; fe.address < address + HPAGE_PMD_NR*PAGE_SIZE;
899                         fe.pte++, fe.address += PAGE_SIZE) {
900                 pteval = *fe.pte;
901                 if (!is_swap_pte(pteval))
902                         continue;
903                 swapped_in++;
904                 ret = do_swap_page(&fe, pteval);
905
906                 /* do_swap_page returns VM_FAULT_RETRY with released mmap_sem */
907                 if (ret & VM_FAULT_RETRY) {
908                         down_read(&mm->mmap_sem);
909                         if (hugepage_vma_revalidate(mm, address, &fe.vma)) {
910                                 /* vma is no longer available, don't continue to swapin */
911                                 trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0);
912                                 return false;
913                         }
914                         /* check if the pmd is still valid */
915                         if (mm_find_pmd(mm, address) != pmd)
916                                 return false;
917                 }
918                 if (ret & VM_FAULT_ERROR) {
919                         trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0);
920                         return false;
921                 }
922                 /* pte is unmapped now, we need to map it */
923                 fe.pte = pte_offset_map(pmd, fe.address);
924         }
925         fe.pte--;
926         pte_unmap(fe.pte);
927         trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 1);
928         return true;
929 }
930
931 static void collapse_huge_page(struct mm_struct *mm,
932                                    unsigned long address,
933                                    struct page **hpage,
934                                    int node, int referenced)
935 {
936         pmd_t *pmd, _pmd;
937         pte_t *pte;
938         pgtable_t pgtable;
939         struct page *new_page;
940         spinlock_t *pmd_ptl, *pte_ptl;
941         int isolated = 0, result = 0;
942         struct mem_cgroup *memcg;
943         struct vm_area_struct *vma;
944         unsigned long mmun_start;       /* For mmu_notifiers */
945         unsigned long mmun_end;         /* For mmu_notifiers */
946         gfp_t gfp;
947
948         VM_BUG_ON(address & ~HPAGE_PMD_MASK);
949
950         /* Only allocate from the target node */
951         gfp = alloc_hugepage_khugepaged_gfpmask() | __GFP_OTHER_NODE | __GFP_THISNODE;
952
953         /*
954          * Before allocating the hugepage, release the mmap_sem read lock.
955          * The allocation can take potentially a long time if it involves
956          * sync compaction, and we do not need to hold the mmap_sem during
957          * that. We will recheck the vma after taking it again in write mode.
958          */
959         up_read(&mm->mmap_sem);
960         new_page = khugepaged_alloc_page(hpage, gfp, node);
961         if (!new_page) {
962                 result = SCAN_ALLOC_HUGE_PAGE_FAIL;
963                 goto out_nolock;
964         }
965
966         if (unlikely(mem_cgroup_try_charge(new_page, mm, gfp, &memcg, true))) {
967                 result = SCAN_CGROUP_CHARGE_FAIL;
968                 goto out_nolock;
969         }
970
971         down_read(&mm->mmap_sem);
972         result = hugepage_vma_revalidate(mm, address, &vma);
973         if (result) {
974                 mem_cgroup_cancel_charge(new_page, memcg, true);
975                 up_read(&mm->mmap_sem);
976                 goto out_nolock;
977         }
978
979         pmd = mm_find_pmd(mm, address);
980         if (!pmd) {
981                 result = SCAN_PMD_NULL;
982                 mem_cgroup_cancel_charge(new_page, memcg, true);
983                 up_read(&mm->mmap_sem);
984                 goto out_nolock;
985         }
986
987         /*
988          * __collapse_huge_page_swapin always returns with mmap_sem locked.
989          * If it fails, we release mmap_sem and jump out_nolock.
990          * Continuing to collapse causes inconsistency.
991          */
992         if (!__collapse_huge_page_swapin(mm, vma, address, pmd, referenced)) {
993                 mem_cgroup_cancel_charge(new_page, memcg, true);
994                 up_read(&mm->mmap_sem);
995                 goto out_nolock;
996         }
997
998         up_read(&mm->mmap_sem);
999         /*
1000          * Prevent all access to pagetables with the exception of
1001          * gup_fast later handled by the ptep_clear_flush and the VM
1002          * handled by the anon_vma lock + PG_lock.
1003          */
1004         down_write(&mm->mmap_sem);
1005         result = hugepage_vma_revalidate(mm, address, &vma);
1006         if (result)
1007                 goto out;
1008         /* check if the pmd is still valid */
1009         if (mm_find_pmd(mm, address) != pmd)
1010                 goto out;
1011
1012         anon_vma_lock_write(vma->anon_vma);
1013
1014         pte = pte_offset_map(pmd, address);
1015         pte_ptl = pte_lockptr(mm, pmd);
1016
1017         mmun_start = address;
1018         mmun_end   = address + HPAGE_PMD_SIZE;
1019         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1020         pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */
1021         /*
1022          * After this gup_fast can't run anymore. This also removes
1023          * any huge TLB entry from the CPU so we won't allow
1024          * huge and small TLB entries for the same virtual address
1025          * to avoid the risk of CPU bugs in that area.
1026          */
1027         _pmd = pmdp_collapse_flush(vma, address, pmd);
1028         spin_unlock(pmd_ptl);
1029         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1030
1031         spin_lock(pte_ptl);
1032         isolated = __collapse_huge_page_isolate(vma, address, pte);
1033         spin_unlock(pte_ptl);
1034
1035         if (unlikely(!isolated)) {
1036                 pte_unmap(pte);
1037                 spin_lock(pmd_ptl);
1038                 BUG_ON(!pmd_none(*pmd));
1039                 /*
1040                  * We can only use set_pmd_at when establishing
1041                  * hugepmds and never for establishing regular pmds that
1042                  * points to regular pagetables. Use pmd_populate for that
1043                  */
1044                 pmd_populate(mm, pmd, pmd_pgtable(_pmd));
1045                 spin_unlock(pmd_ptl);
1046                 anon_vma_unlock_write(vma->anon_vma);
1047                 result = SCAN_FAIL;
1048                 goto out;
1049         }
1050
1051         /*
1052          * All pages are isolated and locked so anon_vma rmap
1053          * can't run anymore.
1054          */
1055         anon_vma_unlock_write(vma->anon_vma);
1056
1057         __collapse_huge_page_copy(pte, new_page, vma, address, pte_ptl);
1058         pte_unmap(pte);
1059         __SetPageUptodate(new_page);
1060         pgtable = pmd_pgtable(_pmd);
1061
1062         _pmd = mk_huge_pmd(new_page, vma->vm_page_prot);
1063         _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
1064
1065         /*
1066          * spin_lock() below is not the equivalent of smp_wmb(), so
1067          * this is needed to avoid the copy_huge_page writes to become
1068          * visible after the set_pmd_at() write.
1069          */
1070         smp_wmb();
1071
1072         spin_lock(pmd_ptl);
1073         BUG_ON(!pmd_none(*pmd));
1074         page_add_new_anon_rmap(new_page, vma, address, true);
1075         mem_cgroup_commit_charge(new_page, memcg, false, true);
1076         lru_cache_add_active_or_unevictable(new_page, vma);
1077         pgtable_trans_huge_deposit(mm, pmd, pgtable);
1078         set_pmd_at(mm, address, pmd, _pmd);
1079         update_mmu_cache_pmd(vma, address, pmd);
1080         spin_unlock(pmd_ptl);
1081
1082         *hpage = NULL;
1083
1084         khugepaged_pages_collapsed++;
1085         result = SCAN_SUCCEED;
1086 out_up_write:
1087         up_write(&mm->mmap_sem);
1088 out_nolock:
1089         trace_mm_collapse_huge_page(mm, isolated, result);
1090         return;
1091 out:
1092         mem_cgroup_cancel_charge(new_page, memcg, true);
1093         goto out_up_write;
1094 }
1095
1096 static int khugepaged_scan_pmd(struct mm_struct *mm,
1097                                struct vm_area_struct *vma,
1098                                unsigned long address,
1099                                struct page **hpage)
1100 {
1101         pmd_t *pmd;
1102         pte_t *pte, *_pte;
1103         int ret = 0, none_or_zero = 0, result = 0, referenced = 0;
1104         struct page *page = NULL;
1105         unsigned long _address;
1106         spinlock_t *ptl;
1107         int node = NUMA_NO_NODE, unmapped = 0;
1108         bool writable = false;
1109
1110         VM_BUG_ON(address & ~HPAGE_PMD_MASK);
1111
1112         pmd = mm_find_pmd(mm, address);
1113         if (!pmd) {
1114                 result = SCAN_PMD_NULL;
1115                 goto out;
1116         }
1117
1118         memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load));
1119         pte = pte_offset_map_lock(mm, pmd, address, &ptl);
1120         for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
1121              _pte++, _address += PAGE_SIZE) {
1122                 pte_t pteval = *_pte;
1123                 if (is_swap_pte(pteval)) {
1124                         if (++unmapped <= khugepaged_max_ptes_swap) {
1125                                 continue;
1126                         } else {
1127                                 result = SCAN_EXCEED_SWAP_PTE;
1128                                 goto out_unmap;
1129                         }
1130                 }
1131                 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
1132                         if (!userfaultfd_armed(vma) &&
1133                             ++none_or_zero <= khugepaged_max_ptes_none) {
1134                                 continue;
1135                         } else {
1136                                 result = SCAN_EXCEED_NONE_PTE;
1137                                 goto out_unmap;
1138                         }
1139                 }
1140                 if (!pte_present(pteval)) {
1141                         result = SCAN_PTE_NON_PRESENT;
1142                         goto out_unmap;
1143                 }
1144                 if (pte_write(pteval))
1145                         writable = true;
1146
1147                 page = vm_normal_page(vma, _address, pteval);
1148                 if (unlikely(!page)) {
1149                         result = SCAN_PAGE_NULL;
1150                         goto out_unmap;
1151                 }
1152
1153                 /* TODO: teach khugepaged to collapse THP mapped with pte */
1154                 if (PageCompound(page)) {
1155                         result = SCAN_PAGE_COMPOUND;
1156                         goto out_unmap;
1157                 }
1158
1159                 /*
1160                  * Record which node the original page is from and save this
1161                  * information to khugepaged_node_load[].
1162                  * Khupaged will allocate hugepage from the node has the max
1163                  * hit record.
1164                  */
1165                 node = page_to_nid(page);
1166                 if (khugepaged_scan_abort(node)) {
1167                         result = SCAN_SCAN_ABORT;
1168                         goto out_unmap;
1169                 }
1170                 khugepaged_node_load[node]++;
1171                 if (!PageLRU(page)) {
1172                         result = SCAN_PAGE_LRU;
1173                         goto out_unmap;
1174                 }
1175                 if (PageLocked(page)) {
1176                         result = SCAN_PAGE_LOCK;
1177                         goto out_unmap;
1178                 }
1179                 if (!PageAnon(page)) {
1180                         result = SCAN_PAGE_ANON;
1181                         goto out_unmap;
1182                 }
1183
1184                 /*
1185                  * cannot use mapcount: can't collapse if there's a gup pin.
1186                  * The page must only be referenced by the scanned process
1187                  * and page swap cache.
1188                  */
1189                 if (page_count(page) != 1 + !!PageSwapCache(page)) {
1190                         result = SCAN_PAGE_COUNT;
1191                         goto out_unmap;
1192                 }
1193                 if (pte_young(pteval) ||
1194                     page_is_young(page) || PageReferenced(page) ||
1195                     mmu_notifier_test_young(vma->vm_mm, address))
1196                         referenced++;
1197         }
1198         if (writable) {
1199                 if (referenced) {
1200                         result = SCAN_SUCCEED;
1201                         ret = 1;
1202                 } else {
1203                         result = SCAN_LACK_REFERENCED_PAGE;
1204                 }
1205         } else {
1206                 result = SCAN_PAGE_RO;
1207         }
1208 out_unmap:
1209         pte_unmap_unlock(pte, ptl);
1210         if (ret) {
1211                 node = khugepaged_find_target_node();
1212                 /* collapse_huge_page will return with the mmap_sem released */
1213                 collapse_huge_page(mm, address, hpage, node, referenced);
1214         }
1215 out:
1216         trace_mm_khugepaged_scan_pmd(mm, page, writable, referenced,
1217                                      none_or_zero, result, unmapped);
1218         return ret;
1219 }
1220
1221 static void collect_mm_slot(struct mm_slot *mm_slot)
1222 {
1223         struct mm_struct *mm = mm_slot->mm;
1224
1225         VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
1226
1227         if (khugepaged_test_exit(mm)) {
1228                 /* free mm_slot */
1229                 hash_del(&mm_slot->hash);
1230                 list_del(&mm_slot->mm_node);
1231
1232                 /*
1233                  * Not strictly needed because the mm exited already.
1234                  *
1235                  * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
1236                  */
1237
1238                 /* khugepaged_mm_lock actually not necessary for the below */
1239                 free_mm_slot(mm_slot);
1240                 mmdrop(mm);
1241         }
1242 }
1243
1244 #if defined(CONFIG_SHMEM) && defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE)
1245 static void retract_page_tables(struct address_space *mapping, pgoff_t pgoff)
1246 {
1247         struct vm_area_struct *vma;
1248         unsigned long addr;
1249         pmd_t *pmd, _pmd;
1250
1251         i_mmap_lock_write(mapping);
1252         vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
1253                 /* probably overkill */
1254                 if (vma->anon_vma)
1255                         continue;
1256                 addr = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
1257                 if (addr & ~HPAGE_PMD_MASK)
1258                         continue;
1259                 if (vma->vm_end < addr + HPAGE_PMD_SIZE)
1260                         continue;
1261                 pmd = mm_find_pmd(vma->vm_mm, addr);
1262                 if (!pmd)
1263                         continue;
1264                 /*
1265                  * We need exclusive mmap_sem to retract page table.
1266                  * If trylock fails we would end up with pte-mapped THP after
1267                  * re-fault. Not ideal, but it's more important to not disturb
1268                  * the system too much.
1269                  */
1270                 if (down_write_trylock(&vma->vm_mm->mmap_sem)) {
1271                         spinlock_t *ptl = pmd_lock(vma->vm_mm, pmd);
1272                         /* assume page table is clear */
1273                         _pmd = pmdp_collapse_flush(vma, addr, pmd);
1274                         spin_unlock(ptl);
1275                         up_write(&vma->vm_mm->mmap_sem);
1276                         atomic_long_dec(&vma->vm_mm->nr_ptes);
1277                         pte_free(vma->vm_mm, pmd_pgtable(_pmd));
1278                 }
1279         }
1280         i_mmap_unlock_write(mapping);
1281 }
1282
1283 /**
1284  * collapse_shmem - collapse small tmpfs/shmem pages into huge one.
1285  *
1286  * Basic scheme is simple, details are more complex:
1287  *  - allocate and freeze a new huge page;
1288  *  - scan over radix tree replacing old pages the new one
1289  *    + swap in pages if necessary;
1290  *    + fill in gaps;
1291  *    + keep old pages around in case if rollback is required;
1292  *  - if replacing succeed:
1293  *    + copy data over;
1294  *    + free old pages;
1295  *    + unfreeze huge page;
1296  *  - if replacing failed;
1297  *    + put all pages back and unfreeze them;
1298  *    + restore gaps in the radix-tree;
1299  *    + free huge page;
1300  */
1301 static void collapse_shmem(struct mm_struct *mm,
1302                 struct address_space *mapping, pgoff_t start,
1303                 struct page **hpage, int node)
1304 {
1305         gfp_t gfp;
1306         struct page *page, *new_page, *tmp;
1307         struct mem_cgroup *memcg;
1308         pgoff_t index, end = start + HPAGE_PMD_NR;
1309         LIST_HEAD(pagelist);
1310         struct radix_tree_iter iter;
1311         void **slot;
1312         int nr_none = 0, result = SCAN_SUCCEED;
1313
1314         VM_BUG_ON(start & (HPAGE_PMD_NR - 1));
1315
1316         /* Only allocate from the target node */
1317         gfp = alloc_hugepage_khugepaged_gfpmask() |
1318                 __GFP_OTHER_NODE | __GFP_THISNODE;
1319
1320         new_page = khugepaged_alloc_page(hpage, gfp, node);
1321         if (!new_page) {
1322                 result = SCAN_ALLOC_HUGE_PAGE_FAIL;
1323                 goto out;
1324         }
1325
1326         if (unlikely(mem_cgroup_try_charge(new_page, mm, gfp, &memcg, true))) {
1327                 result = SCAN_CGROUP_CHARGE_FAIL;
1328                 goto out;
1329         }
1330
1331         new_page->index = start;
1332         new_page->mapping = mapping;
1333         __SetPageSwapBacked(new_page);
1334         __SetPageLocked(new_page);
1335         BUG_ON(!page_ref_freeze(new_page, 1));
1336
1337
1338         /*
1339          * At this point the new_page is 'frozen' (page_count() is zero), locked
1340          * and not up-to-date. It's safe to insert it into radix tree, because
1341          * nobody would be able to map it or use it in other way until we
1342          * unfreeze it.
1343          */
1344
1345         index = start;
1346         spin_lock_irq(&mapping->tree_lock);
1347         radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1348                 int n = min(iter.index, end) - index;
1349
1350                 /*
1351                  * Handle holes in the radix tree: charge it from shmem and
1352                  * insert relevant subpage of new_page into the radix-tree.
1353                  */
1354                 if (n && !shmem_charge(mapping->host, n)) {
1355                         result = SCAN_FAIL;
1356                         break;
1357                 }
1358                 nr_none += n;
1359                 for (; index < min(iter.index, end); index++) {
1360                         radix_tree_insert(&mapping->page_tree, index,
1361                                         new_page + (index % HPAGE_PMD_NR));
1362                 }
1363
1364                 /* We are done. */
1365                 if (index >= end)
1366                         break;
1367
1368                 page = radix_tree_deref_slot_protected(slot,
1369                                 &mapping->tree_lock);
1370                 if (radix_tree_exceptional_entry(page) || !PageUptodate(page)) {
1371                         spin_unlock_irq(&mapping->tree_lock);
1372                         /* swap in or instantiate fallocated page */
1373                         if (shmem_getpage(mapping->host, index, &page,
1374                                                 SGP_NOHUGE)) {
1375                                 result = SCAN_FAIL;
1376                                 goto tree_unlocked;
1377                         }
1378                         spin_lock_irq(&mapping->tree_lock);
1379                 } else if (trylock_page(page)) {
1380                         get_page(page);
1381                 } else {
1382                         result = SCAN_PAGE_LOCK;
1383                         break;
1384                 }
1385
1386                 /*
1387                  * The page must be locked, so we can drop the tree_lock
1388                  * without racing with truncate.
1389                  */
1390                 VM_BUG_ON_PAGE(!PageLocked(page), page);
1391                 VM_BUG_ON_PAGE(!PageUptodate(page), page);
1392                 VM_BUG_ON_PAGE(PageTransCompound(page), page);
1393
1394                 if (page_mapping(page) != mapping) {
1395                         result = SCAN_TRUNCATED;
1396                         goto out_unlock;
1397                 }
1398                 spin_unlock_irq(&mapping->tree_lock);
1399
1400                 if (isolate_lru_page(page)) {
1401                         result = SCAN_DEL_PAGE_LRU;
1402                         goto out_isolate_failed;
1403                 }
1404
1405                 if (page_mapped(page))
1406                         unmap_mapping_range(mapping, index << PAGE_SHIFT,
1407                                         PAGE_SIZE, 0);
1408
1409                 spin_lock_irq(&mapping->tree_lock);
1410
1411                 slot = radix_tree_lookup_slot(&mapping->page_tree, index);
1412                 VM_BUG_ON_PAGE(page != radix_tree_deref_slot_protected(slot,
1413                                         &mapping->tree_lock), page);
1414                 VM_BUG_ON_PAGE(page_mapped(page), page);
1415
1416                 /*
1417                  * The page is expected to have page_count() == 3:
1418                  *  - we hold a pin on it;
1419                  *  - one reference from radix tree;
1420                  *  - one from isolate_lru_page;
1421                  */
1422                 if (!page_ref_freeze(page, 3)) {
1423                         result = SCAN_PAGE_COUNT;
1424                         goto out_lru;
1425                 }
1426
1427                 /*
1428                  * Add the page to the list to be able to undo the collapse if
1429                  * something go wrong.
1430                  */
1431                 list_add_tail(&page->lru, &pagelist);
1432
1433                 /* Finally, replace with the new page. */
1434                 radix_tree_replace_slot(slot,
1435                                 new_page + (index % HPAGE_PMD_NR));
1436
1437                 slot = radix_tree_iter_next(&iter);
1438                 index++;
1439                 continue;
1440 out_lru:
1441                 spin_unlock_irq(&mapping->tree_lock);
1442                 putback_lru_page(page);
1443 out_isolate_failed:
1444                 unlock_page(page);
1445                 put_page(page);
1446                 goto tree_unlocked;
1447 out_unlock:
1448                 unlock_page(page);
1449                 put_page(page);
1450                 break;
1451         }
1452
1453         /*
1454          * Handle hole in radix tree at the end of the range.
1455          * This code only triggers if there's nothing in radix tree
1456          * beyond 'end'.
1457          */
1458         if (result == SCAN_SUCCEED && index < end) {
1459                 int n = end - index;
1460
1461                 if (!shmem_charge(mapping->host, n)) {
1462                         result = SCAN_FAIL;
1463                         goto tree_locked;
1464                 }
1465
1466                 for (; index < end; index++) {
1467                         radix_tree_insert(&mapping->page_tree, index,
1468                                         new_page + (index % HPAGE_PMD_NR));
1469                 }
1470                 nr_none += n;
1471         }
1472
1473 tree_locked:
1474         spin_unlock_irq(&mapping->tree_lock);
1475 tree_unlocked:
1476
1477         if (result == SCAN_SUCCEED) {
1478                 unsigned long flags;
1479                 struct zone *zone = page_zone(new_page);
1480
1481                 /*
1482                  * Replacing old pages with new one has succeed, now we need to
1483                  * copy the content and free old pages.
1484                  */
1485                 list_for_each_entry_safe(page, tmp, &pagelist, lru) {
1486                         copy_highpage(new_page + (page->index % HPAGE_PMD_NR),
1487                                         page);
1488                         list_del(&page->lru);
1489                         unlock_page(page);
1490                         page_ref_unfreeze(page, 1);
1491                         page->mapping = NULL;
1492                         ClearPageActive(page);
1493                         ClearPageUnevictable(page);
1494                         put_page(page);
1495                 }
1496
1497                 local_irq_save(flags);
1498                 __inc_node_page_state(new_page, NR_SHMEM_THPS);
1499                 if (nr_none) {
1500                         __mod_node_page_state(zone->zone_pgdat, NR_FILE_PAGES, nr_none);
1501                         __mod_node_page_state(zone->zone_pgdat, NR_SHMEM, nr_none);
1502                 }
1503                 local_irq_restore(flags);
1504
1505                 /*
1506                  * Remove pte page tables, so we can re-faulti
1507                  * the page as huge.
1508                  */
1509                 retract_page_tables(mapping, start);
1510
1511                 /* Everything is ready, let's unfreeze the new_page */
1512                 set_page_dirty(new_page);
1513                 SetPageUptodate(new_page);
1514                 page_ref_unfreeze(new_page, HPAGE_PMD_NR);
1515                 mem_cgroup_commit_charge(new_page, memcg, false, true);
1516                 lru_cache_add_anon(new_page);
1517                 unlock_page(new_page);
1518
1519                 *hpage = NULL;
1520         } else {
1521                 /* Something went wrong: rollback changes to the radix-tree */
1522                 shmem_uncharge(mapping->host, nr_none);
1523                 spin_lock_irq(&mapping->tree_lock);
1524                 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter,
1525                                 start) {
1526                         if (iter.index >= end)
1527                                 break;
1528                         page = list_first_entry_or_null(&pagelist,
1529                                         struct page, lru);
1530                         if (!page || iter.index < page->index) {
1531                                 if (!nr_none)
1532                                         break;
1533                                 nr_none--;
1534                                 /* Put holes back where they were */
1535                                 radix_tree_delete(&mapping->page_tree,
1536                                                   iter.index);
1537                                 slot = radix_tree_iter_next(&iter);
1538                                 continue;
1539                         }
1540
1541                         VM_BUG_ON_PAGE(page->index != iter.index, page);
1542
1543                         /* Unfreeze the page. */
1544                         list_del(&page->lru);
1545                         page_ref_unfreeze(page, 2);
1546                         radix_tree_replace_slot(slot, page);
1547                         spin_unlock_irq(&mapping->tree_lock);
1548                         putback_lru_page(page);
1549                         unlock_page(page);
1550                         spin_lock_irq(&mapping->tree_lock);
1551                         slot = radix_tree_iter_next(&iter);
1552                 }
1553                 VM_BUG_ON(nr_none);
1554                 spin_unlock_irq(&mapping->tree_lock);
1555
1556                 /* Unfreeze new_page, caller would take care about freeing it */
1557                 page_ref_unfreeze(new_page, 1);
1558                 mem_cgroup_cancel_charge(new_page, memcg, true);
1559                 unlock_page(new_page);
1560                 new_page->mapping = NULL;
1561         }
1562 out:
1563         VM_BUG_ON(!list_empty(&pagelist));
1564         /* TODO: tracepoints */
1565 }
1566
1567 static void khugepaged_scan_shmem(struct mm_struct *mm,
1568                 struct address_space *mapping,
1569                 pgoff_t start, struct page **hpage)
1570 {
1571         struct page *page = NULL;
1572         struct radix_tree_iter iter;
1573         void **slot;
1574         int present, swap;
1575         int node = NUMA_NO_NODE;
1576         int result = SCAN_SUCCEED;
1577
1578         present = 0;
1579         swap = 0;
1580         memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load));
1581         rcu_read_lock();
1582         radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1583                 if (iter.index >= start + HPAGE_PMD_NR)
1584                         break;
1585
1586                 page = radix_tree_deref_slot(slot);
1587                 if (radix_tree_deref_retry(page)) {
1588                         slot = radix_tree_iter_retry(&iter);
1589                         continue;
1590                 }
1591
1592                 if (radix_tree_exception(page)) {
1593                         if (++swap > khugepaged_max_ptes_swap) {
1594                                 result = SCAN_EXCEED_SWAP_PTE;
1595                                 break;
1596                         }
1597                         continue;
1598                 }
1599
1600                 if (PageTransCompound(page)) {
1601                         result = SCAN_PAGE_COMPOUND;
1602                         break;
1603                 }
1604
1605                 node = page_to_nid(page);
1606                 if (khugepaged_scan_abort(node)) {
1607                         result = SCAN_SCAN_ABORT;
1608                         break;
1609                 }
1610                 khugepaged_node_load[node]++;
1611
1612                 if (!PageLRU(page)) {
1613                         result = SCAN_PAGE_LRU;
1614                         break;
1615                 }
1616
1617                 if (page_count(page) != 1 + page_mapcount(page)) {
1618                         result = SCAN_PAGE_COUNT;
1619                         break;
1620                 }
1621
1622                 /*
1623                  * We probably should check if the page is referenced here, but
1624                  * nobody would transfer pte_young() to PageReferenced() for us.
1625                  * And rmap walk here is just too costly...
1626                  */
1627
1628                 present++;
1629
1630                 if (need_resched()) {
1631                         cond_resched_rcu();
1632                         slot = radix_tree_iter_next(&iter);
1633                 }
1634         }
1635         rcu_read_unlock();
1636
1637         if (result == SCAN_SUCCEED) {
1638                 if (present < HPAGE_PMD_NR - khugepaged_max_ptes_none) {
1639                         result = SCAN_EXCEED_NONE_PTE;
1640                 } else {
1641                         node = khugepaged_find_target_node();
1642                         collapse_shmem(mm, mapping, start, hpage, node);
1643                 }
1644         }
1645
1646         /* TODO: tracepoints */
1647 }
1648 #else
1649 static void khugepaged_scan_shmem(struct mm_struct *mm,
1650                 struct address_space *mapping,
1651                 pgoff_t start, struct page **hpage)
1652 {
1653         BUILD_BUG();
1654 }
1655 #endif
1656
1657 static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
1658                                             struct page **hpage)
1659         __releases(&khugepaged_mm_lock)
1660         __acquires(&khugepaged_mm_lock)
1661 {
1662         struct mm_slot *mm_slot;
1663         struct mm_struct *mm;
1664         struct vm_area_struct *vma;
1665         int progress = 0;
1666
1667         VM_BUG_ON(!pages);
1668         VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
1669
1670         if (khugepaged_scan.mm_slot)
1671                 mm_slot = khugepaged_scan.mm_slot;
1672         else {
1673                 mm_slot = list_entry(khugepaged_scan.mm_head.next,
1674                                      struct mm_slot, mm_node);
1675                 khugepaged_scan.address = 0;
1676                 khugepaged_scan.mm_slot = mm_slot;
1677         }
1678         spin_unlock(&khugepaged_mm_lock);
1679
1680         mm = mm_slot->mm;
1681         down_read(&mm->mmap_sem);
1682         if (unlikely(khugepaged_test_exit(mm)))
1683                 vma = NULL;
1684         else
1685                 vma = find_vma(mm, khugepaged_scan.address);
1686
1687         progress++;
1688         for (; vma; vma = vma->vm_next) {
1689                 unsigned long hstart, hend;
1690
1691                 cond_resched();
1692                 if (unlikely(khugepaged_test_exit(mm))) {
1693                         progress++;
1694                         break;
1695                 }
1696                 if (!hugepage_vma_check(vma)) {
1697 skip:
1698                         progress++;
1699                         continue;
1700                 }
1701                 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
1702                 hend = vma->vm_end & HPAGE_PMD_MASK;
1703                 if (hstart >= hend)
1704                         goto skip;
1705                 if (khugepaged_scan.address > hend)
1706                         goto skip;
1707                 if (khugepaged_scan.address < hstart)
1708                         khugepaged_scan.address = hstart;
1709                 VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
1710
1711                 while (khugepaged_scan.address < hend) {
1712                         int ret;
1713                         cond_resched();
1714                         if (unlikely(khugepaged_test_exit(mm)))
1715                                 goto breakouterloop;
1716
1717                         VM_BUG_ON(khugepaged_scan.address < hstart ||
1718                                   khugepaged_scan.address + HPAGE_PMD_SIZE >
1719                                   hend);
1720                         if (shmem_file(vma->vm_file)) {
1721                                 struct file *file;
1722                                 pgoff_t pgoff = linear_page_index(vma,
1723                                                 khugepaged_scan.address);
1724                                 if (!shmem_huge_enabled(vma))
1725                                         goto skip;
1726                                 file = get_file(vma->vm_file);
1727                                 up_read(&mm->mmap_sem);
1728                                 ret = 1;
1729                                 khugepaged_scan_shmem(mm, file->f_mapping,
1730                                                 pgoff, hpage);
1731                                 fput(file);
1732                         } else {
1733                                 ret = khugepaged_scan_pmd(mm, vma,
1734                                                 khugepaged_scan.address,
1735                                                 hpage);
1736                         }
1737                         /* move to next address */
1738                         khugepaged_scan.address += HPAGE_PMD_SIZE;
1739                         progress += HPAGE_PMD_NR;
1740                         if (ret)
1741                                 /* we released mmap_sem so break loop */
1742                                 goto breakouterloop_mmap_sem;
1743                         if (progress >= pages)
1744                                 goto breakouterloop;
1745                 }
1746         }
1747 breakouterloop:
1748         up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
1749 breakouterloop_mmap_sem:
1750
1751         spin_lock(&khugepaged_mm_lock);
1752         VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
1753         /*
1754          * Release the current mm_slot if this mm is about to die, or
1755          * if we scanned all vmas of this mm.
1756          */
1757         if (khugepaged_test_exit(mm) || !vma) {
1758                 /*
1759                  * Make sure that if mm_users is reaching zero while
1760                  * khugepaged runs here, khugepaged_exit will find
1761                  * mm_slot not pointing to the exiting mm.
1762                  */
1763                 if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
1764                         khugepaged_scan.mm_slot = list_entry(
1765                                 mm_slot->mm_node.next,
1766                                 struct mm_slot, mm_node);
1767                         khugepaged_scan.address = 0;
1768                 } else {
1769                         khugepaged_scan.mm_slot = NULL;
1770                         khugepaged_full_scans++;
1771                 }
1772
1773                 collect_mm_slot(mm_slot);
1774         }
1775
1776         return progress;
1777 }
1778
1779 static int khugepaged_has_work(void)
1780 {
1781         return !list_empty(&khugepaged_scan.mm_head) &&
1782                 khugepaged_enabled();
1783 }
1784
1785 static int khugepaged_wait_event(void)
1786 {
1787         return !list_empty(&khugepaged_scan.mm_head) ||
1788                 kthread_should_stop();
1789 }
1790
1791 static void khugepaged_do_scan(void)
1792 {
1793         struct page *hpage = NULL;
1794         unsigned int progress = 0, pass_through_head = 0;
1795         unsigned int pages = khugepaged_pages_to_scan;
1796         bool wait = true;
1797
1798         barrier(); /* write khugepaged_pages_to_scan to local stack */
1799
1800         while (progress < pages) {
1801                 if (!khugepaged_prealloc_page(&hpage, &wait))
1802                         break;
1803
1804                 cond_resched();
1805
1806                 if (unlikely(kthread_should_stop() || try_to_freeze()))
1807                         break;
1808
1809                 spin_lock(&khugepaged_mm_lock);
1810                 if (!khugepaged_scan.mm_slot)
1811                         pass_through_head++;
1812                 if (khugepaged_has_work() &&
1813                     pass_through_head < 2)
1814                         progress += khugepaged_scan_mm_slot(pages - progress,
1815                                                             &hpage);
1816                 else
1817                         progress = pages;
1818                 spin_unlock(&khugepaged_mm_lock);
1819         }
1820
1821         if (!IS_ERR_OR_NULL(hpage))
1822                 put_page(hpage);
1823 }
1824
1825 static bool khugepaged_should_wakeup(void)
1826 {
1827         return kthread_should_stop() ||
1828                time_after_eq(jiffies, khugepaged_sleep_expire);
1829 }
1830
1831 static void khugepaged_wait_work(void)
1832 {
1833         if (khugepaged_has_work()) {
1834                 const unsigned long scan_sleep_jiffies =
1835                         msecs_to_jiffies(khugepaged_scan_sleep_millisecs);
1836
1837                 if (!scan_sleep_jiffies)
1838                         return;
1839
1840                 khugepaged_sleep_expire = jiffies + scan_sleep_jiffies;
1841                 wait_event_freezable_timeout(khugepaged_wait,
1842                                              khugepaged_should_wakeup(),
1843                                              scan_sleep_jiffies);
1844                 return;
1845         }
1846
1847         if (khugepaged_enabled())
1848                 wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
1849 }
1850
1851 static int khugepaged(void *none)
1852 {
1853         struct mm_slot *mm_slot;
1854
1855         set_freezable();
1856         set_user_nice(current, MAX_NICE);
1857
1858         while (!kthread_should_stop()) {
1859                 khugepaged_do_scan();
1860                 khugepaged_wait_work();
1861         }
1862
1863         spin_lock(&khugepaged_mm_lock);
1864         mm_slot = khugepaged_scan.mm_slot;
1865         khugepaged_scan.mm_slot = NULL;
1866         if (mm_slot)
1867                 collect_mm_slot(mm_slot);
1868         spin_unlock(&khugepaged_mm_lock);
1869         return 0;
1870 }
1871
1872 static void set_recommended_min_free_kbytes(void)
1873 {
1874         struct zone *zone;
1875         int nr_zones = 0;
1876         unsigned long recommended_min;
1877
1878         for_each_populated_zone(zone)
1879                 nr_zones++;
1880
1881         /* Ensure 2 pageblocks are free to assist fragmentation avoidance */
1882         recommended_min = pageblock_nr_pages * nr_zones * 2;
1883
1884         /*
1885          * Make sure that on average at least two pageblocks are almost free
1886          * of another type, one for a migratetype to fall back to and a
1887          * second to avoid subsequent fallbacks of other types There are 3
1888          * MIGRATE_TYPES we care about.
1889          */
1890         recommended_min += pageblock_nr_pages * nr_zones *
1891                            MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
1892
1893         /* don't ever allow to reserve more than 5% of the lowmem */
1894         recommended_min = min(recommended_min,
1895                               (unsigned long) nr_free_buffer_pages() / 20);
1896         recommended_min <<= (PAGE_SHIFT-10);
1897
1898         if (recommended_min > min_free_kbytes) {
1899                 if (user_min_free_kbytes >= 0)
1900                         pr_info("raising min_free_kbytes from %d to %lu to help transparent hugepage allocations\n",
1901                                 min_free_kbytes, recommended_min);
1902
1903                 min_free_kbytes = recommended_min;
1904         }
1905         setup_per_zone_wmarks();
1906 }
1907
1908 int start_stop_khugepaged(void)
1909 {
1910         static struct task_struct *khugepaged_thread __read_mostly;
1911         static DEFINE_MUTEX(khugepaged_mutex);
1912         int err = 0;
1913
1914         mutex_lock(&khugepaged_mutex);
1915         if (khugepaged_enabled()) {
1916                 if (!khugepaged_thread)
1917                         khugepaged_thread = kthread_run(khugepaged, NULL,
1918                                                         "khugepaged");
1919                 if (IS_ERR(khugepaged_thread)) {
1920                         pr_err("khugepaged: kthread_run(khugepaged) failed\n");
1921                         err = PTR_ERR(khugepaged_thread);
1922                         khugepaged_thread = NULL;
1923                         goto fail;
1924                 }
1925
1926                 if (!list_empty(&khugepaged_scan.mm_head))
1927                         wake_up_interruptible(&khugepaged_wait);
1928
1929                 set_recommended_min_free_kbytes();
1930         } else if (khugepaged_thread) {
1931                 kthread_stop(khugepaged_thread);
1932                 khugepaged_thread = NULL;
1933         }
1934 fail:
1935         mutex_unlock(&khugepaged_mutex);
1936         return err;
1937 }