OSDN Git Service

dt-bindings: display: mediatek: Fix examples on new bindings
[uclinux-h8/linux.git] / mm / ksm.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Memory merging support.
4  *
5  * This code enables dynamic sharing of identical pages found in different
6  * memory areas, even if they are not shared by fork()
7  *
8  * Copyright (C) 2008-2009 Red Hat, Inc.
9  * Authors:
10  *      Izik Eidus
11  *      Andrea Arcangeli
12  *      Chris Wright
13  *      Hugh Dickins
14  */
15
16 #include <linux/errno.h>
17 #include <linux/mm.h>
18 #include <linux/mm_inline.h>
19 #include <linux/fs.h>
20 #include <linux/mman.h>
21 #include <linux/sched.h>
22 #include <linux/sched/mm.h>
23 #include <linux/sched/coredump.h>
24 #include <linux/rwsem.h>
25 #include <linux/pagemap.h>
26 #include <linux/rmap.h>
27 #include <linux/spinlock.h>
28 #include <linux/xxhash.h>
29 #include <linux/delay.h>
30 #include <linux/kthread.h>
31 #include <linux/wait.h>
32 #include <linux/slab.h>
33 #include <linux/rbtree.h>
34 #include <linux/memory.h>
35 #include <linux/mmu_notifier.h>
36 #include <linux/swap.h>
37 #include <linux/ksm.h>
38 #include <linux/hashtable.h>
39 #include <linux/freezer.h>
40 #include <linux/oom.h>
41 #include <linux/numa.h>
42
43 #include <asm/tlbflush.h>
44 #include "internal.h"
45
46 #ifdef CONFIG_NUMA
47 #define NUMA(x)         (x)
48 #define DO_NUMA(x)      do { (x); } while (0)
49 #else
50 #define NUMA(x)         (0)
51 #define DO_NUMA(x)      do { } while (0)
52 #endif
53
54 /**
55  * DOC: Overview
56  *
57  * A few notes about the KSM scanning process,
58  * to make it easier to understand the data structures below:
59  *
60  * In order to reduce excessive scanning, KSM sorts the memory pages by their
61  * contents into a data structure that holds pointers to the pages' locations.
62  *
63  * Since the contents of the pages may change at any moment, KSM cannot just
64  * insert the pages into a normal sorted tree and expect it to find anything.
65  * Therefore KSM uses two data structures - the stable and the unstable tree.
66  *
67  * The stable tree holds pointers to all the merged pages (ksm pages), sorted
68  * by their contents.  Because each such page is write-protected, searching on
69  * this tree is fully assured to be working (except when pages are unmapped),
70  * and therefore this tree is called the stable tree.
71  *
72  * The stable tree node includes information required for reverse
73  * mapping from a KSM page to virtual addresses that map this page.
74  *
75  * In order to avoid large latencies of the rmap walks on KSM pages,
76  * KSM maintains two types of nodes in the stable tree:
77  *
78  * * the regular nodes that keep the reverse mapping structures in a
79  *   linked list
80  * * the "chains" that link nodes ("dups") that represent the same
81  *   write protected memory content, but each "dup" corresponds to a
82  *   different KSM page copy of that content
83  *
84  * Internally, the regular nodes, "dups" and "chains" are represented
85  * using the same struct stable_node structure.
86  *
87  * In addition to the stable tree, KSM uses a second data structure called the
88  * unstable tree: this tree holds pointers to pages which have been found to
89  * be "unchanged for a period of time".  The unstable tree sorts these pages
90  * by their contents, but since they are not write-protected, KSM cannot rely
91  * upon the unstable tree to work correctly - the unstable tree is liable to
92  * be corrupted as its contents are modified, and so it is called unstable.
93  *
94  * KSM solves this problem by several techniques:
95  *
96  * 1) The unstable tree is flushed every time KSM completes scanning all
97  *    memory areas, and then the tree is rebuilt again from the beginning.
98  * 2) KSM will only insert into the unstable tree, pages whose hash value
99  *    has not changed since the previous scan of all memory areas.
100  * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the
101  *    colors of the nodes and not on their contents, assuring that even when
102  *    the tree gets "corrupted" it won't get out of balance, so scanning time
103  *    remains the same (also, searching and inserting nodes in an rbtree uses
104  *    the same algorithm, so we have no overhead when we flush and rebuild).
105  * 4) KSM never flushes the stable tree, which means that even if it were to
106  *    take 10 attempts to find a page in the unstable tree, once it is found,
107  *    it is secured in the stable tree.  (When we scan a new page, we first
108  *    compare it against the stable tree, and then against the unstable tree.)
109  *
110  * If the merge_across_nodes tunable is unset, then KSM maintains multiple
111  * stable trees and multiple unstable trees: one of each for each NUMA node.
112  */
113
114 /**
115  * struct mm_slot - ksm information per mm that is being scanned
116  * @link: link to the mm_slots hash list
117  * @mm_list: link into the mm_slots list, rooted in ksm_mm_head
118  * @rmap_list: head for this mm_slot's singly-linked list of rmap_items
119  * @mm: the mm that this information is valid for
120  */
121 struct mm_slot {
122         struct hlist_node link;
123         struct list_head mm_list;
124         struct rmap_item *rmap_list;
125         struct mm_struct *mm;
126 };
127
128 /**
129  * struct ksm_scan - cursor for scanning
130  * @mm_slot: the current mm_slot we are scanning
131  * @address: the next address inside that to be scanned
132  * @rmap_list: link to the next rmap to be scanned in the rmap_list
133  * @seqnr: count of completed full scans (needed when removing unstable node)
134  *
135  * There is only the one ksm_scan instance of this cursor structure.
136  */
137 struct ksm_scan {
138         struct mm_slot *mm_slot;
139         unsigned long address;
140         struct rmap_item **rmap_list;
141         unsigned long seqnr;
142 };
143
144 /**
145  * struct stable_node - node of the stable rbtree
146  * @node: rb node of this ksm page in the stable tree
147  * @head: (overlaying parent) &migrate_nodes indicates temporarily on that list
148  * @hlist_dup: linked into the stable_node->hlist with a stable_node chain
149  * @list: linked into migrate_nodes, pending placement in the proper node tree
150  * @hlist: hlist head of rmap_items using this ksm page
151  * @kpfn: page frame number of this ksm page (perhaps temporarily on wrong nid)
152  * @chain_prune_time: time of the last full garbage collection
153  * @rmap_hlist_len: number of rmap_item entries in hlist or STABLE_NODE_CHAIN
154  * @nid: NUMA node id of stable tree in which linked (may not match kpfn)
155  */
156 struct stable_node {
157         union {
158                 struct rb_node node;    /* when node of stable tree */
159                 struct {                /* when listed for migration */
160                         struct list_head *head;
161                         struct {
162                                 struct hlist_node hlist_dup;
163                                 struct list_head list;
164                         };
165                 };
166         };
167         struct hlist_head hlist;
168         union {
169                 unsigned long kpfn;
170                 unsigned long chain_prune_time;
171         };
172         /*
173          * STABLE_NODE_CHAIN can be any negative number in
174          * rmap_hlist_len negative range, but better not -1 to be able
175          * to reliably detect underflows.
176          */
177 #define STABLE_NODE_CHAIN -1024
178         int rmap_hlist_len;
179 #ifdef CONFIG_NUMA
180         int nid;
181 #endif
182 };
183
184 /**
185  * struct rmap_item - reverse mapping item for virtual addresses
186  * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list
187  * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree
188  * @nid: NUMA node id of unstable tree in which linked (may not match page)
189  * @mm: the memory structure this rmap_item is pointing into
190  * @address: the virtual address this rmap_item tracks (+ flags in low bits)
191  * @oldchecksum: previous checksum of the page at that virtual address
192  * @node: rb node of this rmap_item in the unstable tree
193  * @head: pointer to stable_node heading this list in the stable tree
194  * @hlist: link into hlist of rmap_items hanging off that stable_node
195  */
196 struct rmap_item {
197         struct rmap_item *rmap_list;
198         union {
199                 struct anon_vma *anon_vma;      /* when stable */
200 #ifdef CONFIG_NUMA
201                 int nid;                /* when node of unstable tree */
202 #endif
203         };
204         struct mm_struct *mm;
205         unsigned long address;          /* + low bits used for flags below */
206         unsigned int oldchecksum;       /* when unstable */
207         union {
208                 struct rb_node node;    /* when node of unstable tree */
209                 struct {                /* when listed from stable tree */
210                         struct stable_node *head;
211                         struct hlist_node hlist;
212                 };
213         };
214 };
215
216 #define SEQNR_MASK      0x0ff   /* low bits of unstable tree seqnr */
217 #define UNSTABLE_FLAG   0x100   /* is a node of the unstable tree */
218 #define STABLE_FLAG     0x200   /* is listed from the stable tree */
219
220 /* The stable and unstable tree heads */
221 static struct rb_root one_stable_tree[1] = { RB_ROOT };
222 static struct rb_root one_unstable_tree[1] = { RB_ROOT };
223 static struct rb_root *root_stable_tree = one_stable_tree;
224 static struct rb_root *root_unstable_tree = one_unstable_tree;
225
226 /* Recently migrated nodes of stable tree, pending proper placement */
227 static LIST_HEAD(migrate_nodes);
228 #define STABLE_NODE_DUP_HEAD ((struct list_head *)&migrate_nodes.prev)
229
230 #define MM_SLOTS_HASH_BITS 10
231 static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
232
233 static struct mm_slot ksm_mm_head = {
234         .mm_list = LIST_HEAD_INIT(ksm_mm_head.mm_list),
235 };
236 static struct ksm_scan ksm_scan = {
237         .mm_slot = &ksm_mm_head,
238 };
239
240 static struct kmem_cache *rmap_item_cache;
241 static struct kmem_cache *stable_node_cache;
242 static struct kmem_cache *mm_slot_cache;
243
244 /* The number of nodes in the stable tree */
245 static unsigned long ksm_pages_shared;
246
247 /* The number of page slots additionally sharing those nodes */
248 static unsigned long ksm_pages_sharing;
249
250 /* The number of nodes in the unstable tree */
251 static unsigned long ksm_pages_unshared;
252
253 /* The number of rmap_items in use: to calculate pages_volatile */
254 static unsigned long ksm_rmap_items;
255
256 /* The number of stable_node chains */
257 static unsigned long ksm_stable_node_chains;
258
259 /* The number of stable_node dups linked to the stable_node chains */
260 static unsigned long ksm_stable_node_dups;
261
262 /* Delay in pruning stale stable_node_dups in the stable_node_chains */
263 static unsigned int ksm_stable_node_chains_prune_millisecs = 2000;
264
265 /* Maximum number of page slots sharing a stable node */
266 static int ksm_max_page_sharing = 256;
267
268 /* Number of pages ksmd should scan in one batch */
269 static unsigned int ksm_thread_pages_to_scan = 100;
270
271 /* Milliseconds ksmd should sleep between batches */
272 static unsigned int ksm_thread_sleep_millisecs = 20;
273
274 /* Checksum of an empty (zeroed) page */
275 static unsigned int zero_checksum __read_mostly;
276
277 /* Whether to merge empty (zeroed) pages with actual zero pages */
278 static bool ksm_use_zero_pages __read_mostly;
279
280 #ifdef CONFIG_NUMA
281 /* Zeroed when merging across nodes is not allowed */
282 static unsigned int ksm_merge_across_nodes = 1;
283 static int ksm_nr_node_ids = 1;
284 #else
285 #define ksm_merge_across_nodes  1U
286 #define ksm_nr_node_ids         1
287 #endif
288
289 #define KSM_RUN_STOP    0
290 #define KSM_RUN_MERGE   1
291 #define KSM_RUN_UNMERGE 2
292 #define KSM_RUN_OFFLINE 4
293 static unsigned long ksm_run = KSM_RUN_STOP;
294 static void wait_while_offlining(void);
295
296 static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait);
297 static DECLARE_WAIT_QUEUE_HEAD(ksm_iter_wait);
298 static DEFINE_MUTEX(ksm_thread_mutex);
299 static DEFINE_SPINLOCK(ksm_mmlist_lock);
300
301 #define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create("ksm_"#__struct,\
302                 sizeof(struct __struct), __alignof__(struct __struct),\
303                 (__flags), NULL)
304
305 static int __init ksm_slab_init(void)
306 {
307         rmap_item_cache = KSM_KMEM_CACHE(rmap_item, 0);
308         if (!rmap_item_cache)
309                 goto out;
310
311         stable_node_cache = KSM_KMEM_CACHE(stable_node, 0);
312         if (!stable_node_cache)
313                 goto out_free1;
314
315         mm_slot_cache = KSM_KMEM_CACHE(mm_slot, 0);
316         if (!mm_slot_cache)
317                 goto out_free2;
318
319         return 0;
320
321 out_free2:
322         kmem_cache_destroy(stable_node_cache);
323 out_free1:
324         kmem_cache_destroy(rmap_item_cache);
325 out:
326         return -ENOMEM;
327 }
328
329 static void __init ksm_slab_free(void)
330 {
331         kmem_cache_destroy(mm_slot_cache);
332         kmem_cache_destroy(stable_node_cache);
333         kmem_cache_destroy(rmap_item_cache);
334         mm_slot_cache = NULL;
335 }
336
337 static __always_inline bool is_stable_node_chain(struct stable_node *chain)
338 {
339         return chain->rmap_hlist_len == STABLE_NODE_CHAIN;
340 }
341
342 static __always_inline bool is_stable_node_dup(struct stable_node *dup)
343 {
344         return dup->head == STABLE_NODE_DUP_HEAD;
345 }
346
347 static inline void stable_node_chain_add_dup(struct stable_node *dup,
348                                              struct stable_node *chain)
349 {
350         VM_BUG_ON(is_stable_node_dup(dup));
351         dup->head = STABLE_NODE_DUP_HEAD;
352         VM_BUG_ON(!is_stable_node_chain(chain));
353         hlist_add_head(&dup->hlist_dup, &chain->hlist);
354         ksm_stable_node_dups++;
355 }
356
357 static inline void __stable_node_dup_del(struct stable_node *dup)
358 {
359         VM_BUG_ON(!is_stable_node_dup(dup));
360         hlist_del(&dup->hlist_dup);
361         ksm_stable_node_dups--;
362 }
363
364 static inline void stable_node_dup_del(struct stable_node *dup)
365 {
366         VM_BUG_ON(is_stable_node_chain(dup));
367         if (is_stable_node_dup(dup))
368                 __stable_node_dup_del(dup);
369         else
370                 rb_erase(&dup->node, root_stable_tree + NUMA(dup->nid));
371 #ifdef CONFIG_DEBUG_VM
372         dup->head = NULL;
373 #endif
374 }
375
376 static inline struct rmap_item *alloc_rmap_item(void)
377 {
378         struct rmap_item *rmap_item;
379
380         rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL |
381                                                 __GFP_NORETRY | __GFP_NOWARN);
382         if (rmap_item)
383                 ksm_rmap_items++;
384         return rmap_item;
385 }
386
387 static inline void free_rmap_item(struct rmap_item *rmap_item)
388 {
389         ksm_rmap_items--;
390         rmap_item->mm = NULL;   /* debug safety */
391         kmem_cache_free(rmap_item_cache, rmap_item);
392 }
393
394 static inline struct stable_node *alloc_stable_node(void)
395 {
396         /*
397          * The allocation can take too long with GFP_KERNEL when memory is under
398          * pressure, which may lead to hung task warnings.  Adding __GFP_HIGH
399          * grants access to memory reserves, helping to avoid this problem.
400          */
401         return kmem_cache_alloc(stable_node_cache, GFP_KERNEL | __GFP_HIGH);
402 }
403
404 static inline void free_stable_node(struct stable_node *stable_node)
405 {
406         VM_BUG_ON(stable_node->rmap_hlist_len &&
407                   !is_stable_node_chain(stable_node));
408         kmem_cache_free(stable_node_cache, stable_node);
409 }
410
411 static inline struct mm_slot *alloc_mm_slot(void)
412 {
413         if (!mm_slot_cache)     /* initialization failed */
414                 return NULL;
415         return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
416 }
417
418 static inline void free_mm_slot(struct mm_slot *mm_slot)
419 {
420         kmem_cache_free(mm_slot_cache, mm_slot);
421 }
422
423 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
424 {
425         struct mm_slot *slot;
426
427         hash_for_each_possible(mm_slots_hash, slot, link, (unsigned long)mm)
428                 if (slot->mm == mm)
429                         return slot;
430
431         return NULL;
432 }
433
434 static void insert_to_mm_slots_hash(struct mm_struct *mm,
435                                     struct mm_slot *mm_slot)
436 {
437         mm_slot->mm = mm;
438         hash_add(mm_slots_hash, &mm_slot->link, (unsigned long)mm);
439 }
440
441 /*
442  * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's
443  * page tables after it has passed through ksm_exit() - which, if necessary,
444  * takes mmap_lock briefly to serialize against them.  ksm_exit() does not set
445  * a special flag: they can just back out as soon as mm_users goes to zero.
446  * ksm_test_exit() is used throughout to make this test for exit: in some
447  * places for correctness, in some places just to avoid unnecessary work.
448  */
449 static inline bool ksm_test_exit(struct mm_struct *mm)
450 {
451         return atomic_read(&mm->mm_users) == 0;
452 }
453
454 /*
455  * We use break_ksm to break COW on a ksm page: it's a stripped down
456  *
457  *      if (get_user_pages(addr, 1, FOLL_WRITE, &page, NULL) == 1)
458  *              put_page(page);
459  *
460  * but taking great care only to touch a ksm page, in a VM_MERGEABLE vma,
461  * in case the application has unmapped and remapped mm,addr meanwhile.
462  * Could a ksm page appear anywhere else?  Actually yes, in a VM_PFNMAP
463  * mmap of /dev/mem, where we would not want to touch it.
464  *
465  * FAULT_FLAG/FOLL_REMOTE are because we do this outside the context
466  * of the process that owns 'vma'.  We also do not want to enforce
467  * protection keys here anyway.
468  */
469 static int break_ksm(struct vm_area_struct *vma, unsigned long addr)
470 {
471         struct page *page;
472         vm_fault_t ret = 0;
473
474         do {
475                 cond_resched();
476                 page = follow_page(vma, addr,
477                                 FOLL_GET | FOLL_MIGRATION | FOLL_REMOTE);
478                 if (IS_ERR_OR_NULL(page))
479                         break;
480                 if (PageKsm(page))
481                         ret = handle_mm_fault(vma, addr,
482                                               FAULT_FLAG_WRITE | FAULT_FLAG_REMOTE,
483                                               NULL);
484                 else
485                         ret = VM_FAULT_WRITE;
486                 put_page(page);
487         } while (!(ret & (VM_FAULT_WRITE | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | VM_FAULT_OOM)));
488         /*
489          * We must loop because handle_mm_fault() may back out if there's
490          * any difficulty e.g. if pte accessed bit gets updated concurrently.
491          *
492          * VM_FAULT_WRITE is what we have been hoping for: it indicates that
493          * COW has been broken, even if the vma does not permit VM_WRITE;
494          * but note that a concurrent fault might break PageKsm for us.
495          *
496          * VM_FAULT_SIGBUS could occur if we race with truncation of the
497          * backing file, which also invalidates anonymous pages: that's
498          * okay, that truncation will have unmapped the PageKsm for us.
499          *
500          * VM_FAULT_OOM: at the time of writing (late July 2009), setting
501          * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the
502          * current task has TIF_MEMDIE set, and will be OOM killed on return
503          * to user; and ksmd, having no mm, would never be chosen for that.
504          *
505          * But if the mm is in a limited mem_cgroup, then the fault may fail
506          * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and
507          * even ksmd can fail in this way - though it's usually breaking ksm
508          * just to undo a merge it made a moment before, so unlikely to oom.
509          *
510          * That's a pity: we might therefore have more kernel pages allocated
511          * than we're counting as nodes in the stable tree; but ksm_do_scan
512          * will retry to break_cow on each pass, so should recover the page
513          * in due course.  The important thing is to not let VM_MERGEABLE
514          * be cleared while any such pages might remain in the area.
515          */
516         return (ret & VM_FAULT_OOM) ? -ENOMEM : 0;
517 }
518
519 static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm,
520                 unsigned long addr)
521 {
522         struct vm_area_struct *vma;
523         if (ksm_test_exit(mm))
524                 return NULL;
525         vma = vma_lookup(mm, addr);
526         if (!vma || !(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
527                 return NULL;
528         return vma;
529 }
530
531 static void break_cow(struct rmap_item *rmap_item)
532 {
533         struct mm_struct *mm = rmap_item->mm;
534         unsigned long addr = rmap_item->address;
535         struct vm_area_struct *vma;
536
537         /*
538          * It is not an accident that whenever we want to break COW
539          * to undo, we also need to drop a reference to the anon_vma.
540          */
541         put_anon_vma(rmap_item->anon_vma);
542
543         mmap_read_lock(mm);
544         vma = find_mergeable_vma(mm, addr);
545         if (vma)
546                 break_ksm(vma, addr);
547         mmap_read_unlock(mm);
548 }
549
550 static struct page *get_mergeable_page(struct rmap_item *rmap_item)
551 {
552         struct mm_struct *mm = rmap_item->mm;
553         unsigned long addr = rmap_item->address;
554         struct vm_area_struct *vma;
555         struct page *page;
556
557         mmap_read_lock(mm);
558         vma = find_mergeable_vma(mm, addr);
559         if (!vma)
560                 goto out;
561
562         page = follow_page(vma, addr, FOLL_GET);
563         if (IS_ERR_OR_NULL(page))
564                 goto out;
565         if (PageAnon(page)) {
566                 flush_anon_page(vma, page, addr);
567                 flush_dcache_page(page);
568         } else {
569                 put_page(page);
570 out:
571                 page = NULL;
572         }
573         mmap_read_unlock(mm);
574         return page;
575 }
576
577 /*
578  * This helper is used for getting right index into array of tree roots.
579  * When merge_across_nodes knob is set to 1, there are only two rb-trees for
580  * stable and unstable pages from all nodes with roots in index 0. Otherwise,
581  * every node has its own stable and unstable tree.
582  */
583 static inline int get_kpfn_nid(unsigned long kpfn)
584 {
585         return ksm_merge_across_nodes ? 0 : NUMA(pfn_to_nid(kpfn));
586 }
587
588 static struct stable_node *alloc_stable_node_chain(struct stable_node *dup,
589                                                    struct rb_root *root)
590 {
591         struct stable_node *chain = alloc_stable_node();
592         VM_BUG_ON(is_stable_node_chain(dup));
593         if (likely(chain)) {
594                 INIT_HLIST_HEAD(&chain->hlist);
595                 chain->chain_prune_time = jiffies;
596                 chain->rmap_hlist_len = STABLE_NODE_CHAIN;
597 #if defined (CONFIG_DEBUG_VM) && defined(CONFIG_NUMA)
598                 chain->nid = NUMA_NO_NODE; /* debug */
599 #endif
600                 ksm_stable_node_chains++;
601
602                 /*
603                  * Put the stable node chain in the first dimension of
604                  * the stable tree and at the same time remove the old
605                  * stable node.
606                  */
607                 rb_replace_node(&dup->node, &chain->node, root);
608
609                 /*
610                  * Move the old stable node to the second dimension
611                  * queued in the hlist_dup. The invariant is that all
612                  * dup stable_nodes in the chain->hlist point to pages
613                  * that are write protected and have the exact same
614                  * content.
615                  */
616                 stable_node_chain_add_dup(dup, chain);
617         }
618         return chain;
619 }
620
621 static inline void free_stable_node_chain(struct stable_node *chain,
622                                           struct rb_root *root)
623 {
624         rb_erase(&chain->node, root);
625         free_stable_node(chain);
626         ksm_stable_node_chains--;
627 }
628
629 static void remove_node_from_stable_tree(struct stable_node *stable_node)
630 {
631         struct rmap_item *rmap_item;
632
633         /* check it's not STABLE_NODE_CHAIN or negative */
634         BUG_ON(stable_node->rmap_hlist_len < 0);
635
636         hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
637                 if (rmap_item->hlist.next)
638                         ksm_pages_sharing--;
639                 else
640                         ksm_pages_shared--;
641                 VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
642                 stable_node->rmap_hlist_len--;
643                 put_anon_vma(rmap_item->anon_vma);
644                 rmap_item->address &= PAGE_MASK;
645                 cond_resched();
646         }
647
648         /*
649          * We need the second aligned pointer of the migrate_nodes
650          * list_head to stay clear from the rb_parent_color union
651          * (aligned and different than any node) and also different
652          * from &migrate_nodes. This will verify that future list.h changes
653          * don't break STABLE_NODE_DUP_HEAD. Only recent gcc can handle it.
654          */
655         BUILD_BUG_ON(STABLE_NODE_DUP_HEAD <= &migrate_nodes);
656         BUILD_BUG_ON(STABLE_NODE_DUP_HEAD >= &migrate_nodes + 1);
657
658         if (stable_node->head == &migrate_nodes)
659                 list_del(&stable_node->list);
660         else
661                 stable_node_dup_del(stable_node);
662         free_stable_node(stable_node);
663 }
664
665 enum get_ksm_page_flags {
666         GET_KSM_PAGE_NOLOCK,
667         GET_KSM_PAGE_LOCK,
668         GET_KSM_PAGE_TRYLOCK
669 };
670
671 /*
672  * get_ksm_page: checks if the page indicated by the stable node
673  * is still its ksm page, despite having held no reference to it.
674  * In which case we can trust the content of the page, and it
675  * returns the gotten page; but if the page has now been zapped,
676  * remove the stale node from the stable tree and return NULL.
677  * But beware, the stable node's page might be being migrated.
678  *
679  * You would expect the stable_node to hold a reference to the ksm page.
680  * But if it increments the page's count, swapping out has to wait for
681  * ksmd to come around again before it can free the page, which may take
682  * seconds or even minutes: much too unresponsive.  So instead we use a
683  * "keyhole reference": access to the ksm page from the stable node peeps
684  * out through its keyhole to see if that page still holds the right key,
685  * pointing back to this stable node.  This relies on freeing a PageAnon
686  * page to reset its page->mapping to NULL, and relies on no other use of
687  * a page to put something that might look like our key in page->mapping.
688  * is on its way to being freed; but it is an anomaly to bear in mind.
689  */
690 static struct page *get_ksm_page(struct stable_node *stable_node,
691                                  enum get_ksm_page_flags flags)
692 {
693         struct page *page;
694         void *expected_mapping;
695         unsigned long kpfn;
696
697         expected_mapping = (void *)((unsigned long)stable_node |
698                                         PAGE_MAPPING_KSM);
699 again:
700         kpfn = READ_ONCE(stable_node->kpfn); /* Address dependency. */
701         page = pfn_to_page(kpfn);
702         if (READ_ONCE(page->mapping) != expected_mapping)
703                 goto stale;
704
705         /*
706          * We cannot do anything with the page while its refcount is 0.
707          * Usually 0 means free, or tail of a higher-order page: in which
708          * case this node is no longer referenced, and should be freed;
709          * however, it might mean that the page is under page_ref_freeze().
710          * The __remove_mapping() case is easy, again the node is now stale;
711          * the same is in reuse_ksm_page() case; but if page is swapcache
712          * in migrate_page_move_mapping(), it might still be our page,
713          * in which case it's essential to keep the node.
714          */
715         while (!get_page_unless_zero(page)) {
716                 /*
717                  * Another check for page->mapping != expected_mapping would
718                  * work here too.  We have chosen the !PageSwapCache test to
719                  * optimize the common case, when the page is or is about to
720                  * be freed: PageSwapCache is cleared (under spin_lock_irq)
721                  * in the ref_freeze section of __remove_mapping(); but Anon
722                  * page->mapping reset to NULL later, in free_pages_prepare().
723                  */
724                 if (!PageSwapCache(page))
725                         goto stale;
726                 cpu_relax();
727         }
728
729         if (READ_ONCE(page->mapping) != expected_mapping) {
730                 put_page(page);
731                 goto stale;
732         }
733
734         if (flags == GET_KSM_PAGE_TRYLOCK) {
735                 if (!trylock_page(page)) {
736                         put_page(page);
737                         return ERR_PTR(-EBUSY);
738                 }
739         } else if (flags == GET_KSM_PAGE_LOCK)
740                 lock_page(page);
741
742         if (flags != GET_KSM_PAGE_NOLOCK) {
743                 if (READ_ONCE(page->mapping) != expected_mapping) {
744                         unlock_page(page);
745                         put_page(page);
746                         goto stale;
747                 }
748         }
749         return page;
750
751 stale:
752         /*
753          * We come here from above when page->mapping or !PageSwapCache
754          * suggests that the node is stale; but it might be under migration.
755          * We need smp_rmb(), matching the smp_wmb() in folio_migrate_ksm(),
756          * before checking whether node->kpfn has been changed.
757          */
758         smp_rmb();
759         if (READ_ONCE(stable_node->kpfn) != kpfn)
760                 goto again;
761         remove_node_from_stable_tree(stable_node);
762         return NULL;
763 }
764
765 /*
766  * Removing rmap_item from stable or unstable tree.
767  * This function will clean the information from the stable/unstable tree.
768  */
769 static void remove_rmap_item_from_tree(struct rmap_item *rmap_item)
770 {
771         if (rmap_item->address & STABLE_FLAG) {
772                 struct stable_node *stable_node;
773                 struct page *page;
774
775                 stable_node = rmap_item->head;
776                 page = get_ksm_page(stable_node, GET_KSM_PAGE_LOCK);
777                 if (!page)
778                         goto out;
779
780                 hlist_del(&rmap_item->hlist);
781                 unlock_page(page);
782                 put_page(page);
783
784                 if (!hlist_empty(&stable_node->hlist))
785                         ksm_pages_sharing--;
786                 else
787                         ksm_pages_shared--;
788                 VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
789                 stable_node->rmap_hlist_len--;
790
791                 put_anon_vma(rmap_item->anon_vma);
792                 rmap_item->head = NULL;
793                 rmap_item->address &= PAGE_MASK;
794
795         } else if (rmap_item->address & UNSTABLE_FLAG) {
796                 unsigned char age;
797                 /*
798                  * Usually ksmd can and must skip the rb_erase, because
799                  * root_unstable_tree was already reset to RB_ROOT.
800                  * But be careful when an mm is exiting: do the rb_erase
801                  * if this rmap_item was inserted by this scan, rather
802                  * than left over from before.
803                  */
804                 age = (unsigned char)(ksm_scan.seqnr - rmap_item->address);
805                 BUG_ON(age > 1);
806                 if (!age)
807                         rb_erase(&rmap_item->node,
808                                  root_unstable_tree + NUMA(rmap_item->nid));
809                 ksm_pages_unshared--;
810                 rmap_item->address &= PAGE_MASK;
811         }
812 out:
813         cond_resched();         /* we're called from many long loops */
814 }
815
816 static void remove_trailing_rmap_items(struct rmap_item **rmap_list)
817 {
818         while (*rmap_list) {
819                 struct rmap_item *rmap_item = *rmap_list;
820                 *rmap_list = rmap_item->rmap_list;
821                 remove_rmap_item_from_tree(rmap_item);
822                 free_rmap_item(rmap_item);
823         }
824 }
825
826 /*
827  * Though it's very tempting to unmerge rmap_items from stable tree rather
828  * than check every pte of a given vma, the locking doesn't quite work for
829  * that - an rmap_item is assigned to the stable tree after inserting ksm
830  * page and upping mmap_lock.  Nor does it fit with the way we skip dup'ing
831  * rmap_items from parent to child at fork time (so as not to waste time
832  * if exit comes before the next scan reaches it).
833  *
834  * Similarly, although we'd like to remove rmap_items (so updating counts
835  * and freeing memory) when unmerging an area, it's easier to leave that
836  * to the next pass of ksmd - consider, for example, how ksmd might be
837  * in cmp_and_merge_page on one of the rmap_items we would be removing.
838  */
839 static int unmerge_ksm_pages(struct vm_area_struct *vma,
840                              unsigned long start, unsigned long end)
841 {
842         unsigned long addr;
843         int err = 0;
844
845         for (addr = start; addr < end && !err; addr += PAGE_SIZE) {
846                 if (ksm_test_exit(vma->vm_mm))
847                         break;
848                 if (signal_pending(current))
849                         err = -ERESTARTSYS;
850                 else
851                         err = break_ksm(vma, addr);
852         }
853         return err;
854 }
855
856 static inline struct stable_node *folio_stable_node(struct folio *folio)
857 {
858         return folio_test_ksm(folio) ? folio_raw_mapping(folio) : NULL;
859 }
860
861 static inline struct stable_node *page_stable_node(struct page *page)
862 {
863         return folio_stable_node(page_folio(page));
864 }
865
866 static inline void set_page_stable_node(struct page *page,
867                                         struct stable_node *stable_node)
868 {
869         page->mapping = (void *)((unsigned long)stable_node | PAGE_MAPPING_KSM);
870 }
871
872 #ifdef CONFIG_SYSFS
873 /*
874  * Only called through the sysfs control interface:
875  */
876 static int remove_stable_node(struct stable_node *stable_node)
877 {
878         struct page *page;
879         int err;
880
881         page = get_ksm_page(stable_node, GET_KSM_PAGE_LOCK);
882         if (!page) {
883                 /*
884                  * get_ksm_page did remove_node_from_stable_tree itself.
885                  */
886                 return 0;
887         }
888
889         /*
890          * Page could be still mapped if this races with __mmput() running in
891          * between ksm_exit() and exit_mmap(). Just refuse to let
892          * merge_across_nodes/max_page_sharing be switched.
893          */
894         err = -EBUSY;
895         if (!page_mapped(page)) {
896                 /*
897                  * The stable node did not yet appear stale to get_ksm_page(),
898                  * since that allows for an unmapped ksm page to be recognized
899                  * right up until it is freed; but the node is safe to remove.
900                  * This page might be in a pagevec waiting to be freed,
901                  * or it might be PageSwapCache (perhaps under writeback),
902                  * or it might have been removed from swapcache a moment ago.
903                  */
904                 set_page_stable_node(page, NULL);
905                 remove_node_from_stable_tree(stable_node);
906                 err = 0;
907         }
908
909         unlock_page(page);
910         put_page(page);
911         return err;
912 }
913
914 static int remove_stable_node_chain(struct stable_node *stable_node,
915                                     struct rb_root *root)
916 {
917         struct stable_node *dup;
918         struct hlist_node *hlist_safe;
919
920         if (!is_stable_node_chain(stable_node)) {
921                 VM_BUG_ON(is_stable_node_dup(stable_node));
922                 if (remove_stable_node(stable_node))
923                         return true;
924                 else
925                         return false;
926         }
927
928         hlist_for_each_entry_safe(dup, hlist_safe,
929                                   &stable_node->hlist, hlist_dup) {
930                 VM_BUG_ON(!is_stable_node_dup(dup));
931                 if (remove_stable_node(dup))
932                         return true;
933         }
934         BUG_ON(!hlist_empty(&stable_node->hlist));
935         free_stable_node_chain(stable_node, root);
936         return false;
937 }
938
939 static int remove_all_stable_nodes(void)
940 {
941         struct stable_node *stable_node, *next;
942         int nid;
943         int err = 0;
944
945         for (nid = 0; nid < ksm_nr_node_ids; nid++) {
946                 while (root_stable_tree[nid].rb_node) {
947                         stable_node = rb_entry(root_stable_tree[nid].rb_node,
948                                                 struct stable_node, node);
949                         if (remove_stable_node_chain(stable_node,
950                                                      root_stable_tree + nid)) {
951                                 err = -EBUSY;
952                                 break;  /* proceed to next nid */
953                         }
954                         cond_resched();
955                 }
956         }
957         list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
958                 if (remove_stable_node(stable_node))
959                         err = -EBUSY;
960                 cond_resched();
961         }
962         return err;
963 }
964
965 static int unmerge_and_remove_all_rmap_items(void)
966 {
967         struct mm_slot *mm_slot;
968         struct mm_struct *mm;
969         struct vm_area_struct *vma;
970         int err = 0;
971
972         spin_lock(&ksm_mmlist_lock);
973         ksm_scan.mm_slot = list_entry(ksm_mm_head.mm_list.next,
974                                                 struct mm_slot, mm_list);
975         spin_unlock(&ksm_mmlist_lock);
976
977         for (mm_slot = ksm_scan.mm_slot;
978                         mm_slot != &ksm_mm_head; mm_slot = ksm_scan.mm_slot) {
979                 mm = mm_slot->mm;
980                 mmap_read_lock(mm);
981                 for (vma = mm->mmap; vma; vma = vma->vm_next) {
982                         if (ksm_test_exit(mm))
983                                 break;
984                         if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
985                                 continue;
986                         err = unmerge_ksm_pages(vma,
987                                                 vma->vm_start, vma->vm_end);
988                         if (err)
989                                 goto error;
990                 }
991
992                 remove_trailing_rmap_items(&mm_slot->rmap_list);
993                 mmap_read_unlock(mm);
994
995                 spin_lock(&ksm_mmlist_lock);
996                 ksm_scan.mm_slot = list_entry(mm_slot->mm_list.next,
997                                                 struct mm_slot, mm_list);
998                 if (ksm_test_exit(mm)) {
999                         hash_del(&mm_slot->link);
1000                         list_del(&mm_slot->mm_list);
1001                         spin_unlock(&ksm_mmlist_lock);
1002
1003                         free_mm_slot(mm_slot);
1004                         clear_bit(MMF_VM_MERGEABLE, &mm->flags);
1005                         mmdrop(mm);
1006                 } else
1007                         spin_unlock(&ksm_mmlist_lock);
1008         }
1009
1010         /* Clean up stable nodes, but don't worry if some are still busy */
1011         remove_all_stable_nodes();
1012         ksm_scan.seqnr = 0;
1013         return 0;
1014
1015 error:
1016         mmap_read_unlock(mm);
1017         spin_lock(&ksm_mmlist_lock);
1018         ksm_scan.mm_slot = &ksm_mm_head;
1019         spin_unlock(&ksm_mmlist_lock);
1020         return err;
1021 }
1022 #endif /* CONFIG_SYSFS */
1023
1024 static u32 calc_checksum(struct page *page)
1025 {
1026         u32 checksum;
1027         void *addr = kmap_atomic(page);
1028         checksum = xxhash(addr, PAGE_SIZE, 0);
1029         kunmap_atomic(addr);
1030         return checksum;
1031 }
1032
1033 static int write_protect_page(struct vm_area_struct *vma, struct page *page,
1034                               pte_t *orig_pte)
1035 {
1036         struct mm_struct *mm = vma->vm_mm;
1037         DEFINE_PAGE_VMA_WALK(pvmw, page, vma, 0, 0);
1038         int swapped;
1039         int err = -EFAULT;
1040         struct mmu_notifier_range range;
1041
1042         pvmw.address = page_address_in_vma(page, vma);
1043         if (pvmw.address == -EFAULT)
1044                 goto out;
1045
1046         BUG_ON(PageTransCompound(page));
1047
1048         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
1049                                 pvmw.address,
1050                                 pvmw.address + PAGE_SIZE);
1051         mmu_notifier_invalidate_range_start(&range);
1052
1053         if (!page_vma_mapped_walk(&pvmw))
1054                 goto out_mn;
1055         if (WARN_ONCE(!pvmw.pte, "Unexpected PMD mapping?"))
1056                 goto out_unlock;
1057
1058         if (pte_write(*pvmw.pte) || pte_dirty(*pvmw.pte) ||
1059             (pte_protnone(*pvmw.pte) && pte_savedwrite(*pvmw.pte)) ||
1060                                                 mm_tlb_flush_pending(mm)) {
1061                 pte_t entry;
1062
1063                 swapped = PageSwapCache(page);
1064                 flush_cache_page(vma, pvmw.address, page_to_pfn(page));
1065                 /*
1066                  * Ok this is tricky, when get_user_pages_fast() run it doesn't
1067                  * take any lock, therefore the check that we are going to make
1068                  * with the pagecount against the mapcount is racy and
1069                  * O_DIRECT can happen right after the check.
1070                  * So we clear the pte and flush the tlb before the check
1071                  * this assure us that no O_DIRECT can happen after the check
1072                  * or in the middle of the check.
1073                  *
1074                  * No need to notify as we are downgrading page table to read
1075                  * only not changing it to point to a new page.
1076                  *
1077                  * See Documentation/vm/mmu_notifier.rst
1078                  */
1079                 entry = ptep_clear_flush(vma, pvmw.address, pvmw.pte);
1080                 /*
1081                  * Check that no O_DIRECT or similar I/O is in progress on the
1082                  * page
1083                  */
1084                 if (page_mapcount(page) + 1 + swapped != page_count(page)) {
1085                         set_pte_at(mm, pvmw.address, pvmw.pte, entry);
1086                         goto out_unlock;
1087                 }
1088                 if (pte_dirty(entry))
1089                         set_page_dirty(page);
1090
1091                 if (pte_protnone(entry))
1092                         entry = pte_mkclean(pte_clear_savedwrite(entry));
1093                 else
1094                         entry = pte_mkclean(pte_wrprotect(entry));
1095                 set_pte_at_notify(mm, pvmw.address, pvmw.pte, entry);
1096         }
1097         *orig_pte = *pvmw.pte;
1098         err = 0;
1099
1100 out_unlock:
1101         page_vma_mapped_walk_done(&pvmw);
1102 out_mn:
1103         mmu_notifier_invalidate_range_end(&range);
1104 out:
1105         return err;
1106 }
1107
1108 /**
1109  * replace_page - replace page in vma by new ksm page
1110  * @vma:      vma that holds the pte pointing to page
1111  * @page:     the page we are replacing by kpage
1112  * @kpage:    the ksm page we replace page by
1113  * @orig_pte: the original value of the pte
1114  *
1115  * Returns 0 on success, -EFAULT on failure.
1116  */
1117 static int replace_page(struct vm_area_struct *vma, struct page *page,
1118                         struct page *kpage, pte_t orig_pte)
1119 {
1120         struct mm_struct *mm = vma->vm_mm;
1121         pmd_t *pmd;
1122         pte_t *ptep;
1123         pte_t newpte;
1124         spinlock_t *ptl;
1125         unsigned long addr;
1126         int err = -EFAULT;
1127         struct mmu_notifier_range range;
1128
1129         addr = page_address_in_vma(page, vma);
1130         if (addr == -EFAULT)
1131                 goto out;
1132
1133         pmd = mm_find_pmd(mm, addr);
1134         if (!pmd)
1135                 goto out;
1136
1137         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, addr,
1138                                 addr + PAGE_SIZE);
1139         mmu_notifier_invalidate_range_start(&range);
1140
1141         ptep = pte_offset_map_lock(mm, pmd, addr, &ptl);
1142         if (!pte_same(*ptep, orig_pte)) {
1143                 pte_unmap_unlock(ptep, ptl);
1144                 goto out_mn;
1145         }
1146
1147         /*
1148          * No need to check ksm_use_zero_pages here: we can only have a
1149          * zero_page here if ksm_use_zero_pages was enabled already.
1150          */
1151         if (!is_zero_pfn(page_to_pfn(kpage))) {
1152                 get_page(kpage);
1153                 page_add_anon_rmap(kpage, vma, addr, false);
1154                 newpte = mk_pte(kpage, vma->vm_page_prot);
1155         } else {
1156                 newpte = pte_mkspecial(pfn_pte(page_to_pfn(kpage),
1157                                                vma->vm_page_prot));
1158                 /*
1159                  * We're replacing an anonymous page with a zero page, which is
1160                  * not anonymous. We need to do proper accounting otherwise we
1161                  * will get wrong values in /proc, and a BUG message in dmesg
1162                  * when tearing down the mm.
1163                  */
1164                 dec_mm_counter(mm, MM_ANONPAGES);
1165         }
1166
1167         flush_cache_page(vma, addr, pte_pfn(*ptep));
1168         /*
1169          * No need to notify as we are replacing a read only page with another
1170          * read only page with the same content.
1171          *
1172          * See Documentation/vm/mmu_notifier.rst
1173          */
1174         ptep_clear_flush(vma, addr, ptep);
1175         set_pte_at_notify(mm, addr, ptep, newpte);
1176
1177         page_remove_rmap(page, vma, false);
1178         if (!page_mapped(page))
1179                 try_to_free_swap(page);
1180         put_page(page);
1181
1182         pte_unmap_unlock(ptep, ptl);
1183         err = 0;
1184 out_mn:
1185         mmu_notifier_invalidate_range_end(&range);
1186 out:
1187         return err;
1188 }
1189
1190 /*
1191  * try_to_merge_one_page - take two pages and merge them into one
1192  * @vma: the vma that holds the pte pointing to page
1193  * @page: the PageAnon page that we want to replace with kpage
1194  * @kpage: the PageKsm page that we want to map instead of page,
1195  *         or NULL the first time when we want to use page as kpage.
1196  *
1197  * This function returns 0 if the pages were merged, -EFAULT otherwise.
1198  */
1199 static int try_to_merge_one_page(struct vm_area_struct *vma,
1200                                  struct page *page, struct page *kpage)
1201 {
1202         pte_t orig_pte = __pte(0);
1203         int err = -EFAULT;
1204
1205         if (page == kpage)                      /* ksm page forked */
1206                 return 0;
1207
1208         if (!PageAnon(page))
1209                 goto out;
1210
1211         /*
1212          * We need the page lock to read a stable PageSwapCache in
1213          * write_protect_page().  We use trylock_page() instead of
1214          * lock_page() because we don't want to wait here - we
1215          * prefer to continue scanning and merging different pages,
1216          * then come back to this page when it is unlocked.
1217          */
1218         if (!trylock_page(page))
1219                 goto out;
1220
1221         if (PageTransCompound(page)) {
1222                 if (split_huge_page(page))
1223                         goto out_unlock;
1224         }
1225
1226         /*
1227          * If this anonymous page is mapped only here, its pte may need
1228          * to be write-protected.  If it's mapped elsewhere, all of its
1229          * ptes are necessarily already write-protected.  But in either
1230          * case, we need to lock and check page_count is not raised.
1231          */
1232         if (write_protect_page(vma, page, &orig_pte) == 0) {
1233                 if (!kpage) {
1234                         /*
1235                          * While we hold page lock, upgrade page from
1236                          * PageAnon+anon_vma to PageKsm+NULL stable_node:
1237                          * stable_tree_insert() will update stable_node.
1238                          */
1239                         set_page_stable_node(page, NULL);
1240                         mark_page_accessed(page);
1241                         /*
1242                          * Page reclaim just frees a clean page with no dirty
1243                          * ptes: make sure that the ksm page would be swapped.
1244                          */
1245                         if (!PageDirty(page))
1246                                 SetPageDirty(page);
1247                         err = 0;
1248                 } else if (pages_identical(page, kpage))
1249                         err = replace_page(vma, page, kpage, orig_pte);
1250         }
1251
1252 out_unlock:
1253         unlock_page(page);
1254 out:
1255         return err;
1256 }
1257
1258 /*
1259  * try_to_merge_with_ksm_page - like try_to_merge_two_pages,
1260  * but no new kernel page is allocated: kpage must already be a ksm page.
1261  *
1262  * This function returns 0 if the pages were merged, -EFAULT otherwise.
1263  */
1264 static int try_to_merge_with_ksm_page(struct rmap_item *rmap_item,
1265                                       struct page *page, struct page *kpage)
1266 {
1267         struct mm_struct *mm = rmap_item->mm;
1268         struct vm_area_struct *vma;
1269         int err = -EFAULT;
1270
1271         mmap_read_lock(mm);
1272         vma = find_mergeable_vma(mm, rmap_item->address);
1273         if (!vma)
1274                 goto out;
1275
1276         err = try_to_merge_one_page(vma, page, kpage);
1277         if (err)
1278                 goto out;
1279
1280         /* Unstable nid is in union with stable anon_vma: remove first */
1281         remove_rmap_item_from_tree(rmap_item);
1282
1283         /* Must get reference to anon_vma while still holding mmap_lock */
1284         rmap_item->anon_vma = vma->anon_vma;
1285         get_anon_vma(vma->anon_vma);
1286 out:
1287         mmap_read_unlock(mm);
1288         return err;
1289 }
1290
1291 /*
1292  * try_to_merge_two_pages - take two identical pages and prepare them
1293  * to be merged into one page.
1294  *
1295  * This function returns the kpage if we successfully merged two identical
1296  * pages into one ksm page, NULL otherwise.
1297  *
1298  * Note that this function upgrades page to ksm page: if one of the pages
1299  * is already a ksm page, try_to_merge_with_ksm_page should be used.
1300  */
1301 static struct page *try_to_merge_two_pages(struct rmap_item *rmap_item,
1302                                            struct page *page,
1303                                            struct rmap_item *tree_rmap_item,
1304                                            struct page *tree_page)
1305 {
1306         int err;
1307
1308         err = try_to_merge_with_ksm_page(rmap_item, page, NULL);
1309         if (!err) {
1310                 err = try_to_merge_with_ksm_page(tree_rmap_item,
1311                                                         tree_page, page);
1312                 /*
1313                  * If that fails, we have a ksm page with only one pte
1314                  * pointing to it: so break it.
1315                  */
1316                 if (err)
1317                         break_cow(rmap_item);
1318         }
1319         return err ? NULL : page;
1320 }
1321
1322 static __always_inline
1323 bool __is_page_sharing_candidate(struct stable_node *stable_node, int offset)
1324 {
1325         VM_BUG_ON(stable_node->rmap_hlist_len < 0);
1326         /*
1327          * Check that at least one mapping still exists, otherwise
1328          * there's no much point to merge and share with this
1329          * stable_node, as the underlying tree_page of the other
1330          * sharer is going to be freed soon.
1331          */
1332         return stable_node->rmap_hlist_len &&
1333                 stable_node->rmap_hlist_len + offset < ksm_max_page_sharing;
1334 }
1335
1336 static __always_inline
1337 bool is_page_sharing_candidate(struct stable_node *stable_node)
1338 {
1339         return __is_page_sharing_candidate(stable_node, 0);
1340 }
1341
1342 static struct page *stable_node_dup(struct stable_node **_stable_node_dup,
1343                                     struct stable_node **_stable_node,
1344                                     struct rb_root *root,
1345                                     bool prune_stale_stable_nodes)
1346 {
1347         struct stable_node *dup, *found = NULL, *stable_node = *_stable_node;
1348         struct hlist_node *hlist_safe;
1349         struct page *_tree_page, *tree_page = NULL;
1350         int nr = 0;
1351         int found_rmap_hlist_len;
1352
1353         if (!prune_stale_stable_nodes ||
1354             time_before(jiffies, stable_node->chain_prune_time +
1355                         msecs_to_jiffies(
1356                                 ksm_stable_node_chains_prune_millisecs)))
1357                 prune_stale_stable_nodes = false;
1358         else
1359                 stable_node->chain_prune_time = jiffies;
1360
1361         hlist_for_each_entry_safe(dup, hlist_safe,
1362                                   &stable_node->hlist, hlist_dup) {
1363                 cond_resched();
1364                 /*
1365                  * We must walk all stable_node_dup to prune the stale
1366                  * stable nodes during lookup.
1367                  *
1368                  * get_ksm_page can drop the nodes from the
1369                  * stable_node->hlist if they point to freed pages
1370                  * (that's why we do a _safe walk). The "dup"
1371                  * stable_node parameter itself will be freed from
1372                  * under us if it returns NULL.
1373                  */
1374                 _tree_page = get_ksm_page(dup, GET_KSM_PAGE_NOLOCK);
1375                 if (!_tree_page)
1376                         continue;
1377                 nr += 1;
1378                 if (is_page_sharing_candidate(dup)) {
1379                         if (!found ||
1380                             dup->rmap_hlist_len > found_rmap_hlist_len) {
1381                                 if (found)
1382                                         put_page(tree_page);
1383                                 found = dup;
1384                                 found_rmap_hlist_len = found->rmap_hlist_len;
1385                                 tree_page = _tree_page;
1386
1387                                 /* skip put_page for found dup */
1388                                 if (!prune_stale_stable_nodes)
1389                                         break;
1390                                 continue;
1391                         }
1392                 }
1393                 put_page(_tree_page);
1394         }
1395
1396         if (found) {
1397                 /*
1398                  * nr is counting all dups in the chain only if
1399                  * prune_stale_stable_nodes is true, otherwise we may
1400                  * break the loop at nr == 1 even if there are
1401                  * multiple entries.
1402                  */
1403                 if (prune_stale_stable_nodes && nr == 1) {
1404                         /*
1405                          * If there's not just one entry it would
1406                          * corrupt memory, better BUG_ON. In KSM
1407                          * context with no lock held it's not even
1408                          * fatal.
1409                          */
1410                         BUG_ON(stable_node->hlist.first->next);
1411
1412                         /*
1413                          * There's just one entry and it is below the
1414                          * deduplication limit so drop the chain.
1415                          */
1416                         rb_replace_node(&stable_node->node, &found->node,
1417                                         root);
1418                         free_stable_node(stable_node);
1419                         ksm_stable_node_chains--;
1420                         ksm_stable_node_dups--;
1421                         /*
1422                          * NOTE: the caller depends on the stable_node
1423                          * to be equal to stable_node_dup if the chain
1424                          * was collapsed.
1425                          */
1426                         *_stable_node = found;
1427                         /*
1428                          * Just for robustness, as stable_node is
1429                          * otherwise left as a stable pointer, the
1430                          * compiler shall optimize it away at build
1431                          * time.
1432                          */
1433                         stable_node = NULL;
1434                 } else if (stable_node->hlist.first != &found->hlist_dup &&
1435                            __is_page_sharing_candidate(found, 1)) {
1436                         /*
1437                          * If the found stable_node dup can accept one
1438                          * more future merge (in addition to the one
1439                          * that is underway) and is not at the head of
1440                          * the chain, put it there so next search will
1441                          * be quicker in the !prune_stale_stable_nodes
1442                          * case.
1443                          *
1444                          * NOTE: it would be inaccurate to use nr > 1
1445                          * instead of checking the hlist.first pointer
1446                          * directly, because in the
1447                          * prune_stale_stable_nodes case "nr" isn't
1448                          * the position of the found dup in the chain,
1449                          * but the total number of dups in the chain.
1450                          */
1451                         hlist_del(&found->hlist_dup);
1452                         hlist_add_head(&found->hlist_dup,
1453                                        &stable_node->hlist);
1454                 }
1455         }
1456
1457         *_stable_node_dup = found;
1458         return tree_page;
1459 }
1460
1461 static struct stable_node *stable_node_dup_any(struct stable_node *stable_node,
1462                                                struct rb_root *root)
1463 {
1464         if (!is_stable_node_chain(stable_node))
1465                 return stable_node;
1466         if (hlist_empty(&stable_node->hlist)) {
1467                 free_stable_node_chain(stable_node, root);
1468                 return NULL;
1469         }
1470         return hlist_entry(stable_node->hlist.first,
1471                            typeof(*stable_node), hlist_dup);
1472 }
1473
1474 /*
1475  * Like for get_ksm_page, this function can free the *_stable_node and
1476  * *_stable_node_dup if the returned tree_page is NULL.
1477  *
1478  * It can also free and overwrite *_stable_node with the found
1479  * stable_node_dup if the chain is collapsed (in which case
1480  * *_stable_node will be equal to *_stable_node_dup like if the chain
1481  * never existed). It's up to the caller to verify tree_page is not
1482  * NULL before dereferencing *_stable_node or *_stable_node_dup.
1483  *
1484  * *_stable_node_dup is really a second output parameter of this
1485  * function and will be overwritten in all cases, the caller doesn't
1486  * need to initialize it.
1487  */
1488 static struct page *__stable_node_chain(struct stable_node **_stable_node_dup,
1489                                         struct stable_node **_stable_node,
1490                                         struct rb_root *root,
1491                                         bool prune_stale_stable_nodes)
1492 {
1493         struct stable_node *stable_node = *_stable_node;
1494         if (!is_stable_node_chain(stable_node)) {
1495                 if (is_page_sharing_candidate(stable_node)) {
1496                         *_stable_node_dup = stable_node;
1497                         return get_ksm_page(stable_node, GET_KSM_PAGE_NOLOCK);
1498                 }
1499                 /*
1500                  * _stable_node_dup set to NULL means the stable_node
1501                  * reached the ksm_max_page_sharing limit.
1502                  */
1503                 *_stable_node_dup = NULL;
1504                 return NULL;
1505         }
1506         return stable_node_dup(_stable_node_dup, _stable_node, root,
1507                                prune_stale_stable_nodes);
1508 }
1509
1510 static __always_inline struct page *chain_prune(struct stable_node **s_n_d,
1511                                                 struct stable_node **s_n,
1512                                                 struct rb_root *root)
1513 {
1514         return __stable_node_chain(s_n_d, s_n, root, true);
1515 }
1516
1517 static __always_inline struct page *chain(struct stable_node **s_n_d,
1518                                           struct stable_node *s_n,
1519                                           struct rb_root *root)
1520 {
1521         struct stable_node *old_stable_node = s_n;
1522         struct page *tree_page;
1523
1524         tree_page = __stable_node_chain(s_n_d, &s_n, root, false);
1525         /* not pruning dups so s_n cannot have changed */
1526         VM_BUG_ON(s_n != old_stable_node);
1527         return tree_page;
1528 }
1529
1530 /*
1531  * stable_tree_search - search for page inside the stable tree
1532  *
1533  * This function checks if there is a page inside the stable tree
1534  * with identical content to the page that we are scanning right now.
1535  *
1536  * This function returns the stable tree node of identical content if found,
1537  * NULL otherwise.
1538  */
1539 static struct page *stable_tree_search(struct page *page)
1540 {
1541         int nid;
1542         struct rb_root *root;
1543         struct rb_node **new;
1544         struct rb_node *parent;
1545         struct stable_node *stable_node, *stable_node_dup, *stable_node_any;
1546         struct stable_node *page_node;
1547
1548         page_node = page_stable_node(page);
1549         if (page_node && page_node->head != &migrate_nodes) {
1550                 /* ksm page forked */
1551                 get_page(page);
1552                 return page;
1553         }
1554
1555         nid = get_kpfn_nid(page_to_pfn(page));
1556         root = root_stable_tree + nid;
1557 again:
1558         new = &root->rb_node;
1559         parent = NULL;
1560
1561         while (*new) {
1562                 struct page *tree_page;
1563                 int ret;
1564
1565                 cond_resched();
1566                 stable_node = rb_entry(*new, struct stable_node, node);
1567                 stable_node_any = NULL;
1568                 tree_page = chain_prune(&stable_node_dup, &stable_node, root);
1569                 /*
1570                  * NOTE: stable_node may have been freed by
1571                  * chain_prune() if the returned stable_node_dup is
1572                  * not NULL. stable_node_dup may have been inserted in
1573                  * the rbtree instead as a regular stable_node (in
1574                  * order to collapse the stable_node chain if a single
1575                  * stable_node dup was found in it). In such case the
1576                  * stable_node is overwritten by the calleee to point
1577                  * to the stable_node_dup that was collapsed in the
1578                  * stable rbtree and stable_node will be equal to
1579                  * stable_node_dup like if the chain never existed.
1580                  */
1581                 if (!stable_node_dup) {
1582                         /*
1583                          * Either all stable_node dups were full in
1584                          * this stable_node chain, or this chain was
1585                          * empty and should be rb_erased.
1586                          */
1587                         stable_node_any = stable_node_dup_any(stable_node,
1588                                                               root);
1589                         if (!stable_node_any) {
1590                                 /* rb_erase just run */
1591                                 goto again;
1592                         }
1593                         /*
1594                          * Take any of the stable_node dups page of
1595                          * this stable_node chain to let the tree walk
1596                          * continue. All KSM pages belonging to the
1597                          * stable_node dups in a stable_node chain
1598                          * have the same content and they're
1599                          * write protected at all times. Any will work
1600                          * fine to continue the walk.
1601                          */
1602                         tree_page = get_ksm_page(stable_node_any,
1603                                                  GET_KSM_PAGE_NOLOCK);
1604                 }
1605                 VM_BUG_ON(!stable_node_dup ^ !!stable_node_any);
1606                 if (!tree_page) {
1607                         /*
1608                          * If we walked over a stale stable_node,
1609                          * get_ksm_page() will call rb_erase() and it
1610                          * may rebalance the tree from under us. So
1611                          * restart the search from scratch. Returning
1612                          * NULL would be safe too, but we'd generate
1613                          * false negative insertions just because some
1614                          * stable_node was stale.
1615                          */
1616                         goto again;
1617                 }
1618
1619                 ret = memcmp_pages(page, tree_page);
1620                 put_page(tree_page);
1621
1622                 parent = *new;
1623                 if (ret < 0)
1624                         new = &parent->rb_left;
1625                 else if (ret > 0)
1626                         new = &parent->rb_right;
1627                 else {
1628                         if (page_node) {
1629                                 VM_BUG_ON(page_node->head != &migrate_nodes);
1630                                 /*
1631                                  * Test if the migrated page should be merged
1632                                  * into a stable node dup. If the mapcount is
1633                                  * 1 we can migrate it with another KSM page
1634                                  * without adding it to the chain.
1635                                  */
1636                                 if (page_mapcount(page) > 1)
1637                                         goto chain_append;
1638                         }
1639
1640                         if (!stable_node_dup) {
1641                                 /*
1642                                  * If the stable_node is a chain and
1643                                  * we got a payload match in memcmp
1644                                  * but we cannot merge the scanned
1645                                  * page in any of the existing
1646                                  * stable_node dups because they're
1647                                  * all full, we need to wait the
1648                                  * scanned page to find itself a match
1649                                  * in the unstable tree to create a
1650                                  * brand new KSM page to add later to
1651                                  * the dups of this stable_node.
1652                                  */
1653                                 return NULL;
1654                         }
1655
1656                         /*
1657                          * Lock and unlock the stable_node's page (which
1658                          * might already have been migrated) so that page
1659                          * migration is sure to notice its raised count.
1660                          * It would be more elegant to return stable_node
1661                          * than kpage, but that involves more changes.
1662                          */
1663                         tree_page = get_ksm_page(stable_node_dup,
1664                                                  GET_KSM_PAGE_TRYLOCK);
1665
1666                         if (PTR_ERR(tree_page) == -EBUSY)
1667                                 return ERR_PTR(-EBUSY);
1668
1669                         if (unlikely(!tree_page))
1670                                 /*
1671                                  * The tree may have been rebalanced,
1672                                  * so re-evaluate parent and new.
1673                                  */
1674                                 goto again;
1675                         unlock_page(tree_page);
1676
1677                         if (get_kpfn_nid(stable_node_dup->kpfn) !=
1678                             NUMA(stable_node_dup->nid)) {
1679                                 put_page(tree_page);
1680                                 goto replace;
1681                         }
1682                         return tree_page;
1683                 }
1684         }
1685
1686         if (!page_node)
1687                 return NULL;
1688
1689         list_del(&page_node->list);
1690         DO_NUMA(page_node->nid = nid);
1691         rb_link_node(&page_node->node, parent, new);
1692         rb_insert_color(&page_node->node, root);
1693 out:
1694         if (is_page_sharing_candidate(page_node)) {
1695                 get_page(page);
1696                 return page;
1697         } else
1698                 return NULL;
1699
1700 replace:
1701         /*
1702          * If stable_node was a chain and chain_prune collapsed it,
1703          * stable_node has been updated to be the new regular
1704          * stable_node. A collapse of the chain is indistinguishable
1705          * from the case there was no chain in the stable
1706          * rbtree. Otherwise stable_node is the chain and
1707          * stable_node_dup is the dup to replace.
1708          */
1709         if (stable_node_dup == stable_node) {
1710                 VM_BUG_ON(is_stable_node_chain(stable_node_dup));
1711                 VM_BUG_ON(is_stable_node_dup(stable_node_dup));
1712                 /* there is no chain */
1713                 if (page_node) {
1714                         VM_BUG_ON(page_node->head != &migrate_nodes);
1715                         list_del(&page_node->list);
1716                         DO_NUMA(page_node->nid = nid);
1717                         rb_replace_node(&stable_node_dup->node,
1718                                         &page_node->node,
1719                                         root);
1720                         if (is_page_sharing_candidate(page_node))
1721                                 get_page(page);
1722                         else
1723                                 page = NULL;
1724                 } else {
1725                         rb_erase(&stable_node_dup->node, root);
1726                         page = NULL;
1727                 }
1728         } else {
1729                 VM_BUG_ON(!is_stable_node_chain(stable_node));
1730                 __stable_node_dup_del(stable_node_dup);
1731                 if (page_node) {
1732                         VM_BUG_ON(page_node->head != &migrate_nodes);
1733                         list_del(&page_node->list);
1734                         DO_NUMA(page_node->nid = nid);
1735                         stable_node_chain_add_dup(page_node, stable_node);
1736                         if (is_page_sharing_candidate(page_node))
1737                                 get_page(page);
1738                         else
1739                                 page = NULL;
1740                 } else {
1741                         page = NULL;
1742                 }
1743         }
1744         stable_node_dup->head = &migrate_nodes;
1745         list_add(&stable_node_dup->list, stable_node_dup->head);
1746         return page;
1747
1748 chain_append:
1749         /* stable_node_dup could be null if it reached the limit */
1750         if (!stable_node_dup)
1751                 stable_node_dup = stable_node_any;
1752         /*
1753          * If stable_node was a chain and chain_prune collapsed it,
1754          * stable_node has been updated to be the new regular
1755          * stable_node. A collapse of the chain is indistinguishable
1756          * from the case there was no chain in the stable
1757          * rbtree. Otherwise stable_node is the chain and
1758          * stable_node_dup is the dup to replace.
1759          */
1760         if (stable_node_dup == stable_node) {
1761                 VM_BUG_ON(is_stable_node_dup(stable_node_dup));
1762                 /* chain is missing so create it */
1763                 stable_node = alloc_stable_node_chain(stable_node_dup,
1764                                                       root);
1765                 if (!stable_node)
1766                         return NULL;
1767         }
1768         /*
1769          * Add this stable_node dup that was
1770          * migrated to the stable_node chain
1771          * of the current nid for this page
1772          * content.
1773          */
1774         VM_BUG_ON(!is_stable_node_dup(stable_node_dup));
1775         VM_BUG_ON(page_node->head != &migrate_nodes);
1776         list_del(&page_node->list);
1777         DO_NUMA(page_node->nid = nid);
1778         stable_node_chain_add_dup(page_node, stable_node);
1779         goto out;
1780 }
1781
1782 /*
1783  * stable_tree_insert - insert stable tree node pointing to new ksm page
1784  * into the stable tree.
1785  *
1786  * This function returns the stable tree node just allocated on success,
1787  * NULL otherwise.
1788  */
1789 static struct stable_node *stable_tree_insert(struct page *kpage)
1790 {
1791         int nid;
1792         unsigned long kpfn;
1793         struct rb_root *root;
1794         struct rb_node **new;
1795         struct rb_node *parent;
1796         struct stable_node *stable_node, *stable_node_dup, *stable_node_any;
1797         bool need_chain = false;
1798
1799         kpfn = page_to_pfn(kpage);
1800         nid = get_kpfn_nid(kpfn);
1801         root = root_stable_tree + nid;
1802 again:
1803         parent = NULL;
1804         new = &root->rb_node;
1805
1806         while (*new) {
1807                 struct page *tree_page;
1808                 int ret;
1809
1810                 cond_resched();
1811                 stable_node = rb_entry(*new, struct stable_node, node);
1812                 stable_node_any = NULL;
1813                 tree_page = chain(&stable_node_dup, stable_node, root);
1814                 if (!stable_node_dup) {
1815                         /*
1816                          * Either all stable_node dups were full in
1817                          * this stable_node chain, or this chain was
1818                          * empty and should be rb_erased.
1819                          */
1820                         stable_node_any = stable_node_dup_any(stable_node,
1821                                                               root);
1822                         if (!stable_node_any) {
1823                                 /* rb_erase just run */
1824                                 goto again;
1825                         }
1826                         /*
1827                          * Take any of the stable_node dups page of
1828                          * this stable_node chain to let the tree walk
1829                          * continue. All KSM pages belonging to the
1830                          * stable_node dups in a stable_node chain
1831                          * have the same content and they're
1832                          * write protected at all times. Any will work
1833                          * fine to continue the walk.
1834                          */
1835                         tree_page = get_ksm_page(stable_node_any,
1836                                                  GET_KSM_PAGE_NOLOCK);
1837                 }
1838                 VM_BUG_ON(!stable_node_dup ^ !!stable_node_any);
1839                 if (!tree_page) {
1840                         /*
1841                          * If we walked over a stale stable_node,
1842                          * get_ksm_page() will call rb_erase() and it
1843                          * may rebalance the tree from under us. So
1844                          * restart the search from scratch. Returning
1845                          * NULL would be safe too, but we'd generate
1846                          * false negative insertions just because some
1847                          * stable_node was stale.
1848                          */
1849                         goto again;
1850                 }
1851
1852                 ret = memcmp_pages(kpage, tree_page);
1853                 put_page(tree_page);
1854
1855                 parent = *new;
1856                 if (ret < 0)
1857                         new = &parent->rb_left;
1858                 else if (ret > 0)
1859                         new = &parent->rb_right;
1860                 else {
1861                         need_chain = true;
1862                         break;
1863                 }
1864         }
1865
1866         stable_node_dup = alloc_stable_node();
1867         if (!stable_node_dup)
1868                 return NULL;
1869
1870         INIT_HLIST_HEAD(&stable_node_dup->hlist);
1871         stable_node_dup->kpfn = kpfn;
1872         set_page_stable_node(kpage, stable_node_dup);
1873         stable_node_dup->rmap_hlist_len = 0;
1874         DO_NUMA(stable_node_dup->nid = nid);
1875         if (!need_chain) {
1876                 rb_link_node(&stable_node_dup->node, parent, new);
1877                 rb_insert_color(&stable_node_dup->node, root);
1878         } else {
1879                 if (!is_stable_node_chain(stable_node)) {
1880                         struct stable_node *orig = stable_node;
1881                         /* chain is missing so create it */
1882                         stable_node = alloc_stable_node_chain(orig, root);
1883                         if (!stable_node) {
1884                                 free_stable_node(stable_node_dup);
1885                                 return NULL;
1886                         }
1887                 }
1888                 stable_node_chain_add_dup(stable_node_dup, stable_node);
1889         }
1890
1891         return stable_node_dup;
1892 }
1893
1894 /*
1895  * unstable_tree_search_insert - search for identical page,
1896  * else insert rmap_item into the unstable tree.
1897  *
1898  * This function searches for a page in the unstable tree identical to the
1899  * page currently being scanned; and if no identical page is found in the
1900  * tree, we insert rmap_item as a new object into the unstable tree.
1901  *
1902  * This function returns pointer to rmap_item found to be identical
1903  * to the currently scanned page, NULL otherwise.
1904  *
1905  * This function does both searching and inserting, because they share
1906  * the same walking algorithm in an rbtree.
1907  */
1908 static
1909 struct rmap_item *unstable_tree_search_insert(struct rmap_item *rmap_item,
1910                                               struct page *page,
1911                                               struct page **tree_pagep)
1912 {
1913         struct rb_node **new;
1914         struct rb_root *root;
1915         struct rb_node *parent = NULL;
1916         int nid;
1917
1918         nid = get_kpfn_nid(page_to_pfn(page));
1919         root = root_unstable_tree + nid;
1920         new = &root->rb_node;
1921
1922         while (*new) {
1923                 struct rmap_item *tree_rmap_item;
1924                 struct page *tree_page;
1925                 int ret;
1926
1927                 cond_resched();
1928                 tree_rmap_item = rb_entry(*new, struct rmap_item, node);
1929                 tree_page = get_mergeable_page(tree_rmap_item);
1930                 if (!tree_page)
1931                         return NULL;
1932
1933                 /*
1934                  * Don't substitute a ksm page for a forked page.
1935                  */
1936                 if (page == tree_page) {
1937                         put_page(tree_page);
1938                         return NULL;
1939                 }
1940
1941                 ret = memcmp_pages(page, tree_page);
1942
1943                 parent = *new;
1944                 if (ret < 0) {
1945                         put_page(tree_page);
1946                         new = &parent->rb_left;
1947                 } else if (ret > 0) {
1948                         put_page(tree_page);
1949                         new = &parent->rb_right;
1950                 } else if (!ksm_merge_across_nodes &&
1951                            page_to_nid(tree_page) != nid) {
1952                         /*
1953                          * If tree_page has been migrated to another NUMA node,
1954                          * it will be flushed out and put in the right unstable
1955                          * tree next time: only merge with it when across_nodes.
1956                          */
1957                         put_page(tree_page);
1958                         return NULL;
1959                 } else {
1960                         *tree_pagep = tree_page;
1961                         return tree_rmap_item;
1962                 }
1963         }
1964
1965         rmap_item->address |= UNSTABLE_FLAG;
1966         rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK);
1967         DO_NUMA(rmap_item->nid = nid);
1968         rb_link_node(&rmap_item->node, parent, new);
1969         rb_insert_color(&rmap_item->node, root);
1970
1971         ksm_pages_unshared++;
1972         return NULL;
1973 }
1974
1975 /*
1976  * stable_tree_append - add another rmap_item to the linked list of
1977  * rmap_items hanging off a given node of the stable tree, all sharing
1978  * the same ksm page.
1979  */
1980 static void stable_tree_append(struct rmap_item *rmap_item,
1981                                struct stable_node *stable_node,
1982                                bool max_page_sharing_bypass)
1983 {
1984         /*
1985          * rmap won't find this mapping if we don't insert the
1986          * rmap_item in the right stable_node
1987          * duplicate. page_migration could break later if rmap breaks,
1988          * so we can as well crash here. We really need to check for
1989          * rmap_hlist_len == STABLE_NODE_CHAIN, but we can as well check
1990          * for other negative values as an underflow if detected here
1991          * for the first time (and not when decreasing rmap_hlist_len)
1992          * would be sign of memory corruption in the stable_node.
1993          */
1994         BUG_ON(stable_node->rmap_hlist_len < 0);
1995
1996         stable_node->rmap_hlist_len++;
1997         if (!max_page_sharing_bypass)
1998                 /* possibly non fatal but unexpected overflow, only warn */
1999                 WARN_ON_ONCE(stable_node->rmap_hlist_len >
2000                              ksm_max_page_sharing);
2001
2002         rmap_item->head = stable_node;
2003         rmap_item->address |= STABLE_FLAG;
2004         hlist_add_head(&rmap_item->hlist, &stable_node->hlist);
2005
2006         if (rmap_item->hlist.next)
2007                 ksm_pages_sharing++;
2008         else
2009                 ksm_pages_shared++;
2010 }
2011
2012 /*
2013  * cmp_and_merge_page - first see if page can be merged into the stable tree;
2014  * if not, compare checksum to previous and if it's the same, see if page can
2015  * be inserted into the unstable tree, or merged with a page already there and
2016  * both transferred to the stable tree.
2017  *
2018  * @page: the page that we are searching identical page to.
2019  * @rmap_item: the reverse mapping into the virtual address of this page
2020  */
2021 static void cmp_and_merge_page(struct page *page, struct rmap_item *rmap_item)
2022 {
2023         struct mm_struct *mm = rmap_item->mm;
2024         struct rmap_item *tree_rmap_item;
2025         struct page *tree_page = NULL;
2026         struct stable_node *stable_node;
2027         struct page *kpage;
2028         unsigned int checksum;
2029         int err;
2030         bool max_page_sharing_bypass = false;
2031
2032         stable_node = page_stable_node(page);
2033         if (stable_node) {
2034                 if (stable_node->head != &migrate_nodes &&
2035                     get_kpfn_nid(READ_ONCE(stable_node->kpfn)) !=
2036                     NUMA(stable_node->nid)) {
2037                         stable_node_dup_del(stable_node);
2038                         stable_node->head = &migrate_nodes;
2039                         list_add(&stable_node->list, stable_node->head);
2040                 }
2041                 if (stable_node->head != &migrate_nodes &&
2042                     rmap_item->head == stable_node)
2043                         return;
2044                 /*
2045                  * If it's a KSM fork, allow it to go over the sharing limit
2046                  * without warnings.
2047                  */
2048                 if (!is_page_sharing_candidate(stable_node))
2049                         max_page_sharing_bypass = true;
2050         }
2051
2052         /* We first start with searching the page inside the stable tree */
2053         kpage = stable_tree_search(page);
2054         if (kpage == page && rmap_item->head == stable_node) {
2055                 put_page(kpage);
2056                 return;
2057         }
2058
2059         remove_rmap_item_from_tree(rmap_item);
2060
2061         if (kpage) {
2062                 if (PTR_ERR(kpage) == -EBUSY)
2063                         return;
2064
2065                 err = try_to_merge_with_ksm_page(rmap_item, page, kpage);
2066                 if (!err) {
2067                         /*
2068                          * The page was successfully merged:
2069                          * add its rmap_item to the stable tree.
2070                          */
2071                         lock_page(kpage);
2072                         stable_tree_append(rmap_item, page_stable_node(kpage),
2073                                            max_page_sharing_bypass);
2074                         unlock_page(kpage);
2075                 }
2076                 put_page(kpage);
2077                 return;
2078         }
2079
2080         /*
2081          * If the hash value of the page has changed from the last time
2082          * we calculated it, this page is changing frequently: therefore we
2083          * don't want to insert it in the unstable tree, and we don't want
2084          * to waste our time searching for something identical to it there.
2085          */
2086         checksum = calc_checksum(page);
2087         if (rmap_item->oldchecksum != checksum) {
2088                 rmap_item->oldchecksum = checksum;
2089                 return;
2090         }
2091
2092         /*
2093          * Same checksum as an empty page. We attempt to merge it with the
2094          * appropriate zero page if the user enabled this via sysfs.
2095          */
2096         if (ksm_use_zero_pages && (checksum == zero_checksum)) {
2097                 struct vm_area_struct *vma;
2098
2099                 mmap_read_lock(mm);
2100                 vma = find_mergeable_vma(mm, rmap_item->address);
2101                 if (vma) {
2102                         err = try_to_merge_one_page(vma, page,
2103                                         ZERO_PAGE(rmap_item->address));
2104                 } else {
2105                         /*
2106                          * If the vma is out of date, we do not need to
2107                          * continue.
2108                          */
2109                         err = 0;
2110                 }
2111                 mmap_read_unlock(mm);
2112                 /*
2113                  * In case of failure, the page was not really empty, so we
2114                  * need to continue. Otherwise we're done.
2115                  */
2116                 if (!err)
2117                         return;
2118         }
2119         tree_rmap_item =
2120                 unstable_tree_search_insert(rmap_item, page, &tree_page);
2121         if (tree_rmap_item) {
2122                 bool split;
2123
2124                 kpage = try_to_merge_two_pages(rmap_item, page,
2125                                                 tree_rmap_item, tree_page);
2126                 /*
2127                  * If both pages we tried to merge belong to the same compound
2128                  * page, then we actually ended up increasing the reference
2129                  * count of the same compound page twice, and split_huge_page
2130                  * failed.
2131                  * Here we set a flag if that happened, and we use it later to
2132                  * try split_huge_page again. Since we call put_page right
2133                  * afterwards, the reference count will be correct and
2134                  * split_huge_page should succeed.
2135                  */
2136                 split = PageTransCompound(page)
2137                         && compound_head(page) == compound_head(tree_page);
2138                 put_page(tree_page);
2139                 if (kpage) {
2140                         /*
2141                          * The pages were successfully merged: insert new
2142                          * node in the stable tree and add both rmap_items.
2143                          */
2144                         lock_page(kpage);
2145                         stable_node = stable_tree_insert(kpage);
2146                         if (stable_node) {
2147                                 stable_tree_append(tree_rmap_item, stable_node,
2148                                                    false);
2149                                 stable_tree_append(rmap_item, stable_node,
2150                                                    false);
2151                         }
2152                         unlock_page(kpage);
2153
2154                         /*
2155                          * If we fail to insert the page into the stable tree,
2156                          * we will have 2 virtual addresses that are pointing
2157                          * to a ksm page left outside the stable tree,
2158                          * in which case we need to break_cow on both.
2159                          */
2160                         if (!stable_node) {
2161                                 break_cow(tree_rmap_item);
2162                                 break_cow(rmap_item);
2163                         }
2164                 } else if (split) {
2165                         /*
2166                          * We are here if we tried to merge two pages and
2167                          * failed because they both belonged to the same
2168                          * compound page. We will split the page now, but no
2169                          * merging will take place.
2170                          * We do not want to add the cost of a full lock; if
2171                          * the page is locked, it is better to skip it and
2172                          * perhaps try again later.
2173                          */
2174                         if (!trylock_page(page))
2175                                 return;
2176                         split_huge_page(page);
2177                         unlock_page(page);
2178                 }
2179         }
2180 }
2181
2182 static struct rmap_item *get_next_rmap_item(struct mm_slot *mm_slot,
2183                                             struct rmap_item **rmap_list,
2184                                             unsigned long addr)
2185 {
2186         struct rmap_item *rmap_item;
2187
2188         while (*rmap_list) {
2189                 rmap_item = *rmap_list;
2190                 if ((rmap_item->address & PAGE_MASK) == addr)
2191                         return rmap_item;
2192                 if (rmap_item->address > addr)
2193                         break;
2194                 *rmap_list = rmap_item->rmap_list;
2195                 remove_rmap_item_from_tree(rmap_item);
2196                 free_rmap_item(rmap_item);
2197         }
2198
2199         rmap_item = alloc_rmap_item();
2200         if (rmap_item) {
2201                 /* It has already been zeroed */
2202                 rmap_item->mm = mm_slot->mm;
2203                 rmap_item->address = addr;
2204                 rmap_item->rmap_list = *rmap_list;
2205                 *rmap_list = rmap_item;
2206         }
2207         return rmap_item;
2208 }
2209
2210 static struct rmap_item *scan_get_next_rmap_item(struct page **page)
2211 {
2212         struct mm_struct *mm;
2213         struct mm_slot *slot;
2214         struct vm_area_struct *vma;
2215         struct rmap_item *rmap_item;
2216         int nid;
2217
2218         if (list_empty(&ksm_mm_head.mm_list))
2219                 return NULL;
2220
2221         slot = ksm_scan.mm_slot;
2222         if (slot == &ksm_mm_head) {
2223                 /*
2224                  * A number of pages can hang around indefinitely on per-cpu
2225                  * pagevecs, raised page count preventing write_protect_page
2226                  * from merging them.  Though it doesn't really matter much,
2227                  * it is puzzling to see some stuck in pages_volatile until
2228                  * other activity jostles them out, and they also prevented
2229                  * LTP's KSM test from succeeding deterministically; so drain
2230                  * them here (here rather than on entry to ksm_do_scan(),
2231                  * so we don't IPI too often when pages_to_scan is set low).
2232                  */
2233                 lru_add_drain_all();
2234
2235                 /*
2236                  * Whereas stale stable_nodes on the stable_tree itself
2237                  * get pruned in the regular course of stable_tree_search(),
2238                  * those moved out to the migrate_nodes list can accumulate:
2239                  * so prune them once before each full scan.
2240                  */
2241                 if (!ksm_merge_across_nodes) {
2242                         struct stable_node *stable_node, *next;
2243                         struct page *page;
2244
2245                         list_for_each_entry_safe(stable_node, next,
2246                                                  &migrate_nodes, list) {
2247                                 page = get_ksm_page(stable_node,
2248                                                     GET_KSM_PAGE_NOLOCK);
2249                                 if (page)
2250                                         put_page(page);
2251                                 cond_resched();
2252                         }
2253                 }
2254
2255                 for (nid = 0; nid < ksm_nr_node_ids; nid++)
2256                         root_unstable_tree[nid] = RB_ROOT;
2257
2258                 spin_lock(&ksm_mmlist_lock);
2259                 slot = list_entry(slot->mm_list.next, struct mm_slot, mm_list);
2260                 ksm_scan.mm_slot = slot;
2261                 spin_unlock(&ksm_mmlist_lock);
2262                 /*
2263                  * Although we tested list_empty() above, a racing __ksm_exit
2264                  * of the last mm on the list may have removed it since then.
2265                  */
2266                 if (slot == &ksm_mm_head)
2267                         return NULL;
2268 next_mm:
2269                 ksm_scan.address = 0;
2270                 ksm_scan.rmap_list = &slot->rmap_list;
2271         }
2272
2273         mm = slot->mm;
2274         mmap_read_lock(mm);
2275         if (ksm_test_exit(mm))
2276                 vma = NULL;
2277         else
2278                 vma = find_vma(mm, ksm_scan.address);
2279
2280         for (; vma; vma = vma->vm_next) {
2281                 if (!(vma->vm_flags & VM_MERGEABLE))
2282                         continue;
2283                 if (ksm_scan.address < vma->vm_start)
2284                         ksm_scan.address = vma->vm_start;
2285                 if (!vma->anon_vma)
2286                         ksm_scan.address = vma->vm_end;
2287
2288                 while (ksm_scan.address < vma->vm_end) {
2289                         if (ksm_test_exit(mm))
2290                                 break;
2291                         *page = follow_page(vma, ksm_scan.address, FOLL_GET);
2292                         if (IS_ERR_OR_NULL(*page)) {
2293                                 ksm_scan.address += PAGE_SIZE;
2294                                 cond_resched();
2295                                 continue;
2296                         }
2297                         if (PageAnon(*page)) {
2298                                 flush_anon_page(vma, *page, ksm_scan.address);
2299                                 flush_dcache_page(*page);
2300                                 rmap_item = get_next_rmap_item(slot,
2301                                         ksm_scan.rmap_list, ksm_scan.address);
2302                                 if (rmap_item) {
2303                                         ksm_scan.rmap_list =
2304                                                         &rmap_item->rmap_list;
2305                                         ksm_scan.address += PAGE_SIZE;
2306                                 } else
2307                                         put_page(*page);
2308                                 mmap_read_unlock(mm);
2309                                 return rmap_item;
2310                         }
2311                         put_page(*page);
2312                         ksm_scan.address += PAGE_SIZE;
2313                         cond_resched();
2314                 }
2315         }
2316
2317         if (ksm_test_exit(mm)) {
2318                 ksm_scan.address = 0;
2319                 ksm_scan.rmap_list = &slot->rmap_list;
2320         }
2321         /*
2322          * Nuke all the rmap_items that are above this current rmap:
2323          * because there were no VM_MERGEABLE vmas with such addresses.
2324          */
2325         remove_trailing_rmap_items(ksm_scan.rmap_list);
2326
2327         spin_lock(&ksm_mmlist_lock);
2328         ksm_scan.mm_slot = list_entry(slot->mm_list.next,
2329                                                 struct mm_slot, mm_list);
2330         if (ksm_scan.address == 0) {
2331                 /*
2332                  * We've completed a full scan of all vmas, holding mmap_lock
2333                  * throughout, and found no VM_MERGEABLE: so do the same as
2334                  * __ksm_exit does to remove this mm from all our lists now.
2335                  * This applies either when cleaning up after __ksm_exit
2336                  * (but beware: we can reach here even before __ksm_exit),
2337                  * or when all VM_MERGEABLE areas have been unmapped (and
2338                  * mmap_lock then protects against race with MADV_MERGEABLE).
2339                  */
2340                 hash_del(&slot->link);
2341                 list_del(&slot->mm_list);
2342                 spin_unlock(&ksm_mmlist_lock);
2343
2344                 free_mm_slot(slot);
2345                 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
2346                 mmap_read_unlock(mm);
2347                 mmdrop(mm);
2348         } else {
2349                 mmap_read_unlock(mm);
2350                 /*
2351                  * mmap_read_unlock(mm) first because after
2352                  * spin_unlock(&ksm_mmlist_lock) run, the "mm" may
2353                  * already have been freed under us by __ksm_exit()
2354                  * because the "mm_slot" is still hashed and
2355                  * ksm_scan.mm_slot doesn't point to it anymore.
2356                  */
2357                 spin_unlock(&ksm_mmlist_lock);
2358         }
2359
2360         /* Repeat until we've completed scanning the whole list */
2361         slot = ksm_scan.mm_slot;
2362         if (slot != &ksm_mm_head)
2363                 goto next_mm;
2364
2365         ksm_scan.seqnr++;
2366         return NULL;
2367 }
2368
2369 /**
2370  * ksm_do_scan  - the ksm scanner main worker function.
2371  * @scan_npages:  number of pages we want to scan before we return.
2372  */
2373 static void ksm_do_scan(unsigned int scan_npages)
2374 {
2375         struct rmap_item *rmap_item;
2376         struct page *page;
2377
2378         while (scan_npages-- && likely(!freezing(current))) {
2379                 cond_resched();
2380                 rmap_item = scan_get_next_rmap_item(&page);
2381                 if (!rmap_item)
2382                         return;
2383                 cmp_and_merge_page(page, rmap_item);
2384                 put_page(page);
2385         }
2386 }
2387
2388 static int ksmd_should_run(void)
2389 {
2390         return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.mm_list);
2391 }
2392
2393 static int ksm_scan_thread(void *nothing)
2394 {
2395         unsigned int sleep_ms;
2396
2397         set_freezable();
2398         set_user_nice(current, 5);
2399
2400         while (!kthread_should_stop()) {
2401                 mutex_lock(&ksm_thread_mutex);
2402                 wait_while_offlining();
2403                 if (ksmd_should_run())
2404                         ksm_do_scan(ksm_thread_pages_to_scan);
2405                 mutex_unlock(&ksm_thread_mutex);
2406
2407                 try_to_freeze();
2408
2409                 if (ksmd_should_run()) {
2410                         sleep_ms = READ_ONCE(ksm_thread_sleep_millisecs);
2411                         wait_event_interruptible_timeout(ksm_iter_wait,
2412                                 sleep_ms != READ_ONCE(ksm_thread_sleep_millisecs),
2413                                 msecs_to_jiffies(sleep_ms));
2414                 } else {
2415                         wait_event_freezable(ksm_thread_wait,
2416                                 ksmd_should_run() || kthread_should_stop());
2417                 }
2418         }
2419         return 0;
2420 }
2421
2422 int ksm_madvise(struct vm_area_struct *vma, unsigned long start,
2423                 unsigned long end, int advice, unsigned long *vm_flags)
2424 {
2425         struct mm_struct *mm = vma->vm_mm;
2426         int err;
2427
2428         switch (advice) {
2429         case MADV_MERGEABLE:
2430                 /*
2431                  * Be somewhat over-protective for now!
2432                  */
2433                 if (*vm_flags & (VM_MERGEABLE | VM_SHARED  | VM_MAYSHARE   |
2434                                  VM_PFNMAP    | VM_IO      | VM_DONTEXPAND |
2435                                  VM_HUGETLB | VM_MIXEDMAP))
2436                         return 0;               /* just ignore the advice */
2437
2438                 if (vma_is_dax(vma))
2439                         return 0;
2440
2441 #ifdef VM_SAO
2442                 if (*vm_flags & VM_SAO)
2443                         return 0;
2444 #endif
2445 #ifdef VM_SPARC_ADI
2446                 if (*vm_flags & VM_SPARC_ADI)
2447                         return 0;
2448 #endif
2449
2450                 if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
2451                         err = __ksm_enter(mm);
2452                         if (err)
2453                                 return err;
2454                 }
2455
2456                 *vm_flags |= VM_MERGEABLE;
2457                 break;
2458
2459         case MADV_UNMERGEABLE:
2460                 if (!(*vm_flags & VM_MERGEABLE))
2461                         return 0;               /* just ignore the advice */
2462
2463                 if (vma->anon_vma) {
2464                         err = unmerge_ksm_pages(vma, start, end);
2465                         if (err)
2466                                 return err;
2467                 }
2468
2469                 *vm_flags &= ~VM_MERGEABLE;
2470                 break;
2471         }
2472
2473         return 0;
2474 }
2475 EXPORT_SYMBOL_GPL(ksm_madvise);
2476
2477 int __ksm_enter(struct mm_struct *mm)
2478 {
2479         struct mm_slot *mm_slot;
2480         int needs_wakeup;
2481
2482         mm_slot = alloc_mm_slot();
2483         if (!mm_slot)
2484                 return -ENOMEM;
2485
2486         /* Check ksm_run too?  Would need tighter locking */
2487         needs_wakeup = list_empty(&ksm_mm_head.mm_list);
2488
2489         spin_lock(&ksm_mmlist_lock);
2490         insert_to_mm_slots_hash(mm, mm_slot);
2491         /*
2492          * When KSM_RUN_MERGE (or KSM_RUN_STOP),
2493          * insert just behind the scanning cursor, to let the area settle
2494          * down a little; when fork is followed by immediate exec, we don't
2495          * want ksmd to waste time setting up and tearing down an rmap_list.
2496          *
2497          * But when KSM_RUN_UNMERGE, it's important to insert ahead of its
2498          * scanning cursor, otherwise KSM pages in newly forked mms will be
2499          * missed: then we might as well insert at the end of the list.
2500          */
2501         if (ksm_run & KSM_RUN_UNMERGE)
2502                 list_add_tail(&mm_slot->mm_list, &ksm_mm_head.mm_list);
2503         else
2504                 list_add_tail(&mm_slot->mm_list, &ksm_scan.mm_slot->mm_list);
2505         spin_unlock(&ksm_mmlist_lock);
2506
2507         set_bit(MMF_VM_MERGEABLE, &mm->flags);
2508         mmgrab(mm);
2509
2510         if (needs_wakeup)
2511                 wake_up_interruptible(&ksm_thread_wait);
2512
2513         return 0;
2514 }
2515
2516 void __ksm_exit(struct mm_struct *mm)
2517 {
2518         struct mm_slot *mm_slot;
2519         int easy_to_free = 0;
2520
2521         /*
2522          * This process is exiting: if it's straightforward (as is the
2523          * case when ksmd was never running), free mm_slot immediately.
2524          * But if it's at the cursor or has rmap_items linked to it, use
2525          * mmap_lock to synchronize with any break_cows before pagetables
2526          * are freed, and leave the mm_slot on the list for ksmd to free.
2527          * Beware: ksm may already have noticed it exiting and freed the slot.
2528          */
2529
2530         spin_lock(&ksm_mmlist_lock);
2531         mm_slot = get_mm_slot(mm);
2532         if (mm_slot && ksm_scan.mm_slot != mm_slot) {
2533                 if (!mm_slot->rmap_list) {
2534                         hash_del(&mm_slot->link);
2535                         list_del(&mm_slot->mm_list);
2536                         easy_to_free = 1;
2537                 } else {
2538                         list_move(&mm_slot->mm_list,
2539                                   &ksm_scan.mm_slot->mm_list);
2540                 }
2541         }
2542         spin_unlock(&ksm_mmlist_lock);
2543
2544         if (easy_to_free) {
2545                 free_mm_slot(mm_slot);
2546                 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
2547                 mmdrop(mm);
2548         } else if (mm_slot) {
2549                 mmap_write_lock(mm);
2550                 mmap_write_unlock(mm);
2551         }
2552 }
2553
2554 struct page *ksm_might_need_to_copy(struct page *page,
2555                         struct vm_area_struct *vma, unsigned long address)
2556 {
2557         struct folio *folio = page_folio(page);
2558         struct anon_vma *anon_vma = folio_anon_vma(folio);
2559         struct page *new_page;
2560
2561         if (PageKsm(page)) {
2562                 if (page_stable_node(page) &&
2563                     !(ksm_run & KSM_RUN_UNMERGE))
2564                         return page;    /* no need to copy it */
2565         } else if (!anon_vma) {
2566                 return page;            /* no need to copy it */
2567         } else if (page->index == linear_page_index(vma, address) &&
2568                         anon_vma->root == vma->anon_vma->root) {
2569                 return page;            /* still no need to copy it */
2570         }
2571         if (!PageUptodate(page))
2572                 return page;            /* let do_swap_page report the error */
2573
2574         new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2575         if (new_page &&
2576             mem_cgroup_charge(page_folio(new_page), vma->vm_mm, GFP_KERNEL)) {
2577                 put_page(new_page);
2578                 new_page = NULL;
2579         }
2580         if (new_page) {
2581                 copy_user_highpage(new_page, page, address, vma);
2582
2583                 SetPageDirty(new_page);
2584                 __SetPageUptodate(new_page);
2585                 __SetPageLocked(new_page);
2586 #ifdef CONFIG_SWAP
2587                 count_vm_event(KSM_SWPIN_COPY);
2588 #endif
2589         }
2590
2591         return new_page;
2592 }
2593
2594 void rmap_walk_ksm(struct folio *folio, const struct rmap_walk_control *rwc)
2595 {
2596         struct stable_node *stable_node;
2597         struct rmap_item *rmap_item;
2598         int search_new_forks = 0;
2599
2600         VM_BUG_ON_FOLIO(!folio_test_ksm(folio), folio);
2601
2602         /*
2603          * Rely on the page lock to protect against concurrent modifications
2604          * to that page's node of the stable tree.
2605          */
2606         VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
2607
2608         stable_node = folio_stable_node(folio);
2609         if (!stable_node)
2610                 return;
2611 again:
2612         hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
2613                 struct anon_vma *anon_vma = rmap_item->anon_vma;
2614                 struct anon_vma_chain *vmac;
2615                 struct vm_area_struct *vma;
2616
2617                 cond_resched();
2618                 anon_vma_lock_read(anon_vma);
2619                 anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root,
2620                                                0, ULONG_MAX) {
2621                         unsigned long addr;
2622
2623                         cond_resched();
2624                         vma = vmac->vma;
2625
2626                         /* Ignore the stable/unstable/sqnr flags */
2627                         addr = rmap_item->address & PAGE_MASK;
2628
2629                         if (addr < vma->vm_start || addr >= vma->vm_end)
2630                                 continue;
2631                         /*
2632                          * Initially we examine only the vma which covers this
2633                          * rmap_item; but later, if there is still work to do,
2634                          * we examine covering vmas in other mms: in case they
2635                          * were forked from the original since ksmd passed.
2636                          */
2637                         if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
2638                                 continue;
2639
2640                         if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2641                                 continue;
2642
2643                         if (!rwc->rmap_one(folio, vma, addr, rwc->arg)) {
2644                                 anon_vma_unlock_read(anon_vma);
2645                                 return;
2646                         }
2647                         if (rwc->done && rwc->done(folio)) {
2648                                 anon_vma_unlock_read(anon_vma);
2649                                 return;
2650                         }
2651                 }
2652                 anon_vma_unlock_read(anon_vma);
2653         }
2654         if (!search_new_forks++)
2655                 goto again;
2656 }
2657
2658 #ifdef CONFIG_MIGRATION
2659 void folio_migrate_ksm(struct folio *newfolio, struct folio *folio)
2660 {
2661         struct stable_node *stable_node;
2662
2663         VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
2664         VM_BUG_ON_FOLIO(!folio_test_locked(newfolio), newfolio);
2665         VM_BUG_ON_FOLIO(newfolio->mapping != folio->mapping, newfolio);
2666
2667         stable_node = folio_stable_node(folio);
2668         if (stable_node) {
2669                 VM_BUG_ON_FOLIO(stable_node->kpfn != folio_pfn(folio), folio);
2670                 stable_node->kpfn = folio_pfn(newfolio);
2671                 /*
2672                  * newfolio->mapping was set in advance; now we need smp_wmb()
2673                  * to make sure that the new stable_node->kpfn is visible
2674                  * to get_ksm_page() before it can see that folio->mapping
2675                  * has gone stale (or that folio_test_swapcache has been cleared).
2676                  */
2677                 smp_wmb();
2678                 set_page_stable_node(&folio->page, NULL);
2679         }
2680 }
2681 #endif /* CONFIG_MIGRATION */
2682
2683 #ifdef CONFIG_MEMORY_HOTREMOVE
2684 static void wait_while_offlining(void)
2685 {
2686         while (ksm_run & KSM_RUN_OFFLINE) {
2687                 mutex_unlock(&ksm_thread_mutex);
2688                 wait_on_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE),
2689                             TASK_UNINTERRUPTIBLE);
2690                 mutex_lock(&ksm_thread_mutex);
2691         }
2692 }
2693
2694 static bool stable_node_dup_remove_range(struct stable_node *stable_node,
2695                                          unsigned long start_pfn,
2696                                          unsigned long end_pfn)
2697 {
2698         if (stable_node->kpfn >= start_pfn &&
2699             stable_node->kpfn < end_pfn) {
2700                 /*
2701                  * Don't get_ksm_page, page has already gone:
2702                  * which is why we keep kpfn instead of page*
2703                  */
2704                 remove_node_from_stable_tree(stable_node);
2705                 return true;
2706         }
2707         return false;
2708 }
2709
2710 static bool stable_node_chain_remove_range(struct stable_node *stable_node,
2711                                            unsigned long start_pfn,
2712                                            unsigned long end_pfn,
2713                                            struct rb_root *root)
2714 {
2715         struct stable_node *dup;
2716         struct hlist_node *hlist_safe;
2717
2718         if (!is_stable_node_chain(stable_node)) {
2719                 VM_BUG_ON(is_stable_node_dup(stable_node));
2720                 return stable_node_dup_remove_range(stable_node, start_pfn,
2721                                                     end_pfn);
2722         }
2723
2724         hlist_for_each_entry_safe(dup, hlist_safe,
2725                                   &stable_node->hlist, hlist_dup) {
2726                 VM_BUG_ON(!is_stable_node_dup(dup));
2727                 stable_node_dup_remove_range(dup, start_pfn, end_pfn);
2728         }
2729         if (hlist_empty(&stable_node->hlist)) {
2730                 free_stable_node_chain(stable_node, root);
2731                 return true; /* notify caller that tree was rebalanced */
2732         } else
2733                 return false;
2734 }
2735
2736 static void ksm_check_stable_tree(unsigned long start_pfn,
2737                                   unsigned long end_pfn)
2738 {
2739         struct stable_node *stable_node, *next;
2740         struct rb_node *node;
2741         int nid;
2742
2743         for (nid = 0; nid < ksm_nr_node_ids; nid++) {
2744                 node = rb_first(root_stable_tree + nid);
2745                 while (node) {
2746                         stable_node = rb_entry(node, struct stable_node, node);
2747                         if (stable_node_chain_remove_range(stable_node,
2748                                                            start_pfn, end_pfn,
2749                                                            root_stable_tree +
2750                                                            nid))
2751                                 node = rb_first(root_stable_tree + nid);
2752                         else
2753                                 node = rb_next(node);
2754                         cond_resched();
2755                 }
2756         }
2757         list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
2758                 if (stable_node->kpfn >= start_pfn &&
2759                     stable_node->kpfn < end_pfn)
2760                         remove_node_from_stable_tree(stable_node);
2761                 cond_resched();
2762         }
2763 }
2764
2765 static int ksm_memory_callback(struct notifier_block *self,
2766                                unsigned long action, void *arg)
2767 {
2768         struct memory_notify *mn = arg;
2769
2770         switch (action) {
2771         case MEM_GOING_OFFLINE:
2772                 /*
2773                  * Prevent ksm_do_scan(), unmerge_and_remove_all_rmap_items()
2774                  * and remove_all_stable_nodes() while memory is going offline:
2775                  * it is unsafe for them to touch the stable tree at this time.
2776                  * But unmerge_ksm_pages(), rmap lookups and other entry points
2777                  * which do not need the ksm_thread_mutex are all safe.
2778                  */
2779                 mutex_lock(&ksm_thread_mutex);
2780                 ksm_run |= KSM_RUN_OFFLINE;
2781                 mutex_unlock(&ksm_thread_mutex);
2782                 break;
2783
2784         case MEM_OFFLINE:
2785                 /*
2786                  * Most of the work is done by page migration; but there might
2787                  * be a few stable_nodes left over, still pointing to struct
2788                  * pages which have been offlined: prune those from the tree,
2789                  * otherwise get_ksm_page() might later try to access a
2790                  * non-existent struct page.
2791                  */
2792                 ksm_check_stable_tree(mn->start_pfn,
2793                                       mn->start_pfn + mn->nr_pages);
2794                 fallthrough;
2795         case MEM_CANCEL_OFFLINE:
2796                 mutex_lock(&ksm_thread_mutex);
2797                 ksm_run &= ~KSM_RUN_OFFLINE;
2798                 mutex_unlock(&ksm_thread_mutex);
2799
2800                 smp_mb();       /* wake_up_bit advises this */
2801                 wake_up_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE));
2802                 break;
2803         }
2804         return NOTIFY_OK;
2805 }
2806 #else
2807 static void wait_while_offlining(void)
2808 {
2809 }
2810 #endif /* CONFIG_MEMORY_HOTREMOVE */
2811
2812 #ifdef CONFIG_SYSFS
2813 /*
2814  * This all compiles without CONFIG_SYSFS, but is a waste of space.
2815  */
2816
2817 #define KSM_ATTR_RO(_name) \
2818         static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2819 #define KSM_ATTR(_name) \
2820         static struct kobj_attribute _name##_attr = __ATTR_RW(_name)
2821
2822 static ssize_t sleep_millisecs_show(struct kobject *kobj,
2823                                     struct kobj_attribute *attr, char *buf)
2824 {
2825         return sysfs_emit(buf, "%u\n", ksm_thread_sleep_millisecs);
2826 }
2827
2828 static ssize_t sleep_millisecs_store(struct kobject *kobj,
2829                                      struct kobj_attribute *attr,
2830                                      const char *buf, size_t count)
2831 {
2832         unsigned int msecs;
2833         int err;
2834
2835         err = kstrtouint(buf, 10, &msecs);
2836         if (err)
2837                 return -EINVAL;
2838
2839         ksm_thread_sleep_millisecs = msecs;
2840         wake_up_interruptible(&ksm_iter_wait);
2841
2842         return count;
2843 }
2844 KSM_ATTR(sleep_millisecs);
2845
2846 static ssize_t pages_to_scan_show(struct kobject *kobj,
2847                                   struct kobj_attribute *attr, char *buf)
2848 {
2849         return sysfs_emit(buf, "%u\n", ksm_thread_pages_to_scan);
2850 }
2851
2852 static ssize_t pages_to_scan_store(struct kobject *kobj,
2853                                    struct kobj_attribute *attr,
2854                                    const char *buf, size_t count)
2855 {
2856         unsigned int nr_pages;
2857         int err;
2858
2859         err = kstrtouint(buf, 10, &nr_pages);
2860         if (err)
2861                 return -EINVAL;
2862
2863         ksm_thread_pages_to_scan = nr_pages;
2864
2865         return count;
2866 }
2867 KSM_ATTR(pages_to_scan);
2868
2869 static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr,
2870                         char *buf)
2871 {
2872         return sysfs_emit(buf, "%lu\n", ksm_run);
2873 }
2874
2875 static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr,
2876                          const char *buf, size_t count)
2877 {
2878         unsigned int flags;
2879         int err;
2880
2881         err = kstrtouint(buf, 10, &flags);
2882         if (err)
2883                 return -EINVAL;
2884         if (flags > KSM_RUN_UNMERGE)
2885                 return -EINVAL;
2886
2887         /*
2888          * KSM_RUN_MERGE sets ksmd running, and 0 stops it running.
2889          * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items,
2890          * breaking COW to free the pages_shared (but leaves mm_slots
2891          * on the list for when ksmd may be set running again).
2892          */
2893
2894         mutex_lock(&ksm_thread_mutex);
2895         wait_while_offlining();
2896         if (ksm_run != flags) {
2897                 ksm_run = flags;
2898                 if (flags & KSM_RUN_UNMERGE) {
2899                         set_current_oom_origin();
2900                         err = unmerge_and_remove_all_rmap_items();
2901                         clear_current_oom_origin();
2902                         if (err) {
2903                                 ksm_run = KSM_RUN_STOP;
2904                                 count = err;
2905                         }
2906                 }
2907         }
2908         mutex_unlock(&ksm_thread_mutex);
2909
2910         if (flags & KSM_RUN_MERGE)
2911                 wake_up_interruptible(&ksm_thread_wait);
2912
2913         return count;
2914 }
2915 KSM_ATTR(run);
2916
2917 #ifdef CONFIG_NUMA
2918 static ssize_t merge_across_nodes_show(struct kobject *kobj,
2919                                        struct kobj_attribute *attr, char *buf)
2920 {
2921         return sysfs_emit(buf, "%u\n", ksm_merge_across_nodes);
2922 }
2923
2924 static ssize_t merge_across_nodes_store(struct kobject *kobj,
2925                                    struct kobj_attribute *attr,
2926                                    const char *buf, size_t count)
2927 {
2928         int err;
2929         unsigned long knob;
2930
2931         err = kstrtoul(buf, 10, &knob);
2932         if (err)
2933                 return err;
2934         if (knob > 1)
2935                 return -EINVAL;
2936
2937         mutex_lock(&ksm_thread_mutex);
2938         wait_while_offlining();
2939         if (ksm_merge_across_nodes != knob) {
2940                 if (ksm_pages_shared || remove_all_stable_nodes())
2941                         err = -EBUSY;
2942                 else if (root_stable_tree == one_stable_tree) {
2943                         struct rb_root *buf;
2944                         /*
2945                          * This is the first time that we switch away from the
2946                          * default of merging across nodes: must now allocate
2947                          * a buffer to hold as many roots as may be needed.
2948                          * Allocate stable and unstable together:
2949                          * MAXSMP NODES_SHIFT 10 will use 16kB.
2950                          */
2951                         buf = kcalloc(nr_node_ids + nr_node_ids, sizeof(*buf),
2952                                       GFP_KERNEL);
2953                         /* Let us assume that RB_ROOT is NULL is zero */
2954                         if (!buf)
2955                                 err = -ENOMEM;
2956                         else {
2957                                 root_stable_tree = buf;
2958                                 root_unstable_tree = buf + nr_node_ids;
2959                                 /* Stable tree is empty but not the unstable */
2960                                 root_unstable_tree[0] = one_unstable_tree[0];
2961                         }
2962                 }
2963                 if (!err) {
2964                         ksm_merge_across_nodes = knob;
2965                         ksm_nr_node_ids = knob ? 1 : nr_node_ids;
2966                 }
2967         }
2968         mutex_unlock(&ksm_thread_mutex);
2969
2970         return err ? err : count;
2971 }
2972 KSM_ATTR(merge_across_nodes);
2973 #endif
2974
2975 static ssize_t use_zero_pages_show(struct kobject *kobj,
2976                                    struct kobj_attribute *attr, char *buf)
2977 {
2978         return sysfs_emit(buf, "%u\n", ksm_use_zero_pages);
2979 }
2980 static ssize_t use_zero_pages_store(struct kobject *kobj,
2981                                    struct kobj_attribute *attr,
2982                                    const char *buf, size_t count)
2983 {
2984         int err;
2985         bool value;
2986
2987         err = kstrtobool(buf, &value);
2988         if (err)
2989                 return -EINVAL;
2990
2991         ksm_use_zero_pages = value;
2992
2993         return count;
2994 }
2995 KSM_ATTR(use_zero_pages);
2996
2997 static ssize_t max_page_sharing_show(struct kobject *kobj,
2998                                      struct kobj_attribute *attr, char *buf)
2999 {
3000         return sysfs_emit(buf, "%u\n", ksm_max_page_sharing);
3001 }
3002
3003 static ssize_t max_page_sharing_store(struct kobject *kobj,
3004                                       struct kobj_attribute *attr,
3005                                       const char *buf, size_t count)
3006 {
3007         int err;
3008         int knob;
3009
3010         err = kstrtoint(buf, 10, &knob);
3011         if (err)
3012                 return err;
3013         /*
3014          * When a KSM page is created it is shared by 2 mappings. This
3015          * being a signed comparison, it implicitly verifies it's not
3016          * negative.
3017          */
3018         if (knob < 2)
3019                 return -EINVAL;
3020
3021         if (READ_ONCE(ksm_max_page_sharing) == knob)
3022                 return count;
3023
3024         mutex_lock(&ksm_thread_mutex);
3025         wait_while_offlining();
3026         if (ksm_max_page_sharing != knob) {
3027                 if (ksm_pages_shared || remove_all_stable_nodes())
3028                         err = -EBUSY;
3029                 else
3030                         ksm_max_page_sharing = knob;
3031         }
3032         mutex_unlock(&ksm_thread_mutex);
3033
3034         return err ? err : count;
3035 }
3036 KSM_ATTR(max_page_sharing);
3037
3038 static ssize_t pages_shared_show(struct kobject *kobj,
3039                                  struct kobj_attribute *attr, char *buf)
3040 {
3041         return sysfs_emit(buf, "%lu\n", ksm_pages_shared);
3042 }
3043 KSM_ATTR_RO(pages_shared);
3044
3045 static ssize_t pages_sharing_show(struct kobject *kobj,
3046                                   struct kobj_attribute *attr, char *buf)
3047 {
3048         return sysfs_emit(buf, "%lu\n", ksm_pages_sharing);
3049 }
3050 KSM_ATTR_RO(pages_sharing);
3051
3052 static ssize_t pages_unshared_show(struct kobject *kobj,
3053                                    struct kobj_attribute *attr, char *buf)
3054 {
3055         return sysfs_emit(buf, "%lu\n", ksm_pages_unshared);
3056 }
3057 KSM_ATTR_RO(pages_unshared);
3058
3059 static ssize_t pages_volatile_show(struct kobject *kobj,
3060                                    struct kobj_attribute *attr, char *buf)
3061 {
3062         long ksm_pages_volatile;
3063
3064         ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared
3065                                 - ksm_pages_sharing - ksm_pages_unshared;
3066         /*
3067          * It was not worth any locking to calculate that statistic,
3068          * but it might therefore sometimes be negative: conceal that.
3069          */
3070         if (ksm_pages_volatile < 0)
3071                 ksm_pages_volatile = 0;
3072         return sysfs_emit(buf, "%ld\n", ksm_pages_volatile);
3073 }
3074 KSM_ATTR_RO(pages_volatile);
3075
3076 static ssize_t stable_node_dups_show(struct kobject *kobj,
3077                                      struct kobj_attribute *attr, char *buf)
3078 {
3079         return sysfs_emit(buf, "%lu\n", ksm_stable_node_dups);
3080 }
3081 KSM_ATTR_RO(stable_node_dups);
3082
3083 static ssize_t stable_node_chains_show(struct kobject *kobj,
3084                                        struct kobj_attribute *attr, char *buf)
3085 {
3086         return sysfs_emit(buf, "%lu\n", ksm_stable_node_chains);
3087 }
3088 KSM_ATTR_RO(stable_node_chains);
3089
3090 static ssize_t
3091 stable_node_chains_prune_millisecs_show(struct kobject *kobj,
3092                                         struct kobj_attribute *attr,
3093                                         char *buf)
3094 {
3095         return sysfs_emit(buf, "%u\n", ksm_stable_node_chains_prune_millisecs);
3096 }
3097
3098 static ssize_t
3099 stable_node_chains_prune_millisecs_store(struct kobject *kobj,
3100                                          struct kobj_attribute *attr,
3101                                          const char *buf, size_t count)
3102 {
3103         unsigned int msecs;
3104         int err;
3105
3106         err = kstrtouint(buf, 10, &msecs);
3107         if (err)
3108                 return -EINVAL;
3109
3110         ksm_stable_node_chains_prune_millisecs = msecs;
3111
3112         return count;
3113 }
3114 KSM_ATTR(stable_node_chains_prune_millisecs);
3115
3116 static ssize_t full_scans_show(struct kobject *kobj,
3117                                struct kobj_attribute *attr, char *buf)
3118 {
3119         return sysfs_emit(buf, "%lu\n", ksm_scan.seqnr);
3120 }
3121 KSM_ATTR_RO(full_scans);
3122
3123 static struct attribute *ksm_attrs[] = {
3124         &sleep_millisecs_attr.attr,
3125         &pages_to_scan_attr.attr,
3126         &run_attr.attr,
3127         &pages_shared_attr.attr,
3128         &pages_sharing_attr.attr,
3129         &pages_unshared_attr.attr,
3130         &pages_volatile_attr.attr,
3131         &full_scans_attr.attr,
3132 #ifdef CONFIG_NUMA
3133         &merge_across_nodes_attr.attr,
3134 #endif
3135         &max_page_sharing_attr.attr,
3136         &stable_node_chains_attr.attr,
3137         &stable_node_dups_attr.attr,
3138         &stable_node_chains_prune_millisecs_attr.attr,
3139         &use_zero_pages_attr.attr,
3140         NULL,
3141 };
3142
3143 static const struct attribute_group ksm_attr_group = {
3144         .attrs = ksm_attrs,
3145         .name = "ksm",
3146 };
3147 #endif /* CONFIG_SYSFS */
3148
3149 static int __init ksm_init(void)
3150 {
3151         struct task_struct *ksm_thread;
3152         int err;
3153
3154         /* The correct value depends on page size and endianness */
3155         zero_checksum = calc_checksum(ZERO_PAGE(0));
3156         /* Default to false for backwards compatibility */
3157         ksm_use_zero_pages = false;
3158
3159         err = ksm_slab_init();
3160         if (err)
3161                 goto out;
3162
3163         ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd");
3164         if (IS_ERR(ksm_thread)) {
3165                 pr_err("ksm: creating kthread failed\n");
3166                 err = PTR_ERR(ksm_thread);
3167                 goto out_free;
3168         }
3169
3170 #ifdef CONFIG_SYSFS
3171         err = sysfs_create_group(mm_kobj, &ksm_attr_group);
3172         if (err) {
3173                 pr_err("ksm: register sysfs failed\n");
3174                 kthread_stop(ksm_thread);
3175                 goto out_free;
3176         }
3177 #else
3178         ksm_run = KSM_RUN_MERGE;        /* no way for user to start it */
3179
3180 #endif /* CONFIG_SYSFS */
3181
3182 #ifdef CONFIG_MEMORY_HOTREMOVE
3183         /* There is no significance to this priority 100 */
3184         hotplug_memory_notifier(ksm_memory_callback, 100);
3185 #endif
3186         return 0;
3187
3188 out_free:
3189         ksm_slab_free();
3190 out:
3191         return err;
3192 }
3193 subsys_initcall(ksm_init);