OSDN Git Service

Merge "audio: ion: switch to msm ion on gvm."
[sagit-ice-cold/kernel_xiaomi_msm8998.git] / mm / ksm.c
1 /*
2  * Memory merging support.
3  *
4  * This code enables dynamic sharing of identical pages found in different
5  * memory areas, even if they are not shared by fork()
6  *
7  * Copyright (C) 2008-2009 Red Hat, Inc.
8  * Authors:
9  *      Izik Eidus
10  *      Andrea Arcangeli
11  *      Chris Wright
12  *      Hugh Dickins
13  *
14  * This work is licensed under the terms of the GNU GPL, version 2.
15  */
16
17 #include <linux/errno.h>
18 #include <linux/mm.h>
19 #include <linux/fs.h>
20 #include <linux/mman.h>
21 #include <linux/sched.h>
22 #include <linux/rwsem.h>
23 #include <linux/pagemap.h>
24 #include <linux/rmap.h>
25 #include <linux/spinlock.h>
26 #include <linux/jhash.h>
27 #include <linux/delay.h>
28 #include <linux/kthread.h>
29 #include <linux/wait.h>
30 #include <linux/slab.h>
31 #include <linux/rbtree.h>
32 #include <linux/memory.h>
33 #include <linux/mmu_notifier.h>
34 #include <linux/swap.h>
35 #include <linux/ksm.h>
36 #include <linux/hashtable.h>
37 #include <linux/freezer.h>
38 #include <linux/oom.h>
39 #include <linux/numa.h>
40 #include <linux/show_mem_notifier.h>
41
42 #include <asm/tlbflush.h>
43 #include "internal.h"
44
45 #ifdef CONFIG_NUMA
46 #define NUMA(x)         (x)
47 #define DO_NUMA(x)      do { (x); } while (0)
48 #else
49 #define NUMA(x)         (0)
50 #define DO_NUMA(x)      do { } while (0)
51 #endif
52
53 /*
54  * A few notes about the KSM scanning process,
55  * to make it easier to understand the data structures below:
56  *
57  * In order to reduce excessive scanning, KSM sorts the memory pages by their
58  * contents into a data structure that holds pointers to the pages' locations.
59  *
60  * Since the contents of the pages may change at any moment, KSM cannot just
61  * insert the pages into a normal sorted tree and expect it to find anything.
62  * Therefore KSM uses two data structures - the stable and the unstable tree.
63  *
64  * The stable tree holds pointers to all the merged pages (ksm pages), sorted
65  * by their contents.  Because each such page is write-protected, searching on
66  * this tree is fully assured to be working (except when pages are unmapped),
67  * and therefore this tree is called the stable tree.
68  *
69  * In addition to the stable tree, KSM uses a second data structure called the
70  * unstable tree: this tree holds pointers to pages which have been found to
71  * be "unchanged for a period of time".  The unstable tree sorts these pages
72  * by their contents, but since they are not write-protected, KSM cannot rely
73  * upon the unstable tree to work correctly - the unstable tree is liable to
74  * be corrupted as its contents are modified, and so it is called unstable.
75  *
76  * KSM solves this problem by several techniques:
77  *
78  * 1) The unstable tree is flushed every time KSM completes scanning all
79  *    memory areas, and then the tree is rebuilt again from the beginning.
80  * 2) KSM will only insert into the unstable tree, pages whose hash value
81  *    has not changed since the previous scan of all memory areas.
82  * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the
83  *    colors of the nodes and not on their contents, assuring that even when
84  *    the tree gets "corrupted" it won't get out of balance, so scanning time
85  *    remains the same (also, searching and inserting nodes in an rbtree uses
86  *    the same algorithm, so we have no overhead when we flush and rebuild).
87  * 4) KSM never flushes the stable tree, which means that even if it were to
88  *    take 10 attempts to find a page in the unstable tree, once it is found,
89  *    it is secured in the stable tree.  (When we scan a new page, we first
90  *    compare it against the stable tree, and then against the unstable tree.)
91  *
92  * If the merge_across_nodes tunable is unset, then KSM maintains multiple
93  * stable trees and multiple unstable trees: one of each for each NUMA node.
94  */
95
96 /**
97  * struct mm_slot - ksm information per mm that is being scanned
98  * @link: link to the mm_slots hash list
99  * @mm_list: link into the mm_slots list, rooted in ksm_mm_head
100  * @rmap_list: head for this mm_slot's singly-linked list of rmap_items
101  * @mm: the mm that this information is valid for
102  */
103 struct mm_slot {
104         struct hlist_node link;
105         struct list_head mm_list;
106         struct rmap_item *rmap_list;
107         struct mm_struct *mm;
108 };
109
110 /**
111  * struct ksm_scan - cursor for scanning
112  * @mm_slot: the current mm_slot we are scanning
113  * @address: the next address inside that to be scanned
114  * @rmap_list: link to the next rmap to be scanned in the rmap_list
115  * @seqnr: count of completed full scans (needed when removing unstable node)
116  *
117  * There is only the one ksm_scan instance of this cursor structure.
118  */
119 struct ksm_scan {
120         struct mm_slot *mm_slot;
121         unsigned long address;
122         struct rmap_item **rmap_list;
123         unsigned long seqnr;
124 };
125
126 /**
127  * struct stable_node - node of the stable rbtree
128  * @node: rb node of this ksm page in the stable tree
129  * @head: (overlaying parent) &migrate_nodes indicates temporarily on that list
130  * @list: linked into migrate_nodes, pending placement in the proper node tree
131  * @hlist: hlist head of rmap_items using this ksm page
132  * @kpfn: page frame number of this ksm page (perhaps temporarily on wrong nid)
133  * @nid: NUMA node id of stable tree in which linked (may not match kpfn)
134  */
135 struct stable_node {
136         union {
137                 struct rb_node node;    /* when node of stable tree */
138                 struct {                /* when listed for migration */
139                         struct list_head *head;
140                         struct list_head list;
141                 };
142         };
143         struct hlist_head hlist;
144         unsigned long kpfn;
145 #ifdef CONFIG_NUMA
146         int nid;
147 #endif
148 };
149
150 /**
151  * struct rmap_item - reverse mapping item for virtual addresses
152  * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list
153  * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree
154  * @nid: NUMA node id of unstable tree in which linked (may not match page)
155  * @mm: the memory structure this rmap_item is pointing into
156  * @address: the virtual address this rmap_item tracks (+ flags in low bits)
157  * @oldchecksum: previous checksum of the page at that virtual address
158  * @node: rb node of this rmap_item in the unstable tree
159  * @head: pointer to stable_node heading this list in the stable tree
160  * @hlist: link into hlist of rmap_items hanging off that stable_node
161  */
162 struct rmap_item {
163         struct rmap_item *rmap_list;
164         union {
165                 struct anon_vma *anon_vma;      /* when stable */
166 #ifdef CONFIG_NUMA
167                 int nid;                /* when node of unstable tree */
168 #endif
169         };
170         struct mm_struct *mm;
171         unsigned long address;          /* + low bits used for flags below */
172         unsigned int oldchecksum;       /* when unstable */
173         union {
174                 struct rb_node node;    /* when node of unstable tree */
175                 struct {                /* when listed from stable tree */
176                         struct stable_node *head;
177                         struct hlist_node hlist;
178                 };
179         };
180 };
181
182 #define SEQNR_MASK      0x0ff   /* low bits of unstable tree seqnr */
183 #define UNSTABLE_FLAG   0x100   /* is a node of the unstable tree */
184 #define STABLE_FLAG     0x200   /* is listed from the stable tree */
185
186 /* The stable and unstable tree heads */
187 static struct rb_root one_stable_tree[1] = { RB_ROOT };
188 static struct rb_root one_unstable_tree[1] = { RB_ROOT };
189 static struct rb_root *root_stable_tree = one_stable_tree;
190 static struct rb_root *root_unstable_tree = one_unstable_tree;
191
192 /* Recently migrated nodes of stable tree, pending proper placement */
193 static LIST_HEAD(migrate_nodes);
194
195 #define MM_SLOTS_HASH_BITS 10
196 static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
197
198 static struct mm_slot ksm_mm_head = {
199         .mm_list = LIST_HEAD_INIT(ksm_mm_head.mm_list),
200 };
201 static struct ksm_scan ksm_scan = {
202         .mm_slot = &ksm_mm_head,
203 };
204
205 static struct kmem_cache *rmap_item_cache;
206 static struct kmem_cache *stable_node_cache;
207 static struct kmem_cache *mm_slot_cache;
208
209 /* The number of nodes in the stable tree */
210 static unsigned long ksm_pages_shared;
211
212 /* The number of page slots additionally sharing those nodes */
213 static unsigned long ksm_pages_sharing;
214
215 /* The number of nodes in the unstable tree */
216 static unsigned long ksm_pages_unshared;
217
218 /* The number of rmap_items in use: to calculate pages_volatile */
219 static unsigned long ksm_rmap_items;
220
221 /* Number of pages ksmd should scan in one batch */
222 static unsigned int ksm_thread_pages_to_scan = 100;
223
224 /* Milliseconds ksmd should sleep between batches */
225 static unsigned int ksm_thread_sleep_millisecs = 20;
226
227 /* Boolean to indicate whether to use deferred timer or not */
228 static bool use_deferred_timer;
229
230 #ifdef CONFIG_NUMA
231 /* Zeroed when merging across nodes is not allowed */
232 static unsigned int ksm_merge_across_nodes = 1;
233 static int ksm_nr_node_ids = 1;
234 #else
235 #define ksm_merge_across_nodes  1U
236 #define ksm_nr_node_ids         1
237 #endif
238
239 #define KSM_RUN_STOP    0
240 #define KSM_RUN_MERGE   1
241 #define KSM_RUN_UNMERGE 2
242 #define KSM_RUN_OFFLINE 4
243 static unsigned long ksm_run = KSM_RUN_MERGE;
244 static void wait_while_offlining(void);
245
246 static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait);
247 static DEFINE_MUTEX(ksm_thread_mutex);
248 static DEFINE_SPINLOCK(ksm_mmlist_lock);
249
250 #define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create("ksm_"#__struct,\
251                 sizeof(struct __struct), __alignof__(struct __struct),\
252                 (__flags), NULL)
253
254 static int ksm_show_mem_notifier(struct notifier_block *nb,
255                                 unsigned long action,
256                                 void *data)
257 {
258         pr_info("ksm_pages_sharing: %lu\n", ksm_pages_sharing);
259         pr_info("ksm_pages_shared: %lu\n", ksm_pages_shared);
260
261         return 0;
262 }
263
264 static struct notifier_block ksm_show_mem_notifier_block = {
265         .notifier_call = ksm_show_mem_notifier,
266 };
267
268 static int __init ksm_slab_init(void)
269 {
270         rmap_item_cache = KSM_KMEM_CACHE(rmap_item, 0);
271         if (!rmap_item_cache)
272                 goto out;
273
274         stable_node_cache = KSM_KMEM_CACHE(stable_node, 0);
275         if (!stable_node_cache)
276                 goto out_free1;
277
278         mm_slot_cache = KSM_KMEM_CACHE(mm_slot, 0);
279         if (!mm_slot_cache)
280                 goto out_free2;
281
282         return 0;
283
284 out_free2:
285         kmem_cache_destroy(stable_node_cache);
286 out_free1:
287         kmem_cache_destroy(rmap_item_cache);
288 out:
289         return -ENOMEM;
290 }
291
292 static void __init ksm_slab_free(void)
293 {
294         kmem_cache_destroy(mm_slot_cache);
295         kmem_cache_destroy(stable_node_cache);
296         kmem_cache_destroy(rmap_item_cache);
297         mm_slot_cache = NULL;
298 }
299
300 static inline struct rmap_item *alloc_rmap_item(void)
301 {
302         struct rmap_item *rmap_item;
303
304         rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL |
305                                                 __GFP_NORETRY | __GFP_NOWARN);
306         if (rmap_item)
307                 ksm_rmap_items++;
308         return rmap_item;
309 }
310
311 static inline void free_rmap_item(struct rmap_item *rmap_item)
312 {
313         ksm_rmap_items--;
314         rmap_item->mm = NULL;   /* debug safety */
315         kmem_cache_free(rmap_item_cache, rmap_item);
316 }
317
318 static inline struct stable_node *alloc_stable_node(void)
319 {
320         return kmem_cache_alloc(stable_node_cache, GFP_KERNEL);
321 }
322
323 static inline void free_stable_node(struct stable_node *stable_node)
324 {
325         kmem_cache_free(stable_node_cache, stable_node);
326 }
327
328 static inline struct mm_slot *alloc_mm_slot(void)
329 {
330         if (!mm_slot_cache)     /* initialization failed */
331                 return NULL;
332         return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
333 }
334
335 static inline void free_mm_slot(struct mm_slot *mm_slot)
336 {
337         kmem_cache_free(mm_slot_cache, mm_slot);
338 }
339
340 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
341 {
342         struct mm_slot *slot;
343
344         hash_for_each_possible(mm_slots_hash, slot, link, (unsigned long)mm)
345                 if (slot->mm == mm)
346                         return slot;
347
348         return NULL;
349 }
350
351 static void insert_to_mm_slots_hash(struct mm_struct *mm,
352                                     struct mm_slot *mm_slot)
353 {
354         mm_slot->mm = mm;
355         hash_add(mm_slots_hash, &mm_slot->link, (unsigned long)mm);
356 }
357
358 /*
359  * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's
360  * page tables after it has passed through ksm_exit() - which, if necessary,
361  * takes mmap_sem briefly to serialize against them.  ksm_exit() does not set
362  * a special flag: they can just back out as soon as mm_users goes to zero.
363  * ksm_test_exit() is used throughout to make this test for exit: in some
364  * places for correctness, in some places just to avoid unnecessary work.
365  */
366 static inline bool ksm_test_exit(struct mm_struct *mm)
367 {
368         return atomic_read(&mm->mm_users) == 0;
369 }
370
371 /*
372  * We use break_ksm to break COW on a ksm page: it's a stripped down
373  *
374  *      if (get_user_pages(current, mm, addr, 1, 1, 1, &page, NULL) == 1)
375  *              put_page(page);
376  *
377  * but taking great care only to touch a ksm page, in a VM_MERGEABLE vma,
378  * in case the application has unmapped and remapped mm,addr meanwhile.
379  * Could a ksm page appear anywhere else?  Actually yes, in a VM_PFNMAP
380  * mmap of /dev/mem or /dev/kmem, where we would not want to touch it.
381  */
382 static int break_ksm(struct vm_area_struct *vma, unsigned long addr)
383 {
384         struct page *page;
385         int ret = 0;
386
387         do {
388                 cond_resched();
389                 page = follow_page(vma, addr, FOLL_GET | FOLL_MIGRATION);
390                 if (IS_ERR_OR_NULL(page))
391                         break;
392                 if (PageKsm(page))
393                         ret = handle_mm_fault(vma->vm_mm, vma, addr,
394                                                         FAULT_FLAG_WRITE);
395                 else
396                         ret = VM_FAULT_WRITE;
397                 put_page(page);
398         } while (!(ret & (VM_FAULT_WRITE | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | VM_FAULT_OOM)));
399         /*
400          * We must loop because handle_mm_fault() may back out if there's
401          * any difficulty e.g. if pte accessed bit gets updated concurrently.
402          *
403          * VM_FAULT_WRITE is what we have been hoping for: it indicates that
404          * COW has been broken, even if the vma does not permit VM_WRITE;
405          * but note that a concurrent fault might break PageKsm for us.
406          *
407          * VM_FAULT_SIGBUS could occur if we race with truncation of the
408          * backing file, which also invalidates anonymous pages: that's
409          * okay, that truncation will have unmapped the PageKsm for us.
410          *
411          * VM_FAULT_OOM: at the time of writing (late July 2009), setting
412          * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the
413          * current task has TIF_MEMDIE set, and will be OOM killed on return
414          * to user; and ksmd, having no mm, would never be chosen for that.
415          *
416          * But if the mm is in a limited mem_cgroup, then the fault may fail
417          * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and
418          * even ksmd can fail in this way - though it's usually breaking ksm
419          * just to undo a merge it made a moment before, so unlikely to oom.
420          *
421          * That's a pity: we might therefore have more kernel pages allocated
422          * than we're counting as nodes in the stable tree; but ksm_do_scan
423          * will retry to break_cow on each pass, so should recover the page
424          * in due course.  The important thing is to not let VM_MERGEABLE
425          * be cleared while any such pages might remain in the area.
426          */
427         return (ret & VM_FAULT_OOM) ? -ENOMEM : 0;
428 }
429
430 static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm,
431                 unsigned long addr)
432 {
433         struct vm_area_struct *vma;
434         if (ksm_test_exit(mm))
435                 return NULL;
436         vma = find_vma(mm, addr);
437         if (!vma || vma->vm_start > addr)
438                 return NULL;
439         if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
440                 return NULL;
441         return vma;
442 }
443
444 static void break_cow(struct rmap_item *rmap_item)
445 {
446         struct mm_struct *mm = rmap_item->mm;
447         unsigned long addr = rmap_item->address;
448         struct vm_area_struct *vma;
449
450         /*
451          * It is not an accident that whenever we want to break COW
452          * to undo, we also need to drop a reference to the anon_vma.
453          */
454         put_anon_vma(rmap_item->anon_vma);
455
456         down_read(&mm->mmap_sem);
457         vma = find_mergeable_vma(mm, addr);
458         if (vma)
459                 break_ksm(vma, addr);
460         up_read(&mm->mmap_sem);
461 }
462
463 static struct page *page_trans_compound_anon(struct page *page)
464 {
465         if (PageTransCompound(page)) {
466                 struct page *head = compound_head(page);
467                 /*
468                  * head may actually be splitted and freed from under
469                  * us but it's ok here.
470                  */
471                 if (PageAnon(head))
472                         return head;
473         }
474         return NULL;
475 }
476
477 static struct page *get_mergeable_page(struct rmap_item *rmap_item)
478 {
479         struct mm_struct *mm = rmap_item->mm;
480         unsigned long addr = rmap_item->address;
481         struct vm_area_struct *vma;
482         struct page *page;
483
484         down_read(&mm->mmap_sem);
485         vma = find_mergeable_vma(mm, addr);
486         if (!vma)
487                 goto out;
488
489         page = follow_page(vma, addr, FOLL_GET);
490         if (IS_ERR_OR_NULL(page))
491                 goto out;
492         if (PageAnon(page) || page_trans_compound_anon(page)) {
493                 flush_anon_page(vma, page, addr);
494                 flush_dcache_page(page);
495         } else {
496                 put_page(page);
497 out:
498                 page = NULL;
499         }
500         up_read(&mm->mmap_sem);
501         return page;
502 }
503
504 /*
505  * This helper is used for getting right index into array of tree roots.
506  * When merge_across_nodes knob is set to 1, there are only two rb-trees for
507  * stable and unstable pages from all nodes with roots in index 0. Otherwise,
508  * every node has its own stable and unstable tree.
509  */
510 static inline int get_kpfn_nid(unsigned long kpfn)
511 {
512         return ksm_merge_across_nodes ? 0 : NUMA(pfn_to_nid(kpfn));
513 }
514
515 static void remove_node_from_stable_tree(struct stable_node *stable_node)
516 {
517         struct rmap_item *rmap_item;
518
519         hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
520                 if (rmap_item->hlist.next)
521                         ksm_pages_sharing--;
522                 else
523                         ksm_pages_shared--;
524                 put_anon_vma(rmap_item->anon_vma);
525                 rmap_item->address &= PAGE_MASK;
526                 cond_resched();
527         }
528
529         if (stable_node->head == &migrate_nodes)
530                 list_del(&stable_node->list);
531         else
532                 rb_erase(&stable_node->node,
533                          root_stable_tree + NUMA(stable_node->nid));
534         free_stable_node(stable_node);
535 }
536
537 /*
538  * get_ksm_page: checks if the page indicated by the stable node
539  * is still its ksm page, despite having held no reference to it.
540  * In which case we can trust the content of the page, and it
541  * returns the gotten page; but if the page has now been zapped,
542  * remove the stale node from the stable tree and return NULL.
543  * But beware, the stable node's page might be being migrated.
544  *
545  * You would expect the stable_node to hold a reference to the ksm page.
546  * But if it increments the page's count, swapping out has to wait for
547  * ksmd to come around again before it can free the page, which may take
548  * seconds or even minutes: much too unresponsive.  So instead we use a
549  * "keyhole reference": access to the ksm page from the stable node peeps
550  * out through its keyhole to see if that page still holds the right key,
551  * pointing back to this stable node.  This relies on freeing a PageAnon
552  * page to reset its page->mapping to NULL, and relies on no other use of
553  * a page to put something that might look like our key in page->mapping.
554  * is on its way to being freed; but it is an anomaly to bear in mind.
555  */
556 static struct page *get_ksm_page(struct stable_node *stable_node, bool lock_it)
557 {
558         struct page *page;
559         void *expected_mapping;
560         unsigned long kpfn;
561
562         expected_mapping = (void *)((unsigned long)stable_node |
563                                         PAGE_MAPPING_KSM);
564 again:
565         kpfn = READ_ONCE(stable_node->kpfn);
566         page = pfn_to_page(kpfn);
567
568         /*
569          * page is computed from kpfn, so on most architectures reading
570          * page->mapping is naturally ordered after reading node->kpfn,
571          * but on Alpha we need to be more careful.
572          */
573         smp_read_barrier_depends();
574         if (READ_ONCE(page->mapping) != expected_mapping)
575                 goto stale;
576
577         /*
578          * We cannot do anything with the page while its refcount is 0.
579          * Usually 0 means free, or tail of a higher-order page: in which
580          * case this node is no longer referenced, and should be freed;
581          * however, it might mean that the page is under page_freeze_refs().
582          * The __remove_mapping() case is easy, again the node is now stale;
583          * but if page is swapcache in migrate_page_move_mapping(), it might
584          * still be our page, in which case it's essential to keep the node.
585          */
586         while (!get_page_unless_zero(page)) {
587                 /*
588                  * Another check for page->mapping != expected_mapping would
589                  * work here too.  We have chosen the !PageSwapCache test to
590                  * optimize the common case, when the page is or is about to
591                  * be freed: PageSwapCache is cleared (under spin_lock_irq)
592                  * in the freeze_refs section of __remove_mapping(); but Anon
593                  * page->mapping reset to NULL later, in free_pages_prepare().
594                  */
595                 if (!PageSwapCache(page))
596                         goto stale;
597                 cpu_relax();
598         }
599
600         if (READ_ONCE(page->mapping) != expected_mapping) {
601                 put_page(page);
602                 goto stale;
603         }
604
605         if (lock_it) {
606                 lock_page(page);
607                 if (READ_ONCE(page->mapping) != expected_mapping) {
608                         unlock_page(page);
609                         put_page(page);
610                         goto stale;
611                 }
612         }
613         return page;
614
615 stale:
616         /*
617          * We come here from above when page->mapping or !PageSwapCache
618          * suggests that the node is stale; but it might be under migration.
619          * We need smp_rmb(), matching the smp_wmb() in ksm_migrate_page(),
620          * before checking whether node->kpfn has been changed.
621          */
622         smp_rmb();
623         if (READ_ONCE(stable_node->kpfn) != kpfn)
624                 goto again;
625         remove_node_from_stable_tree(stable_node);
626         return NULL;
627 }
628
629 /*
630  * Removing rmap_item from stable or unstable tree.
631  * This function will clean the information from the stable/unstable tree.
632  */
633 static void remove_rmap_item_from_tree(struct rmap_item *rmap_item)
634 {
635         if (rmap_item->address & STABLE_FLAG) {
636                 struct stable_node *stable_node;
637                 struct page *page;
638
639                 stable_node = rmap_item->head;
640                 page = get_ksm_page(stable_node, true);
641                 if (!page)
642                         goto out;
643
644                 hlist_del(&rmap_item->hlist);
645                 unlock_page(page);
646                 put_page(page);
647
648                 if (!hlist_empty(&stable_node->hlist))
649                         ksm_pages_sharing--;
650                 else
651                         ksm_pages_shared--;
652
653                 put_anon_vma(rmap_item->anon_vma);
654                 rmap_item->address &= PAGE_MASK;
655
656         } else if (rmap_item->address & UNSTABLE_FLAG) {
657                 unsigned char age;
658                 /*
659                  * Usually ksmd can and must skip the rb_erase, because
660                  * root_unstable_tree was already reset to RB_ROOT.
661                  * But be careful when an mm is exiting: do the rb_erase
662                  * if this rmap_item was inserted by this scan, rather
663                  * than left over from before.
664                  */
665                 age = (unsigned char)(ksm_scan.seqnr - rmap_item->address);
666                 BUG_ON(age > 1);
667                 if (!age)
668                         rb_erase(&rmap_item->node,
669                                  root_unstable_tree + NUMA(rmap_item->nid));
670                 ksm_pages_unshared--;
671                 rmap_item->address &= PAGE_MASK;
672         }
673 out:
674         cond_resched();         /* we're called from many long loops */
675 }
676
677 static void remove_trailing_rmap_items(struct mm_slot *mm_slot,
678                                        struct rmap_item **rmap_list)
679 {
680         while (*rmap_list) {
681                 struct rmap_item *rmap_item = *rmap_list;
682                 *rmap_list = rmap_item->rmap_list;
683                 remove_rmap_item_from_tree(rmap_item);
684                 free_rmap_item(rmap_item);
685         }
686 }
687
688 /*
689  * Though it's very tempting to unmerge rmap_items from stable tree rather
690  * than check every pte of a given vma, the locking doesn't quite work for
691  * that - an rmap_item is assigned to the stable tree after inserting ksm
692  * page and upping mmap_sem.  Nor does it fit with the way we skip dup'ing
693  * rmap_items from parent to child at fork time (so as not to waste time
694  * if exit comes before the next scan reaches it).
695  *
696  * Similarly, although we'd like to remove rmap_items (so updating counts
697  * and freeing memory) when unmerging an area, it's easier to leave that
698  * to the next pass of ksmd - consider, for example, how ksmd might be
699  * in cmp_and_merge_page on one of the rmap_items we would be removing.
700  */
701 static int unmerge_ksm_pages(struct vm_area_struct *vma,
702                              unsigned long start, unsigned long end)
703 {
704         unsigned long addr;
705         int err = 0;
706
707         for (addr = start; addr < end && !err; addr += PAGE_SIZE) {
708                 if (ksm_test_exit(vma->vm_mm))
709                         break;
710                 if (signal_pending(current))
711                         err = -ERESTARTSYS;
712                 else
713                         err = break_ksm(vma, addr);
714         }
715         return err;
716 }
717
718 #ifdef CONFIG_SYSFS
719 /*
720  * Only called through the sysfs control interface:
721  */
722 static int remove_stable_node(struct stable_node *stable_node)
723 {
724         struct page *page;
725         int err;
726
727         page = get_ksm_page(stable_node, true);
728         if (!page) {
729                 /*
730                  * get_ksm_page did remove_node_from_stable_tree itself.
731                  */
732                 return 0;
733         }
734
735         if (WARN_ON_ONCE(page_mapped(page))) {
736                 /*
737                  * This should not happen: but if it does, just refuse to let
738                  * merge_across_nodes be switched - there is no need to panic.
739                  */
740                 err = -EBUSY;
741         } else {
742                 /*
743                  * The stable node did not yet appear stale to get_ksm_page(),
744                  * since that allows for an unmapped ksm page to be recognized
745                  * right up until it is freed; but the node is safe to remove.
746                  * This page might be in a pagevec waiting to be freed,
747                  * or it might be PageSwapCache (perhaps under writeback),
748                  * or it might have been removed from swapcache a moment ago.
749                  */
750                 set_page_stable_node(page, NULL);
751                 remove_node_from_stable_tree(stable_node);
752                 err = 0;
753         }
754
755         unlock_page(page);
756         put_page(page);
757         return err;
758 }
759
760 static int remove_all_stable_nodes(void)
761 {
762         struct stable_node *stable_node;
763         struct list_head *this, *next;
764         int nid;
765         int err = 0;
766
767         for (nid = 0; nid < ksm_nr_node_ids; nid++) {
768                 while (root_stable_tree[nid].rb_node) {
769                         stable_node = rb_entry(root_stable_tree[nid].rb_node,
770                                                 struct stable_node, node);
771                         if (remove_stable_node(stable_node)) {
772                                 err = -EBUSY;
773                                 break;  /* proceed to next nid */
774                         }
775                         cond_resched();
776                 }
777         }
778         list_for_each_safe(this, next, &migrate_nodes) {
779                 stable_node = list_entry(this, struct stable_node, list);
780                 if (remove_stable_node(stable_node))
781                         err = -EBUSY;
782                 cond_resched();
783         }
784         return err;
785 }
786
787 static int unmerge_and_remove_all_rmap_items(void)
788 {
789         struct mm_slot *mm_slot;
790         struct mm_struct *mm;
791         struct vm_area_struct *vma;
792         int err = 0;
793
794         spin_lock(&ksm_mmlist_lock);
795         ksm_scan.mm_slot = list_entry(ksm_mm_head.mm_list.next,
796                                                 struct mm_slot, mm_list);
797         spin_unlock(&ksm_mmlist_lock);
798
799         for (mm_slot = ksm_scan.mm_slot;
800                         mm_slot != &ksm_mm_head; mm_slot = ksm_scan.mm_slot) {
801                 mm = mm_slot->mm;
802                 down_read(&mm->mmap_sem);
803                 for (vma = mm->mmap; vma; vma = vma->vm_next) {
804                         if (ksm_test_exit(mm))
805                                 break;
806                         if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
807                                 continue;
808                         err = unmerge_ksm_pages(vma,
809                                                 vma->vm_start, vma->vm_end);
810                         if (err)
811                                 goto error;
812                 }
813
814                 remove_trailing_rmap_items(mm_slot, &mm_slot->rmap_list);
815
816                 spin_lock(&ksm_mmlist_lock);
817                 ksm_scan.mm_slot = list_entry(mm_slot->mm_list.next,
818                                                 struct mm_slot, mm_list);
819                 if (ksm_test_exit(mm)) {
820                         hash_del(&mm_slot->link);
821                         list_del(&mm_slot->mm_list);
822                         spin_unlock(&ksm_mmlist_lock);
823
824                         free_mm_slot(mm_slot);
825                         clear_bit(MMF_VM_MERGEABLE, &mm->flags);
826                         up_read(&mm->mmap_sem);
827                         mmdrop(mm);
828                 } else {
829                         spin_unlock(&ksm_mmlist_lock);
830                         up_read(&mm->mmap_sem);
831                 }
832         }
833
834         /* Clean up stable nodes, but don't worry if some are still busy */
835         remove_all_stable_nodes();
836         ksm_scan.seqnr = 0;
837         return 0;
838
839 error:
840         up_read(&mm->mmap_sem);
841         spin_lock(&ksm_mmlist_lock);
842         ksm_scan.mm_slot = &ksm_mm_head;
843         spin_unlock(&ksm_mmlist_lock);
844         return err;
845 }
846 #endif /* CONFIG_SYSFS */
847
848 static u32 calc_checksum(struct page *page)
849 {
850         u32 checksum;
851         void *addr = kmap_atomic(page);
852         checksum = jhash2(addr, PAGE_SIZE / 4, 17);
853         kunmap_atomic(addr);
854         return checksum;
855 }
856
857 static int memcmp_pages(struct page *page1, struct page *page2)
858 {
859         char *addr1, *addr2;
860         int ret;
861
862         addr1 = kmap_atomic(page1);
863         addr2 = kmap_atomic(page2);
864         ret = memcmp(addr1, addr2, PAGE_SIZE);
865         kunmap_atomic(addr2);
866         kunmap_atomic(addr1);
867         return ret;
868 }
869
870 static inline int pages_identical(struct page *page1, struct page *page2)
871 {
872         return !memcmp_pages(page1, page2);
873 }
874
875 static int write_protect_page(struct vm_area_struct *vma, struct page *page,
876                               pte_t *orig_pte)
877 {
878         struct mm_struct *mm = vma->vm_mm;
879         unsigned long addr;
880         pte_t *ptep;
881         spinlock_t *ptl;
882         int swapped;
883         int err = -EFAULT;
884         unsigned long mmun_start;       /* For mmu_notifiers */
885         unsigned long mmun_end;         /* For mmu_notifiers */
886
887         addr = page_address_in_vma(page, vma);
888         if (addr == -EFAULT)
889                 goto out;
890
891         BUG_ON(PageTransCompound(page));
892
893         mmun_start = addr;
894         mmun_end   = addr + PAGE_SIZE;
895         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
896
897         ptep = page_check_address(page, mm, addr, &ptl, 0);
898         if (!ptep)
899                 goto out_mn;
900
901         if (pte_write(*ptep) || pte_dirty(*ptep)) {
902                 pte_t entry;
903
904                 swapped = PageSwapCache(page);
905                 flush_cache_page(vma, addr, page_to_pfn(page));
906                 /*
907                  * Ok this is tricky, when get_user_pages_fast() run it doesn't
908                  * take any lock, therefore the check that we are going to make
909                  * with the pagecount against the mapcount is racey and
910                  * O_DIRECT can happen right after the check.
911                  * So we clear the pte and flush the tlb before the check
912                  * this assure us that no O_DIRECT can happen after the check
913                  * or in the middle of the check.
914                  */
915                 entry = ptep_clear_flush_notify(vma, addr, ptep);
916                 /*
917                  * Check that no O_DIRECT or similar I/O is in progress on the
918                  * page
919                  */
920                 if (page_mapcount(page) + 1 + swapped != page_count(page)) {
921                         set_pte_at(mm, addr, ptep, entry);
922                         goto out_unlock;
923                 }
924                 if (pte_dirty(entry))
925                         set_page_dirty(page);
926                 entry = pte_mkclean(pte_wrprotect(entry));
927                 set_pte_at_notify(mm, addr, ptep, entry);
928         }
929         *orig_pte = *ptep;
930         err = 0;
931
932 out_unlock:
933         pte_unmap_unlock(ptep, ptl);
934 out_mn:
935         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
936 out:
937         return err;
938 }
939
940 /**
941  * replace_page - replace page in vma by new ksm page
942  * @vma:      vma that holds the pte pointing to page
943  * @page:     the page we are replacing by kpage
944  * @kpage:    the ksm page we replace page by
945  * @orig_pte: the original value of the pte
946  *
947  * Returns 0 on success, -EFAULT on failure.
948  */
949 static int replace_page(struct vm_area_struct *vma, struct page *page,
950                         struct page *kpage, pte_t orig_pte)
951 {
952         struct mm_struct *mm = vma->vm_mm;
953         pmd_t *pmd;
954         pte_t *ptep;
955         spinlock_t *ptl;
956         unsigned long addr;
957         int err = -EFAULT;
958         unsigned long mmun_start;       /* For mmu_notifiers */
959         unsigned long mmun_end;         /* For mmu_notifiers */
960
961         addr = page_address_in_vma(page, vma);
962         if (addr == -EFAULT)
963                 goto out;
964
965         pmd = mm_find_pmd(mm, addr);
966         if (!pmd)
967                 goto out;
968
969         mmun_start = addr;
970         mmun_end   = addr + PAGE_SIZE;
971         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
972
973         ptep = pte_offset_map_lock(mm, pmd, addr, &ptl);
974         if (!pte_same(*ptep, orig_pte)) {
975                 pte_unmap_unlock(ptep, ptl);
976                 goto out_mn;
977         }
978
979         get_page(kpage);
980         page_add_anon_rmap(kpage, vma, addr);
981
982         flush_cache_page(vma, addr, pte_pfn(*ptep));
983         ptep_clear_flush_notify(vma, addr, ptep);
984         set_pte_at_notify(mm, addr, ptep, mk_pte(kpage, vma->vm_page_prot));
985
986         page_remove_rmap(page);
987         if (!page_mapped(page))
988                 try_to_free_swap(page);
989         put_page(page);
990
991         pte_unmap_unlock(ptep, ptl);
992         err = 0;
993 out_mn:
994         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
995 out:
996         return err;
997 }
998
999 static int page_trans_compound_anon_split(struct page *page)
1000 {
1001         int ret = 0;
1002         struct page *transhuge_head = page_trans_compound_anon(page);
1003         if (transhuge_head) {
1004                 /* Get the reference on the head to split it. */
1005                 if (get_page_unless_zero(transhuge_head)) {
1006                         /*
1007                          * Recheck we got the reference while the head
1008                          * was still anonymous.
1009                          */
1010                         if (PageAnon(transhuge_head))
1011                                 ret = split_huge_page(transhuge_head);
1012                         else
1013                                 /*
1014                                  * Retry later if split_huge_page run
1015                                  * from under us.
1016                                  */
1017                                 ret = 1;
1018                         put_page(transhuge_head);
1019                 } else
1020                         /* Retry later if split_huge_page run from under us. */
1021                         ret = 1;
1022         }
1023         return ret;
1024 }
1025
1026 /*
1027  * try_to_merge_one_page - take two pages and merge them into one
1028  * @vma: the vma that holds the pte pointing to page
1029  * @page: the PageAnon page that we want to replace with kpage
1030  * @kpage: the PageKsm page that we want to map instead of page,
1031  *         or NULL the first time when we want to use page as kpage.
1032  *
1033  * This function returns 0 if the pages were merged, -EFAULT otherwise.
1034  */
1035 static int try_to_merge_one_page(struct vm_area_struct *vma,
1036                                  struct page *page, struct page *kpage)
1037 {
1038         pte_t orig_pte = __pte(0);
1039         int err = -EFAULT;
1040
1041         if (page == kpage)                      /* ksm page forked */
1042                 return 0;
1043
1044         if (PageTransCompound(page) && page_trans_compound_anon_split(page))
1045                 goto out;
1046         BUG_ON(PageTransCompound(page));
1047         if (!PageAnon(page))
1048                 goto out;
1049
1050         /*
1051          * We need the page lock to read a stable PageSwapCache in
1052          * write_protect_page().  We use trylock_page() instead of
1053          * lock_page() because we don't want to wait here - we
1054          * prefer to continue scanning and merging different pages,
1055          * then come back to this page when it is unlocked.
1056          */
1057         if (!trylock_page(page))
1058                 goto out;
1059         /*
1060          * If this anonymous page is mapped only here, its pte may need
1061          * to be write-protected.  If it's mapped elsewhere, all of its
1062          * ptes are necessarily already write-protected.  But in either
1063          * case, we need to lock and check page_count is not raised.
1064          */
1065         if (write_protect_page(vma, page, &orig_pte) == 0) {
1066                 if (!kpage) {
1067                         /*
1068                          * While we hold page lock, upgrade page from
1069                          * PageAnon+anon_vma to PageKsm+NULL stable_node:
1070                          * stable_tree_insert() will update stable_node.
1071                          */
1072                         set_page_stable_node(page, NULL);
1073                         mark_page_accessed(page);
1074                         err = 0;
1075                 } else if (pages_identical(page, kpage))
1076                         err = replace_page(vma, page, kpage, orig_pte);
1077         }
1078
1079         if ((vma->vm_flags & VM_LOCKED) && kpage && !err) {
1080                 munlock_vma_page(page);
1081                 if (!PageMlocked(kpage)) {
1082                         unlock_page(page);
1083                         lock_page(kpage);
1084                         mlock_vma_page(kpage);
1085                         page = kpage;           /* for final unlock */
1086                 }
1087         }
1088
1089         unlock_page(page);
1090 out:
1091         return err;
1092 }
1093
1094 /*
1095  * try_to_merge_with_ksm_page - like try_to_merge_two_pages,
1096  * but no new kernel page is allocated: kpage must already be a ksm page.
1097  *
1098  * This function returns 0 if the pages were merged, -EFAULT otherwise.
1099  */
1100 static int try_to_merge_with_ksm_page(struct rmap_item *rmap_item,
1101                                       struct page *page, struct page *kpage)
1102 {
1103         struct mm_struct *mm = rmap_item->mm;
1104         struct vm_area_struct *vma;
1105         int err = -EFAULT;
1106
1107         down_read(&mm->mmap_sem);
1108         vma = find_mergeable_vma(mm, rmap_item->address);
1109         if (!vma)
1110                 goto out;
1111
1112         err = try_to_merge_one_page(vma, page, kpage);
1113         if (err)
1114                 goto out;
1115
1116         /* Unstable nid is in union with stable anon_vma: remove first */
1117         remove_rmap_item_from_tree(rmap_item);
1118
1119         /* Must get reference to anon_vma while still holding mmap_sem */
1120         rmap_item->anon_vma = vma->anon_vma;
1121         get_anon_vma(vma->anon_vma);
1122 out:
1123         up_read(&mm->mmap_sem);
1124         return err;
1125 }
1126
1127 /*
1128  * try_to_merge_two_pages - take two identical pages and prepare them
1129  * to be merged into one page.
1130  *
1131  * This function returns the kpage if we successfully merged two identical
1132  * pages into one ksm page, NULL otherwise.
1133  *
1134  * Note that this function upgrades page to ksm page: if one of the pages
1135  * is already a ksm page, try_to_merge_with_ksm_page should be used.
1136  */
1137 static struct page *try_to_merge_two_pages(struct rmap_item *rmap_item,
1138                                            struct page *page,
1139                                            struct rmap_item *tree_rmap_item,
1140                                            struct page *tree_page)
1141 {
1142         int err;
1143
1144         err = try_to_merge_with_ksm_page(rmap_item, page, NULL);
1145         if (!err) {
1146                 err = try_to_merge_with_ksm_page(tree_rmap_item,
1147                                                         tree_page, page);
1148                 /*
1149                  * If that fails, we have a ksm page with only one pte
1150                  * pointing to it: so break it.
1151                  */
1152                 if (err)
1153                         break_cow(rmap_item);
1154         }
1155         return err ? NULL : page;
1156 }
1157
1158 /*
1159  * stable_tree_search - search for page inside the stable tree
1160  *
1161  * This function checks if there is a page inside the stable tree
1162  * with identical content to the page that we are scanning right now.
1163  *
1164  * This function returns the stable tree node of identical content if found,
1165  * NULL otherwise.
1166  */
1167 static struct page *stable_tree_search(struct page *page)
1168 {
1169         int nid;
1170         struct rb_root *root;
1171         struct rb_node **new;
1172         struct rb_node *parent;
1173         struct stable_node *stable_node;
1174         struct stable_node *page_node;
1175
1176         page_node = page_stable_node(page);
1177         if (page_node && page_node->head != &migrate_nodes) {
1178                 /* ksm page forked */
1179                 get_page(page);
1180                 return page;
1181         }
1182
1183         nid = get_kpfn_nid(page_to_pfn(page));
1184         root = root_stable_tree + nid;
1185 again:
1186         new = &root->rb_node;
1187         parent = NULL;
1188
1189         while (*new) {
1190                 struct page *tree_page;
1191                 int ret;
1192
1193                 cond_resched();
1194                 stable_node = rb_entry(*new, struct stable_node, node);
1195                 tree_page = get_ksm_page(stable_node, false);
1196                 if (!tree_page) {
1197                         /*
1198                          * If we walked over a stale stable_node,
1199                          * get_ksm_page() will call rb_erase() and it
1200                          * may rebalance the tree from under us. So
1201                          * restart the search from scratch. Returning
1202                          * NULL would be safe too, but we'd generate
1203                          * false negative insertions just because some
1204                          * stable_node was stale.
1205                          */
1206                         goto again;
1207                 }
1208
1209                 ret = memcmp_pages(page, tree_page);
1210                 put_page(tree_page);
1211
1212                 parent = *new;
1213                 if (ret < 0)
1214                         new = &parent->rb_left;
1215                 else if (ret > 0)
1216                         new = &parent->rb_right;
1217                 else {
1218                         /*
1219                          * Lock and unlock the stable_node's page (which
1220                          * might already have been migrated) so that page
1221                          * migration is sure to notice its raised count.
1222                          * It would be more elegant to return stable_node
1223                          * than kpage, but that involves more changes.
1224                          */
1225                         tree_page = get_ksm_page(stable_node, true);
1226                         if (tree_page) {
1227                                 unlock_page(tree_page);
1228                                 if (get_kpfn_nid(stable_node->kpfn) !=
1229                                                 NUMA(stable_node->nid)) {
1230                                         put_page(tree_page);
1231                                         goto replace;
1232                                 }
1233                                 return tree_page;
1234                         }
1235                         /*
1236                          * There is now a place for page_node, but the tree may
1237                          * have been rebalanced, so re-evaluate parent and new.
1238                          */
1239                         if (page_node)
1240                                 goto again;
1241                         return NULL;
1242                 }
1243         }
1244
1245         if (!page_node)
1246                 return NULL;
1247
1248         list_del(&page_node->list);
1249         DO_NUMA(page_node->nid = nid);
1250         rb_link_node(&page_node->node, parent, new);
1251         rb_insert_color(&page_node->node, root);
1252         get_page(page);
1253         return page;
1254
1255 replace:
1256         if (page_node) {
1257                 list_del(&page_node->list);
1258                 DO_NUMA(page_node->nid = nid);
1259                 rb_replace_node(&stable_node->node, &page_node->node, root);
1260                 get_page(page);
1261         } else {
1262                 rb_erase(&stable_node->node, root);
1263                 page = NULL;
1264         }
1265         stable_node->head = &migrate_nodes;
1266         list_add(&stable_node->list, stable_node->head);
1267         return page;
1268 }
1269
1270 /*
1271  * stable_tree_insert - insert stable tree node pointing to new ksm page
1272  * into the stable tree.
1273  *
1274  * This function returns the stable tree node just allocated on success,
1275  * NULL otherwise.
1276  */
1277 static struct stable_node *stable_tree_insert(struct page *kpage)
1278 {
1279         int nid;
1280         unsigned long kpfn;
1281         struct rb_root *root;
1282         struct rb_node **new;
1283         struct rb_node *parent;
1284         struct stable_node *stable_node;
1285
1286         kpfn = page_to_pfn(kpage);
1287         nid = get_kpfn_nid(kpfn);
1288         root = root_stable_tree + nid;
1289 again:
1290         parent = NULL;
1291         new = &root->rb_node;
1292
1293         while (*new) {
1294                 struct page *tree_page;
1295                 int ret;
1296
1297                 cond_resched();
1298                 stable_node = rb_entry(*new, struct stable_node, node);
1299                 tree_page = get_ksm_page(stable_node, false);
1300                 if (!tree_page) {
1301                         /*
1302                          * If we walked over a stale stable_node,
1303                          * get_ksm_page() will call rb_erase() and it
1304                          * may rebalance the tree from under us. So
1305                          * restart the search from scratch. Returning
1306                          * NULL would be safe too, but we'd generate
1307                          * false negative insertions just because some
1308                          * stable_node was stale.
1309                          */
1310                         goto again;
1311                 }
1312
1313                 ret = memcmp_pages(kpage, tree_page);
1314                 put_page(tree_page);
1315
1316                 parent = *new;
1317                 if (ret < 0)
1318                         new = &parent->rb_left;
1319                 else if (ret > 0)
1320                         new = &parent->rb_right;
1321                 else {
1322                         /*
1323                          * It is not a bug that stable_tree_search() didn't
1324                          * find this node: because at that time our page was
1325                          * not yet write-protected, so may have changed since.
1326                          */
1327                         return NULL;
1328                 }
1329         }
1330
1331         stable_node = alloc_stable_node();
1332         if (!stable_node)
1333                 return NULL;
1334
1335         INIT_HLIST_HEAD(&stable_node->hlist);
1336         stable_node->kpfn = kpfn;
1337         set_page_stable_node(kpage, stable_node);
1338         DO_NUMA(stable_node->nid = nid);
1339         rb_link_node(&stable_node->node, parent, new);
1340         rb_insert_color(&stable_node->node, root);
1341
1342         return stable_node;
1343 }
1344
1345 /*
1346  * unstable_tree_search_insert - search for identical page,
1347  * else insert rmap_item into the unstable tree.
1348  *
1349  * This function searches for a page in the unstable tree identical to the
1350  * page currently being scanned; and if no identical page is found in the
1351  * tree, we insert rmap_item as a new object into the unstable tree.
1352  *
1353  * This function returns pointer to rmap_item found to be identical
1354  * to the currently scanned page, NULL otherwise.
1355  *
1356  * This function does both searching and inserting, because they share
1357  * the same walking algorithm in an rbtree.
1358  */
1359 static
1360 struct rmap_item *unstable_tree_search_insert(struct rmap_item *rmap_item,
1361                                               struct page *page,
1362                                               struct page **tree_pagep)
1363 {
1364         struct rb_node **new;
1365         struct rb_root *root;
1366         struct rb_node *parent = NULL;
1367         int nid;
1368
1369         nid = get_kpfn_nid(page_to_pfn(page));
1370         root = root_unstable_tree + nid;
1371         new = &root->rb_node;
1372
1373         while (*new) {
1374                 struct rmap_item *tree_rmap_item;
1375                 struct page *tree_page;
1376                 int ret;
1377
1378                 cond_resched();
1379                 tree_rmap_item = rb_entry(*new, struct rmap_item, node);
1380                 tree_page = get_mergeable_page(tree_rmap_item);
1381                 if (!tree_page)
1382                         return NULL;
1383
1384                 /*
1385                  * Don't substitute a ksm page for a forked page.
1386                  */
1387                 if (page == tree_page) {
1388                         put_page(tree_page);
1389                         return NULL;
1390                 }
1391
1392                 ret = memcmp_pages(page, tree_page);
1393
1394                 parent = *new;
1395                 if (ret < 0) {
1396                         put_page(tree_page);
1397                         new = &parent->rb_left;
1398                 } else if (ret > 0) {
1399                         put_page(tree_page);
1400                         new = &parent->rb_right;
1401                 } else if (!ksm_merge_across_nodes &&
1402                            page_to_nid(tree_page) != nid) {
1403                         /*
1404                          * If tree_page has been migrated to another NUMA node,
1405                          * it will be flushed out and put in the right unstable
1406                          * tree next time: only merge with it when across_nodes.
1407                          */
1408                         put_page(tree_page);
1409                         return NULL;
1410                 } else {
1411                         *tree_pagep = tree_page;
1412                         return tree_rmap_item;
1413                 }
1414         }
1415
1416         rmap_item->address |= UNSTABLE_FLAG;
1417         rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK);
1418         DO_NUMA(rmap_item->nid = nid);
1419         rb_link_node(&rmap_item->node, parent, new);
1420         rb_insert_color(&rmap_item->node, root);
1421
1422         ksm_pages_unshared++;
1423         return NULL;
1424 }
1425
1426 /*
1427  * stable_tree_append - add another rmap_item to the linked list of
1428  * rmap_items hanging off a given node of the stable tree, all sharing
1429  * the same ksm page.
1430  */
1431 static void stable_tree_append(struct rmap_item *rmap_item,
1432                                struct stable_node *stable_node)
1433 {
1434         rmap_item->head = stable_node;
1435         rmap_item->address |= STABLE_FLAG;
1436         hlist_add_head(&rmap_item->hlist, &stable_node->hlist);
1437
1438         if (rmap_item->hlist.next)
1439                 ksm_pages_sharing++;
1440         else
1441                 ksm_pages_shared++;
1442 }
1443
1444 /*
1445  * cmp_and_merge_page - first see if page can be merged into the stable tree;
1446  * if not, compare checksum to previous and if it's the same, see if page can
1447  * be inserted into the unstable tree, or merged with a page already there and
1448  * both transferred to the stable tree.
1449  *
1450  * @page: the page that we are searching identical page to.
1451  * @rmap_item: the reverse mapping into the virtual address of this page
1452  */
1453 static void cmp_and_merge_page(struct page *page, struct rmap_item *rmap_item)
1454 {
1455         struct rmap_item *tree_rmap_item;
1456         struct page *tree_page = NULL;
1457         struct stable_node *stable_node;
1458         struct page *kpage;
1459         unsigned int checksum;
1460         int err;
1461
1462         stable_node = page_stable_node(page);
1463         if (stable_node) {
1464                 if (stable_node->head != &migrate_nodes &&
1465                     get_kpfn_nid(stable_node->kpfn) != NUMA(stable_node->nid)) {
1466                         rb_erase(&stable_node->node,
1467                                  root_stable_tree + NUMA(stable_node->nid));
1468                         stable_node->head = &migrate_nodes;
1469                         list_add(&stable_node->list, stable_node->head);
1470                 }
1471                 if (stable_node->head != &migrate_nodes &&
1472                     rmap_item->head == stable_node)
1473                         return;
1474         }
1475
1476         /* We first start with searching the page inside the stable tree */
1477         kpage = stable_tree_search(page);
1478         if (kpage == page && rmap_item->head == stable_node) {
1479                 put_page(kpage);
1480                 return;
1481         }
1482
1483         remove_rmap_item_from_tree(rmap_item);
1484
1485         if (kpage) {
1486                 err = try_to_merge_with_ksm_page(rmap_item, page, kpage);
1487                 if (!err) {
1488                         /*
1489                          * The page was successfully merged:
1490                          * add its rmap_item to the stable tree.
1491                          */
1492                         lock_page(kpage);
1493                         stable_tree_append(rmap_item, page_stable_node(kpage));
1494                         unlock_page(kpage);
1495                 }
1496                 put_page(kpage);
1497                 return;
1498         }
1499
1500         /*
1501          * If the hash value of the page has changed from the last time
1502          * we calculated it, this page is changing frequently: therefore we
1503          * don't want to insert it in the unstable tree, and we don't want
1504          * to waste our time searching for something identical to it there.
1505          */
1506         checksum = calc_checksum(page);
1507         if (rmap_item->oldchecksum != checksum) {
1508                 rmap_item->oldchecksum = checksum;
1509                 return;
1510         }
1511
1512         tree_rmap_item =
1513                 unstable_tree_search_insert(rmap_item, page, &tree_page);
1514         if (tree_rmap_item) {
1515                 kpage = try_to_merge_two_pages(rmap_item, page,
1516                                                 tree_rmap_item, tree_page);
1517                 put_page(tree_page);
1518                 if (kpage) {
1519                         /*
1520                          * The pages were successfully merged: insert new
1521                          * node in the stable tree and add both rmap_items.
1522                          */
1523                         lock_page(kpage);
1524                         stable_node = stable_tree_insert(kpage);
1525                         if (stable_node) {
1526                                 stable_tree_append(tree_rmap_item, stable_node);
1527                                 stable_tree_append(rmap_item, stable_node);
1528                         }
1529                         unlock_page(kpage);
1530
1531                         /*
1532                          * If we fail to insert the page into the stable tree,
1533                          * we will have 2 virtual addresses that are pointing
1534                          * to a ksm page left outside the stable tree,
1535                          * in which case we need to break_cow on both.
1536                          */
1537                         if (!stable_node) {
1538                                 break_cow(tree_rmap_item);
1539                                 break_cow(rmap_item);
1540                         }
1541                 }
1542         }
1543 }
1544
1545 static struct rmap_item *get_next_rmap_item(struct mm_slot *mm_slot,
1546                                             struct rmap_item **rmap_list,
1547                                             unsigned long addr)
1548 {
1549         struct rmap_item *rmap_item;
1550
1551         while (*rmap_list) {
1552                 rmap_item = *rmap_list;
1553                 if ((rmap_item->address & PAGE_MASK) == addr)
1554                         return rmap_item;
1555                 if (rmap_item->address > addr)
1556                         break;
1557                 *rmap_list = rmap_item->rmap_list;
1558                 remove_rmap_item_from_tree(rmap_item);
1559                 free_rmap_item(rmap_item);
1560         }
1561
1562         rmap_item = alloc_rmap_item();
1563         if (rmap_item) {
1564                 /* It has already been zeroed */
1565                 rmap_item->mm = mm_slot->mm;
1566                 rmap_item->address = addr;
1567                 rmap_item->rmap_list = *rmap_list;
1568                 *rmap_list = rmap_item;
1569         }
1570         return rmap_item;
1571 }
1572
1573 static struct rmap_item *scan_get_next_rmap_item(struct page **page)
1574 {
1575         struct mm_struct *mm;
1576         struct mm_slot *slot;
1577         struct vm_area_struct *vma;
1578         struct rmap_item *rmap_item;
1579         int nid;
1580
1581         if (list_empty(&ksm_mm_head.mm_list))
1582                 return NULL;
1583
1584         slot = ksm_scan.mm_slot;
1585         if (slot == &ksm_mm_head) {
1586                 /*
1587                  * A number of pages can hang around indefinitely on per-cpu
1588                  * pagevecs, raised page count preventing write_protect_page
1589                  * from merging them.  Though it doesn't really matter much,
1590                  * it is puzzling to see some stuck in pages_volatile until
1591                  * other activity jostles them out, and they also prevented
1592                  * LTP's KSM test from succeeding deterministically; so drain
1593                  * them here (here rather than on entry to ksm_do_scan(),
1594                  * so we don't IPI too often when pages_to_scan is set low).
1595                  */
1596                 lru_add_drain_all();
1597
1598                 /*
1599                  * Whereas stale stable_nodes on the stable_tree itself
1600                  * get pruned in the regular course of stable_tree_search(),
1601                  * those moved out to the migrate_nodes list can accumulate:
1602                  * so prune them once before each full scan.
1603                  */
1604                 if (!ksm_merge_across_nodes) {
1605                         struct stable_node *stable_node;
1606                         struct list_head *this, *next;
1607                         struct page *page;
1608
1609                         list_for_each_safe(this, next, &migrate_nodes) {
1610                                 stable_node = list_entry(this,
1611                                                 struct stable_node, list);
1612                                 page = get_ksm_page(stable_node, false);
1613                                 if (page)
1614                                         put_page(page);
1615                                 cond_resched();
1616                         }
1617                 }
1618
1619                 for (nid = 0; nid < ksm_nr_node_ids; nid++)
1620                         root_unstable_tree[nid] = RB_ROOT;
1621
1622                 spin_lock(&ksm_mmlist_lock);
1623                 slot = list_entry(slot->mm_list.next, struct mm_slot, mm_list);
1624                 ksm_scan.mm_slot = slot;
1625                 spin_unlock(&ksm_mmlist_lock);
1626                 /*
1627                  * Although we tested list_empty() above, a racing __ksm_exit
1628                  * of the last mm on the list may have removed it since then.
1629                  */
1630                 if (slot == &ksm_mm_head)
1631                         return NULL;
1632 next_mm:
1633                 ksm_scan.address = 0;
1634                 ksm_scan.rmap_list = &slot->rmap_list;
1635         }
1636
1637         mm = slot->mm;
1638         down_read(&mm->mmap_sem);
1639         if (ksm_test_exit(mm))
1640                 vma = NULL;
1641         else
1642                 vma = find_vma(mm, ksm_scan.address);
1643
1644         for (; vma; vma = vma->vm_next) {
1645                 if (!(vma->vm_flags & VM_MERGEABLE))
1646                         continue;
1647                 if (ksm_scan.address < vma->vm_start)
1648                         ksm_scan.address = vma->vm_start;
1649                 if (!vma->anon_vma)
1650                         ksm_scan.address = vma->vm_end;
1651
1652                 while (ksm_scan.address < vma->vm_end) {
1653                         if (ksm_test_exit(mm))
1654                                 break;
1655                         *page = follow_page(vma, ksm_scan.address, FOLL_GET);
1656                         if (IS_ERR_OR_NULL(*page)) {
1657                                 ksm_scan.address += PAGE_SIZE;
1658                                 cond_resched();
1659                                 continue;
1660                         }
1661                         if (PageAnon(*page) ||
1662                             page_trans_compound_anon(*page)) {
1663                                 flush_anon_page(vma, *page, ksm_scan.address);
1664                                 flush_dcache_page(*page);
1665                                 rmap_item = get_next_rmap_item(slot,
1666                                         ksm_scan.rmap_list, ksm_scan.address);
1667                                 if (rmap_item) {
1668                                         ksm_scan.rmap_list =
1669                                                         &rmap_item->rmap_list;
1670                                         ksm_scan.address += PAGE_SIZE;
1671                                 } else
1672                                         put_page(*page);
1673                                 up_read(&mm->mmap_sem);
1674                                 return rmap_item;
1675                         }
1676                         put_page(*page);
1677                         ksm_scan.address += PAGE_SIZE;
1678                         cond_resched();
1679                 }
1680         }
1681
1682         if (ksm_test_exit(mm)) {
1683                 ksm_scan.address = 0;
1684                 ksm_scan.rmap_list = &slot->rmap_list;
1685         }
1686         /*
1687          * Nuke all the rmap_items that are above this current rmap:
1688          * because there were no VM_MERGEABLE vmas with such addresses.
1689          */
1690         remove_trailing_rmap_items(slot, ksm_scan.rmap_list);
1691
1692         spin_lock(&ksm_mmlist_lock);
1693         ksm_scan.mm_slot = list_entry(slot->mm_list.next,
1694                                                 struct mm_slot, mm_list);
1695         if (ksm_scan.address == 0) {
1696                 /*
1697                  * We've completed a full scan of all vmas, holding mmap_sem
1698                  * throughout, and found no VM_MERGEABLE: so do the same as
1699                  * __ksm_exit does to remove this mm from all our lists now.
1700                  * This applies either when cleaning up after __ksm_exit
1701                  * (but beware: we can reach here even before __ksm_exit),
1702                  * or when all VM_MERGEABLE areas have been unmapped (and
1703                  * mmap_sem then protects against race with MADV_MERGEABLE).
1704                  */
1705                 hash_del(&slot->link);
1706                 list_del(&slot->mm_list);
1707                 spin_unlock(&ksm_mmlist_lock);
1708
1709                 free_mm_slot(slot);
1710                 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
1711                 up_read(&mm->mmap_sem);
1712                 mmdrop(mm);
1713         } else {
1714                 spin_unlock(&ksm_mmlist_lock);
1715                 up_read(&mm->mmap_sem);
1716         }
1717
1718         /* Repeat until we've completed scanning the whole list */
1719         slot = ksm_scan.mm_slot;
1720         if (slot != &ksm_mm_head)
1721                 goto next_mm;
1722
1723         ksm_scan.seqnr++;
1724         return NULL;
1725 }
1726
1727 /**
1728  * ksm_do_scan  - the ksm scanner main worker function.
1729  * @scan_npages - number of pages we want to scan before we return.
1730  */
1731 static void ksm_do_scan(unsigned int scan_npages)
1732 {
1733         struct rmap_item *rmap_item;
1734         struct page *uninitialized_var(page);
1735
1736         while (scan_npages-- && likely(!freezing(current))) {
1737                 cond_resched();
1738                 rmap_item = scan_get_next_rmap_item(&page);
1739                 if (!rmap_item)
1740                         return;
1741                 cmp_and_merge_page(page, rmap_item);
1742                 put_page(page);
1743         }
1744 }
1745
1746 static void process_timeout(unsigned long __data)
1747 {
1748         wake_up_process((struct task_struct *)__data);
1749 }
1750
1751 static signed long __sched deferred_schedule_timeout(signed long timeout)
1752 {
1753         struct timer_list timer;
1754         unsigned long expire;
1755
1756         __set_current_state(TASK_INTERRUPTIBLE);
1757         if (timeout < 0) {
1758                 pr_err("schedule_timeout: wrong timeout value %lx\n",
1759                                                         timeout);
1760                 __set_current_state(TASK_RUNNING);
1761                 goto out;
1762         }
1763
1764         expire = timeout + jiffies;
1765
1766         setup_deferrable_timer_on_stack(&timer, process_timeout,
1767                         (unsigned long)current);
1768         mod_timer(&timer, expire);
1769         schedule();
1770         del_singleshot_timer_sync(&timer);
1771
1772         /* Remove the timer from the object tracker */
1773         destroy_timer_on_stack(&timer);
1774
1775         timeout = expire - jiffies;
1776
1777 out:
1778         return timeout < 0 ? 0 : timeout;
1779 }
1780
1781 static int ksmd_should_run(void)
1782 {
1783         return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.mm_list);
1784 }
1785
1786 static int ksm_scan_thread(void *nothing)
1787 {
1788         set_freezable();
1789         set_user_nice(current, 5);
1790
1791         while (!kthread_should_stop()) {
1792                 mutex_lock(&ksm_thread_mutex);
1793                 wait_while_offlining();
1794                 if (ksmd_should_run())
1795                         ksm_do_scan(ksm_thread_pages_to_scan);
1796                 mutex_unlock(&ksm_thread_mutex);
1797
1798                 try_to_freeze();
1799
1800                 if (ksmd_should_run()) {
1801                         if (use_deferred_timer)
1802                                 deferred_schedule_timeout(
1803                                 msecs_to_jiffies(ksm_thread_sleep_millisecs));
1804                         else
1805                                 schedule_timeout_interruptible(
1806                                 msecs_to_jiffies(ksm_thread_sleep_millisecs));
1807                 } else {
1808                         wait_event_freezable(ksm_thread_wait,
1809                                 ksmd_should_run() || kthread_should_stop());
1810                 }
1811         }
1812         return 0;
1813 }
1814
1815 int ksm_madvise(struct vm_area_struct *vma, unsigned long start,
1816                 unsigned long end, int advice, unsigned long *vm_flags)
1817 {
1818         struct mm_struct *mm = vma->vm_mm;
1819         int err;
1820
1821         switch (advice) {
1822         case MADV_MERGEABLE:
1823                 /*
1824                  * Be somewhat over-protective for now!
1825                  */
1826                 if (*vm_flags & (VM_MERGEABLE | VM_SHARED  | VM_MAYSHARE   |
1827                                  VM_PFNMAP    | VM_IO      | VM_DONTEXPAND |
1828                                  VM_HUGETLB | VM_MIXEDMAP))
1829                         return 0;               /* just ignore the advice */
1830
1831 #ifdef VM_SAO
1832                 if (*vm_flags & VM_SAO)
1833                         return 0;
1834 #endif
1835
1836                 if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
1837                         err = __ksm_enter(mm);
1838                         if (err)
1839                                 return err;
1840                 }
1841
1842                 *vm_flags |= VM_MERGEABLE;
1843                 break;
1844
1845         case MADV_UNMERGEABLE:
1846                 if (!(*vm_flags & VM_MERGEABLE))
1847                         return 0;               /* just ignore the advice */
1848
1849                 if (vma->anon_vma) {
1850                         err = unmerge_ksm_pages(vma, start, end);
1851                         if (err)
1852                                 return err;
1853                 }
1854
1855                 *vm_flags &= ~VM_MERGEABLE;
1856                 break;
1857         }
1858
1859         return 0;
1860 }
1861
1862 int __ksm_enter(struct mm_struct *mm)
1863 {
1864         struct mm_slot *mm_slot;
1865         int needs_wakeup;
1866
1867         mm_slot = alloc_mm_slot();
1868         if (!mm_slot)
1869                 return -ENOMEM;
1870
1871         /* Check ksm_run too?  Would need tighter locking */
1872         needs_wakeup = list_empty(&ksm_mm_head.mm_list);
1873
1874         spin_lock(&ksm_mmlist_lock);
1875         insert_to_mm_slots_hash(mm, mm_slot);
1876         /*
1877          * When KSM_RUN_MERGE (or KSM_RUN_STOP),
1878          * insert just behind the scanning cursor, to let the area settle
1879          * down a little; when fork is followed by immediate exec, we don't
1880          * want ksmd to waste time setting up and tearing down an rmap_list.
1881          *
1882          * But when KSM_RUN_UNMERGE, it's important to insert ahead of its
1883          * scanning cursor, otherwise KSM pages in newly forked mms will be
1884          * missed: then we might as well insert at the end of the list.
1885          */
1886         if (ksm_run & KSM_RUN_UNMERGE)
1887                 list_add_tail(&mm_slot->mm_list, &ksm_mm_head.mm_list);
1888         else
1889                 list_add_tail(&mm_slot->mm_list, &ksm_scan.mm_slot->mm_list);
1890         spin_unlock(&ksm_mmlist_lock);
1891
1892         set_bit(MMF_VM_MERGEABLE, &mm->flags);
1893         atomic_inc(&mm->mm_count);
1894
1895         if (needs_wakeup)
1896                 wake_up_interruptible(&ksm_thread_wait);
1897
1898         return 0;
1899 }
1900
1901 void __ksm_exit(struct mm_struct *mm)
1902 {
1903         struct mm_slot *mm_slot;
1904         int easy_to_free = 0;
1905
1906         /*
1907          * This process is exiting: if it's straightforward (as is the
1908          * case when ksmd was never running), free mm_slot immediately.
1909          * But if it's at the cursor or has rmap_items linked to it, use
1910          * mmap_sem to synchronize with any break_cows before pagetables
1911          * are freed, and leave the mm_slot on the list for ksmd to free.
1912          * Beware: ksm may already have noticed it exiting and freed the slot.
1913          */
1914
1915         spin_lock(&ksm_mmlist_lock);
1916         mm_slot = get_mm_slot(mm);
1917         if (mm_slot && ksm_scan.mm_slot != mm_slot) {
1918                 if (!mm_slot->rmap_list) {
1919                         hash_del(&mm_slot->link);
1920                         list_del(&mm_slot->mm_list);
1921                         easy_to_free = 1;
1922                 } else {
1923                         list_move(&mm_slot->mm_list,
1924                                   &ksm_scan.mm_slot->mm_list);
1925                 }
1926         }
1927         spin_unlock(&ksm_mmlist_lock);
1928
1929         if (easy_to_free) {
1930                 free_mm_slot(mm_slot);
1931                 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
1932                 mmdrop(mm);
1933         } else if (mm_slot) {
1934                 down_write(&mm->mmap_sem);
1935                 up_write(&mm->mmap_sem);
1936         }
1937 }
1938
1939 struct page *ksm_might_need_to_copy(struct page *page,
1940                         struct vm_area_struct *vma, unsigned long address)
1941 {
1942         struct anon_vma *anon_vma = page_anon_vma(page);
1943         struct page *new_page;
1944
1945         if (PageKsm(page)) {
1946                 if (page_stable_node(page) &&
1947                     !(ksm_run & KSM_RUN_UNMERGE))
1948                         return page;    /* no need to copy it */
1949         } else if (!anon_vma) {
1950                 return page;            /* no need to copy it */
1951         } else if (anon_vma->root == vma->anon_vma->root &&
1952                  page->index == linear_page_index(vma, address)) {
1953                 return page;            /* still no need to copy it */
1954         }
1955         if (!PageUptodate(page))
1956                 return page;            /* let do_swap_page report the error */
1957
1958         new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
1959         if (new_page) {
1960                 copy_user_highpage(new_page, page, address, vma);
1961
1962                 SetPageDirty(new_page);
1963                 __SetPageUptodate(new_page);
1964                 __set_page_locked(new_page);
1965         }
1966
1967         return new_page;
1968 }
1969
1970 int rmap_walk_ksm(struct page *page, struct rmap_walk_control *rwc)
1971 {
1972         struct stable_node *stable_node;
1973         struct rmap_item *rmap_item;
1974         int ret = SWAP_AGAIN;
1975         int search_new_forks = 0;
1976
1977         VM_BUG_ON_PAGE(!PageKsm(page), page);
1978
1979         /*
1980          * Rely on the page lock to protect against concurrent modifications
1981          * to that page's node of the stable tree.
1982          */
1983         VM_BUG_ON_PAGE(!PageLocked(page), page);
1984
1985         stable_node = page_stable_node(page);
1986         if (!stable_node)
1987                 return ret;
1988
1989 again:
1990         hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
1991                 struct anon_vma *anon_vma = rmap_item->anon_vma;
1992                 struct anon_vma_chain *vmac;
1993                 struct vm_area_struct *vma;
1994
1995                 cond_resched();
1996                 anon_vma_lock_read(anon_vma);
1997                 anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root,
1998                                                0, ULONG_MAX) {
1999                         cond_resched();
2000                         vma = vmac->vma;
2001                         if (rmap_item->address < vma->vm_start ||
2002                             rmap_item->address >= vma->vm_end)
2003                                 continue;
2004                         /*
2005                          * Initially we examine only the vma which covers this
2006                          * rmap_item; but later, if there is still work to do,
2007                          * we examine covering vmas in other mms: in case they
2008                          * were forked from the original since ksmd passed.
2009                          */
2010                         if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
2011                                 continue;
2012
2013                         if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2014                                 continue;
2015
2016                         ret = rwc->rmap_one(page, vma,
2017                                         rmap_item->address, rwc->arg);
2018                         if (ret != SWAP_AGAIN) {
2019                                 anon_vma_unlock_read(anon_vma);
2020                                 goto out;
2021                         }
2022                         if (rwc->done && rwc->done(page)) {
2023                                 anon_vma_unlock_read(anon_vma);
2024                                 goto out;
2025                         }
2026                 }
2027                 anon_vma_unlock_read(anon_vma);
2028         }
2029         if (!search_new_forks++)
2030                 goto again;
2031 out:
2032         return ret;
2033 }
2034
2035 #ifdef CONFIG_MIGRATION
2036 void ksm_migrate_page(struct page *newpage, struct page *oldpage)
2037 {
2038         struct stable_node *stable_node;
2039
2040         VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
2041         VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
2042         VM_BUG_ON_PAGE(newpage->mapping != oldpage->mapping, newpage);
2043
2044         stable_node = page_stable_node(newpage);
2045         if (stable_node) {
2046                 VM_BUG_ON_PAGE(stable_node->kpfn != page_to_pfn(oldpage), oldpage);
2047                 stable_node->kpfn = page_to_pfn(newpage);
2048                 /*
2049                  * newpage->mapping was set in advance; now we need smp_wmb()
2050                  * to make sure that the new stable_node->kpfn is visible
2051                  * to get_ksm_page() before it can see that oldpage->mapping
2052                  * has gone stale (or that PageSwapCache has been cleared).
2053                  */
2054                 smp_wmb();
2055                 set_page_stable_node(oldpage, NULL);
2056         }
2057 }
2058 #endif /* CONFIG_MIGRATION */
2059
2060 #ifdef CONFIG_MEMORY_HOTREMOVE
2061 static void wait_while_offlining(void)
2062 {
2063         while (ksm_run & KSM_RUN_OFFLINE) {
2064                 mutex_unlock(&ksm_thread_mutex);
2065                 wait_on_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE),
2066                             TASK_UNINTERRUPTIBLE);
2067                 mutex_lock(&ksm_thread_mutex);
2068         }
2069 }
2070
2071 static void ksm_check_stable_tree(unsigned long start_pfn,
2072                                   unsigned long end_pfn)
2073 {
2074         struct stable_node *stable_node;
2075         struct list_head *this, *next;
2076         struct rb_node *node;
2077         int nid;
2078
2079         for (nid = 0; nid < ksm_nr_node_ids; nid++) {
2080                 node = rb_first(root_stable_tree + nid);
2081                 while (node) {
2082                         stable_node = rb_entry(node, struct stable_node, node);
2083                         if (stable_node->kpfn >= start_pfn &&
2084                             stable_node->kpfn < end_pfn) {
2085                                 /*
2086                                  * Don't get_ksm_page, page has already gone:
2087                                  * which is why we keep kpfn instead of page*
2088                                  */
2089                                 remove_node_from_stable_tree(stable_node);
2090                                 node = rb_first(root_stable_tree + nid);
2091                         } else
2092                                 node = rb_next(node);
2093                         cond_resched();
2094                 }
2095         }
2096         list_for_each_safe(this, next, &migrate_nodes) {
2097                 stable_node = list_entry(this, struct stable_node, list);
2098                 if (stable_node->kpfn >= start_pfn &&
2099                     stable_node->kpfn < end_pfn)
2100                         remove_node_from_stable_tree(stable_node);
2101                 cond_resched();
2102         }
2103 }
2104
2105 static int ksm_memory_callback(struct notifier_block *self,
2106                                unsigned long action, void *arg)
2107 {
2108         struct memory_notify *mn = arg;
2109
2110         switch (action) {
2111         case MEM_GOING_OFFLINE:
2112                 /*
2113                  * Prevent ksm_do_scan(), unmerge_and_remove_all_rmap_items()
2114                  * and remove_all_stable_nodes() while memory is going offline:
2115                  * it is unsafe for them to touch the stable tree at this time.
2116                  * But unmerge_ksm_pages(), rmap lookups and other entry points
2117                  * which do not need the ksm_thread_mutex are all safe.
2118                  */
2119                 mutex_lock(&ksm_thread_mutex);
2120                 ksm_run |= KSM_RUN_OFFLINE;
2121                 mutex_unlock(&ksm_thread_mutex);
2122                 break;
2123
2124         case MEM_OFFLINE:
2125                 /*
2126                  * Most of the work is done by page migration; but there might
2127                  * be a few stable_nodes left over, still pointing to struct
2128                  * pages which have been offlined: prune those from the tree,
2129                  * otherwise get_ksm_page() might later try to access a
2130                  * non-existent struct page.
2131                  */
2132                 ksm_check_stable_tree(mn->start_pfn,
2133                                       mn->start_pfn + mn->nr_pages);
2134                 /* fallthrough */
2135
2136         case MEM_CANCEL_OFFLINE:
2137                 mutex_lock(&ksm_thread_mutex);
2138                 ksm_run &= ~KSM_RUN_OFFLINE;
2139                 mutex_unlock(&ksm_thread_mutex);
2140
2141                 smp_mb();       /* wake_up_bit advises this */
2142                 wake_up_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE));
2143                 break;
2144         }
2145         return NOTIFY_OK;
2146 }
2147 #else
2148 static void wait_while_offlining(void)
2149 {
2150 }
2151 #endif /* CONFIG_MEMORY_HOTREMOVE */
2152
2153 #ifdef CONFIG_SYSFS
2154 /*
2155  * This all compiles without CONFIG_SYSFS, but is a waste of space.
2156  */
2157
2158 #define KSM_ATTR_RO(_name) \
2159         static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2160 #define KSM_ATTR(_name) \
2161         static struct kobj_attribute _name##_attr = \
2162                 __ATTR(_name, 0644, _name##_show, _name##_store)
2163
2164 static ssize_t sleep_millisecs_show(struct kobject *kobj,
2165                                     struct kobj_attribute *attr, char *buf)
2166 {
2167         return sprintf(buf, "%u\n", ksm_thread_sleep_millisecs);
2168 }
2169
2170 static ssize_t sleep_millisecs_store(struct kobject *kobj,
2171                                      struct kobj_attribute *attr,
2172                                      const char *buf, size_t count)
2173 {
2174         unsigned long msecs;
2175         int err;
2176
2177         err = kstrtoul(buf, 10, &msecs);
2178         if (err || msecs > UINT_MAX)
2179                 return -EINVAL;
2180
2181         ksm_thread_sleep_millisecs = msecs;
2182
2183         return count;
2184 }
2185 KSM_ATTR(sleep_millisecs);
2186
2187 static ssize_t pages_to_scan_show(struct kobject *kobj,
2188                                   struct kobj_attribute *attr, char *buf)
2189 {
2190         return sprintf(buf, "%u\n", ksm_thread_pages_to_scan);
2191 }
2192
2193 static ssize_t pages_to_scan_store(struct kobject *kobj,
2194                                    struct kobj_attribute *attr,
2195                                    const char *buf, size_t count)
2196 {
2197         int err;
2198         unsigned long nr_pages;
2199
2200         err = kstrtoul(buf, 10, &nr_pages);
2201         if (err || nr_pages > UINT_MAX)
2202                 return -EINVAL;
2203
2204         ksm_thread_pages_to_scan = nr_pages;
2205
2206         return count;
2207 }
2208 KSM_ATTR(pages_to_scan);
2209
2210 static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr,
2211                         char *buf)
2212 {
2213         return sprintf(buf, "%lu\n", ksm_run);
2214 }
2215
2216 static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr,
2217                          const char *buf, size_t count)
2218 {
2219         int err;
2220         unsigned long flags;
2221
2222         err = kstrtoul(buf, 10, &flags);
2223         if (err || flags > UINT_MAX)
2224                 return -EINVAL;
2225         if (flags > KSM_RUN_UNMERGE)
2226                 return -EINVAL;
2227
2228         /*
2229          * KSM_RUN_MERGE sets ksmd running, and 0 stops it running.
2230          * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items,
2231          * breaking COW to free the pages_shared (but leaves mm_slots
2232          * on the list for when ksmd may be set running again).
2233          */
2234
2235         mutex_lock(&ksm_thread_mutex);
2236         wait_while_offlining();
2237         if (ksm_run != flags) {
2238                 ksm_run = flags;
2239                 if (flags & KSM_RUN_UNMERGE) {
2240                         set_current_oom_origin();
2241                         err = unmerge_and_remove_all_rmap_items();
2242                         clear_current_oom_origin();
2243                         if (err) {
2244                                 ksm_run = KSM_RUN_STOP;
2245                                 count = err;
2246                         }
2247                 }
2248         }
2249         mutex_unlock(&ksm_thread_mutex);
2250
2251         if (flags & KSM_RUN_MERGE)
2252                 wake_up_interruptible(&ksm_thread_wait);
2253
2254         return count;
2255 }
2256 KSM_ATTR(run);
2257
2258 static ssize_t deferred_timer_show(struct kobject *kobj,
2259                                     struct kobj_attribute *attr, char *buf)
2260 {
2261         return snprintf(buf, 8, "%d\n", use_deferred_timer);
2262 }
2263
2264 static ssize_t deferred_timer_store(struct kobject *kobj,
2265                                      struct kobj_attribute *attr,
2266                                      const char *buf, size_t count)
2267 {
2268         unsigned long enable;
2269         int err;
2270
2271         err = kstrtoul(buf, 10, &enable);
2272         use_deferred_timer = enable;
2273
2274         return count;
2275 }
2276 KSM_ATTR(deferred_timer);
2277
2278 #ifdef CONFIG_NUMA
2279 static ssize_t merge_across_nodes_show(struct kobject *kobj,
2280                                 struct kobj_attribute *attr, char *buf)
2281 {
2282         return sprintf(buf, "%u\n", ksm_merge_across_nodes);
2283 }
2284
2285 static ssize_t merge_across_nodes_store(struct kobject *kobj,
2286                                    struct kobj_attribute *attr,
2287                                    const char *buf, size_t count)
2288 {
2289         int err;
2290         unsigned long knob;
2291
2292         err = kstrtoul(buf, 10, &knob);
2293         if (err)
2294                 return err;
2295         if (knob > 1)
2296                 return -EINVAL;
2297
2298         mutex_lock(&ksm_thread_mutex);
2299         wait_while_offlining();
2300         if (ksm_merge_across_nodes != knob) {
2301                 if (ksm_pages_shared || remove_all_stable_nodes())
2302                         err = -EBUSY;
2303                 else if (root_stable_tree == one_stable_tree) {
2304                         struct rb_root *buf;
2305                         /*
2306                          * This is the first time that we switch away from the
2307                          * default of merging across nodes: must now allocate
2308                          * a buffer to hold as many roots as may be needed.
2309                          * Allocate stable and unstable together:
2310                          * MAXSMP NODES_SHIFT 10 will use 16kB.
2311                          */
2312                         buf = kcalloc(nr_node_ids + nr_node_ids, sizeof(*buf),
2313                                       GFP_KERNEL);
2314                         /* Let us assume that RB_ROOT is NULL is zero */
2315                         if (!buf)
2316                                 err = -ENOMEM;
2317                         else {
2318                                 root_stable_tree = buf;
2319                                 root_unstable_tree = buf + nr_node_ids;
2320                                 /* Stable tree is empty but not the unstable */
2321                                 root_unstable_tree[0] = one_unstable_tree[0];
2322                         }
2323                 }
2324                 if (!err) {
2325                         ksm_merge_across_nodes = knob;
2326                         ksm_nr_node_ids = knob ? 1 : nr_node_ids;
2327                 }
2328         }
2329         mutex_unlock(&ksm_thread_mutex);
2330
2331         return err ? err : count;
2332 }
2333 KSM_ATTR(merge_across_nodes);
2334 #endif
2335
2336 static ssize_t pages_shared_show(struct kobject *kobj,
2337                                  struct kobj_attribute *attr, char *buf)
2338 {
2339         return sprintf(buf, "%lu\n", ksm_pages_shared);
2340 }
2341 KSM_ATTR_RO(pages_shared);
2342
2343 static ssize_t pages_sharing_show(struct kobject *kobj,
2344                                   struct kobj_attribute *attr, char *buf)
2345 {
2346         return sprintf(buf, "%lu\n", ksm_pages_sharing);
2347 }
2348 KSM_ATTR_RO(pages_sharing);
2349
2350 static ssize_t pages_unshared_show(struct kobject *kobj,
2351                                    struct kobj_attribute *attr, char *buf)
2352 {
2353         return sprintf(buf, "%lu\n", ksm_pages_unshared);
2354 }
2355 KSM_ATTR_RO(pages_unshared);
2356
2357 static ssize_t pages_volatile_show(struct kobject *kobj,
2358                                    struct kobj_attribute *attr, char *buf)
2359 {
2360         long ksm_pages_volatile;
2361
2362         ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared
2363                                 - ksm_pages_sharing - ksm_pages_unshared;
2364         /*
2365          * It was not worth any locking to calculate that statistic,
2366          * but it might therefore sometimes be negative: conceal that.
2367          */
2368         if (ksm_pages_volatile < 0)
2369                 ksm_pages_volatile = 0;
2370         return sprintf(buf, "%ld\n", ksm_pages_volatile);
2371 }
2372 KSM_ATTR_RO(pages_volatile);
2373
2374 static ssize_t full_scans_show(struct kobject *kobj,
2375                                struct kobj_attribute *attr, char *buf)
2376 {
2377         return sprintf(buf, "%lu\n", ksm_scan.seqnr);
2378 }
2379 KSM_ATTR_RO(full_scans);
2380
2381 static struct attribute *ksm_attrs[] = {
2382         &sleep_millisecs_attr.attr,
2383         &pages_to_scan_attr.attr,
2384         &run_attr.attr,
2385         &pages_shared_attr.attr,
2386         &pages_sharing_attr.attr,
2387         &pages_unshared_attr.attr,
2388         &pages_volatile_attr.attr,
2389         &full_scans_attr.attr,
2390         &deferred_timer_attr.attr,
2391 #ifdef CONFIG_NUMA
2392         &merge_across_nodes_attr.attr,
2393 #endif
2394         NULL,
2395 };
2396
2397 static struct attribute_group ksm_attr_group = {
2398         .attrs = ksm_attrs,
2399         .name = "ksm",
2400 };
2401 #endif /* CONFIG_SYSFS */
2402
2403 static int __init ksm_init(void)
2404 {
2405         struct task_struct *ksm_thread;
2406         int err;
2407
2408         err = ksm_slab_init();
2409         if (err)
2410                 goto out;
2411
2412         ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd");
2413         if (IS_ERR(ksm_thread)) {
2414                 pr_err("ksm: creating kthread failed\n");
2415                 err = PTR_ERR(ksm_thread);
2416                 goto out_free;
2417         }
2418
2419 #ifdef CONFIG_SYSFS
2420         err = sysfs_create_group(mm_kobj, &ksm_attr_group);
2421         if (err) {
2422                 pr_err("ksm: register sysfs failed\n");
2423                 kthread_stop(ksm_thread);
2424                 goto out_free;
2425         }
2426 #else
2427         ksm_run = KSM_RUN_MERGE;        /* no way for user to start it */
2428
2429 #endif /* CONFIG_SYSFS */
2430
2431 #ifdef CONFIG_MEMORY_HOTREMOVE
2432         /* There is no significance to this priority 100 */
2433         hotplug_memory_notifier(ksm_memory_callback, 100);
2434 #endif
2435
2436         show_mem_notifier_register(&ksm_show_mem_notifier_block);
2437         return 0;
2438
2439 out_free:
2440         ksm_slab_free();
2441 out:
2442         return err;
2443 }
2444 subsys_initcall(ksm_init);