OSDN Git Service

ksm: prepare to new THP semantics
[uclinux-h8/linux.git] / mm / ksm.c
1 /*
2  * Memory merging support.
3  *
4  * This code enables dynamic sharing of identical pages found in different
5  * memory areas, even if they are not shared by fork()
6  *
7  * Copyright (C) 2008-2009 Red Hat, Inc.
8  * Authors:
9  *      Izik Eidus
10  *      Andrea Arcangeli
11  *      Chris Wright
12  *      Hugh Dickins
13  *
14  * This work is licensed under the terms of the GNU GPL, version 2.
15  */
16
17 #include <linux/errno.h>
18 #include <linux/mm.h>
19 #include <linux/fs.h>
20 #include <linux/mman.h>
21 #include <linux/sched.h>
22 #include <linux/rwsem.h>
23 #include <linux/pagemap.h>
24 #include <linux/rmap.h>
25 #include <linux/spinlock.h>
26 #include <linux/jhash.h>
27 #include <linux/delay.h>
28 #include <linux/kthread.h>
29 #include <linux/wait.h>
30 #include <linux/slab.h>
31 #include <linux/rbtree.h>
32 #include <linux/memory.h>
33 #include <linux/mmu_notifier.h>
34 #include <linux/swap.h>
35 #include <linux/ksm.h>
36 #include <linux/hashtable.h>
37 #include <linux/freezer.h>
38 #include <linux/oom.h>
39 #include <linux/numa.h>
40
41 #include <asm/tlbflush.h>
42 #include "internal.h"
43
44 #ifdef CONFIG_NUMA
45 #define NUMA(x)         (x)
46 #define DO_NUMA(x)      do { (x); } while (0)
47 #else
48 #define NUMA(x)         (0)
49 #define DO_NUMA(x)      do { } while (0)
50 #endif
51
52 /*
53  * A few notes about the KSM scanning process,
54  * to make it easier to understand the data structures below:
55  *
56  * In order to reduce excessive scanning, KSM sorts the memory pages by their
57  * contents into a data structure that holds pointers to the pages' locations.
58  *
59  * Since the contents of the pages may change at any moment, KSM cannot just
60  * insert the pages into a normal sorted tree and expect it to find anything.
61  * Therefore KSM uses two data structures - the stable and the unstable tree.
62  *
63  * The stable tree holds pointers to all the merged pages (ksm pages), sorted
64  * by their contents.  Because each such page is write-protected, searching on
65  * this tree is fully assured to be working (except when pages are unmapped),
66  * and therefore this tree is called the stable tree.
67  *
68  * In addition to the stable tree, KSM uses a second data structure called the
69  * unstable tree: this tree holds pointers to pages which have been found to
70  * be "unchanged for a period of time".  The unstable tree sorts these pages
71  * by their contents, but since they are not write-protected, KSM cannot rely
72  * upon the unstable tree to work correctly - the unstable tree is liable to
73  * be corrupted as its contents are modified, and so it is called unstable.
74  *
75  * KSM solves this problem by several techniques:
76  *
77  * 1) The unstable tree is flushed every time KSM completes scanning all
78  *    memory areas, and then the tree is rebuilt again from the beginning.
79  * 2) KSM will only insert into the unstable tree, pages whose hash value
80  *    has not changed since the previous scan of all memory areas.
81  * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the
82  *    colors of the nodes and not on their contents, assuring that even when
83  *    the tree gets "corrupted" it won't get out of balance, so scanning time
84  *    remains the same (also, searching and inserting nodes in an rbtree uses
85  *    the same algorithm, so we have no overhead when we flush and rebuild).
86  * 4) KSM never flushes the stable tree, which means that even if it were to
87  *    take 10 attempts to find a page in the unstable tree, once it is found,
88  *    it is secured in the stable tree.  (When we scan a new page, we first
89  *    compare it against the stable tree, and then against the unstable tree.)
90  *
91  * If the merge_across_nodes tunable is unset, then KSM maintains multiple
92  * stable trees and multiple unstable trees: one of each for each NUMA node.
93  */
94
95 /**
96  * struct mm_slot - ksm information per mm that is being scanned
97  * @link: link to the mm_slots hash list
98  * @mm_list: link into the mm_slots list, rooted in ksm_mm_head
99  * @rmap_list: head for this mm_slot's singly-linked list of rmap_items
100  * @mm: the mm that this information is valid for
101  */
102 struct mm_slot {
103         struct hlist_node link;
104         struct list_head mm_list;
105         struct rmap_item *rmap_list;
106         struct mm_struct *mm;
107 };
108
109 /**
110  * struct ksm_scan - cursor for scanning
111  * @mm_slot: the current mm_slot we are scanning
112  * @address: the next address inside that to be scanned
113  * @rmap_list: link to the next rmap to be scanned in the rmap_list
114  * @seqnr: count of completed full scans (needed when removing unstable node)
115  *
116  * There is only the one ksm_scan instance of this cursor structure.
117  */
118 struct ksm_scan {
119         struct mm_slot *mm_slot;
120         unsigned long address;
121         struct rmap_item **rmap_list;
122         unsigned long seqnr;
123 };
124
125 /**
126  * struct stable_node - node of the stable rbtree
127  * @node: rb node of this ksm page in the stable tree
128  * @head: (overlaying parent) &migrate_nodes indicates temporarily on that list
129  * @list: linked into migrate_nodes, pending placement in the proper node tree
130  * @hlist: hlist head of rmap_items using this ksm page
131  * @kpfn: page frame number of this ksm page (perhaps temporarily on wrong nid)
132  * @nid: NUMA node id of stable tree in which linked (may not match kpfn)
133  */
134 struct stable_node {
135         union {
136                 struct rb_node node;    /* when node of stable tree */
137                 struct {                /* when listed for migration */
138                         struct list_head *head;
139                         struct list_head list;
140                 };
141         };
142         struct hlist_head hlist;
143         unsigned long kpfn;
144 #ifdef CONFIG_NUMA
145         int nid;
146 #endif
147 };
148
149 /**
150  * struct rmap_item - reverse mapping item for virtual addresses
151  * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list
152  * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree
153  * @nid: NUMA node id of unstable tree in which linked (may not match page)
154  * @mm: the memory structure this rmap_item is pointing into
155  * @address: the virtual address this rmap_item tracks (+ flags in low bits)
156  * @oldchecksum: previous checksum of the page at that virtual address
157  * @node: rb node of this rmap_item in the unstable tree
158  * @head: pointer to stable_node heading this list in the stable tree
159  * @hlist: link into hlist of rmap_items hanging off that stable_node
160  */
161 struct rmap_item {
162         struct rmap_item *rmap_list;
163         union {
164                 struct anon_vma *anon_vma;      /* when stable */
165 #ifdef CONFIG_NUMA
166                 int nid;                /* when node of unstable tree */
167 #endif
168         };
169         struct mm_struct *mm;
170         unsigned long address;          /* + low bits used for flags below */
171         unsigned int oldchecksum;       /* when unstable */
172         union {
173                 struct rb_node node;    /* when node of unstable tree */
174                 struct {                /* when listed from stable tree */
175                         struct stable_node *head;
176                         struct hlist_node hlist;
177                 };
178         };
179 };
180
181 #define SEQNR_MASK      0x0ff   /* low bits of unstable tree seqnr */
182 #define UNSTABLE_FLAG   0x100   /* is a node of the unstable tree */
183 #define STABLE_FLAG     0x200   /* is listed from the stable tree */
184
185 /* The stable and unstable tree heads */
186 static struct rb_root one_stable_tree[1] = { RB_ROOT };
187 static struct rb_root one_unstable_tree[1] = { RB_ROOT };
188 static struct rb_root *root_stable_tree = one_stable_tree;
189 static struct rb_root *root_unstable_tree = one_unstable_tree;
190
191 /* Recently migrated nodes of stable tree, pending proper placement */
192 static LIST_HEAD(migrate_nodes);
193
194 #define MM_SLOTS_HASH_BITS 10
195 static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
196
197 static struct mm_slot ksm_mm_head = {
198         .mm_list = LIST_HEAD_INIT(ksm_mm_head.mm_list),
199 };
200 static struct ksm_scan ksm_scan = {
201         .mm_slot = &ksm_mm_head,
202 };
203
204 static struct kmem_cache *rmap_item_cache;
205 static struct kmem_cache *stable_node_cache;
206 static struct kmem_cache *mm_slot_cache;
207
208 /* The number of nodes in the stable tree */
209 static unsigned long ksm_pages_shared;
210
211 /* The number of page slots additionally sharing those nodes */
212 static unsigned long ksm_pages_sharing;
213
214 /* The number of nodes in the unstable tree */
215 static unsigned long ksm_pages_unshared;
216
217 /* The number of rmap_items in use: to calculate pages_volatile */
218 static unsigned long ksm_rmap_items;
219
220 /* Number of pages ksmd should scan in one batch */
221 static unsigned int ksm_thread_pages_to_scan = 100;
222
223 /* Milliseconds ksmd should sleep between batches */
224 static unsigned int ksm_thread_sleep_millisecs = 20;
225
226 #ifdef CONFIG_NUMA
227 /* Zeroed when merging across nodes is not allowed */
228 static unsigned int ksm_merge_across_nodes = 1;
229 static int ksm_nr_node_ids = 1;
230 #else
231 #define ksm_merge_across_nodes  1U
232 #define ksm_nr_node_ids         1
233 #endif
234
235 #define KSM_RUN_STOP    0
236 #define KSM_RUN_MERGE   1
237 #define KSM_RUN_UNMERGE 2
238 #define KSM_RUN_OFFLINE 4
239 static unsigned long ksm_run = KSM_RUN_STOP;
240 static void wait_while_offlining(void);
241
242 static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait);
243 static DEFINE_MUTEX(ksm_thread_mutex);
244 static DEFINE_SPINLOCK(ksm_mmlist_lock);
245
246 #define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create("ksm_"#__struct,\
247                 sizeof(struct __struct), __alignof__(struct __struct),\
248                 (__flags), NULL)
249
250 static int __init ksm_slab_init(void)
251 {
252         rmap_item_cache = KSM_KMEM_CACHE(rmap_item, 0);
253         if (!rmap_item_cache)
254                 goto out;
255
256         stable_node_cache = KSM_KMEM_CACHE(stable_node, 0);
257         if (!stable_node_cache)
258                 goto out_free1;
259
260         mm_slot_cache = KSM_KMEM_CACHE(mm_slot, 0);
261         if (!mm_slot_cache)
262                 goto out_free2;
263
264         return 0;
265
266 out_free2:
267         kmem_cache_destroy(stable_node_cache);
268 out_free1:
269         kmem_cache_destroy(rmap_item_cache);
270 out:
271         return -ENOMEM;
272 }
273
274 static void __init ksm_slab_free(void)
275 {
276         kmem_cache_destroy(mm_slot_cache);
277         kmem_cache_destroy(stable_node_cache);
278         kmem_cache_destroy(rmap_item_cache);
279         mm_slot_cache = NULL;
280 }
281
282 static inline struct rmap_item *alloc_rmap_item(void)
283 {
284         struct rmap_item *rmap_item;
285
286         rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL);
287         if (rmap_item)
288                 ksm_rmap_items++;
289         return rmap_item;
290 }
291
292 static inline void free_rmap_item(struct rmap_item *rmap_item)
293 {
294         ksm_rmap_items--;
295         rmap_item->mm = NULL;   /* debug safety */
296         kmem_cache_free(rmap_item_cache, rmap_item);
297 }
298
299 static inline struct stable_node *alloc_stable_node(void)
300 {
301         return kmem_cache_alloc(stable_node_cache, GFP_KERNEL);
302 }
303
304 static inline void free_stable_node(struct stable_node *stable_node)
305 {
306         kmem_cache_free(stable_node_cache, stable_node);
307 }
308
309 static inline struct mm_slot *alloc_mm_slot(void)
310 {
311         if (!mm_slot_cache)     /* initialization failed */
312                 return NULL;
313         return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
314 }
315
316 static inline void free_mm_slot(struct mm_slot *mm_slot)
317 {
318         kmem_cache_free(mm_slot_cache, mm_slot);
319 }
320
321 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
322 {
323         struct mm_slot *slot;
324
325         hash_for_each_possible(mm_slots_hash, slot, link, (unsigned long)mm)
326                 if (slot->mm == mm)
327                         return slot;
328
329         return NULL;
330 }
331
332 static void insert_to_mm_slots_hash(struct mm_struct *mm,
333                                     struct mm_slot *mm_slot)
334 {
335         mm_slot->mm = mm;
336         hash_add(mm_slots_hash, &mm_slot->link, (unsigned long)mm);
337 }
338
339 /*
340  * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's
341  * page tables after it has passed through ksm_exit() - which, if necessary,
342  * takes mmap_sem briefly to serialize against them.  ksm_exit() does not set
343  * a special flag: they can just back out as soon as mm_users goes to zero.
344  * ksm_test_exit() is used throughout to make this test for exit: in some
345  * places for correctness, in some places just to avoid unnecessary work.
346  */
347 static inline bool ksm_test_exit(struct mm_struct *mm)
348 {
349         return atomic_read(&mm->mm_users) == 0;
350 }
351
352 /*
353  * We use break_ksm to break COW on a ksm page: it's a stripped down
354  *
355  *      if (get_user_pages(current, mm, addr, 1, 1, 1, &page, NULL) == 1)
356  *              put_page(page);
357  *
358  * but taking great care only to touch a ksm page, in a VM_MERGEABLE vma,
359  * in case the application has unmapped and remapped mm,addr meanwhile.
360  * Could a ksm page appear anywhere else?  Actually yes, in a VM_PFNMAP
361  * mmap of /dev/mem or /dev/kmem, where we would not want to touch it.
362  */
363 static int break_ksm(struct vm_area_struct *vma, unsigned long addr)
364 {
365         struct page *page;
366         int ret = 0;
367
368         do {
369                 cond_resched();
370                 page = follow_page(vma, addr, FOLL_GET | FOLL_MIGRATION);
371                 if (IS_ERR_OR_NULL(page))
372                         break;
373                 if (PageKsm(page))
374                         ret = handle_mm_fault(vma->vm_mm, vma, addr,
375                                                         FAULT_FLAG_WRITE);
376                 else
377                         ret = VM_FAULT_WRITE;
378                 put_page(page);
379         } while (!(ret & (VM_FAULT_WRITE | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | VM_FAULT_OOM)));
380         /*
381          * We must loop because handle_mm_fault() may back out if there's
382          * any difficulty e.g. if pte accessed bit gets updated concurrently.
383          *
384          * VM_FAULT_WRITE is what we have been hoping for: it indicates that
385          * COW has been broken, even if the vma does not permit VM_WRITE;
386          * but note that a concurrent fault might break PageKsm for us.
387          *
388          * VM_FAULT_SIGBUS could occur if we race with truncation of the
389          * backing file, which also invalidates anonymous pages: that's
390          * okay, that truncation will have unmapped the PageKsm for us.
391          *
392          * VM_FAULT_OOM: at the time of writing (late July 2009), setting
393          * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the
394          * current task has TIF_MEMDIE set, and will be OOM killed on return
395          * to user; and ksmd, having no mm, would never be chosen for that.
396          *
397          * But if the mm is in a limited mem_cgroup, then the fault may fail
398          * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and
399          * even ksmd can fail in this way - though it's usually breaking ksm
400          * just to undo a merge it made a moment before, so unlikely to oom.
401          *
402          * That's a pity: we might therefore have more kernel pages allocated
403          * than we're counting as nodes in the stable tree; but ksm_do_scan
404          * will retry to break_cow on each pass, so should recover the page
405          * in due course.  The important thing is to not let VM_MERGEABLE
406          * be cleared while any such pages might remain in the area.
407          */
408         return (ret & VM_FAULT_OOM) ? -ENOMEM : 0;
409 }
410
411 static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm,
412                 unsigned long addr)
413 {
414         struct vm_area_struct *vma;
415         if (ksm_test_exit(mm))
416                 return NULL;
417         vma = find_vma(mm, addr);
418         if (!vma || vma->vm_start > addr)
419                 return NULL;
420         if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
421                 return NULL;
422         return vma;
423 }
424
425 static void break_cow(struct rmap_item *rmap_item)
426 {
427         struct mm_struct *mm = rmap_item->mm;
428         unsigned long addr = rmap_item->address;
429         struct vm_area_struct *vma;
430
431         /*
432          * It is not an accident that whenever we want to break COW
433          * to undo, we also need to drop a reference to the anon_vma.
434          */
435         put_anon_vma(rmap_item->anon_vma);
436
437         down_read(&mm->mmap_sem);
438         vma = find_mergeable_vma(mm, addr);
439         if (vma)
440                 break_ksm(vma, addr);
441         up_read(&mm->mmap_sem);
442 }
443
444 static struct page *get_mergeable_page(struct rmap_item *rmap_item)
445 {
446         struct mm_struct *mm = rmap_item->mm;
447         unsigned long addr = rmap_item->address;
448         struct vm_area_struct *vma;
449         struct page *page;
450
451         down_read(&mm->mmap_sem);
452         vma = find_mergeable_vma(mm, addr);
453         if (!vma)
454                 goto out;
455
456         page = follow_page(vma, addr, FOLL_GET);
457         if (IS_ERR_OR_NULL(page))
458                 goto out;
459         if (PageAnon(page)) {
460                 flush_anon_page(vma, page, addr);
461                 flush_dcache_page(page);
462         } else {
463                 put_page(page);
464 out:
465                 page = NULL;
466         }
467         up_read(&mm->mmap_sem);
468         return page;
469 }
470
471 /*
472  * This helper is used for getting right index into array of tree roots.
473  * When merge_across_nodes knob is set to 1, there are only two rb-trees for
474  * stable and unstable pages from all nodes with roots in index 0. Otherwise,
475  * every node has its own stable and unstable tree.
476  */
477 static inline int get_kpfn_nid(unsigned long kpfn)
478 {
479         return ksm_merge_across_nodes ? 0 : NUMA(pfn_to_nid(kpfn));
480 }
481
482 static void remove_node_from_stable_tree(struct stable_node *stable_node)
483 {
484         struct rmap_item *rmap_item;
485
486         hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
487                 if (rmap_item->hlist.next)
488                         ksm_pages_sharing--;
489                 else
490                         ksm_pages_shared--;
491                 put_anon_vma(rmap_item->anon_vma);
492                 rmap_item->address &= PAGE_MASK;
493                 cond_resched();
494         }
495
496         if (stable_node->head == &migrate_nodes)
497                 list_del(&stable_node->list);
498         else
499                 rb_erase(&stable_node->node,
500                          root_stable_tree + NUMA(stable_node->nid));
501         free_stable_node(stable_node);
502 }
503
504 /*
505  * get_ksm_page: checks if the page indicated by the stable node
506  * is still its ksm page, despite having held no reference to it.
507  * In which case we can trust the content of the page, and it
508  * returns the gotten page; but if the page has now been zapped,
509  * remove the stale node from the stable tree and return NULL.
510  * But beware, the stable node's page might be being migrated.
511  *
512  * You would expect the stable_node to hold a reference to the ksm page.
513  * But if it increments the page's count, swapping out has to wait for
514  * ksmd to come around again before it can free the page, which may take
515  * seconds or even minutes: much too unresponsive.  So instead we use a
516  * "keyhole reference": access to the ksm page from the stable node peeps
517  * out through its keyhole to see if that page still holds the right key,
518  * pointing back to this stable node.  This relies on freeing a PageAnon
519  * page to reset its page->mapping to NULL, and relies on no other use of
520  * a page to put something that might look like our key in page->mapping.
521  * is on its way to being freed; but it is an anomaly to bear in mind.
522  */
523 static struct page *get_ksm_page(struct stable_node *stable_node, bool lock_it)
524 {
525         struct page *page;
526         void *expected_mapping;
527         unsigned long kpfn;
528
529         expected_mapping = (void *)stable_node +
530                                 (PAGE_MAPPING_ANON | PAGE_MAPPING_KSM);
531 again:
532         kpfn = READ_ONCE(stable_node->kpfn);
533         page = pfn_to_page(kpfn);
534
535         /*
536          * page is computed from kpfn, so on most architectures reading
537          * page->mapping is naturally ordered after reading node->kpfn,
538          * but on Alpha we need to be more careful.
539          */
540         smp_read_barrier_depends();
541         if (READ_ONCE(page->mapping) != expected_mapping)
542                 goto stale;
543
544         /*
545          * We cannot do anything with the page while its refcount is 0.
546          * Usually 0 means free, or tail of a higher-order page: in which
547          * case this node is no longer referenced, and should be freed;
548          * however, it might mean that the page is under page_freeze_refs().
549          * The __remove_mapping() case is easy, again the node is now stale;
550          * but if page is swapcache in migrate_page_move_mapping(), it might
551          * still be our page, in which case it's essential to keep the node.
552          */
553         while (!get_page_unless_zero(page)) {
554                 /*
555                  * Another check for page->mapping != expected_mapping would
556                  * work here too.  We have chosen the !PageSwapCache test to
557                  * optimize the common case, when the page is or is about to
558                  * be freed: PageSwapCache is cleared (under spin_lock_irq)
559                  * in the freeze_refs section of __remove_mapping(); but Anon
560                  * page->mapping reset to NULL later, in free_pages_prepare().
561                  */
562                 if (!PageSwapCache(page))
563                         goto stale;
564                 cpu_relax();
565         }
566
567         if (READ_ONCE(page->mapping) != expected_mapping) {
568                 put_page(page);
569                 goto stale;
570         }
571
572         if (lock_it) {
573                 lock_page(page);
574                 if (READ_ONCE(page->mapping) != expected_mapping) {
575                         unlock_page(page);
576                         put_page(page);
577                         goto stale;
578                 }
579         }
580         return page;
581
582 stale:
583         /*
584          * We come here from above when page->mapping or !PageSwapCache
585          * suggests that the node is stale; but it might be under migration.
586          * We need smp_rmb(), matching the smp_wmb() in ksm_migrate_page(),
587          * before checking whether node->kpfn has been changed.
588          */
589         smp_rmb();
590         if (READ_ONCE(stable_node->kpfn) != kpfn)
591                 goto again;
592         remove_node_from_stable_tree(stable_node);
593         return NULL;
594 }
595
596 /*
597  * Removing rmap_item from stable or unstable tree.
598  * This function will clean the information from the stable/unstable tree.
599  */
600 static void remove_rmap_item_from_tree(struct rmap_item *rmap_item)
601 {
602         if (rmap_item->address & STABLE_FLAG) {
603                 struct stable_node *stable_node;
604                 struct page *page;
605
606                 stable_node = rmap_item->head;
607                 page = get_ksm_page(stable_node, true);
608                 if (!page)
609                         goto out;
610
611                 hlist_del(&rmap_item->hlist);
612                 unlock_page(page);
613                 put_page(page);
614
615                 if (!hlist_empty(&stable_node->hlist))
616                         ksm_pages_sharing--;
617                 else
618                         ksm_pages_shared--;
619
620                 put_anon_vma(rmap_item->anon_vma);
621                 rmap_item->address &= PAGE_MASK;
622
623         } else if (rmap_item->address & UNSTABLE_FLAG) {
624                 unsigned char age;
625                 /*
626                  * Usually ksmd can and must skip the rb_erase, because
627                  * root_unstable_tree was already reset to RB_ROOT.
628                  * But be careful when an mm is exiting: do the rb_erase
629                  * if this rmap_item was inserted by this scan, rather
630                  * than left over from before.
631                  */
632                 age = (unsigned char)(ksm_scan.seqnr - rmap_item->address);
633                 BUG_ON(age > 1);
634                 if (!age)
635                         rb_erase(&rmap_item->node,
636                                  root_unstable_tree + NUMA(rmap_item->nid));
637                 ksm_pages_unshared--;
638                 rmap_item->address &= PAGE_MASK;
639         }
640 out:
641         cond_resched();         /* we're called from many long loops */
642 }
643
644 static void remove_trailing_rmap_items(struct mm_slot *mm_slot,
645                                        struct rmap_item **rmap_list)
646 {
647         while (*rmap_list) {
648                 struct rmap_item *rmap_item = *rmap_list;
649                 *rmap_list = rmap_item->rmap_list;
650                 remove_rmap_item_from_tree(rmap_item);
651                 free_rmap_item(rmap_item);
652         }
653 }
654
655 /*
656  * Though it's very tempting to unmerge rmap_items from stable tree rather
657  * than check every pte of a given vma, the locking doesn't quite work for
658  * that - an rmap_item is assigned to the stable tree after inserting ksm
659  * page and upping mmap_sem.  Nor does it fit with the way we skip dup'ing
660  * rmap_items from parent to child at fork time (so as not to waste time
661  * if exit comes before the next scan reaches it).
662  *
663  * Similarly, although we'd like to remove rmap_items (so updating counts
664  * and freeing memory) when unmerging an area, it's easier to leave that
665  * to the next pass of ksmd - consider, for example, how ksmd might be
666  * in cmp_and_merge_page on one of the rmap_items we would be removing.
667  */
668 static int unmerge_ksm_pages(struct vm_area_struct *vma,
669                              unsigned long start, unsigned long end)
670 {
671         unsigned long addr;
672         int err = 0;
673
674         for (addr = start; addr < end && !err; addr += PAGE_SIZE) {
675                 if (ksm_test_exit(vma->vm_mm))
676                         break;
677                 if (signal_pending(current))
678                         err = -ERESTARTSYS;
679                 else
680                         err = break_ksm(vma, addr);
681         }
682         return err;
683 }
684
685 #ifdef CONFIG_SYSFS
686 /*
687  * Only called through the sysfs control interface:
688  */
689 static int remove_stable_node(struct stable_node *stable_node)
690 {
691         struct page *page;
692         int err;
693
694         page = get_ksm_page(stable_node, true);
695         if (!page) {
696                 /*
697                  * get_ksm_page did remove_node_from_stable_tree itself.
698                  */
699                 return 0;
700         }
701
702         if (WARN_ON_ONCE(page_mapped(page))) {
703                 /*
704                  * This should not happen: but if it does, just refuse to let
705                  * merge_across_nodes be switched - there is no need to panic.
706                  */
707                 err = -EBUSY;
708         } else {
709                 /*
710                  * The stable node did not yet appear stale to get_ksm_page(),
711                  * since that allows for an unmapped ksm page to be recognized
712                  * right up until it is freed; but the node is safe to remove.
713                  * This page might be in a pagevec waiting to be freed,
714                  * or it might be PageSwapCache (perhaps under writeback),
715                  * or it might have been removed from swapcache a moment ago.
716                  */
717                 set_page_stable_node(page, NULL);
718                 remove_node_from_stable_tree(stable_node);
719                 err = 0;
720         }
721
722         unlock_page(page);
723         put_page(page);
724         return err;
725 }
726
727 static int remove_all_stable_nodes(void)
728 {
729         struct stable_node *stable_node, *next;
730         int nid;
731         int err = 0;
732
733         for (nid = 0; nid < ksm_nr_node_ids; nid++) {
734                 while (root_stable_tree[nid].rb_node) {
735                         stable_node = rb_entry(root_stable_tree[nid].rb_node,
736                                                 struct stable_node, node);
737                         if (remove_stable_node(stable_node)) {
738                                 err = -EBUSY;
739                                 break;  /* proceed to next nid */
740                         }
741                         cond_resched();
742                 }
743         }
744         list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
745                 if (remove_stable_node(stable_node))
746                         err = -EBUSY;
747                 cond_resched();
748         }
749         return err;
750 }
751
752 static int unmerge_and_remove_all_rmap_items(void)
753 {
754         struct mm_slot *mm_slot;
755         struct mm_struct *mm;
756         struct vm_area_struct *vma;
757         int err = 0;
758
759         spin_lock(&ksm_mmlist_lock);
760         ksm_scan.mm_slot = list_entry(ksm_mm_head.mm_list.next,
761                                                 struct mm_slot, mm_list);
762         spin_unlock(&ksm_mmlist_lock);
763
764         for (mm_slot = ksm_scan.mm_slot;
765                         mm_slot != &ksm_mm_head; mm_slot = ksm_scan.mm_slot) {
766                 mm = mm_slot->mm;
767                 down_read(&mm->mmap_sem);
768                 for (vma = mm->mmap; vma; vma = vma->vm_next) {
769                         if (ksm_test_exit(mm))
770                                 break;
771                         if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
772                                 continue;
773                         err = unmerge_ksm_pages(vma,
774                                                 vma->vm_start, vma->vm_end);
775                         if (err)
776                                 goto error;
777                 }
778
779                 remove_trailing_rmap_items(mm_slot, &mm_slot->rmap_list);
780
781                 spin_lock(&ksm_mmlist_lock);
782                 ksm_scan.mm_slot = list_entry(mm_slot->mm_list.next,
783                                                 struct mm_slot, mm_list);
784                 if (ksm_test_exit(mm)) {
785                         hash_del(&mm_slot->link);
786                         list_del(&mm_slot->mm_list);
787                         spin_unlock(&ksm_mmlist_lock);
788
789                         free_mm_slot(mm_slot);
790                         clear_bit(MMF_VM_MERGEABLE, &mm->flags);
791                         up_read(&mm->mmap_sem);
792                         mmdrop(mm);
793                 } else {
794                         spin_unlock(&ksm_mmlist_lock);
795                         up_read(&mm->mmap_sem);
796                 }
797         }
798
799         /* Clean up stable nodes, but don't worry if some are still busy */
800         remove_all_stable_nodes();
801         ksm_scan.seqnr = 0;
802         return 0;
803
804 error:
805         up_read(&mm->mmap_sem);
806         spin_lock(&ksm_mmlist_lock);
807         ksm_scan.mm_slot = &ksm_mm_head;
808         spin_unlock(&ksm_mmlist_lock);
809         return err;
810 }
811 #endif /* CONFIG_SYSFS */
812
813 static u32 calc_checksum(struct page *page)
814 {
815         u32 checksum;
816         void *addr = kmap_atomic(page);
817         checksum = jhash2(addr, PAGE_SIZE / 4, 17);
818         kunmap_atomic(addr);
819         return checksum;
820 }
821
822 static int memcmp_pages(struct page *page1, struct page *page2)
823 {
824         char *addr1, *addr2;
825         int ret;
826
827         addr1 = kmap_atomic(page1);
828         addr2 = kmap_atomic(page2);
829         ret = memcmp(addr1, addr2, PAGE_SIZE);
830         kunmap_atomic(addr2);
831         kunmap_atomic(addr1);
832         return ret;
833 }
834
835 static inline int pages_identical(struct page *page1, struct page *page2)
836 {
837         return !memcmp_pages(page1, page2);
838 }
839
840 static int write_protect_page(struct vm_area_struct *vma, struct page *page,
841                               pte_t *orig_pte)
842 {
843         struct mm_struct *mm = vma->vm_mm;
844         unsigned long addr;
845         pte_t *ptep;
846         spinlock_t *ptl;
847         int swapped;
848         int err = -EFAULT;
849         unsigned long mmun_start;       /* For mmu_notifiers */
850         unsigned long mmun_end;         /* For mmu_notifiers */
851
852         addr = page_address_in_vma(page, vma);
853         if (addr == -EFAULT)
854                 goto out;
855
856         BUG_ON(PageTransCompound(page));
857
858         mmun_start = addr;
859         mmun_end   = addr + PAGE_SIZE;
860         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
861
862         ptep = page_check_address(page, mm, addr, &ptl, 0);
863         if (!ptep)
864                 goto out_mn;
865
866         if (pte_write(*ptep) || pte_dirty(*ptep)) {
867                 pte_t entry;
868
869                 swapped = PageSwapCache(page);
870                 flush_cache_page(vma, addr, page_to_pfn(page));
871                 /*
872                  * Ok this is tricky, when get_user_pages_fast() run it doesn't
873                  * take any lock, therefore the check that we are going to make
874                  * with the pagecount against the mapcount is racey and
875                  * O_DIRECT can happen right after the check.
876                  * So we clear the pte and flush the tlb before the check
877                  * this assure us that no O_DIRECT can happen after the check
878                  * or in the middle of the check.
879                  */
880                 entry = ptep_clear_flush_notify(vma, addr, ptep);
881                 /*
882                  * Check that no O_DIRECT or similar I/O is in progress on the
883                  * page
884                  */
885                 if (page_mapcount(page) + 1 + swapped != page_count(page)) {
886                         set_pte_at(mm, addr, ptep, entry);
887                         goto out_unlock;
888                 }
889                 if (pte_dirty(entry))
890                         set_page_dirty(page);
891                 entry = pte_mkclean(pte_wrprotect(entry));
892                 set_pte_at_notify(mm, addr, ptep, entry);
893         }
894         *orig_pte = *ptep;
895         err = 0;
896
897 out_unlock:
898         pte_unmap_unlock(ptep, ptl);
899 out_mn:
900         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
901 out:
902         return err;
903 }
904
905 /**
906  * replace_page - replace page in vma by new ksm page
907  * @vma:      vma that holds the pte pointing to page
908  * @page:     the page we are replacing by kpage
909  * @kpage:    the ksm page we replace page by
910  * @orig_pte: the original value of the pte
911  *
912  * Returns 0 on success, -EFAULT on failure.
913  */
914 static int replace_page(struct vm_area_struct *vma, struct page *page,
915                         struct page *kpage, pte_t orig_pte)
916 {
917         struct mm_struct *mm = vma->vm_mm;
918         pmd_t *pmd;
919         pte_t *ptep;
920         spinlock_t *ptl;
921         unsigned long addr;
922         int err = -EFAULT;
923         unsigned long mmun_start;       /* For mmu_notifiers */
924         unsigned long mmun_end;         /* For mmu_notifiers */
925
926         addr = page_address_in_vma(page, vma);
927         if (addr == -EFAULT)
928                 goto out;
929
930         pmd = mm_find_pmd(mm, addr);
931         if (!pmd)
932                 goto out;
933
934         mmun_start = addr;
935         mmun_end   = addr + PAGE_SIZE;
936         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
937
938         ptep = pte_offset_map_lock(mm, pmd, addr, &ptl);
939         if (!pte_same(*ptep, orig_pte)) {
940                 pte_unmap_unlock(ptep, ptl);
941                 goto out_mn;
942         }
943
944         get_page(kpage);
945         page_add_anon_rmap(kpage, vma, addr, false);
946
947         flush_cache_page(vma, addr, pte_pfn(*ptep));
948         ptep_clear_flush_notify(vma, addr, ptep);
949         set_pte_at_notify(mm, addr, ptep, mk_pte(kpage, vma->vm_page_prot));
950
951         page_remove_rmap(page, false);
952         if (!page_mapped(page))
953                 try_to_free_swap(page);
954         put_page(page);
955
956         pte_unmap_unlock(ptep, ptl);
957         err = 0;
958 out_mn:
959         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
960 out:
961         return err;
962 }
963
964 /*
965  * try_to_merge_one_page - take two pages and merge them into one
966  * @vma: the vma that holds the pte pointing to page
967  * @page: the PageAnon page that we want to replace with kpage
968  * @kpage: the PageKsm page that we want to map instead of page,
969  *         or NULL the first time when we want to use page as kpage.
970  *
971  * This function returns 0 if the pages were merged, -EFAULT otherwise.
972  */
973 static int try_to_merge_one_page(struct vm_area_struct *vma,
974                                  struct page *page, struct page *kpage)
975 {
976         pte_t orig_pte = __pte(0);
977         int err = -EFAULT;
978
979         if (page == kpage)                      /* ksm page forked */
980                 return 0;
981
982         if (!PageAnon(page))
983                 goto out;
984
985         /*
986          * We need the page lock to read a stable PageSwapCache in
987          * write_protect_page().  We use trylock_page() instead of
988          * lock_page() because we don't want to wait here - we
989          * prefer to continue scanning and merging different pages,
990          * then come back to this page when it is unlocked.
991          */
992         if (!trylock_page(page))
993                 goto out;
994
995         if (PageTransCompound(page)) {
996                 err = split_huge_page(page);
997                 if (err)
998                         goto out_unlock;
999         }
1000
1001         /*
1002          * If this anonymous page is mapped only here, its pte may need
1003          * to be write-protected.  If it's mapped elsewhere, all of its
1004          * ptes are necessarily already write-protected.  But in either
1005          * case, we need to lock and check page_count is not raised.
1006          */
1007         if (write_protect_page(vma, page, &orig_pte) == 0) {
1008                 if (!kpage) {
1009                         /*
1010                          * While we hold page lock, upgrade page from
1011                          * PageAnon+anon_vma to PageKsm+NULL stable_node:
1012                          * stable_tree_insert() will update stable_node.
1013                          */
1014                         set_page_stable_node(page, NULL);
1015                         mark_page_accessed(page);
1016                         err = 0;
1017                 } else if (pages_identical(page, kpage))
1018                         err = replace_page(vma, page, kpage, orig_pte);
1019         }
1020
1021         if ((vma->vm_flags & VM_LOCKED) && kpage && !err) {
1022                 munlock_vma_page(page);
1023                 if (!PageMlocked(kpage)) {
1024                         unlock_page(page);
1025                         lock_page(kpage);
1026                         mlock_vma_page(kpage);
1027                         page = kpage;           /* for final unlock */
1028                 }
1029         }
1030
1031 out_unlock:
1032         unlock_page(page);
1033 out:
1034         return err;
1035 }
1036
1037 /*
1038  * try_to_merge_with_ksm_page - like try_to_merge_two_pages,
1039  * but no new kernel page is allocated: kpage must already be a ksm page.
1040  *
1041  * This function returns 0 if the pages were merged, -EFAULT otherwise.
1042  */
1043 static int try_to_merge_with_ksm_page(struct rmap_item *rmap_item,
1044                                       struct page *page, struct page *kpage)
1045 {
1046         struct mm_struct *mm = rmap_item->mm;
1047         struct vm_area_struct *vma;
1048         int err = -EFAULT;
1049
1050         down_read(&mm->mmap_sem);
1051         vma = find_mergeable_vma(mm, rmap_item->address);
1052         if (!vma)
1053                 goto out;
1054
1055         err = try_to_merge_one_page(vma, page, kpage);
1056         if (err)
1057                 goto out;
1058
1059         /* Unstable nid is in union with stable anon_vma: remove first */
1060         remove_rmap_item_from_tree(rmap_item);
1061
1062         /* Must get reference to anon_vma while still holding mmap_sem */
1063         rmap_item->anon_vma = vma->anon_vma;
1064         get_anon_vma(vma->anon_vma);
1065 out:
1066         up_read(&mm->mmap_sem);
1067         return err;
1068 }
1069
1070 /*
1071  * try_to_merge_two_pages - take two identical pages and prepare them
1072  * to be merged into one page.
1073  *
1074  * This function returns the kpage if we successfully merged two identical
1075  * pages into one ksm page, NULL otherwise.
1076  *
1077  * Note that this function upgrades page to ksm page: if one of the pages
1078  * is already a ksm page, try_to_merge_with_ksm_page should be used.
1079  */
1080 static struct page *try_to_merge_two_pages(struct rmap_item *rmap_item,
1081                                            struct page *page,
1082                                            struct rmap_item *tree_rmap_item,
1083                                            struct page *tree_page)
1084 {
1085         int err;
1086
1087         err = try_to_merge_with_ksm_page(rmap_item, page, NULL);
1088         if (!err) {
1089                 err = try_to_merge_with_ksm_page(tree_rmap_item,
1090                                                         tree_page, page);
1091                 /*
1092                  * If that fails, we have a ksm page with only one pte
1093                  * pointing to it: so break it.
1094                  */
1095                 if (err)
1096                         break_cow(rmap_item);
1097         }
1098         return err ? NULL : page;
1099 }
1100
1101 /*
1102  * stable_tree_search - search for page inside the stable tree
1103  *
1104  * This function checks if there is a page inside the stable tree
1105  * with identical content to the page that we are scanning right now.
1106  *
1107  * This function returns the stable tree node of identical content if found,
1108  * NULL otherwise.
1109  */
1110 static struct page *stable_tree_search(struct page *page)
1111 {
1112         int nid;
1113         struct rb_root *root;
1114         struct rb_node **new;
1115         struct rb_node *parent;
1116         struct stable_node *stable_node;
1117         struct stable_node *page_node;
1118
1119         page_node = page_stable_node(page);
1120         if (page_node && page_node->head != &migrate_nodes) {
1121                 /* ksm page forked */
1122                 get_page(page);
1123                 return page;
1124         }
1125
1126         nid = get_kpfn_nid(page_to_pfn(page));
1127         root = root_stable_tree + nid;
1128 again:
1129         new = &root->rb_node;
1130         parent = NULL;
1131
1132         while (*new) {
1133                 struct page *tree_page;
1134                 int ret;
1135
1136                 cond_resched();
1137                 stable_node = rb_entry(*new, struct stable_node, node);
1138                 tree_page = get_ksm_page(stable_node, false);
1139                 if (!tree_page) {
1140                         /*
1141                          * If we walked over a stale stable_node,
1142                          * get_ksm_page() will call rb_erase() and it
1143                          * may rebalance the tree from under us. So
1144                          * restart the search from scratch. Returning
1145                          * NULL would be safe too, but we'd generate
1146                          * false negative insertions just because some
1147                          * stable_node was stale.
1148                          */
1149                         goto again;
1150                 }
1151
1152                 ret = memcmp_pages(page, tree_page);
1153                 put_page(tree_page);
1154
1155                 parent = *new;
1156                 if (ret < 0)
1157                         new = &parent->rb_left;
1158                 else if (ret > 0)
1159                         new = &parent->rb_right;
1160                 else {
1161                         /*
1162                          * Lock and unlock the stable_node's page (which
1163                          * might already have been migrated) so that page
1164                          * migration is sure to notice its raised count.
1165                          * It would be more elegant to return stable_node
1166                          * than kpage, but that involves more changes.
1167                          */
1168                         tree_page = get_ksm_page(stable_node, true);
1169                         if (tree_page) {
1170                                 unlock_page(tree_page);
1171                                 if (get_kpfn_nid(stable_node->kpfn) !=
1172                                                 NUMA(stable_node->nid)) {
1173                                         put_page(tree_page);
1174                                         goto replace;
1175                                 }
1176                                 return tree_page;
1177                         }
1178                         /*
1179                          * There is now a place for page_node, but the tree may
1180                          * have been rebalanced, so re-evaluate parent and new.
1181                          */
1182                         if (page_node)
1183                                 goto again;
1184                         return NULL;
1185                 }
1186         }
1187
1188         if (!page_node)
1189                 return NULL;
1190
1191         list_del(&page_node->list);
1192         DO_NUMA(page_node->nid = nid);
1193         rb_link_node(&page_node->node, parent, new);
1194         rb_insert_color(&page_node->node, root);
1195         get_page(page);
1196         return page;
1197
1198 replace:
1199         if (page_node) {
1200                 list_del(&page_node->list);
1201                 DO_NUMA(page_node->nid = nid);
1202                 rb_replace_node(&stable_node->node, &page_node->node, root);
1203                 get_page(page);
1204         } else {
1205                 rb_erase(&stable_node->node, root);
1206                 page = NULL;
1207         }
1208         stable_node->head = &migrate_nodes;
1209         list_add(&stable_node->list, stable_node->head);
1210         return page;
1211 }
1212
1213 /*
1214  * stable_tree_insert - insert stable tree node pointing to new ksm page
1215  * into the stable tree.
1216  *
1217  * This function returns the stable tree node just allocated on success,
1218  * NULL otherwise.
1219  */
1220 static struct stable_node *stable_tree_insert(struct page *kpage)
1221 {
1222         int nid;
1223         unsigned long kpfn;
1224         struct rb_root *root;
1225         struct rb_node **new;
1226         struct rb_node *parent;
1227         struct stable_node *stable_node;
1228
1229         kpfn = page_to_pfn(kpage);
1230         nid = get_kpfn_nid(kpfn);
1231         root = root_stable_tree + nid;
1232 again:
1233         parent = NULL;
1234         new = &root->rb_node;
1235
1236         while (*new) {
1237                 struct page *tree_page;
1238                 int ret;
1239
1240                 cond_resched();
1241                 stable_node = rb_entry(*new, struct stable_node, node);
1242                 tree_page = get_ksm_page(stable_node, false);
1243                 if (!tree_page) {
1244                         /*
1245                          * If we walked over a stale stable_node,
1246                          * get_ksm_page() will call rb_erase() and it
1247                          * may rebalance the tree from under us. So
1248                          * restart the search from scratch. Returning
1249                          * NULL would be safe too, but we'd generate
1250                          * false negative insertions just because some
1251                          * stable_node was stale.
1252                          */
1253                         goto again;
1254                 }
1255
1256                 ret = memcmp_pages(kpage, tree_page);
1257                 put_page(tree_page);
1258
1259                 parent = *new;
1260                 if (ret < 0)
1261                         new = &parent->rb_left;
1262                 else if (ret > 0)
1263                         new = &parent->rb_right;
1264                 else {
1265                         /*
1266                          * It is not a bug that stable_tree_search() didn't
1267                          * find this node: because at that time our page was
1268                          * not yet write-protected, so may have changed since.
1269                          */
1270                         return NULL;
1271                 }
1272         }
1273
1274         stable_node = alloc_stable_node();
1275         if (!stable_node)
1276                 return NULL;
1277
1278         INIT_HLIST_HEAD(&stable_node->hlist);
1279         stable_node->kpfn = kpfn;
1280         set_page_stable_node(kpage, stable_node);
1281         DO_NUMA(stable_node->nid = nid);
1282         rb_link_node(&stable_node->node, parent, new);
1283         rb_insert_color(&stable_node->node, root);
1284
1285         return stable_node;
1286 }
1287
1288 /*
1289  * unstable_tree_search_insert - search for identical page,
1290  * else insert rmap_item into the unstable tree.
1291  *
1292  * This function searches for a page in the unstable tree identical to the
1293  * page currently being scanned; and if no identical page is found in the
1294  * tree, we insert rmap_item as a new object into the unstable tree.
1295  *
1296  * This function returns pointer to rmap_item found to be identical
1297  * to the currently scanned page, NULL otherwise.
1298  *
1299  * This function does both searching and inserting, because they share
1300  * the same walking algorithm in an rbtree.
1301  */
1302 static
1303 struct rmap_item *unstable_tree_search_insert(struct rmap_item *rmap_item,
1304                                               struct page *page,
1305                                               struct page **tree_pagep)
1306 {
1307         struct rb_node **new;
1308         struct rb_root *root;
1309         struct rb_node *parent = NULL;
1310         int nid;
1311
1312         nid = get_kpfn_nid(page_to_pfn(page));
1313         root = root_unstable_tree + nid;
1314         new = &root->rb_node;
1315
1316         while (*new) {
1317                 struct rmap_item *tree_rmap_item;
1318                 struct page *tree_page;
1319                 int ret;
1320
1321                 cond_resched();
1322                 tree_rmap_item = rb_entry(*new, struct rmap_item, node);
1323                 tree_page = get_mergeable_page(tree_rmap_item);
1324                 if (!tree_page)
1325                         return NULL;
1326
1327                 /*
1328                  * Don't substitute a ksm page for a forked page.
1329                  */
1330                 if (page == tree_page) {
1331                         put_page(tree_page);
1332                         return NULL;
1333                 }
1334
1335                 ret = memcmp_pages(page, tree_page);
1336
1337                 parent = *new;
1338                 if (ret < 0) {
1339                         put_page(tree_page);
1340                         new = &parent->rb_left;
1341                 } else if (ret > 0) {
1342                         put_page(tree_page);
1343                         new = &parent->rb_right;
1344                 } else if (!ksm_merge_across_nodes &&
1345                            page_to_nid(tree_page) != nid) {
1346                         /*
1347                          * If tree_page has been migrated to another NUMA node,
1348                          * it will be flushed out and put in the right unstable
1349                          * tree next time: only merge with it when across_nodes.
1350                          */
1351                         put_page(tree_page);
1352                         return NULL;
1353                 } else {
1354                         *tree_pagep = tree_page;
1355                         return tree_rmap_item;
1356                 }
1357         }
1358
1359         rmap_item->address |= UNSTABLE_FLAG;
1360         rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK);
1361         DO_NUMA(rmap_item->nid = nid);
1362         rb_link_node(&rmap_item->node, parent, new);
1363         rb_insert_color(&rmap_item->node, root);
1364
1365         ksm_pages_unshared++;
1366         return NULL;
1367 }
1368
1369 /*
1370  * stable_tree_append - add another rmap_item to the linked list of
1371  * rmap_items hanging off a given node of the stable tree, all sharing
1372  * the same ksm page.
1373  */
1374 static void stable_tree_append(struct rmap_item *rmap_item,
1375                                struct stable_node *stable_node)
1376 {
1377         rmap_item->head = stable_node;
1378         rmap_item->address |= STABLE_FLAG;
1379         hlist_add_head(&rmap_item->hlist, &stable_node->hlist);
1380
1381         if (rmap_item->hlist.next)
1382                 ksm_pages_sharing++;
1383         else
1384                 ksm_pages_shared++;
1385 }
1386
1387 /*
1388  * cmp_and_merge_page - first see if page can be merged into the stable tree;
1389  * if not, compare checksum to previous and if it's the same, see if page can
1390  * be inserted into the unstable tree, or merged with a page already there and
1391  * both transferred to the stable tree.
1392  *
1393  * @page: the page that we are searching identical page to.
1394  * @rmap_item: the reverse mapping into the virtual address of this page
1395  */
1396 static void cmp_and_merge_page(struct page *page, struct rmap_item *rmap_item)
1397 {
1398         struct rmap_item *tree_rmap_item;
1399         struct page *tree_page = NULL;
1400         struct stable_node *stable_node;
1401         struct page *kpage;
1402         unsigned int checksum;
1403         int err;
1404
1405         stable_node = page_stable_node(page);
1406         if (stable_node) {
1407                 if (stable_node->head != &migrate_nodes &&
1408                     get_kpfn_nid(stable_node->kpfn) != NUMA(stable_node->nid)) {
1409                         rb_erase(&stable_node->node,
1410                                  root_stable_tree + NUMA(stable_node->nid));
1411                         stable_node->head = &migrate_nodes;
1412                         list_add(&stable_node->list, stable_node->head);
1413                 }
1414                 if (stable_node->head != &migrate_nodes &&
1415                     rmap_item->head == stable_node)
1416                         return;
1417         }
1418
1419         /* We first start with searching the page inside the stable tree */
1420         kpage = stable_tree_search(page);
1421         if (kpage == page && rmap_item->head == stable_node) {
1422                 put_page(kpage);
1423                 return;
1424         }
1425
1426         remove_rmap_item_from_tree(rmap_item);
1427
1428         if (kpage) {
1429                 err = try_to_merge_with_ksm_page(rmap_item, page, kpage);
1430                 if (!err) {
1431                         /*
1432                          * The page was successfully merged:
1433                          * add its rmap_item to the stable tree.
1434                          */
1435                         lock_page(kpage);
1436                         stable_tree_append(rmap_item, page_stable_node(kpage));
1437                         unlock_page(kpage);
1438                 }
1439                 put_page(kpage);
1440                 return;
1441         }
1442
1443         /*
1444          * If the hash value of the page has changed from the last time
1445          * we calculated it, this page is changing frequently: therefore we
1446          * don't want to insert it in the unstable tree, and we don't want
1447          * to waste our time searching for something identical to it there.
1448          */
1449         checksum = calc_checksum(page);
1450         if (rmap_item->oldchecksum != checksum) {
1451                 rmap_item->oldchecksum = checksum;
1452                 return;
1453         }
1454
1455         tree_rmap_item =
1456                 unstable_tree_search_insert(rmap_item, page, &tree_page);
1457         if (tree_rmap_item) {
1458                 kpage = try_to_merge_two_pages(rmap_item, page,
1459                                                 tree_rmap_item, tree_page);
1460                 put_page(tree_page);
1461                 if (kpage) {
1462                         /*
1463                          * The pages were successfully merged: insert new
1464                          * node in the stable tree and add both rmap_items.
1465                          */
1466                         lock_page(kpage);
1467                         stable_node = stable_tree_insert(kpage);
1468                         if (stable_node) {
1469                                 stable_tree_append(tree_rmap_item, stable_node);
1470                                 stable_tree_append(rmap_item, stable_node);
1471                         }
1472                         unlock_page(kpage);
1473
1474                         /*
1475                          * If we fail to insert the page into the stable tree,
1476                          * we will have 2 virtual addresses that are pointing
1477                          * to a ksm page left outside the stable tree,
1478                          * in which case we need to break_cow on both.
1479                          */
1480                         if (!stable_node) {
1481                                 break_cow(tree_rmap_item);
1482                                 break_cow(rmap_item);
1483                         }
1484                 }
1485         }
1486 }
1487
1488 static struct rmap_item *get_next_rmap_item(struct mm_slot *mm_slot,
1489                                             struct rmap_item **rmap_list,
1490                                             unsigned long addr)
1491 {
1492         struct rmap_item *rmap_item;
1493
1494         while (*rmap_list) {
1495                 rmap_item = *rmap_list;
1496                 if ((rmap_item->address & PAGE_MASK) == addr)
1497                         return rmap_item;
1498                 if (rmap_item->address > addr)
1499                         break;
1500                 *rmap_list = rmap_item->rmap_list;
1501                 remove_rmap_item_from_tree(rmap_item);
1502                 free_rmap_item(rmap_item);
1503         }
1504
1505         rmap_item = alloc_rmap_item();
1506         if (rmap_item) {
1507                 /* It has already been zeroed */
1508                 rmap_item->mm = mm_slot->mm;
1509                 rmap_item->address = addr;
1510                 rmap_item->rmap_list = *rmap_list;
1511                 *rmap_list = rmap_item;
1512         }
1513         return rmap_item;
1514 }
1515
1516 static struct rmap_item *scan_get_next_rmap_item(struct page **page)
1517 {
1518         struct mm_struct *mm;
1519         struct mm_slot *slot;
1520         struct vm_area_struct *vma;
1521         struct rmap_item *rmap_item;
1522         int nid;
1523
1524         if (list_empty(&ksm_mm_head.mm_list))
1525                 return NULL;
1526
1527         slot = ksm_scan.mm_slot;
1528         if (slot == &ksm_mm_head) {
1529                 /*
1530                  * A number of pages can hang around indefinitely on per-cpu
1531                  * pagevecs, raised page count preventing write_protect_page
1532                  * from merging them.  Though it doesn't really matter much,
1533                  * it is puzzling to see some stuck in pages_volatile until
1534                  * other activity jostles them out, and they also prevented
1535                  * LTP's KSM test from succeeding deterministically; so drain
1536                  * them here (here rather than on entry to ksm_do_scan(),
1537                  * so we don't IPI too often when pages_to_scan is set low).
1538                  */
1539                 lru_add_drain_all();
1540
1541                 /*
1542                  * Whereas stale stable_nodes on the stable_tree itself
1543                  * get pruned in the regular course of stable_tree_search(),
1544                  * those moved out to the migrate_nodes list can accumulate:
1545                  * so prune them once before each full scan.
1546                  */
1547                 if (!ksm_merge_across_nodes) {
1548                         struct stable_node *stable_node, *next;
1549                         struct page *page;
1550
1551                         list_for_each_entry_safe(stable_node, next,
1552                                                  &migrate_nodes, list) {
1553                                 page = get_ksm_page(stable_node, false);
1554                                 if (page)
1555                                         put_page(page);
1556                                 cond_resched();
1557                         }
1558                 }
1559
1560                 for (nid = 0; nid < ksm_nr_node_ids; nid++)
1561                         root_unstable_tree[nid] = RB_ROOT;
1562
1563                 spin_lock(&ksm_mmlist_lock);
1564                 slot = list_entry(slot->mm_list.next, struct mm_slot, mm_list);
1565                 ksm_scan.mm_slot = slot;
1566                 spin_unlock(&ksm_mmlist_lock);
1567                 /*
1568                  * Although we tested list_empty() above, a racing __ksm_exit
1569                  * of the last mm on the list may have removed it since then.
1570                  */
1571                 if (slot == &ksm_mm_head)
1572                         return NULL;
1573 next_mm:
1574                 ksm_scan.address = 0;
1575                 ksm_scan.rmap_list = &slot->rmap_list;
1576         }
1577
1578         mm = slot->mm;
1579         down_read(&mm->mmap_sem);
1580         if (ksm_test_exit(mm))
1581                 vma = NULL;
1582         else
1583                 vma = find_vma(mm, ksm_scan.address);
1584
1585         for (; vma; vma = vma->vm_next) {
1586                 if (!(vma->vm_flags & VM_MERGEABLE))
1587                         continue;
1588                 if (ksm_scan.address < vma->vm_start)
1589                         ksm_scan.address = vma->vm_start;
1590                 if (!vma->anon_vma)
1591                         ksm_scan.address = vma->vm_end;
1592
1593                 while (ksm_scan.address < vma->vm_end) {
1594                         if (ksm_test_exit(mm))
1595                                 break;
1596                         *page = follow_page(vma, ksm_scan.address, FOLL_GET);
1597                         if (IS_ERR_OR_NULL(*page)) {
1598                                 ksm_scan.address += PAGE_SIZE;
1599                                 cond_resched();
1600                                 continue;
1601                         }
1602                         if (PageAnon(*page)) {
1603                                 flush_anon_page(vma, *page, ksm_scan.address);
1604                                 flush_dcache_page(*page);
1605                                 rmap_item = get_next_rmap_item(slot,
1606                                         ksm_scan.rmap_list, ksm_scan.address);
1607                                 if (rmap_item) {
1608                                         ksm_scan.rmap_list =
1609                                                         &rmap_item->rmap_list;
1610                                         ksm_scan.address += PAGE_SIZE;
1611                                 } else
1612                                         put_page(*page);
1613                                 up_read(&mm->mmap_sem);
1614                                 return rmap_item;
1615                         }
1616                         put_page(*page);
1617                         ksm_scan.address += PAGE_SIZE;
1618                         cond_resched();
1619                 }
1620         }
1621
1622         if (ksm_test_exit(mm)) {
1623                 ksm_scan.address = 0;
1624                 ksm_scan.rmap_list = &slot->rmap_list;
1625         }
1626         /*
1627          * Nuke all the rmap_items that are above this current rmap:
1628          * because there were no VM_MERGEABLE vmas with such addresses.
1629          */
1630         remove_trailing_rmap_items(slot, ksm_scan.rmap_list);
1631
1632         spin_lock(&ksm_mmlist_lock);
1633         ksm_scan.mm_slot = list_entry(slot->mm_list.next,
1634                                                 struct mm_slot, mm_list);
1635         if (ksm_scan.address == 0) {
1636                 /*
1637                  * We've completed a full scan of all vmas, holding mmap_sem
1638                  * throughout, and found no VM_MERGEABLE: so do the same as
1639                  * __ksm_exit does to remove this mm from all our lists now.
1640                  * This applies either when cleaning up after __ksm_exit
1641                  * (but beware: we can reach here even before __ksm_exit),
1642                  * or when all VM_MERGEABLE areas have been unmapped (and
1643                  * mmap_sem then protects against race with MADV_MERGEABLE).
1644                  */
1645                 hash_del(&slot->link);
1646                 list_del(&slot->mm_list);
1647                 spin_unlock(&ksm_mmlist_lock);
1648
1649                 free_mm_slot(slot);
1650                 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
1651                 up_read(&mm->mmap_sem);
1652                 mmdrop(mm);
1653         } else {
1654                 spin_unlock(&ksm_mmlist_lock);
1655                 up_read(&mm->mmap_sem);
1656         }
1657
1658         /* Repeat until we've completed scanning the whole list */
1659         slot = ksm_scan.mm_slot;
1660         if (slot != &ksm_mm_head)
1661                 goto next_mm;
1662
1663         ksm_scan.seqnr++;
1664         return NULL;
1665 }
1666
1667 /**
1668  * ksm_do_scan  - the ksm scanner main worker function.
1669  * @scan_npages - number of pages we want to scan before we return.
1670  */
1671 static void ksm_do_scan(unsigned int scan_npages)
1672 {
1673         struct rmap_item *rmap_item;
1674         struct page *uninitialized_var(page);
1675
1676         while (scan_npages-- && likely(!freezing(current))) {
1677                 cond_resched();
1678                 rmap_item = scan_get_next_rmap_item(&page);
1679                 if (!rmap_item)
1680                         return;
1681                 cmp_and_merge_page(page, rmap_item);
1682                 put_page(page);
1683         }
1684 }
1685
1686 static int ksmd_should_run(void)
1687 {
1688         return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.mm_list);
1689 }
1690
1691 static int ksm_scan_thread(void *nothing)
1692 {
1693         set_freezable();
1694         set_user_nice(current, 5);
1695
1696         while (!kthread_should_stop()) {
1697                 mutex_lock(&ksm_thread_mutex);
1698                 wait_while_offlining();
1699                 if (ksmd_should_run())
1700                         ksm_do_scan(ksm_thread_pages_to_scan);
1701                 mutex_unlock(&ksm_thread_mutex);
1702
1703                 try_to_freeze();
1704
1705                 if (ksmd_should_run()) {
1706                         schedule_timeout_interruptible(
1707                                 msecs_to_jiffies(ksm_thread_sleep_millisecs));
1708                 } else {
1709                         wait_event_freezable(ksm_thread_wait,
1710                                 ksmd_should_run() || kthread_should_stop());
1711                 }
1712         }
1713         return 0;
1714 }
1715
1716 int ksm_madvise(struct vm_area_struct *vma, unsigned long start,
1717                 unsigned long end, int advice, unsigned long *vm_flags)
1718 {
1719         struct mm_struct *mm = vma->vm_mm;
1720         int err;
1721
1722         switch (advice) {
1723         case MADV_MERGEABLE:
1724                 /*
1725                  * Be somewhat over-protective for now!
1726                  */
1727                 if (*vm_flags & (VM_MERGEABLE | VM_SHARED  | VM_MAYSHARE   |
1728                                  VM_PFNMAP    | VM_IO      | VM_DONTEXPAND |
1729                                  VM_HUGETLB | VM_MIXEDMAP))
1730                         return 0;               /* just ignore the advice */
1731
1732 #ifdef VM_SAO
1733                 if (*vm_flags & VM_SAO)
1734                         return 0;
1735 #endif
1736
1737                 if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
1738                         err = __ksm_enter(mm);
1739                         if (err)
1740                                 return err;
1741                 }
1742
1743                 *vm_flags |= VM_MERGEABLE;
1744                 break;
1745
1746         case MADV_UNMERGEABLE:
1747                 if (!(*vm_flags & VM_MERGEABLE))
1748                         return 0;               /* just ignore the advice */
1749
1750                 if (vma->anon_vma) {
1751                         err = unmerge_ksm_pages(vma, start, end);
1752                         if (err)
1753                                 return err;
1754                 }
1755
1756                 *vm_flags &= ~VM_MERGEABLE;
1757                 break;
1758         }
1759
1760         return 0;
1761 }
1762
1763 int __ksm_enter(struct mm_struct *mm)
1764 {
1765         struct mm_slot *mm_slot;
1766         int needs_wakeup;
1767
1768         mm_slot = alloc_mm_slot();
1769         if (!mm_slot)
1770                 return -ENOMEM;
1771
1772         /* Check ksm_run too?  Would need tighter locking */
1773         needs_wakeup = list_empty(&ksm_mm_head.mm_list);
1774
1775         spin_lock(&ksm_mmlist_lock);
1776         insert_to_mm_slots_hash(mm, mm_slot);
1777         /*
1778          * When KSM_RUN_MERGE (or KSM_RUN_STOP),
1779          * insert just behind the scanning cursor, to let the area settle
1780          * down a little; when fork is followed by immediate exec, we don't
1781          * want ksmd to waste time setting up and tearing down an rmap_list.
1782          *
1783          * But when KSM_RUN_UNMERGE, it's important to insert ahead of its
1784          * scanning cursor, otherwise KSM pages in newly forked mms will be
1785          * missed: then we might as well insert at the end of the list.
1786          */
1787         if (ksm_run & KSM_RUN_UNMERGE)
1788                 list_add_tail(&mm_slot->mm_list, &ksm_mm_head.mm_list);
1789         else
1790                 list_add_tail(&mm_slot->mm_list, &ksm_scan.mm_slot->mm_list);
1791         spin_unlock(&ksm_mmlist_lock);
1792
1793         set_bit(MMF_VM_MERGEABLE, &mm->flags);
1794         atomic_inc(&mm->mm_count);
1795
1796         if (needs_wakeup)
1797                 wake_up_interruptible(&ksm_thread_wait);
1798
1799         return 0;
1800 }
1801
1802 void __ksm_exit(struct mm_struct *mm)
1803 {
1804         struct mm_slot *mm_slot;
1805         int easy_to_free = 0;
1806
1807         /*
1808          * This process is exiting: if it's straightforward (as is the
1809          * case when ksmd was never running), free mm_slot immediately.
1810          * But if it's at the cursor or has rmap_items linked to it, use
1811          * mmap_sem to synchronize with any break_cows before pagetables
1812          * are freed, and leave the mm_slot on the list for ksmd to free.
1813          * Beware: ksm may already have noticed it exiting and freed the slot.
1814          */
1815
1816         spin_lock(&ksm_mmlist_lock);
1817         mm_slot = get_mm_slot(mm);
1818         if (mm_slot && ksm_scan.mm_slot != mm_slot) {
1819                 if (!mm_slot->rmap_list) {
1820                         hash_del(&mm_slot->link);
1821                         list_del(&mm_slot->mm_list);
1822                         easy_to_free = 1;
1823                 } else {
1824                         list_move(&mm_slot->mm_list,
1825                                   &ksm_scan.mm_slot->mm_list);
1826                 }
1827         }
1828         spin_unlock(&ksm_mmlist_lock);
1829
1830         if (easy_to_free) {
1831                 free_mm_slot(mm_slot);
1832                 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
1833                 mmdrop(mm);
1834         } else if (mm_slot) {
1835                 down_write(&mm->mmap_sem);
1836                 up_write(&mm->mmap_sem);
1837         }
1838 }
1839
1840 struct page *ksm_might_need_to_copy(struct page *page,
1841                         struct vm_area_struct *vma, unsigned long address)
1842 {
1843         struct anon_vma *anon_vma = page_anon_vma(page);
1844         struct page *new_page;
1845
1846         if (PageKsm(page)) {
1847                 if (page_stable_node(page) &&
1848                     !(ksm_run & KSM_RUN_UNMERGE))
1849                         return page;    /* no need to copy it */
1850         } else if (!anon_vma) {
1851                 return page;            /* no need to copy it */
1852         } else if (anon_vma->root == vma->anon_vma->root &&
1853                  page->index == linear_page_index(vma, address)) {
1854                 return page;            /* still no need to copy it */
1855         }
1856         if (!PageUptodate(page))
1857                 return page;            /* let do_swap_page report the error */
1858
1859         new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
1860         if (new_page) {
1861                 copy_user_highpage(new_page, page, address, vma);
1862
1863                 SetPageDirty(new_page);
1864                 __SetPageUptodate(new_page);
1865                 __SetPageLocked(new_page);
1866         }
1867
1868         return new_page;
1869 }
1870
1871 int rmap_walk_ksm(struct page *page, struct rmap_walk_control *rwc)
1872 {
1873         struct stable_node *stable_node;
1874         struct rmap_item *rmap_item;
1875         int ret = SWAP_AGAIN;
1876         int search_new_forks = 0;
1877
1878         VM_BUG_ON_PAGE(!PageKsm(page), page);
1879
1880         /*
1881          * Rely on the page lock to protect against concurrent modifications
1882          * to that page's node of the stable tree.
1883          */
1884         VM_BUG_ON_PAGE(!PageLocked(page), page);
1885
1886         stable_node = page_stable_node(page);
1887         if (!stable_node)
1888                 return ret;
1889 again:
1890         hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
1891                 struct anon_vma *anon_vma = rmap_item->anon_vma;
1892                 struct anon_vma_chain *vmac;
1893                 struct vm_area_struct *vma;
1894
1895                 cond_resched();
1896                 anon_vma_lock_read(anon_vma);
1897                 anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root,
1898                                                0, ULONG_MAX) {
1899                         cond_resched();
1900                         vma = vmac->vma;
1901                         if (rmap_item->address < vma->vm_start ||
1902                             rmap_item->address >= vma->vm_end)
1903                                 continue;
1904                         /*
1905                          * Initially we examine only the vma which covers this
1906                          * rmap_item; but later, if there is still work to do,
1907                          * we examine covering vmas in other mms: in case they
1908                          * were forked from the original since ksmd passed.
1909                          */
1910                         if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
1911                                 continue;
1912
1913                         if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1914                                 continue;
1915
1916                         ret = rwc->rmap_one(page, vma,
1917                                         rmap_item->address, rwc->arg);
1918                         if (ret != SWAP_AGAIN) {
1919                                 anon_vma_unlock_read(anon_vma);
1920                                 goto out;
1921                         }
1922                         if (rwc->done && rwc->done(page)) {
1923                                 anon_vma_unlock_read(anon_vma);
1924                                 goto out;
1925                         }
1926                 }
1927                 anon_vma_unlock_read(anon_vma);
1928         }
1929         if (!search_new_forks++)
1930                 goto again;
1931 out:
1932         return ret;
1933 }
1934
1935 #ifdef CONFIG_MIGRATION
1936 void ksm_migrate_page(struct page *newpage, struct page *oldpage)
1937 {
1938         struct stable_node *stable_node;
1939
1940         VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
1941         VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
1942         VM_BUG_ON_PAGE(newpage->mapping != oldpage->mapping, newpage);
1943
1944         stable_node = page_stable_node(newpage);
1945         if (stable_node) {
1946                 VM_BUG_ON_PAGE(stable_node->kpfn != page_to_pfn(oldpage), oldpage);
1947                 stable_node->kpfn = page_to_pfn(newpage);
1948                 /*
1949                  * newpage->mapping was set in advance; now we need smp_wmb()
1950                  * to make sure that the new stable_node->kpfn is visible
1951                  * to get_ksm_page() before it can see that oldpage->mapping
1952                  * has gone stale (or that PageSwapCache has been cleared).
1953                  */
1954                 smp_wmb();
1955                 set_page_stable_node(oldpage, NULL);
1956         }
1957 }
1958 #endif /* CONFIG_MIGRATION */
1959
1960 #ifdef CONFIG_MEMORY_HOTREMOVE
1961 static void wait_while_offlining(void)
1962 {
1963         while (ksm_run & KSM_RUN_OFFLINE) {
1964                 mutex_unlock(&ksm_thread_mutex);
1965                 wait_on_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE),
1966                             TASK_UNINTERRUPTIBLE);
1967                 mutex_lock(&ksm_thread_mutex);
1968         }
1969 }
1970
1971 static void ksm_check_stable_tree(unsigned long start_pfn,
1972                                   unsigned long end_pfn)
1973 {
1974         struct stable_node *stable_node, *next;
1975         struct rb_node *node;
1976         int nid;
1977
1978         for (nid = 0; nid < ksm_nr_node_ids; nid++) {
1979                 node = rb_first(root_stable_tree + nid);
1980                 while (node) {
1981                         stable_node = rb_entry(node, struct stable_node, node);
1982                         if (stable_node->kpfn >= start_pfn &&
1983                             stable_node->kpfn < end_pfn) {
1984                                 /*
1985                                  * Don't get_ksm_page, page has already gone:
1986                                  * which is why we keep kpfn instead of page*
1987                                  */
1988                                 remove_node_from_stable_tree(stable_node);
1989                                 node = rb_first(root_stable_tree + nid);
1990                         } else
1991                                 node = rb_next(node);
1992                         cond_resched();
1993                 }
1994         }
1995         list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
1996                 if (stable_node->kpfn >= start_pfn &&
1997                     stable_node->kpfn < end_pfn)
1998                         remove_node_from_stable_tree(stable_node);
1999                 cond_resched();
2000         }
2001 }
2002
2003 static int ksm_memory_callback(struct notifier_block *self,
2004                                unsigned long action, void *arg)
2005 {
2006         struct memory_notify *mn = arg;
2007
2008         switch (action) {
2009         case MEM_GOING_OFFLINE:
2010                 /*
2011                  * Prevent ksm_do_scan(), unmerge_and_remove_all_rmap_items()
2012                  * and remove_all_stable_nodes() while memory is going offline:
2013                  * it is unsafe for them to touch the stable tree at this time.
2014                  * But unmerge_ksm_pages(), rmap lookups and other entry points
2015                  * which do not need the ksm_thread_mutex are all safe.
2016                  */
2017                 mutex_lock(&ksm_thread_mutex);
2018                 ksm_run |= KSM_RUN_OFFLINE;
2019                 mutex_unlock(&ksm_thread_mutex);
2020                 break;
2021
2022         case MEM_OFFLINE:
2023                 /*
2024                  * Most of the work is done by page migration; but there might
2025                  * be a few stable_nodes left over, still pointing to struct
2026                  * pages which have been offlined: prune those from the tree,
2027                  * otherwise get_ksm_page() might later try to access a
2028                  * non-existent struct page.
2029                  */
2030                 ksm_check_stable_tree(mn->start_pfn,
2031                                       mn->start_pfn + mn->nr_pages);
2032                 /* fallthrough */
2033
2034         case MEM_CANCEL_OFFLINE:
2035                 mutex_lock(&ksm_thread_mutex);
2036                 ksm_run &= ~KSM_RUN_OFFLINE;
2037                 mutex_unlock(&ksm_thread_mutex);
2038
2039                 smp_mb();       /* wake_up_bit advises this */
2040                 wake_up_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE));
2041                 break;
2042         }
2043         return NOTIFY_OK;
2044 }
2045 #else
2046 static void wait_while_offlining(void)
2047 {
2048 }
2049 #endif /* CONFIG_MEMORY_HOTREMOVE */
2050
2051 #ifdef CONFIG_SYSFS
2052 /*
2053  * This all compiles without CONFIG_SYSFS, but is a waste of space.
2054  */
2055
2056 #define KSM_ATTR_RO(_name) \
2057         static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2058 #define KSM_ATTR(_name) \
2059         static struct kobj_attribute _name##_attr = \
2060                 __ATTR(_name, 0644, _name##_show, _name##_store)
2061
2062 static ssize_t sleep_millisecs_show(struct kobject *kobj,
2063                                     struct kobj_attribute *attr, char *buf)
2064 {
2065         return sprintf(buf, "%u\n", ksm_thread_sleep_millisecs);
2066 }
2067
2068 static ssize_t sleep_millisecs_store(struct kobject *kobj,
2069                                      struct kobj_attribute *attr,
2070                                      const char *buf, size_t count)
2071 {
2072         unsigned long msecs;
2073         int err;
2074
2075         err = kstrtoul(buf, 10, &msecs);
2076         if (err || msecs > UINT_MAX)
2077                 return -EINVAL;
2078
2079         ksm_thread_sleep_millisecs = msecs;
2080
2081         return count;
2082 }
2083 KSM_ATTR(sleep_millisecs);
2084
2085 static ssize_t pages_to_scan_show(struct kobject *kobj,
2086                                   struct kobj_attribute *attr, char *buf)
2087 {
2088         return sprintf(buf, "%u\n", ksm_thread_pages_to_scan);
2089 }
2090
2091 static ssize_t pages_to_scan_store(struct kobject *kobj,
2092                                    struct kobj_attribute *attr,
2093                                    const char *buf, size_t count)
2094 {
2095         int err;
2096         unsigned long nr_pages;
2097
2098         err = kstrtoul(buf, 10, &nr_pages);
2099         if (err || nr_pages > UINT_MAX)
2100                 return -EINVAL;
2101
2102         ksm_thread_pages_to_scan = nr_pages;
2103
2104         return count;
2105 }
2106 KSM_ATTR(pages_to_scan);
2107
2108 static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr,
2109                         char *buf)
2110 {
2111         return sprintf(buf, "%lu\n", ksm_run);
2112 }
2113
2114 static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr,
2115                          const char *buf, size_t count)
2116 {
2117         int err;
2118         unsigned long flags;
2119
2120         err = kstrtoul(buf, 10, &flags);
2121         if (err || flags > UINT_MAX)
2122                 return -EINVAL;
2123         if (flags > KSM_RUN_UNMERGE)
2124                 return -EINVAL;
2125
2126         /*
2127          * KSM_RUN_MERGE sets ksmd running, and 0 stops it running.
2128          * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items,
2129          * breaking COW to free the pages_shared (but leaves mm_slots
2130          * on the list for when ksmd may be set running again).
2131          */
2132
2133         mutex_lock(&ksm_thread_mutex);
2134         wait_while_offlining();
2135         if (ksm_run != flags) {
2136                 ksm_run = flags;
2137                 if (flags & KSM_RUN_UNMERGE) {
2138                         set_current_oom_origin();
2139                         err = unmerge_and_remove_all_rmap_items();
2140                         clear_current_oom_origin();
2141                         if (err) {
2142                                 ksm_run = KSM_RUN_STOP;
2143                                 count = err;
2144                         }
2145                 }
2146         }
2147         mutex_unlock(&ksm_thread_mutex);
2148
2149         if (flags & KSM_RUN_MERGE)
2150                 wake_up_interruptible(&ksm_thread_wait);
2151
2152         return count;
2153 }
2154 KSM_ATTR(run);
2155
2156 #ifdef CONFIG_NUMA
2157 static ssize_t merge_across_nodes_show(struct kobject *kobj,
2158                                 struct kobj_attribute *attr, char *buf)
2159 {
2160         return sprintf(buf, "%u\n", ksm_merge_across_nodes);
2161 }
2162
2163 static ssize_t merge_across_nodes_store(struct kobject *kobj,
2164                                    struct kobj_attribute *attr,
2165                                    const char *buf, size_t count)
2166 {
2167         int err;
2168         unsigned long knob;
2169
2170         err = kstrtoul(buf, 10, &knob);
2171         if (err)
2172                 return err;
2173         if (knob > 1)
2174                 return -EINVAL;
2175
2176         mutex_lock(&ksm_thread_mutex);
2177         wait_while_offlining();
2178         if (ksm_merge_across_nodes != knob) {
2179                 if (ksm_pages_shared || remove_all_stable_nodes())
2180                         err = -EBUSY;
2181                 else if (root_stable_tree == one_stable_tree) {
2182                         struct rb_root *buf;
2183                         /*
2184                          * This is the first time that we switch away from the
2185                          * default of merging across nodes: must now allocate
2186                          * a buffer to hold as many roots as may be needed.
2187                          * Allocate stable and unstable together:
2188                          * MAXSMP NODES_SHIFT 10 will use 16kB.
2189                          */
2190                         buf = kcalloc(nr_node_ids + nr_node_ids, sizeof(*buf),
2191                                       GFP_KERNEL);
2192                         /* Let us assume that RB_ROOT is NULL is zero */
2193                         if (!buf)
2194                                 err = -ENOMEM;
2195                         else {
2196                                 root_stable_tree = buf;
2197                                 root_unstable_tree = buf + nr_node_ids;
2198                                 /* Stable tree is empty but not the unstable */
2199                                 root_unstable_tree[0] = one_unstable_tree[0];
2200                         }
2201                 }
2202                 if (!err) {
2203                         ksm_merge_across_nodes = knob;
2204                         ksm_nr_node_ids = knob ? 1 : nr_node_ids;
2205                 }
2206         }
2207         mutex_unlock(&ksm_thread_mutex);
2208
2209         return err ? err : count;
2210 }
2211 KSM_ATTR(merge_across_nodes);
2212 #endif
2213
2214 static ssize_t pages_shared_show(struct kobject *kobj,
2215                                  struct kobj_attribute *attr, char *buf)
2216 {
2217         return sprintf(buf, "%lu\n", ksm_pages_shared);
2218 }
2219 KSM_ATTR_RO(pages_shared);
2220
2221 static ssize_t pages_sharing_show(struct kobject *kobj,
2222                                   struct kobj_attribute *attr, char *buf)
2223 {
2224         return sprintf(buf, "%lu\n", ksm_pages_sharing);
2225 }
2226 KSM_ATTR_RO(pages_sharing);
2227
2228 static ssize_t pages_unshared_show(struct kobject *kobj,
2229                                    struct kobj_attribute *attr, char *buf)
2230 {
2231         return sprintf(buf, "%lu\n", ksm_pages_unshared);
2232 }
2233 KSM_ATTR_RO(pages_unshared);
2234
2235 static ssize_t pages_volatile_show(struct kobject *kobj,
2236                                    struct kobj_attribute *attr, char *buf)
2237 {
2238         long ksm_pages_volatile;
2239
2240         ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared
2241                                 - ksm_pages_sharing - ksm_pages_unshared;
2242         /*
2243          * It was not worth any locking to calculate that statistic,
2244          * but it might therefore sometimes be negative: conceal that.
2245          */
2246         if (ksm_pages_volatile < 0)
2247                 ksm_pages_volatile = 0;
2248         return sprintf(buf, "%ld\n", ksm_pages_volatile);
2249 }
2250 KSM_ATTR_RO(pages_volatile);
2251
2252 static ssize_t full_scans_show(struct kobject *kobj,
2253                                struct kobj_attribute *attr, char *buf)
2254 {
2255         return sprintf(buf, "%lu\n", ksm_scan.seqnr);
2256 }
2257 KSM_ATTR_RO(full_scans);
2258
2259 static struct attribute *ksm_attrs[] = {
2260         &sleep_millisecs_attr.attr,
2261         &pages_to_scan_attr.attr,
2262         &run_attr.attr,
2263         &pages_shared_attr.attr,
2264         &pages_sharing_attr.attr,
2265         &pages_unshared_attr.attr,
2266         &pages_volatile_attr.attr,
2267         &full_scans_attr.attr,
2268 #ifdef CONFIG_NUMA
2269         &merge_across_nodes_attr.attr,
2270 #endif
2271         NULL,
2272 };
2273
2274 static struct attribute_group ksm_attr_group = {
2275         .attrs = ksm_attrs,
2276         .name = "ksm",
2277 };
2278 #endif /* CONFIG_SYSFS */
2279
2280 static int __init ksm_init(void)
2281 {
2282         struct task_struct *ksm_thread;
2283         int err;
2284
2285         err = ksm_slab_init();
2286         if (err)
2287                 goto out;
2288
2289         ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd");
2290         if (IS_ERR(ksm_thread)) {
2291                 pr_err("ksm: creating kthread failed\n");
2292                 err = PTR_ERR(ksm_thread);
2293                 goto out_free;
2294         }
2295
2296 #ifdef CONFIG_SYSFS
2297         err = sysfs_create_group(mm_kobj, &ksm_attr_group);
2298         if (err) {
2299                 pr_err("ksm: register sysfs failed\n");
2300                 kthread_stop(ksm_thread);
2301                 goto out_free;
2302         }
2303 #else
2304         ksm_run = KSM_RUN_MERGE;        /* no way for user to start it */
2305
2306 #endif /* CONFIG_SYSFS */
2307
2308 #ifdef CONFIG_MEMORY_HOTREMOVE
2309         /* There is no significance to this priority 100 */
2310         hotplug_memory_notifier(ksm_memory_callback, 100);
2311 #endif
2312         return 0;
2313
2314 out_free:
2315         ksm_slab_free();
2316 out:
2317         return err;
2318 }
2319 subsys_initcall(ksm_init);