OSDN Git Service

sched/fair: Make sure to update tg contrib for blocked load
[android-x86/kernel.git] / mm / ksm.c
1 /*
2  * Memory merging support.
3  *
4  * This code enables dynamic sharing of identical pages found in different
5  * memory areas, even if they are not shared by fork()
6  *
7  * Copyright (C) 2008-2009 Red Hat, Inc.
8  * Authors:
9  *      Izik Eidus
10  *      Andrea Arcangeli
11  *      Chris Wright
12  *      Hugh Dickins
13  *
14  * This work is licensed under the terms of the GNU GPL, version 2.
15  */
16
17 #include <linux/errno.h>
18 #include <linux/mm.h>
19 #include <linux/fs.h>
20 #include <linux/mman.h>
21 #include <linux/sched.h>
22 #include <linux/sched/mm.h>
23 #include <linux/sched/coredump.h>
24 #include <linux/rwsem.h>
25 #include <linux/pagemap.h>
26 #include <linux/rmap.h>
27 #include <linux/spinlock.h>
28 #include <linux/jhash.h>
29 #include <linux/delay.h>
30 #include <linux/kthread.h>
31 #include <linux/wait.h>
32 #include <linux/slab.h>
33 #include <linux/rbtree.h>
34 #include <linux/memory.h>
35 #include <linux/mmu_notifier.h>
36 #include <linux/swap.h>
37 #include <linux/ksm.h>
38 #include <linux/hashtable.h>
39 #include <linux/freezer.h>
40 #include <linux/oom.h>
41 #include <linux/numa.h>
42
43 #include <asm/tlbflush.h>
44 #include "internal.h"
45
46 #ifdef CONFIG_NUMA
47 #define NUMA(x)         (x)
48 #define DO_NUMA(x)      do { (x); } while (0)
49 #else
50 #define NUMA(x)         (0)
51 #define DO_NUMA(x)      do { } while (0)
52 #endif
53
54 /**
55  * DOC: Overview
56  *
57  * A few notes about the KSM scanning process,
58  * to make it easier to understand the data structures below:
59  *
60  * In order to reduce excessive scanning, KSM sorts the memory pages by their
61  * contents into a data structure that holds pointers to the pages' locations.
62  *
63  * Since the contents of the pages may change at any moment, KSM cannot just
64  * insert the pages into a normal sorted tree and expect it to find anything.
65  * Therefore KSM uses two data structures - the stable and the unstable tree.
66  *
67  * The stable tree holds pointers to all the merged pages (ksm pages), sorted
68  * by their contents.  Because each such page is write-protected, searching on
69  * this tree is fully assured to be working (except when pages are unmapped),
70  * and therefore this tree is called the stable tree.
71  *
72  * The stable tree node includes information required for reverse
73  * mapping from a KSM page to virtual addresses that map this page.
74  *
75  * In order to avoid large latencies of the rmap walks on KSM pages,
76  * KSM maintains two types of nodes in the stable tree:
77  *
78  * * the regular nodes that keep the reverse mapping structures in a
79  *   linked list
80  * * the "chains" that link nodes ("dups") that represent the same
81  *   write protected memory content, but each "dup" corresponds to a
82  *   different KSM page copy of that content
83  *
84  * Internally, the regular nodes, "dups" and "chains" are represented
85  * using the same :c:type:`struct stable_node` structure.
86  *
87  * In addition to the stable tree, KSM uses a second data structure called the
88  * unstable tree: this tree holds pointers to pages which have been found to
89  * be "unchanged for a period of time".  The unstable tree sorts these pages
90  * by their contents, but since they are not write-protected, KSM cannot rely
91  * upon the unstable tree to work correctly - the unstable tree is liable to
92  * be corrupted as its contents are modified, and so it is called unstable.
93  *
94  * KSM solves this problem by several techniques:
95  *
96  * 1) The unstable tree is flushed every time KSM completes scanning all
97  *    memory areas, and then the tree is rebuilt again from the beginning.
98  * 2) KSM will only insert into the unstable tree, pages whose hash value
99  *    has not changed since the previous scan of all memory areas.
100  * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the
101  *    colors of the nodes and not on their contents, assuring that even when
102  *    the tree gets "corrupted" it won't get out of balance, so scanning time
103  *    remains the same (also, searching and inserting nodes in an rbtree uses
104  *    the same algorithm, so we have no overhead when we flush and rebuild).
105  * 4) KSM never flushes the stable tree, which means that even if it were to
106  *    take 10 attempts to find a page in the unstable tree, once it is found,
107  *    it is secured in the stable tree.  (When we scan a new page, we first
108  *    compare it against the stable tree, and then against the unstable tree.)
109  *
110  * If the merge_across_nodes tunable is unset, then KSM maintains multiple
111  * stable trees and multiple unstable trees: one of each for each NUMA node.
112  */
113
114 /**
115  * struct mm_slot - ksm information per mm that is being scanned
116  * @link: link to the mm_slots hash list
117  * @mm_list: link into the mm_slots list, rooted in ksm_mm_head
118  * @rmap_list: head for this mm_slot's singly-linked list of rmap_items
119  * @mm: the mm that this information is valid for
120  */
121 struct mm_slot {
122         struct hlist_node link;
123         struct list_head mm_list;
124         struct rmap_item *rmap_list;
125         struct mm_struct *mm;
126 };
127
128 /**
129  * struct ksm_scan - cursor for scanning
130  * @mm_slot: the current mm_slot we are scanning
131  * @address: the next address inside that to be scanned
132  * @rmap_list: link to the next rmap to be scanned in the rmap_list
133  * @seqnr: count of completed full scans (needed when removing unstable node)
134  *
135  * There is only the one ksm_scan instance of this cursor structure.
136  */
137 struct ksm_scan {
138         struct mm_slot *mm_slot;
139         unsigned long address;
140         struct rmap_item **rmap_list;
141         unsigned long seqnr;
142 };
143
144 /**
145  * struct stable_node - node of the stable rbtree
146  * @node: rb node of this ksm page in the stable tree
147  * @head: (overlaying parent) &migrate_nodes indicates temporarily on that list
148  * @hlist_dup: linked into the stable_node->hlist with a stable_node chain
149  * @list: linked into migrate_nodes, pending placement in the proper node tree
150  * @hlist: hlist head of rmap_items using this ksm page
151  * @kpfn: page frame number of this ksm page (perhaps temporarily on wrong nid)
152  * @chain_prune_time: time of the last full garbage collection
153  * @rmap_hlist_len: number of rmap_item entries in hlist or STABLE_NODE_CHAIN
154  * @nid: NUMA node id of stable tree in which linked (may not match kpfn)
155  */
156 struct stable_node {
157         union {
158                 struct rb_node node;    /* when node of stable tree */
159                 struct {                /* when listed for migration */
160                         struct list_head *head;
161                         struct {
162                                 struct hlist_node hlist_dup;
163                                 struct list_head list;
164                         };
165                 };
166         };
167         struct hlist_head hlist;
168         union {
169                 unsigned long kpfn;
170                 unsigned long chain_prune_time;
171         };
172         /*
173          * STABLE_NODE_CHAIN can be any negative number in
174          * rmap_hlist_len negative range, but better not -1 to be able
175          * to reliably detect underflows.
176          */
177 #define STABLE_NODE_CHAIN -1024
178         int rmap_hlist_len;
179 #ifdef CONFIG_NUMA
180         int nid;
181 #endif
182 };
183
184 /**
185  * struct rmap_item - reverse mapping item for virtual addresses
186  * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list
187  * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree
188  * @nid: NUMA node id of unstable tree in which linked (may not match page)
189  * @mm: the memory structure this rmap_item is pointing into
190  * @address: the virtual address this rmap_item tracks (+ flags in low bits)
191  * @oldchecksum: previous checksum of the page at that virtual address
192  * @node: rb node of this rmap_item in the unstable tree
193  * @head: pointer to stable_node heading this list in the stable tree
194  * @hlist: link into hlist of rmap_items hanging off that stable_node
195  */
196 struct rmap_item {
197         struct rmap_item *rmap_list;
198         union {
199                 struct anon_vma *anon_vma;      /* when stable */
200 #ifdef CONFIG_NUMA
201                 int nid;                /* when node of unstable tree */
202 #endif
203         };
204         struct mm_struct *mm;
205         unsigned long address;          /* + low bits used for flags below */
206         unsigned int oldchecksum;       /* when unstable */
207         union {
208                 struct rb_node node;    /* when node of unstable tree */
209                 struct {                /* when listed from stable tree */
210                         struct stable_node *head;
211                         struct hlist_node hlist;
212                 };
213         };
214 };
215
216 #define SEQNR_MASK      0x0ff   /* low bits of unstable tree seqnr */
217 #define UNSTABLE_FLAG   0x100   /* is a node of the unstable tree */
218 #define STABLE_FLAG     0x200   /* is listed from the stable tree */
219 #define KSM_FLAG_MASK   (SEQNR_MASK|UNSTABLE_FLAG|STABLE_FLAG)
220                                 /* to mask all the flags */
221
222 /* The stable and unstable tree heads */
223 static struct rb_root one_stable_tree[1] = { RB_ROOT };
224 static struct rb_root one_unstable_tree[1] = { RB_ROOT };
225 static struct rb_root *root_stable_tree = one_stable_tree;
226 static struct rb_root *root_unstable_tree = one_unstable_tree;
227
228 /* Recently migrated nodes of stable tree, pending proper placement */
229 static LIST_HEAD(migrate_nodes);
230 #define STABLE_NODE_DUP_HEAD ((struct list_head *)&migrate_nodes.prev)
231
232 #define MM_SLOTS_HASH_BITS 10
233 static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
234
235 static struct mm_slot ksm_mm_head = {
236         .mm_list = LIST_HEAD_INIT(ksm_mm_head.mm_list),
237 };
238 static struct ksm_scan ksm_scan = {
239         .mm_slot = &ksm_mm_head,
240 };
241
242 static struct kmem_cache *rmap_item_cache;
243 static struct kmem_cache *stable_node_cache;
244 static struct kmem_cache *mm_slot_cache;
245
246 /* The number of nodes in the stable tree */
247 static unsigned long ksm_pages_shared;
248
249 /* The number of page slots additionally sharing those nodes */
250 static unsigned long ksm_pages_sharing;
251
252 /* The number of nodes in the unstable tree */
253 static unsigned long ksm_pages_unshared;
254
255 /* The number of rmap_items in use: to calculate pages_volatile */
256 static unsigned long ksm_rmap_items;
257
258 /* The number of stable_node chains */
259 static unsigned long ksm_stable_node_chains;
260
261 /* The number of stable_node dups linked to the stable_node chains */
262 static unsigned long ksm_stable_node_dups;
263
264 /* Delay in pruning stale stable_node_dups in the stable_node_chains */
265 static int ksm_stable_node_chains_prune_millisecs = 2000;
266
267 /* Maximum number of page slots sharing a stable node */
268 static int ksm_max_page_sharing = 256;
269
270 /* Number of pages ksmd should scan in one batch */
271 static unsigned int ksm_thread_pages_to_scan = 100;
272
273 /* Milliseconds ksmd should sleep between batches */
274 static unsigned int ksm_thread_sleep_millisecs = 20;
275
276 /* Checksum of an empty (zeroed) page */
277 static unsigned int zero_checksum __read_mostly;
278
279 /* Whether to merge empty (zeroed) pages with actual zero pages */
280 static bool ksm_use_zero_pages __read_mostly;
281
282 #ifdef CONFIG_NUMA
283 /* Zeroed when merging across nodes is not allowed */
284 static unsigned int ksm_merge_across_nodes = 1;
285 static int ksm_nr_node_ids = 1;
286 #else
287 #define ksm_merge_across_nodes  1U
288 #define ksm_nr_node_ids         1
289 #endif
290
291 #define KSM_RUN_STOP    0
292 #define KSM_RUN_MERGE   1
293 #define KSM_RUN_UNMERGE 2
294 #define KSM_RUN_OFFLINE 4
295 static unsigned long ksm_run = KSM_RUN_STOP;
296 static void wait_while_offlining(void);
297
298 static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait);
299 static DEFINE_MUTEX(ksm_thread_mutex);
300 static DEFINE_SPINLOCK(ksm_mmlist_lock);
301
302 #define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create("ksm_"#__struct,\
303                 sizeof(struct __struct), __alignof__(struct __struct),\
304                 (__flags), NULL)
305
306 static int __init ksm_slab_init(void)
307 {
308         rmap_item_cache = KSM_KMEM_CACHE(rmap_item, 0);
309         if (!rmap_item_cache)
310                 goto out;
311
312         stable_node_cache = KSM_KMEM_CACHE(stable_node, 0);
313         if (!stable_node_cache)
314                 goto out_free1;
315
316         mm_slot_cache = KSM_KMEM_CACHE(mm_slot, 0);
317         if (!mm_slot_cache)
318                 goto out_free2;
319
320         return 0;
321
322 out_free2:
323         kmem_cache_destroy(stable_node_cache);
324 out_free1:
325         kmem_cache_destroy(rmap_item_cache);
326 out:
327         return -ENOMEM;
328 }
329
330 static void __init ksm_slab_free(void)
331 {
332         kmem_cache_destroy(mm_slot_cache);
333         kmem_cache_destroy(stable_node_cache);
334         kmem_cache_destroy(rmap_item_cache);
335         mm_slot_cache = NULL;
336 }
337
338 static __always_inline bool is_stable_node_chain(struct stable_node *chain)
339 {
340         return chain->rmap_hlist_len == STABLE_NODE_CHAIN;
341 }
342
343 static __always_inline bool is_stable_node_dup(struct stable_node *dup)
344 {
345         return dup->head == STABLE_NODE_DUP_HEAD;
346 }
347
348 static inline void stable_node_chain_add_dup(struct stable_node *dup,
349                                              struct stable_node *chain)
350 {
351         VM_BUG_ON(is_stable_node_dup(dup));
352         dup->head = STABLE_NODE_DUP_HEAD;
353         VM_BUG_ON(!is_stable_node_chain(chain));
354         hlist_add_head(&dup->hlist_dup, &chain->hlist);
355         ksm_stable_node_dups++;
356 }
357
358 static inline void __stable_node_dup_del(struct stable_node *dup)
359 {
360         VM_BUG_ON(!is_stable_node_dup(dup));
361         hlist_del(&dup->hlist_dup);
362         ksm_stable_node_dups--;
363 }
364
365 static inline void stable_node_dup_del(struct stable_node *dup)
366 {
367         VM_BUG_ON(is_stable_node_chain(dup));
368         if (is_stable_node_dup(dup))
369                 __stable_node_dup_del(dup);
370         else
371                 rb_erase(&dup->node, root_stable_tree + NUMA(dup->nid));
372 #ifdef CONFIG_DEBUG_VM
373         dup->head = NULL;
374 #endif
375 }
376
377 static inline struct rmap_item *alloc_rmap_item(void)
378 {
379         struct rmap_item *rmap_item;
380
381         rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL |
382                                                 __GFP_NORETRY | __GFP_NOWARN);
383         if (rmap_item)
384                 ksm_rmap_items++;
385         return rmap_item;
386 }
387
388 static inline void free_rmap_item(struct rmap_item *rmap_item)
389 {
390         ksm_rmap_items--;
391         rmap_item->mm = NULL;   /* debug safety */
392         kmem_cache_free(rmap_item_cache, rmap_item);
393 }
394
395 static inline struct stable_node *alloc_stable_node(void)
396 {
397         /*
398          * The allocation can take too long with GFP_KERNEL when memory is under
399          * pressure, which may lead to hung task warnings.  Adding __GFP_HIGH
400          * grants access to memory reserves, helping to avoid this problem.
401          */
402         return kmem_cache_alloc(stable_node_cache, GFP_KERNEL | __GFP_HIGH);
403 }
404
405 static inline void free_stable_node(struct stable_node *stable_node)
406 {
407         VM_BUG_ON(stable_node->rmap_hlist_len &&
408                   !is_stable_node_chain(stable_node));
409         kmem_cache_free(stable_node_cache, stable_node);
410 }
411
412 static inline struct mm_slot *alloc_mm_slot(void)
413 {
414         if (!mm_slot_cache)     /* initialization failed */
415                 return NULL;
416         return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
417 }
418
419 static inline void free_mm_slot(struct mm_slot *mm_slot)
420 {
421         kmem_cache_free(mm_slot_cache, mm_slot);
422 }
423
424 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
425 {
426         struct mm_slot *slot;
427
428         hash_for_each_possible(mm_slots_hash, slot, link, (unsigned long)mm)
429                 if (slot->mm == mm)
430                         return slot;
431
432         return NULL;
433 }
434
435 static void insert_to_mm_slots_hash(struct mm_struct *mm,
436                                     struct mm_slot *mm_slot)
437 {
438         mm_slot->mm = mm;
439         hash_add(mm_slots_hash, &mm_slot->link, (unsigned long)mm);
440 }
441
442 /*
443  * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's
444  * page tables after it has passed through ksm_exit() - which, if necessary,
445  * takes mmap_sem briefly to serialize against them.  ksm_exit() does not set
446  * a special flag: they can just back out as soon as mm_users goes to zero.
447  * ksm_test_exit() is used throughout to make this test for exit: in some
448  * places for correctness, in some places just to avoid unnecessary work.
449  */
450 static inline bool ksm_test_exit(struct mm_struct *mm)
451 {
452         return atomic_read(&mm->mm_users) == 0;
453 }
454
455 /*
456  * We use break_ksm to break COW on a ksm page: it's a stripped down
457  *
458  *      if (get_user_pages(addr, 1, 1, 1, &page, NULL) == 1)
459  *              put_page(page);
460  *
461  * but taking great care only to touch a ksm page, in a VM_MERGEABLE vma,
462  * in case the application has unmapped and remapped mm,addr meanwhile.
463  * Could a ksm page appear anywhere else?  Actually yes, in a VM_PFNMAP
464  * mmap of /dev/mem or /dev/kmem, where we would not want to touch it.
465  *
466  * FAULT_FLAG/FOLL_REMOTE are because we do this outside the context
467  * of the process that owns 'vma'.  We also do not want to enforce
468  * protection keys here anyway.
469  */
470 static int break_ksm(struct vm_area_struct *vma, unsigned long addr)
471 {
472         struct page *page;
473         vm_fault_t ret = 0;
474
475         do {
476                 cond_resched();
477                 page = follow_page(vma, addr,
478                                 FOLL_GET | FOLL_MIGRATION | FOLL_REMOTE);
479                 if (IS_ERR_OR_NULL(page))
480                         break;
481                 if (PageKsm(page))
482                         ret = handle_mm_fault(vma, addr,
483                                         FAULT_FLAG_WRITE | FAULT_FLAG_REMOTE);
484                 else
485                         ret = VM_FAULT_WRITE;
486                 put_page(page);
487         } while (!(ret & (VM_FAULT_WRITE | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | VM_FAULT_OOM)));
488         /*
489          * We must loop because handle_mm_fault() may back out if there's
490          * any difficulty e.g. if pte accessed bit gets updated concurrently.
491          *
492          * VM_FAULT_WRITE is what we have been hoping for: it indicates that
493          * COW has been broken, even if the vma does not permit VM_WRITE;
494          * but note that a concurrent fault might break PageKsm for us.
495          *
496          * VM_FAULT_SIGBUS could occur if we race with truncation of the
497          * backing file, which also invalidates anonymous pages: that's
498          * okay, that truncation will have unmapped the PageKsm for us.
499          *
500          * VM_FAULT_OOM: at the time of writing (late July 2009), setting
501          * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the
502          * current task has TIF_MEMDIE set, and will be OOM killed on return
503          * to user; and ksmd, having no mm, would never be chosen for that.
504          *
505          * But if the mm is in a limited mem_cgroup, then the fault may fail
506          * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and
507          * even ksmd can fail in this way - though it's usually breaking ksm
508          * just to undo a merge it made a moment before, so unlikely to oom.
509          *
510          * That's a pity: we might therefore have more kernel pages allocated
511          * than we're counting as nodes in the stable tree; but ksm_do_scan
512          * will retry to break_cow on each pass, so should recover the page
513          * in due course.  The important thing is to not let VM_MERGEABLE
514          * be cleared while any such pages might remain in the area.
515          */
516         return (ret & VM_FAULT_OOM) ? -ENOMEM : 0;
517 }
518
519 static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm,
520                 unsigned long addr)
521 {
522         struct vm_area_struct *vma;
523         if (ksm_test_exit(mm))
524                 return NULL;
525         vma = find_vma(mm, addr);
526         if (!vma || vma->vm_start > addr)
527                 return NULL;
528         if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
529                 return NULL;
530         return vma;
531 }
532
533 static void break_cow(struct rmap_item *rmap_item)
534 {
535         struct mm_struct *mm = rmap_item->mm;
536         unsigned long addr = rmap_item->address;
537         struct vm_area_struct *vma;
538
539         /*
540          * It is not an accident that whenever we want to break COW
541          * to undo, we also need to drop a reference to the anon_vma.
542          */
543         put_anon_vma(rmap_item->anon_vma);
544
545         down_read(&mm->mmap_sem);
546         vma = find_mergeable_vma(mm, addr);
547         if (vma)
548                 break_ksm(vma, addr);
549         up_read(&mm->mmap_sem);
550 }
551
552 static struct page *get_mergeable_page(struct rmap_item *rmap_item)
553 {
554         struct mm_struct *mm = rmap_item->mm;
555         unsigned long addr = rmap_item->address;
556         struct vm_area_struct *vma;
557         struct page *page;
558
559         down_read(&mm->mmap_sem);
560         vma = find_mergeable_vma(mm, addr);
561         if (!vma)
562                 goto out;
563
564         page = follow_page(vma, addr, FOLL_GET);
565         if (IS_ERR_OR_NULL(page))
566                 goto out;
567         if (PageAnon(page)) {
568                 flush_anon_page(vma, page, addr);
569                 flush_dcache_page(page);
570         } else {
571                 put_page(page);
572 out:
573                 page = NULL;
574         }
575         up_read(&mm->mmap_sem);
576         return page;
577 }
578
579 /*
580  * This helper is used for getting right index into array of tree roots.
581  * When merge_across_nodes knob is set to 1, there are only two rb-trees for
582  * stable and unstable pages from all nodes with roots in index 0. Otherwise,
583  * every node has its own stable and unstable tree.
584  */
585 static inline int get_kpfn_nid(unsigned long kpfn)
586 {
587         return ksm_merge_across_nodes ? 0 : NUMA(pfn_to_nid(kpfn));
588 }
589
590 static struct stable_node *alloc_stable_node_chain(struct stable_node *dup,
591                                                    struct rb_root *root)
592 {
593         struct stable_node *chain = alloc_stable_node();
594         VM_BUG_ON(is_stable_node_chain(dup));
595         if (likely(chain)) {
596                 INIT_HLIST_HEAD(&chain->hlist);
597                 chain->chain_prune_time = jiffies;
598                 chain->rmap_hlist_len = STABLE_NODE_CHAIN;
599 #if defined (CONFIG_DEBUG_VM) && defined(CONFIG_NUMA)
600                 chain->nid = -1; /* debug */
601 #endif
602                 ksm_stable_node_chains++;
603
604                 /*
605                  * Put the stable node chain in the first dimension of
606                  * the stable tree and at the same time remove the old
607                  * stable node.
608                  */
609                 rb_replace_node(&dup->node, &chain->node, root);
610
611                 /*
612                  * Move the old stable node to the second dimension
613                  * queued in the hlist_dup. The invariant is that all
614                  * dup stable_nodes in the chain->hlist point to pages
615                  * that are wrprotected and have the exact same
616                  * content.
617                  */
618                 stable_node_chain_add_dup(dup, chain);
619         }
620         return chain;
621 }
622
623 static inline void free_stable_node_chain(struct stable_node *chain,
624                                           struct rb_root *root)
625 {
626         rb_erase(&chain->node, root);
627         free_stable_node(chain);
628         ksm_stable_node_chains--;
629 }
630
631 static void remove_node_from_stable_tree(struct stable_node *stable_node)
632 {
633         struct rmap_item *rmap_item;
634
635         /* check it's not STABLE_NODE_CHAIN or negative */
636         BUG_ON(stable_node->rmap_hlist_len < 0);
637
638         hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
639                 if (rmap_item->hlist.next)
640                         ksm_pages_sharing--;
641                 else
642                         ksm_pages_shared--;
643                 VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
644                 stable_node->rmap_hlist_len--;
645                 put_anon_vma(rmap_item->anon_vma);
646                 rmap_item->address &= PAGE_MASK;
647                 cond_resched();
648         }
649
650         /*
651          * We need the second aligned pointer of the migrate_nodes
652          * list_head to stay clear from the rb_parent_color union
653          * (aligned and different than any node) and also different
654          * from &migrate_nodes. This will verify that future list.h changes
655          * don't break STABLE_NODE_DUP_HEAD. Only recent gcc can handle it.
656          */
657 #if defined(GCC_VERSION) && GCC_VERSION >= 40903
658         BUILD_BUG_ON(STABLE_NODE_DUP_HEAD <= &migrate_nodes);
659         BUILD_BUG_ON(STABLE_NODE_DUP_HEAD >= &migrate_nodes + 1);
660 #endif
661
662         if (stable_node->head == &migrate_nodes)
663                 list_del(&stable_node->list);
664         else
665                 stable_node_dup_del(stable_node);
666         free_stable_node(stable_node);
667 }
668
669 /*
670  * get_ksm_page: checks if the page indicated by the stable node
671  * is still its ksm page, despite having held no reference to it.
672  * In which case we can trust the content of the page, and it
673  * returns the gotten page; but if the page has now been zapped,
674  * remove the stale node from the stable tree and return NULL.
675  * But beware, the stable node's page might be being migrated.
676  *
677  * You would expect the stable_node to hold a reference to the ksm page.
678  * But if it increments the page's count, swapping out has to wait for
679  * ksmd to come around again before it can free the page, which may take
680  * seconds or even minutes: much too unresponsive.  So instead we use a
681  * "keyhole reference": access to the ksm page from the stable node peeps
682  * out through its keyhole to see if that page still holds the right key,
683  * pointing back to this stable node.  This relies on freeing a PageAnon
684  * page to reset its page->mapping to NULL, and relies on no other use of
685  * a page to put something that might look like our key in page->mapping.
686  * is on its way to being freed; but it is an anomaly to bear in mind.
687  */
688 static struct page *get_ksm_page(struct stable_node *stable_node, bool lock_it)
689 {
690         struct page *page;
691         void *expected_mapping;
692         unsigned long kpfn;
693
694         expected_mapping = (void *)((unsigned long)stable_node |
695                                         PAGE_MAPPING_KSM);
696 again:
697         kpfn = READ_ONCE(stable_node->kpfn); /* Address dependency. */
698         page = pfn_to_page(kpfn);
699         if (READ_ONCE(page->mapping) != expected_mapping)
700                 goto stale;
701
702         /*
703          * We cannot do anything with the page while its refcount is 0.
704          * Usually 0 means free, or tail of a higher-order page: in which
705          * case this node is no longer referenced, and should be freed;
706          * however, it might mean that the page is under page_ref_freeze().
707          * The __remove_mapping() case is easy, again the node is now stale;
708          * but if page is swapcache in migrate_page_move_mapping(), it might
709          * still be our page, in which case it's essential to keep the node.
710          */
711         while (!get_page_unless_zero(page)) {
712                 /*
713                  * Another check for page->mapping != expected_mapping would
714                  * work here too.  We have chosen the !PageSwapCache test to
715                  * optimize the common case, when the page is or is about to
716                  * be freed: PageSwapCache is cleared (under spin_lock_irq)
717                  * in the ref_freeze section of __remove_mapping(); but Anon
718                  * page->mapping reset to NULL later, in free_pages_prepare().
719                  */
720                 if (!PageSwapCache(page))
721                         goto stale;
722                 cpu_relax();
723         }
724
725         if (READ_ONCE(page->mapping) != expected_mapping) {
726                 put_page(page);
727                 goto stale;
728         }
729
730         if (lock_it) {
731                 lock_page(page);
732                 if (READ_ONCE(page->mapping) != expected_mapping) {
733                         unlock_page(page);
734                         put_page(page);
735                         goto stale;
736                 }
737         }
738         return page;
739
740 stale:
741         /*
742          * We come here from above when page->mapping or !PageSwapCache
743          * suggests that the node is stale; but it might be under migration.
744          * We need smp_rmb(), matching the smp_wmb() in ksm_migrate_page(),
745          * before checking whether node->kpfn has been changed.
746          */
747         smp_rmb();
748         if (READ_ONCE(stable_node->kpfn) != kpfn)
749                 goto again;
750         remove_node_from_stable_tree(stable_node);
751         return NULL;
752 }
753
754 /*
755  * Removing rmap_item from stable or unstable tree.
756  * This function will clean the information from the stable/unstable tree.
757  */
758 static void remove_rmap_item_from_tree(struct rmap_item *rmap_item)
759 {
760         if (rmap_item->address & STABLE_FLAG) {
761                 struct stable_node *stable_node;
762                 struct page *page;
763
764                 stable_node = rmap_item->head;
765                 page = get_ksm_page(stable_node, true);
766                 if (!page)
767                         goto out;
768
769                 hlist_del(&rmap_item->hlist);
770                 unlock_page(page);
771                 put_page(page);
772
773                 if (!hlist_empty(&stable_node->hlist))
774                         ksm_pages_sharing--;
775                 else
776                         ksm_pages_shared--;
777                 VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
778                 stable_node->rmap_hlist_len--;
779
780                 put_anon_vma(rmap_item->anon_vma);
781                 rmap_item->head = NULL;
782                 rmap_item->address &= PAGE_MASK;
783
784         } else if (rmap_item->address & UNSTABLE_FLAG) {
785                 unsigned char age;
786                 /*
787                  * Usually ksmd can and must skip the rb_erase, because
788                  * root_unstable_tree was already reset to RB_ROOT.
789                  * But be careful when an mm is exiting: do the rb_erase
790                  * if this rmap_item was inserted by this scan, rather
791                  * than left over from before.
792                  */
793                 age = (unsigned char)(ksm_scan.seqnr - rmap_item->address);
794                 BUG_ON(age > 1);
795                 if (!age)
796                         rb_erase(&rmap_item->node,
797                                  root_unstable_tree + NUMA(rmap_item->nid));
798                 ksm_pages_unshared--;
799                 rmap_item->address &= PAGE_MASK;
800         }
801 out:
802         cond_resched();         /* we're called from many long loops */
803 }
804
805 static void remove_trailing_rmap_items(struct mm_slot *mm_slot,
806                                        struct rmap_item **rmap_list)
807 {
808         while (*rmap_list) {
809                 struct rmap_item *rmap_item = *rmap_list;
810                 *rmap_list = rmap_item->rmap_list;
811                 remove_rmap_item_from_tree(rmap_item);
812                 free_rmap_item(rmap_item);
813         }
814 }
815
816 /*
817  * Though it's very tempting to unmerge rmap_items from stable tree rather
818  * than check every pte of a given vma, the locking doesn't quite work for
819  * that - an rmap_item is assigned to the stable tree after inserting ksm
820  * page and upping mmap_sem.  Nor does it fit with the way we skip dup'ing
821  * rmap_items from parent to child at fork time (so as not to waste time
822  * if exit comes before the next scan reaches it).
823  *
824  * Similarly, although we'd like to remove rmap_items (so updating counts
825  * and freeing memory) when unmerging an area, it's easier to leave that
826  * to the next pass of ksmd - consider, for example, how ksmd might be
827  * in cmp_and_merge_page on one of the rmap_items we would be removing.
828  */
829 static int unmerge_ksm_pages(struct vm_area_struct *vma,
830                              unsigned long start, unsigned long end)
831 {
832         unsigned long addr;
833         int err = 0;
834
835         for (addr = start; addr < end && !err; addr += PAGE_SIZE) {
836                 if (ksm_test_exit(vma->vm_mm))
837                         break;
838                 if (signal_pending(current))
839                         err = -ERESTARTSYS;
840                 else
841                         err = break_ksm(vma, addr);
842         }
843         return err;
844 }
845
846 static inline struct stable_node *page_stable_node(struct page *page)
847 {
848         return PageKsm(page) ? page_rmapping(page) : NULL;
849 }
850
851 static inline void set_page_stable_node(struct page *page,
852                                         struct stable_node *stable_node)
853 {
854         page->mapping = (void *)((unsigned long)stable_node | PAGE_MAPPING_KSM);
855 }
856
857 #ifdef CONFIG_SYSFS
858 /*
859  * Only called through the sysfs control interface:
860  */
861 static int remove_stable_node(struct stable_node *stable_node)
862 {
863         struct page *page;
864         int err;
865
866         page = get_ksm_page(stable_node, true);
867         if (!page) {
868                 /*
869                  * get_ksm_page did remove_node_from_stable_tree itself.
870                  */
871                 return 0;
872         }
873
874         /*
875          * Page could be still mapped if this races with __mmput() running in
876          * between ksm_exit() and exit_mmap(). Just refuse to let
877          * merge_across_nodes/max_page_sharing be switched.
878          */
879         err = -EBUSY;
880         if (!page_mapped(page)) {
881                 /*
882                  * The stable node did not yet appear stale to get_ksm_page(),
883                  * since that allows for an unmapped ksm page to be recognized
884                  * right up until it is freed; but the node is safe to remove.
885                  * This page might be in a pagevec waiting to be freed,
886                  * or it might be PageSwapCache (perhaps under writeback),
887                  * or it might have been removed from swapcache a moment ago.
888                  */
889                 set_page_stable_node(page, NULL);
890                 remove_node_from_stable_tree(stable_node);
891                 err = 0;
892         }
893
894         unlock_page(page);
895         put_page(page);
896         return err;
897 }
898
899 static int remove_stable_node_chain(struct stable_node *stable_node,
900                                     struct rb_root *root)
901 {
902         struct stable_node *dup;
903         struct hlist_node *hlist_safe;
904
905         if (!is_stable_node_chain(stable_node)) {
906                 VM_BUG_ON(is_stable_node_dup(stable_node));
907                 if (remove_stable_node(stable_node))
908                         return true;
909                 else
910                         return false;
911         }
912
913         hlist_for_each_entry_safe(dup, hlist_safe,
914                                   &stable_node->hlist, hlist_dup) {
915                 VM_BUG_ON(!is_stable_node_dup(dup));
916                 if (remove_stable_node(dup))
917                         return true;
918         }
919         BUG_ON(!hlist_empty(&stable_node->hlist));
920         free_stable_node_chain(stable_node, root);
921         return false;
922 }
923
924 static int remove_all_stable_nodes(void)
925 {
926         struct stable_node *stable_node, *next;
927         int nid;
928         int err = 0;
929
930         for (nid = 0; nid < ksm_nr_node_ids; nid++) {
931                 while (root_stable_tree[nid].rb_node) {
932                         stable_node = rb_entry(root_stable_tree[nid].rb_node,
933                                                 struct stable_node, node);
934                         if (remove_stable_node_chain(stable_node,
935                                                      root_stable_tree + nid)) {
936                                 err = -EBUSY;
937                                 break;  /* proceed to next nid */
938                         }
939                         cond_resched();
940                 }
941         }
942         list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
943                 if (remove_stable_node(stable_node))
944                         err = -EBUSY;
945                 cond_resched();
946         }
947         return err;
948 }
949
950 static int unmerge_and_remove_all_rmap_items(void)
951 {
952         struct mm_slot *mm_slot;
953         struct mm_struct *mm;
954         struct vm_area_struct *vma;
955         int err = 0;
956
957         spin_lock(&ksm_mmlist_lock);
958         ksm_scan.mm_slot = list_entry(ksm_mm_head.mm_list.next,
959                                                 struct mm_slot, mm_list);
960         spin_unlock(&ksm_mmlist_lock);
961
962         for (mm_slot = ksm_scan.mm_slot;
963                         mm_slot != &ksm_mm_head; mm_slot = ksm_scan.mm_slot) {
964                 mm = mm_slot->mm;
965                 down_read(&mm->mmap_sem);
966                 for (vma = mm->mmap; vma; vma = vma->vm_next) {
967                         if (ksm_test_exit(mm))
968                                 break;
969                         if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
970                                 continue;
971                         err = unmerge_ksm_pages(vma,
972                                                 vma->vm_start, vma->vm_end);
973                         if (err)
974                                 goto error;
975                 }
976
977                 remove_trailing_rmap_items(mm_slot, &mm_slot->rmap_list);
978                 up_read(&mm->mmap_sem);
979
980                 spin_lock(&ksm_mmlist_lock);
981                 ksm_scan.mm_slot = list_entry(mm_slot->mm_list.next,
982                                                 struct mm_slot, mm_list);
983                 if (ksm_test_exit(mm)) {
984                         hash_del(&mm_slot->link);
985                         list_del(&mm_slot->mm_list);
986                         spin_unlock(&ksm_mmlist_lock);
987
988                         free_mm_slot(mm_slot);
989                         clear_bit(MMF_VM_MERGEABLE, &mm->flags);
990                         mmdrop(mm);
991                 } else
992                         spin_unlock(&ksm_mmlist_lock);
993         }
994
995         /* Clean up stable nodes, but don't worry if some are still busy */
996         remove_all_stable_nodes();
997         ksm_scan.seqnr = 0;
998         return 0;
999
1000 error:
1001         up_read(&mm->mmap_sem);
1002         spin_lock(&ksm_mmlist_lock);
1003         ksm_scan.mm_slot = &ksm_mm_head;
1004         spin_unlock(&ksm_mmlist_lock);
1005         return err;
1006 }
1007 #endif /* CONFIG_SYSFS */
1008
1009 static u32 calc_checksum(struct page *page)
1010 {
1011         u32 checksum;
1012         void *addr = kmap_atomic(page);
1013         checksum = jhash2(addr, PAGE_SIZE / 4, 17);
1014         kunmap_atomic(addr);
1015         return checksum;
1016 }
1017
1018 static int memcmp_pages(struct page *page1, struct page *page2)
1019 {
1020         char *addr1, *addr2;
1021         int ret;
1022
1023         addr1 = kmap_atomic(page1);
1024         addr2 = kmap_atomic(page2);
1025         ret = memcmp(addr1, addr2, PAGE_SIZE);
1026         kunmap_atomic(addr2);
1027         kunmap_atomic(addr1);
1028         return ret;
1029 }
1030
1031 static inline int pages_identical(struct page *page1, struct page *page2)
1032 {
1033         return !memcmp_pages(page1, page2);
1034 }
1035
1036 static int write_protect_page(struct vm_area_struct *vma, struct page *page,
1037                               pte_t *orig_pte)
1038 {
1039         struct mm_struct *mm = vma->vm_mm;
1040         struct page_vma_mapped_walk pvmw = {
1041                 .page = page,
1042                 .vma = vma,
1043         };
1044         int swapped;
1045         int err = -EFAULT;
1046         unsigned long mmun_start;       /* For mmu_notifiers */
1047         unsigned long mmun_end;         /* For mmu_notifiers */
1048
1049         pvmw.address = page_address_in_vma(page, vma);
1050         if (pvmw.address == -EFAULT)
1051                 goto out;
1052
1053         BUG_ON(PageTransCompound(page));
1054
1055         mmun_start = pvmw.address;
1056         mmun_end   = pvmw.address + PAGE_SIZE;
1057         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1058
1059         if (!page_vma_mapped_walk(&pvmw))
1060                 goto out_mn;
1061         if (WARN_ONCE(!pvmw.pte, "Unexpected PMD mapping?"))
1062                 goto out_unlock;
1063
1064         if (pte_write(*pvmw.pte) || pte_dirty(*pvmw.pte) ||
1065             (pte_protnone(*pvmw.pte) && pte_savedwrite(*pvmw.pte)) ||
1066                                                 mm_tlb_flush_pending(mm)) {
1067                 pte_t entry;
1068
1069                 swapped = PageSwapCache(page);
1070                 flush_cache_page(vma, pvmw.address, page_to_pfn(page));
1071                 /*
1072                  * Ok this is tricky, when get_user_pages_fast() run it doesn't
1073                  * take any lock, therefore the check that we are going to make
1074                  * with the pagecount against the mapcount is racey and
1075                  * O_DIRECT can happen right after the check.
1076                  * So we clear the pte and flush the tlb before the check
1077                  * this assure us that no O_DIRECT can happen after the check
1078                  * or in the middle of the check.
1079                  *
1080                  * No need to notify as we are downgrading page table to read
1081                  * only not changing it to point to a new page.
1082                  *
1083                  * See Documentation/vm/mmu_notifier.rst
1084                  */
1085                 entry = ptep_clear_flush(vma, pvmw.address, pvmw.pte);
1086                 /*
1087                  * Check that no O_DIRECT or similar I/O is in progress on the
1088                  * page
1089                  */
1090                 if (page_mapcount(page) + 1 + swapped != page_count(page)) {
1091                         set_pte_at(mm, pvmw.address, pvmw.pte, entry);
1092                         goto out_unlock;
1093                 }
1094                 if (pte_dirty(entry))
1095                         set_page_dirty(page);
1096
1097                 if (pte_protnone(entry))
1098                         entry = pte_mkclean(pte_clear_savedwrite(entry));
1099                 else
1100                         entry = pte_mkclean(pte_wrprotect(entry));
1101                 set_pte_at_notify(mm, pvmw.address, pvmw.pte, entry);
1102         }
1103         *orig_pte = *pvmw.pte;
1104         err = 0;
1105
1106 out_unlock:
1107         page_vma_mapped_walk_done(&pvmw);
1108 out_mn:
1109         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1110 out:
1111         return err;
1112 }
1113
1114 /**
1115  * replace_page - replace page in vma by new ksm page
1116  * @vma:      vma that holds the pte pointing to page
1117  * @page:     the page we are replacing by kpage
1118  * @kpage:    the ksm page we replace page by
1119  * @orig_pte: the original value of the pte
1120  *
1121  * Returns 0 on success, -EFAULT on failure.
1122  */
1123 static int replace_page(struct vm_area_struct *vma, struct page *page,
1124                         struct page *kpage, pte_t orig_pte)
1125 {
1126         struct mm_struct *mm = vma->vm_mm;
1127         pmd_t *pmd;
1128         pte_t *ptep;
1129         pte_t newpte;
1130         spinlock_t *ptl;
1131         unsigned long addr;
1132         int err = -EFAULT;
1133         unsigned long mmun_start;       /* For mmu_notifiers */
1134         unsigned long mmun_end;         /* For mmu_notifiers */
1135
1136         addr = page_address_in_vma(page, vma);
1137         if (addr == -EFAULT)
1138                 goto out;
1139
1140         pmd = mm_find_pmd(mm, addr);
1141         if (!pmd)
1142                 goto out;
1143
1144         mmun_start = addr;
1145         mmun_end   = addr + PAGE_SIZE;
1146         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1147
1148         ptep = pte_offset_map_lock(mm, pmd, addr, &ptl);
1149         if (!pte_same(*ptep, orig_pte)) {
1150                 pte_unmap_unlock(ptep, ptl);
1151                 goto out_mn;
1152         }
1153
1154         /*
1155          * No need to check ksm_use_zero_pages here: we can only have a
1156          * zero_page here if ksm_use_zero_pages was enabled alreaady.
1157          */
1158         if (!is_zero_pfn(page_to_pfn(kpage))) {
1159                 get_page(kpage);
1160                 page_add_anon_rmap(kpage, vma, addr, false);
1161                 newpte = mk_pte(kpage, vma->vm_page_prot);
1162         } else {
1163                 newpte = pte_mkspecial(pfn_pte(page_to_pfn(kpage),
1164                                                vma->vm_page_prot));
1165                 /*
1166                  * We're replacing an anonymous page with a zero page, which is
1167                  * not anonymous. We need to do proper accounting otherwise we
1168                  * will get wrong values in /proc, and a BUG message in dmesg
1169                  * when tearing down the mm.
1170                  */
1171                 dec_mm_counter(mm, MM_ANONPAGES);
1172         }
1173
1174         flush_cache_page(vma, addr, pte_pfn(*ptep));
1175         /*
1176          * No need to notify as we are replacing a read only page with another
1177          * read only page with the same content.
1178          *
1179          * See Documentation/vm/mmu_notifier.rst
1180          */
1181         ptep_clear_flush(vma, addr, ptep);
1182         set_pte_at_notify(mm, addr, ptep, newpte);
1183
1184         page_remove_rmap(page, false);
1185         if (!page_mapped(page))
1186                 try_to_free_swap(page);
1187         put_page(page);
1188
1189         pte_unmap_unlock(ptep, ptl);
1190         err = 0;
1191 out_mn:
1192         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1193 out:
1194         return err;
1195 }
1196
1197 /*
1198  * try_to_merge_one_page - take two pages and merge them into one
1199  * @vma: the vma that holds the pte pointing to page
1200  * @page: the PageAnon page that we want to replace with kpage
1201  * @kpage: the PageKsm page that we want to map instead of page,
1202  *         or NULL the first time when we want to use page as kpage.
1203  *
1204  * This function returns 0 if the pages were merged, -EFAULT otherwise.
1205  */
1206 static int try_to_merge_one_page(struct vm_area_struct *vma,
1207                                  struct page *page, struct page *kpage)
1208 {
1209         pte_t orig_pte = __pte(0);
1210         int err = -EFAULT;
1211
1212         if (page == kpage)                      /* ksm page forked */
1213                 return 0;
1214
1215         if (!PageAnon(page))
1216                 goto out;
1217
1218         /*
1219          * We need the page lock to read a stable PageSwapCache in
1220          * write_protect_page().  We use trylock_page() instead of
1221          * lock_page() because we don't want to wait here - we
1222          * prefer to continue scanning and merging different pages,
1223          * then come back to this page when it is unlocked.
1224          */
1225         if (!trylock_page(page))
1226                 goto out;
1227
1228         if (PageTransCompound(page)) {
1229                 if (split_huge_page(page))
1230                         goto out_unlock;
1231         }
1232
1233         /*
1234          * If this anonymous page is mapped only here, its pte may need
1235          * to be write-protected.  If it's mapped elsewhere, all of its
1236          * ptes are necessarily already write-protected.  But in either
1237          * case, we need to lock and check page_count is not raised.
1238          */
1239         if (write_protect_page(vma, page, &orig_pte) == 0) {
1240                 if (!kpage) {
1241                         /*
1242                          * While we hold page lock, upgrade page from
1243                          * PageAnon+anon_vma to PageKsm+NULL stable_node:
1244                          * stable_tree_insert() will update stable_node.
1245                          */
1246                         set_page_stable_node(page, NULL);
1247                         mark_page_accessed(page);
1248                         /*
1249                          * Page reclaim just frees a clean page with no dirty
1250                          * ptes: make sure that the ksm page would be swapped.
1251                          */
1252                         if (!PageDirty(page))
1253                                 SetPageDirty(page);
1254                         err = 0;
1255                 } else if (pages_identical(page, kpage))
1256                         err = replace_page(vma, page, kpage, orig_pte);
1257         }
1258
1259         if ((vma->vm_flags & VM_LOCKED) && kpage && !err) {
1260                 munlock_vma_page(page);
1261                 if (!PageMlocked(kpage)) {
1262                         unlock_page(page);
1263                         lock_page(kpage);
1264                         mlock_vma_page(kpage);
1265                         page = kpage;           /* for final unlock */
1266                 }
1267         }
1268
1269 out_unlock:
1270         unlock_page(page);
1271 out:
1272         return err;
1273 }
1274
1275 /*
1276  * try_to_merge_with_ksm_page - like try_to_merge_two_pages,
1277  * but no new kernel page is allocated: kpage must already be a ksm page.
1278  *
1279  * This function returns 0 if the pages were merged, -EFAULT otherwise.
1280  */
1281 static int try_to_merge_with_ksm_page(struct rmap_item *rmap_item,
1282                                       struct page *page, struct page *kpage)
1283 {
1284         struct mm_struct *mm = rmap_item->mm;
1285         struct vm_area_struct *vma;
1286         int err = -EFAULT;
1287
1288         down_read(&mm->mmap_sem);
1289         vma = find_mergeable_vma(mm, rmap_item->address);
1290         if (!vma)
1291                 goto out;
1292
1293         err = try_to_merge_one_page(vma, page, kpage);
1294         if (err)
1295                 goto out;
1296
1297         /* Unstable nid is in union with stable anon_vma: remove first */
1298         remove_rmap_item_from_tree(rmap_item);
1299
1300         /* Must get reference to anon_vma while still holding mmap_sem */
1301         rmap_item->anon_vma = vma->anon_vma;
1302         get_anon_vma(vma->anon_vma);
1303 out:
1304         up_read(&mm->mmap_sem);
1305         return err;
1306 }
1307
1308 /*
1309  * try_to_merge_two_pages - take two identical pages and prepare them
1310  * to be merged into one page.
1311  *
1312  * This function returns the kpage if we successfully merged two identical
1313  * pages into one ksm page, NULL otherwise.
1314  *
1315  * Note that this function upgrades page to ksm page: if one of the pages
1316  * is already a ksm page, try_to_merge_with_ksm_page should be used.
1317  */
1318 static struct page *try_to_merge_two_pages(struct rmap_item *rmap_item,
1319                                            struct page *page,
1320                                            struct rmap_item *tree_rmap_item,
1321                                            struct page *tree_page)
1322 {
1323         int err;
1324
1325         err = try_to_merge_with_ksm_page(rmap_item, page, NULL);
1326         if (!err) {
1327                 err = try_to_merge_with_ksm_page(tree_rmap_item,
1328                                                         tree_page, page);
1329                 /*
1330                  * If that fails, we have a ksm page with only one pte
1331                  * pointing to it: so break it.
1332                  */
1333                 if (err)
1334                         break_cow(rmap_item);
1335         }
1336         return err ? NULL : page;
1337 }
1338
1339 static __always_inline
1340 bool __is_page_sharing_candidate(struct stable_node *stable_node, int offset)
1341 {
1342         VM_BUG_ON(stable_node->rmap_hlist_len < 0);
1343         /*
1344          * Check that at least one mapping still exists, otherwise
1345          * there's no much point to merge and share with this
1346          * stable_node, as the underlying tree_page of the other
1347          * sharer is going to be freed soon.
1348          */
1349         return stable_node->rmap_hlist_len &&
1350                 stable_node->rmap_hlist_len + offset < ksm_max_page_sharing;
1351 }
1352
1353 static __always_inline
1354 bool is_page_sharing_candidate(struct stable_node *stable_node)
1355 {
1356         return __is_page_sharing_candidate(stable_node, 0);
1357 }
1358
1359 static struct page *stable_node_dup(struct stable_node **_stable_node_dup,
1360                                     struct stable_node **_stable_node,
1361                                     struct rb_root *root,
1362                                     bool prune_stale_stable_nodes)
1363 {
1364         struct stable_node *dup, *found = NULL, *stable_node = *_stable_node;
1365         struct hlist_node *hlist_safe;
1366         struct page *_tree_page, *tree_page = NULL;
1367         int nr = 0;
1368         int found_rmap_hlist_len;
1369
1370         if (!prune_stale_stable_nodes ||
1371             time_before(jiffies, stable_node->chain_prune_time +
1372                         msecs_to_jiffies(
1373                                 ksm_stable_node_chains_prune_millisecs)))
1374                 prune_stale_stable_nodes = false;
1375         else
1376                 stable_node->chain_prune_time = jiffies;
1377
1378         hlist_for_each_entry_safe(dup, hlist_safe,
1379                                   &stable_node->hlist, hlist_dup) {
1380                 cond_resched();
1381                 /*
1382                  * We must walk all stable_node_dup to prune the stale
1383                  * stable nodes during lookup.
1384                  *
1385                  * get_ksm_page can drop the nodes from the
1386                  * stable_node->hlist if they point to freed pages
1387                  * (that's why we do a _safe walk). The "dup"
1388                  * stable_node parameter itself will be freed from
1389                  * under us if it returns NULL.
1390                  */
1391                 _tree_page = get_ksm_page(dup, false);
1392                 if (!_tree_page)
1393                         continue;
1394                 nr += 1;
1395                 if (is_page_sharing_candidate(dup)) {
1396                         if (!found ||
1397                             dup->rmap_hlist_len > found_rmap_hlist_len) {
1398                                 if (found)
1399                                         put_page(tree_page);
1400                                 found = dup;
1401                                 found_rmap_hlist_len = found->rmap_hlist_len;
1402                                 tree_page = _tree_page;
1403
1404                                 /* skip put_page for found dup */
1405                                 if (!prune_stale_stable_nodes)
1406                                         break;
1407                                 continue;
1408                         }
1409                 }
1410                 put_page(_tree_page);
1411         }
1412
1413         if (found) {
1414                 /*
1415                  * nr is counting all dups in the chain only if
1416                  * prune_stale_stable_nodes is true, otherwise we may
1417                  * break the loop at nr == 1 even if there are
1418                  * multiple entries.
1419                  */
1420                 if (prune_stale_stable_nodes && nr == 1) {
1421                         /*
1422                          * If there's not just one entry it would
1423                          * corrupt memory, better BUG_ON. In KSM
1424                          * context with no lock held it's not even
1425                          * fatal.
1426                          */
1427                         BUG_ON(stable_node->hlist.first->next);
1428
1429                         /*
1430                          * There's just one entry and it is below the
1431                          * deduplication limit so drop the chain.
1432                          */
1433                         rb_replace_node(&stable_node->node, &found->node,
1434                                         root);
1435                         free_stable_node(stable_node);
1436                         ksm_stable_node_chains--;
1437                         ksm_stable_node_dups--;
1438                         /*
1439                          * NOTE: the caller depends on the stable_node
1440                          * to be equal to stable_node_dup if the chain
1441                          * was collapsed.
1442                          */
1443                         *_stable_node = found;
1444                         /*
1445                          * Just for robustneess as stable_node is
1446                          * otherwise left as a stable pointer, the
1447                          * compiler shall optimize it away at build
1448                          * time.
1449                          */
1450                         stable_node = NULL;
1451                 } else if (stable_node->hlist.first != &found->hlist_dup &&
1452                            __is_page_sharing_candidate(found, 1)) {
1453                         /*
1454                          * If the found stable_node dup can accept one
1455                          * more future merge (in addition to the one
1456                          * that is underway) and is not at the head of
1457                          * the chain, put it there so next search will
1458                          * be quicker in the !prune_stale_stable_nodes
1459                          * case.
1460                          *
1461                          * NOTE: it would be inaccurate to use nr > 1
1462                          * instead of checking the hlist.first pointer
1463                          * directly, because in the
1464                          * prune_stale_stable_nodes case "nr" isn't
1465                          * the position of the found dup in the chain,
1466                          * but the total number of dups in the chain.
1467                          */
1468                         hlist_del(&found->hlist_dup);
1469                         hlist_add_head(&found->hlist_dup,
1470                                        &stable_node->hlist);
1471                 }
1472         }
1473
1474         *_stable_node_dup = found;
1475         return tree_page;
1476 }
1477
1478 static struct stable_node *stable_node_dup_any(struct stable_node *stable_node,
1479                                                struct rb_root *root)
1480 {
1481         if (!is_stable_node_chain(stable_node))
1482                 return stable_node;
1483         if (hlist_empty(&stable_node->hlist)) {
1484                 free_stable_node_chain(stable_node, root);
1485                 return NULL;
1486         }
1487         return hlist_entry(stable_node->hlist.first,
1488                            typeof(*stable_node), hlist_dup);
1489 }
1490
1491 /*
1492  * Like for get_ksm_page, this function can free the *_stable_node and
1493  * *_stable_node_dup if the returned tree_page is NULL.
1494  *
1495  * It can also free and overwrite *_stable_node with the found
1496  * stable_node_dup if the chain is collapsed (in which case
1497  * *_stable_node will be equal to *_stable_node_dup like if the chain
1498  * never existed). It's up to the caller to verify tree_page is not
1499  * NULL before dereferencing *_stable_node or *_stable_node_dup.
1500  *
1501  * *_stable_node_dup is really a second output parameter of this
1502  * function and will be overwritten in all cases, the caller doesn't
1503  * need to initialize it.
1504  */
1505 static struct page *__stable_node_chain(struct stable_node **_stable_node_dup,
1506                                         struct stable_node **_stable_node,
1507                                         struct rb_root *root,
1508                                         bool prune_stale_stable_nodes)
1509 {
1510         struct stable_node *stable_node = *_stable_node;
1511         if (!is_stable_node_chain(stable_node)) {
1512                 if (is_page_sharing_candidate(stable_node)) {
1513                         *_stable_node_dup = stable_node;
1514                         return get_ksm_page(stable_node, false);
1515                 }
1516                 /*
1517                  * _stable_node_dup set to NULL means the stable_node
1518                  * reached the ksm_max_page_sharing limit.
1519                  */
1520                 *_stable_node_dup = NULL;
1521                 return NULL;
1522         }
1523         return stable_node_dup(_stable_node_dup, _stable_node, root,
1524                                prune_stale_stable_nodes);
1525 }
1526
1527 static __always_inline struct page *chain_prune(struct stable_node **s_n_d,
1528                                                 struct stable_node **s_n,
1529                                                 struct rb_root *root)
1530 {
1531         return __stable_node_chain(s_n_d, s_n, root, true);
1532 }
1533
1534 static __always_inline struct page *chain(struct stable_node **s_n_d,
1535                                           struct stable_node *s_n,
1536                                           struct rb_root *root)
1537 {
1538         struct stable_node *old_stable_node = s_n;
1539         struct page *tree_page;
1540
1541         tree_page = __stable_node_chain(s_n_d, &s_n, root, false);
1542         /* not pruning dups so s_n cannot have changed */
1543         VM_BUG_ON(s_n != old_stable_node);
1544         return tree_page;
1545 }
1546
1547 /*
1548  * stable_tree_search - search for page inside the stable tree
1549  *
1550  * This function checks if there is a page inside the stable tree
1551  * with identical content to the page that we are scanning right now.
1552  *
1553  * This function returns the stable tree node of identical content if found,
1554  * NULL otherwise.
1555  */
1556 static struct page *stable_tree_search(struct page *page)
1557 {
1558         int nid;
1559         struct rb_root *root;
1560         struct rb_node **new;
1561         struct rb_node *parent;
1562         struct stable_node *stable_node, *stable_node_dup, *stable_node_any;
1563         struct stable_node *page_node;
1564
1565         page_node = page_stable_node(page);
1566         if (page_node && page_node->head != &migrate_nodes) {
1567                 /* ksm page forked */
1568                 get_page(page);
1569                 return page;
1570         }
1571
1572         nid = get_kpfn_nid(page_to_pfn(page));
1573         root = root_stable_tree + nid;
1574 again:
1575         new = &root->rb_node;
1576         parent = NULL;
1577
1578         while (*new) {
1579                 struct page *tree_page;
1580                 int ret;
1581
1582                 cond_resched();
1583                 stable_node = rb_entry(*new, struct stable_node, node);
1584                 stable_node_any = NULL;
1585                 tree_page = chain_prune(&stable_node_dup, &stable_node, root);
1586                 /*
1587                  * NOTE: stable_node may have been freed by
1588                  * chain_prune() if the returned stable_node_dup is
1589                  * not NULL. stable_node_dup may have been inserted in
1590                  * the rbtree instead as a regular stable_node (in
1591                  * order to collapse the stable_node chain if a single
1592                  * stable_node dup was found in it). In such case the
1593                  * stable_node is overwritten by the calleee to point
1594                  * to the stable_node_dup that was collapsed in the
1595                  * stable rbtree and stable_node will be equal to
1596                  * stable_node_dup like if the chain never existed.
1597                  */
1598                 if (!stable_node_dup) {
1599                         /*
1600                          * Either all stable_node dups were full in
1601                          * this stable_node chain, or this chain was
1602                          * empty and should be rb_erased.
1603                          */
1604                         stable_node_any = stable_node_dup_any(stable_node,
1605                                                               root);
1606                         if (!stable_node_any) {
1607                                 /* rb_erase just run */
1608                                 goto again;
1609                         }
1610                         /*
1611                          * Take any of the stable_node dups page of
1612                          * this stable_node chain to let the tree walk
1613                          * continue. All KSM pages belonging to the
1614                          * stable_node dups in a stable_node chain
1615                          * have the same content and they're
1616                          * wrprotected at all times. Any will work
1617                          * fine to continue the walk.
1618                          */
1619                         tree_page = get_ksm_page(stable_node_any, false);
1620                 }
1621                 VM_BUG_ON(!stable_node_dup ^ !!stable_node_any);
1622                 if (!tree_page) {
1623                         /*
1624                          * If we walked over a stale stable_node,
1625                          * get_ksm_page() will call rb_erase() and it
1626                          * may rebalance the tree from under us. So
1627                          * restart the search from scratch. Returning
1628                          * NULL would be safe too, but we'd generate
1629                          * false negative insertions just because some
1630                          * stable_node was stale.
1631                          */
1632                         goto again;
1633                 }
1634
1635                 ret = memcmp_pages(page, tree_page);
1636                 put_page(tree_page);
1637
1638                 parent = *new;
1639                 if (ret < 0)
1640                         new = &parent->rb_left;
1641                 else if (ret > 0)
1642                         new = &parent->rb_right;
1643                 else {
1644                         if (page_node) {
1645                                 VM_BUG_ON(page_node->head != &migrate_nodes);
1646                                 /*
1647                                  * Test if the migrated page should be merged
1648                                  * into a stable node dup. If the mapcount is
1649                                  * 1 we can migrate it with another KSM page
1650                                  * without adding it to the chain.
1651                                  */
1652                                 if (page_mapcount(page) > 1)
1653                                         goto chain_append;
1654                         }
1655
1656                         if (!stable_node_dup) {
1657                                 /*
1658                                  * If the stable_node is a chain and
1659                                  * we got a payload match in memcmp
1660                                  * but we cannot merge the scanned
1661                                  * page in any of the existing
1662                                  * stable_node dups because they're
1663                                  * all full, we need to wait the
1664                                  * scanned page to find itself a match
1665                                  * in the unstable tree to create a
1666                                  * brand new KSM page to add later to
1667                                  * the dups of this stable_node.
1668                                  */
1669                                 return NULL;
1670                         }
1671
1672                         /*
1673                          * Lock and unlock the stable_node's page (which
1674                          * might already have been migrated) so that page
1675                          * migration is sure to notice its raised count.
1676                          * It would be more elegant to return stable_node
1677                          * than kpage, but that involves more changes.
1678                          */
1679                         tree_page = get_ksm_page(stable_node_dup, true);
1680                         if (unlikely(!tree_page))
1681                                 /*
1682                                  * The tree may have been rebalanced,
1683                                  * so re-evaluate parent and new.
1684                                  */
1685                                 goto again;
1686                         unlock_page(tree_page);
1687
1688                         if (get_kpfn_nid(stable_node_dup->kpfn) !=
1689                             NUMA(stable_node_dup->nid)) {
1690                                 put_page(tree_page);
1691                                 goto replace;
1692                         }
1693                         return tree_page;
1694                 }
1695         }
1696
1697         if (!page_node)
1698                 return NULL;
1699
1700         list_del(&page_node->list);
1701         DO_NUMA(page_node->nid = nid);
1702         rb_link_node(&page_node->node, parent, new);
1703         rb_insert_color(&page_node->node, root);
1704 out:
1705         if (is_page_sharing_candidate(page_node)) {
1706                 get_page(page);
1707                 return page;
1708         } else
1709                 return NULL;
1710
1711 replace:
1712         /*
1713          * If stable_node was a chain and chain_prune collapsed it,
1714          * stable_node has been updated to be the new regular
1715          * stable_node. A collapse of the chain is indistinguishable
1716          * from the case there was no chain in the stable
1717          * rbtree. Otherwise stable_node is the chain and
1718          * stable_node_dup is the dup to replace.
1719          */
1720         if (stable_node_dup == stable_node) {
1721                 VM_BUG_ON(is_stable_node_chain(stable_node_dup));
1722                 VM_BUG_ON(is_stable_node_dup(stable_node_dup));
1723                 /* there is no chain */
1724                 if (page_node) {
1725                         VM_BUG_ON(page_node->head != &migrate_nodes);
1726                         list_del(&page_node->list);
1727                         DO_NUMA(page_node->nid = nid);
1728                         rb_replace_node(&stable_node_dup->node,
1729                                         &page_node->node,
1730                                         root);
1731                         if (is_page_sharing_candidate(page_node))
1732                                 get_page(page);
1733                         else
1734                                 page = NULL;
1735                 } else {
1736                         rb_erase(&stable_node_dup->node, root);
1737                         page = NULL;
1738                 }
1739         } else {
1740                 VM_BUG_ON(!is_stable_node_chain(stable_node));
1741                 __stable_node_dup_del(stable_node_dup);
1742                 if (page_node) {
1743                         VM_BUG_ON(page_node->head != &migrate_nodes);
1744                         list_del(&page_node->list);
1745                         DO_NUMA(page_node->nid = nid);
1746                         stable_node_chain_add_dup(page_node, stable_node);
1747                         if (is_page_sharing_candidate(page_node))
1748                                 get_page(page);
1749                         else
1750                                 page = NULL;
1751                 } else {
1752                         page = NULL;
1753                 }
1754         }
1755         stable_node_dup->head = &migrate_nodes;
1756         list_add(&stable_node_dup->list, stable_node_dup->head);
1757         return page;
1758
1759 chain_append:
1760         /* stable_node_dup could be null if it reached the limit */
1761         if (!stable_node_dup)
1762                 stable_node_dup = stable_node_any;
1763         /*
1764          * If stable_node was a chain and chain_prune collapsed it,
1765          * stable_node has been updated to be the new regular
1766          * stable_node. A collapse of the chain is indistinguishable
1767          * from the case there was no chain in the stable
1768          * rbtree. Otherwise stable_node is the chain and
1769          * stable_node_dup is the dup to replace.
1770          */
1771         if (stable_node_dup == stable_node) {
1772                 VM_BUG_ON(is_stable_node_chain(stable_node_dup));
1773                 VM_BUG_ON(is_stable_node_dup(stable_node_dup));
1774                 /* chain is missing so create it */
1775                 stable_node = alloc_stable_node_chain(stable_node_dup,
1776                                                       root);
1777                 if (!stable_node)
1778                         return NULL;
1779         }
1780         /*
1781          * Add this stable_node dup that was
1782          * migrated to the stable_node chain
1783          * of the current nid for this page
1784          * content.
1785          */
1786         VM_BUG_ON(!is_stable_node_chain(stable_node));
1787         VM_BUG_ON(!is_stable_node_dup(stable_node_dup));
1788         VM_BUG_ON(page_node->head != &migrate_nodes);
1789         list_del(&page_node->list);
1790         DO_NUMA(page_node->nid = nid);
1791         stable_node_chain_add_dup(page_node, stable_node);
1792         goto out;
1793 }
1794
1795 /*
1796  * stable_tree_insert - insert stable tree node pointing to new ksm page
1797  * into the stable tree.
1798  *
1799  * This function returns the stable tree node just allocated on success,
1800  * NULL otherwise.
1801  */
1802 static struct stable_node *stable_tree_insert(struct page *kpage)
1803 {
1804         int nid;
1805         unsigned long kpfn;
1806         struct rb_root *root;
1807         struct rb_node **new;
1808         struct rb_node *parent;
1809         struct stable_node *stable_node, *stable_node_dup, *stable_node_any;
1810         bool need_chain = false;
1811
1812         kpfn = page_to_pfn(kpage);
1813         nid = get_kpfn_nid(kpfn);
1814         root = root_stable_tree + nid;
1815 again:
1816         parent = NULL;
1817         new = &root->rb_node;
1818
1819         while (*new) {
1820                 struct page *tree_page;
1821                 int ret;
1822
1823                 cond_resched();
1824                 stable_node = rb_entry(*new, struct stable_node, node);
1825                 stable_node_any = NULL;
1826                 tree_page = chain(&stable_node_dup, stable_node, root);
1827                 if (!stable_node_dup) {
1828                         /*
1829                          * Either all stable_node dups were full in
1830                          * this stable_node chain, or this chain was
1831                          * empty and should be rb_erased.
1832                          */
1833                         stable_node_any = stable_node_dup_any(stable_node,
1834                                                               root);
1835                         if (!stable_node_any) {
1836                                 /* rb_erase just run */
1837                                 goto again;
1838                         }
1839                         /*
1840                          * Take any of the stable_node dups page of
1841                          * this stable_node chain to let the tree walk
1842                          * continue. All KSM pages belonging to the
1843                          * stable_node dups in a stable_node chain
1844                          * have the same content and they're
1845                          * wrprotected at all times. Any will work
1846                          * fine to continue the walk.
1847                          */
1848                         tree_page = get_ksm_page(stable_node_any, false);
1849                 }
1850                 VM_BUG_ON(!stable_node_dup ^ !!stable_node_any);
1851                 if (!tree_page) {
1852                         /*
1853                          * If we walked over a stale stable_node,
1854                          * get_ksm_page() will call rb_erase() and it
1855                          * may rebalance the tree from under us. So
1856                          * restart the search from scratch. Returning
1857                          * NULL would be safe too, but we'd generate
1858                          * false negative insertions just because some
1859                          * stable_node was stale.
1860                          */
1861                         goto again;
1862                 }
1863
1864                 ret = memcmp_pages(kpage, tree_page);
1865                 put_page(tree_page);
1866
1867                 parent = *new;
1868                 if (ret < 0)
1869                         new = &parent->rb_left;
1870                 else if (ret > 0)
1871                         new = &parent->rb_right;
1872                 else {
1873                         need_chain = true;
1874                         break;
1875                 }
1876         }
1877
1878         stable_node_dup = alloc_stable_node();
1879         if (!stable_node_dup)
1880                 return NULL;
1881
1882         INIT_HLIST_HEAD(&stable_node_dup->hlist);
1883         stable_node_dup->kpfn = kpfn;
1884         set_page_stable_node(kpage, stable_node_dup);
1885         stable_node_dup->rmap_hlist_len = 0;
1886         DO_NUMA(stable_node_dup->nid = nid);
1887         if (!need_chain) {
1888                 rb_link_node(&stable_node_dup->node, parent, new);
1889                 rb_insert_color(&stable_node_dup->node, root);
1890         } else {
1891                 if (!is_stable_node_chain(stable_node)) {
1892                         struct stable_node *orig = stable_node;
1893                         /* chain is missing so create it */
1894                         stable_node = alloc_stable_node_chain(orig, root);
1895                         if (!stable_node) {
1896                                 free_stable_node(stable_node_dup);
1897                                 return NULL;
1898                         }
1899                 }
1900                 stable_node_chain_add_dup(stable_node_dup, stable_node);
1901         }
1902
1903         return stable_node_dup;
1904 }
1905
1906 /*
1907  * unstable_tree_search_insert - search for identical page,
1908  * else insert rmap_item into the unstable tree.
1909  *
1910  * This function searches for a page in the unstable tree identical to the
1911  * page currently being scanned; and if no identical page is found in the
1912  * tree, we insert rmap_item as a new object into the unstable tree.
1913  *
1914  * This function returns pointer to rmap_item found to be identical
1915  * to the currently scanned page, NULL otherwise.
1916  *
1917  * This function does both searching and inserting, because they share
1918  * the same walking algorithm in an rbtree.
1919  */
1920 static
1921 struct rmap_item *unstable_tree_search_insert(struct rmap_item *rmap_item,
1922                                               struct page *page,
1923                                               struct page **tree_pagep)
1924 {
1925         struct rb_node **new;
1926         struct rb_root *root;
1927         struct rb_node *parent = NULL;
1928         int nid;
1929
1930         nid = get_kpfn_nid(page_to_pfn(page));
1931         root = root_unstable_tree + nid;
1932         new = &root->rb_node;
1933
1934         while (*new) {
1935                 struct rmap_item *tree_rmap_item;
1936                 struct page *tree_page;
1937                 int ret;
1938
1939                 cond_resched();
1940                 tree_rmap_item = rb_entry(*new, struct rmap_item, node);
1941                 tree_page = get_mergeable_page(tree_rmap_item);
1942                 if (!tree_page)
1943                         return NULL;
1944
1945                 /*
1946                  * Don't substitute a ksm page for a forked page.
1947                  */
1948                 if (page == tree_page) {
1949                         put_page(tree_page);
1950                         return NULL;
1951                 }
1952
1953                 ret = memcmp_pages(page, tree_page);
1954
1955                 parent = *new;
1956                 if (ret < 0) {
1957                         put_page(tree_page);
1958                         new = &parent->rb_left;
1959                 } else if (ret > 0) {
1960                         put_page(tree_page);
1961                         new = &parent->rb_right;
1962                 } else if (!ksm_merge_across_nodes &&
1963                            page_to_nid(tree_page) != nid) {
1964                         /*
1965                          * If tree_page has been migrated to another NUMA node,
1966                          * it will be flushed out and put in the right unstable
1967                          * tree next time: only merge with it when across_nodes.
1968                          */
1969                         put_page(tree_page);
1970                         return NULL;
1971                 } else {
1972                         *tree_pagep = tree_page;
1973                         return tree_rmap_item;
1974                 }
1975         }
1976
1977         rmap_item->address |= UNSTABLE_FLAG;
1978         rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK);
1979         DO_NUMA(rmap_item->nid = nid);
1980         rb_link_node(&rmap_item->node, parent, new);
1981         rb_insert_color(&rmap_item->node, root);
1982
1983         ksm_pages_unshared++;
1984         return NULL;
1985 }
1986
1987 /*
1988  * stable_tree_append - add another rmap_item to the linked list of
1989  * rmap_items hanging off a given node of the stable tree, all sharing
1990  * the same ksm page.
1991  */
1992 static void stable_tree_append(struct rmap_item *rmap_item,
1993                                struct stable_node *stable_node,
1994                                bool max_page_sharing_bypass)
1995 {
1996         /*
1997          * rmap won't find this mapping if we don't insert the
1998          * rmap_item in the right stable_node
1999          * duplicate. page_migration could break later if rmap breaks,
2000          * so we can as well crash here. We really need to check for
2001          * rmap_hlist_len == STABLE_NODE_CHAIN, but we can as well check
2002          * for other negative values as an undeflow if detected here
2003          * for the first time (and not when decreasing rmap_hlist_len)
2004          * would be sign of memory corruption in the stable_node.
2005          */
2006         BUG_ON(stable_node->rmap_hlist_len < 0);
2007
2008         stable_node->rmap_hlist_len++;
2009         if (!max_page_sharing_bypass)
2010                 /* possibly non fatal but unexpected overflow, only warn */
2011                 WARN_ON_ONCE(stable_node->rmap_hlist_len >
2012                              ksm_max_page_sharing);
2013
2014         rmap_item->head = stable_node;
2015         rmap_item->address |= STABLE_FLAG;
2016         hlist_add_head(&rmap_item->hlist, &stable_node->hlist);
2017
2018         if (rmap_item->hlist.next)
2019                 ksm_pages_sharing++;
2020         else
2021                 ksm_pages_shared++;
2022 }
2023
2024 /*
2025  * cmp_and_merge_page - first see if page can be merged into the stable tree;
2026  * if not, compare checksum to previous and if it's the same, see if page can
2027  * be inserted into the unstable tree, or merged with a page already there and
2028  * both transferred to the stable tree.
2029  *
2030  * @page: the page that we are searching identical page to.
2031  * @rmap_item: the reverse mapping into the virtual address of this page
2032  */
2033 static void cmp_and_merge_page(struct page *page, struct rmap_item *rmap_item)
2034 {
2035         struct mm_struct *mm = rmap_item->mm;
2036         struct rmap_item *tree_rmap_item;
2037         struct page *tree_page = NULL;
2038         struct stable_node *stable_node;
2039         struct page *kpage;
2040         unsigned int checksum;
2041         int err;
2042         bool max_page_sharing_bypass = false;
2043
2044         stable_node = page_stable_node(page);
2045         if (stable_node) {
2046                 if (stable_node->head != &migrate_nodes &&
2047                     get_kpfn_nid(READ_ONCE(stable_node->kpfn)) !=
2048                     NUMA(stable_node->nid)) {
2049                         stable_node_dup_del(stable_node);
2050                         stable_node->head = &migrate_nodes;
2051                         list_add(&stable_node->list, stable_node->head);
2052                 }
2053                 if (stable_node->head != &migrate_nodes &&
2054                     rmap_item->head == stable_node)
2055                         return;
2056                 /*
2057                  * If it's a KSM fork, allow it to go over the sharing limit
2058                  * without warnings.
2059                  */
2060                 if (!is_page_sharing_candidate(stable_node))
2061                         max_page_sharing_bypass = true;
2062         }
2063
2064         /* We first start with searching the page inside the stable tree */
2065         kpage = stable_tree_search(page);
2066         if (kpage == page && rmap_item->head == stable_node) {
2067                 put_page(kpage);
2068                 return;
2069         }
2070
2071         remove_rmap_item_from_tree(rmap_item);
2072
2073         if (kpage) {
2074                 err = try_to_merge_with_ksm_page(rmap_item, page, kpage);
2075                 if (!err) {
2076                         /*
2077                          * The page was successfully merged:
2078                          * add its rmap_item to the stable tree.
2079                          */
2080                         lock_page(kpage);
2081                         stable_tree_append(rmap_item, page_stable_node(kpage),
2082                                            max_page_sharing_bypass);
2083                         unlock_page(kpage);
2084                 }
2085                 put_page(kpage);
2086                 return;
2087         }
2088
2089         /*
2090          * If the hash value of the page has changed from the last time
2091          * we calculated it, this page is changing frequently: therefore we
2092          * don't want to insert it in the unstable tree, and we don't want
2093          * to waste our time searching for something identical to it there.
2094          */
2095         checksum = calc_checksum(page);
2096         if (rmap_item->oldchecksum != checksum) {
2097                 rmap_item->oldchecksum = checksum;
2098                 return;
2099         }
2100
2101         /*
2102          * Same checksum as an empty page. We attempt to merge it with the
2103          * appropriate zero page if the user enabled this via sysfs.
2104          */
2105         if (ksm_use_zero_pages && (checksum == zero_checksum)) {
2106                 struct vm_area_struct *vma;
2107
2108                 down_read(&mm->mmap_sem);
2109                 vma = find_mergeable_vma(mm, rmap_item->address);
2110                 if (vma) {
2111                         err = try_to_merge_one_page(vma, page,
2112                                         ZERO_PAGE(rmap_item->address));
2113                 } else {
2114                         /*
2115                          * If the vma is out of date, we do not need to
2116                          * continue.
2117                          */
2118                         err = 0;
2119                 }
2120                 up_read(&mm->mmap_sem);
2121                 /*
2122                  * In case of failure, the page was not really empty, so we
2123                  * need to continue. Otherwise we're done.
2124                  */
2125                 if (!err)
2126                         return;
2127         }
2128         tree_rmap_item =
2129                 unstable_tree_search_insert(rmap_item, page, &tree_page);
2130         if (tree_rmap_item) {
2131                 bool split;
2132
2133                 kpage = try_to_merge_two_pages(rmap_item, page,
2134                                                 tree_rmap_item, tree_page);
2135                 /*
2136                  * If both pages we tried to merge belong to the same compound
2137                  * page, then we actually ended up increasing the reference
2138                  * count of the same compound page twice, and split_huge_page
2139                  * failed.
2140                  * Here we set a flag if that happened, and we use it later to
2141                  * try split_huge_page again. Since we call put_page right
2142                  * afterwards, the reference count will be correct and
2143                  * split_huge_page should succeed.
2144                  */
2145                 split = PageTransCompound(page)
2146                         && compound_head(page) == compound_head(tree_page);
2147                 put_page(tree_page);
2148                 if (kpage) {
2149                         /*
2150                          * The pages were successfully merged: insert new
2151                          * node in the stable tree and add both rmap_items.
2152                          */
2153                         lock_page(kpage);
2154                         stable_node = stable_tree_insert(kpage);
2155                         if (stable_node) {
2156                                 stable_tree_append(tree_rmap_item, stable_node,
2157                                                    false);
2158                                 stable_tree_append(rmap_item, stable_node,
2159                                                    false);
2160                         }
2161                         unlock_page(kpage);
2162
2163                         /*
2164                          * If we fail to insert the page into the stable tree,
2165                          * we will have 2 virtual addresses that are pointing
2166                          * to a ksm page left outside the stable tree,
2167                          * in which case we need to break_cow on both.
2168                          */
2169                         if (!stable_node) {
2170                                 break_cow(tree_rmap_item);
2171                                 break_cow(rmap_item);
2172                         }
2173                 } else if (split) {
2174                         /*
2175                          * We are here if we tried to merge two pages and
2176                          * failed because they both belonged to the same
2177                          * compound page. We will split the page now, but no
2178                          * merging will take place.
2179                          * We do not want to add the cost of a full lock; if
2180                          * the page is locked, it is better to skip it and
2181                          * perhaps try again later.
2182                          */
2183                         if (!trylock_page(page))
2184                                 return;
2185                         split_huge_page(page);
2186                         unlock_page(page);
2187                 }
2188         }
2189 }
2190
2191 static struct rmap_item *get_next_rmap_item(struct mm_slot *mm_slot,
2192                                             struct rmap_item **rmap_list,
2193                                             unsigned long addr)
2194 {
2195         struct rmap_item *rmap_item;
2196
2197         while (*rmap_list) {
2198                 rmap_item = *rmap_list;
2199                 if ((rmap_item->address & PAGE_MASK) == addr)
2200                         return rmap_item;
2201                 if (rmap_item->address > addr)
2202                         break;
2203                 *rmap_list = rmap_item->rmap_list;
2204                 remove_rmap_item_from_tree(rmap_item);
2205                 free_rmap_item(rmap_item);
2206         }
2207
2208         rmap_item = alloc_rmap_item();
2209         if (rmap_item) {
2210                 /* It has already been zeroed */
2211                 rmap_item->mm = mm_slot->mm;
2212                 rmap_item->address = addr;
2213                 rmap_item->rmap_list = *rmap_list;
2214                 *rmap_list = rmap_item;
2215         }
2216         return rmap_item;
2217 }
2218
2219 static struct rmap_item *scan_get_next_rmap_item(struct page **page)
2220 {
2221         struct mm_struct *mm;
2222         struct mm_slot *slot;
2223         struct vm_area_struct *vma;
2224         struct rmap_item *rmap_item;
2225         int nid;
2226
2227         if (list_empty(&ksm_mm_head.mm_list))
2228                 return NULL;
2229
2230         slot = ksm_scan.mm_slot;
2231         if (slot == &ksm_mm_head) {
2232                 /*
2233                  * A number of pages can hang around indefinitely on per-cpu
2234                  * pagevecs, raised page count preventing write_protect_page
2235                  * from merging them.  Though it doesn't really matter much,
2236                  * it is puzzling to see some stuck in pages_volatile until
2237                  * other activity jostles them out, and they also prevented
2238                  * LTP's KSM test from succeeding deterministically; so drain
2239                  * them here (here rather than on entry to ksm_do_scan(),
2240                  * so we don't IPI too often when pages_to_scan is set low).
2241                  */
2242                 lru_add_drain_all();
2243
2244                 /*
2245                  * Whereas stale stable_nodes on the stable_tree itself
2246                  * get pruned in the regular course of stable_tree_search(),
2247                  * those moved out to the migrate_nodes list can accumulate:
2248                  * so prune them once before each full scan.
2249                  */
2250                 if (!ksm_merge_across_nodes) {
2251                         struct stable_node *stable_node, *next;
2252                         struct page *page;
2253
2254                         list_for_each_entry_safe(stable_node, next,
2255                                                  &migrate_nodes, list) {
2256                                 page = get_ksm_page(stable_node, false);
2257                                 if (page)
2258                                         put_page(page);
2259                                 cond_resched();
2260                         }
2261                 }
2262
2263                 for (nid = 0; nid < ksm_nr_node_ids; nid++)
2264                         root_unstable_tree[nid] = RB_ROOT;
2265
2266                 spin_lock(&ksm_mmlist_lock);
2267                 slot = list_entry(slot->mm_list.next, struct mm_slot, mm_list);
2268                 ksm_scan.mm_slot = slot;
2269                 spin_unlock(&ksm_mmlist_lock);
2270                 /*
2271                  * Although we tested list_empty() above, a racing __ksm_exit
2272                  * of the last mm on the list may have removed it since then.
2273                  */
2274                 if (slot == &ksm_mm_head)
2275                         return NULL;
2276 next_mm:
2277                 ksm_scan.address = 0;
2278                 ksm_scan.rmap_list = &slot->rmap_list;
2279         }
2280
2281         mm = slot->mm;
2282         down_read(&mm->mmap_sem);
2283         if (ksm_test_exit(mm))
2284                 vma = NULL;
2285         else
2286                 vma = find_vma(mm, ksm_scan.address);
2287
2288         for (; vma; vma = vma->vm_next) {
2289                 if (!(vma->vm_flags & VM_MERGEABLE))
2290                         continue;
2291                 if (ksm_scan.address < vma->vm_start)
2292                         ksm_scan.address = vma->vm_start;
2293                 if (!vma->anon_vma)
2294                         ksm_scan.address = vma->vm_end;
2295
2296                 while (ksm_scan.address < vma->vm_end) {
2297                         if (ksm_test_exit(mm))
2298                                 break;
2299                         *page = follow_page(vma, ksm_scan.address, FOLL_GET);
2300                         if (IS_ERR_OR_NULL(*page)) {
2301                                 ksm_scan.address += PAGE_SIZE;
2302                                 cond_resched();
2303                                 continue;
2304                         }
2305                         if (PageAnon(*page)) {
2306                                 flush_anon_page(vma, *page, ksm_scan.address);
2307                                 flush_dcache_page(*page);
2308                                 rmap_item = get_next_rmap_item(slot,
2309                                         ksm_scan.rmap_list, ksm_scan.address);
2310                                 if (rmap_item) {
2311                                         ksm_scan.rmap_list =
2312                                                         &rmap_item->rmap_list;
2313                                         ksm_scan.address += PAGE_SIZE;
2314                                 } else
2315                                         put_page(*page);
2316                                 up_read(&mm->mmap_sem);
2317                                 return rmap_item;
2318                         }
2319                         put_page(*page);
2320                         ksm_scan.address += PAGE_SIZE;
2321                         cond_resched();
2322                 }
2323         }
2324
2325         if (ksm_test_exit(mm)) {
2326                 ksm_scan.address = 0;
2327                 ksm_scan.rmap_list = &slot->rmap_list;
2328         }
2329         /*
2330          * Nuke all the rmap_items that are above this current rmap:
2331          * because there were no VM_MERGEABLE vmas with such addresses.
2332          */
2333         remove_trailing_rmap_items(slot, ksm_scan.rmap_list);
2334
2335         spin_lock(&ksm_mmlist_lock);
2336         ksm_scan.mm_slot = list_entry(slot->mm_list.next,
2337                                                 struct mm_slot, mm_list);
2338         if (ksm_scan.address == 0) {
2339                 /*
2340                  * We've completed a full scan of all vmas, holding mmap_sem
2341                  * throughout, and found no VM_MERGEABLE: so do the same as
2342                  * __ksm_exit does to remove this mm from all our lists now.
2343                  * This applies either when cleaning up after __ksm_exit
2344                  * (but beware: we can reach here even before __ksm_exit),
2345                  * or when all VM_MERGEABLE areas have been unmapped (and
2346                  * mmap_sem then protects against race with MADV_MERGEABLE).
2347                  */
2348                 hash_del(&slot->link);
2349                 list_del(&slot->mm_list);
2350                 spin_unlock(&ksm_mmlist_lock);
2351
2352                 free_mm_slot(slot);
2353                 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
2354                 up_read(&mm->mmap_sem);
2355                 mmdrop(mm);
2356         } else {
2357                 up_read(&mm->mmap_sem);
2358                 /*
2359                  * up_read(&mm->mmap_sem) first because after
2360                  * spin_unlock(&ksm_mmlist_lock) run, the "mm" may
2361                  * already have been freed under us by __ksm_exit()
2362                  * because the "mm_slot" is still hashed and
2363                  * ksm_scan.mm_slot doesn't point to it anymore.
2364                  */
2365                 spin_unlock(&ksm_mmlist_lock);
2366         }
2367
2368         /* Repeat until we've completed scanning the whole list */
2369         slot = ksm_scan.mm_slot;
2370         if (slot != &ksm_mm_head)
2371                 goto next_mm;
2372
2373         ksm_scan.seqnr++;
2374         return NULL;
2375 }
2376
2377 /**
2378  * ksm_do_scan  - the ksm scanner main worker function.
2379  * @scan_npages:  number of pages we want to scan before we return.
2380  */
2381 static void ksm_do_scan(unsigned int scan_npages)
2382 {
2383         struct rmap_item *rmap_item;
2384         struct page *uninitialized_var(page);
2385
2386         while (scan_npages-- && likely(!freezing(current))) {
2387                 cond_resched();
2388                 rmap_item = scan_get_next_rmap_item(&page);
2389                 if (!rmap_item)
2390                         return;
2391                 cmp_and_merge_page(page, rmap_item);
2392                 put_page(page);
2393         }
2394 }
2395
2396 static int ksmd_should_run(void)
2397 {
2398         return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.mm_list);
2399 }
2400
2401 static int ksm_scan_thread(void *nothing)
2402 {
2403         set_freezable();
2404         set_user_nice(current, 5);
2405
2406         while (!kthread_should_stop()) {
2407                 mutex_lock(&ksm_thread_mutex);
2408                 wait_while_offlining();
2409                 if (ksmd_should_run())
2410                         ksm_do_scan(ksm_thread_pages_to_scan);
2411                 mutex_unlock(&ksm_thread_mutex);
2412
2413                 try_to_freeze();
2414
2415                 if (ksmd_should_run()) {
2416                         schedule_timeout_interruptible(
2417                                 msecs_to_jiffies(ksm_thread_sleep_millisecs));
2418                 } else {
2419                         wait_event_freezable(ksm_thread_wait,
2420                                 ksmd_should_run() || kthread_should_stop());
2421                 }
2422         }
2423         return 0;
2424 }
2425
2426 int ksm_madvise(struct vm_area_struct *vma, unsigned long start,
2427                 unsigned long end, int advice, unsigned long *vm_flags)
2428 {
2429         struct mm_struct *mm = vma->vm_mm;
2430         int err;
2431
2432         switch (advice) {
2433         case MADV_MERGEABLE:
2434                 /*
2435                  * Be somewhat over-protective for now!
2436                  */
2437                 if (*vm_flags & (VM_MERGEABLE | VM_SHARED  | VM_MAYSHARE   |
2438                                  VM_PFNMAP    | VM_IO      | VM_DONTEXPAND |
2439                                  VM_HUGETLB | VM_MIXEDMAP))
2440                         return 0;               /* just ignore the advice */
2441
2442                 if (vma_is_dax(vma))
2443                         return 0;
2444
2445 #ifdef VM_SAO
2446                 if (*vm_flags & VM_SAO)
2447                         return 0;
2448 #endif
2449 #ifdef VM_SPARC_ADI
2450                 if (*vm_flags & VM_SPARC_ADI)
2451                         return 0;
2452 #endif
2453
2454                 if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
2455                         err = __ksm_enter(mm);
2456                         if (err)
2457                                 return err;
2458                 }
2459
2460                 *vm_flags |= VM_MERGEABLE;
2461                 break;
2462
2463         case MADV_UNMERGEABLE:
2464                 if (!(*vm_flags & VM_MERGEABLE))
2465                         return 0;               /* just ignore the advice */
2466
2467                 if (vma->anon_vma) {
2468                         err = unmerge_ksm_pages(vma, start, end);
2469                         if (err)
2470                                 return err;
2471                 }
2472
2473                 *vm_flags &= ~VM_MERGEABLE;
2474                 break;
2475         }
2476
2477         return 0;
2478 }
2479
2480 int __ksm_enter(struct mm_struct *mm)
2481 {
2482         struct mm_slot *mm_slot;
2483         int needs_wakeup;
2484
2485         mm_slot = alloc_mm_slot();
2486         if (!mm_slot)
2487                 return -ENOMEM;
2488
2489         /* Check ksm_run too?  Would need tighter locking */
2490         needs_wakeup = list_empty(&ksm_mm_head.mm_list);
2491
2492         spin_lock(&ksm_mmlist_lock);
2493         insert_to_mm_slots_hash(mm, mm_slot);
2494         /*
2495          * When KSM_RUN_MERGE (or KSM_RUN_STOP),
2496          * insert just behind the scanning cursor, to let the area settle
2497          * down a little; when fork is followed by immediate exec, we don't
2498          * want ksmd to waste time setting up and tearing down an rmap_list.
2499          *
2500          * But when KSM_RUN_UNMERGE, it's important to insert ahead of its
2501          * scanning cursor, otherwise KSM pages in newly forked mms will be
2502          * missed: then we might as well insert at the end of the list.
2503          */
2504         if (ksm_run & KSM_RUN_UNMERGE)
2505                 list_add_tail(&mm_slot->mm_list, &ksm_mm_head.mm_list);
2506         else
2507                 list_add_tail(&mm_slot->mm_list, &ksm_scan.mm_slot->mm_list);
2508         spin_unlock(&ksm_mmlist_lock);
2509
2510         set_bit(MMF_VM_MERGEABLE, &mm->flags);
2511         mmgrab(mm);
2512
2513         if (needs_wakeup)
2514                 wake_up_interruptible(&ksm_thread_wait);
2515
2516         return 0;
2517 }
2518
2519 void __ksm_exit(struct mm_struct *mm)
2520 {
2521         struct mm_slot *mm_slot;
2522         int easy_to_free = 0;
2523
2524         /*
2525          * This process is exiting: if it's straightforward (as is the
2526          * case when ksmd was never running), free mm_slot immediately.
2527          * But if it's at the cursor or has rmap_items linked to it, use
2528          * mmap_sem to synchronize with any break_cows before pagetables
2529          * are freed, and leave the mm_slot on the list for ksmd to free.
2530          * Beware: ksm may already have noticed it exiting and freed the slot.
2531          */
2532
2533         spin_lock(&ksm_mmlist_lock);
2534         mm_slot = get_mm_slot(mm);
2535         if (mm_slot && ksm_scan.mm_slot != mm_slot) {
2536                 if (!mm_slot->rmap_list) {
2537                         hash_del(&mm_slot->link);
2538                         list_del(&mm_slot->mm_list);
2539                         easy_to_free = 1;
2540                 } else {
2541                         list_move(&mm_slot->mm_list,
2542                                   &ksm_scan.mm_slot->mm_list);
2543                 }
2544         }
2545         spin_unlock(&ksm_mmlist_lock);
2546
2547         if (easy_to_free) {
2548                 free_mm_slot(mm_slot);
2549                 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
2550                 mmdrop(mm);
2551         } else if (mm_slot) {
2552                 down_write(&mm->mmap_sem);
2553                 up_write(&mm->mmap_sem);
2554         }
2555 }
2556
2557 struct page *ksm_might_need_to_copy(struct page *page,
2558                         struct vm_area_struct *vma, unsigned long address)
2559 {
2560         struct anon_vma *anon_vma = page_anon_vma(page);
2561         struct page *new_page;
2562
2563         if (PageKsm(page)) {
2564                 if (page_stable_node(page) &&
2565                     !(ksm_run & KSM_RUN_UNMERGE))
2566                         return page;    /* no need to copy it */
2567         } else if (!anon_vma) {
2568                 return page;            /* no need to copy it */
2569         } else if (anon_vma->root == vma->anon_vma->root &&
2570                  page->index == linear_page_index(vma, address)) {
2571                 return page;            /* still no need to copy it */
2572         }
2573         if (!PageUptodate(page))
2574                 return page;            /* let do_swap_page report the error */
2575
2576         new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2577         if (new_page) {
2578                 copy_user_highpage(new_page, page, address, vma);
2579
2580                 SetPageDirty(new_page);
2581                 __SetPageUptodate(new_page);
2582                 __SetPageLocked(new_page);
2583         }
2584
2585         return new_page;
2586 }
2587
2588 void rmap_walk_ksm(struct page *page, struct rmap_walk_control *rwc)
2589 {
2590         struct stable_node *stable_node;
2591         struct rmap_item *rmap_item;
2592         int search_new_forks = 0;
2593
2594         VM_BUG_ON_PAGE(!PageKsm(page), page);
2595
2596         /*
2597          * Rely on the page lock to protect against concurrent modifications
2598          * to that page's node of the stable tree.
2599          */
2600         VM_BUG_ON_PAGE(!PageLocked(page), page);
2601
2602         stable_node = page_stable_node(page);
2603         if (!stable_node)
2604                 return;
2605 again:
2606         hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
2607                 struct anon_vma *anon_vma = rmap_item->anon_vma;
2608                 struct anon_vma_chain *vmac;
2609                 struct vm_area_struct *vma;
2610
2611                 cond_resched();
2612                 anon_vma_lock_read(anon_vma);
2613                 anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root,
2614                                                0, ULONG_MAX) {
2615                         unsigned long addr;
2616
2617                         cond_resched();
2618                         vma = vmac->vma;
2619
2620                         /* Ignore the stable/unstable/sqnr flags */
2621                         addr = rmap_item->address & ~KSM_FLAG_MASK;
2622
2623                         if (addr < vma->vm_start || addr >= vma->vm_end)
2624                                 continue;
2625                         /*
2626                          * Initially we examine only the vma which covers this
2627                          * rmap_item; but later, if there is still work to do,
2628                          * we examine covering vmas in other mms: in case they
2629                          * were forked from the original since ksmd passed.
2630                          */
2631                         if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
2632                                 continue;
2633
2634                         if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2635                                 continue;
2636
2637                         if (!rwc->rmap_one(page, vma, addr, rwc->arg)) {
2638                                 anon_vma_unlock_read(anon_vma);
2639                                 return;
2640                         }
2641                         if (rwc->done && rwc->done(page)) {
2642                                 anon_vma_unlock_read(anon_vma);
2643                                 return;
2644                         }
2645                 }
2646                 anon_vma_unlock_read(anon_vma);
2647         }
2648         if (!search_new_forks++)
2649                 goto again;
2650 }
2651
2652 #ifdef CONFIG_MIGRATION
2653 void ksm_migrate_page(struct page *newpage, struct page *oldpage)
2654 {
2655         struct stable_node *stable_node;
2656
2657         VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
2658         VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
2659         VM_BUG_ON_PAGE(newpage->mapping != oldpage->mapping, newpage);
2660
2661         stable_node = page_stable_node(newpage);
2662         if (stable_node) {
2663                 VM_BUG_ON_PAGE(stable_node->kpfn != page_to_pfn(oldpage), oldpage);
2664                 stable_node->kpfn = page_to_pfn(newpage);
2665                 /*
2666                  * newpage->mapping was set in advance; now we need smp_wmb()
2667                  * to make sure that the new stable_node->kpfn is visible
2668                  * to get_ksm_page() before it can see that oldpage->mapping
2669                  * has gone stale (or that PageSwapCache has been cleared).
2670                  */
2671                 smp_wmb();
2672                 set_page_stable_node(oldpage, NULL);
2673         }
2674 }
2675 #endif /* CONFIG_MIGRATION */
2676
2677 #ifdef CONFIG_MEMORY_HOTREMOVE
2678 static void wait_while_offlining(void)
2679 {
2680         while (ksm_run & KSM_RUN_OFFLINE) {
2681                 mutex_unlock(&ksm_thread_mutex);
2682                 wait_on_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE),
2683                             TASK_UNINTERRUPTIBLE);
2684                 mutex_lock(&ksm_thread_mutex);
2685         }
2686 }
2687
2688 static bool stable_node_dup_remove_range(struct stable_node *stable_node,
2689                                          unsigned long start_pfn,
2690                                          unsigned long end_pfn)
2691 {
2692         if (stable_node->kpfn >= start_pfn &&
2693             stable_node->kpfn < end_pfn) {
2694                 /*
2695                  * Don't get_ksm_page, page has already gone:
2696                  * which is why we keep kpfn instead of page*
2697                  */
2698                 remove_node_from_stable_tree(stable_node);
2699                 return true;
2700         }
2701         return false;
2702 }
2703
2704 static bool stable_node_chain_remove_range(struct stable_node *stable_node,
2705                                            unsigned long start_pfn,
2706                                            unsigned long end_pfn,
2707                                            struct rb_root *root)
2708 {
2709         struct stable_node *dup;
2710         struct hlist_node *hlist_safe;
2711
2712         if (!is_stable_node_chain(stable_node)) {
2713                 VM_BUG_ON(is_stable_node_dup(stable_node));
2714                 return stable_node_dup_remove_range(stable_node, start_pfn,
2715                                                     end_pfn);
2716         }
2717
2718         hlist_for_each_entry_safe(dup, hlist_safe,
2719                                   &stable_node->hlist, hlist_dup) {
2720                 VM_BUG_ON(!is_stable_node_dup(dup));
2721                 stable_node_dup_remove_range(dup, start_pfn, end_pfn);
2722         }
2723         if (hlist_empty(&stable_node->hlist)) {
2724                 free_stable_node_chain(stable_node, root);
2725                 return true; /* notify caller that tree was rebalanced */
2726         } else
2727                 return false;
2728 }
2729
2730 static void ksm_check_stable_tree(unsigned long start_pfn,
2731                                   unsigned long end_pfn)
2732 {
2733         struct stable_node *stable_node, *next;
2734         struct rb_node *node;
2735         int nid;
2736
2737         for (nid = 0; nid < ksm_nr_node_ids; nid++) {
2738                 node = rb_first(root_stable_tree + nid);
2739                 while (node) {
2740                         stable_node = rb_entry(node, struct stable_node, node);
2741                         if (stable_node_chain_remove_range(stable_node,
2742                                                            start_pfn, end_pfn,
2743                                                            root_stable_tree +
2744                                                            nid))
2745                                 node = rb_first(root_stable_tree + nid);
2746                         else
2747                                 node = rb_next(node);
2748                         cond_resched();
2749                 }
2750         }
2751         list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
2752                 if (stable_node->kpfn >= start_pfn &&
2753                     stable_node->kpfn < end_pfn)
2754                         remove_node_from_stable_tree(stable_node);
2755                 cond_resched();
2756         }
2757 }
2758
2759 static int ksm_memory_callback(struct notifier_block *self,
2760                                unsigned long action, void *arg)
2761 {
2762         struct memory_notify *mn = arg;
2763
2764         switch (action) {
2765         case MEM_GOING_OFFLINE:
2766                 /*
2767                  * Prevent ksm_do_scan(), unmerge_and_remove_all_rmap_items()
2768                  * and remove_all_stable_nodes() while memory is going offline:
2769                  * it is unsafe for them to touch the stable tree at this time.
2770                  * But unmerge_ksm_pages(), rmap lookups and other entry points
2771                  * which do not need the ksm_thread_mutex are all safe.
2772                  */
2773                 mutex_lock(&ksm_thread_mutex);
2774                 ksm_run |= KSM_RUN_OFFLINE;
2775                 mutex_unlock(&ksm_thread_mutex);
2776                 break;
2777
2778         case MEM_OFFLINE:
2779                 /*
2780                  * Most of the work is done by page migration; but there might
2781                  * be a few stable_nodes left over, still pointing to struct
2782                  * pages which have been offlined: prune those from the tree,
2783                  * otherwise get_ksm_page() might later try to access a
2784                  * non-existent struct page.
2785                  */
2786                 ksm_check_stable_tree(mn->start_pfn,
2787                                       mn->start_pfn + mn->nr_pages);
2788                 /* fallthrough */
2789
2790         case MEM_CANCEL_OFFLINE:
2791                 mutex_lock(&ksm_thread_mutex);
2792                 ksm_run &= ~KSM_RUN_OFFLINE;
2793                 mutex_unlock(&ksm_thread_mutex);
2794
2795                 smp_mb();       /* wake_up_bit advises this */
2796                 wake_up_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE));
2797                 break;
2798         }
2799         return NOTIFY_OK;
2800 }
2801 #else
2802 static void wait_while_offlining(void)
2803 {
2804 }
2805 #endif /* CONFIG_MEMORY_HOTREMOVE */
2806
2807 #ifdef CONFIG_SYSFS
2808 /*
2809  * This all compiles without CONFIG_SYSFS, but is a waste of space.
2810  */
2811
2812 #define KSM_ATTR_RO(_name) \
2813         static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2814 #define KSM_ATTR(_name) \
2815         static struct kobj_attribute _name##_attr = \
2816                 __ATTR(_name, 0644, _name##_show, _name##_store)
2817
2818 static ssize_t sleep_millisecs_show(struct kobject *kobj,
2819                                     struct kobj_attribute *attr, char *buf)
2820 {
2821         return sprintf(buf, "%u\n", ksm_thread_sleep_millisecs);
2822 }
2823
2824 static ssize_t sleep_millisecs_store(struct kobject *kobj,
2825                                      struct kobj_attribute *attr,
2826                                      const char *buf, size_t count)
2827 {
2828         unsigned long msecs;
2829         int err;
2830
2831         err = kstrtoul(buf, 10, &msecs);
2832         if (err || msecs > UINT_MAX)
2833                 return -EINVAL;
2834
2835         ksm_thread_sleep_millisecs = msecs;
2836
2837         return count;
2838 }
2839 KSM_ATTR(sleep_millisecs);
2840
2841 static ssize_t pages_to_scan_show(struct kobject *kobj,
2842                                   struct kobj_attribute *attr, char *buf)
2843 {
2844         return sprintf(buf, "%u\n", ksm_thread_pages_to_scan);
2845 }
2846
2847 static ssize_t pages_to_scan_store(struct kobject *kobj,
2848                                    struct kobj_attribute *attr,
2849                                    const char *buf, size_t count)
2850 {
2851         int err;
2852         unsigned long nr_pages;
2853
2854         err = kstrtoul(buf, 10, &nr_pages);
2855         if (err || nr_pages > UINT_MAX)
2856                 return -EINVAL;
2857
2858         ksm_thread_pages_to_scan = nr_pages;
2859
2860         return count;
2861 }
2862 KSM_ATTR(pages_to_scan);
2863
2864 static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr,
2865                         char *buf)
2866 {
2867         return sprintf(buf, "%lu\n", ksm_run);
2868 }
2869
2870 static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr,
2871                          const char *buf, size_t count)
2872 {
2873         int err;
2874         unsigned long flags;
2875
2876         err = kstrtoul(buf, 10, &flags);
2877         if (err || flags > UINT_MAX)
2878                 return -EINVAL;
2879         if (flags > KSM_RUN_UNMERGE)
2880                 return -EINVAL;
2881
2882         /*
2883          * KSM_RUN_MERGE sets ksmd running, and 0 stops it running.
2884          * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items,
2885          * breaking COW to free the pages_shared (but leaves mm_slots
2886          * on the list for when ksmd may be set running again).
2887          */
2888
2889         mutex_lock(&ksm_thread_mutex);
2890         wait_while_offlining();
2891         if (ksm_run != flags) {
2892                 ksm_run = flags;
2893                 if (flags & KSM_RUN_UNMERGE) {
2894                         set_current_oom_origin();
2895                         err = unmerge_and_remove_all_rmap_items();
2896                         clear_current_oom_origin();
2897                         if (err) {
2898                                 ksm_run = KSM_RUN_STOP;
2899                                 count = err;
2900                         }
2901                 }
2902         }
2903         mutex_unlock(&ksm_thread_mutex);
2904
2905         if (flags & KSM_RUN_MERGE)
2906                 wake_up_interruptible(&ksm_thread_wait);
2907
2908         return count;
2909 }
2910 KSM_ATTR(run);
2911
2912 #ifdef CONFIG_NUMA
2913 static ssize_t merge_across_nodes_show(struct kobject *kobj,
2914                                 struct kobj_attribute *attr, char *buf)
2915 {
2916         return sprintf(buf, "%u\n", ksm_merge_across_nodes);
2917 }
2918
2919 static ssize_t merge_across_nodes_store(struct kobject *kobj,
2920                                    struct kobj_attribute *attr,
2921                                    const char *buf, size_t count)
2922 {
2923         int err;
2924         unsigned long knob;
2925
2926         err = kstrtoul(buf, 10, &knob);
2927         if (err)
2928                 return err;
2929         if (knob > 1)
2930                 return -EINVAL;
2931
2932         mutex_lock(&ksm_thread_mutex);
2933         wait_while_offlining();
2934         if (ksm_merge_across_nodes != knob) {
2935                 if (ksm_pages_shared || remove_all_stable_nodes())
2936                         err = -EBUSY;
2937                 else if (root_stable_tree == one_stable_tree) {
2938                         struct rb_root *buf;
2939                         /*
2940                          * This is the first time that we switch away from the
2941                          * default of merging across nodes: must now allocate
2942                          * a buffer to hold as many roots as may be needed.
2943                          * Allocate stable and unstable together:
2944                          * MAXSMP NODES_SHIFT 10 will use 16kB.
2945                          */
2946                         buf = kcalloc(nr_node_ids + nr_node_ids, sizeof(*buf),
2947                                       GFP_KERNEL);
2948                         /* Let us assume that RB_ROOT is NULL is zero */
2949                         if (!buf)
2950                                 err = -ENOMEM;
2951                         else {
2952                                 root_stable_tree = buf;
2953                                 root_unstable_tree = buf + nr_node_ids;
2954                                 /* Stable tree is empty but not the unstable */
2955                                 root_unstable_tree[0] = one_unstable_tree[0];
2956                         }
2957                 }
2958                 if (!err) {
2959                         ksm_merge_across_nodes = knob;
2960                         ksm_nr_node_ids = knob ? 1 : nr_node_ids;
2961                 }
2962         }
2963         mutex_unlock(&ksm_thread_mutex);
2964
2965         return err ? err : count;
2966 }
2967 KSM_ATTR(merge_across_nodes);
2968 #endif
2969
2970 static ssize_t use_zero_pages_show(struct kobject *kobj,
2971                                 struct kobj_attribute *attr, char *buf)
2972 {
2973         return sprintf(buf, "%u\n", ksm_use_zero_pages);
2974 }
2975 static ssize_t use_zero_pages_store(struct kobject *kobj,
2976                                    struct kobj_attribute *attr,
2977                                    const char *buf, size_t count)
2978 {
2979         int err;
2980         bool value;
2981
2982         err = kstrtobool(buf, &value);
2983         if (err)
2984                 return -EINVAL;
2985
2986         ksm_use_zero_pages = value;
2987
2988         return count;
2989 }
2990 KSM_ATTR(use_zero_pages);
2991
2992 static ssize_t max_page_sharing_show(struct kobject *kobj,
2993                                      struct kobj_attribute *attr, char *buf)
2994 {
2995         return sprintf(buf, "%u\n", ksm_max_page_sharing);
2996 }
2997
2998 static ssize_t max_page_sharing_store(struct kobject *kobj,
2999                                       struct kobj_attribute *attr,
3000                                       const char *buf, size_t count)
3001 {
3002         int err;
3003         int knob;
3004
3005         err = kstrtoint(buf, 10, &knob);
3006         if (err)
3007                 return err;
3008         /*
3009          * When a KSM page is created it is shared by 2 mappings. This
3010          * being a signed comparison, it implicitly verifies it's not
3011          * negative.
3012          */
3013         if (knob < 2)
3014                 return -EINVAL;
3015
3016         if (READ_ONCE(ksm_max_page_sharing) == knob)
3017                 return count;
3018
3019         mutex_lock(&ksm_thread_mutex);
3020         wait_while_offlining();
3021         if (ksm_max_page_sharing != knob) {
3022                 if (ksm_pages_shared || remove_all_stable_nodes())
3023                         err = -EBUSY;
3024                 else
3025                         ksm_max_page_sharing = knob;
3026         }
3027         mutex_unlock(&ksm_thread_mutex);
3028
3029         return err ? err : count;
3030 }
3031 KSM_ATTR(max_page_sharing);
3032
3033 static ssize_t pages_shared_show(struct kobject *kobj,
3034                                  struct kobj_attribute *attr, char *buf)
3035 {
3036         return sprintf(buf, "%lu\n", ksm_pages_shared);
3037 }
3038 KSM_ATTR_RO(pages_shared);
3039
3040 static ssize_t pages_sharing_show(struct kobject *kobj,
3041                                   struct kobj_attribute *attr, char *buf)
3042 {
3043         return sprintf(buf, "%lu\n", ksm_pages_sharing);
3044 }
3045 KSM_ATTR_RO(pages_sharing);
3046
3047 static ssize_t pages_unshared_show(struct kobject *kobj,
3048                                    struct kobj_attribute *attr, char *buf)
3049 {
3050         return sprintf(buf, "%lu\n", ksm_pages_unshared);
3051 }
3052 KSM_ATTR_RO(pages_unshared);
3053
3054 static ssize_t pages_volatile_show(struct kobject *kobj,
3055                                    struct kobj_attribute *attr, char *buf)
3056 {
3057         long ksm_pages_volatile;
3058
3059         ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared
3060                                 - ksm_pages_sharing - ksm_pages_unshared;
3061         /*
3062          * It was not worth any locking to calculate that statistic,
3063          * but it might therefore sometimes be negative: conceal that.
3064          */
3065         if (ksm_pages_volatile < 0)
3066                 ksm_pages_volatile = 0;
3067         return sprintf(buf, "%ld\n", ksm_pages_volatile);
3068 }
3069 KSM_ATTR_RO(pages_volatile);
3070
3071 static ssize_t stable_node_dups_show(struct kobject *kobj,
3072                                      struct kobj_attribute *attr, char *buf)
3073 {
3074         return sprintf(buf, "%lu\n", ksm_stable_node_dups);
3075 }
3076 KSM_ATTR_RO(stable_node_dups);
3077
3078 static ssize_t stable_node_chains_show(struct kobject *kobj,
3079                                        struct kobj_attribute *attr, char *buf)
3080 {
3081         return sprintf(buf, "%lu\n", ksm_stable_node_chains);
3082 }
3083 KSM_ATTR_RO(stable_node_chains);
3084
3085 static ssize_t
3086 stable_node_chains_prune_millisecs_show(struct kobject *kobj,
3087                                         struct kobj_attribute *attr,
3088                                         char *buf)
3089 {
3090         return sprintf(buf, "%u\n", ksm_stable_node_chains_prune_millisecs);
3091 }
3092
3093 static ssize_t
3094 stable_node_chains_prune_millisecs_store(struct kobject *kobj,
3095                                          struct kobj_attribute *attr,
3096                                          const char *buf, size_t count)
3097 {
3098         unsigned long msecs;
3099         int err;
3100
3101         err = kstrtoul(buf, 10, &msecs);
3102         if (err || msecs > UINT_MAX)
3103                 return -EINVAL;
3104
3105         ksm_stable_node_chains_prune_millisecs = msecs;
3106
3107         return count;
3108 }
3109 KSM_ATTR(stable_node_chains_prune_millisecs);
3110
3111 static ssize_t full_scans_show(struct kobject *kobj,
3112                                struct kobj_attribute *attr, char *buf)
3113 {
3114         return sprintf(buf, "%lu\n", ksm_scan.seqnr);
3115 }
3116 KSM_ATTR_RO(full_scans);
3117
3118 static struct attribute *ksm_attrs[] = {
3119         &sleep_millisecs_attr.attr,
3120         &pages_to_scan_attr.attr,
3121         &run_attr.attr,
3122         &pages_shared_attr.attr,
3123         &pages_sharing_attr.attr,
3124         &pages_unshared_attr.attr,
3125         &pages_volatile_attr.attr,
3126         &full_scans_attr.attr,
3127 #ifdef CONFIG_NUMA
3128         &merge_across_nodes_attr.attr,
3129 #endif
3130         &max_page_sharing_attr.attr,
3131         &stable_node_chains_attr.attr,
3132         &stable_node_dups_attr.attr,
3133         &stable_node_chains_prune_millisecs_attr.attr,
3134         &use_zero_pages_attr.attr,
3135         NULL,
3136 };
3137
3138 static const struct attribute_group ksm_attr_group = {
3139         .attrs = ksm_attrs,
3140         .name = "ksm",
3141 };
3142 #endif /* CONFIG_SYSFS */
3143
3144 static int __init ksm_init(void)
3145 {
3146         struct task_struct *ksm_thread;
3147         int err;
3148
3149         /* The correct value depends on page size and endianness */
3150         zero_checksum = calc_checksum(ZERO_PAGE(0));
3151         /* Default to false for backwards compatibility */
3152         ksm_use_zero_pages = false;
3153
3154         err = ksm_slab_init();
3155         if (err)
3156                 goto out;
3157
3158         ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd");
3159         if (IS_ERR(ksm_thread)) {
3160                 pr_err("ksm: creating kthread failed\n");
3161                 err = PTR_ERR(ksm_thread);
3162                 goto out_free;
3163         }
3164
3165 #ifdef CONFIG_SYSFS
3166         err = sysfs_create_group(mm_kobj, &ksm_attr_group);
3167         if (err) {
3168                 pr_err("ksm: register sysfs failed\n");
3169                 kthread_stop(ksm_thread);
3170                 goto out_free;
3171         }
3172 #else
3173         ksm_run = KSM_RUN_MERGE;        /* no way for user to start it */
3174
3175 #endif /* CONFIG_SYSFS */
3176
3177 #ifdef CONFIG_MEMORY_HOTREMOVE
3178         /* There is no significance to this priority 100 */
3179         hotplug_memory_notifier(ksm_memory_callback, 100);
3180 #endif
3181         return 0;
3182
3183 out_free:
3184         ksm_slab_free();
3185 out:
3186         return err;
3187 }
3188 subsys_initcall(ksm_init);