OSDN Git Service

PCI: keystone: Fix link training retries initiation
[sagit-ice-cold/kernel_xiaomi_msm8998.git] / mm / ksm.c
1 /*
2  * Memory merging support.
3  *
4  * This code enables dynamic sharing of identical pages found in different
5  * memory areas, even if they are not shared by fork()
6  *
7  * Copyright (C) 2008-2009 Red Hat, Inc.
8  * Authors:
9  *      Izik Eidus
10  *      Andrea Arcangeli
11  *      Chris Wright
12  *      Hugh Dickins
13  *
14  * This work is licensed under the terms of the GNU GPL, version 2.
15  */
16
17 #include <linux/errno.h>
18 #include <linux/mm.h>
19 #include <linux/fs.h>
20 #include <linux/mman.h>
21 #include <linux/sched.h>
22 #include <linux/rwsem.h>
23 #include <linux/pagemap.h>
24 #include <linux/rmap.h>
25 #include <linux/spinlock.h>
26 #include <linux/jhash.h>
27 #include <linux/delay.h>
28 #include <linux/kthread.h>
29 #include <linux/wait.h>
30 #include <linux/slab.h>
31 #include <linux/rbtree.h>
32 #include <linux/memory.h>
33 #include <linux/mmu_notifier.h>
34 #include <linux/swap.h>
35 #include <linux/ksm.h>
36 #include <linux/hashtable.h>
37 #include <linux/freezer.h>
38 #include <linux/oom.h>
39 #include <linux/numa.h>
40
41 #include <asm/tlbflush.h>
42 #include "internal.h"
43
44 #ifdef CONFIG_NUMA
45 #define NUMA(x)         (x)
46 #define DO_NUMA(x)      do { (x); } while (0)
47 #else
48 #define NUMA(x)         (0)
49 #define DO_NUMA(x)      do { } while (0)
50 #endif
51
52 /*
53  * A few notes about the KSM scanning process,
54  * to make it easier to understand the data structures below:
55  *
56  * In order to reduce excessive scanning, KSM sorts the memory pages by their
57  * contents into a data structure that holds pointers to the pages' locations.
58  *
59  * Since the contents of the pages may change at any moment, KSM cannot just
60  * insert the pages into a normal sorted tree and expect it to find anything.
61  * Therefore KSM uses two data structures - the stable and the unstable tree.
62  *
63  * The stable tree holds pointers to all the merged pages (ksm pages), sorted
64  * by their contents.  Because each such page is write-protected, searching on
65  * this tree is fully assured to be working (except when pages are unmapped),
66  * and therefore this tree is called the stable tree.
67  *
68  * In addition to the stable tree, KSM uses a second data structure called the
69  * unstable tree: this tree holds pointers to pages which have been found to
70  * be "unchanged for a period of time".  The unstable tree sorts these pages
71  * by their contents, but since they are not write-protected, KSM cannot rely
72  * upon the unstable tree to work correctly - the unstable tree is liable to
73  * be corrupted as its contents are modified, and so it is called unstable.
74  *
75  * KSM solves this problem by several techniques:
76  *
77  * 1) The unstable tree is flushed every time KSM completes scanning all
78  *    memory areas, and then the tree is rebuilt again from the beginning.
79  * 2) KSM will only insert into the unstable tree, pages whose hash value
80  *    has not changed since the previous scan of all memory areas.
81  * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the
82  *    colors of the nodes and not on their contents, assuring that even when
83  *    the tree gets "corrupted" it won't get out of balance, so scanning time
84  *    remains the same (also, searching and inserting nodes in an rbtree uses
85  *    the same algorithm, so we have no overhead when we flush and rebuild).
86  * 4) KSM never flushes the stable tree, which means that even if it were to
87  *    take 10 attempts to find a page in the unstable tree, once it is found,
88  *    it is secured in the stable tree.  (When we scan a new page, we first
89  *    compare it against the stable tree, and then against the unstable tree.)
90  *
91  * If the merge_across_nodes tunable is unset, then KSM maintains multiple
92  * stable trees and multiple unstable trees: one of each for each NUMA node.
93  */
94
95 /**
96  * struct mm_slot - ksm information per mm that is being scanned
97  * @link: link to the mm_slots hash list
98  * @mm_list: link into the mm_slots list, rooted in ksm_mm_head
99  * @rmap_list: head for this mm_slot's singly-linked list of rmap_items
100  * @mm: the mm that this information is valid for
101  */
102 struct mm_slot {
103         struct hlist_node link;
104         struct list_head mm_list;
105         struct rmap_item *rmap_list;
106         struct mm_struct *mm;
107 };
108
109 /**
110  * struct ksm_scan - cursor for scanning
111  * @mm_slot: the current mm_slot we are scanning
112  * @address: the next address inside that to be scanned
113  * @rmap_list: link to the next rmap to be scanned in the rmap_list
114  * @seqnr: count of completed full scans (needed when removing unstable node)
115  *
116  * There is only the one ksm_scan instance of this cursor structure.
117  */
118 struct ksm_scan {
119         struct mm_slot *mm_slot;
120         unsigned long address;
121         struct rmap_item **rmap_list;
122         unsigned long seqnr;
123 };
124
125 /**
126  * struct stable_node - node of the stable rbtree
127  * @node: rb node of this ksm page in the stable tree
128  * @head: (overlaying parent) &migrate_nodes indicates temporarily on that list
129  * @list: linked into migrate_nodes, pending placement in the proper node tree
130  * @hlist: hlist head of rmap_items using this ksm page
131  * @kpfn: page frame number of this ksm page (perhaps temporarily on wrong nid)
132  * @nid: NUMA node id of stable tree in which linked (may not match kpfn)
133  */
134 struct stable_node {
135         union {
136                 struct rb_node node;    /* when node of stable tree */
137                 struct {                /* when listed for migration */
138                         struct list_head *head;
139                         struct list_head list;
140                 };
141         };
142         struct hlist_head hlist;
143         unsigned long kpfn;
144 #ifdef CONFIG_NUMA
145         int nid;
146 #endif
147 };
148
149 /**
150  * struct rmap_item - reverse mapping item for virtual addresses
151  * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list
152  * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree
153  * @nid: NUMA node id of unstable tree in which linked (may not match page)
154  * @mm: the memory structure this rmap_item is pointing into
155  * @address: the virtual address this rmap_item tracks (+ flags in low bits)
156  * @oldchecksum: previous checksum of the page at that virtual address
157  * @node: rb node of this rmap_item in the unstable tree
158  * @head: pointer to stable_node heading this list in the stable tree
159  * @hlist: link into hlist of rmap_items hanging off that stable_node
160  */
161 struct rmap_item {
162         struct rmap_item *rmap_list;
163         union {
164                 struct anon_vma *anon_vma;      /* when stable */
165 #ifdef CONFIG_NUMA
166                 int nid;                /* when node of unstable tree */
167 #endif
168         };
169         struct mm_struct *mm;
170         unsigned long address;          /* + low bits used for flags below */
171         unsigned int oldchecksum;       /* when unstable */
172         union {
173                 struct rb_node node;    /* when node of unstable tree */
174                 struct {                /* when listed from stable tree */
175                         struct stable_node *head;
176                         struct hlist_node hlist;
177                 };
178         };
179 };
180
181 #define SEQNR_MASK      0x0ff   /* low bits of unstable tree seqnr */
182 #define UNSTABLE_FLAG   0x100   /* is a node of the unstable tree */
183 #define STABLE_FLAG     0x200   /* is listed from the stable tree */
184
185 /* The stable and unstable tree heads */
186 static struct rb_root one_stable_tree[1] = { RB_ROOT };
187 static struct rb_root one_unstable_tree[1] = { RB_ROOT };
188 static struct rb_root *root_stable_tree = one_stable_tree;
189 static struct rb_root *root_unstable_tree = one_unstable_tree;
190
191 /* Recently migrated nodes of stable tree, pending proper placement */
192 static LIST_HEAD(migrate_nodes);
193
194 #define MM_SLOTS_HASH_BITS 10
195 static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
196
197 static struct mm_slot ksm_mm_head = {
198         .mm_list = LIST_HEAD_INIT(ksm_mm_head.mm_list),
199 };
200 static struct ksm_scan ksm_scan = {
201         .mm_slot = &ksm_mm_head,
202 };
203
204 static struct kmem_cache *rmap_item_cache;
205 static struct kmem_cache *stable_node_cache;
206 static struct kmem_cache *mm_slot_cache;
207
208 /* The number of nodes in the stable tree */
209 static unsigned long ksm_pages_shared;
210
211 /* The number of page slots additionally sharing those nodes */
212 static unsigned long ksm_pages_sharing;
213
214 /* The number of nodes in the unstable tree */
215 static unsigned long ksm_pages_unshared;
216
217 /* The number of rmap_items in use: to calculate pages_volatile */
218 static unsigned long ksm_rmap_items;
219
220 /* Number of pages ksmd should scan in one batch */
221 static unsigned int ksm_thread_pages_to_scan = 100;
222
223 /* Milliseconds ksmd should sleep between batches */
224 static unsigned int ksm_thread_sleep_millisecs = 20;
225
226 #ifdef CONFIG_NUMA
227 /* Zeroed when merging across nodes is not allowed */
228 static unsigned int ksm_merge_across_nodes = 1;
229 static int ksm_nr_node_ids = 1;
230 #else
231 #define ksm_merge_across_nodes  1U
232 #define ksm_nr_node_ids         1
233 #endif
234
235 #define KSM_RUN_STOP    0
236 #define KSM_RUN_MERGE   1
237 #define KSM_RUN_UNMERGE 2
238 #define KSM_RUN_OFFLINE 4
239 static unsigned long ksm_run = KSM_RUN_STOP;
240 static void wait_while_offlining(void);
241
242 static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait);
243 static DEFINE_MUTEX(ksm_thread_mutex);
244 static DEFINE_SPINLOCK(ksm_mmlist_lock);
245
246 #define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create("ksm_"#__struct,\
247                 sizeof(struct __struct), __alignof__(struct __struct),\
248                 (__flags), NULL)
249
250 static int __init ksm_slab_init(void)
251 {
252         rmap_item_cache = KSM_KMEM_CACHE(rmap_item, 0);
253         if (!rmap_item_cache)
254                 goto out;
255
256         stable_node_cache = KSM_KMEM_CACHE(stable_node, 0);
257         if (!stable_node_cache)
258                 goto out_free1;
259
260         mm_slot_cache = KSM_KMEM_CACHE(mm_slot, 0);
261         if (!mm_slot_cache)
262                 goto out_free2;
263
264         return 0;
265
266 out_free2:
267         kmem_cache_destroy(stable_node_cache);
268 out_free1:
269         kmem_cache_destroy(rmap_item_cache);
270 out:
271         return -ENOMEM;
272 }
273
274 static void __init ksm_slab_free(void)
275 {
276         kmem_cache_destroy(mm_slot_cache);
277         kmem_cache_destroy(stable_node_cache);
278         kmem_cache_destroy(rmap_item_cache);
279         mm_slot_cache = NULL;
280 }
281
282 static inline struct rmap_item *alloc_rmap_item(void)
283 {
284         struct rmap_item *rmap_item;
285
286         rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL |
287                                                 __GFP_NORETRY | __GFP_NOWARN);
288         if (rmap_item)
289                 ksm_rmap_items++;
290         return rmap_item;
291 }
292
293 static inline void free_rmap_item(struct rmap_item *rmap_item)
294 {
295         ksm_rmap_items--;
296         rmap_item->mm = NULL;   /* debug safety */
297         kmem_cache_free(rmap_item_cache, rmap_item);
298 }
299
300 static inline struct stable_node *alloc_stable_node(void)
301 {
302         return kmem_cache_alloc(stable_node_cache, GFP_KERNEL);
303 }
304
305 static inline void free_stable_node(struct stable_node *stable_node)
306 {
307         kmem_cache_free(stable_node_cache, stable_node);
308 }
309
310 static inline struct mm_slot *alloc_mm_slot(void)
311 {
312         if (!mm_slot_cache)     /* initialization failed */
313                 return NULL;
314         return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
315 }
316
317 static inline void free_mm_slot(struct mm_slot *mm_slot)
318 {
319         kmem_cache_free(mm_slot_cache, mm_slot);
320 }
321
322 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
323 {
324         struct mm_slot *slot;
325
326         hash_for_each_possible(mm_slots_hash, slot, link, (unsigned long)mm)
327                 if (slot->mm == mm)
328                         return slot;
329
330         return NULL;
331 }
332
333 static void insert_to_mm_slots_hash(struct mm_struct *mm,
334                                     struct mm_slot *mm_slot)
335 {
336         mm_slot->mm = mm;
337         hash_add(mm_slots_hash, &mm_slot->link, (unsigned long)mm);
338 }
339
340 /*
341  * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's
342  * page tables after it has passed through ksm_exit() - which, if necessary,
343  * takes mmap_sem briefly to serialize against them.  ksm_exit() does not set
344  * a special flag: they can just back out as soon as mm_users goes to zero.
345  * ksm_test_exit() is used throughout to make this test for exit: in some
346  * places for correctness, in some places just to avoid unnecessary work.
347  */
348 static inline bool ksm_test_exit(struct mm_struct *mm)
349 {
350         return atomic_read(&mm->mm_users) == 0;
351 }
352
353 /*
354  * We use break_ksm to break COW on a ksm page: it's a stripped down
355  *
356  *      if (get_user_pages(current, mm, addr, 1, 1, 1, &page, NULL) == 1)
357  *              put_page(page);
358  *
359  * but taking great care only to touch a ksm page, in a VM_MERGEABLE vma,
360  * in case the application has unmapped and remapped mm,addr meanwhile.
361  * Could a ksm page appear anywhere else?  Actually yes, in a VM_PFNMAP
362  * mmap of /dev/mem or /dev/kmem, where we would not want to touch it.
363  */
364 static int break_ksm(struct vm_area_struct *vma, unsigned long addr)
365 {
366         struct page *page;
367         int ret = 0;
368
369         do {
370                 cond_resched();
371                 page = follow_page(vma, addr, FOLL_GET | FOLL_MIGRATION);
372                 if (IS_ERR_OR_NULL(page))
373                         break;
374                 if (PageKsm(page))
375                         ret = handle_mm_fault(vma->vm_mm, vma, addr,
376                                                         FAULT_FLAG_WRITE);
377                 else
378                         ret = VM_FAULT_WRITE;
379                 put_page(page);
380         } while (!(ret & (VM_FAULT_WRITE | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | VM_FAULT_OOM)));
381         /*
382          * We must loop because handle_mm_fault() may back out if there's
383          * any difficulty e.g. if pte accessed bit gets updated concurrently.
384          *
385          * VM_FAULT_WRITE is what we have been hoping for: it indicates that
386          * COW has been broken, even if the vma does not permit VM_WRITE;
387          * but note that a concurrent fault might break PageKsm for us.
388          *
389          * VM_FAULT_SIGBUS could occur if we race with truncation of the
390          * backing file, which also invalidates anonymous pages: that's
391          * okay, that truncation will have unmapped the PageKsm for us.
392          *
393          * VM_FAULT_OOM: at the time of writing (late July 2009), setting
394          * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the
395          * current task has TIF_MEMDIE set, and will be OOM killed on return
396          * to user; and ksmd, having no mm, would never be chosen for that.
397          *
398          * But if the mm is in a limited mem_cgroup, then the fault may fail
399          * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and
400          * even ksmd can fail in this way - though it's usually breaking ksm
401          * just to undo a merge it made a moment before, so unlikely to oom.
402          *
403          * That's a pity: we might therefore have more kernel pages allocated
404          * than we're counting as nodes in the stable tree; but ksm_do_scan
405          * will retry to break_cow on each pass, so should recover the page
406          * in due course.  The important thing is to not let VM_MERGEABLE
407          * be cleared while any such pages might remain in the area.
408          */
409         return (ret & VM_FAULT_OOM) ? -ENOMEM : 0;
410 }
411
412 static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm,
413                 unsigned long addr)
414 {
415         struct vm_area_struct *vma;
416         if (ksm_test_exit(mm))
417                 return NULL;
418         vma = find_vma(mm, addr);
419         if (!vma || vma->vm_start > addr)
420                 return NULL;
421         if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
422                 return NULL;
423         return vma;
424 }
425
426 static void break_cow(struct rmap_item *rmap_item)
427 {
428         struct mm_struct *mm = rmap_item->mm;
429         unsigned long addr = rmap_item->address;
430         struct vm_area_struct *vma;
431
432         /*
433          * It is not an accident that whenever we want to break COW
434          * to undo, we also need to drop a reference to the anon_vma.
435          */
436         put_anon_vma(rmap_item->anon_vma);
437
438         down_read(&mm->mmap_sem);
439         vma = find_mergeable_vma(mm, addr);
440         if (vma)
441                 break_ksm(vma, addr);
442         up_read(&mm->mmap_sem);
443 }
444
445 static struct page *page_trans_compound_anon(struct page *page)
446 {
447         if (PageTransCompound(page)) {
448                 struct page *head = compound_head(page);
449                 /*
450                  * head may actually be splitted and freed from under
451                  * us but it's ok here.
452                  */
453                 if (PageAnon(head))
454                         return head;
455         }
456         return NULL;
457 }
458
459 static struct page *get_mergeable_page(struct rmap_item *rmap_item)
460 {
461         struct mm_struct *mm = rmap_item->mm;
462         unsigned long addr = rmap_item->address;
463         struct vm_area_struct *vma;
464         struct page *page;
465
466         down_read(&mm->mmap_sem);
467         vma = find_mergeable_vma(mm, addr);
468         if (!vma)
469                 goto out;
470
471         page = follow_page(vma, addr, FOLL_GET);
472         if (IS_ERR_OR_NULL(page))
473                 goto out;
474         if (PageAnon(page) || page_trans_compound_anon(page)) {
475                 flush_anon_page(vma, page, addr);
476                 flush_dcache_page(page);
477         } else {
478                 put_page(page);
479 out:
480                 page = NULL;
481         }
482         up_read(&mm->mmap_sem);
483         return page;
484 }
485
486 /*
487  * This helper is used for getting right index into array of tree roots.
488  * When merge_across_nodes knob is set to 1, there are only two rb-trees for
489  * stable and unstable pages from all nodes with roots in index 0. Otherwise,
490  * every node has its own stable and unstable tree.
491  */
492 static inline int get_kpfn_nid(unsigned long kpfn)
493 {
494         return ksm_merge_across_nodes ? 0 : NUMA(pfn_to_nid(kpfn));
495 }
496
497 static void remove_node_from_stable_tree(struct stable_node *stable_node)
498 {
499         struct rmap_item *rmap_item;
500
501         hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
502                 if (rmap_item->hlist.next)
503                         ksm_pages_sharing--;
504                 else
505                         ksm_pages_shared--;
506                 put_anon_vma(rmap_item->anon_vma);
507                 rmap_item->address &= PAGE_MASK;
508                 cond_resched();
509         }
510
511         if (stable_node->head == &migrate_nodes)
512                 list_del(&stable_node->list);
513         else
514                 rb_erase(&stable_node->node,
515                          root_stable_tree + NUMA(stable_node->nid));
516         free_stable_node(stable_node);
517 }
518
519 /*
520  * get_ksm_page: checks if the page indicated by the stable node
521  * is still its ksm page, despite having held no reference to it.
522  * In which case we can trust the content of the page, and it
523  * returns the gotten page; but if the page has now been zapped,
524  * remove the stale node from the stable tree and return NULL.
525  * But beware, the stable node's page might be being migrated.
526  *
527  * You would expect the stable_node to hold a reference to the ksm page.
528  * But if it increments the page's count, swapping out has to wait for
529  * ksmd to come around again before it can free the page, which may take
530  * seconds or even minutes: much too unresponsive.  So instead we use a
531  * "keyhole reference": access to the ksm page from the stable node peeps
532  * out through its keyhole to see if that page still holds the right key,
533  * pointing back to this stable node.  This relies on freeing a PageAnon
534  * page to reset its page->mapping to NULL, and relies on no other use of
535  * a page to put something that might look like our key in page->mapping.
536  * is on its way to being freed; but it is an anomaly to bear in mind.
537  */
538 static struct page *get_ksm_page(struct stable_node *stable_node, bool lock_it)
539 {
540         struct page *page;
541         void *expected_mapping;
542         unsigned long kpfn;
543
544         expected_mapping = (void *)stable_node +
545                                 (PAGE_MAPPING_ANON | PAGE_MAPPING_KSM);
546 again:
547         kpfn = READ_ONCE(stable_node->kpfn);
548         page = pfn_to_page(kpfn);
549
550         /*
551          * page is computed from kpfn, so on most architectures reading
552          * page->mapping is naturally ordered after reading node->kpfn,
553          * but on Alpha we need to be more careful.
554          */
555         smp_read_barrier_depends();
556         if (READ_ONCE(page->mapping) != expected_mapping)
557                 goto stale;
558
559         /*
560          * We cannot do anything with the page while its refcount is 0.
561          * Usually 0 means free, or tail of a higher-order page: in which
562          * case this node is no longer referenced, and should be freed;
563          * however, it might mean that the page is under page_freeze_refs().
564          * The __remove_mapping() case is easy, again the node is now stale;
565          * but if page is swapcache in migrate_page_move_mapping(), it might
566          * still be our page, in which case it's essential to keep the node.
567          */
568         while (!get_page_unless_zero(page)) {
569                 /*
570                  * Another check for page->mapping != expected_mapping would
571                  * work here too.  We have chosen the !PageSwapCache test to
572                  * optimize the common case, when the page is or is about to
573                  * be freed: PageSwapCache is cleared (under spin_lock_irq)
574                  * in the freeze_refs section of __remove_mapping(); but Anon
575                  * page->mapping reset to NULL later, in free_pages_prepare().
576                  */
577                 if (!PageSwapCache(page))
578                         goto stale;
579                 cpu_relax();
580         }
581
582         if (READ_ONCE(page->mapping) != expected_mapping) {
583                 put_page(page);
584                 goto stale;
585         }
586
587         if (lock_it) {
588                 lock_page(page);
589                 if (READ_ONCE(page->mapping) != expected_mapping) {
590                         unlock_page(page);
591                         put_page(page);
592                         goto stale;
593                 }
594         }
595         return page;
596
597 stale:
598         /*
599          * We come here from above when page->mapping or !PageSwapCache
600          * suggests that the node is stale; but it might be under migration.
601          * We need smp_rmb(), matching the smp_wmb() in ksm_migrate_page(),
602          * before checking whether node->kpfn has been changed.
603          */
604         smp_rmb();
605         if (READ_ONCE(stable_node->kpfn) != kpfn)
606                 goto again;
607         remove_node_from_stable_tree(stable_node);
608         return NULL;
609 }
610
611 /*
612  * Removing rmap_item from stable or unstable tree.
613  * This function will clean the information from the stable/unstable tree.
614  */
615 static void remove_rmap_item_from_tree(struct rmap_item *rmap_item)
616 {
617         if (rmap_item->address & STABLE_FLAG) {
618                 struct stable_node *stable_node;
619                 struct page *page;
620
621                 stable_node = rmap_item->head;
622                 page = get_ksm_page(stable_node, true);
623                 if (!page)
624                         goto out;
625
626                 hlist_del(&rmap_item->hlist);
627                 unlock_page(page);
628                 put_page(page);
629
630                 if (!hlist_empty(&stable_node->hlist))
631                         ksm_pages_sharing--;
632                 else
633                         ksm_pages_shared--;
634
635                 put_anon_vma(rmap_item->anon_vma);
636                 rmap_item->address &= PAGE_MASK;
637
638         } else if (rmap_item->address & UNSTABLE_FLAG) {
639                 unsigned char age;
640                 /*
641                  * Usually ksmd can and must skip the rb_erase, because
642                  * root_unstable_tree was already reset to RB_ROOT.
643                  * But be careful when an mm is exiting: do the rb_erase
644                  * if this rmap_item was inserted by this scan, rather
645                  * than left over from before.
646                  */
647                 age = (unsigned char)(ksm_scan.seqnr - rmap_item->address);
648                 BUG_ON(age > 1);
649                 if (!age)
650                         rb_erase(&rmap_item->node,
651                                  root_unstable_tree + NUMA(rmap_item->nid));
652                 ksm_pages_unshared--;
653                 rmap_item->address &= PAGE_MASK;
654         }
655 out:
656         cond_resched();         /* we're called from many long loops */
657 }
658
659 static void remove_trailing_rmap_items(struct mm_slot *mm_slot,
660                                        struct rmap_item **rmap_list)
661 {
662         while (*rmap_list) {
663                 struct rmap_item *rmap_item = *rmap_list;
664                 *rmap_list = rmap_item->rmap_list;
665                 remove_rmap_item_from_tree(rmap_item);
666                 free_rmap_item(rmap_item);
667         }
668 }
669
670 /*
671  * Though it's very tempting to unmerge rmap_items from stable tree rather
672  * than check every pte of a given vma, the locking doesn't quite work for
673  * that - an rmap_item is assigned to the stable tree after inserting ksm
674  * page and upping mmap_sem.  Nor does it fit with the way we skip dup'ing
675  * rmap_items from parent to child at fork time (so as not to waste time
676  * if exit comes before the next scan reaches it).
677  *
678  * Similarly, although we'd like to remove rmap_items (so updating counts
679  * and freeing memory) when unmerging an area, it's easier to leave that
680  * to the next pass of ksmd - consider, for example, how ksmd might be
681  * in cmp_and_merge_page on one of the rmap_items we would be removing.
682  */
683 static int unmerge_ksm_pages(struct vm_area_struct *vma,
684                              unsigned long start, unsigned long end)
685 {
686         unsigned long addr;
687         int err = 0;
688
689         for (addr = start; addr < end && !err; addr += PAGE_SIZE) {
690                 if (ksm_test_exit(vma->vm_mm))
691                         break;
692                 if (signal_pending(current))
693                         err = -ERESTARTSYS;
694                 else
695                         err = break_ksm(vma, addr);
696         }
697         return err;
698 }
699
700 #ifdef CONFIG_SYSFS
701 /*
702  * Only called through the sysfs control interface:
703  */
704 static int remove_stable_node(struct stable_node *stable_node)
705 {
706         struct page *page;
707         int err;
708
709         page = get_ksm_page(stable_node, true);
710         if (!page) {
711                 /*
712                  * get_ksm_page did remove_node_from_stable_tree itself.
713                  */
714                 return 0;
715         }
716
717         /*
718          * Page could be still mapped if this races with __mmput() running in
719          * between ksm_exit() and exit_mmap(). Just refuse to let
720          * merge_across_nodes/max_page_sharing be switched.
721          */
722         err = -EBUSY;
723         if (!page_mapped(page)) {
724                 /*
725                  * The stable node did not yet appear stale to get_ksm_page(),
726                  * since that allows for an unmapped ksm page to be recognized
727                  * right up until it is freed; but the node is safe to remove.
728                  * This page might be in a pagevec waiting to be freed,
729                  * or it might be PageSwapCache (perhaps under writeback),
730                  * or it might have been removed from swapcache a moment ago.
731                  */
732                 set_page_stable_node(page, NULL);
733                 remove_node_from_stable_tree(stable_node);
734                 err = 0;
735         }
736
737         unlock_page(page);
738         put_page(page);
739         return err;
740 }
741
742 static int remove_all_stable_nodes(void)
743 {
744         struct stable_node *stable_node;
745         struct list_head *this, *next;
746         int nid;
747         int err = 0;
748
749         for (nid = 0; nid < ksm_nr_node_ids; nid++) {
750                 while (root_stable_tree[nid].rb_node) {
751                         stable_node = rb_entry(root_stable_tree[nid].rb_node,
752                                                 struct stable_node, node);
753                         if (remove_stable_node(stable_node)) {
754                                 err = -EBUSY;
755                                 break;  /* proceed to next nid */
756                         }
757                         cond_resched();
758                 }
759         }
760         list_for_each_safe(this, next, &migrate_nodes) {
761                 stable_node = list_entry(this, struct stable_node, list);
762                 if (remove_stable_node(stable_node))
763                         err = -EBUSY;
764                 cond_resched();
765         }
766         return err;
767 }
768
769 static int unmerge_and_remove_all_rmap_items(void)
770 {
771         struct mm_slot *mm_slot;
772         struct mm_struct *mm;
773         struct vm_area_struct *vma;
774         int err = 0;
775
776         spin_lock(&ksm_mmlist_lock);
777         ksm_scan.mm_slot = list_entry(ksm_mm_head.mm_list.next,
778                                                 struct mm_slot, mm_list);
779         spin_unlock(&ksm_mmlist_lock);
780
781         for (mm_slot = ksm_scan.mm_slot;
782                         mm_slot != &ksm_mm_head; mm_slot = ksm_scan.mm_slot) {
783                 mm = mm_slot->mm;
784                 down_read(&mm->mmap_sem);
785                 for (vma = mm->mmap; vma; vma = vma->vm_next) {
786                         if (ksm_test_exit(mm))
787                                 break;
788                         if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
789                                 continue;
790                         err = unmerge_ksm_pages(vma,
791                                                 vma->vm_start, vma->vm_end);
792                         if (err)
793                                 goto error;
794                 }
795
796                 remove_trailing_rmap_items(mm_slot, &mm_slot->rmap_list);
797
798                 spin_lock(&ksm_mmlist_lock);
799                 ksm_scan.mm_slot = list_entry(mm_slot->mm_list.next,
800                                                 struct mm_slot, mm_list);
801                 if (ksm_test_exit(mm)) {
802                         hash_del(&mm_slot->link);
803                         list_del(&mm_slot->mm_list);
804                         spin_unlock(&ksm_mmlist_lock);
805
806                         free_mm_slot(mm_slot);
807                         clear_bit(MMF_VM_MERGEABLE, &mm->flags);
808                         up_read(&mm->mmap_sem);
809                         mmdrop(mm);
810                 } else {
811                         spin_unlock(&ksm_mmlist_lock);
812                         up_read(&mm->mmap_sem);
813                 }
814         }
815
816         /* Clean up stable nodes, but don't worry if some are still busy */
817         remove_all_stable_nodes();
818         ksm_scan.seqnr = 0;
819         return 0;
820
821 error:
822         up_read(&mm->mmap_sem);
823         spin_lock(&ksm_mmlist_lock);
824         ksm_scan.mm_slot = &ksm_mm_head;
825         spin_unlock(&ksm_mmlist_lock);
826         return err;
827 }
828 #endif /* CONFIG_SYSFS */
829
830 static u32 calc_checksum(struct page *page)
831 {
832         u32 checksum;
833         void *addr = kmap_atomic(page);
834         checksum = jhash2(addr, PAGE_SIZE / 4, 17);
835         kunmap_atomic(addr);
836         return checksum;
837 }
838
839 static int memcmp_pages(struct page *page1, struct page *page2)
840 {
841         char *addr1, *addr2;
842         int ret;
843
844         addr1 = kmap_atomic(page1);
845         addr2 = kmap_atomic(page2);
846         ret = memcmp(addr1, addr2, PAGE_SIZE);
847         kunmap_atomic(addr2);
848         kunmap_atomic(addr1);
849         return ret;
850 }
851
852 static inline int pages_identical(struct page *page1, struct page *page2)
853 {
854         return !memcmp_pages(page1, page2);
855 }
856
857 static int write_protect_page(struct vm_area_struct *vma, struct page *page,
858                               pte_t *orig_pte)
859 {
860         struct mm_struct *mm = vma->vm_mm;
861         unsigned long addr;
862         pte_t *ptep;
863         spinlock_t *ptl;
864         int swapped;
865         int err = -EFAULT;
866         unsigned long mmun_start;       /* For mmu_notifiers */
867         unsigned long mmun_end;         /* For mmu_notifiers */
868
869         addr = page_address_in_vma(page, vma);
870         if (addr == -EFAULT)
871                 goto out;
872
873         BUG_ON(PageTransCompound(page));
874
875         mmun_start = addr;
876         mmun_end   = addr + PAGE_SIZE;
877         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
878
879         ptep = page_check_address(page, mm, addr, &ptl, 0);
880         if (!ptep)
881                 goto out_mn;
882
883         if (pte_write(*ptep) || pte_dirty(*ptep)) {
884                 pte_t entry;
885
886                 swapped = PageSwapCache(page);
887                 flush_cache_page(vma, addr, page_to_pfn(page));
888                 /*
889                  * Ok this is tricky, when get_user_pages_fast() run it doesn't
890                  * take any lock, therefore the check that we are going to make
891                  * with the pagecount against the mapcount is racey and
892                  * O_DIRECT can happen right after the check.
893                  * So we clear the pte and flush the tlb before the check
894                  * this assure us that no O_DIRECT can happen after the check
895                  * or in the middle of the check.
896                  */
897                 entry = ptep_clear_flush_notify(vma, addr, ptep);
898                 /*
899                  * Check that no O_DIRECT or similar I/O is in progress on the
900                  * page
901                  */
902                 if (page_mapcount(page) + 1 + swapped != page_count(page)) {
903                         set_pte_at(mm, addr, ptep, entry);
904                         goto out_unlock;
905                 }
906                 if (pte_dirty(entry))
907                         set_page_dirty(page);
908                 entry = pte_mkclean(pte_wrprotect(entry));
909                 set_pte_at_notify(mm, addr, ptep, entry);
910         }
911         *orig_pte = *ptep;
912         err = 0;
913
914 out_unlock:
915         pte_unmap_unlock(ptep, ptl);
916 out_mn:
917         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
918 out:
919         return err;
920 }
921
922 /**
923  * replace_page - replace page in vma by new ksm page
924  * @vma:      vma that holds the pte pointing to page
925  * @page:     the page we are replacing by kpage
926  * @kpage:    the ksm page we replace page by
927  * @orig_pte: the original value of the pte
928  *
929  * Returns 0 on success, -EFAULT on failure.
930  */
931 static int replace_page(struct vm_area_struct *vma, struct page *page,
932                         struct page *kpage, pte_t orig_pte)
933 {
934         struct mm_struct *mm = vma->vm_mm;
935         pmd_t *pmd;
936         pte_t *ptep;
937         spinlock_t *ptl;
938         unsigned long addr;
939         int err = -EFAULT;
940         unsigned long mmun_start;       /* For mmu_notifiers */
941         unsigned long mmun_end;         /* For mmu_notifiers */
942
943         addr = page_address_in_vma(page, vma);
944         if (addr == -EFAULT)
945                 goto out;
946
947         pmd = mm_find_pmd(mm, addr);
948         if (!pmd)
949                 goto out;
950
951         mmun_start = addr;
952         mmun_end   = addr + PAGE_SIZE;
953         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
954
955         ptep = pte_offset_map_lock(mm, pmd, addr, &ptl);
956         if (!pte_same(*ptep, orig_pte)) {
957                 pte_unmap_unlock(ptep, ptl);
958                 goto out_mn;
959         }
960
961         get_page(kpage);
962         page_add_anon_rmap(kpage, vma, addr);
963
964         flush_cache_page(vma, addr, pte_pfn(*ptep));
965         ptep_clear_flush_notify(vma, addr, ptep);
966         set_pte_at_notify(mm, addr, ptep, mk_pte(kpage, vma->vm_page_prot));
967
968         page_remove_rmap(page);
969         if (!page_mapped(page))
970                 try_to_free_swap(page);
971         put_page(page);
972
973         pte_unmap_unlock(ptep, ptl);
974         err = 0;
975 out_mn:
976         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
977 out:
978         return err;
979 }
980
981 static int page_trans_compound_anon_split(struct page *page)
982 {
983         int ret = 0;
984         struct page *transhuge_head = page_trans_compound_anon(page);
985         if (transhuge_head) {
986                 /* Get the reference on the head to split it. */
987                 if (get_page_unless_zero(transhuge_head)) {
988                         /*
989                          * Recheck we got the reference while the head
990                          * was still anonymous.
991                          */
992                         if (PageAnon(transhuge_head))
993                                 ret = split_huge_page(transhuge_head);
994                         else
995                                 /*
996                                  * Retry later if split_huge_page run
997                                  * from under us.
998                                  */
999                                 ret = 1;
1000                         put_page(transhuge_head);
1001                 } else
1002                         /* Retry later if split_huge_page run from under us. */
1003                         ret = 1;
1004         }
1005         return ret;
1006 }
1007
1008 /*
1009  * try_to_merge_one_page - take two pages and merge them into one
1010  * @vma: the vma that holds the pte pointing to page
1011  * @page: the PageAnon page that we want to replace with kpage
1012  * @kpage: the PageKsm page that we want to map instead of page,
1013  *         or NULL the first time when we want to use page as kpage.
1014  *
1015  * This function returns 0 if the pages were merged, -EFAULT otherwise.
1016  */
1017 static int try_to_merge_one_page(struct vm_area_struct *vma,
1018                                  struct page *page, struct page *kpage)
1019 {
1020         pte_t orig_pte = __pte(0);
1021         int err = -EFAULT;
1022
1023         if (page == kpage)                      /* ksm page forked */
1024                 return 0;
1025
1026         if (PageTransCompound(page) && page_trans_compound_anon_split(page))
1027                 goto out;
1028         BUG_ON(PageTransCompound(page));
1029         if (!PageAnon(page))
1030                 goto out;
1031
1032         /*
1033          * We need the page lock to read a stable PageSwapCache in
1034          * write_protect_page().  We use trylock_page() instead of
1035          * lock_page() because we don't want to wait here - we
1036          * prefer to continue scanning and merging different pages,
1037          * then come back to this page when it is unlocked.
1038          */
1039         if (!trylock_page(page))
1040                 goto out;
1041         /*
1042          * If this anonymous page is mapped only here, its pte may need
1043          * to be write-protected.  If it's mapped elsewhere, all of its
1044          * ptes are necessarily already write-protected.  But in either
1045          * case, we need to lock and check page_count is not raised.
1046          */
1047         if (write_protect_page(vma, page, &orig_pte) == 0) {
1048                 if (!kpage) {
1049                         /*
1050                          * While we hold page lock, upgrade page from
1051                          * PageAnon+anon_vma to PageKsm+NULL stable_node:
1052                          * stable_tree_insert() will update stable_node.
1053                          */
1054                         set_page_stable_node(page, NULL);
1055                         mark_page_accessed(page);
1056                         err = 0;
1057                 } else if (pages_identical(page, kpage))
1058                         err = replace_page(vma, page, kpage, orig_pte);
1059         }
1060
1061         if ((vma->vm_flags & VM_LOCKED) && kpage && !err) {
1062                 munlock_vma_page(page);
1063                 if (!PageMlocked(kpage)) {
1064                         unlock_page(page);
1065                         lock_page(kpage);
1066                         mlock_vma_page(kpage);
1067                         page = kpage;           /* for final unlock */
1068                 }
1069         }
1070
1071         unlock_page(page);
1072 out:
1073         return err;
1074 }
1075
1076 /*
1077  * try_to_merge_with_ksm_page - like try_to_merge_two_pages,
1078  * but no new kernel page is allocated: kpage must already be a ksm page.
1079  *
1080  * This function returns 0 if the pages were merged, -EFAULT otherwise.
1081  */
1082 static int try_to_merge_with_ksm_page(struct rmap_item *rmap_item,
1083                                       struct page *page, struct page *kpage)
1084 {
1085         struct mm_struct *mm = rmap_item->mm;
1086         struct vm_area_struct *vma;
1087         int err = -EFAULT;
1088
1089         down_read(&mm->mmap_sem);
1090         vma = find_mergeable_vma(mm, rmap_item->address);
1091         if (!vma)
1092                 goto out;
1093
1094         err = try_to_merge_one_page(vma, page, kpage);
1095         if (err)
1096                 goto out;
1097
1098         /* Unstable nid is in union with stable anon_vma: remove first */
1099         remove_rmap_item_from_tree(rmap_item);
1100
1101         /* Must get reference to anon_vma while still holding mmap_sem */
1102         rmap_item->anon_vma = vma->anon_vma;
1103         get_anon_vma(vma->anon_vma);
1104 out:
1105         up_read(&mm->mmap_sem);
1106         return err;
1107 }
1108
1109 /*
1110  * try_to_merge_two_pages - take two identical pages and prepare them
1111  * to be merged into one page.
1112  *
1113  * This function returns the kpage if we successfully merged two identical
1114  * pages into one ksm page, NULL otherwise.
1115  *
1116  * Note that this function upgrades page to ksm page: if one of the pages
1117  * is already a ksm page, try_to_merge_with_ksm_page should be used.
1118  */
1119 static struct page *try_to_merge_two_pages(struct rmap_item *rmap_item,
1120                                            struct page *page,
1121                                            struct rmap_item *tree_rmap_item,
1122                                            struct page *tree_page)
1123 {
1124         int err;
1125
1126         err = try_to_merge_with_ksm_page(rmap_item, page, NULL);
1127         if (!err) {
1128                 err = try_to_merge_with_ksm_page(tree_rmap_item,
1129                                                         tree_page, page);
1130                 /*
1131                  * If that fails, we have a ksm page with only one pte
1132                  * pointing to it: so break it.
1133                  */
1134                 if (err)
1135                         break_cow(rmap_item);
1136         }
1137         return err ? NULL : page;
1138 }
1139
1140 /*
1141  * stable_tree_search - search for page inside the stable tree
1142  *
1143  * This function checks if there is a page inside the stable tree
1144  * with identical content to the page that we are scanning right now.
1145  *
1146  * This function returns the stable tree node of identical content if found,
1147  * NULL otherwise.
1148  */
1149 static struct page *stable_tree_search(struct page *page)
1150 {
1151         int nid;
1152         struct rb_root *root;
1153         struct rb_node **new;
1154         struct rb_node *parent;
1155         struct stable_node *stable_node;
1156         struct stable_node *page_node;
1157
1158         page_node = page_stable_node(page);
1159         if (page_node && page_node->head != &migrate_nodes) {
1160                 /* ksm page forked */
1161                 get_page(page);
1162                 return page;
1163         }
1164
1165         nid = get_kpfn_nid(page_to_pfn(page));
1166         root = root_stable_tree + nid;
1167 again:
1168         new = &root->rb_node;
1169         parent = NULL;
1170
1171         while (*new) {
1172                 struct page *tree_page;
1173                 int ret;
1174
1175                 cond_resched();
1176                 stable_node = rb_entry(*new, struct stable_node, node);
1177                 tree_page = get_ksm_page(stable_node, false);
1178                 if (!tree_page) {
1179                         /*
1180                          * If we walked over a stale stable_node,
1181                          * get_ksm_page() will call rb_erase() and it
1182                          * may rebalance the tree from under us. So
1183                          * restart the search from scratch. Returning
1184                          * NULL would be safe too, but we'd generate
1185                          * false negative insertions just because some
1186                          * stable_node was stale.
1187                          */
1188                         goto again;
1189                 }
1190
1191                 ret = memcmp_pages(page, tree_page);
1192                 put_page(tree_page);
1193
1194                 parent = *new;
1195                 if (ret < 0)
1196                         new = &parent->rb_left;
1197                 else if (ret > 0)
1198                         new = &parent->rb_right;
1199                 else {
1200                         /*
1201                          * Lock and unlock the stable_node's page (which
1202                          * might already have been migrated) so that page
1203                          * migration is sure to notice its raised count.
1204                          * It would be more elegant to return stable_node
1205                          * than kpage, but that involves more changes.
1206                          */
1207                         tree_page = get_ksm_page(stable_node, true);
1208                         if (tree_page) {
1209                                 unlock_page(tree_page);
1210                                 if (get_kpfn_nid(stable_node->kpfn) !=
1211                                                 NUMA(stable_node->nid)) {
1212                                         put_page(tree_page);
1213                                         goto replace;
1214                                 }
1215                                 return tree_page;
1216                         }
1217                         /*
1218                          * There is now a place for page_node, but the tree may
1219                          * have been rebalanced, so re-evaluate parent and new.
1220                          */
1221                         if (page_node)
1222                                 goto again;
1223                         return NULL;
1224                 }
1225         }
1226
1227         if (!page_node)
1228                 return NULL;
1229
1230         list_del(&page_node->list);
1231         DO_NUMA(page_node->nid = nid);
1232         rb_link_node(&page_node->node, parent, new);
1233         rb_insert_color(&page_node->node, root);
1234         get_page(page);
1235         return page;
1236
1237 replace:
1238         if (page_node) {
1239                 list_del(&page_node->list);
1240                 DO_NUMA(page_node->nid = nid);
1241                 rb_replace_node(&stable_node->node, &page_node->node, root);
1242                 get_page(page);
1243         } else {
1244                 rb_erase(&stable_node->node, root);
1245                 page = NULL;
1246         }
1247         stable_node->head = &migrate_nodes;
1248         list_add(&stable_node->list, stable_node->head);
1249         return page;
1250 }
1251
1252 /*
1253  * stable_tree_insert - insert stable tree node pointing to new ksm page
1254  * into the stable tree.
1255  *
1256  * This function returns the stable tree node just allocated on success,
1257  * NULL otherwise.
1258  */
1259 static struct stable_node *stable_tree_insert(struct page *kpage)
1260 {
1261         int nid;
1262         unsigned long kpfn;
1263         struct rb_root *root;
1264         struct rb_node **new;
1265         struct rb_node *parent;
1266         struct stable_node *stable_node;
1267
1268         kpfn = page_to_pfn(kpage);
1269         nid = get_kpfn_nid(kpfn);
1270         root = root_stable_tree + nid;
1271 again:
1272         parent = NULL;
1273         new = &root->rb_node;
1274
1275         while (*new) {
1276                 struct page *tree_page;
1277                 int ret;
1278
1279                 cond_resched();
1280                 stable_node = rb_entry(*new, struct stable_node, node);
1281                 tree_page = get_ksm_page(stable_node, false);
1282                 if (!tree_page) {
1283                         /*
1284                          * If we walked over a stale stable_node,
1285                          * get_ksm_page() will call rb_erase() and it
1286                          * may rebalance the tree from under us. So
1287                          * restart the search from scratch. Returning
1288                          * NULL would be safe too, but we'd generate
1289                          * false negative insertions just because some
1290                          * stable_node was stale.
1291                          */
1292                         goto again;
1293                 }
1294
1295                 ret = memcmp_pages(kpage, tree_page);
1296                 put_page(tree_page);
1297
1298                 parent = *new;
1299                 if (ret < 0)
1300                         new = &parent->rb_left;
1301                 else if (ret > 0)
1302                         new = &parent->rb_right;
1303                 else {
1304                         /*
1305                          * It is not a bug that stable_tree_search() didn't
1306                          * find this node: because at that time our page was
1307                          * not yet write-protected, so may have changed since.
1308                          */
1309                         return NULL;
1310                 }
1311         }
1312
1313         stable_node = alloc_stable_node();
1314         if (!stable_node)
1315                 return NULL;
1316
1317         INIT_HLIST_HEAD(&stable_node->hlist);
1318         stable_node->kpfn = kpfn;
1319         set_page_stable_node(kpage, stable_node);
1320         DO_NUMA(stable_node->nid = nid);
1321         rb_link_node(&stable_node->node, parent, new);
1322         rb_insert_color(&stable_node->node, root);
1323
1324         return stable_node;
1325 }
1326
1327 /*
1328  * unstable_tree_search_insert - search for identical page,
1329  * else insert rmap_item into the unstable tree.
1330  *
1331  * This function searches for a page in the unstable tree identical to the
1332  * page currently being scanned; and if no identical page is found in the
1333  * tree, we insert rmap_item as a new object into the unstable tree.
1334  *
1335  * This function returns pointer to rmap_item found to be identical
1336  * to the currently scanned page, NULL otherwise.
1337  *
1338  * This function does both searching and inserting, because they share
1339  * the same walking algorithm in an rbtree.
1340  */
1341 static
1342 struct rmap_item *unstable_tree_search_insert(struct rmap_item *rmap_item,
1343                                               struct page *page,
1344                                               struct page **tree_pagep)
1345 {
1346         struct rb_node **new;
1347         struct rb_root *root;
1348         struct rb_node *parent = NULL;
1349         int nid;
1350
1351         nid = get_kpfn_nid(page_to_pfn(page));
1352         root = root_unstable_tree + nid;
1353         new = &root->rb_node;
1354
1355         while (*new) {
1356                 struct rmap_item *tree_rmap_item;
1357                 struct page *tree_page;
1358                 int ret;
1359
1360                 cond_resched();
1361                 tree_rmap_item = rb_entry(*new, struct rmap_item, node);
1362                 tree_page = get_mergeable_page(tree_rmap_item);
1363                 if (!tree_page)
1364                         return NULL;
1365
1366                 /*
1367                  * Don't substitute a ksm page for a forked page.
1368                  */
1369                 if (page == tree_page) {
1370                         put_page(tree_page);
1371                         return NULL;
1372                 }
1373
1374                 ret = memcmp_pages(page, tree_page);
1375
1376                 parent = *new;
1377                 if (ret < 0) {
1378                         put_page(tree_page);
1379                         new = &parent->rb_left;
1380                 } else if (ret > 0) {
1381                         put_page(tree_page);
1382                         new = &parent->rb_right;
1383                 } else if (!ksm_merge_across_nodes &&
1384                            page_to_nid(tree_page) != nid) {
1385                         /*
1386                          * If tree_page has been migrated to another NUMA node,
1387                          * it will be flushed out and put in the right unstable
1388                          * tree next time: only merge with it when across_nodes.
1389                          */
1390                         put_page(tree_page);
1391                         return NULL;
1392                 } else {
1393                         *tree_pagep = tree_page;
1394                         return tree_rmap_item;
1395                 }
1396         }
1397
1398         rmap_item->address |= UNSTABLE_FLAG;
1399         rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK);
1400         DO_NUMA(rmap_item->nid = nid);
1401         rb_link_node(&rmap_item->node, parent, new);
1402         rb_insert_color(&rmap_item->node, root);
1403
1404         ksm_pages_unshared++;
1405         return NULL;
1406 }
1407
1408 /*
1409  * stable_tree_append - add another rmap_item to the linked list of
1410  * rmap_items hanging off a given node of the stable tree, all sharing
1411  * the same ksm page.
1412  */
1413 static void stable_tree_append(struct rmap_item *rmap_item,
1414                                struct stable_node *stable_node)
1415 {
1416         rmap_item->head = stable_node;
1417         rmap_item->address |= STABLE_FLAG;
1418         hlist_add_head(&rmap_item->hlist, &stable_node->hlist);
1419
1420         if (rmap_item->hlist.next)
1421                 ksm_pages_sharing++;
1422         else
1423                 ksm_pages_shared++;
1424 }
1425
1426 /*
1427  * cmp_and_merge_page - first see if page can be merged into the stable tree;
1428  * if not, compare checksum to previous and if it's the same, see if page can
1429  * be inserted into the unstable tree, or merged with a page already there and
1430  * both transferred to the stable tree.
1431  *
1432  * @page: the page that we are searching identical page to.
1433  * @rmap_item: the reverse mapping into the virtual address of this page
1434  */
1435 static void cmp_and_merge_page(struct page *page, struct rmap_item *rmap_item)
1436 {
1437         struct rmap_item *tree_rmap_item;
1438         struct page *tree_page = NULL;
1439         struct stable_node *stable_node;
1440         struct page *kpage;
1441         unsigned int checksum;
1442         int err;
1443
1444         stable_node = page_stable_node(page);
1445         if (stable_node) {
1446                 if (stable_node->head != &migrate_nodes &&
1447                     get_kpfn_nid(stable_node->kpfn) != NUMA(stable_node->nid)) {
1448                         rb_erase(&stable_node->node,
1449                                  root_stable_tree + NUMA(stable_node->nid));
1450                         stable_node->head = &migrate_nodes;
1451                         list_add(&stable_node->list, stable_node->head);
1452                 }
1453                 if (stable_node->head != &migrate_nodes &&
1454                     rmap_item->head == stable_node)
1455                         return;
1456         }
1457
1458         /* We first start with searching the page inside the stable tree */
1459         kpage = stable_tree_search(page);
1460         if (kpage == page && rmap_item->head == stable_node) {
1461                 put_page(kpage);
1462                 return;
1463         }
1464
1465         remove_rmap_item_from_tree(rmap_item);
1466
1467         if (kpage) {
1468                 err = try_to_merge_with_ksm_page(rmap_item, page, kpage);
1469                 if (!err) {
1470                         /*
1471                          * The page was successfully merged:
1472                          * add its rmap_item to the stable tree.
1473                          */
1474                         lock_page(kpage);
1475                         stable_tree_append(rmap_item, page_stable_node(kpage));
1476                         unlock_page(kpage);
1477                 }
1478                 put_page(kpage);
1479                 return;
1480         }
1481
1482         /*
1483          * If the hash value of the page has changed from the last time
1484          * we calculated it, this page is changing frequently: therefore we
1485          * don't want to insert it in the unstable tree, and we don't want
1486          * to waste our time searching for something identical to it there.
1487          */
1488         checksum = calc_checksum(page);
1489         if (rmap_item->oldchecksum != checksum) {
1490                 rmap_item->oldchecksum = checksum;
1491                 return;
1492         }
1493
1494         tree_rmap_item =
1495                 unstable_tree_search_insert(rmap_item, page, &tree_page);
1496         if (tree_rmap_item) {
1497                 bool split;
1498
1499                 kpage = try_to_merge_two_pages(rmap_item, page,
1500                                                 tree_rmap_item, tree_page);
1501                 /*
1502                  * If both pages we tried to merge belong to the same compound
1503                  * page, then we actually ended up increasing the reference
1504                  * count of the same compound page twice, and split_huge_page
1505                  * failed.
1506                  * Here we set a flag if that happened, and we use it later to
1507                  * try split_huge_page again. Since we call put_page right
1508                  * afterwards, the reference count will be correct and
1509                  * split_huge_page should succeed.
1510                  */
1511                 split = PageTransCompound(page)
1512                         && compound_head(page) == compound_head(tree_page);
1513                 put_page(tree_page);
1514                 if (kpage) {
1515                         /*
1516                          * The pages were successfully merged: insert new
1517                          * node in the stable tree and add both rmap_items.
1518                          */
1519                         lock_page(kpage);
1520                         stable_node = stable_tree_insert(kpage);
1521                         if (stable_node) {
1522                                 stable_tree_append(tree_rmap_item, stable_node);
1523                                 stable_tree_append(rmap_item, stable_node);
1524                         }
1525                         unlock_page(kpage);
1526
1527                         /*
1528                          * If we fail to insert the page into the stable tree,
1529                          * we will have 2 virtual addresses that are pointing
1530                          * to a ksm page left outside the stable tree,
1531                          * in which case we need to break_cow on both.
1532                          */
1533                         if (!stable_node) {
1534                                 break_cow(tree_rmap_item);
1535                                 break_cow(rmap_item);
1536                         }
1537                 } else if (split) {
1538                         /*
1539                          * We are here if we tried to merge two pages and
1540                          * failed because they both belonged to the same
1541                          * compound page. We will split the page now, but no
1542                          * merging will take place.
1543                          * We do not want to add the cost of a full lock; if
1544                          * the page is locked, it is better to skip it and
1545                          * perhaps try again later.
1546                          */
1547                         if (!trylock_page(page))
1548                                 return;
1549                         split_huge_page(page);
1550                         unlock_page(page);
1551                 }
1552         }
1553 }
1554
1555 static struct rmap_item *get_next_rmap_item(struct mm_slot *mm_slot,
1556                                             struct rmap_item **rmap_list,
1557                                             unsigned long addr)
1558 {
1559         struct rmap_item *rmap_item;
1560
1561         while (*rmap_list) {
1562                 rmap_item = *rmap_list;
1563                 if ((rmap_item->address & PAGE_MASK) == addr)
1564                         return rmap_item;
1565                 if (rmap_item->address > addr)
1566                         break;
1567                 *rmap_list = rmap_item->rmap_list;
1568                 remove_rmap_item_from_tree(rmap_item);
1569                 free_rmap_item(rmap_item);
1570         }
1571
1572         rmap_item = alloc_rmap_item();
1573         if (rmap_item) {
1574                 /* It has already been zeroed */
1575                 rmap_item->mm = mm_slot->mm;
1576                 rmap_item->address = addr;
1577                 rmap_item->rmap_list = *rmap_list;
1578                 *rmap_list = rmap_item;
1579         }
1580         return rmap_item;
1581 }
1582
1583 static struct rmap_item *scan_get_next_rmap_item(struct page **page)
1584 {
1585         struct mm_struct *mm;
1586         struct mm_slot *slot;
1587         struct vm_area_struct *vma;
1588         struct rmap_item *rmap_item;
1589         int nid;
1590
1591         if (list_empty(&ksm_mm_head.mm_list))
1592                 return NULL;
1593
1594         slot = ksm_scan.mm_slot;
1595         if (slot == &ksm_mm_head) {
1596                 /*
1597                  * A number of pages can hang around indefinitely on per-cpu
1598                  * pagevecs, raised page count preventing write_protect_page
1599                  * from merging them.  Though it doesn't really matter much,
1600                  * it is puzzling to see some stuck in pages_volatile until
1601                  * other activity jostles them out, and they also prevented
1602                  * LTP's KSM test from succeeding deterministically; so drain
1603                  * them here (here rather than on entry to ksm_do_scan(),
1604                  * so we don't IPI too often when pages_to_scan is set low).
1605                  */
1606                 lru_add_drain_all();
1607
1608                 /*
1609                  * Whereas stale stable_nodes on the stable_tree itself
1610                  * get pruned in the regular course of stable_tree_search(),
1611                  * those moved out to the migrate_nodes list can accumulate:
1612                  * so prune them once before each full scan.
1613                  */
1614                 if (!ksm_merge_across_nodes) {
1615                         struct stable_node *stable_node;
1616                         struct list_head *this, *next;
1617                         struct page *page;
1618
1619                         list_for_each_safe(this, next, &migrate_nodes) {
1620                                 stable_node = list_entry(this,
1621                                                 struct stable_node, list);
1622                                 page = get_ksm_page(stable_node, false);
1623                                 if (page)
1624                                         put_page(page);
1625                                 cond_resched();
1626                         }
1627                 }
1628
1629                 for (nid = 0; nid < ksm_nr_node_ids; nid++)
1630                         root_unstable_tree[nid] = RB_ROOT;
1631
1632                 spin_lock(&ksm_mmlist_lock);
1633                 slot = list_entry(slot->mm_list.next, struct mm_slot, mm_list);
1634                 ksm_scan.mm_slot = slot;
1635                 spin_unlock(&ksm_mmlist_lock);
1636                 /*
1637                  * Although we tested list_empty() above, a racing __ksm_exit
1638                  * of the last mm on the list may have removed it since then.
1639                  */
1640                 if (slot == &ksm_mm_head)
1641                         return NULL;
1642 next_mm:
1643                 ksm_scan.address = 0;
1644                 ksm_scan.rmap_list = &slot->rmap_list;
1645         }
1646
1647         mm = slot->mm;
1648         down_read(&mm->mmap_sem);
1649         if (ksm_test_exit(mm))
1650                 vma = NULL;
1651         else
1652                 vma = find_vma(mm, ksm_scan.address);
1653
1654         for (; vma; vma = vma->vm_next) {
1655                 if (!(vma->vm_flags & VM_MERGEABLE))
1656                         continue;
1657                 if (ksm_scan.address < vma->vm_start)
1658                         ksm_scan.address = vma->vm_start;
1659                 if (!vma->anon_vma)
1660                         ksm_scan.address = vma->vm_end;
1661
1662                 while (ksm_scan.address < vma->vm_end) {
1663                         if (ksm_test_exit(mm))
1664                                 break;
1665                         *page = follow_page(vma, ksm_scan.address, FOLL_GET);
1666                         if (IS_ERR_OR_NULL(*page)) {
1667                                 ksm_scan.address += PAGE_SIZE;
1668                                 cond_resched();
1669                                 continue;
1670                         }
1671                         if (PageAnon(*page) ||
1672                             page_trans_compound_anon(*page)) {
1673                                 flush_anon_page(vma, *page, ksm_scan.address);
1674                                 flush_dcache_page(*page);
1675                                 rmap_item = get_next_rmap_item(slot,
1676                                         ksm_scan.rmap_list, ksm_scan.address);
1677                                 if (rmap_item) {
1678                                         ksm_scan.rmap_list =
1679                                                         &rmap_item->rmap_list;
1680                                         ksm_scan.address += PAGE_SIZE;
1681                                 } else
1682                                         put_page(*page);
1683                                 up_read(&mm->mmap_sem);
1684                                 return rmap_item;
1685                         }
1686                         put_page(*page);
1687                         ksm_scan.address += PAGE_SIZE;
1688                         cond_resched();
1689                 }
1690         }
1691
1692         if (ksm_test_exit(mm)) {
1693                 ksm_scan.address = 0;
1694                 ksm_scan.rmap_list = &slot->rmap_list;
1695         }
1696         /*
1697          * Nuke all the rmap_items that are above this current rmap:
1698          * because there were no VM_MERGEABLE vmas with such addresses.
1699          */
1700         remove_trailing_rmap_items(slot, ksm_scan.rmap_list);
1701
1702         spin_lock(&ksm_mmlist_lock);
1703         ksm_scan.mm_slot = list_entry(slot->mm_list.next,
1704                                                 struct mm_slot, mm_list);
1705         if (ksm_scan.address == 0) {
1706                 /*
1707                  * We've completed a full scan of all vmas, holding mmap_sem
1708                  * throughout, and found no VM_MERGEABLE: so do the same as
1709                  * __ksm_exit does to remove this mm from all our lists now.
1710                  * This applies either when cleaning up after __ksm_exit
1711                  * (but beware: we can reach here even before __ksm_exit),
1712                  * or when all VM_MERGEABLE areas have been unmapped (and
1713                  * mmap_sem then protects against race with MADV_MERGEABLE).
1714                  */
1715                 hash_del(&slot->link);
1716                 list_del(&slot->mm_list);
1717                 spin_unlock(&ksm_mmlist_lock);
1718
1719                 free_mm_slot(slot);
1720                 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
1721                 up_read(&mm->mmap_sem);
1722                 mmdrop(mm);
1723         } else {
1724                 spin_unlock(&ksm_mmlist_lock);
1725                 up_read(&mm->mmap_sem);
1726         }
1727
1728         /* Repeat until we've completed scanning the whole list */
1729         slot = ksm_scan.mm_slot;
1730         if (slot != &ksm_mm_head)
1731                 goto next_mm;
1732
1733         ksm_scan.seqnr++;
1734         return NULL;
1735 }
1736
1737 /**
1738  * ksm_do_scan  - the ksm scanner main worker function.
1739  * @scan_npages - number of pages we want to scan before we return.
1740  */
1741 static void ksm_do_scan(unsigned int scan_npages)
1742 {
1743         struct rmap_item *rmap_item;
1744         struct page *uninitialized_var(page);
1745
1746         while (scan_npages-- && likely(!freezing(current))) {
1747                 cond_resched();
1748                 rmap_item = scan_get_next_rmap_item(&page);
1749                 if (!rmap_item)
1750                         return;
1751                 cmp_and_merge_page(page, rmap_item);
1752                 put_page(page);
1753         }
1754 }
1755
1756 static int ksmd_should_run(void)
1757 {
1758         return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.mm_list);
1759 }
1760
1761 static int ksm_scan_thread(void *nothing)
1762 {
1763         set_freezable();
1764         set_user_nice(current, 5);
1765
1766         while (!kthread_should_stop()) {
1767                 mutex_lock(&ksm_thread_mutex);
1768                 wait_while_offlining();
1769                 if (ksmd_should_run())
1770                         ksm_do_scan(ksm_thread_pages_to_scan);
1771                 mutex_unlock(&ksm_thread_mutex);
1772
1773                 try_to_freeze();
1774
1775                 if (ksmd_should_run()) {
1776                         schedule_timeout_interruptible(
1777                                 msecs_to_jiffies(ksm_thread_sleep_millisecs));
1778                 } else {
1779                         wait_event_freezable(ksm_thread_wait,
1780                                 ksmd_should_run() || kthread_should_stop());
1781                 }
1782         }
1783         return 0;
1784 }
1785
1786 int ksm_madvise(struct vm_area_struct *vma, unsigned long start,
1787                 unsigned long end, int advice, unsigned long *vm_flags)
1788 {
1789         struct mm_struct *mm = vma->vm_mm;
1790         int err;
1791
1792         switch (advice) {
1793         case MADV_MERGEABLE:
1794                 /*
1795                  * Be somewhat over-protective for now!
1796                  */
1797                 if (*vm_flags & (VM_MERGEABLE | VM_SHARED  | VM_MAYSHARE   |
1798                                  VM_PFNMAP    | VM_IO      | VM_DONTEXPAND |
1799                                  VM_HUGETLB | VM_MIXEDMAP))
1800                         return 0;               /* just ignore the advice */
1801
1802 #ifdef VM_SAO
1803                 if (*vm_flags & VM_SAO)
1804                         return 0;
1805 #endif
1806
1807                 if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
1808                         err = __ksm_enter(mm);
1809                         if (err)
1810                                 return err;
1811                 }
1812
1813                 *vm_flags |= VM_MERGEABLE;
1814                 break;
1815
1816         case MADV_UNMERGEABLE:
1817                 if (!(*vm_flags & VM_MERGEABLE))
1818                         return 0;               /* just ignore the advice */
1819
1820                 if (vma->anon_vma) {
1821                         err = unmerge_ksm_pages(vma, start, end);
1822                         if (err)
1823                                 return err;
1824                 }
1825
1826                 *vm_flags &= ~VM_MERGEABLE;
1827                 break;
1828         }
1829
1830         return 0;
1831 }
1832
1833 int __ksm_enter(struct mm_struct *mm)
1834 {
1835         struct mm_slot *mm_slot;
1836         int needs_wakeup;
1837
1838         mm_slot = alloc_mm_slot();
1839         if (!mm_slot)
1840                 return -ENOMEM;
1841
1842         /* Check ksm_run too?  Would need tighter locking */
1843         needs_wakeup = list_empty(&ksm_mm_head.mm_list);
1844
1845         spin_lock(&ksm_mmlist_lock);
1846         insert_to_mm_slots_hash(mm, mm_slot);
1847         /*
1848          * When KSM_RUN_MERGE (or KSM_RUN_STOP),
1849          * insert just behind the scanning cursor, to let the area settle
1850          * down a little; when fork is followed by immediate exec, we don't
1851          * want ksmd to waste time setting up and tearing down an rmap_list.
1852          *
1853          * But when KSM_RUN_UNMERGE, it's important to insert ahead of its
1854          * scanning cursor, otherwise KSM pages in newly forked mms will be
1855          * missed: then we might as well insert at the end of the list.
1856          */
1857         if (ksm_run & KSM_RUN_UNMERGE)
1858                 list_add_tail(&mm_slot->mm_list, &ksm_mm_head.mm_list);
1859         else
1860                 list_add_tail(&mm_slot->mm_list, &ksm_scan.mm_slot->mm_list);
1861         spin_unlock(&ksm_mmlist_lock);
1862
1863         set_bit(MMF_VM_MERGEABLE, &mm->flags);
1864         atomic_inc(&mm->mm_count);
1865
1866         if (needs_wakeup)
1867                 wake_up_interruptible(&ksm_thread_wait);
1868
1869         return 0;
1870 }
1871
1872 void __ksm_exit(struct mm_struct *mm)
1873 {
1874         struct mm_slot *mm_slot;
1875         int easy_to_free = 0;
1876
1877         /*
1878          * This process is exiting: if it's straightforward (as is the
1879          * case when ksmd was never running), free mm_slot immediately.
1880          * But if it's at the cursor or has rmap_items linked to it, use
1881          * mmap_sem to synchronize with any break_cows before pagetables
1882          * are freed, and leave the mm_slot on the list for ksmd to free.
1883          * Beware: ksm may already have noticed it exiting and freed the slot.
1884          */
1885
1886         spin_lock(&ksm_mmlist_lock);
1887         mm_slot = get_mm_slot(mm);
1888         if (mm_slot && ksm_scan.mm_slot != mm_slot) {
1889                 if (!mm_slot->rmap_list) {
1890                         hash_del(&mm_slot->link);
1891                         list_del(&mm_slot->mm_list);
1892                         easy_to_free = 1;
1893                 } else {
1894                         list_move(&mm_slot->mm_list,
1895                                   &ksm_scan.mm_slot->mm_list);
1896                 }
1897         }
1898         spin_unlock(&ksm_mmlist_lock);
1899
1900         if (easy_to_free) {
1901                 free_mm_slot(mm_slot);
1902                 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
1903                 mmdrop(mm);
1904         } else if (mm_slot) {
1905                 down_write(&mm->mmap_sem);
1906                 up_write(&mm->mmap_sem);
1907         }
1908 }
1909
1910 struct page *ksm_might_need_to_copy(struct page *page,
1911                         struct vm_area_struct *vma, unsigned long address)
1912 {
1913         struct anon_vma *anon_vma = page_anon_vma(page);
1914         struct page *new_page;
1915
1916         if (PageKsm(page)) {
1917                 if (page_stable_node(page) &&
1918                     !(ksm_run & KSM_RUN_UNMERGE))
1919                         return page;    /* no need to copy it */
1920         } else if (!anon_vma) {
1921                 return page;            /* no need to copy it */
1922         } else if (anon_vma->root == vma->anon_vma->root &&
1923                  page->index == linear_page_index(vma, address)) {
1924                 return page;            /* still no need to copy it */
1925         }
1926         if (!PageUptodate(page))
1927                 return page;            /* let do_swap_page report the error */
1928
1929         new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
1930         if (new_page) {
1931                 copy_user_highpage(new_page, page, address, vma);
1932
1933                 SetPageDirty(new_page);
1934                 __SetPageUptodate(new_page);
1935                 __set_page_locked(new_page);
1936         }
1937
1938         return new_page;
1939 }
1940
1941 int rmap_walk_ksm(struct page *page, struct rmap_walk_control *rwc)
1942 {
1943         struct stable_node *stable_node;
1944         struct rmap_item *rmap_item;
1945         int ret = SWAP_AGAIN;
1946         int search_new_forks = 0;
1947
1948         VM_BUG_ON_PAGE(!PageKsm(page), page);
1949
1950         /*
1951          * Rely on the page lock to protect against concurrent modifications
1952          * to that page's node of the stable tree.
1953          */
1954         VM_BUG_ON_PAGE(!PageLocked(page), page);
1955
1956         stable_node = page_stable_node(page);
1957         if (!stable_node)
1958                 return ret;
1959 again:
1960         hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
1961                 struct anon_vma *anon_vma = rmap_item->anon_vma;
1962                 struct anon_vma_chain *vmac;
1963                 struct vm_area_struct *vma;
1964
1965                 cond_resched();
1966                 anon_vma_lock_read(anon_vma);
1967                 anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root,
1968                                                0, ULONG_MAX) {
1969                         cond_resched();
1970                         vma = vmac->vma;
1971                         if (rmap_item->address < vma->vm_start ||
1972                             rmap_item->address >= vma->vm_end)
1973                                 continue;
1974                         /*
1975                          * Initially we examine only the vma which covers this
1976                          * rmap_item; but later, if there is still work to do,
1977                          * we examine covering vmas in other mms: in case they
1978                          * were forked from the original since ksmd passed.
1979                          */
1980                         if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
1981                                 continue;
1982
1983                         if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1984                                 continue;
1985
1986                         ret = rwc->rmap_one(page, vma,
1987                                         rmap_item->address, rwc->arg);
1988                         if (ret != SWAP_AGAIN) {
1989                                 anon_vma_unlock_read(anon_vma);
1990                                 goto out;
1991                         }
1992                         if (rwc->done && rwc->done(page)) {
1993                                 anon_vma_unlock_read(anon_vma);
1994                                 goto out;
1995                         }
1996                 }
1997                 anon_vma_unlock_read(anon_vma);
1998         }
1999         if (!search_new_forks++)
2000                 goto again;
2001 out:
2002         return ret;
2003 }
2004
2005 #ifdef CONFIG_MIGRATION
2006 void ksm_migrate_page(struct page *newpage, struct page *oldpage)
2007 {
2008         struct stable_node *stable_node;
2009
2010         VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
2011         VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
2012         VM_BUG_ON_PAGE(newpage->mapping != oldpage->mapping, newpage);
2013
2014         stable_node = page_stable_node(newpage);
2015         if (stable_node) {
2016                 VM_BUG_ON_PAGE(stable_node->kpfn != page_to_pfn(oldpage), oldpage);
2017                 stable_node->kpfn = page_to_pfn(newpage);
2018                 /*
2019                  * newpage->mapping was set in advance; now we need smp_wmb()
2020                  * to make sure that the new stable_node->kpfn is visible
2021                  * to get_ksm_page() before it can see that oldpage->mapping
2022                  * has gone stale (or that PageSwapCache has been cleared).
2023                  */
2024                 smp_wmb();
2025                 set_page_stable_node(oldpage, NULL);
2026         }
2027 }
2028 #endif /* CONFIG_MIGRATION */
2029
2030 #ifdef CONFIG_MEMORY_HOTREMOVE
2031 static void wait_while_offlining(void)
2032 {
2033         while (ksm_run & KSM_RUN_OFFLINE) {
2034                 mutex_unlock(&ksm_thread_mutex);
2035                 wait_on_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE),
2036                             TASK_UNINTERRUPTIBLE);
2037                 mutex_lock(&ksm_thread_mutex);
2038         }
2039 }
2040
2041 static void ksm_check_stable_tree(unsigned long start_pfn,
2042                                   unsigned long end_pfn)
2043 {
2044         struct stable_node *stable_node;
2045         struct list_head *this, *next;
2046         struct rb_node *node;
2047         int nid;
2048
2049         for (nid = 0; nid < ksm_nr_node_ids; nid++) {
2050                 node = rb_first(root_stable_tree + nid);
2051                 while (node) {
2052                         stable_node = rb_entry(node, struct stable_node, node);
2053                         if (stable_node->kpfn >= start_pfn &&
2054                             stable_node->kpfn < end_pfn) {
2055                                 /*
2056                                  * Don't get_ksm_page, page has already gone:
2057                                  * which is why we keep kpfn instead of page*
2058                                  */
2059                                 remove_node_from_stable_tree(stable_node);
2060                                 node = rb_first(root_stable_tree + nid);
2061                         } else
2062                                 node = rb_next(node);
2063                         cond_resched();
2064                 }
2065         }
2066         list_for_each_safe(this, next, &migrate_nodes) {
2067                 stable_node = list_entry(this, struct stable_node, list);
2068                 if (stable_node->kpfn >= start_pfn &&
2069                     stable_node->kpfn < end_pfn)
2070                         remove_node_from_stable_tree(stable_node);
2071                 cond_resched();
2072         }
2073 }
2074
2075 static int ksm_memory_callback(struct notifier_block *self,
2076                                unsigned long action, void *arg)
2077 {
2078         struct memory_notify *mn = arg;
2079
2080         switch (action) {
2081         case MEM_GOING_OFFLINE:
2082                 /*
2083                  * Prevent ksm_do_scan(), unmerge_and_remove_all_rmap_items()
2084                  * and remove_all_stable_nodes() while memory is going offline:
2085                  * it is unsafe for them to touch the stable tree at this time.
2086                  * But unmerge_ksm_pages(), rmap lookups and other entry points
2087                  * which do not need the ksm_thread_mutex are all safe.
2088                  */
2089                 mutex_lock(&ksm_thread_mutex);
2090                 ksm_run |= KSM_RUN_OFFLINE;
2091                 mutex_unlock(&ksm_thread_mutex);
2092                 break;
2093
2094         case MEM_OFFLINE:
2095                 /*
2096                  * Most of the work is done by page migration; but there might
2097                  * be a few stable_nodes left over, still pointing to struct
2098                  * pages which have been offlined: prune those from the tree,
2099                  * otherwise get_ksm_page() might later try to access a
2100                  * non-existent struct page.
2101                  */
2102                 ksm_check_stable_tree(mn->start_pfn,
2103                                       mn->start_pfn + mn->nr_pages);
2104                 /* fallthrough */
2105
2106         case MEM_CANCEL_OFFLINE:
2107                 mutex_lock(&ksm_thread_mutex);
2108                 ksm_run &= ~KSM_RUN_OFFLINE;
2109                 mutex_unlock(&ksm_thread_mutex);
2110
2111                 smp_mb();       /* wake_up_bit advises this */
2112                 wake_up_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE));
2113                 break;
2114         }
2115         return NOTIFY_OK;
2116 }
2117 #else
2118 static void wait_while_offlining(void)
2119 {
2120 }
2121 #endif /* CONFIG_MEMORY_HOTREMOVE */
2122
2123 #ifdef CONFIG_SYSFS
2124 /*
2125  * This all compiles without CONFIG_SYSFS, but is a waste of space.
2126  */
2127
2128 #define KSM_ATTR_RO(_name) \
2129         static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2130 #define KSM_ATTR(_name) \
2131         static struct kobj_attribute _name##_attr = \
2132                 __ATTR(_name, 0644, _name##_show, _name##_store)
2133
2134 static ssize_t sleep_millisecs_show(struct kobject *kobj,
2135                                     struct kobj_attribute *attr, char *buf)
2136 {
2137         return sprintf(buf, "%u\n", ksm_thread_sleep_millisecs);
2138 }
2139
2140 static ssize_t sleep_millisecs_store(struct kobject *kobj,
2141                                      struct kobj_attribute *attr,
2142                                      const char *buf, size_t count)
2143 {
2144         unsigned long msecs;
2145         int err;
2146
2147         err = kstrtoul(buf, 10, &msecs);
2148         if (err || msecs > UINT_MAX)
2149                 return -EINVAL;
2150
2151         ksm_thread_sleep_millisecs = msecs;
2152
2153         return count;
2154 }
2155 KSM_ATTR(sleep_millisecs);
2156
2157 static ssize_t pages_to_scan_show(struct kobject *kobj,
2158                                   struct kobj_attribute *attr, char *buf)
2159 {
2160         return sprintf(buf, "%u\n", ksm_thread_pages_to_scan);
2161 }
2162
2163 static ssize_t pages_to_scan_store(struct kobject *kobj,
2164                                    struct kobj_attribute *attr,
2165                                    const char *buf, size_t count)
2166 {
2167         int err;
2168         unsigned long nr_pages;
2169
2170         err = kstrtoul(buf, 10, &nr_pages);
2171         if (err || nr_pages > UINT_MAX)
2172                 return -EINVAL;
2173
2174         ksm_thread_pages_to_scan = nr_pages;
2175
2176         return count;
2177 }
2178 KSM_ATTR(pages_to_scan);
2179
2180 static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr,
2181                         char *buf)
2182 {
2183         return sprintf(buf, "%lu\n", ksm_run);
2184 }
2185
2186 static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr,
2187                          const char *buf, size_t count)
2188 {
2189         int err;
2190         unsigned long flags;
2191
2192         err = kstrtoul(buf, 10, &flags);
2193         if (err || flags > UINT_MAX)
2194                 return -EINVAL;
2195         if (flags > KSM_RUN_UNMERGE)
2196                 return -EINVAL;
2197
2198         /*
2199          * KSM_RUN_MERGE sets ksmd running, and 0 stops it running.
2200          * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items,
2201          * breaking COW to free the pages_shared (but leaves mm_slots
2202          * on the list for when ksmd may be set running again).
2203          */
2204
2205         mutex_lock(&ksm_thread_mutex);
2206         wait_while_offlining();
2207         if (ksm_run != flags) {
2208                 ksm_run = flags;
2209                 if (flags & KSM_RUN_UNMERGE) {
2210                         set_current_oom_origin();
2211                         err = unmerge_and_remove_all_rmap_items();
2212                         clear_current_oom_origin();
2213                         if (err) {
2214                                 ksm_run = KSM_RUN_STOP;
2215                                 count = err;
2216                         }
2217                 }
2218         }
2219         mutex_unlock(&ksm_thread_mutex);
2220
2221         if (flags & KSM_RUN_MERGE)
2222                 wake_up_interruptible(&ksm_thread_wait);
2223
2224         return count;
2225 }
2226 KSM_ATTR(run);
2227
2228 #ifdef CONFIG_NUMA
2229 static ssize_t merge_across_nodes_show(struct kobject *kobj,
2230                                 struct kobj_attribute *attr, char *buf)
2231 {
2232         return sprintf(buf, "%u\n", ksm_merge_across_nodes);
2233 }
2234
2235 static ssize_t merge_across_nodes_store(struct kobject *kobj,
2236                                    struct kobj_attribute *attr,
2237                                    const char *buf, size_t count)
2238 {
2239         int err;
2240         unsigned long knob;
2241
2242         err = kstrtoul(buf, 10, &knob);
2243         if (err)
2244                 return err;
2245         if (knob > 1)
2246                 return -EINVAL;
2247
2248         mutex_lock(&ksm_thread_mutex);
2249         wait_while_offlining();
2250         if (ksm_merge_across_nodes != knob) {
2251                 if (ksm_pages_shared || remove_all_stable_nodes())
2252                         err = -EBUSY;
2253                 else if (root_stable_tree == one_stable_tree) {
2254                         struct rb_root *buf;
2255                         /*
2256                          * This is the first time that we switch away from the
2257                          * default of merging across nodes: must now allocate
2258                          * a buffer to hold as many roots as may be needed.
2259                          * Allocate stable and unstable together:
2260                          * MAXSMP NODES_SHIFT 10 will use 16kB.
2261                          */
2262                         buf = kcalloc(nr_node_ids + nr_node_ids, sizeof(*buf),
2263                                       GFP_KERNEL);
2264                         /* Let us assume that RB_ROOT is NULL is zero */
2265                         if (!buf)
2266                                 err = -ENOMEM;
2267                         else {
2268                                 root_stable_tree = buf;
2269                                 root_unstable_tree = buf + nr_node_ids;
2270                                 /* Stable tree is empty but not the unstable */
2271                                 root_unstable_tree[0] = one_unstable_tree[0];
2272                         }
2273                 }
2274                 if (!err) {
2275                         ksm_merge_across_nodes = knob;
2276                         ksm_nr_node_ids = knob ? 1 : nr_node_ids;
2277                 }
2278         }
2279         mutex_unlock(&ksm_thread_mutex);
2280
2281         return err ? err : count;
2282 }
2283 KSM_ATTR(merge_across_nodes);
2284 #endif
2285
2286 static ssize_t pages_shared_show(struct kobject *kobj,
2287                                  struct kobj_attribute *attr, char *buf)
2288 {
2289         return sprintf(buf, "%lu\n", ksm_pages_shared);
2290 }
2291 KSM_ATTR_RO(pages_shared);
2292
2293 static ssize_t pages_sharing_show(struct kobject *kobj,
2294                                   struct kobj_attribute *attr, char *buf)
2295 {
2296         return sprintf(buf, "%lu\n", ksm_pages_sharing);
2297 }
2298 KSM_ATTR_RO(pages_sharing);
2299
2300 static ssize_t pages_unshared_show(struct kobject *kobj,
2301                                    struct kobj_attribute *attr, char *buf)
2302 {
2303         return sprintf(buf, "%lu\n", ksm_pages_unshared);
2304 }
2305 KSM_ATTR_RO(pages_unshared);
2306
2307 static ssize_t pages_volatile_show(struct kobject *kobj,
2308                                    struct kobj_attribute *attr, char *buf)
2309 {
2310         long ksm_pages_volatile;
2311
2312         ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared
2313                                 - ksm_pages_sharing - ksm_pages_unshared;
2314         /*
2315          * It was not worth any locking to calculate that statistic,
2316          * but it might therefore sometimes be negative: conceal that.
2317          */
2318         if (ksm_pages_volatile < 0)
2319                 ksm_pages_volatile = 0;
2320         return sprintf(buf, "%ld\n", ksm_pages_volatile);
2321 }
2322 KSM_ATTR_RO(pages_volatile);
2323
2324 static ssize_t full_scans_show(struct kobject *kobj,
2325                                struct kobj_attribute *attr, char *buf)
2326 {
2327         return sprintf(buf, "%lu\n", ksm_scan.seqnr);
2328 }
2329 KSM_ATTR_RO(full_scans);
2330
2331 static struct attribute *ksm_attrs[] = {
2332         &sleep_millisecs_attr.attr,
2333         &pages_to_scan_attr.attr,
2334         &run_attr.attr,
2335         &pages_shared_attr.attr,
2336         &pages_sharing_attr.attr,
2337         &pages_unshared_attr.attr,
2338         &pages_volatile_attr.attr,
2339         &full_scans_attr.attr,
2340 #ifdef CONFIG_NUMA
2341         &merge_across_nodes_attr.attr,
2342 #endif
2343         NULL,
2344 };
2345
2346 static struct attribute_group ksm_attr_group = {
2347         .attrs = ksm_attrs,
2348         .name = "ksm",
2349 };
2350 #endif /* CONFIG_SYSFS */
2351
2352 static int __init ksm_init(void)
2353 {
2354         struct task_struct *ksm_thread;
2355         int err;
2356
2357         err = ksm_slab_init();
2358         if (err)
2359                 goto out;
2360
2361         ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd");
2362         if (IS_ERR(ksm_thread)) {
2363                 pr_err("ksm: creating kthread failed\n");
2364                 err = PTR_ERR(ksm_thread);
2365                 goto out_free;
2366         }
2367
2368 #ifdef CONFIG_SYSFS
2369         err = sysfs_create_group(mm_kobj, &ksm_attr_group);
2370         if (err) {
2371                 pr_err("ksm: register sysfs failed\n");
2372                 kthread_stop(ksm_thread);
2373                 goto out_free;
2374         }
2375 #else
2376         ksm_run = KSM_RUN_MERGE;        /* no way for user to start it */
2377
2378 #endif /* CONFIG_SYSFS */
2379
2380 #ifdef CONFIG_MEMORY_HOTREMOVE
2381         /* There is no significance to this priority 100 */
2382         hotplug_memory_notifier(ksm_memory_callback, 100);
2383 #endif
2384         return 0;
2385
2386 out_free:
2387         ksm_slab_free();
2388 out:
2389         return err;
2390 }
2391 subsys_initcall(ksm_init);