OSDN Git Service

vsock: fix potential deadlock in transport->release()
[tomoyo/tomoyo-test1.git] / mm / memory.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/memory.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  */
7
8 /*
9  * demand-loading started 01.12.91 - seems it is high on the list of
10  * things wanted, and it should be easy to implement. - Linus
11  */
12
13 /*
14  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
15  * pages started 02.12.91, seems to work. - Linus.
16  *
17  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
18  * would have taken more than the 6M I have free, but it worked well as
19  * far as I could see.
20  *
21  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
22  */
23
24 /*
25  * Real VM (paging to/from disk) started 18.12.91. Much more work and
26  * thought has to go into this. Oh, well..
27  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
28  *              Found it. Everything seems to work now.
29  * 20.12.91  -  Ok, making the swap-device changeable like the root.
30  */
31
32 /*
33  * 05.04.94  -  Multi-page memory management added for v1.1.
34  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
35  *
36  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
37  *              (Gerhard.Wichert@pdb.siemens.de)
38  *
39  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
40  */
41
42 #include <linux/kernel_stat.h>
43 #include <linux/mm.h>
44 #include <linux/sched/mm.h>
45 #include <linux/sched/coredump.h>
46 #include <linux/sched/numa_balancing.h>
47 #include <linux/sched/task.h>
48 #include <linux/hugetlb.h>
49 #include <linux/mman.h>
50 #include <linux/swap.h>
51 #include <linux/highmem.h>
52 #include <linux/pagemap.h>
53 #include <linux/memremap.h>
54 #include <linux/ksm.h>
55 #include <linux/rmap.h>
56 #include <linux/export.h>
57 #include <linux/delayacct.h>
58 #include <linux/init.h>
59 #include <linux/pfn_t.h>
60 #include <linux/writeback.h>
61 #include <linux/memcontrol.h>
62 #include <linux/mmu_notifier.h>
63 #include <linux/swapops.h>
64 #include <linux/elf.h>
65 #include <linux/gfp.h>
66 #include <linux/migrate.h>
67 #include <linux/string.h>
68 #include <linux/dma-debug.h>
69 #include <linux/debugfs.h>
70 #include <linux/userfaultfd_k.h>
71 #include <linux/dax.h>
72 #include <linux/oom.h>
73 #include <linux/numa.h>
74
75 #include <trace/events/kmem.h>
76
77 #include <asm/io.h>
78 #include <asm/mmu_context.h>
79 #include <asm/pgalloc.h>
80 #include <linux/uaccess.h>
81 #include <asm/tlb.h>
82 #include <asm/tlbflush.h>
83 #include <asm/pgtable.h>
84
85 #include "internal.h"
86
87 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
88 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
89 #endif
90
91 #ifndef CONFIG_NEED_MULTIPLE_NODES
92 /* use the per-pgdat data instead for discontigmem - mbligh */
93 unsigned long max_mapnr;
94 EXPORT_SYMBOL(max_mapnr);
95
96 struct page *mem_map;
97 EXPORT_SYMBOL(mem_map);
98 #endif
99
100 /*
101  * A number of key systems in x86 including ioremap() rely on the assumption
102  * that high_memory defines the upper bound on direct map memory, then end
103  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
104  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
105  * and ZONE_HIGHMEM.
106  */
107 void *high_memory;
108 EXPORT_SYMBOL(high_memory);
109
110 /*
111  * Randomize the address space (stacks, mmaps, brk, etc.).
112  *
113  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
114  *   as ancient (libc5 based) binaries can segfault. )
115  */
116 int randomize_va_space __read_mostly =
117 #ifdef CONFIG_COMPAT_BRK
118                                         1;
119 #else
120                                         2;
121 #endif
122
123 #ifndef arch_faults_on_old_pte
124 static inline bool arch_faults_on_old_pte(void)
125 {
126         /*
127          * Those arches which don't have hw access flag feature need to
128          * implement their own helper. By default, "true" means pagefault
129          * will be hit on old pte.
130          */
131         return true;
132 }
133 #endif
134
135 static int __init disable_randmaps(char *s)
136 {
137         randomize_va_space = 0;
138         return 1;
139 }
140 __setup("norandmaps", disable_randmaps);
141
142 unsigned long zero_pfn __read_mostly;
143 EXPORT_SYMBOL(zero_pfn);
144
145 unsigned long highest_memmap_pfn __read_mostly;
146
147 /*
148  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
149  */
150 static int __init init_zero_pfn(void)
151 {
152         zero_pfn = page_to_pfn(ZERO_PAGE(0));
153         return 0;
154 }
155 core_initcall(init_zero_pfn);
156
157 void mm_trace_rss_stat(struct mm_struct *mm, int member, long count)
158 {
159         trace_rss_stat(mm, member, count);
160 }
161
162 #if defined(SPLIT_RSS_COUNTING)
163
164 void sync_mm_rss(struct mm_struct *mm)
165 {
166         int i;
167
168         for (i = 0; i < NR_MM_COUNTERS; i++) {
169                 if (current->rss_stat.count[i]) {
170                         add_mm_counter(mm, i, current->rss_stat.count[i]);
171                         current->rss_stat.count[i] = 0;
172                 }
173         }
174         current->rss_stat.events = 0;
175 }
176
177 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
178 {
179         struct task_struct *task = current;
180
181         if (likely(task->mm == mm))
182                 task->rss_stat.count[member] += val;
183         else
184                 add_mm_counter(mm, member, val);
185 }
186 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
187 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
188
189 /* sync counter once per 64 page faults */
190 #define TASK_RSS_EVENTS_THRESH  (64)
191 static void check_sync_rss_stat(struct task_struct *task)
192 {
193         if (unlikely(task != current))
194                 return;
195         if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
196                 sync_mm_rss(task->mm);
197 }
198 #else /* SPLIT_RSS_COUNTING */
199
200 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
201 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
202
203 static void check_sync_rss_stat(struct task_struct *task)
204 {
205 }
206
207 #endif /* SPLIT_RSS_COUNTING */
208
209 /*
210  * Note: this doesn't free the actual pages themselves. That
211  * has been handled earlier when unmapping all the memory regions.
212  */
213 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
214                            unsigned long addr)
215 {
216         pgtable_t token = pmd_pgtable(*pmd);
217         pmd_clear(pmd);
218         pte_free_tlb(tlb, token, addr);
219         mm_dec_nr_ptes(tlb->mm);
220 }
221
222 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
223                                 unsigned long addr, unsigned long end,
224                                 unsigned long floor, unsigned long ceiling)
225 {
226         pmd_t *pmd;
227         unsigned long next;
228         unsigned long start;
229
230         start = addr;
231         pmd = pmd_offset(pud, addr);
232         do {
233                 next = pmd_addr_end(addr, end);
234                 if (pmd_none_or_clear_bad(pmd))
235                         continue;
236                 free_pte_range(tlb, pmd, addr);
237         } while (pmd++, addr = next, addr != end);
238
239         start &= PUD_MASK;
240         if (start < floor)
241                 return;
242         if (ceiling) {
243                 ceiling &= PUD_MASK;
244                 if (!ceiling)
245                         return;
246         }
247         if (end - 1 > ceiling - 1)
248                 return;
249
250         pmd = pmd_offset(pud, start);
251         pud_clear(pud);
252         pmd_free_tlb(tlb, pmd, start);
253         mm_dec_nr_pmds(tlb->mm);
254 }
255
256 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
257                                 unsigned long addr, unsigned long end,
258                                 unsigned long floor, unsigned long ceiling)
259 {
260         pud_t *pud;
261         unsigned long next;
262         unsigned long start;
263
264         start = addr;
265         pud = pud_offset(p4d, addr);
266         do {
267                 next = pud_addr_end(addr, end);
268                 if (pud_none_or_clear_bad(pud))
269                         continue;
270                 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
271         } while (pud++, addr = next, addr != end);
272
273         start &= P4D_MASK;
274         if (start < floor)
275                 return;
276         if (ceiling) {
277                 ceiling &= P4D_MASK;
278                 if (!ceiling)
279                         return;
280         }
281         if (end - 1 > ceiling - 1)
282                 return;
283
284         pud = pud_offset(p4d, start);
285         p4d_clear(p4d);
286         pud_free_tlb(tlb, pud, start);
287         mm_dec_nr_puds(tlb->mm);
288 }
289
290 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
291                                 unsigned long addr, unsigned long end,
292                                 unsigned long floor, unsigned long ceiling)
293 {
294         p4d_t *p4d;
295         unsigned long next;
296         unsigned long start;
297
298         start = addr;
299         p4d = p4d_offset(pgd, addr);
300         do {
301                 next = p4d_addr_end(addr, end);
302                 if (p4d_none_or_clear_bad(p4d))
303                         continue;
304                 free_pud_range(tlb, p4d, addr, next, floor, ceiling);
305         } while (p4d++, addr = next, addr != end);
306
307         start &= PGDIR_MASK;
308         if (start < floor)
309                 return;
310         if (ceiling) {
311                 ceiling &= PGDIR_MASK;
312                 if (!ceiling)
313                         return;
314         }
315         if (end - 1 > ceiling - 1)
316                 return;
317
318         p4d = p4d_offset(pgd, start);
319         pgd_clear(pgd);
320         p4d_free_tlb(tlb, p4d, start);
321 }
322
323 /*
324  * This function frees user-level page tables of a process.
325  */
326 void free_pgd_range(struct mmu_gather *tlb,
327                         unsigned long addr, unsigned long end,
328                         unsigned long floor, unsigned long ceiling)
329 {
330         pgd_t *pgd;
331         unsigned long next;
332
333         /*
334          * The next few lines have given us lots of grief...
335          *
336          * Why are we testing PMD* at this top level?  Because often
337          * there will be no work to do at all, and we'd prefer not to
338          * go all the way down to the bottom just to discover that.
339          *
340          * Why all these "- 1"s?  Because 0 represents both the bottom
341          * of the address space and the top of it (using -1 for the
342          * top wouldn't help much: the masks would do the wrong thing).
343          * The rule is that addr 0 and floor 0 refer to the bottom of
344          * the address space, but end 0 and ceiling 0 refer to the top
345          * Comparisons need to use "end - 1" and "ceiling - 1" (though
346          * that end 0 case should be mythical).
347          *
348          * Wherever addr is brought up or ceiling brought down, we must
349          * be careful to reject "the opposite 0" before it confuses the
350          * subsequent tests.  But what about where end is brought down
351          * by PMD_SIZE below? no, end can't go down to 0 there.
352          *
353          * Whereas we round start (addr) and ceiling down, by different
354          * masks at different levels, in order to test whether a table
355          * now has no other vmas using it, so can be freed, we don't
356          * bother to round floor or end up - the tests don't need that.
357          */
358
359         addr &= PMD_MASK;
360         if (addr < floor) {
361                 addr += PMD_SIZE;
362                 if (!addr)
363                         return;
364         }
365         if (ceiling) {
366                 ceiling &= PMD_MASK;
367                 if (!ceiling)
368                         return;
369         }
370         if (end - 1 > ceiling - 1)
371                 end -= PMD_SIZE;
372         if (addr > end - 1)
373                 return;
374         /*
375          * We add page table cache pages with PAGE_SIZE,
376          * (see pte_free_tlb()), flush the tlb if we need
377          */
378         tlb_change_page_size(tlb, PAGE_SIZE);
379         pgd = pgd_offset(tlb->mm, addr);
380         do {
381                 next = pgd_addr_end(addr, end);
382                 if (pgd_none_or_clear_bad(pgd))
383                         continue;
384                 free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
385         } while (pgd++, addr = next, addr != end);
386 }
387
388 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
389                 unsigned long floor, unsigned long ceiling)
390 {
391         while (vma) {
392                 struct vm_area_struct *next = vma->vm_next;
393                 unsigned long addr = vma->vm_start;
394
395                 /*
396                  * Hide vma from rmap and truncate_pagecache before freeing
397                  * pgtables
398                  */
399                 unlink_anon_vmas(vma);
400                 unlink_file_vma(vma);
401
402                 if (is_vm_hugetlb_page(vma)) {
403                         hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
404                                 floor, next ? next->vm_start : ceiling);
405                 } else {
406                         /*
407                          * Optimization: gather nearby vmas into one call down
408                          */
409                         while (next && next->vm_start <= vma->vm_end + PMD_SIZE
410                                && !is_vm_hugetlb_page(next)) {
411                                 vma = next;
412                                 next = vma->vm_next;
413                                 unlink_anon_vmas(vma);
414                                 unlink_file_vma(vma);
415                         }
416                         free_pgd_range(tlb, addr, vma->vm_end,
417                                 floor, next ? next->vm_start : ceiling);
418                 }
419                 vma = next;
420         }
421 }
422
423 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
424 {
425         spinlock_t *ptl;
426         pgtable_t new = pte_alloc_one(mm);
427         if (!new)
428                 return -ENOMEM;
429
430         /*
431          * Ensure all pte setup (eg. pte page lock and page clearing) are
432          * visible before the pte is made visible to other CPUs by being
433          * put into page tables.
434          *
435          * The other side of the story is the pointer chasing in the page
436          * table walking code (when walking the page table without locking;
437          * ie. most of the time). Fortunately, these data accesses consist
438          * of a chain of data-dependent loads, meaning most CPUs (alpha
439          * being the notable exception) will already guarantee loads are
440          * seen in-order. See the alpha page table accessors for the
441          * smp_read_barrier_depends() barriers in page table walking code.
442          */
443         smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
444
445         ptl = pmd_lock(mm, pmd);
446         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
447                 mm_inc_nr_ptes(mm);
448                 pmd_populate(mm, pmd, new);
449                 new = NULL;
450         }
451         spin_unlock(ptl);
452         if (new)
453                 pte_free(mm, new);
454         return 0;
455 }
456
457 int __pte_alloc_kernel(pmd_t *pmd)
458 {
459         pte_t *new = pte_alloc_one_kernel(&init_mm);
460         if (!new)
461                 return -ENOMEM;
462
463         smp_wmb(); /* See comment in __pte_alloc */
464
465         spin_lock(&init_mm.page_table_lock);
466         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
467                 pmd_populate_kernel(&init_mm, pmd, new);
468                 new = NULL;
469         }
470         spin_unlock(&init_mm.page_table_lock);
471         if (new)
472                 pte_free_kernel(&init_mm, new);
473         return 0;
474 }
475
476 static inline void init_rss_vec(int *rss)
477 {
478         memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
479 }
480
481 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
482 {
483         int i;
484
485         if (current->mm == mm)
486                 sync_mm_rss(mm);
487         for (i = 0; i < NR_MM_COUNTERS; i++)
488                 if (rss[i])
489                         add_mm_counter(mm, i, rss[i]);
490 }
491
492 /*
493  * This function is called to print an error when a bad pte
494  * is found. For example, we might have a PFN-mapped pte in
495  * a region that doesn't allow it.
496  *
497  * The calling function must still handle the error.
498  */
499 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
500                           pte_t pte, struct page *page)
501 {
502         pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
503         p4d_t *p4d = p4d_offset(pgd, addr);
504         pud_t *pud = pud_offset(p4d, addr);
505         pmd_t *pmd = pmd_offset(pud, addr);
506         struct address_space *mapping;
507         pgoff_t index;
508         static unsigned long resume;
509         static unsigned long nr_shown;
510         static unsigned long nr_unshown;
511
512         /*
513          * Allow a burst of 60 reports, then keep quiet for that minute;
514          * or allow a steady drip of one report per second.
515          */
516         if (nr_shown == 60) {
517                 if (time_before(jiffies, resume)) {
518                         nr_unshown++;
519                         return;
520                 }
521                 if (nr_unshown) {
522                         pr_alert("BUG: Bad page map: %lu messages suppressed\n",
523                                  nr_unshown);
524                         nr_unshown = 0;
525                 }
526                 nr_shown = 0;
527         }
528         if (nr_shown++ == 0)
529                 resume = jiffies + 60 * HZ;
530
531         mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
532         index = linear_page_index(vma, addr);
533
534         pr_alert("BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
535                  current->comm,
536                  (long long)pte_val(pte), (long long)pmd_val(*pmd));
537         if (page)
538                 dump_page(page, "bad pte");
539         pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
540                  (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
541         pr_alert("file:%pD fault:%ps mmap:%ps readpage:%ps\n",
542                  vma->vm_file,
543                  vma->vm_ops ? vma->vm_ops->fault : NULL,
544                  vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
545                  mapping ? mapping->a_ops->readpage : NULL);
546         dump_stack();
547         add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
548 }
549
550 /*
551  * vm_normal_page -- This function gets the "struct page" associated with a pte.
552  *
553  * "Special" mappings do not wish to be associated with a "struct page" (either
554  * it doesn't exist, or it exists but they don't want to touch it). In this
555  * case, NULL is returned here. "Normal" mappings do have a struct page.
556  *
557  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
558  * pte bit, in which case this function is trivial. Secondly, an architecture
559  * may not have a spare pte bit, which requires a more complicated scheme,
560  * described below.
561  *
562  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
563  * special mapping (even if there are underlying and valid "struct pages").
564  * COWed pages of a VM_PFNMAP are always normal.
565  *
566  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
567  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
568  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
569  * mapping will always honor the rule
570  *
571  *      pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
572  *
573  * And for normal mappings this is false.
574  *
575  * This restricts such mappings to be a linear translation from virtual address
576  * to pfn. To get around this restriction, we allow arbitrary mappings so long
577  * as the vma is not a COW mapping; in that case, we know that all ptes are
578  * special (because none can have been COWed).
579  *
580  *
581  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
582  *
583  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
584  * page" backing, however the difference is that _all_ pages with a struct
585  * page (that is, those where pfn_valid is true) are refcounted and considered
586  * normal pages by the VM. The disadvantage is that pages are refcounted
587  * (which can be slower and simply not an option for some PFNMAP users). The
588  * advantage is that we don't have to follow the strict linearity rule of
589  * PFNMAP mappings in order to support COWable mappings.
590  *
591  */
592 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
593                             pte_t pte)
594 {
595         unsigned long pfn = pte_pfn(pte);
596
597         if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
598                 if (likely(!pte_special(pte)))
599                         goto check_pfn;
600                 if (vma->vm_ops && vma->vm_ops->find_special_page)
601                         return vma->vm_ops->find_special_page(vma, addr);
602                 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
603                         return NULL;
604                 if (is_zero_pfn(pfn))
605                         return NULL;
606                 if (pte_devmap(pte))
607                         return NULL;
608
609                 print_bad_pte(vma, addr, pte, NULL);
610                 return NULL;
611         }
612
613         /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
614
615         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
616                 if (vma->vm_flags & VM_MIXEDMAP) {
617                         if (!pfn_valid(pfn))
618                                 return NULL;
619                         goto out;
620                 } else {
621                         unsigned long off;
622                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
623                         if (pfn == vma->vm_pgoff + off)
624                                 return NULL;
625                         if (!is_cow_mapping(vma->vm_flags))
626                                 return NULL;
627                 }
628         }
629
630         if (is_zero_pfn(pfn))
631                 return NULL;
632
633 check_pfn:
634         if (unlikely(pfn > highest_memmap_pfn)) {
635                 print_bad_pte(vma, addr, pte, NULL);
636                 return NULL;
637         }
638
639         /*
640          * NOTE! We still have PageReserved() pages in the page tables.
641          * eg. VDSO mappings can cause them to exist.
642          */
643 out:
644         return pfn_to_page(pfn);
645 }
646
647 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
648 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
649                                 pmd_t pmd)
650 {
651         unsigned long pfn = pmd_pfn(pmd);
652
653         /*
654          * There is no pmd_special() but there may be special pmds, e.g.
655          * in a direct-access (dax) mapping, so let's just replicate the
656          * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
657          */
658         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
659                 if (vma->vm_flags & VM_MIXEDMAP) {
660                         if (!pfn_valid(pfn))
661                                 return NULL;
662                         goto out;
663                 } else {
664                         unsigned long off;
665                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
666                         if (pfn == vma->vm_pgoff + off)
667                                 return NULL;
668                         if (!is_cow_mapping(vma->vm_flags))
669                                 return NULL;
670                 }
671         }
672
673         if (pmd_devmap(pmd))
674                 return NULL;
675         if (is_huge_zero_pmd(pmd))
676                 return NULL;
677         if (unlikely(pfn > highest_memmap_pfn))
678                 return NULL;
679
680         /*
681          * NOTE! We still have PageReserved() pages in the page tables.
682          * eg. VDSO mappings can cause them to exist.
683          */
684 out:
685         return pfn_to_page(pfn);
686 }
687 #endif
688
689 /*
690  * copy one vm_area from one task to the other. Assumes the page tables
691  * already present in the new task to be cleared in the whole range
692  * covered by this vma.
693  */
694
695 static inline unsigned long
696 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
697                 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
698                 unsigned long addr, int *rss)
699 {
700         unsigned long vm_flags = vma->vm_flags;
701         pte_t pte = *src_pte;
702         struct page *page;
703
704         /* pte contains position in swap or file, so copy. */
705         if (unlikely(!pte_present(pte))) {
706                 swp_entry_t entry = pte_to_swp_entry(pte);
707
708                 if (likely(!non_swap_entry(entry))) {
709                         if (swap_duplicate(entry) < 0)
710                                 return entry.val;
711
712                         /* make sure dst_mm is on swapoff's mmlist. */
713                         if (unlikely(list_empty(&dst_mm->mmlist))) {
714                                 spin_lock(&mmlist_lock);
715                                 if (list_empty(&dst_mm->mmlist))
716                                         list_add(&dst_mm->mmlist,
717                                                         &src_mm->mmlist);
718                                 spin_unlock(&mmlist_lock);
719                         }
720                         rss[MM_SWAPENTS]++;
721                 } else if (is_migration_entry(entry)) {
722                         page = migration_entry_to_page(entry);
723
724                         rss[mm_counter(page)]++;
725
726                         if (is_write_migration_entry(entry) &&
727                                         is_cow_mapping(vm_flags)) {
728                                 /*
729                                  * COW mappings require pages in both
730                                  * parent and child to be set to read.
731                                  */
732                                 make_migration_entry_read(&entry);
733                                 pte = swp_entry_to_pte(entry);
734                                 if (pte_swp_soft_dirty(*src_pte))
735                                         pte = pte_swp_mksoft_dirty(pte);
736                                 set_pte_at(src_mm, addr, src_pte, pte);
737                         }
738                 } else if (is_device_private_entry(entry)) {
739                         page = device_private_entry_to_page(entry);
740
741                         /*
742                          * Update rss count even for unaddressable pages, as
743                          * they should treated just like normal pages in this
744                          * respect.
745                          *
746                          * We will likely want to have some new rss counters
747                          * for unaddressable pages, at some point. But for now
748                          * keep things as they are.
749                          */
750                         get_page(page);
751                         rss[mm_counter(page)]++;
752                         page_dup_rmap(page, false);
753
754                         /*
755                          * We do not preserve soft-dirty information, because so
756                          * far, checkpoint/restore is the only feature that
757                          * requires that. And checkpoint/restore does not work
758                          * when a device driver is involved (you cannot easily
759                          * save and restore device driver state).
760                          */
761                         if (is_write_device_private_entry(entry) &&
762                             is_cow_mapping(vm_flags)) {
763                                 make_device_private_entry_read(&entry);
764                                 pte = swp_entry_to_pte(entry);
765                                 set_pte_at(src_mm, addr, src_pte, pte);
766                         }
767                 }
768                 goto out_set_pte;
769         }
770
771         /*
772          * If it's a COW mapping, write protect it both
773          * in the parent and the child
774          */
775         if (is_cow_mapping(vm_flags) && pte_write(pte)) {
776                 ptep_set_wrprotect(src_mm, addr, src_pte);
777                 pte = pte_wrprotect(pte);
778         }
779
780         /*
781          * If it's a shared mapping, mark it clean in
782          * the child
783          */
784         if (vm_flags & VM_SHARED)
785                 pte = pte_mkclean(pte);
786         pte = pte_mkold(pte);
787
788         page = vm_normal_page(vma, addr, pte);
789         if (page) {
790                 get_page(page);
791                 page_dup_rmap(page, false);
792                 rss[mm_counter(page)]++;
793         } else if (pte_devmap(pte)) {
794                 page = pte_page(pte);
795         }
796
797 out_set_pte:
798         set_pte_at(dst_mm, addr, dst_pte, pte);
799         return 0;
800 }
801
802 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
803                    pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
804                    unsigned long addr, unsigned long end)
805 {
806         pte_t *orig_src_pte, *orig_dst_pte;
807         pte_t *src_pte, *dst_pte;
808         spinlock_t *src_ptl, *dst_ptl;
809         int progress = 0;
810         int rss[NR_MM_COUNTERS];
811         swp_entry_t entry = (swp_entry_t){0};
812
813 again:
814         init_rss_vec(rss);
815
816         dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
817         if (!dst_pte)
818                 return -ENOMEM;
819         src_pte = pte_offset_map(src_pmd, addr);
820         src_ptl = pte_lockptr(src_mm, src_pmd);
821         spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
822         orig_src_pte = src_pte;
823         orig_dst_pte = dst_pte;
824         arch_enter_lazy_mmu_mode();
825
826         do {
827                 /*
828                  * We are holding two locks at this point - either of them
829                  * could generate latencies in another task on another CPU.
830                  */
831                 if (progress >= 32) {
832                         progress = 0;
833                         if (need_resched() ||
834                             spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
835                                 break;
836                 }
837                 if (pte_none(*src_pte)) {
838                         progress++;
839                         continue;
840                 }
841                 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
842                                                         vma, addr, rss);
843                 if (entry.val)
844                         break;
845                 progress += 8;
846         } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
847
848         arch_leave_lazy_mmu_mode();
849         spin_unlock(src_ptl);
850         pte_unmap(orig_src_pte);
851         add_mm_rss_vec(dst_mm, rss);
852         pte_unmap_unlock(orig_dst_pte, dst_ptl);
853         cond_resched();
854
855         if (entry.val) {
856                 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
857                         return -ENOMEM;
858                 progress = 0;
859         }
860         if (addr != end)
861                 goto again;
862         return 0;
863 }
864
865 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
866                 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
867                 unsigned long addr, unsigned long end)
868 {
869         pmd_t *src_pmd, *dst_pmd;
870         unsigned long next;
871
872         dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
873         if (!dst_pmd)
874                 return -ENOMEM;
875         src_pmd = pmd_offset(src_pud, addr);
876         do {
877                 next = pmd_addr_end(addr, end);
878                 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
879                         || pmd_devmap(*src_pmd)) {
880                         int err;
881                         VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, vma);
882                         err = copy_huge_pmd(dst_mm, src_mm,
883                                             dst_pmd, src_pmd, addr, vma);
884                         if (err == -ENOMEM)
885                                 return -ENOMEM;
886                         if (!err)
887                                 continue;
888                         /* fall through */
889                 }
890                 if (pmd_none_or_clear_bad(src_pmd))
891                         continue;
892                 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
893                                                 vma, addr, next))
894                         return -ENOMEM;
895         } while (dst_pmd++, src_pmd++, addr = next, addr != end);
896         return 0;
897 }
898
899 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
900                 p4d_t *dst_p4d, p4d_t *src_p4d, struct vm_area_struct *vma,
901                 unsigned long addr, unsigned long end)
902 {
903         pud_t *src_pud, *dst_pud;
904         unsigned long next;
905
906         dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
907         if (!dst_pud)
908                 return -ENOMEM;
909         src_pud = pud_offset(src_p4d, addr);
910         do {
911                 next = pud_addr_end(addr, end);
912                 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
913                         int err;
914
915                         VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, vma);
916                         err = copy_huge_pud(dst_mm, src_mm,
917                                             dst_pud, src_pud, addr, vma);
918                         if (err == -ENOMEM)
919                                 return -ENOMEM;
920                         if (!err)
921                                 continue;
922                         /* fall through */
923                 }
924                 if (pud_none_or_clear_bad(src_pud))
925                         continue;
926                 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
927                                                 vma, addr, next))
928                         return -ENOMEM;
929         } while (dst_pud++, src_pud++, addr = next, addr != end);
930         return 0;
931 }
932
933 static inline int copy_p4d_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
934                 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
935                 unsigned long addr, unsigned long end)
936 {
937         p4d_t *src_p4d, *dst_p4d;
938         unsigned long next;
939
940         dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
941         if (!dst_p4d)
942                 return -ENOMEM;
943         src_p4d = p4d_offset(src_pgd, addr);
944         do {
945                 next = p4d_addr_end(addr, end);
946                 if (p4d_none_or_clear_bad(src_p4d))
947                         continue;
948                 if (copy_pud_range(dst_mm, src_mm, dst_p4d, src_p4d,
949                                                 vma, addr, next))
950                         return -ENOMEM;
951         } while (dst_p4d++, src_p4d++, addr = next, addr != end);
952         return 0;
953 }
954
955 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
956                 struct vm_area_struct *vma)
957 {
958         pgd_t *src_pgd, *dst_pgd;
959         unsigned long next;
960         unsigned long addr = vma->vm_start;
961         unsigned long end = vma->vm_end;
962         struct mmu_notifier_range range;
963         bool is_cow;
964         int ret;
965
966         /*
967          * Don't copy ptes where a page fault will fill them correctly.
968          * Fork becomes much lighter when there are big shared or private
969          * readonly mappings. The tradeoff is that copy_page_range is more
970          * efficient than faulting.
971          */
972         if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
973                         !vma->anon_vma)
974                 return 0;
975
976         if (is_vm_hugetlb_page(vma))
977                 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
978
979         if (unlikely(vma->vm_flags & VM_PFNMAP)) {
980                 /*
981                  * We do not free on error cases below as remove_vma
982                  * gets called on error from higher level routine
983                  */
984                 ret = track_pfn_copy(vma);
985                 if (ret)
986                         return ret;
987         }
988
989         /*
990          * We need to invalidate the secondary MMU mappings only when
991          * there could be a permission downgrade on the ptes of the
992          * parent mm. And a permission downgrade will only happen if
993          * is_cow_mapping() returns true.
994          */
995         is_cow = is_cow_mapping(vma->vm_flags);
996
997         if (is_cow) {
998                 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
999                                         0, vma, src_mm, addr, end);
1000                 mmu_notifier_invalidate_range_start(&range);
1001         }
1002
1003         ret = 0;
1004         dst_pgd = pgd_offset(dst_mm, addr);
1005         src_pgd = pgd_offset(src_mm, addr);
1006         do {
1007                 next = pgd_addr_end(addr, end);
1008                 if (pgd_none_or_clear_bad(src_pgd))
1009                         continue;
1010                 if (unlikely(copy_p4d_range(dst_mm, src_mm, dst_pgd, src_pgd,
1011                                             vma, addr, next))) {
1012                         ret = -ENOMEM;
1013                         break;
1014                 }
1015         } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1016
1017         if (is_cow)
1018                 mmu_notifier_invalidate_range_end(&range);
1019         return ret;
1020 }
1021
1022 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1023                                 struct vm_area_struct *vma, pmd_t *pmd,
1024                                 unsigned long addr, unsigned long end,
1025                                 struct zap_details *details)
1026 {
1027         struct mm_struct *mm = tlb->mm;
1028         int force_flush = 0;
1029         int rss[NR_MM_COUNTERS];
1030         spinlock_t *ptl;
1031         pte_t *start_pte;
1032         pte_t *pte;
1033         swp_entry_t entry;
1034
1035         tlb_change_page_size(tlb, PAGE_SIZE);
1036 again:
1037         init_rss_vec(rss);
1038         start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1039         pte = start_pte;
1040         flush_tlb_batched_pending(mm);
1041         arch_enter_lazy_mmu_mode();
1042         do {
1043                 pte_t ptent = *pte;
1044                 if (pte_none(ptent))
1045                         continue;
1046
1047                 if (need_resched())
1048                         break;
1049
1050                 if (pte_present(ptent)) {
1051                         struct page *page;
1052
1053                         page = vm_normal_page(vma, addr, ptent);
1054                         if (unlikely(details) && page) {
1055                                 /*
1056                                  * unmap_shared_mapping_pages() wants to
1057                                  * invalidate cache without truncating:
1058                                  * unmap shared but keep private pages.
1059                                  */
1060                                 if (details->check_mapping &&
1061                                     details->check_mapping != page_rmapping(page))
1062                                         continue;
1063                         }
1064                         ptent = ptep_get_and_clear_full(mm, addr, pte,
1065                                                         tlb->fullmm);
1066                         tlb_remove_tlb_entry(tlb, pte, addr);
1067                         if (unlikely(!page))
1068                                 continue;
1069
1070                         if (!PageAnon(page)) {
1071                                 if (pte_dirty(ptent)) {
1072                                         force_flush = 1;
1073                                         set_page_dirty(page);
1074                                 }
1075                                 if (pte_young(ptent) &&
1076                                     likely(!(vma->vm_flags & VM_SEQ_READ)))
1077                                         mark_page_accessed(page);
1078                         }
1079                         rss[mm_counter(page)]--;
1080                         page_remove_rmap(page, false);
1081                         if (unlikely(page_mapcount(page) < 0))
1082                                 print_bad_pte(vma, addr, ptent, page);
1083                         if (unlikely(__tlb_remove_page(tlb, page))) {
1084                                 force_flush = 1;
1085                                 addr += PAGE_SIZE;
1086                                 break;
1087                         }
1088                         continue;
1089                 }
1090
1091                 entry = pte_to_swp_entry(ptent);
1092                 if (non_swap_entry(entry) && is_device_private_entry(entry)) {
1093                         struct page *page = device_private_entry_to_page(entry);
1094
1095                         if (unlikely(details && details->check_mapping)) {
1096                                 /*
1097                                  * unmap_shared_mapping_pages() wants to
1098                                  * invalidate cache without truncating:
1099                                  * unmap shared but keep private pages.
1100                                  */
1101                                 if (details->check_mapping !=
1102                                     page_rmapping(page))
1103                                         continue;
1104                         }
1105
1106                         pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1107                         rss[mm_counter(page)]--;
1108                         page_remove_rmap(page, false);
1109                         put_page(page);
1110                         continue;
1111                 }
1112
1113                 /* If details->check_mapping, we leave swap entries. */
1114                 if (unlikely(details))
1115                         continue;
1116
1117                 if (!non_swap_entry(entry))
1118                         rss[MM_SWAPENTS]--;
1119                 else if (is_migration_entry(entry)) {
1120                         struct page *page;
1121
1122                         page = migration_entry_to_page(entry);
1123                         rss[mm_counter(page)]--;
1124                 }
1125                 if (unlikely(!free_swap_and_cache(entry)))
1126                         print_bad_pte(vma, addr, ptent, NULL);
1127                 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1128         } while (pte++, addr += PAGE_SIZE, addr != end);
1129
1130         add_mm_rss_vec(mm, rss);
1131         arch_leave_lazy_mmu_mode();
1132
1133         /* Do the actual TLB flush before dropping ptl */
1134         if (force_flush)
1135                 tlb_flush_mmu_tlbonly(tlb);
1136         pte_unmap_unlock(start_pte, ptl);
1137
1138         /*
1139          * If we forced a TLB flush (either due to running out of
1140          * batch buffers or because we needed to flush dirty TLB
1141          * entries before releasing the ptl), free the batched
1142          * memory too. Restart if we didn't do everything.
1143          */
1144         if (force_flush) {
1145                 force_flush = 0;
1146                 tlb_flush_mmu(tlb);
1147         }
1148
1149         if (addr != end) {
1150                 cond_resched();
1151                 goto again;
1152         }
1153
1154         return addr;
1155 }
1156
1157 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1158                                 struct vm_area_struct *vma, pud_t *pud,
1159                                 unsigned long addr, unsigned long end,
1160                                 struct zap_details *details)
1161 {
1162         pmd_t *pmd;
1163         unsigned long next;
1164
1165         pmd = pmd_offset(pud, addr);
1166         do {
1167                 next = pmd_addr_end(addr, end);
1168                 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1169                         if (next - addr != HPAGE_PMD_SIZE)
1170                                 __split_huge_pmd(vma, pmd, addr, false, NULL);
1171                         else if (zap_huge_pmd(tlb, vma, pmd, addr))
1172                                 goto next;
1173                         /* fall through */
1174                 }
1175                 /*
1176                  * Here there can be other concurrent MADV_DONTNEED or
1177                  * trans huge page faults running, and if the pmd is
1178                  * none or trans huge it can change under us. This is
1179                  * because MADV_DONTNEED holds the mmap_sem in read
1180                  * mode.
1181                  */
1182                 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1183                         goto next;
1184                 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1185 next:
1186                 cond_resched();
1187         } while (pmd++, addr = next, addr != end);
1188
1189         return addr;
1190 }
1191
1192 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1193                                 struct vm_area_struct *vma, p4d_t *p4d,
1194                                 unsigned long addr, unsigned long end,
1195                                 struct zap_details *details)
1196 {
1197         pud_t *pud;
1198         unsigned long next;
1199
1200         pud = pud_offset(p4d, addr);
1201         do {
1202                 next = pud_addr_end(addr, end);
1203                 if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1204                         if (next - addr != HPAGE_PUD_SIZE) {
1205                                 VM_BUG_ON_VMA(!rwsem_is_locked(&tlb->mm->mmap_sem), vma);
1206                                 split_huge_pud(vma, pud, addr);
1207                         } else if (zap_huge_pud(tlb, vma, pud, addr))
1208                                 goto next;
1209                         /* fall through */
1210                 }
1211                 if (pud_none_or_clear_bad(pud))
1212                         continue;
1213                 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1214 next:
1215                 cond_resched();
1216         } while (pud++, addr = next, addr != end);
1217
1218         return addr;
1219 }
1220
1221 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1222                                 struct vm_area_struct *vma, pgd_t *pgd,
1223                                 unsigned long addr, unsigned long end,
1224                                 struct zap_details *details)
1225 {
1226         p4d_t *p4d;
1227         unsigned long next;
1228
1229         p4d = p4d_offset(pgd, addr);
1230         do {
1231                 next = p4d_addr_end(addr, end);
1232                 if (p4d_none_or_clear_bad(p4d))
1233                         continue;
1234                 next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1235         } while (p4d++, addr = next, addr != end);
1236
1237         return addr;
1238 }
1239
1240 void unmap_page_range(struct mmu_gather *tlb,
1241                              struct vm_area_struct *vma,
1242                              unsigned long addr, unsigned long end,
1243                              struct zap_details *details)
1244 {
1245         pgd_t *pgd;
1246         unsigned long next;
1247
1248         BUG_ON(addr >= end);
1249         tlb_start_vma(tlb, vma);
1250         pgd = pgd_offset(vma->vm_mm, addr);
1251         do {
1252                 next = pgd_addr_end(addr, end);
1253                 if (pgd_none_or_clear_bad(pgd))
1254                         continue;
1255                 next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1256         } while (pgd++, addr = next, addr != end);
1257         tlb_end_vma(tlb, vma);
1258 }
1259
1260
1261 static void unmap_single_vma(struct mmu_gather *tlb,
1262                 struct vm_area_struct *vma, unsigned long start_addr,
1263                 unsigned long end_addr,
1264                 struct zap_details *details)
1265 {
1266         unsigned long start = max(vma->vm_start, start_addr);
1267         unsigned long end;
1268
1269         if (start >= vma->vm_end)
1270                 return;
1271         end = min(vma->vm_end, end_addr);
1272         if (end <= vma->vm_start)
1273                 return;
1274
1275         if (vma->vm_file)
1276                 uprobe_munmap(vma, start, end);
1277
1278         if (unlikely(vma->vm_flags & VM_PFNMAP))
1279                 untrack_pfn(vma, 0, 0);
1280
1281         if (start != end) {
1282                 if (unlikely(is_vm_hugetlb_page(vma))) {
1283                         /*
1284                          * It is undesirable to test vma->vm_file as it
1285                          * should be non-null for valid hugetlb area.
1286                          * However, vm_file will be NULL in the error
1287                          * cleanup path of mmap_region. When
1288                          * hugetlbfs ->mmap method fails,
1289                          * mmap_region() nullifies vma->vm_file
1290                          * before calling this function to clean up.
1291                          * Since no pte has actually been setup, it is
1292                          * safe to do nothing in this case.
1293                          */
1294                         if (vma->vm_file) {
1295                                 i_mmap_lock_write(vma->vm_file->f_mapping);
1296                                 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1297                                 i_mmap_unlock_write(vma->vm_file->f_mapping);
1298                         }
1299                 } else
1300                         unmap_page_range(tlb, vma, start, end, details);
1301         }
1302 }
1303
1304 /**
1305  * unmap_vmas - unmap a range of memory covered by a list of vma's
1306  * @tlb: address of the caller's struct mmu_gather
1307  * @vma: the starting vma
1308  * @start_addr: virtual address at which to start unmapping
1309  * @end_addr: virtual address at which to end unmapping
1310  *
1311  * Unmap all pages in the vma list.
1312  *
1313  * Only addresses between `start' and `end' will be unmapped.
1314  *
1315  * The VMA list must be sorted in ascending virtual address order.
1316  *
1317  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1318  * range after unmap_vmas() returns.  So the only responsibility here is to
1319  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1320  * drops the lock and schedules.
1321  */
1322 void unmap_vmas(struct mmu_gather *tlb,
1323                 struct vm_area_struct *vma, unsigned long start_addr,
1324                 unsigned long end_addr)
1325 {
1326         struct mmu_notifier_range range;
1327
1328         mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, vma->vm_mm,
1329                                 start_addr, end_addr);
1330         mmu_notifier_invalidate_range_start(&range);
1331         for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1332                 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1333         mmu_notifier_invalidate_range_end(&range);
1334 }
1335
1336 /**
1337  * zap_page_range - remove user pages in a given range
1338  * @vma: vm_area_struct holding the applicable pages
1339  * @start: starting address of pages to zap
1340  * @size: number of bytes to zap
1341  *
1342  * Caller must protect the VMA list
1343  */
1344 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1345                 unsigned long size)
1346 {
1347         struct mmu_notifier_range range;
1348         struct mmu_gather tlb;
1349
1350         lru_add_drain();
1351         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1352                                 start, start + size);
1353         tlb_gather_mmu(&tlb, vma->vm_mm, start, range.end);
1354         update_hiwater_rss(vma->vm_mm);
1355         mmu_notifier_invalidate_range_start(&range);
1356         for ( ; vma && vma->vm_start < range.end; vma = vma->vm_next)
1357                 unmap_single_vma(&tlb, vma, start, range.end, NULL);
1358         mmu_notifier_invalidate_range_end(&range);
1359         tlb_finish_mmu(&tlb, start, range.end);
1360 }
1361
1362 /**
1363  * zap_page_range_single - remove user pages in a given range
1364  * @vma: vm_area_struct holding the applicable pages
1365  * @address: starting address of pages to zap
1366  * @size: number of bytes to zap
1367  * @details: details of shared cache invalidation
1368  *
1369  * The range must fit into one VMA.
1370  */
1371 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1372                 unsigned long size, struct zap_details *details)
1373 {
1374         struct mmu_notifier_range range;
1375         struct mmu_gather tlb;
1376
1377         lru_add_drain();
1378         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1379                                 address, address + size);
1380         tlb_gather_mmu(&tlb, vma->vm_mm, address, range.end);
1381         update_hiwater_rss(vma->vm_mm);
1382         mmu_notifier_invalidate_range_start(&range);
1383         unmap_single_vma(&tlb, vma, address, range.end, details);
1384         mmu_notifier_invalidate_range_end(&range);
1385         tlb_finish_mmu(&tlb, address, range.end);
1386 }
1387
1388 /**
1389  * zap_vma_ptes - remove ptes mapping the vma
1390  * @vma: vm_area_struct holding ptes to be zapped
1391  * @address: starting address of pages to zap
1392  * @size: number of bytes to zap
1393  *
1394  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1395  *
1396  * The entire address range must be fully contained within the vma.
1397  *
1398  */
1399 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1400                 unsigned long size)
1401 {
1402         if (address < vma->vm_start || address + size > vma->vm_end ||
1403                         !(vma->vm_flags & VM_PFNMAP))
1404                 return;
1405
1406         zap_page_range_single(vma, address, size, NULL);
1407 }
1408 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1409
1410 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1411                         spinlock_t **ptl)
1412 {
1413         pgd_t *pgd;
1414         p4d_t *p4d;
1415         pud_t *pud;
1416         pmd_t *pmd;
1417
1418         pgd = pgd_offset(mm, addr);
1419         p4d = p4d_alloc(mm, pgd, addr);
1420         if (!p4d)
1421                 return NULL;
1422         pud = pud_alloc(mm, p4d, addr);
1423         if (!pud)
1424                 return NULL;
1425         pmd = pmd_alloc(mm, pud, addr);
1426         if (!pmd)
1427                 return NULL;
1428
1429         VM_BUG_ON(pmd_trans_huge(*pmd));
1430         return pte_alloc_map_lock(mm, pmd, addr, ptl);
1431 }
1432
1433 /*
1434  * This is the old fallback for page remapping.
1435  *
1436  * For historical reasons, it only allows reserved pages. Only
1437  * old drivers should use this, and they needed to mark their
1438  * pages reserved for the old functions anyway.
1439  */
1440 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1441                         struct page *page, pgprot_t prot)
1442 {
1443         struct mm_struct *mm = vma->vm_mm;
1444         int retval;
1445         pte_t *pte;
1446         spinlock_t *ptl;
1447
1448         retval = -EINVAL;
1449         if (PageAnon(page) || PageSlab(page) || page_has_type(page))
1450                 goto out;
1451         retval = -ENOMEM;
1452         flush_dcache_page(page);
1453         pte = get_locked_pte(mm, addr, &ptl);
1454         if (!pte)
1455                 goto out;
1456         retval = -EBUSY;
1457         if (!pte_none(*pte))
1458                 goto out_unlock;
1459
1460         /* Ok, finally just insert the thing.. */
1461         get_page(page);
1462         inc_mm_counter_fast(mm, mm_counter_file(page));
1463         page_add_file_rmap(page, false);
1464         set_pte_at(mm, addr, pte, mk_pte(page, prot));
1465
1466         retval = 0;
1467 out_unlock:
1468         pte_unmap_unlock(pte, ptl);
1469 out:
1470         return retval;
1471 }
1472
1473 /**
1474  * vm_insert_page - insert single page into user vma
1475  * @vma: user vma to map to
1476  * @addr: target user address of this page
1477  * @page: source kernel page
1478  *
1479  * This allows drivers to insert individual pages they've allocated
1480  * into a user vma.
1481  *
1482  * The page has to be a nice clean _individual_ kernel allocation.
1483  * If you allocate a compound page, you need to have marked it as
1484  * such (__GFP_COMP), or manually just split the page up yourself
1485  * (see split_page()).
1486  *
1487  * NOTE! Traditionally this was done with "remap_pfn_range()" which
1488  * took an arbitrary page protection parameter. This doesn't allow
1489  * that. Your vma protection will have to be set up correctly, which
1490  * means that if you want a shared writable mapping, you'd better
1491  * ask for a shared writable mapping!
1492  *
1493  * The page does not need to be reserved.
1494  *
1495  * Usually this function is called from f_op->mmap() handler
1496  * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1497  * Caller must set VM_MIXEDMAP on vma if it wants to call this
1498  * function from other places, for example from page-fault handler.
1499  *
1500  * Return: %0 on success, negative error code otherwise.
1501  */
1502 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1503                         struct page *page)
1504 {
1505         if (addr < vma->vm_start || addr >= vma->vm_end)
1506                 return -EFAULT;
1507         if (!page_count(page))
1508                 return -EINVAL;
1509         if (!(vma->vm_flags & VM_MIXEDMAP)) {
1510                 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
1511                 BUG_ON(vma->vm_flags & VM_PFNMAP);
1512                 vma->vm_flags |= VM_MIXEDMAP;
1513         }
1514         return insert_page(vma, addr, page, vma->vm_page_prot);
1515 }
1516 EXPORT_SYMBOL(vm_insert_page);
1517
1518 /*
1519  * __vm_map_pages - maps range of kernel pages into user vma
1520  * @vma: user vma to map to
1521  * @pages: pointer to array of source kernel pages
1522  * @num: number of pages in page array
1523  * @offset: user's requested vm_pgoff
1524  *
1525  * This allows drivers to map range of kernel pages into a user vma.
1526  *
1527  * Return: 0 on success and error code otherwise.
1528  */
1529 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1530                                 unsigned long num, unsigned long offset)
1531 {
1532         unsigned long count = vma_pages(vma);
1533         unsigned long uaddr = vma->vm_start;
1534         int ret, i;
1535
1536         /* Fail if the user requested offset is beyond the end of the object */
1537         if (offset >= num)
1538                 return -ENXIO;
1539
1540         /* Fail if the user requested size exceeds available object size */
1541         if (count > num - offset)
1542                 return -ENXIO;
1543
1544         for (i = 0; i < count; i++) {
1545                 ret = vm_insert_page(vma, uaddr, pages[offset + i]);
1546                 if (ret < 0)
1547                         return ret;
1548                 uaddr += PAGE_SIZE;
1549         }
1550
1551         return 0;
1552 }
1553
1554 /**
1555  * vm_map_pages - maps range of kernel pages starts with non zero offset
1556  * @vma: user vma to map to
1557  * @pages: pointer to array of source kernel pages
1558  * @num: number of pages in page array
1559  *
1560  * Maps an object consisting of @num pages, catering for the user's
1561  * requested vm_pgoff
1562  *
1563  * If we fail to insert any page into the vma, the function will return
1564  * immediately leaving any previously inserted pages present.  Callers
1565  * from the mmap handler may immediately return the error as their caller
1566  * will destroy the vma, removing any successfully inserted pages. Other
1567  * callers should make their own arrangements for calling unmap_region().
1568  *
1569  * Context: Process context. Called by mmap handlers.
1570  * Return: 0 on success and error code otherwise.
1571  */
1572 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1573                                 unsigned long num)
1574 {
1575         return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
1576 }
1577 EXPORT_SYMBOL(vm_map_pages);
1578
1579 /**
1580  * vm_map_pages_zero - map range of kernel pages starts with zero offset
1581  * @vma: user vma to map to
1582  * @pages: pointer to array of source kernel pages
1583  * @num: number of pages in page array
1584  *
1585  * Similar to vm_map_pages(), except that it explicitly sets the offset
1586  * to 0. This function is intended for the drivers that did not consider
1587  * vm_pgoff.
1588  *
1589  * Context: Process context. Called by mmap handlers.
1590  * Return: 0 on success and error code otherwise.
1591  */
1592 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
1593                                 unsigned long num)
1594 {
1595         return __vm_map_pages(vma, pages, num, 0);
1596 }
1597 EXPORT_SYMBOL(vm_map_pages_zero);
1598
1599 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1600                         pfn_t pfn, pgprot_t prot, bool mkwrite)
1601 {
1602         struct mm_struct *mm = vma->vm_mm;
1603         pte_t *pte, entry;
1604         spinlock_t *ptl;
1605
1606         pte = get_locked_pte(mm, addr, &ptl);
1607         if (!pte)
1608                 return VM_FAULT_OOM;
1609         if (!pte_none(*pte)) {
1610                 if (mkwrite) {
1611                         /*
1612                          * For read faults on private mappings the PFN passed
1613                          * in may not match the PFN we have mapped if the
1614                          * mapped PFN is a writeable COW page.  In the mkwrite
1615                          * case we are creating a writable PTE for a shared
1616                          * mapping and we expect the PFNs to match. If they
1617                          * don't match, we are likely racing with block
1618                          * allocation and mapping invalidation so just skip the
1619                          * update.
1620                          */
1621                         if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) {
1622                                 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte)));
1623                                 goto out_unlock;
1624                         }
1625                         entry = pte_mkyoung(*pte);
1626                         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1627                         if (ptep_set_access_flags(vma, addr, pte, entry, 1))
1628                                 update_mmu_cache(vma, addr, pte);
1629                 }
1630                 goto out_unlock;
1631         }
1632
1633         /* Ok, finally just insert the thing.. */
1634         if (pfn_t_devmap(pfn))
1635                 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
1636         else
1637                 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
1638
1639         if (mkwrite) {
1640                 entry = pte_mkyoung(entry);
1641                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1642         }
1643
1644         set_pte_at(mm, addr, pte, entry);
1645         update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1646
1647 out_unlock:
1648         pte_unmap_unlock(pte, ptl);
1649         return VM_FAULT_NOPAGE;
1650 }
1651
1652 /**
1653  * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1654  * @vma: user vma to map to
1655  * @addr: target user address of this page
1656  * @pfn: source kernel pfn
1657  * @pgprot: pgprot flags for the inserted page
1658  *
1659  * This is exactly like vmf_insert_pfn(), except that it allows drivers to
1660  * to override pgprot on a per-page basis.
1661  *
1662  * This only makes sense for IO mappings, and it makes no sense for
1663  * COW mappings.  In general, using multiple vmas is preferable;
1664  * vmf_insert_pfn_prot should only be used if using multiple VMAs is
1665  * impractical.
1666  *
1667  * See vmf_insert_mixed_prot() for a discussion of the implication of using
1668  * a value of @pgprot different from that of @vma->vm_page_prot.
1669  *
1670  * Context: Process context.  May allocate using %GFP_KERNEL.
1671  * Return: vm_fault_t value.
1672  */
1673 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
1674                         unsigned long pfn, pgprot_t pgprot)
1675 {
1676         /*
1677          * Technically, architectures with pte_special can avoid all these
1678          * restrictions (same for remap_pfn_range).  However we would like
1679          * consistency in testing and feature parity among all, so we should
1680          * try to keep these invariants in place for everybody.
1681          */
1682         BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1683         BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1684                                                 (VM_PFNMAP|VM_MIXEDMAP));
1685         BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1686         BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1687
1688         if (addr < vma->vm_start || addr >= vma->vm_end)
1689                 return VM_FAULT_SIGBUS;
1690
1691         if (!pfn_modify_allowed(pfn, pgprot))
1692                 return VM_FAULT_SIGBUS;
1693
1694         track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
1695
1696         return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
1697                         false);
1698 }
1699 EXPORT_SYMBOL(vmf_insert_pfn_prot);
1700
1701 /**
1702  * vmf_insert_pfn - insert single pfn into user vma
1703  * @vma: user vma to map to
1704  * @addr: target user address of this page
1705  * @pfn: source kernel pfn
1706  *
1707  * Similar to vm_insert_page, this allows drivers to insert individual pages
1708  * they've allocated into a user vma. Same comments apply.
1709  *
1710  * This function should only be called from a vm_ops->fault handler, and
1711  * in that case the handler should return the result of this function.
1712  *
1713  * vma cannot be a COW mapping.
1714  *
1715  * As this is called only for pages that do not currently exist, we
1716  * do not need to flush old virtual caches or the TLB.
1717  *
1718  * Context: Process context.  May allocate using %GFP_KERNEL.
1719  * Return: vm_fault_t value.
1720  */
1721 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1722                         unsigned long pfn)
1723 {
1724         return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
1725 }
1726 EXPORT_SYMBOL(vmf_insert_pfn);
1727
1728 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
1729 {
1730         /* these checks mirror the abort conditions in vm_normal_page */
1731         if (vma->vm_flags & VM_MIXEDMAP)
1732                 return true;
1733         if (pfn_t_devmap(pfn))
1734                 return true;
1735         if (pfn_t_special(pfn))
1736                 return true;
1737         if (is_zero_pfn(pfn_t_to_pfn(pfn)))
1738                 return true;
1739         return false;
1740 }
1741
1742 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
1743                 unsigned long addr, pfn_t pfn, pgprot_t pgprot,
1744                 bool mkwrite)
1745 {
1746         int err;
1747
1748         BUG_ON(!vm_mixed_ok(vma, pfn));
1749
1750         if (addr < vma->vm_start || addr >= vma->vm_end)
1751                 return VM_FAULT_SIGBUS;
1752
1753         track_pfn_insert(vma, &pgprot, pfn);
1754
1755         if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
1756                 return VM_FAULT_SIGBUS;
1757
1758         /*
1759          * If we don't have pte special, then we have to use the pfn_valid()
1760          * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1761          * refcount the page if pfn_valid is true (hence insert_page rather
1762          * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
1763          * without pte special, it would there be refcounted as a normal page.
1764          */
1765         if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
1766             !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
1767                 struct page *page;
1768
1769                 /*
1770                  * At this point we are committed to insert_page()
1771                  * regardless of whether the caller specified flags that
1772                  * result in pfn_t_has_page() == false.
1773                  */
1774                 page = pfn_to_page(pfn_t_to_pfn(pfn));
1775                 err = insert_page(vma, addr, page, pgprot);
1776         } else {
1777                 return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
1778         }
1779
1780         if (err == -ENOMEM)
1781                 return VM_FAULT_OOM;
1782         if (err < 0 && err != -EBUSY)
1783                 return VM_FAULT_SIGBUS;
1784
1785         return VM_FAULT_NOPAGE;
1786 }
1787
1788 /**
1789  * vmf_insert_mixed_prot - insert single pfn into user vma with specified pgprot
1790  * @vma: user vma to map to
1791  * @addr: target user address of this page
1792  * @pfn: source kernel pfn
1793  * @pgprot: pgprot flags for the inserted page
1794  *
1795  * This is exactly like vmf_insert_mixed(), except that it allows drivers to
1796  * to override pgprot on a per-page basis.
1797  *
1798  * Typically this function should be used by drivers to set caching- and
1799  * encryption bits different than those of @vma->vm_page_prot, because
1800  * the caching- or encryption mode may not be known at mmap() time.
1801  * This is ok as long as @vma->vm_page_prot is not used by the core vm
1802  * to set caching and encryption bits for those vmas (except for COW pages).
1803  * This is ensured by core vm only modifying these page table entries using
1804  * functions that don't touch caching- or encryption bits, using pte_modify()
1805  * if needed. (See for example mprotect()).
1806  * Also when new page-table entries are created, this is only done using the
1807  * fault() callback, and never using the value of vma->vm_page_prot,
1808  * except for page-table entries that point to anonymous pages as the result
1809  * of COW.
1810  *
1811  * Context: Process context.  May allocate using %GFP_KERNEL.
1812  * Return: vm_fault_t value.
1813  */
1814 vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
1815                                  pfn_t pfn, pgprot_t pgprot)
1816 {
1817         return __vm_insert_mixed(vma, addr, pfn, pgprot, false);
1818 }
1819 EXPORT_SYMBOL(vmf_insert_mixed_prot);
1820
1821 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1822                 pfn_t pfn)
1823 {
1824         return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, false);
1825 }
1826 EXPORT_SYMBOL(vmf_insert_mixed);
1827
1828 /*
1829  *  If the insertion of PTE failed because someone else already added a
1830  *  different entry in the mean time, we treat that as success as we assume
1831  *  the same entry was actually inserted.
1832  */
1833 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
1834                 unsigned long addr, pfn_t pfn)
1835 {
1836         return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, true);
1837 }
1838 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
1839
1840 /*
1841  * maps a range of physical memory into the requested pages. the old
1842  * mappings are removed. any references to nonexistent pages results
1843  * in null mappings (currently treated as "copy-on-access")
1844  */
1845 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1846                         unsigned long addr, unsigned long end,
1847                         unsigned long pfn, pgprot_t prot)
1848 {
1849         pte_t *pte;
1850         spinlock_t *ptl;
1851         int err = 0;
1852
1853         pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1854         if (!pte)
1855                 return -ENOMEM;
1856         arch_enter_lazy_mmu_mode();
1857         do {
1858                 BUG_ON(!pte_none(*pte));
1859                 if (!pfn_modify_allowed(pfn, prot)) {
1860                         err = -EACCES;
1861                         break;
1862                 }
1863                 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1864                 pfn++;
1865         } while (pte++, addr += PAGE_SIZE, addr != end);
1866         arch_leave_lazy_mmu_mode();
1867         pte_unmap_unlock(pte - 1, ptl);
1868         return err;
1869 }
1870
1871 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1872                         unsigned long addr, unsigned long end,
1873                         unsigned long pfn, pgprot_t prot)
1874 {
1875         pmd_t *pmd;
1876         unsigned long next;
1877         int err;
1878
1879         pfn -= addr >> PAGE_SHIFT;
1880         pmd = pmd_alloc(mm, pud, addr);
1881         if (!pmd)
1882                 return -ENOMEM;
1883         VM_BUG_ON(pmd_trans_huge(*pmd));
1884         do {
1885                 next = pmd_addr_end(addr, end);
1886                 err = remap_pte_range(mm, pmd, addr, next,
1887                                 pfn + (addr >> PAGE_SHIFT), prot);
1888                 if (err)
1889                         return err;
1890         } while (pmd++, addr = next, addr != end);
1891         return 0;
1892 }
1893
1894 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
1895                         unsigned long addr, unsigned long end,
1896                         unsigned long pfn, pgprot_t prot)
1897 {
1898         pud_t *pud;
1899         unsigned long next;
1900         int err;
1901
1902         pfn -= addr >> PAGE_SHIFT;
1903         pud = pud_alloc(mm, p4d, addr);
1904         if (!pud)
1905                 return -ENOMEM;
1906         do {
1907                 next = pud_addr_end(addr, end);
1908                 err = remap_pmd_range(mm, pud, addr, next,
1909                                 pfn + (addr >> PAGE_SHIFT), prot);
1910                 if (err)
1911                         return err;
1912         } while (pud++, addr = next, addr != end);
1913         return 0;
1914 }
1915
1916 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
1917                         unsigned long addr, unsigned long end,
1918                         unsigned long pfn, pgprot_t prot)
1919 {
1920         p4d_t *p4d;
1921         unsigned long next;
1922         int err;
1923
1924         pfn -= addr >> PAGE_SHIFT;
1925         p4d = p4d_alloc(mm, pgd, addr);
1926         if (!p4d)
1927                 return -ENOMEM;
1928         do {
1929                 next = p4d_addr_end(addr, end);
1930                 err = remap_pud_range(mm, p4d, addr, next,
1931                                 pfn + (addr >> PAGE_SHIFT), prot);
1932                 if (err)
1933                         return err;
1934         } while (p4d++, addr = next, addr != end);
1935         return 0;
1936 }
1937
1938 /**
1939  * remap_pfn_range - remap kernel memory to userspace
1940  * @vma: user vma to map to
1941  * @addr: target user address to start at
1942  * @pfn: physical address of kernel memory
1943  * @size: size of map area
1944  * @prot: page protection flags for this mapping
1945  *
1946  * Note: this is only safe if the mm semaphore is held when called.
1947  *
1948  * Return: %0 on success, negative error code otherwise.
1949  */
1950 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1951                     unsigned long pfn, unsigned long size, pgprot_t prot)
1952 {
1953         pgd_t *pgd;
1954         unsigned long next;
1955         unsigned long end = addr + PAGE_ALIGN(size);
1956         struct mm_struct *mm = vma->vm_mm;
1957         unsigned long remap_pfn = pfn;
1958         int err;
1959
1960         /*
1961          * Physically remapped pages are special. Tell the
1962          * rest of the world about it:
1963          *   VM_IO tells people not to look at these pages
1964          *      (accesses can have side effects).
1965          *   VM_PFNMAP tells the core MM that the base pages are just
1966          *      raw PFN mappings, and do not have a "struct page" associated
1967          *      with them.
1968          *   VM_DONTEXPAND
1969          *      Disable vma merging and expanding with mremap().
1970          *   VM_DONTDUMP
1971          *      Omit vma from core dump, even when VM_IO turned off.
1972          *
1973          * There's a horrible special case to handle copy-on-write
1974          * behaviour that some programs depend on. We mark the "original"
1975          * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1976          * See vm_normal_page() for details.
1977          */
1978         if (is_cow_mapping(vma->vm_flags)) {
1979                 if (addr != vma->vm_start || end != vma->vm_end)
1980                         return -EINVAL;
1981                 vma->vm_pgoff = pfn;
1982         }
1983
1984         err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size));
1985         if (err)
1986                 return -EINVAL;
1987
1988         vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1989
1990         BUG_ON(addr >= end);
1991         pfn -= addr >> PAGE_SHIFT;
1992         pgd = pgd_offset(mm, addr);
1993         flush_cache_range(vma, addr, end);
1994         do {
1995                 next = pgd_addr_end(addr, end);
1996                 err = remap_p4d_range(mm, pgd, addr, next,
1997                                 pfn + (addr >> PAGE_SHIFT), prot);
1998                 if (err)
1999                         break;
2000         } while (pgd++, addr = next, addr != end);
2001
2002         if (err)
2003                 untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size));
2004
2005         return err;
2006 }
2007 EXPORT_SYMBOL(remap_pfn_range);
2008
2009 /**
2010  * vm_iomap_memory - remap memory to userspace
2011  * @vma: user vma to map to
2012  * @start: start of area
2013  * @len: size of area
2014  *
2015  * This is a simplified io_remap_pfn_range() for common driver use. The
2016  * driver just needs to give us the physical memory range to be mapped,
2017  * we'll figure out the rest from the vma information.
2018  *
2019  * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2020  * whatever write-combining details or similar.
2021  *
2022  * Return: %0 on success, negative error code otherwise.
2023  */
2024 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2025 {
2026         unsigned long vm_len, pfn, pages;
2027
2028         /* Check that the physical memory area passed in looks valid */
2029         if (start + len < start)
2030                 return -EINVAL;
2031         /*
2032          * You *really* shouldn't map things that aren't page-aligned,
2033          * but we've historically allowed it because IO memory might
2034          * just have smaller alignment.
2035          */
2036         len += start & ~PAGE_MASK;
2037         pfn = start >> PAGE_SHIFT;
2038         pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2039         if (pfn + pages < pfn)
2040                 return -EINVAL;
2041
2042         /* We start the mapping 'vm_pgoff' pages into the area */
2043         if (vma->vm_pgoff > pages)
2044                 return -EINVAL;
2045         pfn += vma->vm_pgoff;
2046         pages -= vma->vm_pgoff;
2047
2048         /* Can we fit all of the mapping? */
2049         vm_len = vma->vm_end - vma->vm_start;
2050         if (vm_len >> PAGE_SHIFT > pages)
2051                 return -EINVAL;
2052
2053         /* Ok, let it rip */
2054         return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2055 }
2056 EXPORT_SYMBOL(vm_iomap_memory);
2057
2058 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2059                                      unsigned long addr, unsigned long end,
2060                                      pte_fn_t fn, void *data, bool create)
2061 {
2062         pte_t *pte;
2063         int err = 0;
2064         spinlock_t *uninitialized_var(ptl);
2065
2066         if (create) {
2067                 pte = (mm == &init_mm) ?
2068                         pte_alloc_kernel(pmd, addr) :
2069                         pte_alloc_map_lock(mm, pmd, addr, &ptl);
2070                 if (!pte)
2071                         return -ENOMEM;
2072         } else {
2073                 pte = (mm == &init_mm) ?
2074                         pte_offset_kernel(pmd, addr) :
2075                         pte_offset_map_lock(mm, pmd, addr, &ptl);
2076         }
2077
2078         BUG_ON(pmd_huge(*pmd));
2079
2080         arch_enter_lazy_mmu_mode();
2081
2082         do {
2083                 if (create || !pte_none(*pte)) {
2084                         err = fn(pte++, addr, data);
2085                         if (err)
2086                                 break;
2087                 }
2088         } while (addr += PAGE_SIZE, addr != end);
2089
2090         arch_leave_lazy_mmu_mode();
2091
2092         if (mm != &init_mm)
2093                 pte_unmap_unlock(pte-1, ptl);
2094         return err;
2095 }
2096
2097 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2098                                      unsigned long addr, unsigned long end,
2099                                      pte_fn_t fn, void *data, bool create)
2100 {
2101         pmd_t *pmd;
2102         unsigned long next;
2103         int err = 0;
2104
2105         BUG_ON(pud_huge(*pud));
2106
2107         if (create) {
2108                 pmd = pmd_alloc(mm, pud, addr);
2109                 if (!pmd)
2110                         return -ENOMEM;
2111         } else {
2112                 pmd = pmd_offset(pud, addr);
2113         }
2114         do {
2115                 next = pmd_addr_end(addr, end);
2116                 if (create || !pmd_none_or_clear_bad(pmd)) {
2117                         err = apply_to_pte_range(mm, pmd, addr, next, fn, data,
2118                                                  create);
2119                         if (err)
2120                                 break;
2121                 }
2122         } while (pmd++, addr = next, addr != end);
2123         return err;
2124 }
2125
2126 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2127                                      unsigned long addr, unsigned long end,
2128                                      pte_fn_t fn, void *data, bool create)
2129 {
2130         pud_t *pud;
2131         unsigned long next;
2132         int err = 0;
2133
2134         if (create) {
2135                 pud = pud_alloc(mm, p4d, addr);
2136                 if (!pud)
2137                         return -ENOMEM;
2138         } else {
2139                 pud = pud_offset(p4d, addr);
2140         }
2141         do {
2142                 next = pud_addr_end(addr, end);
2143                 if (create || !pud_none_or_clear_bad(pud)) {
2144                         err = apply_to_pmd_range(mm, pud, addr, next, fn, data,
2145                                                  create);
2146                         if (err)
2147                                 break;
2148                 }
2149         } while (pud++, addr = next, addr != end);
2150         return err;
2151 }
2152
2153 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2154                                      unsigned long addr, unsigned long end,
2155                                      pte_fn_t fn, void *data, bool create)
2156 {
2157         p4d_t *p4d;
2158         unsigned long next;
2159         int err = 0;
2160
2161         if (create) {
2162                 p4d = p4d_alloc(mm, pgd, addr);
2163                 if (!p4d)
2164                         return -ENOMEM;
2165         } else {
2166                 p4d = p4d_offset(pgd, addr);
2167         }
2168         do {
2169                 next = p4d_addr_end(addr, end);
2170                 if (create || !p4d_none_or_clear_bad(p4d)) {
2171                         err = apply_to_pud_range(mm, p4d, addr, next, fn, data,
2172                                                  create);
2173                         if (err)
2174                                 break;
2175                 }
2176         } while (p4d++, addr = next, addr != end);
2177         return err;
2178 }
2179
2180 static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2181                                  unsigned long size, pte_fn_t fn,
2182                                  void *data, bool create)
2183 {
2184         pgd_t *pgd;
2185         unsigned long next;
2186         unsigned long end = addr + size;
2187         int err = 0;
2188
2189         if (WARN_ON(addr >= end))
2190                 return -EINVAL;
2191
2192         pgd = pgd_offset(mm, addr);
2193         do {
2194                 next = pgd_addr_end(addr, end);
2195                 if (!create && pgd_none_or_clear_bad(pgd))
2196                         continue;
2197                 err = apply_to_p4d_range(mm, pgd, addr, next, fn, data, create);
2198                 if (err)
2199                         break;
2200         } while (pgd++, addr = next, addr != end);
2201
2202         return err;
2203 }
2204
2205 /*
2206  * Scan a region of virtual memory, filling in page tables as necessary
2207  * and calling a provided function on each leaf page table.
2208  */
2209 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2210                         unsigned long size, pte_fn_t fn, void *data)
2211 {
2212         return __apply_to_page_range(mm, addr, size, fn, data, true);
2213 }
2214 EXPORT_SYMBOL_GPL(apply_to_page_range);
2215
2216 /*
2217  * Scan a region of virtual memory, calling a provided function on
2218  * each leaf page table where it exists.
2219  *
2220  * Unlike apply_to_page_range, this does _not_ fill in page tables
2221  * where they are absent.
2222  */
2223 int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr,
2224                                  unsigned long size, pte_fn_t fn, void *data)
2225 {
2226         return __apply_to_page_range(mm, addr, size, fn, data, false);
2227 }
2228 EXPORT_SYMBOL_GPL(apply_to_existing_page_range);
2229
2230 /*
2231  * handle_pte_fault chooses page fault handler according to an entry which was
2232  * read non-atomically.  Before making any commitment, on those architectures
2233  * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2234  * parts, do_swap_page must check under lock before unmapping the pte and
2235  * proceeding (but do_wp_page is only called after already making such a check;
2236  * and do_anonymous_page can safely check later on).
2237  */
2238 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2239                                 pte_t *page_table, pte_t orig_pte)
2240 {
2241         int same = 1;
2242 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION)
2243         if (sizeof(pte_t) > sizeof(unsigned long)) {
2244                 spinlock_t *ptl = pte_lockptr(mm, pmd);
2245                 spin_lock(ptl);
2246                 same = pte_same(*page_table, orig_pte);
2247                 spin_unlock(ptl);
2248         }
2249 #endif
2250         pte_unmap(page_table);
2251         return same;
2252 }
2253
2254 static inline bool cow_user_page(struct page *dst, struct page *src,
2255                                  struct vm_fault *vmf)
2256 {
2257         bool ret;
2258         void *kaddr;
2259         void __user *uaddr;
2260         bool force_mkyoung;
2261         struct vm_area_struct *vma = vmf->vma;
2262         struct mm_struct *mm = vma->vm_mm;
2263         unsigned long addr = vmf->address;
2264
2265         debug_dma_assert_idle(src);
2266
2267         if (likely(src)) {
2268                 copy_user_highpage(dst, src, addr, vma);
2269                 return true;
2270         }
2271
2272         /*
2273          * If the source page was a PFN mapping, we don't have
2274          * a "struct page" for it. We do a best-effort copy by
2275          * just copying from the original user address. If that
2276          * fails, we just zero-fill it. Live with it.
2277          */
2278         kaddr = kmap_atomic(dst);
2279         uaddr = (void __user *)(addr & PAGE_MASK);
2280
2281         /*
2282          * On architectures with software "accessed" bits, we would
2283          * take a double page fault, so mark it accessed here.
2284          */
2285         force_mkyoung = arch_faults_on_old_pte() && !pte_young(vmf->orig_pte);
2286         if (force_mkyoung) {
2287                 pte_t entry;
2288
2289                 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2290                 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2291                         /*
2292                          * Other thread has already handled the fault
2293                          * and we don't need to do anything. If it's
2294                          * not the case, the fault will be triggered
2295                          * again on the same address.
2296                          */
2297                         ret = false;
2298                         goto pte_unlock;
2299                 }
2300
2301                 entry = pte_mkyoung(vmf->orig_pte);
2302                 if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
2303                         update_mmu_cache(vma, addr, vmf->pte);
2304         }
2305
2306         /*
2307          * This really shouldn't fail, because the page is there
2308          * in the page tables. But it might just be unreadable,
2309          * in which case we just give up and fill the result with
2310          * zeroes.
2311          */
2312         if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2313                 /*
2314                  * Give a warn in case there can be some obscure
2315                  * use-case
2316                  */
2317                 WARN_ON_ONCE(1);
2318                 clear_page(kaddr);
2319         }
2320
2321         ret = true;
2322
2323 pte_unlock:
2324         if (force_mkyoung)
2325                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2326         kunmap_atomic(kaddr);
2327         flush_dcache_page(dst);
2328
2329         return ret;
2330 }
2331
2332 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2333 {
2334         struct file *vm_file = vma->vm_file;
2335
2336         if (vm_file)
2337                 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2338
2339         /*
2340          * Special mappings (e.g. VDSO) do not have any file so fake
2341          * a default GFP_KERNEL for them.
2342          */
2343         return GFP_KERNEL;
2344 }
2345
2346 /*
2347  * Notify the address space that the page is about to become writable so that
2348  * it can prohibit this or wait for the page to get into an appropriate state.
2349  *
2350  * We do this without the lock held, so that it can sleep if it needs to.
2351  */
2352 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf)
2353 {
2354         vm_fault_t ret;
2355         struct page *page = vmf->page;
2356         unsigned int old_flags = vmf->flags;
2357
2358         vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2359
2360         if (vmf->vma->vm_file &&
2361             IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
2362                 return VM_FAULT_SIGBUS;
2363
2364         ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2365         /* Restore original flags so that caller is not surprised */
2366         vmf->flags = old_flags;
2367         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2368                 return ret;
2369         if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2370                 lock_page(page);
2371                 if (!page->mapping) {
2372                         unlock_page(page);
2373                         return 0; /* retry */
2374                 }
2375                 ret |= VM_FAULT_LOCKED;
2376         } else
2377                 VM_BUG_ON_PAGE(!PageLocked(page), page);
2378         return ret;
2379 }
2380
2381 /*
2382  * Handle dirtying of a page in shared file mapping on a write fault.
2383  *
2384  * The function expects the page to be locked and unlocks it.
2385  */
2386 static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
2387 {
2388         struct vm_area_struct *vma = vmf->vma;
2389         struct address_space *mapping;
2390         struct page *page = vmf->page;
2391         bool dirtied;
2392         bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2393
2394         dirtied = set_page_dirty(page);
2395         VM_BUG_ON_PAGE(PageAnon(page), page);
2396         /*
2397          * Take a local copy of the address_space - page.mapping may be zeroed
2398          * by truncate after unlock_page().   The address_space itself remains
2399          * pinned by vma->vm_file's reference.  We rely on unlock_page()'s
2400          * release semantics to prevent the compiler from undoing this copying.
2401          */
2402         mapping = page_rmapping(page);
2403         unlock_page(page);
2404
2405         if (!page_mkwrite)
2406                 file_update_time(vma->vm_file);
2407
2408         /*
2409          * Throttle page dirtying rate down to writeback speed.
2410          *
2411          * mapping may be NULL here because some device drivers do not
2412          * set page.mapping but still dirty their pages
2413          *
2414          * Drop the mmap_sem before waiting on IO, if we can. The file
2415          * is pinning the mapping, as per above.
2416          */
2417         if ((dirtied || page_mkwrite) && mapping) {
2418                 struct file *fpin;
2419
2420                 fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2421                 balance_dirty_pages_ratelimited(mapping);
2422                 if (fpin) {
2423                         fput(fpin);
2424                         return VM_FAULT_RETRY;
2425                 }
2426         }
2427
2428         return 0;
2429 }
2430
2431 /*
2432  * Handle write page faults for pages that can be reused in the current vma
2433  *
2434  * This can happen either due to the mapping being with the VM_SHARED flag,
2435  * or due to us being the last reference standing to the page. In either
2436  * case, all we need to do here is to mark the page as writable and update
2437  * any related book-keeping.
2438  */
2439 static inline void wp_page_reuse(struct vm_fault *vmf)
2440         __releases(vmf->ptl)
2441 {
2442         struct vm_area_struct *vma = vmf->vma;
2443         struct page *page = vmf->page;
2444         pte_t entry;
2445         /*
2446          * Clear the pages cpupid information as the existing
2447          * information potentially belongs to a now completely
2448          * unrelated process.
2449          */
2450         if (page)
2451                 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2452
2453         flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2454         entry = pte_mkyoung(vmf->orig_pte);
2455         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2456         if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
2457                 update_mmu_cache(vma, vmf->address, vmf->pte);
2458         pte_unmap_unlock(vmf->pte, vmf->ptl);
2459 }
2460
2461 /*
2462  * Handle the case of a page which we actually need to copy to a new page.
2463  *
2464  * Called with mmap_sem locked and the old page referenced, but
2465  * without the ptl held.
2466  *
2467  * High level logic flow:
2468  *
2469  * - Allocate a page, copy the content of the old page to the new one.
2470  * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2471  * - Take the PTL. If the pte changed, bail out and release the allocated page
2472  * - If the pte is still the way we remember it, update the page table and all
2473  *   relevant references. This includes dropping the reference the page-table
2474  *   held to the old page, as well as updating the rmap.
2475  * - In any case, unlock the PTL and drop the reference we took to the old page.
2476  */
2477 static vm_fault_t wp_page_copy(struct vm_fault *vmf)
2478 {
2479         struct vm_area_struct *vma = vmf->vma;
2480         struct mm_struct *mm = vma->vm_mm;
2481         struct page *old_page = vmf->page;
2482         struct page *new_page = NULL;
2483         pte_t entry;
2484         int page_copied = 0;
2485         struct mem_cgroup *memcg;
2486         struct mmu_notifier_range range;
2487
2488         if (unlikely(anon_vma_prepare(vma)))
2489                 goto oom;
2490
2491         if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
2492                 new_page = alloc_zeroed_user_highpage_movable(vma,
2493                                                               vmf->address);
2494                 if (!new_page)
2495                         goto oom;
2496         } else {
2497                 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2498                                 vmf->address);
2499                 if (!new_page)
2500                         goto oom;
2501
2502                 if (!cow_user_page(new_page, old_page, vmf)) {
2503                         /*
2504                          * COW failed, if the fault was solved by other,
2505                          * it's fine. If not, userspace would re-fault on
2506                          * the same address and we will handle the fault
2507                          * from the second attempt.
2508                          */
2509                         put_page(new_page);
2510                         if (old_page)
2511                                 put_page(old_page);
2512                         return 0;
2513                 }
2514         }
2515
2516         if (mem_cgroup_try_charge_delay(new_page, mm, GFP_KERNEL, &memcg, false))
2517                 goto oom_free_new;
2518
2519         __SetPageUptodate(new_page);
2520
2521         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
2522                                 vmf->address & PAGE_MASK,
2523                                 (vmf->address & PAGE_MASK) + PAGE_SIZE);
2524         mmu_notifier_invalidate_range_start(&range);
2525
2526         /*
2527          * Re-check the pte - we dropped the lock
2528          */
2529         vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
2530         if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2531                 if (old_page) {
2532                         if (!PageAnon(old_page)) {
2533                                 dec_mm_counter_fast(mm,
2534                                                 mm_counter_file(old_page));
2535                                 inc_mm_counter_fast(mm, MM_ANONPAGES);
2536                         }
2537                 } else {
2538                         inc_mm_counter_fast(mm, MM_ANONPAGES);
2539                 }
2540                 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2541                 entry = mk_pte(new_page, vma->vm_page_prot);
2542                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2543                 /*
2544                  * Clear the pte entry and flush it first, before updating the
2545                  * pte with the new entry. This will avoid a race condition
2546                  * seen in the presence of one thread doing SMC and another
2547                  * thread doing COW.
2548                  */
2549                 ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
2550                 page_add_new_anon_rmap(new_page, vma, vmf->address, false);
2551                 mem_cgroup_commit_charge(new_page, memcg, false, false);
2552                 lru_cache_add_active_or_unevictable(new_page, vma);
2553                 /*
2554                  * We call the notify macro here because, when using secondary
2555                  * mmu page tables (such as kvm shadow page tables), we want the
2556                  * new page to be mapped directly into the secondary page table.
2557                  */
2558                 set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
2559                 update_mmu_cache(vma, vmf->address, vmf->pte);
2560                 if (old_page) {
2561                         /*
2562                          * Only after switching the pte to the new page may
2563                          * we remove the mapcount here. Otherwise another
2564                          * process may come and find the rmap count decremented
2565                          * before the pte is switched to the new page, and
2566                          * "reuse" the old page writing into it while our pte
2567                          * here still points into it and can be read by other
2568                          * threads.
2569                          *
2570                          * The critical issue is to order this
2571                          * page_remove_rmap with the ptp_clear_flush above.
2572                          * Those stores are ordered by (if nothing else,)
2573                          * the barrier present in the atomic_add_negative
2574                          * in page_remove_rmap.
2575                          *
2576                          * Then the TLB flush in ptep_clear_flush ensures that
2577                          * no process can access the old page before the
2578                          * decremented mapcount is visible. And the old page
2579                          * cannot be reused until after the decremented
2580                          * mapcount is visible. So transitively, TLBs to
2581                          * old page will be flushed before it can be reused.
2582                          */
2583                         page_remove_rmap(old_page, false);
2584                 }
2585
2586                 /* Free the old page.. */
2587                 new_page = old_page;
2588                 page_copied = 1;
2589         } else {
2590                 mem_cgroup_cancel_charge(new_page, memcg, false);
2591         }
2592
2593         if (new_page)
2594                 put_page(new_page);
2595
2596         pte_unmap_unlock(vmf->pte, vmf->ptl);
2597         /*
2598          * No need to double call mmu_notifier->invalidate_range() callback as
2599          * the above ptep_clear_flush_notify() did already call it.
2600          */
2601         mmu_notifier_invalidate_range_only_end(&range);
2602         if (old_page) {
2603                 /*
2604                  * Don't let another task, with possibly unlocked vma,
2605                  * keep the mlocked page.
2606                  */
2607                 if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2608                         lock_page(old_page);    /* LRU manipulation */
2609                         if (PageMlocked(old_page))
2610                                 munlock_vma_page(old_page);
2611                         unlock_page(old_page);
2612                 }
2613                 put_page(old_page);
2614         }
2615         return page_copied ? VM_FAULT_WRITE : 0;
2616 oom_free_new:
2617         put_page(new_page);
2618 oom:
2619         if (old_page)
2620                 put_page(old_page);
2621         return VM_FAULT_OOM;
2622 }
2623
2624 /**
2625  * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
2626  *                        writeable once the page is prepared
2627  *
2628  * @vmf: structure describing the fault
2629  *
2630  * This function handles all that is needed to finish a write page fault in a
2631  * shared mapping due to PTE being read-only once the mapped page is prepared.
2632  * It handles locking of PTE and modifying it.
2633  *
2634  * The function expects the page to be locked or other protection against
2635  * concurrent faults / writeback (such as DAX radix tree locks).
2636  *
2637  * Return: %VM_FAULT_WRITE on success, %0 when PTE got changed before
2638  * we acquired PTE lock.
2639  */
2640 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
2641 {
2642         WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
2643         vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
2644                                        &vmf->ptl);
2645         /*
2646          * We might have raced with another page fault while we released the
2647          * pte_offset_map_lock.
2648          */
2649         if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2650                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2651                 return VM_FAULT_NOPAGE;
2652         }
2653         wp_page_reuse(vmf);
2654         return 0;
2655 }
2656
2657 /*
2658  * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2659  * mapping
2660  */
2661 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
2662 {
2663         struct vm_area_struct *vma = vmf->vma;
2664
2665         if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
2666                 vm_fault_t ret;
2667
2668                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2669                 vmf->flags |= FAULT_FLAG_MKWRITE;
2670                 ret = vma->vm_ops->pfn_mkwrite(vmf);
2671                 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
2672                         return ret;
2673                 return finish_mkwrite_fault(vmf);
2674         }
2675         wp_page_reuse(vmf);
2676         return VM_FAULT_WRITE;
2677 }
2678
2679 static vm_fault_t wp_page_shared(struct vm_fault *vmf)
2680         __releases(vmf->ptl)
2681 {
2682         struct vm_area_struct *vma = vmf->vma;
2683         vm_fault_t ret = VM_FAULT_WRITE;
2684
2685         get_page(vmf->page);
2686
2687         if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2688                 vm_fault_t tmp;
2689
2690                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2691                 tmp = do_page_mkwrite(vmf);
2692                 if (unlikely(!tmp || (tmp &
2693                                       (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2694                         put_page(vmf->page);
2695                         return tmp;
2696                 }
2697                 tmp = finish_mkwrite_fault(vmf);
2698                 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2699                         unlock_page(vmf->page);
2700                         put_page(vmf->page);
2701                         return tmp;
2702                 }
2703         } else {
2704                 wp_page_reuse(vmf);
2705                 lock_page(vmf->page);
2706         }
2707         ret |= fault_dirty_shared_page(vmf);
2708         put_page(vmf->page);
2709
2710         return ret;
2711 }
2712
2713 /*
2714  * This routine handles present pages, when users try to write
2715  * to a shared page. It is done by copying the page to a new address
2716  * and decrementing the shared-page counter for the old page.
2717  *
2718  * Note that this routine assumes that the protection checks have been
2719  * done by the caller (the low-level page fault routine in most cases).
2720  * Thus we can safely just mark it writable once we've done any necessary
2721  * COW.
2722  *
2723  * We also mark the page dirty at this point even though the page will
2724  * change only once the write actually happens. This avoids a few races,
2725  * and potentially makes it more efficient.
2726  *
2727  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2728  * but allow concurrent faults), with pte both mapped and locked.
2729  * We return with mmap_sem still held, but pte unmapped and unlocked.
2730  */
2731 static vm_fault_t do_wp_page(struct vm_fault *vmf)
2732         __releases(vmf->ptl)
2733 {
2734         struct vm_area_struct *vma = vmf->vma;
2735
2736         vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
2737         if (!vmf->page) {
2738                 /*
2739                  * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2740                  * VM_PFNMAP VMA.
2741                  *
2742                  * We should not cow pages in a shared writeable mapping.
2743                  * Just mark the pages writable and/or call ops->pfn_mkwrite.
2744                  */
2745                 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2746                                      (VM_WRITE|VM_SHARED))
2747                         return wp_pfn_shared(vmf);
2748
2749                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2750                 return wp_page_copy(vmf);
2751         }
2752
2753         /*
2754          * Take out anonymous pages first, anonymous shared vmas are
2755          * not dirty accountable.
2756          */
2757         if (PageAnon(vmf->page)) {
2758                 int total_map_swapcount;
2759                 if (PageKsm(vmf->page) && (PageSwapCache(vmf->page) ||
2760                                            page_count(vmf->page) != 1))
2761                         goto copy;
2762                 if (!trylock_page(vmf->page)) {
2763                         get_page(vmf->page);
2764                         pte_unmap_unlock(vmf->pte, vmf->ptl);
2765                         lock_page(vmf->page);
2766                         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2767                                         vmf->address, &vmf->ptl);
2768                         if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2769                                 unlock_page(vmf->page);
2770                                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2771                                 put_page(vmf->page);
2772                                 return 0;
2773                         }
2774                         put_page(vmf->page);
2775                 }
2776                 if (PageKsm(vmf->page)) {
2777                         bool reused = reuse_ksm_page(vmf->page, vmf->vma,
2778                                                      vmf->address);
2779                         unlock_page(vmf->page);
2780                         if (!reused)
2781                                 goto copy;
2782                         wp_page_reuse(vmf);
2783                         return VM_FAULT_WRITE;
2784                 }
2785                 if (reuse_swap_page(vmf->page, &total_map_swapcount)) {
2786                         if (total_map_swapcount == 1) {
2787                                 /*
2788                                  * The page is all ours. Move it to
2789                                  * our anon_vma so the rmap code will
2790                                  * not search our parent or siblings.
2791                                  * Protected against the rmap code by
2792                                  * the page lock.
2793                                  */
2794                                 page_move_anon_rmap(vmf->page, vma);
2795                         }
2796                         unlock_page(vmf->page);
2797                         wp_page_reuse(vmf);
2798                         return VM_FAULT_WRITE;
2799                 }
2800                 unlock_page(vmf->page);
2801         } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2802                                         (VM_WRITE|VM_SHARED))) {
2803                 return wp_page_shared(vmf);
2804         }
2805 copy:
2806         /*
2807          * Ok, we need to copy. Oh, well..
2808          */
2809         get_page(vmf->page);
2810
2811         pte_unmap_unlock(vmf->pte, vmf->ptl);
2812         return wp_page_copy(vmf);
2813 }
2814
2815 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2816                 unsigned long start_addr, unsigned long end_addr,
2817                 struct zap_details *details)
2818 {
2819         zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2820 }
2821
2822 static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
2823                                             struct zap_details *details)
2824 {
2825         struct vm_area_struct *vma;
2826         pgoff_t vba, vea, zba, zea;
2827
2828         vma_interval_tree_foreach(vma, root,
2829                         details->first_index, details->last_index) {
2830
2831                 vba = vma->vm_pgoff;
2832                 vea = vba + vma_pages(vma) - 1;
2833                 zba = details->first_index;
2834                 if (zba < vba)
2835                         zba = vba;
2836                 zea = details->last_index;
2837                 if (zea > vea)
2838                         zea = vea;
2839
2840                 unmap_mapping_range_vma(vma,
2841                         ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2842                         ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2843                                 details);
2844         }
2845 }
2846
2847 /**
2848  * unmap_mapping_pages() - Unmap pages from processes.
2849  * @mapping: The address space containing pages to be unmapped.
2850  * @start: Index of first page to be unmapped.
2851  * @nr: Number of pages to be unmapped.  0 to unmap to end of file.
2852  * @even_cows: Whether to unmap even private COWed pages.
2853  *
2854  * Unmap the pages in this address space from any userspace process which
2855  * has them mmaped.  Generally, you want to remove COWed pages as well when
2856  * a file is being truncated, but not when invalidating pages from the page
2857  * cache.
2858  */
2859 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
2860                 pgoff_t nr, bool even_cows)
2861 {
2862         struct zap_details details = { };
2863
2864         details.check_mapping = even_cows ? NULL : mapping;
2865         details.first_index = start;
2866         details.last_index = start + nr - 1;
2867         if (details.last_index < details.first_index)
2868                 details.last_index = ULONG_MAX;
2869
2870         i_mmap_lock_write(mapping);
2871         if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
2872                 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2873         i_mmap_unlock_write(mapping);
2874 }
2875
2876 /**
2877  * unmap_mapping_range - unmap the portion of all mmaps in the specified
2878  * address_space corresponding to the specified byte range in the underlying
2879  * file.
2880  *
2881  * @mapping: the address space containing mmaps to be unmapped.
2882  * @holebegin: byte in first page to unmap, relative to the start of
2883  * the underlying file.  This will be rounded down to a PAGE_SIZE
2884  * boundary.  Note that this is different from truncate_pagecache(), which
2885  * must keep the partial page.  In contrast, we must get rid of
2886  * partial pages.
2887  * @holelen: size of prospective hole in bytes.  This will be rounded
2888  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
2889  * end of the file.
2890  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2891  * but 0 when invalidating pagecache, don't throw away private data.
2892  */
2893 void unmap_mapping_range(struct address_space *mapping,
2894                 loff_t const holebegin, loff_t const holelen, int even_cows)
2895 {
2896         pgoff_t hba = holebegin >> PAGE_SHIFT;
2897         pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2898
2899         /* Check for overflow. */
2900         if (sizeof(holelen) > sizeof(hlen)) {
2901                 long long holeend =
2902                         (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2903                 if (holeend & ~(long long)ULONG_MAX)
2904                         hlen = ULONG_MAX - hba + 1;
2905         }
2906
2907         unmap_mapping_pages(mapping, hba, hlen, even_cows);
2908 }
2909 EXPORT_SYMBOL(unmap_mapping_range);
2910
2911 /*
2912  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2913  * but allow concurrent faults), and pte mapped but not yet locked.
2914  * We return with pte unmapped and unlocked.
2915  *
2916  * We return with the mmap_sem locked or unlocked in the same cases
2917  * as does filemap_fault().
2918  */
2919 vm_fault_t do_swap_page(struct vm_fault *vmf)
2920 {
2921         struct vm_area_struct *vma = vmf->vma;
2922         struct page *page = NULL, *swapcache;
2923         struct mem_cgroup *memcg;
2924         swp_entry_t entry;
2925         pte_t pte;
2926         int locked;
2927         int exclusive = 0;
2928         vm_fault_t ret = 0;
2929
2930         if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte))
2931                 goto out;
2932
2933         entry = pte_to_swp_entry(vmf->orig_pte);
2934         if (unlikely(non_swap_entry(entry))) {
2935                 if (is_migration_entry(entry)) {
2936                         migration_entry_wait(vma->vm_mm, vmf->pmd,
2937                                              vmf->address);
2938                 } else if (is_device_private_entry(entry)) {
2939                         vmf->page = device_private_entry_to_page(entry);
2940                         ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
2941                 } else if (is_hwpoison_entry(entry)) {
2942                         ret = VM_FAULT_HWPOISON;
2943                 } else {
2944                         print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
2945                         ret = VM_FAULT_SIGBUS;
2946                 }
2947                 goto out;
2948         }
2949
2950
2951         delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2952         page = lookup_swap_cache(entry, vma, vmf->address);
2953         swapcache = page;
2954
2955         if (!page) {
2956                 struct swap_info_struct *si = swp_swap_info(entry);
2957
2958                 if (si->flags & SWP_SYNCHRONOUS_IO &&
2959                                 __swap_count(entry) == 1) {
2960                         /* skip swapcache */
2961                         page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2962                                                         vmf->address);
2963                         if (page) {
2964                                 __SetPageLocked(page);
2965                                 __SetPageSwapBacked(page);
2966                                 set_page_private(page, entry.val);
2967                                 lru_cache_add_anon(page);
2968                                 swap_readpage(page, true);
2969                         }
2970                 } else {
2971                         page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
2972                                                 vmf);
2973                         swapcache = page;
2974                 }
2975
2976                 if (!page) {
2977                         /*
2978                          * Back out if somebody else faulted in this pte
2979                          * while we released the pte lock.
2980                          */
2981                         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2982                                         vmf->address, &vmf->ptl);
2983                         if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
2984                                 ret = VM_FAULT_OOM;
2985                         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2986                         goto unlock;
2987                 }
2988
2989                 /* Had to read the page from swap area: Major fault */
2990                 ret = VM_FAULT_MAJOR;
2991                 count_vm_event(PGMAJFAULT);
2992                 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
2993         } else if (PageHWPoison(page)) {
2994                 /*
2995                  * hwpoisoned dirty swapcache pages are kept for killing
2996                  * owner processes (which may be unknown at hwpoison time)
2997                  */
2998                 ret = VM_FAULT_HWPOISON;
2999                 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3000                 goto out_release;
3001         }
3002
3003         locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
3004
3005         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3006         if (!locked) {
3007                 ret |= VM_FAULT_RETRY;
3008                 goto out_release;
3009         }
3010
3011         /*
3012          * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
3013          * release the swapcache from under us.  The page pin, and pte_same
3014          * test below, are not enough to exclude that.  Even if it is still
3015          * swapcache, we need to check that the page's swap has not changed.
3016          */
3017         if (unlikely((!PageSwapCache(page) ||
3018                         page_private(page) != entry.val)) && swapcache)
3019                 goto out_page;
3020
3021         page = ksm_might_need_to_copy(page, vma, vmf->address);
3022         if (unlikely(!page)) {
3023                 ret = VM_FAULT_OOM;
3024                 page = swapcache;
3025                 goto out_page;
3026         }
3027
3028         if (mem_cgroup_try_charge_delay(page, vma->vm_mm, GFP_KERNEL,
3029                                         &memcg, false)) {
3030                 ret = VM_FAULT_OOM;
3031                 goto out_page;
3032         }
3033
3034         /*
3035          * Back out if somebody else already faulted in this pte.
3036          */
3037         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3038                         &vmf->ptl);
3039         if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
3040                 goto out_nomap;
3041
3042         if (unlikely(!PageUptodate(page))) {
3043                 ret = VM_FAULT_SIGBUS;
3044                 goto out_nomap;
3045         }
3046
3047         /*
3048          * The page isn't present yet, go ahead with the fault.
3049          *
3050          * Be careful about the sequence of operations here.
3051          * To get its accounting right, reuse_swap_page() must be called
3052          * while the page is counted on swap but not yet in mapcount i.e.
3053          * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3054          * must be called after the swap_free(), or it will never succeed.
3055          */
3056
3057         inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3058         dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
3059         pte = mk_pte(page, vma->vm_page_prot);
3060         if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
3061                 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3062                 vmf->flags &= ~FAULT_FLAG_WRITE;
3063                 ret |= VM_FAULT_WRITE;
3064                 exclusive = RMAP_EXCLUSIVE;
3065         }
3066         flush_icache_page(vma, page);
3067         if (pte_swp_soft_dirty(vmf->orig_pte))
3068                 pte = pte_mksoft_dirty(pte);
3069         set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
3070         arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
3071         vmf->orig_pte = pte;
3072
3073         /* ksm created a completely new copy */
3074         if (unlikely(page != swapcache && swapcache)) {
3075                 page_add_new_anon_rmap(page, vma, vmf->address, false);
3076                 mem_cgroup_commit_charge(page, memcg, false, false);
3077                 lru_cache_add_active_or_unevictable(page, vma);
3078         } else {
3079                 do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
3080                 mem_cgroup_commit_charge(page, memcg, true, false);
3081                 activate_page(page);
3082         }
3083
3084         swap_free(entry);
3085         if (mem_cgroup_swap_full(page) ||
3086             (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
3087                 try_to_free_swap(page);
3088         unlock_page(page);
3089         if (page != swapcache && swapcache) {
3090                 /*
3091                  * Hold the lock to avoid the swap entry to be reused
3092                  * until we take the PT lock for the pte_same() check
3093                  * (to avoid false positives from pte_same). For
3094                  * further safety release the lock after the swap_free
3095                  * so that the swap count won't change under a
3096                  * parallel locked swapcache.
3097                  */
3098                 unlock_page(swapcache);
3099                 put_page(swapcache);
3100         }
3101
3102         if (vmf->flags & FAULT_FLAG_WRITE) {
3103                 ret |= do_wp_page(vmf);
3104                 if (ret & VM_FAULT_ERROR)
3105                         ret &= VM_FAULT_ERROR;
3106                 goto out;
3107         }
3108
3109         /* No need to invalidate - it was non-present before */
3110         update_mmu_cache(vma, vmf->address, vmf->pte);
3111 unlock:
3112         pte_unmap_unlock(vmf->pte, vmf->ptl);
3113 out:
3114         return ret;
3115 out_nomap:
3116         mem_cgroup_cancel_charge(page, memcg, false);
3117         pte_unmap_unlock(vmf->pte, vmf->ptl);
3118 out_page:
3119         unlock_page(page);
3120 out_release:
3121         put_page(page);
3122         if (page != swapcache && swapcache) {
3123                 unlock_page(swapcache);
3124                 put_page(swapcache);
3125         }
3126         return ret;
3127 }
3128
3129 /*
3130  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3131  * but allow concurrent faults), and pte mapped but not yet locked.
3132  * We return with mmap_sem still held, but pte unmapped and unlocked.
3133  */
3134 static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
3135 {
3136         struct vm_area_struct *vma = vmf->vma;
3137         struct mem_cgroup *memcg;
3138         struct page *page;
3139         vm_fault_t ret = 0;
3140         pte_t entry;
3141
3142         /* File mapping without ->vm_ops ? */
3143         if (vma->vm_flags & VM_SHARED)
3144                 return VM_FAULT_SIGBUS;
3145
3146         /*
3147          * Use pte_alloc() instead of pte_alloc_map().  We can't run
3148          * pte_offset_map() on pmds where a huge pmd might be created
3149          * from a different thread.
3150          *
3151          * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
3152          * parallel threads are excluded by other means.
3153          *
3154          * Here we only have down_read(mmap_sem).
3155          */
3156         if (pte_alloc(vma->vm_mm, vmf->pmd))
3157                 return VM_FAULT_OOM;
3158
3159         /* See the comment in pte_alloc_one_map() */
3160         if (unlikely(pmd_trans_unstable(vmf->pmd)))
3161                 return 0;
3162
3163         /* Use the zero-page for reads */
3164         if (!(vmf->flags & FAULT_FLAG_WRITE) &&
3165                         !mm_forbids_zeropage(vma->vm_mm)) {
3166                 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
3167                                                 vma->vm_page_prot));
3168                 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3169                                 vmf->address, &vmf->ptl);
3170                 if (!pte_none(*vmf->pte))
3171                         goto unlock;
3172                 ret = check_stable_address_space(vma->vm_mm);
3173                 if (ret)
3174                         goto unlock;
3175                 /* Deliver the page fault to userland, check inside PT lock */
3176                 if (userfaultfd_missing(vma)) {
3177                         pte_unmap_unlock(vmf->pte, vmf->ptl);
3178                         return handle_userfault(vmf, VM_UFFD_MISSING);
3179                 }
3180                 goto setpte;
3181         }
3182
3183         /* Allocate our own private page. */
3184         if (unlikely(anon_vma_prepare(vma)))
3185                 goto oom;
3186         page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
3187         if (!page)
3188                 goto oom;
3189
3190         if (mem_cgroup_try_charge_delay(page, vma->vm_mm, GFP_KERNEL, &memcg,
3191                                         false))
3192                 goto oom_free_page;
3193
3194         /*
3195          * The memory barrier inside __SetPageUptodate makes sure that
3196          * preceding stores to the page contents become visible before
3197          * the set_pte_at() write.
3198          */
3199         __SetPageUptodate(page);
3200
3201         entry = mk_pte(page, vma->vm_page_prot);
3202         if (vma->vm_flags & VM_WRITE)
3203                 entry = pte_mkwrite(pte_mkdirty(entry));
3204
3205         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3206                         &vmf->ptl);
3207         if (!pte_none(*vmf->pte))
3208                 goto release;
3209
3210         ret = check_stable_address_space(vma->vm_mm);
3211         if (ret)
3212                 goto release;
3213
3214         /* Deliver the page fault to userland, check inside PT lock */
3215         if (userfaultfd_missing(vma)) {
3216                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3217                 mem_cgroup_cancel_charge(page, memcg, false);
3218                 put_page(page);
3219                 return handle_userfault(vmf, VM_UFFD_MISSING);
3220         }
3221
3222         inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3223         page_add_new_anon_rmap(page, vma, vmf->address, false);
3224         mem_cgroup_commit_charge(page, memcg, false, false);
3225         lru_cache_add_active_or_unevictable(page, vma);
3226 setpte:
3227         set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3228
3229         /* No need to invalidate - it was non-present before */
3230         update_mmu_cache(vma, vmf->address, vmf->pte);
3231 unlock:
3232         pte_unmap_unlock(vmf->pte, vmf->ptl);
3233         return ret;
3234 release:
3235         mem_cgroup_cancel_charge(page, memcg, false);
3236         put_page(page);
3237         goto unlock;
3238 oom_free_page:
3239         put_page(page);
3240 oom:
3241         return VM_FAULT_OOM;
3242 }
3243
3244 /*
3245  * The mmap_sem must have been held on entry, and may have been
3246  * released depending on flags and vma->vm_ops->fault() return value.
3247  * See filemap_fault() and __lock_page_retry().
3248  */
3249 static vm_fault_t __do_fault(struct vm_fault *vmf)
3250 {
3251         struct vm_area_struct *vma = vmf->vma;
3252         vm_fault_t ret;
3253
3254         /*
3255          * Preallocate pte before we take page_lock because this might lead to
3256          * deadlocks for memcg reclaim which waits for pages under writeback:
3257          *                              lock_page(A)
3258          *                              SetPageWriteback(A)
3259          *                              unlock_page(A)
3260          * lock_page(B)
3261          *                              lock_page(B)
3262          * pte_alloc_pne
3263          *   shrink_page_list
3264          *     wait_on_page_writeback(A)
3265          *                              SetPageWriteback(B)
3266          *                              unlock_page(B)
3267          *                              # flush A, B to clear the writeback
3268          */
3269         if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
3270                 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
3271                 if (!vmf->prealloc_pte)
3272                         return VM_FAULT_OOM;
3273                 smp_wmb(); /* See comment in __pte_alloc() */
3274         }
3275
3276         ret = vma->vm_ops->fault(vmf);
3277         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
3278                             VM_FAULT_DONE_COW)))
3279                 return ret;
3280
3281         if (unlikely(PageHWPoison(vmf->page))) {
3282                 if (ret & VM_FAULT_LOCKED)
3283                         unlock_page(vmf->page);
3284                 put_page(vmf->page);
3285                 vmf->page = NULL;
3286                 return VM_FAULT_HWPOISON;
3287         }
3288
3289         if (unlikely(!(ret & VM_FAULT_LOCKED)))
3290                 lock_page(vmf->page);
3291         else
3292                 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
3293
3294         return ret;
3295 }
3296
3297 /*
3298  * The ordering of these checks is important for pmds with _PAGE_DEVMAP set.
3299  * If we check pmd_trans_unstable() first we will trip the bad_pmd() check
3300  * inside of pmd_none_or_trans_huge_or_clear_bad(). This will end up correctly
3301  * returning 1 but not before it spams dmesg with the pmd_clear_bad() output.
3302  */
3303 static int pmd_devmap_trans_unstable(pmd_t *pmd)
3304 {
3305         return pmd_devmap(*pmd) || pmd_trans_unstable(pmd);
3306 }
3307
3308 static vm_fault_t pte_alloc_one_map(struct vm_fault *vmf)
3309 {
3310         struct vm_area_struct *vma = vmf->vma;
3311
3312         if (!pmd_none(*vmf->pmd))
3313                 goto map_pte;
3314         if (vmf->prealloc_pte) {
3315                 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3316                 if (unlikely(!pmd_none(*vmf->pmd))) {
3317                         spin_unlock(vmf->ptl);
3318                         goto map_pte;
3319                 }
3320
3321                 mm_inc_nr_ptes(vma->vm_mm);
3322                 pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3323                 spin_unlock(vmf->ptl);
3324                 vmf->prealloc_pte = NULL;
3325         } else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd))) {
3326                 return VM_FAULT_OOM;
3327         }
3328 map_pte:
3329         /*
3330          * If a huge pmd materialized under us just retry later.  Use
3331          * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead of
3332          * pmd_trans_huge() to ensure the pmd didn't become pmd_trans_huge
3333          * under us and then back to pmd_none, as a result of MADV_DONTNEED
3334          * running immediately after a huge pmd fault in a different thread of
3335          * this mm, in turn leading to a misleading pmd_trans_huge() retval.
3336          * All we have to ensure is that it is a regular pmd that we can walk
3337          * with pte_offset_map() and we can do that through an atomic read in
3338          * C, which is what pmd_trans_unstable() provides.
3339          */
3340         if (pmd_devmap_trans_unstable(vmf->pmd))
3341                 return VM_FAULT_NOPAGE;
3342
3343         /*
3344          * At this point we know that our vmf->pmd points to a page of ptes
3345          * and it cannot become pmd_none(), pmd_devmap() or pmd_trans_huge()
3346          * for the duration of the fault.  If a racing MADV_DONTNEED runs and
3347          * we zap the ptes pointed to by our vmf->pmd, the vmf->ptl will still
3348          * be valid and we will re-check to make sure the vmf->pte isn't
3349          * pte_none() under vmf->ptl protection when we return to
3350          * alloc_set_pte().
3351          */
3352         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3353                         &vmf->ptl);
3354         return 0;
3355 }
3356
3357 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3358 static void deposit_prealloc_pte(struct vm_fault *vmf)
3359 {
3360         struct vm_area_struct *vma = vmf->vma;
3361
3362         pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3363         /*
3364          * We are going to consume the prealloc table,
3365          * count that as nr_ptes.
3366          */
3367         mm_inc_nr_ptes(vma->vm_mm);
3368         vmf->prealloc_pte = NULL;
3369 }
3370
3371 static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3372 {
3373         struct vm_area_struct *vma = vmf->vma;
3374         bool write = vmf->flags & FAULT_FLAG_WRITE;
3375         unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
3376         pmd_t entry;
3377         int i;
3378         vm_fault_t ret;
3379
3380         if (!transhuge_vma_suitable(vma, haddr))
3381                 return VM_FAULT_FALLBACK;
3382
3383         ret = VM_FAULT_FALLBACK;
3384         page = compound_head(page);
3385
3386         /*
3387          * Archs like ppc64 need additonal space to store information
3388          * related to pte entry. Use the preallocated table for that.
3389          */
3390         if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
3391                 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
3392                 if (!vmf->prealloc_pte)
3393                         return VM_FAULT_OOM;
3394                 smp_wmb(); /* See comment in __pte_alloc() */
3395         }
3396
3397         vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3398         if (unlikely(!pmd_none(*vmf->pmd)))
3399                 goto out;
3400
3401         for (i = 0; i < HPAGE_PMD_NR; i++)
3402                 flush_icache_page(vma, page + i);
3403
3404         entry = mk_huge_pmd(page, vma->vm_page_prot);
3405         if (write)
3406                 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
3407
3408         add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
3409         page_add_file_rmap(page, true);
3410         /*
3411          * deposit and withdraw with pmd lock held
3412          */
3413         if (arch_needs_pgtable_deposit())
3414                 deposit_prealloc_pte(vmf);
3415
3416         set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
3417
3418         update_mmu_cache_pmd(vma, haddr, vmf->pmd);
3419
3420         /* fault is handled */
3421         ret = 0;
3422         count_vm_event(THP_FILE_MAPPED);
3423 out:
3424         spin_unlock(vmf->ptl);
3425         return ret;
3426 }
3427 #else
3428 static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3429 {
3430         BUILD_BUG();
3431         return 0;
3432 }
3433 #endif
3434
3435 /**
3436  * alloc_set_pte - setup new PTE entry for given page and add reverse page
3437  * mapping. If needed, the fucntion allocates page table or use pre-allocated.
3438  *
3439  * @vmf: fault environment
3440  * @memcg: memcg to charge page (only for private mappings)
3441  * @page: page to map
3442  *
3443  * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on
3444  * return.
3445  *
3446  * Target users are page handler itself and implementations of
3447  * vm_ops->map_pages.
3448  *
3449  * Return: %0 on success, %VM_FAULT_ code in case of error.
3450  */
3451 vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
3452                 struct page *page)
3453 {
3454         struct vm_area_struct *vma = vmf->vma;
3455         bool write = vmf->flags & FAULT_FLAG_WRITE;
3456         pte_t entry;
3457         vm_fault_t ret;
3458
3459         if (pmd_none(*vmf->pmd) && PageTransCompound(page) &&
3460                         IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
3461                 /* THP on COW? */
3462                 VM_BUG_ON_PAGE(memcg, page);
3463
3464                 ret = do_set_pmd(vmf, page);
3465                 if (ret != VM_FAULT_FALLBACK)
3466                         return ret;
3467         }
3468
3469         if (!vmf->pte) {
3470                 ret = pte_alloc_one_map(vmf);
3471                 if (ret)
3472                         return ret;
3473         }
3474
3475         /* Re-check under ptl */
3476         if (unlikely(!pte_none(*vmf->pte)))
3477                 return VM_FAULT_NOPAGE;
3478
3479         flush_icache_page(vma, page);
3480         entry = mk_pte(page, vma->vm_page_prot);
3481         if (write)
3482                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3483         /* copy-on-write page */
3484         if (write && !(vma->vm_flags & VM_SHARED)) {
3485                 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3486                 page_add_new_anon_rmap(page, vma, vmf->address, false);
3487                 mem_cgroup_commit_charge(page, memcg, false, false);
3488                 lru_cache_add_active_or_unevictable(page, vma);
3489         } else {
3490                 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
3491                 page_add_file_rmap(page, false);
3492         }
3493         set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3494
3495         /* no need to invalidate: a not-present page won't be cached */
3496         update_mmu_cache(vma, vmf->address, vmf->pte);
3497
3498         return 0;
3499 }
3500
3501
3502 /**
3503  * finish_fault - finish page fault once we have prepared the page to fault
3504  *
3505  * @vmf: structure describing the fault
3506  *
3507  * This function handles all that is needed to finish a page fault once the
3508  * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
3509  * given page, adds reverse page mapping, handles memcg charges and LRU
3510  * addition.
3511  *
3512  * The function expects the page to be locked and on success it consumes a
3513  * reference of a page being mapped (for the PTE which maps it).
3514  *
3515  * Return: %0 on success, %VM_FAULT_ code in case of error.
3516  */
3517 vm_fault_t finish_fault(struct vm_fault *vmf)
3518 {
3519         struct page *page;
3520         vm_fault_t ret = 0;
3521
3522         /* Did we COW the page? */
3523         if ((vmf->flags & FAULT_FLAG_WRITE) &&
3524             !(vmf->vma->vm_flags & VM_SHARED))
3525                 page = vmf->cow_page;
3526         else
3527                 page = vmf->page;
3528
3529         /*
3530          * check even for read faults because we might have lost our CoWed
3531          * page
3532          */
3533         if (!(vmf->vma->vm_flags & VM_SHARED))
3534                 ret = check_stable_address_space(vmf->vma->vm_mm);
3535         if (!ret)
3536                 ret = alloc_set_pte(vmf, vmf->memcg, page);
3537         if (vmf->pte)
3538                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3539         return ret;
3540 }
3541
3542 static unsigned long fault_around_bytes __read_mostly =
3543         rounddown_pow_of_two(65536);
3544
3545 #ifdef CONFIG_DEBUG_FS
3546 static int fault_around_bytes_get(void *data, u64 *val)
3547 {
3548         *val = fault_around_bytes;
3549         return 0;
3550 }
3551
3552 /*
3553  * fault_around_bytes must be rounded down to the nearest page order as it's
3554  * what do_fault_around() expects to see.
3555  */
3556 static int fault_around_bytes_set(void *data, u64 val)
3557 {
3558         if (val / PAGE_SIZE > PTRS_PER_PTE)
3559                 return -EINVAL;
3560         if (val > PAGE_SIZE)
3561                 fault_around_bytes = rounddown_pow_of_two(val);
3562         else
3563                 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
3564         return 0;
3565 }
3566 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
3567                 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
3568
3569 static int __init fault_around_debugfs(void)
3570 {
3571         debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
3572                                    &fault_around_bytes_fops);
3573         return 0;
3574 }
3575 late_initcall(fault_around_debugfs);
3576 #endif
3577
3578 /*
3579  * do_fault_around() tries to map few pages around the fault address. The hope
3580  * is that the pages will be needed soon and this will lower the number of
3581  * faults to handle.
3582  *
3583  * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
3584  * not ready to be mapped: not up-to-date, locked, etc.
3585  *
3586  * This function is called with the page table lock taken. In the split ptlock
3587  * case the page table lock only protects only those entries which belong to
3588  * the page table corresponding to the fault address.
3589  *
3590  * This function doesn't cross the VMA boundaries, in order to call map_pages()
3591  * only once.
3592  *
3593  * fault_around_bytes defines how many bytes we'll try to map.
3594  * do_fault_around() expects it to be set to a power of two less than or equal
3595  * to PTRS_PER_PTE.
3596  *
3597  * The virtual address of the area that we map is naturally aligned to
3598  * fault_around_bytes rounded down to the machine page size
3599  * (and therefore to page order).  This way it's easier to guarantee
3600  * that we don't cross page table boundaries.
3601  */
3602 static vm_fault_t do_fault_around(struct vm_fault *vmf)
3603 {
3604         unsigned long address = vmf->address, nr_pages, mask;
3605         pgoff_t start_pgoff = vmf->pgoff;
3606         pgoff_t end_pgoff;
3607         int off;
3608         vm_fault_t ret = 0;
3609
3610         nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
3611         mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
3612
3613         vmf->address = max(address & mask, vmf->vma->vm_start);
3614         off = ((address - vmf->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
3615         start_pgoff -= off;
3616
3617         /*
3618          *  end_pgoff is either the end of the page table, the end of
3619          *  the vma or nr_pages from start_pgoff, depending what is nearest.
3620          */
3621         end_pgoff = start_pgoff -
3622                 ((vmf->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
3623                 PTRS_PER_PTE - 1;
3624         end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
3625                         start_pgoff + nr_pages - 1);
3626
3627         if (pmd_none(*vmf->pmd)) {
3628                 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
3629                 if (!vmf->prealloc_pte)
3630                         goto out;
3631                 smp_wmb(); /* See comment in __pte_alloc() */
3632         }
3633
3634         vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
3635
3636         /* Huge page is mapped? Page fault is solved */
3637         if (pmd_trans_huge(*vmf->pmd)) {
3638                 ret = VM_FAULT_NOPAGE;
3639                 goto out;
3640         }
3641
3642         /* ->map_pages() haven't done anything useful. Cold page cache? */
3643         if (!vmf->pte)
3644                 goto out;
3645
3646         /* check if the page fault is solved */
3647         vmf->pte -= (vmf->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT);
3648         if (!pte_none(*vmf->pte))
3649                 ret = VM_FAULT_NOPAGE;
3650         pte_unmap_unlock(vmf->pte, vmf->ptl);
3651 out:
3652         vmf->address = address;
3653         vmf->pte = NULL;
3654         return ret;
3655 }
3656
3657 static vm_fault_t do_read_fault(struct vm_fault *vmf)
3658 {
3659         struct vm_area_struct *vma = vmf->vma;
3660         vm_fault_t ret = 0;
3661
3662         /*
3663          * Let's call ->map_pages() first and use ->fault() as fallback
3664          * if page by the offset is not ready to be mapped (cold cache or
3665          * something).
3666          */
3667         if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
3668                 ret = do_fault_around(vmf);
3669                 if (ret)
3670                         return ret;
3671         }
3672
3673         ret = __do_fault(vmf);
3674         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3675                 return ret;
3676
3677         ret |= finish_fault(vmf);
3678         unlock_page(vmf->page);
3679         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3680                 put_page(vmf->page);
3681         return ret;
3682 }
3683
3684 static vm_fault_t do_cow_fault(struct vm_fault *vmf)
3685 {
3686         struct vm_area_struct *vma = vmf->vma;
3687         vm_fault_t ret;
3688
3689         if (unlikely(anon_vma_prepare(vma)))
3690                 return VM_FAULT_OOM;
3691
3692         vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
3693         if (!vmf->cow_page)
3694                 return VM_FAULT_OOM;
3695
3696         if (mem_cgroup_try_charge_delay(vmf->cow_page, vma->vm_mm, GFP_KERNEL,
3697                                 &vmf->memcg, false)) {
3698                 put_page(vmf->cow_page);
3699                 return VM_FAULT_OOM;
3700         }
3701
3702         ret = __do_fault(vmf);
3703         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3704                 goto uncharge_out;
3705         if (ret & VM_FAULT_DONE_COW)
3706                 return ret;
3707
3708         copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
3709         __SetPageUptodate(vmf->cow_page);
3710
3711         ret |= finish_fault(vmf);
3712         unlock_page(vmf->page);
3713         put_page(vmf->page);
3714         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3715                 goto uncharge_out;
3716         return ret;
3717 uncharge_out:
3718         mem_cgroup_cancel_charge(vmf->cow_page, vmf->memcg, false);
3719         put_page(vmf->cow_page);
3720         return ret;
3721 }
3722
3723 static vm_fault_t do_shared_fault(struct vm_fault *vmf)
3724 {
3725         struct vm_area_struct *vma = vmf->vma;
3726         vm_fault_t ret, tmp;
3727
3728         ret = __do_fault(vmf);
3729         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3730                 return ret;
3731
3732         /*
3733          * Check if the backing address space wants to know that the page is
3734          * about to become writable
3735          */
3736         if (vma->vm_ops->page_mkwrite) {
3737                 unlock_page(vmf->page);
3738                 tmp = do_page_mkwrite(vmf);
3739                 if (unlikely(!tmp ||
3740                                 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3741                         put_page(vmf->page);
3742                         return tmp;
3743                 }
3744         }
3745
3746         ret |= finish_fault(vmf);
3747         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3748                                         VM_FAULT_RETRY))) {
3749                 unlock_page(vmf->page);
3750                 put_page(vmf->page);
3751                 return ret;
3752         }
3753
3754         ret |= fault_dirty_shared_page(vmf);
3755         return ret;
3756 }
3757
3758 /*
3759  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3760  * but allow concurrent faults).
3761  * The mmap_sem may have been released depending on flags and our
3762  * return value.  See filemap_fault() and __lock_page_or_retry().
3763  * If mmap_sem is released, vma may become invalid (for example
3764  * by other thread calling munmap()).
3765  */
3766 static vm_fault_t do_fault(struct vm_fault *vmf)
3767 {
3768         struct vm_area_struct *vma = vmf->vma;
3769         struct mm_struct *vm_mm = vma->vm_mm;
3770         vm_fault_t ret;
3771
3772         /*
3773          * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
3774          */
3775         if (!vma->vm_ops->fault) {
3776                 /*
3777                  * If we find a migration pmd entry or a none pmd entry, which
3778                  * should never happen, return SIGBUS
3779                  */
3780                 if (unlikely(!pmd_present(*vmf->pmd)))
3781                         ret = VM_FAULT_SIGBUS;
3782                 else {
3783                         vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm,
3784                                                        vmf->pmd,
3785                                                        vmf->address,
3786                                                        &vmf->ptl);
3787                         /*
3788                          * Make sure this is not a temporary clearing of pte
3789                          * by holding ptl and checking again. A R/M/W update
3790                          * of pte involves: take ptl, clearing the pte so that
3791                          * we don't have concurrent modification by hardware
3792                          * followed by an update.
3793                          */
3794                         if (unlikely(pte_none(*vmf->pte)))
3795                                 ret = VM_FAULT_SIGBUS;
3796                         else
3797                                 ret = VM_FAULT_NOPAGE;
3798
3799                         pte_unmap_unlock(vmf->pte, vmf->ptl);
3800                 }
3801         } else if (!(vmf->flags & FAULT_FLAG_WRITE))
3802                 ret = do_read_fault(vmf);
3803         else if (!(vma->vm_flags & VM_SHARED))
3804                 ret = do_cow_fault(vmf);
3805         else
3806                 ret = do_shared_fault(vmf);
3807
3808         /* preallocated pagetable is unused: free it */
3809         if (vmf->prealloc_pte) {
3810                 pte_free(vm_mm, vmf->prealloc_pte);
3811                 vmf->prealloc_pte = NULL;
3812         }
3813         return ret;
3814 }
3815
3816 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3817                                 unsigned long addr, int page_nid,
3818                                 int *flags)
3819 {
3820         get_page(page);
3821
3822         count_vm_numa_event(NUMA_HINT_FAULTS);
3823         if (page_nid == numa_node_id()) {
3824                 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
3825                 *flags |= TNF_FAULT_LOCAL;
3826         }
3827
3828         return mpol_misplaced(page, vma, addr);
3829 }
3830
3831 static vm_fault_t do_numa_page(struct vm_fault *vmf)
3832 {
3833         struct vm_area_struct *vma = vmf->vma;
3834         struct page *page = NULL;
3835         int page_nid = NUMA_NO_NODE;
3836         int last_cpupid;
3837         int target_nid;
3838         bool migrated = false;
3839         pte_t pte, old_pte;
3840         bool was_writable = pte_savedwrite(vmf->orig_pte);
3841         int flags = 0;
3842
3843         /*
3844          * The "pte" at this point cannot be used safely without
3845          * validation through pte_unmap_same(). It's of NUMA type but
3846          * the pfn may be screwed if the read is non atomic.
3847          */
3848         vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
3849         spin_lock(vmf->ptl);
3850         if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
3851                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3852                 goto out;
3853         }
3854
3855         /*
3856          * Make it present again, Depending on how arch implementes non
3857          * accessible ptes, some can allow access by kernel mode.
3858          */
3859         old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
3860         pte = pte_modify(old_pte, vma->vm_page_prot);
3861         pte = pte_mkyoung(pte);
3862         if (was_writable)
3863                 pte = pte_mkwrite(pte);
3864         ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
3865         update_mmu_cache(vma, vmf->address, vmf->pte);
3866
3867         page = vm_normal_page(vma, vmf->address, pte);
3868         if (!page) {
3869                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3870                 return 0;
3871         }
3872
3873         /* TODO: handle PTE-mapped THP */
3874         if (PageCompound(page)) {
3875                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3876                 return 0;
3877         }
3878
3879         /*
3880          * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
3881          * much anyway since they can be in shared cache state. This misses
3882          * the case where a mapping is writable but the process never writes
3883          * to it but pte_write gets cleared during protection updates and
3884          * pte_dirty has unpredictable behaviour between PTE scan updates,
3885          * background writeback, dirty balancing and application behaviour.
3886          */
3887         if (!pte_write(pte))
3888                 flags |= TNF_NO_GROUP;
3889
3890         /*
3891          * Flag if the page is shared between multiple address spaces. This
3892          * is later used when determining whether to group tasks together
3893          */
3894         if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
3895                 flags |= TNF_SHARED;
3896
3897         last_cpupid = page_cpupid_last(page);
3898         page_nid = page_to_nid(page);
3899         target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
3900                         &flags);
3901         pte_unmap_unlock(vmf->pte, vmf->ptl);
3902         if (target_nid == NUMA_NO_NODE) {
3903                 put_page(page);
3904                 goto out;
3905         }
3906
3907         /* Migrate to the requested node */
3908         migrated = migrate_misplaced_page(page, vma, target_nid);
3909         if (migrated) {
3910                 page_nid = target_nid;
3911                 flags |= TNF_MIGRATED;
3912         } else
3913                 flags |= TNF_MIGRATE_FAIL;
3914
3915 out:
3916         if (page_nid != NUMA_NO_NODE)
3917                 task_numa_fault(last_cpupid, page_nid, 1, flags);
3918         return 0;
3919 }
3920
3921 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
3922 {
3923         if (vma_is_anonymous(vmf->vma))
3924                 return do_huge_pmd_anonymous_page(vmf);
3925         if (vmf->vma->vm_ops->huge_fault)
3926                 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
3927         return VM_FAULT_FALLBACK;
3928 }
3929
3930 /* `inline' is required to avoid gcc 4.1.2 build error */
3931 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd)
3932 {
3933         if (vma_is_anonymous(vmf->vma))
3934                 return do_huge_pmd_wp_page(vmf, orig_pmd);
3935         if (vmf->vma->vm_ops->huge_fault)
3936                 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
3937
3938         /* COW handled on pte level: split pmd */
3939         VM_BUG_ON_VMA(vmf->vma->vm_flags & VM_SHARED, vmf->vma);
3940         __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
3941
3942         return VM_FAULT_FALLBACK;
3943 }
3944
3945 static inline bool vma_is_accessible(struct vm_area_struct *vma)
3946 {
3947         return vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE);
3948 }
3949
3950 static vm_fault_t create_huge_pud(struct vm_fault *vmf)
3951 {
3952 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3953         /* No support for anonymous transparent PUD pages yet */
3954         if (vma_is_anonymous(vmf->vma))
3955                 return VM_FAULT_FALLBACK;
3956         if (vmf->vma->vm_ops->huge_fault)
3957                 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
3958 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3959         return VM_FAULT_FALLBACK;
3960 }
3961
3962 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
3963 {
3964 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3965         /* No support for anonymous transparent PUD pages yet */
3966         if (vma_is_anonymous(vmf->vma))
3967                 return VM_FAULT_FALLBACK;
3968         if (vmf->vma->vm_ops->huge_fault)
3969                 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
3970 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3971         return VM_FAULT_FALLBACK;
3972 }
3973
3974 /*
3975  * These routines also need to handle stuff like marking pages dirty
3976  * and/or accessed for architectures that don't do it in hardware (most
3977  * RISC architectures).  The early dirtying is also good on the i386.
3978  *
3979  * There is also a hook called "update_mmu_cache()" that architectures
3980  * with external mmu caches can use to update those (ie the Sparc or
3981  * PowerPC hashed page tables that act as extended TLBs).
3982  *
3983  * We enter with non-exclusive mmap_sem (to exclude vma changes, but allow
3984  * concurrent faults).
3985  *
3986  * The mmap_sem may have been released depending on flags and our return value.
3987  * See filemap_fault() and __lock_page_or_retry().
3988  */
3989 static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
3990 {
3991         pte_t entry;
3992
3993         if (unlikely(pmd_none(*vmf->pmd))) {
3994                 /*
3995                  * Leave __pte_alloc() until later: because vm_ops->fault may
3996                  * want to allocate huge page, and if we expose page table
3997                  * for an instant, it will be difficult to retract from
3998                  * concurrent faults and from rmap lookups.
3999                  */
4000                 vmf->pte = NULL;
4001         } else {
4002                 /* See comment in pte_alloc_one_map() */
4003                 if (pmd_devmap_trans_unstable(vmf->pmd))
4004                         return 0;
4005                 /*
4006                  * A regular pmd is established and it can't morph into a huge
4007                  * pmd from under us anymore at this point because we hold the
4008                  * mmap_sem read mode and khugepaged takes it in write mode.
4009                  * So now it's safe to run pte_offset_map().
4010                  */
4011                 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
4012                 vmf->orig_pte = *vmf->pte;
4013
4014                 /*
4015                  * some architectures can have larger ptes than wordsize,
4016                  * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
4017                  * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
4018                  * accesses.  The code below just needs a consistent view
4019                  * for the ifs and we later double check anyway with the
4020                  * ptl lock held. So here a barrier will do.
4021                  */
4022                 barrier();
4023                 if (pte_none(vmf->orig_pte)) {
4024                         pte_unmap(vmf->pte);
4025                         vmf->pte = NULL;
4026                 }
4027         }
4028
4029         if (!vmf->pte) {
4030                 if (vma_is_anonymous(vmf->vma))
4031                         return do_anonymous_page(vmf);
4032                 else
4033                         return do_fault(vmf);
4034         }
4035
4036         if (!pte_present(vmf->orig_pte))
4037                 return do_swap_page(vmf);
4038
4039         if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
4040                 return do_numa_page(vmf);
4041
4042         vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
4043         spin_lock(vmf->ptl);
4044         entry = vmf->orig_pte;
4045         if (unlikely(!pte_same(*vmf->pte, entry)))
4046                 goto unlock;
4047         if (vmf->flags & FAULT_FLAG_WRITE) {
4048                 if (!pte_write(entry))
4049                         return do_wp_page(vmf);
4050                 entry = pte_mkdirty(entry);
4051         }
4052         entry = pte_mkyoung(entry);
4053         if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
4054                                 vmf->flags & FAULT_FLAG_WRITE)) {
4055                 update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
4056         } else {
4057                 /*
4058                  * This is needed only for protection faults but the arch code
4059                  * is not yet telling us if this is a protection fault or not.
4060                  * This still avoids useless tlb flushes for .text page faults
4061                  * with threads.
4062                  */
4063                 if (vmf->flags & FAULT_FLAG_WRITE)
4064                         flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
4065         }
4066 unlock:
4067         pte_unmap_unlock(vmf->pte, vmf->ptl);
4068         return 0;
4069 }
4070
4071 /*
4072  * By the time we get here, we already hold the mm semaphore
4073  *
4074  * The mmap_sem may have been released depending on flags and our
4075  * return value.  See filemap_fault() and __lock_page_or_retry().
4076  */
4077 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
4078                 unsigned long address, unsigned int flags)
4079 {
4080         struct vm_fault vmf = {
4081                 .vma = vma,
4082                 .address = address & PAGE_MASK,
4083                 .flags = flags,
4084                 .pgoff = linear_page_index(vma, address),
4085                 .gfp_mask = __get_fault_gfp_mask(vma),
4086         };
4087         unsigned int dirty = flags & FAULT_FLAG_WRITE;
4088         struct mm_struct *mm = vma->vm_mm;
4089         pgd_t *pgd;
4090         p4d_t *p4d;
4091         vm_fault_t ret;
4092
4093         pgd = pgd_offset(mm, address);
4094         p4d = p4d_alloc(mm, pgd, address);
4095         if (!p4d)
4096                 return VM_FAULT_OOM;
4097
4098         vmf.pud = pud_alloc(mm, p4d, address);
4099         if (!vmf.pud)
4100                 return VM_FAULT_OOM;
4101 retry_pud:
4102         if (pud_none(*vmf.pud) && __transparent_hugepage_enabled(vma)) {
4103                 ret = create_huge_pud(&vmf);
4104                 if (!(ret & VM_FAULT_FALLBACK))
4105                         return ret;
4106         } else {
4107                 pud_t orig_pud = *vmf.pud;
4108
4109                 barrier();
4110                 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
4111
4112                         /* NUMA case for anonymous PUDs would go here */
4113
4114                         if (dirty && !pud_write(orig_pud)) {
4115                                 ret = wp_huge_pud(&vmf, orig_pud);
4116                                 if (!(ret & VM_FAULT_FALLBACK))
4117                                         return ret;
4118                         } else {
4119                                 huge_pud_set_accessed(&vmf, orig_pud);
4120                                 return 0;
4121                         }
4122                 }
4123         }
4124
4125         vmf.pmd = pmd_alloc(mm, vmf.pud, address);
4126         if (!vmf.pmd)
4127                 return VM_FAULT_OOM;
4128
4129         /* Huge pud page fault raced with pmd_alloc? */
4130         if (pud_trans_unstable(vmf.pud))
4131                 goto retry_pud;
4132
4133         if (pmd_none(*vmf.pmd) && __transparent_hugepage_enabled(vma)) {
4134                 ret = create_huge_pmd(&vmf);
4135                 if (!(ret & VM_FAULT_FALLBACK))
4136                         return ret;
4137         } else {
4138                 pmd_t orig_pmd = *vmf.pmd;
4139
4140                 barrier();
4141                 if (unlikely(is_swap_pmd(orig_pmd))) {
4142                         VM_BUG_ON(thp_migration_supported() &&
4143                                           !is_pmd_migration_entry(orig_pmd));
4144                         if (is_pmd_migration_entry(orig_pmd))
4145                                 pmd_migration_entry_wait(mm, vmf.pmd);
4146                         return 0;
4147                 }
4148                 if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
4149                         if (pmd_protnone(orig_pmd) && vma_is_accessible(vma))
4150                                 return do_huge_pmd_numa_page(&vmf, orig_pmd);
4151
4152                         if (dirty && !pmd_write(orig_pmd)) {
4153                                 ret = wp_huge_pmd(&vmf, orig_pmd);
4154                                 if (!(ret & VM_FAULT_FALLBACK))
4155                                         return ret;
4156                         } else {
4157                                 huge_pmd_set_accessed(&vmf, orig_pmd);
4158                                 return 0;
4159                         }
4160                 }
4161         }
4162
4163         return handle_pte_fault(&vmf);
4164 }
4165
4166 /*
4167  * By the time we get here, we already hold the mm semaphore
4168  *
4169  * The mmap_sem may have been released depending on flags and our
4170  * return value.  See filemap_fault() and __lock_page_or_retry().
4171  */
4172 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
4173                 unsigned int flags)
4174 {
4175         vm_fault_t ret;
4176
4177         __set_current_state(TASK_RUNNING);
4178
4179         count_vm_event(PGFAULT);
4180         count_memcg_event_mm(vma->vm_mm, PGFAULT);
4181
4182         /* do counter updates before entering really critical section. */
4183         check_sync_rss_stat(current);
4184
4185         if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
4186                                             flags & FAULT_FLAG_INSTRUCTION,
4187                                             flags & FAULT_FLAG_REMOTE))
4188                 return VM_FAULT_SIGSEGV;
4189
4190         /*
4191          * Enable the memcg OOM handling for faults triggered in user
4192          * space.  Kernel faults are handled more gracefully.
4193          */
4194         if (flags & FAULT_FLAG_USER)
4195                 mem_cgroup_enter_user_fault();
4196
4197         if (unlikely(is_vm_hugetlb_page(vma)))
4198                 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
4199         else
4200                 ret = __handle_mm_fault(vma, address, flags);
4201
4202         if (flags & FAULT_FLAG_USER) {
4203                 mem_cgroup_exit_user_fault();
4204                 /*
4205                  * The task may have entered a memcg OOM situation but
4206                  * if the allocation error was handled gracefully (no
4207                  * VM_FAULT_OOM), there is no need to kill anything.
4208                  * Just clean up the OOM state peacefully.
4209                  */
4210                 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
4211                         mem_cgroup_oom_synchronize(false);
4212         }
4213
4214         return ret;
4215 }
4216 EXPORT_SYMBOL_GPL(handle_mm_fault);
4217
4218 #ifndef __PAGETABLE_P4D_FOLDED
4219 /*
4220  * Allocate p4d page table.
4221  * We've already handled the fast-path in-line.
4222  */
4223 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
4224 {
4225         p4d_t *new = p4d_alloc_one(mm, address);
4226         if (!new)
4227                 return -ENOMEM;
4228
4229         smp_wmb(); /* See comment in __pte_alloc */
4230
4231         spin_lock(&mm->page_table_lock);
4232         if (pgd_present(*pgd))          /* Another has populated it */
4233                 p4d_free(mm, new);
4234         else
4235                 pgd_populate(mm, pgd, new);
4236         spin_unlock(&mm->page_table_lock);
4237         return 0;
4238 }
4239 #endif /* __PAGETABLE_P4D_FOLDED */
4240
4241 #ifndef __PAGETABLE_PUD_FOLDED
4242 /*
4243  * Allocate page upper directory.
4244  * We've already handled the fast-path in-line.
4245  */
4246 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
4247 {
4248         pud_t *new = pud_alloc_one(mm, address);
4249         if (!new)
4250                 return -ENOMEM;
4251
4252         smp_wmb(); /* See comment in __pte_alloc */
4253
4254         spin_lock(&mm->page_table_lock);
4255 #ifndef __ARCH_HAS_5LEVEL_HACK
4256         if (!p4d_present(*p4d)) {
4257                 mm_inc_nr_puds(mm);
4258                 p4d_populate(mm, p4d, new);
4259         } else  /* Another has populated it */
4260                 pud_free(mm, new);
4261 #else
4262         if (!pgd_present(*p4d)) {
4263                 mm_inc_nr_puds(mm);
4264                 pgd_populate(mm, p4d, new);
4265         } else  /* Another has populated it */
4266                 pud_free(mm, new);
4267 #endif /* __ARCH_HAS_5LEVEL_HACK */
4268         spin_unlock(&mm->page_table_lock);
4269         return 0;
4270 }
4271 #endif /* __PAGETABLE_PUD_FOLDED */
4272
4273 #ifndef __PAGETABLE_PMD_FOLDED
4274 /*
4275  * Allocate page middle directory.
4276  * We've already handled the fast-path in-line.
4277  */
4278 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
4279 {
4280         spinlock_t *ptl;
4281         pmd_t *new = pmd_alloc_one(mm, address);
4282         if (!new)
4283                 return -ENOMEM;
4284
4285         smp_wmb(); /* See comment in __pte_alloc */
4286
4287         ptl = pud_lock(mm, pud);
4288         if (!pud_present(*pud)) {
4289                 mm_inc_nr_pmds(mm);
4290                 pud_populate(mm, pud, new);
4291         } else  /* Another has populated it */
4292                 pmd_free(mm, new);
4293         spin_unlock(ptl);
4294         return 0;
4295 }
4296 #endif /* __PAGETABLE_PMD_FOLDED */
4297
4298 static int __follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4299                             struct mmu_notifier_range *range,
4300                             pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4301 {
4302         pgd_t *pgd;
4303         p4d_t *p4d;
4304         pud_t *pud;
4305         pmd_t *pmd;
4306         pte_t *ptep;
4307
4308         pgd = pgd_offset(mm, address);
4309         if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
4310                 goto out;
4311
4312         p4d = p4d_offset(pgd, address);
4313         if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
4314                 goto out;
4315
4316         pud = pud_offset(p4d, address);
4317         if (pud_none(*pud) || unlikely(pud_bad(*pud)))
4318                 goto out;
4319
4320         pmd = pmd_offset(pud, address);
4321         VM_BUG_ON(pmd_trans_huge(*pmd));
4322
4323         if (pmd_huge(*pmd)) {
4324                 if (!pmdpp)
4325                         goto out;
4326
4327                 if (range) {
4328                         mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0,
4329                                                 NULL, mm, address & PMD_MASK,
4330                                                 (address & PMD_MASK) + PMD_SIZE);
4331                         mmu_notifier_invalidate_range_start(range);
4332                 }
4333                 *ptlp = pmd_lock(mm, pmd);
4334                 if (pmd_huge(*pmd)) {
4335                         *pmdpp = pmd;
4336                         return 0;
4337                 }
4338                 spin_unlock(*ptlp);
4339                 if (range)
4340                         mmu_notifier_invalidate_range_end(range);
4341         }
4342
4343         if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
4344                 goto out;
4345
4346         if (range) {
4347                 mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0, NULL, mm,
4348                                         address & PAGE_MASK,
4349                                         (address & PAGE_MASK) + PAGE_SIZE);
4350                 mmu_notifier_invalidate_range_start(range);
4351         }
4352         ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
4353         if (!pte_present(*ptep))
4354                 goto unlock;
4355         *ptepp = ptep;
4356         return 0;
4357 unlock:
4358         pte_unmap_unlock(ptep, *ptlp);
4359         if (range)
4360                 mmu_notifier_invalidate_range_end(range);
4361 out:
4362         return -EINVAL;
4363 }
4364
4365 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
4366                              pte_t **ptepp, spinlock_t **ptlp)
4367 {
4368         int res;
4369
4370         /* (void) is needed to make gcc happy */
4371         (void) __cond_lock(*ptlp,
4372                            !(res = __follow_pte_pmd(mm, address, NULL,
4373                                                     ptepp, NULL, ptlp)));
4374         return res;
4375 }
4376
4377 int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4378                    struct mmu_notifier_range *range,
4379                    pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4380 {
4381         int res;
4382
4383         /* (void) is needed to make gcc happy */
4384         (void) __cond_lock(*ptlp,
4385                            !(res = __follow_pte_pmd(mm, address, range,
4386                                                     ptepp, pmdpp, ptlp)));
4387         return res;
4388 }
4389 EXPORT_SYMBOL(follow_pte_pmd);
4390
4391 /**
4392  * follow_pfn - look up PFN at a user virtual address
4393  * @vma: memory mapping
4394  * @address: user virtual address
4395  * @pfn: location to store found PFN
4396  *
4397  * Only IO mappings and raw PFN mappings are allowed.
4398  *
4399  * Return: zero and the pfn at @pfn on success, -ve otherwise.
4400  */
4401 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
4402         unsigned long *pfn)
4403 {
4404         int ret = -EINVAL;
4405         spinlock_t *ptl;
4406         pte_t *ptep;
4407
4408         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4409                 return ret;
4410
4411         ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
4412         if (ret)
4413                 return ret;
4414         *pfn = pte_pfn(*ptep);
4415         pte_unmap_unlock(ptep, ptl);
4416         return 0;
4417 }
4418 EXPORT_SYMBOL(follow_pfn);
4419
4420 #ifdef CONFIG_HAVE_IOREMAP_PROT
4421 int follow_phys(struct vm_area_struct *vma,
4422                 unsigned long address, unsigned int flags,
4423                 unsigned long *prot, resource_size_t *phys)
4424 {
4425         int ret = -EINVAL;
4426         pte_t *ptep, pte;
4427         spinlock_t *ptl;
4428
4429         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4430                 goto out;
4431
4432         if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
4433                 goto out;
4434         pte = *ptep;
4435
4436         if ((flags & FOLL_WRITE) && !pte_write(pte))
4437                 goto unlock;
4438
4439         *prot = pgprot_val(pte_pgprot(pte));
4440         *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
4441
4442         ret = 0;
4443 unlock:
4444         pte_unmap_unlock(ptep, ptl);
4445 out:
4446         return ret;
4447 }
4448
4449 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
4450                         void *buf, int len, int write)
4451 {
4452         resource_size_t phys_addr;
4453         unsigned long prot = 0;
4454         void __iomem *maddr;
4455         int offset = addr & (PAGE_SIZE-1);
4456
4457         if (follow_phys(vma, addr, write, &prot, &phys_addr))
4458                 return -EINVAL;
4459
4460         maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
4461         if (!maddr)
4462                 return -ENOMEM;
4463
4464         if (write)
4465                 memcpy_toio(maddr + offset, buf, len);
4466         else
4467                 memcpy_fromio(buf, maddr + offset, len);
4468         iounmap(maddr);
4469
4470         return len;
4471 }
4472 EXPORT_SYMBOL_GPL(generic_access_phys);
4473 #endif
4474
4475 /*
4476  * Access another process' address space as given in mm.  If non-NULL, use the
4477  * given task for page fault accounting.
4478  */
4479 int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
4480                 unsigned long addr, void *buf, int len, unsigned int gup_flags)
4481 {
4482         struct vm_area_struct *vma;
4483         void *old_buf = buf;
4484         int write = gup_flags & FOLL_WRITE;
4485
4486         if (down_read_killable(&mm->mmap_sem))
4487                 return 0;
4488
4489         /* ignore errors, just check how much was successfully transferred */
4490         while (len) {
4491                 int bytes, ret, offset;
4492                 void *maddr;
4493                 struct page *page = NULL;
4494
4495                 ret = get_user_pages_remote(tsk, mm, addr, 1,
4496                                 gup_flags, &page, &vma, NULL);
4497                 if (ret <= 0) {
4498 #ifndef CONFIG_HAVE_IOREMAP_PROT
4499                         break;
4500 #else
4501                         /*
4502                          * Check if this is a VM_IO | VM_PFNMAP VMA, which
4503                          * we can access using slightly different code.
4504                          */
4505                         vma = find_vma(mm, addr);
4506                         if (!vma || vma->vm_start > addr)
4507                                 break;
4508                         if (vma->vm_ops && vma->vm_ops->access)
4509                                 ret = vma->vm_ops->access(vma, addr, buf,
4510                                                           len, write);
4511                         if (ret <= 0)
4512                                 break;
4513                         bytes = ret;
4514 #endif
4515                 } else {
4516                         bytes = len;
4517                         offset = addr & (PAGE_SIZE-1);
4518                         if (bytes > PAGE_SIZE-offset)
4519                                 bytes = PAGE_SIZE-offset;
4520
4521                         maddr = kmap(page);
4522                         if (write) {
4523                                 copy_to_user_page(vma, page, addr,
4524                                                   maddr + offset, buf, bytes);
4525                                 set_page_dirty_lock(page);
4526                         } else {
4527                                 copy_from_user_page(vma, page, addr,
4528                                                     buf, maddr + offset, bytes);
4529                         }
4530                         kunmap(page);
4531                         put_page(page);
4532                 }
4533                 len -= bytes;
4534                 buf += bytes;
4535                 addr += bytes;
4536         }
4537         up_read(&mm->mmap_sem);
4538
4539         return buf - old_buf;
4540 }
4541
4542 /**
4543  * access_remote_vm - access another process' address space
4544  * @mm:         the mm_struct of the target address space
4545  * @addr:       start address to access
4546  * @buf:        source or destination buffer
4547  * @len:        number of bytes to transfer
4548  * @gup_flags:  flags modifying lookup behaviour
4549  *
4550  * The caller must hold a reference on @mm.
4551  *
4552  * Return: number of bytes copied from source to destination.
4553  */
4554 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
4555                 void *buf, int len, unsigned int gup_flags)
4556 {
4557         return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
4558 }
4559
4560 /*
4561  * Access another process' address space.
4562  * Source/target buffer must be kernel space,
4563  * Do not walk the page table directly, use get_user_pages
4564  */
4565 int access_process_vm(struct task_struct *tsk, unsigned long addr,
4566                 void *buf, int len, unsigned int gup_flags)
4567 {
4568         struct mm_struct *mm;
4569         int ret;
4570
4571         mm = get_task_mm(tsk);
4572         if (!mm)
4573                 return 0;
4574
4575         ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
4576
4577         mmput(mm);
4578
4579         return ret;
4580 }
4581 EXPORT_SYMBOL_GPL(access_process_vm);
4582
4583 /*
4584  * Print the name of a VMA.
4585  */
4586 void print_vma_addr(char *prefix, unsigned long ip)
4587 {
4588         struct mm_struct *mm = current->mm;
4589         struct vm_area_struct *vma;
4590
4591         /*
4592          * we might be running from an atomic context so we cannot sleep
4593          */
4594         if (!down_read_trylock(&mm->mmap_sem))
4595                 return;
4596
4597         vma = find_vma(mm, ip);
4598         if (vma && vma->vm_file) {
4599                 struct file *f = vma->vm_file;
4600                 char *buf = (char *)__get_free_page(GFP_NOWAIT);
4601                 if (buf) {
4602                         char *p;
4603
4604                         p = file_path(f, buf, PAGE_SIZE);
4605                         if (IS_ERR(p))
4606                                 p = "?";
4607                         printk("%s%s[%lx+%lx]", prefix, kbasename(p),
4608                                         vma->vm_start,
4609                                         vma->vm_end - vma->vm_start);
4610                         free_page((unsigned long)buf);
4611                 }
4612         }
4613         up_read(&mm->mmap_sem);
4614 }
4615
4616 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4617 void __might_fault(const char *file, int line)
4618 {
4619         /*
4620          * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4621          * holding the mmap_sem, this is safe because kernel memory doesn't
4622          * get paged out, therefore we'll never actually fault, and the
4623          * below annotations will generate false positives.
4624          */
4625         if (uaccess_kernel())
4626                 return;
4627         if (pagefault_disabled())
4628                 return;
4629         __might_sleep(file, line, 0);
4630 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4631         if (current->mm)
4632                 might_lock_read(&current->mm->mmap_sem);
4633 #endif
4634 }
4635 EXPORT_SYMBOL(__might_fault);
4636 #endif
4637
4638 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4639 /*
4640  * Process all subpages of the specified huge page with the specified
4641  * operation.  The target subpage will be processed last to keep its
4642  * cache lines hot.
4643  */
4644 static inline void process_huge_page(
4645         unsigned long addr_hint, unsigned int pages_per_huge_page,
4646         void (*process_subpage)(unsigned long addr, int idx, void *arg),
4647         void *arg)
4648 {
4649         int i, n, base, l;
4650         unsigned long addr = addr_hint &
4651                 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4652
4653         /* Process target subpage last to keep its cache lines hot */
4654         might_sleep();
4655         n = (addr_hint - addr) / PAGE_SIZE;
4656         if (2 * n <= pages_per_huge_page) {
4657                 /* If target subpage in first half of huge page */
4658                 base = 0;
4659                 l = n;
4660                 /* Process subpages at the end of huge page */
4661                 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
4662                         cond_resched();
4663                         process_subpage(addr + i * PAGE_SIZE, i, arg);
4664                 }
4665         } else {
4666                 /* If target subpage in second half of huge page */
4667                 base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
4668                 l = pages_per_huge_page - n;
4669                 /* Process subpages at the begin of huge page */
4670                 for (i = 0; i < base; i++) {
4671                         cond_resched();
4672                         process_subpage(addr + i * PAGE_SIZE, i, arg);
4673                 }
4674         }
4675         /*
4676          * Process remaining subpages in left-right-left-right pattern
4677          * towards the target subpage
4678          */
4679         for (i = 0; i < l; i++) {
4680                 int left_idx = base + i;
4681                 int right_idx = base + 2 * l - 1 - i;
4682
4683                 cond_resched();
4684                 process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
4685                 cond_resched();
4686                 process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
4687         }
4688 }
4689
4690 static void clear_gigantic_page(struct page *page,
4691                                 unsigned long addr,
4692                                 unsigned int pages_per_huge_page)
4693 {
4694         int i;
4695         struct page *p = page;
4696
4697         might_sleep();
4698         for (i = 0; i < pages_per_huge_page;
4699              i++, p = mem_map_next(p, page, i)) {
4700                 cond_resched();
4701                 clear_user_highpage(p, addr + i * PAGE_SIZE);
4702         }
4703 }
4704
4705 static void clear_subpage(unsigned long addr, int idx, void *arg)
4706 {
4707         struct page *page = arg;
4708
4709         clear_user_highpage(page + idx, addr);
4710 }
4711
4712 void clear_huge_page(struct page *page,
4713                      unsigned long addr_hint, unsigned int pages_per_huge_page)
4714 {
4715         unsigned long addr = addr_hint &
4716                 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4717
4718         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4719                 clear_gigantic_page(page, addr, pages_per_huge_page);
4720                 return;
4721         }
4722
4723         process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
4724 }
4725
4726 static void copy_user_gigantic_page(struct page *dst, struct page *src,
4727                                     unsigned long addr,
4728                                     struct vm_area_struct *vma,
4729                                     unsigned int pages_per_huge_page)
4730 {
4731         int i;
4732         struct page *dst_base = dst;
4733         struct page *src_base = src;
4734
4735         for (i = 0; i < pages_per_huge_page; ) {
4736                 cond_resched();
4737                 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4738
4739                 i++;
4740                 dst = mem_map_next(dst, dst_base, i);
4741                 src = mem_map_next(src, src_base, i);
4742         }
4743 }
4744
4745 struct copy_subpage_arg {
4746         struct page *dst;
4747         struct page *src;
4748         struct vm_area_struct *vma;
4749 };
4750
4751 static void copy_subpage(unsigned long addr, int idx, void *arg)
4752 {
4753         struct copy_subpage_arg *copy_arg = arg;
4754
4755         copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
4756                            addr, copy_arg->vma);
4757 }
4758
4759 void copy_user_huge_page(struct page *dst, struct page *src,
4760                          unsigned long addr_hint, struct vm_area_struct *vma,
4761                          unsigned int pages_per_huge_page)
4762 {
4763         unsigned long addr = addr_hint &
4764                 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4765         struct copy_subpage_arg arg = {
4766                 .dst = dst,
4767                 .src = src,
4768                 .vma = vma,
4769         };
4770
4771         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4772                 copy_user_gigantic_page(dst, src, addr, vma,
4773                                         pages_per_huge_page);
4774                 return;
4775         }
4776
4777         process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
4778 }
4779
4780 long copy_huge_page_from_user(struct page *dst_page,
4781                                 const void __user *usr_src,
4782                                 unsigned int pages_per_huge_page,
4783                                 bool allow_pagefault)
4784 {
4785         void *src = (void *)usr_src;
4786         void *page_kaddr;
4787         unsigned long i, rc = 0;
4788         unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
4789
4790         for (i = 0; i < pages_per_huge_page; i++) {
4791                 if (allow_pagefault)
4792                         page_kaddr = kmap(dst_page + i);
4793                 else
4794                         page_kaddr = kmap_atomic(dst_page + i);
4795                 rc = copy_from_user(page_kaddr,
4796                                 (const void __user *)(src + i * PAGE_SIZE),
4797                                 PAGE_SIZE);
4798                 if (allow_pagefault)
4799                         kunmap(dst_page + i);
4800                 else
4801                         kunmap_atomic(page_kaddr);
4802
4803                 ret_val -= (PAGE_SIZE - rc);
4804                 if (rc)
4805                         break;
4806
4807                 cond_resched();
4808         }
4809         return ret_val;
4810 }
4811 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
4812
4813 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
4814
4815 static struct kmem_cache *page_ptl_cachep;
4816
4817 void __init ptlock_cache_init(void)
4818 {
4819         page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
4820                         SLAB_PANIC, NULL);
4821 }
4822
4823 bool ptlock_alloc(struct page *page)
4824 {
4825         spinlock_t *ptl;
4826
4827         ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
4828         if (!ptl)
4829                 return false;
4830         page->ptl = ptl;
4831         return true;
4832 }
4833
4834 void ptlock_free(struct page *page)
4835 {
4836         kmem_cache_free(page_ptl_cachep, page->ptl);
4837 }
4838 #endif