OSDN Git Service

1893751cf6c0498a310c7ae93bf44b929ccf6fbd
[android-x86/kernel.git] / mm / memory.c
1 /*
2  *  linux/mm/memory.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  */
6
7 /*
8  * demand-loading started 01.12.91 - seems it is high on the list of
9  * things wanted, and it should be easy to implement. - Linus
10  */
11
12 /*
13  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14  * pages started 02.12.91, seems to work. - Linus.
15  *
16  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17  * would have taken more than the 6M I have free, but it worked well as
18  * far as I could see.
19  *
20  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21  */
22
23 /*
24  * Real VM (paging to/from disk) started 18.12.91. Much more work and
25  * thought has to go into this. Oh, well..
26  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
27  *              Found it. Everything seems to work now.
28  * 20.12.91  -  Ok, making the swap-device changeable like the root.
29  */
30
31 /*
32  * 05.04.94  -  Multi-page memory management added for v1.1.
33  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
34  *
35  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
36  *              (Gerhard.Wichert@pdb.siemens.de)
37  *
38  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39  */
40
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/sched/mm.h>
44 #include <linux/sched/coredump.h>
45 #include <linux/sched/numa_balancing.h>
46 #include <linux/sched/task.h>
47 #include <linux/hugetlb.h>
48 #include <linux/mman.h>
49 #include <linux/swap.h>
50 #include <linux/highmem.h>
51 #include <linux/pagemap.h>
52 #include <linux/memremap.h>
53 #include <linux/ksm.h>
54 #include <linux/rmap.h>
55 #include <linux/export.h>
56 #include <linux/delayacct.h>
57 #include <linux/init.h>
58 #include <linux/pfn_t.h>
59 #include <linux/writeback.h>
60 #include <linux/memcontrol.h>
61 #include <linux/mmu_notifier.h>
62 #include <linux/swapops.h>
63 #include <linux/elf.h>
64 #include <linux/gfp.h>
65 #include <linux/migrate.h>
66 #include <linux/string.h>
67 #include <linux/dma-debug.h>
68 #include <linux/debugfs.h>
69 #include <linux/userfaultfd_k.h>
70 #include <linux/dax.h>
71 #include <linux/oom.h>
72
73 #include <asm/io.h>
74 #include <asm/mmu_context.h>
75 #include <asm/pgalloc.h>
76 #include <linux/uaccess.h>
77 #include <asm/tlb.h>
78 #include <asm/tlbflush.h>
79 #include <asm/pgtable.h>
80
81 #include "internal.h"
82
83 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
84 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
85 #endif
86
87 #ifndef CONFIG_NEED_MULTIPLE_NODES
88 /* use the per-pgdat data instead for discontigmem - mbligh */
89 unsigned long max_mapnr;
90 EXPORT_SYMBOL(max_mapnr);
91
92 struct page *mem_map;
93 EXPORT_SYMBOL(mem_map);
94 #endif
95
96 /*
97  * A number of key systems in x86 including ioremap() rely on the assumption
98  * that high_memory defines the upper bound on direct map memory, then end
99  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
100  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
101  * and ZONE_HIGHMEM.
102  */
103 void *high_memory;
104 EXPORT_SYMBOL(high_memory);
105
106 /*
107  * Randomize the address space (stacks, mmaps, brk, etc.).
108  *
109  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
110  *   as ancient (libc5 based) binaries can segfault. )
111  */
112 int randomize_va_space __read_mostly =
113 #ifdef CONFIG_COMPAT_BRK
114                                         1;
115 #else
116                                         2;
117 #endif
118
119 static int __init disable_randmaps(char *s)
120 {
121         randomize_va_space = 0;
122         return 1;
123 }
124 __setup("norandmaps", disable_randmaps);
125
126 unsigned long zero_pfn __read_mostly;
127 EXPORT_SYMBOL(zero_pfn);
128
129 unsigned long highest_memmap_pfn __read_mostly;
130
131 /*
132  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
133  */
134 static int __init init_zero_pfn(void)
135 {
136         zero_pfn = page_to_pfn(ZERO_PAGE(0));
137         return 0;
138 }
139 core_initcall(init_zero_pfn);
140
141
142 #if defined(SPLIT_RSS_COUNTING)
143
144 void sync_mm_rss(struct mm_struct *mm)
145 {
146         int i;
147
148         for (i = 0; i < NR_MM_COUNTERS; i++) {
149                 if (current->rss_stat.count[i]) {
150                         add_mm_counter(mm, i, current->rss_stat.count[i]);
151                         current->rss_stat.count[i] = 0;
152                 }
153         }
154         current->rss_stat.events = 0;
155 }
156
157 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
158 {
159         struct task_struct *task = current;
160
161         if (likely(task->mm == mm))
162                 task->rss_stat.count[member] += val;
163         else
164                 add_mm_counter(mm, member, val);
165 }
166 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
167 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
168
169 /* sync counter once per 64 page faults */
170 #define TASK_RSS_EVENTS_THRESH  (64)
171 static void check_sync_rss_stat(struct task_struct *task)
172 {
173         if (unlikely(task != current))
174                 return;
175         if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
176                 sync_mm_rss(task->mm);
177 }
178 #else /* SPLIT_RSS_COUNTING */
179
180 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
181 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
182
183 static void check_sync_rss_stat(struct task_struct *task)
184 {
185 }
186
187 #endif /* SPLIT_RSS_COUNTING */
188
189 #ifdef HAVE_GENERIC_MMU_GATHER
190
191 static bool tlb_next_batch(struct mmu_gather *tlb)
192 {
193         struct mmu_gather_batch *batch;
194
195         batch = tlb->active;
196         if (batch->next) {
197                 tlb->active = batch->next;
198                 return true;
199         }
200
201         if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
202                 return false;
203
204         batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
205         if (!batch)
206                 return false;
207
208         tlb->batch_count++;
209         batch->next = NULL;
210         batch->nr   = 0;
211         batch->max  = MAX_GATHER_BATCH;
212
213         tlb->active->next = batch;
214         tlb->active = batch;
215
216         return true;
217 }
218
219 void arch_tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm,
220                                 unsigned long start, unsigned long end)
221 {
222         tlb->mm = mm;
223
224         /* Is it from 0 to ~0? */
225         tlb->fullmm     = !(start | (end+1));
226         tlb->need_flush_all = 0;
227         tlb->local.next = NULL;
228         tlb->local.nr   = 0;
229         tlb->local.max  = ARRAY_SIZE(tlb->__pages);
230         tlb->active     = &tlb->local;
231         tlb->batch_count = 0;
232
233 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
234         tlb->batch = NULL;
235 #endif
236         tlb->page_size = 0;
237
238         __tlb_reset_range(tlb);
239 }
240
241 static void tlb_flush_mmu_tlbonly(struct mmu_gather *tlb)
242 {
243         if (!tlb->end)
244                 return;
245
246         tlb_flush(tlb);
247         mmu_notifier_invalidate_range(tlb->mm, tlb->start, tlb->end);
248         __tlb_reset_range(tlb);
249 }
250
251 static void tlb_flush_mmu_free(struct mmu_gather *tlb)
252 {
253         struct mmu_gather_batch *batch;
254
255 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
256         tlb_table_flush(tlb);
257 #endif
258         for (batch = &tlb->local; batch && batch->nr; batch = batch->next) {
259                 free_pages_and_swap_cache(batch->pages, batch->nr);
260                 batch->nr = 0;
261         }
262         tlb->active = &tlb->local;
263 }
264
265 void tlb_flush_mmu(struct mmu_gather *tlb)
266 {
267         tlb_flush_mmu_tlbonly(tlb);
268         tlb_flush_mmu_free(tlb);
269 }
270
271 /* tlb_finish_mmu
272  *      Called at the end of the shootdown operation to free up any resources
273  *      that were required.
274  */
275 void arch_tlb_finish_mmu(struct mmu_gather *tlb,
276                 unsigned long start, unsigned long end, bool force)
277 {
278         struct mmu_gather_batch *batch, *next;
279
280         if (force)
281                 __tlb_adjust_range(tlb, start, end - start);
282
283         tlb_flush_mmu(tlb);
284
285         /* keep the page table cache within bounds */
286         check_pgt_cache();
287
288         for (batch = tlb->local.next; batch; batch = next) {
289                 next = batch->next;
290                 free_pages((unsigned long)batch, 0);
291         }
292         tlb->local.next = NULL;
293 }
294
295 /* __tlb_remove_page
296  *      Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
297  *      handling the additional races in SMP caused by other CPUs caching valid
298  *      mappings in their TLBs. Returns the number of free page slots left.
299  *      When out of page slots we must call tlb_flush_mmu().
300  *returns true if the caller should flush.
301  */
302 bool __tlb_remove_page_size(struct mmu_gather *tlb, struct page *page, int page_size)
303 {
304         struct mmu_gather_batch *batch;
305
306         VM_BUG_ON(!tlb->end);
307         VM_WARN_ON(tlb->page_size != page_size);
308
309         batch = tlb->active;
310         /*
311          * Add the page and check if we are full. If so
312          * force a flush.
313          */
314         batch->pages[batch->nr++] = page;
315         if (batch->nr == batch->max) {
316                 if (!tlb_next_batch(tlb))
317                         return true;
318                 batch = tlb->active;
319         }
320         VM_BUG_ON_PAGE(batch->nr > batch->max, page);
321
322         return false;
323 }
324
325 #endif /* HAVE_GENERIC_MMU_GATHER */
326
327 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
328
329 /*
330  * See the comment near struct mmu_table_batch.
331  */
332
333 static void tlb_remove_table_smp_sync(void *arg)
334 {
335         /* Simply deliver the interrupt */
336 }
337
338 static void tlb_remove_table_one(void *table)
339 {
340         /*
341          * This isn't an RCU grace period and hence the page-tables cannot be
342          * assumed to be actually RCU-freed.
343          *
344          * It is however sufficient for software page-table walkers that rely on
345          * IRQ disabling. See the comment near struct mmu_table_batch.
346          */
347         smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
348         __tlb_remove_table(table);
349 }
350
351 static void tlb_remove_table_rcu(struct rcu_head *head)
352 {
353         struct mmu_table_batch *batch;
354         int i;
355
356         batch = container_of(head, struct mmu_table_batch, rcu);
357
358         for (i = 0; i < batch->nr; i++)
359                 __tlb_remove_table(batch->tables[i]);
360
361         free_page((unsigned long)batch);
362 }
363
364 void tlb_table_flush(struct mmu_gather *tlb)
365 {
366         struct mmu_table_batch **batch = &tlb->batch;
367
368         if (*batch) {
369                 call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
370                 *batch = NULL;
371         }
372 }
373
374 void tlb_remove_table(struct mmu_gather *tlb, void *table)
375 {
376         struct mmu_table_batch **batch = &tlb->batch;
377
378         if (*batch == NULL) {
379                 *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
380                 if (*batch == NULL) {
381                         tlb_remove_table_one(table);
382                         return;
383                 }
384                 (*batch)->nr = 0;
385         }
386         (*batch)->tables[(*batch)->nr++] = table;
387         if ((*batch)->nr == MAX_TABLE_BATCH)
388                 tlb_table_flush(tlb);
389 }
390
391 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */
392
393 /**
394  * tlb_gather_mmu - initialize an mmu_gather structure for page-table tear-down
395  * @tlb: the mmu_gather structure to initialize
396  * @mm: the mm_struct of the target address space
397  * @start: start of the region that will be removed from the page-table
398  * @end: end of the region that will be removed from the page-table
399  *
400  * Called to initialize an (on-stack) mmu_gather structure for page-table
401  * tear-down from @mm. The @start and @end are set to 0 and -1
402  * respectively when @mm is without users and we're going to destroy
403  * the full address space (exit/execve).
404  */
405 void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm,
406                         unsigned long start, unsigned long end)
407 {
408         arch_tlb_gather_mmu(tlb, mm, start, end);
409         inc_tlb_flush_pending(tlb->mm);
410 }
411
412 void tlb_finish_mmu(struct mmu_gather *tlb,
413                 unsigned long start, unsigned long end)
414 {
415         /*
416          * If there are parallel threads are doing PTE changes on same range
417          * under non-exclusive lock(e.g., mmap_sem read-side) but defer TLB
418          * flush by batching, a thread has stable TLB entry can fail to flush
419          * the TLB by observing pte_none|!pte_dirty, for example so flush TLB
420          * forcefully if we detect parallel PTE batching threads.
421          */
422         bool force = mm_tlb_flush_nested(tlb->mm);
423
424         arch_tlb_finish_mmu(tlb, start, end, force);
425         dec_tlb_flush_pending(tlb->mm);
426 }
427
428 /*
429  * Note: this doesn't free the actual pages themselves. That
430  * has been handled earlier when unmapping all the memory regions.
431  */
432 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
433                            unsigned long addr)
434 {
435         pgtable_t token = pmd_pgtable(*pmd);
436         pmd_clear(pmd);
437         pte_free_tlb(tlb, token, addr);
438         mm_dec_nr_ptes(tlb->mm);
439 }
440
441 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
442                                 unsigned long addr, unsigned long end,
443                                 unsigned long floor, unsigned long ceiling)
444 {
445         pmd_t *pmd;
446         unsigned long next;
447         unsigned long start;
448
449         start = addr;
450         pmd = pmd_offset(pud, addr);
451         do {
452                 next = pmd_addr_end(addr, end);
453                 if (pmd_none_or_clear_bad(pmd))
454                         continue;
455                 free_pte_range(tlb, pmd, addr);
456         } while (pmd++, addr = next, addr != end);
457
458         start &= PUD_MASK;
459         if (start < floor)
460                 return;
461         if (ceiling) {
462                 ceiling &= PUD_MASK;
463                 if (!ceiling)
464                         return;
465         }
466         if (end - 1 > ceiling - 1)
467                 return;
468
469         pmd = pmd_offset(pud, start);
470         pud_clear(pud);
471         pmd_free_tlb(tlb, pmd, start);
472         mm_dec_nr_pmds(tlb->mm);
473 }
474
475 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
476                                 unsigned long addr, unsigned long end,
477                                 unsigned long floor, unsigned long ceiling)
478 {
479         pud_t *pud;
480         unsigned long next;
481         unsigned long start;
482
483         start = addr;
484         pud = pud_offset(p4d, addr);
485         do {
486                 next = pud_addr_end(addr, end);
487                 if (pud_none_or_clear_bad(pud))
488                         continue;
489                 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
490         } while (pud++, addr = next, addr != end);
491
492         start &= P4D_MASK;
493         if (start < floor)
494                 return;
495         if (ceiling) {
496                 ceiling &= P4D_MASK;
497                 if (!ceiling)
498                         return;
499         }
500         if (end - 1 > ceiling - 1)
501                 return;
502
503         pud = pud_offset(p4d, start);
504         p4d_clear(p4d);
505         pud_free_tlb(tlb, pud, start);
506         mm_dec_nr_puds(tlb->mm);
507 }
508
509 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
510                                 unsigned long addr, unsigned long end,
511                                 unsigned long floor, unsigned long ceiling)
512 {
513         p4d_t *p4d;
514         unsigned long next;
515         unsigned long start;
516
517         start = addr;
518         p4d = p4d_offset(pgd, addr);
519         do {
520                 next = p4d_addr_end(addr, end);
521                 if (p4d_none_or_clear_bad(p4d))
522                         continue;
523                 free_pud_range(tlb, p4d, addr, next, floor, ceiling);
524         } while (p4d++, addr = next, addr != end);
525
526         start &= PGDIR_MASK;
527         if (start < floor)
528                 return;
529         if (ceiling) {
530                 ceiling &= PGDIR_MASK;
531                 if (!ceiling)
532                         return;
533         }
534         if (end - 1 > ceiling - 1)
535                 return;
536
537         p4d = p4d_offset(pgd, start);
538         pgd_clear(pgd);
539         p4d_free_tlb(tlb, p4d, start);
540 }
541
542 /*
543  * This function frees user-level page tables of a process.
544  */
545 void free_pgd_range(struct mmu_gather *tlb,
546                         unsigned long addr, unsigned long end,
547                         unsigned long floor, unsigned long ceiling)
548 {
549         pgd_t *pgd;
550         unsigned long next;
551
552         /*
553          * The next few lines have given us lots of grief...
554          *
555          * Why are we testing PMD* at this top level?  Because often
556          * there will be no work to do at all, and we'd prefer not to
557          * go all the way down to the bottom just to discover that.
558          *
559          * Why all these "- 1"s?  Because 0 represents both the bottom
560          * of the address space and the top of it (using -1 for the
561          * top wouldn't help much: the masks would do the wrong thing).
562          * The rule is that addr 0 and floor 0 refer to the bottom of
563          * the address space, but end 0 and ceiling 0 refer to the top
564          * Comparisons need to use "end - 1" and "ceiling - 1" (though
565          * that end 0 case should be mythical).
566          *
567          * Wherever addr is brought up or ceiling brought down, we must
568          * be careful to reject "the opposite 0" before it confuses the
569          * subsequent tests.  But what about where end is brought down
570          * by PMD_SIZE below? no, end can't go down to 0 there.
571          *
572          * Whereas we round start (addr) and ceiling down, by different
573          * masks at different levels, in order to test whether a table
574          * now has no other vmas using it, so can be freed, we don't
575          * bother to round floor or end up - the tests don't need that.
576          */
577
578         addr &= PMD_MASK;
579         if (addr < floor) {
580                 addr += PMD_SIZE;
581                 if (!addr)
582                         return;
583         }
584         if (ceiling) {
585                 ceiling &= PMD_MASK;
586                 if (!ceiling)
587                         return;
588         }
589         if (end - 1 > ceiling - 1)
590                 end -= PMD_SIZE;
591         if (addr > end - 1)
592                 return;
593         /*
594          * We add page table cache pages with PAGE_SIZE,
595          * (see pte_free_tlb()), flush the tlb if we need
596          */
597         tlb_remove_check_page_size_change(tlb, PAGE_SIZE);
598         pgd = pgd_offset(tlb->mm, addr);
599         do {
600                 next = pgd_addr_end(addr, end);
601                 if (pgd_none_or_clear_bad(pgd))
602                         continue;
603                 free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
604         } while (pgd++, addr = next, addr != end);
605 }
606
607 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
608                 unsigned long floor, unsigned long ceiling)
609 {
610         while (vma) {
611                 struct vm_area_struct *next = vma->vm_next;
612                 unsigned long addr = vma->vm_start;
613
614                 /*
615                  * Hide vma from rmap and truncate_pagecache before freeing
616                  * pgtables
617                  */
618                 unlink_anon_vmas(vma);
619                 unlink_file_vma(vma);
620
621                 if (is_vm_hugetlb_page(vma)) {
622                         hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
623                                 floor, next ? next->vm_start : ceiling);
624                 } else {
625                         /*
626                          * Optimization: gather nearby vmas into one call down
627                          */
628                         while (next && next->vm_start <= vma->vm_end + PMD_SIZE
629                                && !is_vm_hugetlb_page(next)) {
630                                 vma = next;
631                                 next = vma->vm_next;
632                                 unlink_anon_vmas(vma);
633                                 unlink_file_vma(vma);
634                         }
635                         free_pgd_range(tlb, addr, vma->vm_end,
636                                 floor, next ? next->vm_start : ceiling);
637                 }
638                 vma = next;
639         }
640 }
641
642 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
643 {
644         spinlock_t *ptl;
645         pgtable_t new = pte_alloc_one(mm, address);
646         if (!new)
647                 return -ENOMEM;
648
649         /*
650          * Ensure all pte setup (eg. pte page lock and page clearing) are
651          * visible before the pte is made visible to other CPUs by being
652          * put into page tables.
653          *
654          * The other side of the story is the pointer chasing in the page
655          * table walking code (when walking the page table without locking;
656          * ie. most of the time). Fortunately, these data accesses consist
657          * of a chain of data-dependent loads, meaning most CPUs (alpha
658          * being the notable exception) will already guarantee loads are
659          * seen in-order. See the alpha page table accessors for the
660          * smp_read_barrier_depends() barriers in page table walking code.
661          */
662         smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
663
664         ptl = pmd_lock(mm, pmd);
665         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
666                 mm_inc_nr_ptes(mm);
667                 pmd_populate(mm, pmd, new);
668                 new = NULL;
669         }
670         spin_unlock(ptl);
671         if (new)
672                 pte_free(mm, new);
673         return 0;
674 }
675
676 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
677 {
678         pte_t *new = pte_alloc_one_kernel(&init_mm, address);
679         if (!new)
680                 return -ENOMEM;
681
682         smp_wmb(); /* See comment in __pte_alloc */
683
684         spin_lock(&init_mm.page_table_lock);
685         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
686                 pmd_populate_kernel(&init_mm, pmd, new);
687                 new = NULL;
688         }
689         spin_unlock(&init_mm.page_table_lock);
690         if (new)
691                 pte_free_kernel(&init_mm, new);
692         return 0;
693 }
694
695 static inline void init_rss_vec(int *rss)
696 {
697         memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
698 }
699
700 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
701 {
702         int i;
703
704         if (current->mm == mm)
705                 sync_mm_rss(mm);
706         for (i = 0; i < NR_MM_COUNTERS; i++)
707                 if (rss[i])
708                         add_mm_counter(mm, i, rss[i]);
709 }
710
711 /*
712  * This function is called to print an error when a bad pte
713  * is found. For example, we might have a PFN-mapped pte in
714  * a region that doesn't allow it.
715  *
716  * The calling function must still handle the error.
717  */
718 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
719                           pte_t pte, struct page *page)
720 {
721         pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
722         p4d_t *p4d = p4d_offset(pgd, addr);
723         pud_t *pud = pud_offset(p4d, addr);
724         pmd_t *pmd = pmd_offset(pud, addr);
725         struct address_space *mapping;
726         pgoff_t index;
727         static unsigned long resume;
728         static unsigned long nr_shown;
729         static unsigned long nr_unshown;
730
731         /*
732          * Allow a burst of 60 reports, then keep quiet for that minute;
733          * or allow a steady drip of one report per second.
734          */
735         if (nr_shown == 60) {
736                 if (time_before(jiffies, resume)) {
737                         nr_unshown++;
738                         return;
739                 }
740                 if (nr_unshown) {
741                         pr_alert("BUG: Bad page map: %lu messages suppressed\n",
742                                  nr_unshown);
743                         nr_unshown = 0;
744                 }
745                 nr_shown = 0;
746         }
747         if (nr_shown++ == 0)
748                 resume = jiffies + 60 * HZ;
749
750         mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
751         index = linear_page_index(vma, addr);
752
753         pr_alert("BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
754                  current->comm,
755                  (long long)pte_val(pte), (long long)pmd_val(*pmd));
756         if (page)
757                 dump_page(page, "bad pte");
758         pr_alert("addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
759                  (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
760         pr_alert("file:%pD fault:%pf mmap:%pf readpage:%pf\n",
761                  vma->vm_file,
762                  vma->vm_ops ? vma->vm_ops->fault : NULL,
763                  vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
764                  mapping ? mapping->a_ops->readpage : NULL);
765         dump_stack();
766         add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
767 }
768
769 /*
770  * vm_normal_page -- This function gets the "struct page" associated with a pte.
771  *
772  * "Special" mappings do not wish to be associated with a "struct page" (either
773  * it doesn't exist, or it exists but they don't want to touch it). In this
774  * case, NULL is returned here. "Normal" mappings do have a struct page.
775  *
776  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
777  * pte bit, in which case this function is trivial. Secondly, an architecture
778  * may not have a spare pte bit, which requires a more complicated scheme,
779  * described below.
780  *
781  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
782  * special mapping (even if there are underlying and valid "struct pages").
783  * COWed pages of a VM_PFNMAP are always normal.
784  *
785  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
786  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
787  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
788  * mapping will always honor the rule
789  *
790  *      pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
791  *
792  * And for normal mappings this is false.
793  *
794  * This restricts such mappings to be a linear translation from virtual address
795  * to pfn. To get around this restriction, we allow arbitrary mappings so long
796  * as the vma is not a COW mapping; in that case, we know that all ptes are
797  * special (because none can have been COWed).
798  *
799  *
800  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
801  *
802  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
803  * page" backing, however the difference is that _all_ pages with a struct
804  * page (that is, those where pfn_valid is true) are refcounted and considered
805  * normal pages by the VM. The disadvantage is that pages are refcounted
806  * (which can be slower and simply not an option for some PFNMAP users). The
807  * advantage is that we don't have to follow the strict linearity rule of
808  * PFNMAP mappings in order to support COWable mappings.
809  *
810  */
811 struct page *_vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
812                              pte_t pte, bool with_public_device)
813 {
814         unsigned long pfn = pte_pfn(pte);
815
816         if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
817                 if (likely(!pte_special(pte)))
818                         goto check_pfn;
819                 if (vma->vm_ops && vma->vm_ops->find_special_page)
820                         return vma->vm_ops->find_special_page(vma, addr);
821                 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
822                         return NULL;
823                 if (is_zero_pfn(pfn))
824                         return NULL;
825
826                 /*
827                  * Device public pages are special pages (they are ZONE_DEVICE
828                  * pages but different from persistent memory). They behave
829                  * allmost like normal pages. The difference is that they are
830                  * not on the lru and thus should never be involve with any-
831                  * thing that involve lru manipulation (mlock, numa balancing,
832                  * ...).
833                  *
834                  * This is why we still want to return NULL for such page from
835                  * vm_normal_page() so that we do not have to special case all
836                  * call site of vm_normal_page().
837                  */
838                 if (likely(pfn <= highest_memmap_pfn)) {
839                         struct page *page = pfn_to_page(pfn);
840
841                         if (is_device_public_page(page)) {
842                                 if (with_public_device)
843                                         return page;
844                                 return NULL;
845                         }
846                 }
847
848                 if (pte_devmap(pte))
849                         return NULL;
850
851                 print_bad_pte(vma, addr, pte, NULL);
852                 return NULL;
853         }
854
855         /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
856
857         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
858                 if (vma->vm_flags & VM_MIXEDMAP) {
859                         if (!pfn_valid(pfn))
860                                 return NULL;
861                         goto out;
862                 } else {
863                         unsigned long off;
864                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
865                         if (pfn == vma->vm_pgoff + off)
866                                 return NULL;
867                         if (!is_cow_mapping(vma->vm_flags))
868                                 return NULL;
869                 }
870         }
871
872         if (is_zero_pfn(pfn))
873                 return NULL;
874
875 check_pfn:
876         if (unlikely(pfn > highest_memmap_pfn)) {
877                 print_bad_pte(vma, addr, pte, NULL);
878                 return NULL;
879         }
880
881         /*
882          * NOTE! We still have PageReserved() pages in the page tables.
883          * eg. VDSO mappings can cause them to exist.
884          */
885 out:
886         return pfn_to_page(pfn);
887 }
888
889 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
890 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
891                                 pmd_t pmd)
892 {
893         unsigned long pfn = pmd_pfn(pmd);
894
895         /*
896          * There is no pmd_special() but there may be special pmds, e.g.
897          * in a direct-access (dax) mapping, so let's just replicate the
898          * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
899          */
900         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
901                 if (vma->vm_flags & VM_MIXEDMAP) {
902                         if (!pfn_valid(pfn))
903                                 return NULL;
904                         goto out;
905                 } else {
906                         unsigned long off;
907                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
908                         if (pfn == vma->vm_pgoff + off)
909                                 return NULL;
910                         if (!is_cow_mapping(vma->vm_flags))
911                                 return NULL;
912                 }
913         }
914
915         if (pmd_devmap(pmd))
916                 return NULL;
917         if (is_zero_pfn(pfn))
918                 return NULL;
919         if (unlikely(pfn > highest_memmap_pfn))
920                 return NULL;
921
922         /*
923          * NOTE! We still have PageReserved() pages in the page tables.
924          * eg. VDSO mappings can cause them to exist.
925          */
926 out:
927         return pfn_to_page(pfn);
928 }
929 #endif
930
931 /*
932  * copy one vm_area from one task to the other. Assumes the page tables
933  * already present in the new task to be cleared in the whole range
934  * covered by this vma.
935  */
936
937 static inline unsigned long
938 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
939                 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
940                 unsigned long addr, int *rss)
941 {
942         unsigned long vm_flags = vma->vm_flags;
943         pte_t pte = *src_pte;
944         struct page *page;
945
946         /* pte contains position in swap or file, so copy. */
947         if (unlikely(!pte_present(pte))) {
948                 swp_entry_t entry = pte_to_swp_entry(pte);
949
950                 if (likely(!non_swap_entry(entry))) {
951                         if (swap_duplicate(entry) < 0)
952                                 return entry.val;
953
954                         /* make sure dst_mm is on swapoff's mmlist. */
955                         if (unlikely(list_empty(&dst_mm->mmlist))) {
956                                 spin_lock(&mmlist_lock);
957                                 if (list_empty(&dst_mm->mmlist))
958                                         list_add(&dst_mm->mmlist,
959                                                         &src_mm->mmlist);
960                                 spin_unlock(&mmlist_lock);
961                         }
962                         rss[MM_SWAPENTS]++;
963                 } else if (is_migration_entry(entry)) {
964                         page = migration_entry_to_page(entry);
965
966                         rss[mm_counter(page)]++;
967
968                         if (is_write_migration_entry(entry) &&
969                                         is_cow_mapping(vm_flags)) {
970                                 /*
971                                  * COW mappings require pages in both
972                                  * parent and child to be set to read.
973                                  */
974                                 make_migration_entry_read(&entry);
975                                 pte = swp_entry_to_pte(entry);
976                                 if (pte_swp_soft_dirty(*src_pte))
977                                         pte = pte_swp_mksoft_dirty(pte);
978                                 set_pte_at(src_mm, addr, src_pte, pte);
979                         }
980                 } else if (is_device_private_entry(entry)) {
981                         page = device_private_entry_to_page(entry);
982
983                         /*
984                          * Update rss count even for unaddressable pages, as
985                          * they should treated just like normal pages in this
986                          * respect.
987                          *
988                          * We will likely want to have some new rss counters
989                          * for unaddressable pages, at some point. But for now
990                          * keep things as they are.
991                          */
992                         get_page(page);
993                         rss[mm_counter(page)]++;
994                         page_dup_rmap(page, false);
995
996                         /*
997                          * We do not preserve soft-dirty information, because so
998                          * far, checkpoint/restore is the only feature that
999                          * requires that. And checkpoint/restore does not work
1000                          * when a device driver is involved (you cannot easily
1001                          * save and restore device driver state).
1002                          */
1003                         if (is_write_device_private_entry(entry) &&
1004                             is_cow_mapping(vm_flags)) {
1005                                 make_device_private_entry_read(&entry);
1006                                 pte = swp_entry_to_pte(entry);
1007                                 set_pte_at(src_mm, addr, src_pte, pte);
1008                         }
1009                 }
1010                 goto out_set_pte;
1011         }
1012
1013         /*
1014          * If it's a COW mapping, write protect it both
1015          * in the parent and the child
1016          */
1017         if (is_cow_mapping(vm_flags)) {
1018                 ptep_set_wrprotect(src_mm, addr, src_pte);
1019                 pte = pte_wrprotect(pte);
1020         }
1021
1022         /*
1023          * If it's a shared mapping, mark it clean in
1024          * the child
1025          */
1026         if (vm_flags & VM_SHARED)
1027                 pte = pte_mkclean(pte);
1028         pte = pte_mkold(pte);
1029
1030         page = vm_normal_page(vma, addr, pte);
1031         if (page) {
1032                 get_page(page);
1033                 page_dup_rmap(page, false);
1034                 rss[mm_counter(page)]++;
1035         } else if (pte_devmap(pte)) {
1036                 page = pte_page(pte);
1037
1038                 /*
1039                  * Cache coherent device memory behave like regular page and
1040                  * not like persistent memory page. For more informations see
1041                  * MEMORY_DEVICE_CACHE_COHERENT in memory_hotplug.h
1042                  */
1043                 if (is_device_public_page(page)) {
1044                         get_page(page);
1045                         page_dup_rmap(page, false);
1046                         rss[mm_counter(page)]++;
1047                 }
1048         }
1049
1050 out_set_pte:
1051         set_pte_at(dst_mm, addr, dst_pte, pte);
1052         return 0;
1053 }
1054
1055 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1056                    pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
1057                    unsigned long addr, unsigned long end)
1058 {
1059         pte_t *orig_src_pte, *orig_dst_pte;
1060         pte_t *src_pte, *dst_pte;
1061         spinlock_t *src_ptl, *dst_ptl;
1062         int progress = 0;
1063         int rss[NR_MM_COUNTERS];
1064         swp_entry_t entry = (swp_entry_t){0};
1065
1066 again:
1067         init_rss_vec(rss);
1068
1069         dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1070         if (!dst_pte)
1071                 return -ENOMEM;
1072         src_pte = pte_offset_map(src_pmd, addr);
1073         src_ptl = pte_lockptr(src_mm, src_pmd);
1074         spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1075         orig_src_pte = src_pte;
1076         orig_dst_pte = dst_pte;
1077         arch_enter_lazy_mmu_mode();
1078
1079         do {
1080                 /*
1081                  * We are holding two locks at this point - either of them
1082                  * could generate latencies in another task on another CPU.
1083                  */
1084                 if (progress >= 32) {
1085                         progress = 0;
1086                         if (need_resched() ||
1087                             spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
1088                                 break;
1089                 }
1090                 if (pte_none(*src_pte)) {
1091                         progress++;
1092                         continue;
1093                 }
1094                 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
1095                                                         vma, addr, rss);
1096                 if (entry.val)
1097                         break;
1098                 progress += 8;
1099         } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1100
1101         arch_leave_lazy_mmu_mode();
1102         spin_unlock(src_ptl);
1103         pte_unmap(orig_src_pte);
1104         add_mm_rss_vec(dst_mm, rss);
1105         pte_unmap_unlock(orig_dst_pte, dst_ptl);
1106         cond_resched();
1107
1108         if (entry.val) {
1109                 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
1110                         return -ENOMEM;
1111                 progress = 0;
1112         }
1113         if (addr != end)
1114                 goto again;
1115         return 0;
1116 }
1117
1118 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1119                 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
1120                 unsigned long addr, unsigned long end)
1121 {
1122         pmd_t *src_pmd, *dst_pmd;
1123         unsigned long next;
1124
1125         dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1126         if (!dst_pmd)
1127                 return -ENOMEM;
1128         src_pmd = pmd_offset(src_pud, addr);
1129         do {
1130                 next = pmd_addr_end(addr, end);
1131                 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
1132                         || pmd_devmap(*src_pmd)) {
1133                         int err;
1134                         VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, vma);
1135                         err = copy_huge_pmd(dst_mm, src_mm,
1136                                             dst_pmd, src_pmd, addr, vma);
1137                         if (err == -ENOMEM)
1138                                 return -ENOMEM;
1139                         if (!err)
1140                                 continue;
1141                         /* fall through */
1142                 }
1143                 if (pmd_none_or_clear_bad(src_pmd))
1144                         continue;
1145                 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
1146                                                 vma, addr, next))
1147                         return -ENOMEM;
1148         } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1149         return 0;
1150 }
1151
1152 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1153                 p4d_t *dst_p4d, p4d_t *src_p4d, struct vm_area_struct *vma,
1154                 unsigned long addr, unsigned long end)
1155 {
1156         pud_t *src_pud, *dst_pud;
1157         unsigned long next;
1158
1159         dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1160         if (!dst_pud)
1161                 return -ENOMEM;
1162         src_pud = pud_offset(src_p4d, addr);
1163         do {
1164                 next = pud_addr_end(addr, end);
1165                 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1166                         int err;
1167
1168                         VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, vma);
1169                         err = copy_huge_pud(dst_mm, src_mm,
1170                                             dst_pud, src_pud, addr, vma);
1171                         if (err == -ENOMEM)
1172                                 return -ENOMEM;
1173                         if (!err)
1174                                 continue;
1175                         /* fall through */
1176                 }
1177                 if (pud_none_or_clear_bad(src_pud))
1178                         continue;
1179                 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
1180                                                 vma, addr, next))
1181                         return -ENOMEM;
1182         } while (dst_pud++, src_pud++, addr = next, addr != end);
1183         return 0;
1184 }
1185
1186 static inline int copy_p4d_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1187                 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
1188                 unsigned long addr, unsigned long end)
1189 {
1190         p4d_t *src_p4d, *dst_p4d;
1191         unsigned long next;
1192
1193         dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1194         if (!dst_p4d)
1195                 return -ENOMEM;
1196         src_p4d = p4d_offset(src_pgd, addr);
1197         do {
1198                 next = p4d_addr_end(addr, end);
1199                 if (p4d_none_or_clear_bad(src_p4d))
1200                         continue;
1201                 if (copy_pud_range(dst_mm, src_mm, dst_p4d, src_p4d,
1202                                                 vma, addr, next))
1203                         return -ENOMEM;
1204         } while (dst_p4d++, src_p4d++, addr = next, addr != end);
1205         return 0;
1206 }
1207
1208 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1209                 struct vm_area_struct *vma)
1210 {
1211         pgd_t *src_pgd, *dst_pgd;
1212         unsigned long next;
1213         unsigned long addr = vma->vm_start;
1214         unsigned long end = vma->vm_end;
1215         unsigned long mmun_start;       /* For mmu_notifiers */
1216         unsigned long mmun_end;         /* For mmu_notifiers */
1217         bool is_cow;
1218         int ret;
1219
1220         /*
1221          * Don't copy ptes where a page fault will fill them correctly.
1222          * Fork becomes much lighter when there are big shared or private
1223          * readonly mappings. The tradeoff is that copy_page_range is more
1224          * efficient than faulting.
1225          */
1226         if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
1227                         !vma->anon_vma)
1228                 return 0;
1229
1230         if (is_vm_hugetlb_page(vma))
1231                 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1232
1233         if (unlikely(vma->vm_flags & VM_PFNMAP)) {
1234                 /*
1235                  * We do not free on error cases below as remove_vma
1236                  * gets called on error from higher level routine
1237                  */
1238                 ret = track_pfn_copy(vma);
1239                 if (ret)
1240                         return ret;
1241         }
1242
1243         /*
1244          * We need to invalidate the secondary MMU mappings only when
1245          * there could be a permission downgrade on the ptes of the
1246          * parent mm. And a permission downgrade will only happen if
1247          * is_cow_mapping() returns true.
1248          */
1249         is_cow = is_cow_mapping(vma->vm_flags);
1250         mmun_start = addr;
1251         mmun_end   = end;
1252         if (is_cow)
1253                 mmu_notifier_invalidate_range_start(src_mm, mmun_start,
1254                                                     mmun_end);
1255
1256         ret = 0;
1257         dst_pgd = pgd_offset(dst_mm, addr);
1258         src_pgd = pgd_offset(src_mm, addr);
1259         do {
1260                 next = pgd_addr_end(addr, end);
1261                 if (pgd_none_or_clear_bad(src_pgd))
1262                         continue;
1263                 if (unlikely(copy_p4d_range(dst_mm, src_mm, dst_pgd, src_pgd,
1264                                             vma, addr, next))) {
1265                         ret = -ENOMEM;
1266                         break;
1267                 }
1268         } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1269
1270         if (is_cow)
1271                 mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
1272         return ret;
1273 }
1274
1275 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1276                                 struct vm_area_struct *vma, pmd_t *pmd,
1277                                 unsigned long addr, unsigned long end,
1278                                 struct zap_details *details)
1279 {
1280         struct mm_struct *mm = tlb->mm;
1281         int force_flush = 0;
1282         int rss[NR_MM_COUNTERS];
1283         spinlock_t *ptl;
1284         pte_t *start_pte;
1285         pte_t *pte;
1286         swp_entry_t entry;
1287
1288         tlb_remove_check_page_size_change(tlb, PAGE_SIZE);
1289 again:
1290         init_rss_vec(rss);
1291         start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1292         pte = start_pte;
1293         flush_tlb_batched_pending(mm);
1294         arch_enter_lazy_mmu_mode();
1295         do {
1296                 pte_t ptent = *pte;
1297                 if (pte_none(ptent))
1298                         continue;
1299
1300                 if (pte_present(ptent)) {
1301                         struct page *page;
1302
1303                         page = _vm_normal_page(vma, addr, ptent, true);
1304                         if (unlikely(details) && page) {
1305                                 /*
1306                                  * unmap_shared_mapping_pages() wants to
1307                                  * invalidate cache without truncating:
1308                                  * unmap shared but keep private pages.
1309                                  */
1310                                 if (details->check_mapping &&
1311                                     details->check_mapping != page_rmapping(page))
1312                                         continue;
1313                         }
1314                         ptent = ptep_get_and_clear_full(mm, addr, pte,
1315                                                         tlb->fullmm);
1316                         tlb_remove_tlb_entry(tlb, pte, addr);
1317                         if (unlikely(!page))
1318                                 continue;
1319
1320                         if (!PageAnon(page)) {
1321                                 if (pte_dirty(ptent)) {
1322                                         force_flush = 1;
1323                                         set_page_dirty(page);
1324                                 }
1325                                 if (pte_young(ptent) &&
1326                                     likely(!(vma->vm_flags & VM_SEQ_READ)))
1327                                         mark_page_accessed(page);
1328                         }
1329                         rss[mm_counter(page)]--;
1330                         page_remove_rmap(page, false);
1331                         if (unlikely(page_mapcount(page) < 0))
1332                                 print_bad_pte(vma, addr, ptent, page);
1333                         if (unlikely(__tlb_remove_page(tlb, page))) {
1334                                 force_flush = 1;
1335                                 addr += PAGE_SIZE;
1336                                 break;
1337                         }
1338                         continue;
1339                 }
1340
1341                 entry = pte_to_swp_entry(ptent);
1342                 if (non_swap_entry(entry) && is_device_private_entry(entry)) {
1343                         struct page *page = device_private_entry_to_page(entry);
1344
1345                         if (unlikely(details && details->check_mapping)) {
1346                                 /*
1347                                  * unmap_shared_mapping_pages() wants to
1348                                  * invalidate cache without truncating:
1349                                  * unmap shared but keep private pages.
1350                                  */
1351                                 if (details->check_mapping !=
1352                                     page_rmapping(page))
1353                                         continue;
1354                         }
1355
1356                         pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1357                         rss[mm_counter(page)]--;
1358                         page_remove_rmap(page, false);
1359                         put_page(page);
1360                         continue;
1361                 }
1362
1363                 /* If details->check_mapping, we leave swap entries. */
1364                 if (unlikely(details))
1365                         continue;
1366
1367                 entry = pte_to_swp_entry(ptent);
1368                 if (!non_swap_entry(entry))
1369                         rss[MM_SWAPENTS]--;
1370                 else if (is_migration_entry(entry)) {
1371                         struct page *page;
1372
1373                         page = migration_entry_to_page(entry);
1374                         rss[mm_counter(page)]--;
1375                 }
1376                 if (unlikely(!free_swap_and_cache(entry)))
1377                         print_bad_pte(vma, addr, ptent, NULL);
1378                 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1379         } while (pte++, addr += PAGE_SIZE, addr != end);
1380
1381         add_mm_rss_vec(mm, rss);
1382         arch_leave_lazy_mmu_mode();
1383
1384         /* Do the actual TLB flush before dropping ptl */
1385         if (force_flush)
1386                 tlb_flush_mmu_tlbonly(tlb);
1387         pte_unmap_unlock(start_pte, ptl);
1388
1389         /*
1390          * If we forced a TLB flush (either due to running out of
1391          * batch buffers or because we needed to flush dirty TLB
1392          * entries before releasing the ptl), free the batched
1393          * memory too. Restart if we didn't do everything.
1394          */
1395         if (force_flush) {
1396                 force_flush = 0;
1397                 tlb_flush_mmu_free(tlb);
1398                 if (addr != end)
1399                         goto again;
1400         }
1401
1402         return addr;
1403 }
1404
1405 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1406                                 struct vm_area_struct *vma, pud_t *pud,
1407                                 unsigned long addr, unsigned long end,
1408                                 struct zap_details *details)
1409 {
1410         pmd_t *pmd;
1411         unsigned long next;
1412
1413         pmd = pmd_offset(pud, addr);
1414         do {
1415                 next = pmd_addr_end(addr, end);
1416                 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1417                         if (next - addr != HPAGE_PMD_SIZE)
1418                                 __split_huge_pmd(vma, pmd, addr, false, NULL);
1419                         else if (zap_huge_pmd(tlb, vma, pmd, addr))
1420                                 goto next;
1421                         /* fall through */
1422                 }
1423                 /*
1424                  * Here there can be other concurrent MADV_DONTNEED or
1425                  * trans huge page faults running, and if the pmd is
1426                  * none or trans huge it can change under us. This is
1427                  * because MADV_DONTNEED holds the mmap_sem in read
1428                  * mode.
1429                  */
1430                 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1431                         goto next;
1432                 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1433 next:
1434                 cond_resched();
1435         } while (pmd++, addr = next, addr != end);
1436
1437         return addr;
1438 }
1439
1440 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1441                                 struct vm_area_struct *vma, p4d_t *p4d,
1442                                 unsigned long addr, unsigned long end,
1443                                 struct zap_details *details)
1444 {
1445         pud_t *pud;
1446         unsigned long next;
1447
1448         pud = pud_offset(p4d, addr);
1449         do {
1450                 next = pud_addr_end(addr, end);
1451                 if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1452                         if (next - addr != HPAGE_PUD_SIZE) {
1453                                 VM_BUG_ON_VMA(!rwsem_is_locked(&tlb->mm->mmap_sem), vma);
1454                                 split_huge_pud(vma, pud, addr);
1455                         } else if (zap_huge_pud(tlb, vma, pud, addr))
1456                                 goto next;
1457                         /* fall through */
1458                 }
1459                 if (pud_none_or_clear_bad(pud))
1460                         continue;
1461                 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1462 next:
1463                 cond_resched();
1464         } while (pud++, addr = next, addr != end);
1465
1466         return addr;
1467 }
1468
1469 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1470                                 struct vm_area_struct *vma, pgd_t *pgd,
1471                                 unsigned long addr, unsigned long end,
1472                                 struct zap_details *details)
1473 {
1474         p4d_t *p4d;
1475         unsigned long next;
1476
1477         p4d = p4d_offset(pgd, addr);
1478         do {
1479                 next = p4d_addr_end(addr, end);
1480                 if (p4d_none_or_clear_bad(p4d))
1481                         continue;
1482                 next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1483         } while (p4d++, addr = next, addr != end);
1484
1485         return addr;
1486 }
1487
1488 void unmap_page_range(struct mmu_gather *tlb,
1489                              struct vm_area_struct *vma,
1490                              unsigned long addr, unsigned long end,
1491                              struct zap_details *details)
1492 {
1493         pgd_t *pgd;
1494         unsigned long next;
1495
1496         BUG_ON(addr >= end);
1497         tlb_start_vma(tlb, vma);
1498         pgd = pgd_offset(vma->vm_mm, addr);
1499         do {
1500                 next = pgd_addr_end(addr, end);
1501                 if (pgd_none_or_clear_bad(pgd))
1502                         continue;
1503                 next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1504         } while (pgd++, addr = next, addr != end);
1505         tlb_end_vma(tlb, vma);
1506 }
1507
1508
1509 static void unmap_single_vma(struct mmu_gather *tlb,
1510                 struct vm_area_struct *vma, unsigned long start_addr,
1511                 unsigned long end_addr,
1512                 struct zap_details *details)
1513 {
1514         unsigned long start = max(vma->vm_start, start_addr);
1515         unsigned long end;
1516
1517         if (start >= vma->vm_end)
1518                 return;
1519         end = min(vma->vm_end, end_addr);
1520         if (end <= vma->vm_start)
1521                 return;
1522
1523         if (vma->vm_file)
1524                 uprobe_munmap(vma, start, end);
1525
1526         if (unlikely(vma->vm_flags & VM_PFNMAP))
1527                 untrack_pfn(vma, 0, 0);
1528
1529         if (start != end) {
1530                 if (unlikely(is_vm_hugetlb_page(vma))) {
1531                         /*
1532                          * It is undesirable to test vma->vm_file as it
1533                          * should be non-null for valid hugetlb area.
1534                          * However, vm_file will be NULL in the error
1535                          * cleanup path of mmap_region. When
1536                          * hugetlbfs ->mmap method fails,
1537                          * mmap_region() nullifies vma->vm_file
1538                          * before calling this function to clean up.
1539                          * Since no pte has actually been setup, it is
1540                          * safe to do nothing in this case.
1541                          */
1542                         if (vma->vm_file) {
1543                                 i_mmap_lock_write(vma->vm_file->f_mapping);
1544                                 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1545                                 i_mmap_unlock_write(vma->vm_file->f_mapping);
1546                         }
1547                 } else
1548                         unmap_page_range(tlb, vma, start, end, details);
1549         }
1550 }
1551
1552 /**
1553  * unmap_vmas - unmap a range of memory covered by a list of vma's
1554  * @tlb: address of the caller's struct mmu_gather
1555  * @vma: the starting vma
1556  * @start_addr: virtual address at which to start unmapping
1557  * @end_addr: virtual address at which to end unmapping
1558  *
1559  * Unmap all pages in the vma list.
1560  *
1561  * Only addresses between `start' and `end' will be unmapped.
1562  *
1563  * The VMA list must be sorted in ascending virtual address order.
1564  *
1565  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1566  * range after unmap_vmas() returns.  So the only responsibility here is to
1567  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1568  * drops the lock and schedules.
1569  */
1570 void unmap_vmas(struct mmu_gather *tlb,
1571                 struct vm_area_struct *vma, unsigned long start_addr,
1572                 unsigned long end_addr)
1573 {
1574         struct mm_struct *mm = vma->vm_mm;
1575
1576         mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1577         for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1578                 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1579         mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1580 }
1581
1582 /**
1583  * zap_page_range - remove user pages in a given range
1584  * @vma: vm_area_struct holding the applicable pages
1585  * @start: starting address of pages to zap
1586  * @size: number of bytes to zap
1587  *
1588  * Caller must protect the VMA list
1589  */
1590 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1591                 unsigned long size)
1592 {
1593         struct mm_struct *mm = vma->vm_mm;
1594         struct mmu_gather tlb;
1595         unsigned long end = start + size;
1596
1597         lru_add_drain();
1598         tlb_gather_mmu(&tlb, mm, start, end);
1599         update_hiwater_rss(mm);
1600         mmu_notifier_invalidate_range_start(mm, start, end);
1601         for ( ; vma && vma->vm_start < end; vma = vma->vm_next)
1602                 unmap_single_vma(&tlb, vma, start, end, NULL);
1603         mmu_notifier_invalidate_range_end(mm, start, end);
1604         tlb_finish_mmu(&tlb, start, end);
1605 }
1606
1607 /**
1608  * zap_page_range_single - remove user pages in a given range
1609  * @vma: vm_area_struct holding the applicable pages
1610  * @address: starting address of pages to zap
1611  * @size: number of bytes to zap
1612  * @details: details of shared cache invalidation
1613  *
1614  * The range must fit into one VMA.
1615  */
1616 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1617                 unsigned long size, struct zap_details *details)
1618 {
1619         struct mm_struct *mm = vma->vm_mm;
1620         struct mmu_gather tlb;
1621         unsigned long end = address + size;
1622
1623         lru_add_drain();
1624         tlb_gather_mmu(&tlb, mm, address, end);
1625         update_hiwater_rss(mm);
1626         mmu_notifier_invalidate_range_start(mm, address, end);
1627         unmap_single_vma(&tlb, vma, address, end, details);
1628         mmu_notifier_invalidate_range_end(mm, address, end);
1629         tlb_finish_mmu(&tlb, address, end);
1630 }
1631
1632 /**
1633  * zap_vma_ptes - remove ptes mapping the vma
1634  * @vma: vm_area_struct holding ptes to be zapped
1635  * @address: starting address of pages to zap
1636  * @size: number of bytes to zap
1637  *
1638  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1639  *
1640  * The entire address range must be fully contained within the vma.
1641  *
1642  */
1643 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1644                 unsigned long size)
1645 {
1646         if (address < vma->vm_start || address + size > vma->vm_end ||
1647                         !(vma->vm_flags & VM_PFNMAP))
1648                 return;
1649
1650         zap_page_range_single(vma, address, size, NULL);
1651 }
1652 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1653
1654 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1655                         spinlock_t **ptl)
1656 {
1657         pgd_t *pgd;
1658         p4d_t *p4d;
1659         pud_t *pud;
1660         pmd_t *pmd;
1661
1662         pgd = pgd_offset(mm, addr);
1663         p4d = p4d_alloc(mm, pgd, addr);
1664         if (!p4d)
1665                 return NULL;
1666         pud = pud_alloc(mm, p4d, addr);
1667         if (!pud)
1668                 return NULL;
1669         pmd = pmd_alloc(mm, pud, addr);
1670         if (!pmd)
1671                 return NULL;
1672
1673         VM_BUG_ON(pmd_trans_huge(*pmd));
1674         return pte_alloc_map_lock(mm, pmd, addr, ptl);
1675 }
1676
1677 /*
1678  * This is the old fallback for page remapping.
1679  *
1680  * For historical reasons, it only allows reserved pages. Only
1681  * old drivers should use this, and they needed to mark their
1682  * pages reserved for the old functions anyway.
1683  */
1684 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1685                         struct page *page, pgprot_t prot)
1686 {
1687         struct mm_struct *mm = vma->vm_mm;
1688         int retval;
1689         pte_t *pte;
1690         spinlock_t *ptl;
1691
1692         retval = -EINVAL;
1693         if (PageAnon(page))
1694                 goto out;
1695         retval = -ENOMEM;
1696         flush_dcache_page(page);
1697         pte = get_locked_pte(mm, addr, &ptl);
1698         if (!pte)
1699                 goto out;
1700         retval = -EBUSY;
1701         if (!pte_none(*pte))
1702                 goto out_unlock;
1703
1704         /* Ok, finally just insert the thing.. */
1705         get_page(page);
1706         inc_mm_counter_fast(mm, mm_counter_file(page));
1707         page_add_file_rmap(page, false);
1708         set_pte_at(mm, addr, pte, mk_pte(page, prot));
1709
1710         retval = 0;
1711         pte_unmap_unlock(pte, ptl);
1712         return retval;
1713 out_unlock:
1714         pte_unmap_unlock(pte, ptl);
1715 out:
1716         return retval;
1717 }
1718
1719 /**
1720  * vm_insert_page - insert single page into user vma
1721  * @vma: user vma to map to
1722  * @addr: target user address of this page
1723  * @page: source kernel page
1724  *
1725  * This allows drivers to insert individual pages they've allocated
1726  * into a user vma.
1727  *
1728  * The page has to be a nice clean _individual_ kernel allocation.
1729  * If you allocate a compound page, you need to have marked it as
1730  * such (__GFP_COMP), or manually just split the page up yourself
1731  * (see split_page()).
1732  *
1733  * NOTE! Traditionally this was done with "remap_pfn_range()" which
1734  * took an arbitrary page protection parameter. This doesn't allow
1735  * that. Your vma protection will have to be set up correctly, which
1736  * means that if you want a shared writable mapping, you'd better
1737  * ask for a shared writable mapping!
1738  *
1739  * The page does not need to be reserved.
1740  *
1741  * Usually this function is called from f_op->mmap() handler
1742  * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1743  * Caller must set VM_MIXEDMAP on vma if it wants to call this
1744  * function from other places, for example from page-fault handler.
1745  */
1746 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1747                         struct page *page)
1748 {
1749         if (addr < vma->vm_start || addr >= vma->vm_end)
1750                 return -EFAULT;
1751         if (!page_count(page))
1752                 return -EINVAL;
1753         if (!(vma->vm_flags & VM_MIXEDMAP)) {
1754                 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
1755                 BUG_ON(vma->vm_flags & VM_PFNMAP);
1756                 vma->vm_flags |= VM_MIXEDMAP;
1757         }
1758         return insert_page(vma, addr, page, vma->vm_page_prot);
1759 }
1760 EXPORT_SYMBOL(vm_insert_page);
1761
1762 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1763                         pfn_t pfn, pgprot_t prot, bool mkwrite)
1764 {
1765         struct mm_struct *mm = vma->vm_mm;
1766         int retval;
1767         pte_t *pte, entry;
1768         spinlock_t *ptl;
1769
1770         retval = -ENOMEM;
1771         pte = get_locked_pte(mm, addr, &ptl);
1772         if (!pte)
1773                 goto out;
1774         retval = -EBUSY;
1775         if (!pte_none(*pte)) {
1776                 if (mkwrite) {
1777                         /*
1778                          * For read faults on private mappings the PFN passed
1779                          * in may not match the PFN we have mapped if the
1780                          * mapped PFN is a writeable COW page.  In the mkwrite
1781                          * case we are creating a writable PTE for a shared
1782                          * mapping and we expect the PFNs to match.
1783                          */
1784                         if (WARN_ON_ONCE(pte_pfn(*pte) != pfn_t_to_pfn(pfn)))
1785                                 goto out_unlock;
1786                         entry = *pte;
1787                         goto out_mkwrite;
1788                 } else
1789                         goto out_unlock;
1790         }
1791
1792         /* Ok, finally just insert the thing.. */
1793         if (pfn_t_devmap(pfn))
1794                 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
1795         else
1796                 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
1797
1798 out_mkwrite:
1799         if (mkwrite) {
1800                 entry = pte_mkyoung(entry);
1801                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1802         }
1803
1804         set_pte_at(mm, addr, pte, entry);
1805         update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1806
1807         retval = 0;
1808 out_unlock:
1809         pte_unmap_unlock(pte, ptl);
1810 out:
1811         return retval;
1812 }
1813
1814 /**
1815  * vm_insert_pfn - insert single pfn into user vma
1816  * @vma: user vma to map to
1817  * @addr: target user address of this page
1818  * @pfn: source kernel pfn
1819  *
1820  * Similar to vm_insert_page, this allows drivers to insert individual pages
1821  * they've allocated into a user vma. Same comments apply.
1822  *
1823  * This function should only be called from a vm_ops->fault handler, and
1824  * in that case the handler should return NULL.
1825  *
1826  * vma cannot be a COW mapping.
1827  *
1828  * As this is called only for pages that do not currently exist, we
1829  * do not need to flush old virtual caches or the TLB.
1830  */
1831 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1832                         unsigned long pfn)
1833 {
1834         return vm_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
1835 }
1836 EXPORT_SYMBOL(vm_insert_pfn);
1837
1838 /**
1839  * vm_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1840  * @vma: user vma to map to
1841  * @addr: target user address of this page
1842  * @pfn: source kernel pfn
1843  * @pgprot: pgprot flags for the inserted page
1844  *
1845  * This is exactly like vm_insert_pfn, except that it allows drivers to
1846  * to override pgprot on a per-page basis.
1847  *
1848  * This only makes sense for IO mappings, and it makes no sense for
1849  * cow mappings.  In general, using multiple vmas is preferable;
1850  * vm_insert_pfn_prot should only be used if using multiple VMAs is
1851  * impractical.
1852  */
1853 int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
1854                         unsigned long pfn, pgprot_t pgprot)
1855 {
1856         int ret;
1857         /*
1858          * Technically, architectures with pte_special can avoid all these
1859          * restrictions (same for remap_pfn_range).  However we would like
1860          * consistency in testing and feature parity among all, so we should
1861          * try to keep these invariants in place for everybody.
1862          */
1863         BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1864         BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1865                                                 (VM_PFNMAP|VM_MIXEDMAP));
1866         BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1867         BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1868
1869         if (addr < vma->vm_start || addr >= vma->vm_end)
1870                 return -EFAULT;
1871
1872         if (!pfn_modify_allowed(pfn, pgprot))
1873                 return -EACCES;
1874
1875         track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
1876
1877         ret = insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
1878                         false);
1879
1880         return ret;
1881 }
1882 EXPORT_SYMBOL(vm_insert_pfn_prot);
1883
1884 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
1885 {
1886         /* these checks mirror the abort conditions in vm_normal_page */
1887         if (vma->vm_flags & VM_MIXEDMAP)
1888                 return true;
1889         if (pfn_t_devmap(pfn))
1890                 return true;
1891         if (pfn_t_special(pfn))
1892                 return true;
1893         if (is_zero_pfn(pfn_t_to_pfn(pfn)))
1894                 return true;
1895         return false;
1896 }
1897
1898 static int __vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1899                         pfn_t pfn, bool mkwrite)
1900 {
1901         pgprot_t pgprot = vma->vm_page_prot;
1902
1903         BUG_ON(!vm_mixed_ok(vma, pfn));
1904
1905         if (addr < vma->vm_start || addr >= vma->vm_end)
1906                 return -EFAULT;
1907
1908         track_pfn_insert(vma, &pgprot, pfn);
1909
1910         if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
1911                 return -EACCES;
1912
1913         /*
1914          * If we don't have pte special, then we have to use the pfn_valid()
1915          * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1916          * refcount the page if pfn_valid is true (hence insert_page rather
1917          * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
1918          * without pte special, it would there be refcounted as a normal page.
1919          */
1920         if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
1921             !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
1922                 struct page *page;
1923
1924                 /*
1925                  * At this point we are committed to insert_page()
1926                  * regardless of whether the caller specified flags that
1927                  * result in pfn_t_has_page() == false.
1928                  */
1929                 page = pfn_to_page(pfn_t_to_pfn(pfn));
1930                 return insert_page(vma, addr, page, pgprot);
1931         }
1932         return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
1933 }
1934
1935 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1936                         pfn_t pfn)
1937 {
1938         return __vm_insert_mixed(vma, addr, pfn, false);
1939
1940 }
1941 EXPORT_SYMBOL(vm_insert_mixed);
1942
1943 /*
1944  *  If the insertion of PTE failed because someone else already added a
1945  *  different entry in the mean time, we treat that as success as we assume
1946  *  the same entry was actually inserted.
1947  */
1948
1949 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
1950                 unsigned long addr, pfn_t pfn)
1951 {
1952         int err;
1953
1954         err =  __vm_insert_mixed(vma, addr, pfn, true);
1955         if (err == -ENOMEM)
1956                 return VM_FAULT_OOM;
1957         if (err < 0 && err != -EBUSY)
1958                 return VM_FAULT_SIGBUS;
1959         return VM_FAULT_NOPAGE;
1960 }
1961 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
1962
1963 /*
1964  * maps a range of physical memory into the requested pages. the old
1965  * mappings are removed. any references to nonexistent pages results
1966  * in null mappings (currently treated as "copy-on-access")
1967  */
1968 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1969                         unsigned long addr, unsigned long end,
1970                         unsigned long pfn, pgprot_t prot)
1971 {
1972         pte_t *pte;
1973         spinlock_t *ptl;
1974         int err = 0;
1975
1976         pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1977         if (!pte)
1978                 return -ENOMEM;
1979         arch_enter_lazy_mmu_mode();
1980         do {
1981                 BUG_ON(!pte_none(*pte));
1982                 if (!pfn_modify_allowed(pfn, prot)) {
1983                         err = -EACCES;
1984                         break;
1985                 }
1986                 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1987                 pfn++;
1988         } while (pte++, addr += PAGE_SIZE, addr != end);
1989         arch_leave_lazy_mmu_mode();
1990         pte_unmap_unlock(pte - 1, ptl);
1991         return err;
1992 }
1993
1994 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1995                         unsigned long addr, unsigned long end,
1996                         unsigned long pfn, pgprot_t prot)
1997 {
1998         pmd_t *pmd;
1999         unsigned long next;
2000         int err;
2001
2002         pfn -= addr >> PAGE_SHIFT;
2003         pmd = pmd_alloc(mm, pud, addr);
2004         if (!pmd)
2005                 return -ENOMEM;
2006         VM_BUG_ON(pmd_trans_huge(*pmd));
2007         do {
2008                 next = pmd_addr_end(addr, end);
2009                 err = remap_pte_range(mm, pmd, addr, next,
2010                                 pfn + (addr >> PAGE_SHIFT), prot);
2011                 if (err)
2012                         return err;
2013         } while (pmd++, addr = next, addr != end);
2014         return 0;
2015 }
2016
2017 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
2018                         unsigned long addr, unsigned long end,
2019                         unsigned long pfn, pgprot_t prot)
2020 {
2021         pud_t *pud;
2022         unsigned long next;
2023         int err;
2024
2025         pfn -= addr >> PAGE_SHIFT;
2026         pud = pud_alloc(mm, p4d, addr);
2027         if (!pud)
2028                 return -ENOMEM;
2029         do {
2030                 next = pud_addr_end(addr, end);
2031                 err = remap_pmd_range(mm, pud, addr, next,
2032                                 pfn + (addr >> PAGE_SHIFT), prot);
2033                 if (err)
2034                         return err;
2035         } while (pud++, addr = next, addr != end);
2036         return 0;
2037 }
2038
2039 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2040                         unsigned long addr, unsigned long end,
2041                         unsigned long pfn, pgprot_t prot)
2042 {
2043         p4d_t *p4d;
2044         unsigned long next;
2045         int err;
2046
2047         pfn -= addr >> PAGE_SHIFT;
2048         p4d = p4d_alloc(mm, pgd, addr);
2049         if (!p4d)
2050                 return -ENOMEM;
2051         do {
2052                 next = p4d_addr_end(addr, end);
2053                 err = remap_pud_range(mm, p4d, addr, next,
2054                                 pfn + (addr >> PAGE_SHIFT), prot);
2055                 if (err)
2056                         return err;
2057         } while (p4d++, addr = next, addr != end);
2058         return 0;
2059 }
2060
2061 /**
2062  * remap_pfn_range - remap kernel memory to userspace
2063  * @vma: user vma to map to
2064  * @addr: target user address to start at
2065  * @pfn: physical address of kernel memory
2066  * @size: size of map area
2067  * @prot: page protection flags for this mapping
2068  *
2069  *  Note: this is only safe if the mm semaphore is held when called.
2070  */
2071 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2072                     unsigned long pfn, unsigned long size, pgprot_t prot)
2073 {
2074         pgd_t *pgd;
2075         unsigned long next;
2076         unsigned long end = addr + PAGE_ALIGN(size);
2077         struct mm_struct *mm = vma->vm_mm;
2078         unsigned long remap_pfn = pfn;
2079         int err;
2080
2081         /*
2082          * Physically remapped pages are special. Tell the
2083          * rest of the world about it:
2084          *   VM_IO tells people not to look at these pages
2085          *      (accesses can have side effects).
2086          *   VM_PFNMAP tells the core MM that the base pages are just
2087          *      raw PFN mappings, and do not have a "struct page" associated
2088          *      with them.
2089          *   VM_DONTEXPAND
2090          *      Disable vma merging and expanding with mremap().
2091          *   VM_DONTDUMP
2092          *      Omit vma from core dump, even when VM_IO turned off.
2093          *
2094          * There's a horrible special case to handle copy-on-write
2095          * behaviour that some programs depend on. We mark the "original"
2096          * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2097          * See vm_normal_page() for details.
2098          */
2099         if (is_cow_mapping(vma->vm_flags)) {
2100                 if (addr != vma->vm_start || end != vma->vm_end)
2101                         return -EINVAL;
2102                 vma->vm_pgoff = pfn;
2103         }
2104
2105         err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size));
2106         if (err)
2107                 return -EINVAL;
2108
2109         vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
2110
2111         BUG_ON(addr >= end);
2112         pfn -= addr >> PAGE_SHIFT;
2113         pgd = pgd_offset(mm, addr);
2114         flush_cache_range(vma, addr, end);
2115         do {
2116                 next = pgd_addr_end(addr, end);
2117                 err = remap_p4d_range(mm, pgd, addr, next,
2118                                 pfn + (addr >> PAGE_SHIFT), prot);
2119                 if (err)
2120                         break;
2121         } while (pgd++, addr = next, addr != end);
2122
2123         if (err)
2124                 untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size));
2125
2126         return err;
2127 }
2128 EXPORT_SYMBOL(remap_pfn_range);
2129
2130 /**
2131  * vm_iomap_memory - remap memory to userspace
2132  * @vma: user vma to map to
2133  * @start: start of area
2134  * @len: size of area
2135  *
2136  * This is a simplified io_remap_pfn_range() for common driver use. The
2137  * driver just needs to give us the physical memory range to be mapped,
2138  * we'll figure out the rest from the vma information.
2139  *
2140  * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2141  * whatever write-combining details or similar.
2142  */
2143 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2144 {
2145         unsigned long vm_len, pfn, pages;
2146
2147         /* Check that the physical memory area passed in looks valid */
2148         if (start + len < start)
2149                 return -EINVAL;
2150         /*
2151          * You *really* shouldn't map things that aren't page-aligned,
2152          * but we've historically allowed it because IO memory might
2153          * just have smaller alignment.
2154          */
2155         len += start & ~PAGE_MASK;
2156         pfn = start >> PAGE_SHIFT;
2157         pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2158         if (pfn + pages < pfn)
2159                 return -EINVAL;
2160
2161         /* We start the mapping 'vm_pgoff' pages into the area */
2162         if (vma->vm_pgoff > pages)
2163                 return -EINVAL;
2164         pfn += vma->vm_pgoff;
2165         pages -= vma->vm_pgoff;
2166
2167         /* Can we fit all of the mapping? */
2168         vm_len = vma->vm_end - vma->vm_start;
2169         if (vm_len >> PAGE_SHIFT > pages)
2170                 return -EINVAL;
2171
2172         /* Ok, let it rip */
2173         return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2174 }
2175 EXPORT_SYMBOL(vm_iomap_memory);
2176
2177 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2178                                      unsigned long addr, unsigned long end,
2179                                      pte_fn_t fn, void *data)
2180 {
2181         pte_t *pte;
2182         int err;
2183         pgtable_t token;
2184         spinlock_t *uninitialized_var(ptl);
2185
2186         pte = (mm == &init_mm) ?
2187                 pte_alloc_kernel(pmd, addr) :
2188                 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2189         if (!pte)
2190                 return -ENOMEM;
2191
2192         BUG_ON(pmd_huge(*pmd));
2193
2194         arch_enter_lazy_mmu_mode();
2195
2196         token = pmd_pgtable(*pmd);
2197
2198         do {
2199                 err = fn(pte++, token, addr, data);
2200                 if (err)
2201                         break;
2202         } while (addr += PAGE_SIZE, addr != end);
2203
2204         arch_leave_lazy_mmu_mode();
2205
2206         if (mm != &init_mm)
2207                 pte_unmap_unlock(pte-1, ptl);
2208         return err;
2209 }
2210
2211 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2212                                      unsigned long addr, unsigned long end,
2213                                      pte_fn_t fn, void *data)
2214 {
2215         pmd_t *pmd;
2216         unsigned long next;
2217         int err;
2218
2219         BUG_ON(pud_huge(*pud));
2220
2221         pmd = pmd_alloc(mm, pud, addr);
2222         if (!pmd)
2223                 return -ENOMEM;
2224         do {
2225                 next = pmd_addr_end(addr, end);
2226                 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
2227                 if (err)
2228                         break;
2229         } while (pmd++, addr = next, addr != end);
2230         return err;
2231 }
2232
2233 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2234                                      unsigned long addr, unsigned long end,
2235                                      pte_fn_t fn, void *data)
2236 {
2237         pud_t *pud;
2238         unsigned long next;
2239         int err;
2240
2241         pud = pud_alloc(mm, p4d, addr);
2242         if (!pud)
2243                 return -ENOMEM;
2244         do {
2245                 next = pud_addr_end(addr, end);
2246                 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
2247                 if (err)
2248                         break;
2249         } while (pud++, addr = next, addr != end);
2250         return err;
2251 }
2252
2253 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2254                                      unsigned long addr, unsigned long end,
2255                                      pte_fn_t fn, void *data)
2256 {
2257         p4d_t *p4d;
2258         unsigned long next;
2259         int err;
2260
2261         p4d = p4d_alloc(mm, pgd, addr);
2262         if (!p4d)
2263                 return -ENOMEM;
2264         do {
2265                 next = p4d_addr_end(addr, end);
2266                 err = apply_to_pud_range(mm, p4d, addr, next, fn, data);
2267                 if (err)
2268                         break;
2269         } while (p4d++, addr = next, addr != end);
2270         return err;
2271 }
2272
2273 /*
2274  * Scan a region of virtual memory, filling in page tables as necessary
2275  * and calling a provided function on each leaf page table.
2276  */
2277 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2278                         unsigned long size, pte_fn_t fn, void *data)
2279 {
2280         pgd_t *pgd;
2281         unsigned long next;
2282         unsigned long end = addr + size;
2283         int err;
2284
2285         if (WARN_ON(addr >= end))
2286                 return -EINVAL;
2287
2288         pgd = pgd_offset(mm, addr);
2289         do {
2290                 next = pgd_addr_end(addr, end);
2291                 err = apply_to_p4d_range(mm, pgd, addr, next, fn, data);
2292                 if (err)
2293                         break;
2294         } while (pgd++, addr = next, addr != end);
2295
2296         return err;
2297 }
2298 EXPORT_SYMBOL_GPL(apply_to_page_range);
2299
2300 /*
2301  * handle_pte_fault chooses page fault handler according to an entry which was
2302  * read non-atomically.  Before making any commitment, on those architectures
2303  * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2304  * parts, do_swap_page must check under lock before unmapping the pte and
2305  * proceeding (but do_wp_page is only called after already making such a check;
2306  * and do_anonymous_page can safely check later on).
2307  */
2308 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2309                                 pte_t *page_table, pte_t orig_pte)
2310 {
2311         int same = 1;
2312 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2313         if (sizeof(pte_t) > sizeof(unsigned long)) {
2314                 spinlock_t *ptl = pte_lockptr(mm, pmd);
2315                 spin_lock(ptl);
2316                 same = pte_same(*page_table, orig_pte);
2317                 spin_unlock(ptl);
2318         }
2319 #endif
2320         pte_unmap(page_table);
2321         return same;
2322 }
2323
2324 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
2325 {
2326         debug_dma_assert_idle(src);
2327
2328         /*
2329          * If the source page was a PFN mapping, we don't have
2330          * a "struct page" for it. We do a best-effort copy by
2331          * just copying from the original user address. If that
2332          * fails, we just zero-fill it. Live with it.
2333          */
2334         if (unlikely(!src)) {
2335                 void *kaddr = kmap_atomic(dst);
2336                 void __user *uaddr = (void __user *)(va & PAGE_MASK);
2337
2338                 /*
2339                  * This really shouldn't fail, because the page is there
2340                  * in the page tables. But it might just be unreadable,
2341                  * in which case we just give up and fill the result with
2342                  * zeroes.
2343                  */
2344                 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
2345                         clear_page(kaddr);
2346                 kunmap_atomic(kaddr);
2347                 flush_dcache_page(dst);
2348         } else
2349                 copy_user_highpage(dst, src, va, vma);
2350 }
2351
2352 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2353 {
2354         struct file *vm_file = vma->vm_file;
2355
2356         if (vm_file)
2357                 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2358
2359         /*
2360          * Special mappings (e.g. VDSO) do not have any file so fake
2361          * a default GFP_KERNEL for them.
2362          */
2363         return GFP_KERNEL;
2364 }
2365
2366 /*
2367  * Notify the address space that the page is about to become writable so that
2368  * it can prohibit this or wait for the page to get into an appropriate state.
2369  *
2370  * We do this without the lock held, so that it can sleep if it needs to.
2371  */
2372 static int do_page_mkwrite(struct vm_fault *vmf)
2373 {
2374         int ret;
2375         struct page *page = vmf->page;
2376         unsigned int old_flags = vmf->flags;
2377
2378         vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2379
2380         ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2381         /* Restore original flags so that caller is not surprised */
2382         vmf->flags = old_flags;
2383         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2384                 return ret;
2385         if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2386                 lock_page(page);
2387                 if (!page->mapping) {
2388                         unlock_page(page);
2389                         return 0; /* retry */
2390                 }
2391                 ret |= VM_FAULT_LOCKED;
2392         } else
2393                 VM_BUG_ON_PAGE(!PageLocked(page), page);
2394         return ret;
2395 }
2396
2397 /*
2398  * Handle dirtying of a page in shared file mapping on a write fault.
2399  *
2400  * The function expects the page to be locked and unlocks it.
2401  */
2402 static void fault_dirty_shared_page(struct vm_area_struct *vma,
2403                                     struct page *page)
2404 {
2405         struct address_space *mapping;
2406         bool dirtied;
2407         bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2408
2409         dirtied = set_page_dirty(page);
2410         VM_BUG_ON_PAGE(PageAnon(page), page);
2411         /*
2412          * Take a local copy of the address_space - page.mapping may be zeroed
2413          * by truncate after unlock_page().   The address_space itself remains
2414          * pinned by vma->vm_file's reference.  We rely on unlock_page()'s
2415          * release semantics to prevent the compiler from undoing this copying.
2416          */
2417         mapping = page_rmapping(page);
2418         unlock_page(page);
2419
2420         if ((dirtied || page_mkwrite) && mapping) {
2421                 /*
2422                  * Some device drivers do not set page.mapping
2423                  * but still dirty their pages
2424                  */
2425                 balance_dirty_pages_ratelimited(mapping);
2426         }
2427
2428         if (!page_mkwrite)
2429                 file_update_time(vma->vm_file);
2430 }
2431
2432 /*
2433  * Handle write page faults for pages that can be reused in the current vma
2434  *
2435  * This can happen either due to the mapping being with the VM_SHARED flag,
2436  * or due to us being the last reference standing to the page. In either
2437  * case, all we need to do here is to mark the page as writable and update
2438  * any related book-keeping.
2439  */
2440 static inline void wp_page_reuse(struct vm_fault *vmf)
2441         __releases(vmf->ptl)
2442 {
2443         struct vm_area_struct *vma = vmf->vma;
2444         struct page *page = vmf->page;
2445         pte_t entry;
2446         /*
2447          * Clear the pages cpupid information as the existing
2448          * information potentially belongs to a now completely
2449          * unrelated process.
2450          */
2451         if (page)
2452                 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2453
2454         flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2455         entry = pte_mkyoung(vmf->orig_pte);
2456         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2457         if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
2458                 update_mmu_cache(vma, vmf->address, vmf->pte);
2459         pte_unmap_unlock(vmf->pte, vmf->ptl);
2460 }
2461
2462 /*
2463  * Handle the case of a page which we actually need to copy to a new page.
2464  *
2465  * Called with mmap_sem locked and the old page referenced, but
2466  * without the ptl held.
2467  *
2468  * High level logic flow:
2469  *
2470  * - Allocate a page, copy the content of the old page to the new one.
2471  * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2472  * - Take the PTL. If the pte changed, bail out and release the allocated page
2473  * - If the pte is still the way we remember it, update the page table and all
2474  *   relevant references. This includes dropping the reference the page-table
2475  *   held to the old page, as well as updating the rmap.
2476  * - In any case, unlock the PTL and drop the reference we took to the old page.
2477  */
2478 static int wp_page_copy(struct vm_fault *vmf)
2479 {
2480         struct vm_area_struct *vma = vmf->vma;
2481         struct mm_struct *mm = vma->vm_mm;
2482         struct page *old_page = vmf->page;
2483         struct page *new_page = NULL;
2484         pte_t entry;
2485         int page_copied = 0;
2486         const unsigned long mmun_start = vmf->address & PAGE_MASK;
2487         const unsigned long mmun_end = mmun_start + PAGE_SIZE;
2488         struct mem_cgroup *memcg;
2489
2490         if (unlikely(anon_vma_prepare(vma)))
2491                 goto oom;
2492
2493         if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
2494                 new_page = alloc_zeroed_user_highpage_movable(vma,
2495                                                               vmf->address);
2496                 if (!new_page)
2497                         goto oom;
2498         } else {
2499                 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2500                                 vmf->address);
2501                 if (!new_page)
2502                         goto oom;
2503                 cow_user_page(new_page, old_page, vmf->address, vma);
2504         }
2505
2506         if (mem_cgroup_try_charge_delay(new_page, mm, GFP_KERNEL, &memcg, false))
2507                 goto oom_free_new;
2508
2509         __SetPageUptodate(new_page);
2510
2511         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2512
2513         /*
2514          * Re-check the pte - we dropped the lock
2515          */
2516         vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
2517         if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2518                 if (old_page) {
2519                         if (!PageAnon(old_page)) {
2520                                 dec_mm_counter_fast(mm,
2521                                                 mm_counter_file(old_page));
2522                                 inc_mm_counter_fast(mm, MM_ANONPAGES);
2523                         }
2524                 } else {
2525                         inc_mm_counter_fast(mm, MM_ANONPAGES);
2526                 }
2527                 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2528                 entry = mk_pte(new_page, vma->vm_page_prot);
2529                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2530                 /*
2531                  * Clear the pte entry and flush it first, before updating the
2532                  * pte with the new entry. This will avoid a race condition
2533                  * seen in the presence of one thread doing SMC and another
2534                  * thread doing COW.
2535                  */
2536                 ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
2537                 page_add_new_anon_rmap(new_page, vma, vmf->address, false);
2538                 mem_cgroup_commit_charge(new_page, memcg, false, false);
2539                 lru_cache_add_active_or_unevictable(new_page, vma);
2540                 /*
2541                  * We call the notify macro here because, when using secondary
2542                  * mmu page tables (such as kvm shadow page tables), we want the
2543                  * new page to be mapped directly into the secondary page table.
2544                  */
2545                 set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
2546                 update_mmu_cache(vma, vmf->address, vmf->pte);
2547                 if (old_page) {
2548                         /*
2549                          * Only after switching the pte to the new page may
2550                          * we remove the mapcount here. Otherwise another
2551                          * process may come and find the rmap count decremented
2552                          * before the pte is switched to the new page, and
2553                          * "reuse" the old page writing into it while our pte
2554                          * here still points into it and can be read by other
2555                          * threads.
2556                          *
2557                          * The critical issue is to order this
2558                          * page_remove_rmap with the ptp_clear_flush above.
2559                          * Those stores are ordered by (if nothing else,)
2560                          * the barrier present in the atomic_add_negative
2561                          * in page_remove_rmap.
2562                          *
2563                          * Then the TLB flush in ptep_clear_flush ensures that
2564                          * no process can access the old page before the
2565                          * decremented mapcount is visible. And the old page
2566                          * cannot be reused until after the decremented
2567                          * mapcount is visible. So transitively, TLBs to
2568                          * old page will be flushed before it can be reused.
2569                          */
2570                         page_remove_rmap(old_page, false);
2571                 }
2572
2573                 /* Free the old page.. */
2574                 new_page = old_page;
2575                 page_copied = 1;
2576         } else {
2577                 mem_cgroup_cancel_charge(new_page, memcg, false);
2578         }
2579
2580         if (new_page)
2581                 put_page(new_page);
2582
2583         pte_unmap_unlock(vmf->pte, vmf->ptl);
2584         /*
2585          * No need to double call mmu_notifier->invalidate_range() callback as
2586          * the above ptep_clear_flush_notify() did already call it.
2587          */
2588         mmu_notifier_invalidate_range_only_end(mm, mmun_start, mmun_end);
2589         if (old_page) {
2590                 /*
2591                  * Don't let another task, with possibly unlocked vma,
2592                  * keep the mlocked page.
2593                  */
2594                 if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2595                         lock_page(old_page);    /* LRU manipulation */
2596                         if (PageMlocked(old_page))
2597                                 munlock_vma_page(old_page);
2598                         unlock_page(old_page);
2599                 }
2600                 put_page(old_page);
2601         }
2602         return page_copied ? VM_FAULT_WRITE : 0;
2603 oom_free_new:
2604         put_page(new_page);
2605 oom:
2606         if (old_page)
2607                 put_page(old_page);
2608         return VM_FAULT_OOM;
2609 }
2610
2611 /**
2612  * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
2613  *                        writeable once the page is prepared
2614  *
2615  * @vmf: structure describing the fault
2616  *
2617  * This function handles all that is needed to finish a write page fault in a
2618  * shared mapping due to PTE being read-only once the mapped page is prepared.
2619  * It handles locking of PTE and modifying it. The function returns
2620  * VM_FAULT_WRITE on success, 0 when PTE got changed before we acquired PTE
2621  * lock.
2622  *
2623  * The function expects the page to be locked or other protection against
2624  * concurrent faults / writeback (such as DAX radix tree locks).
2625  */
2626 int finish_mkwrite_fault(struct vm_fault *vmf)
2627 {
2628         WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
2629         vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
2630                                        &vmf->ptl);
2631         /*
2632          * We might have raced with another page fault while we released the
2633          * pte_offset_map_lock.
2634          */
2635         if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2636                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2637                 return VM_FAULT_NOPAGE;
2638         }
2639         wp_page_reuse(vmf);
2640         return 0;
2641 }
2642
2643 /*
2644  * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2645  * mapping
2646  */
2647 static int wp_pfn_shared(struct vm_fault *vmf)
2648 {
2649         struct vm_area_struct *vma = vmf->vma;
2650
2651         if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
2652                 int ret;
2653
2654                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2655                 vmf->flags |= FAULT_FLAG_MKWRITE;
2656                 ret = vma->vm_ops->pfn_mkwrite(vmf);
2657                 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
2658                         return ret;
2659                 return finish_mkwrite_fault(vmf);
2660         }
2661         wp_page_reuse(vmf);
2662         return VM_FAULT_WRITE;
2663 }
2664
2665 static int wp_page_shared(struct vm_fault *vmf)
2666         __releases(vmf->ptl)
2667 {
2668         struct vm_area_struct *vma = vmf->vma;
2669
2670         get_page(vmf->page);
2671
2672         if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2673                 int tmp;
2674
2675                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2676                 tmp = do_page_mkwrite(vmf);
2677                 if (unlikely(!tmp || (tmp &
2678                                       (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2679                         put_page(vmf->page);
2680                         return tmp;
2681                 }
2682                 tmp = finish_mkwrite_fault(vmf);
2683                 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2684                         unlock_page(vmf->page);
2685                         put_page(vmf->page);
2686                         return tmp;
2687                 }
2688         } else {
2689                 wp_page_reuse(vmf);
2690                 lock_page(vmf->page);
2691         }
2692         fault_dirty_shared_page(vma, vmf->page);
2693         put_page(vmf->page);
2694
2695         return VM_FAULT_WRITE;
2696 }
2697
2698 /*
2699  * This routine handles present pages, when users try to write
2700  * to a shared page. It is done by copying the page to a new address
2701  * and decrementing the shared-page counter for the old page.
2702  *
2703  * Note that this routine assumes that the protection checks have been
2704  * done by the caller (the low-level page fault routine in most cases).
2705  * Thus we can safely just mark it writable once we've done any necessary
2706  * COW.
2707  *
2708  * We also mark the page dirty at this point even though the page will
2709  * change only once the write actually happens. This avoids a few races,
2710  * and potentially makes it more efficient.
2711  *
2712  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2713  * but allow concurrent faults), with pte both mapped and locked.
2714  * We return with mmap_sem still held, but pte unmapped and unlocked.
2715  */
2716 static int do_wp_page(struct vm_fault *vmf)
2717         __releases(vmf->ptl)
2718 {
2719         struct vm_area_struct *vma = vmf->vma;
2720
2721         vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
2722         if (!vmf->page) {
2723                 /*
2724                  * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2725                  * VM_PFNMAP VMA.
2726                  *
2727                  * We should not cow pages in a shared writeable mapping.
2728                  * Just mark the pages writable and/or call ops->pfn_mkwrite.
2729                  */
2730                 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2731                                      (VM_WRITE|VM_SHARED))
2732                         return wp_pfn_shared(vmf);
2733
2734                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2735                 return wp_page_copy(vmf);
2736         }
2737
2738         /*
2739          * Take out anonymous pages first, anonymous shared vmas are
2740          * not dirty accountable.
2741          */
2742         if (PageAnon(vmf->page) && !PageKsm(vmf->page)) {
2743                 int total_map_swapcount;
2744                 if (!trylock_page(vmf->page)) {
2745                         get_page(vmf->page);
2746                         pte_unmap_unlock(vmf->pte, vmf->ptl);
2747                         lock_page(vmf->page);
2748                         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2749                                         vmf->address, &vmf->ptl);
2750                         if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2751                                 unlock_page(vmf->page);
2752                                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2753                                 put_page(vmf->page);
2754                                 return 0;
2755                         }
2756                         put_page(vmf->page);
2757                 }
2758                 if (reuse_swap_page(vmf->page, &total_map_swapcount)) {
2759                         if (total_map_swapcount == 1) {
2760                                 /*
2761                                  * The page is all ours. Move it to
2762                                  * our anon_vma so the rmap code will
2763                                  * not search our parent or siblings.
2764                                  * Protected against the rmap code by
2765                                  * the page lock.
2766                                  */
2767                                 page_move_anon_rmap(vmf->page, vma);
2768                         }
2769                         unlock_page(vmf->page);
2770                         wp_page_reuse(vmf);
2771                         return VM_FAULT_WRITE;
2772                 }
2773                 unlock_page(vmf->page);
2774         } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2775                                         (VM_WRITE|VM_SHARED))) {
2776                 return wp_page_shared(vmf);
2777         }
2778
2779         /*
2780          * Ok, we need to copy. Oh, well..
2781          */
2782         get_page(vmf->page);
2783
2784         pte_unmap_unlock(vmf->pte, vmf->ptl);
2785         return wp_page_copy(vmf);
2786 }
2787
2788 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2789                 unsigned long start_addr, unsigned long end_addr,
2790                 struct zap_details *details)
2791 {
2792         zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2793 }
2794
2795 static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
2796                                             struct zap_details *details)
2797 {
2798         struct vm_area_struct *vma;
2799         pgoff_t vba, vea, zba, zea;
2800
2801         vma_interval_tree_foreach(vma, root,
2802                         details->first_index, details->last_index) {
2803
2804                 vba = vma->vm_pgoff;
2805                 vea = vba + vma_pages(vma) - 1;
2806                 zba = details->first_index;
2807                 if (zba < vba)
2808                         zba = vba;
2809                 zea = details->last_index;
2810                 if (zea > vea)
2811                         zea = vea;
2812
2813                 unmap_mapping_range_vma(vma,
2814                         ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2815                         ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2816                                 details);
2817         }
2818 }
2819
2820 /**
2821  * unmap_mapping_pages() - Unmap pages from processes.
2822  * @mapping: The address space containing pages to be unmapped.
2823  * @start: Index of first page to be unmapped.
2824  * @nr: Number of pages to be unmapped.  0 to unmap to end of file.
2825  * @even_cows: Whether to unmap even private COWed pages.
2826  *
2827  * Unmap the pages in this address space from any userspace process which
2828  * has them mmaped.  Generally, you want to remove COWed pages as well when
2829  * a file is being truncated, but not when invalidating pages from the page
2830  * cache.
2831  */
2832 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
2833                 pgoff_t nr, bool even_cows)
2834 {
2835         struct zap_details details = { };
2836
2837         details.check_mapping = even_cows ? NULL : mapping;
2838         details.first_index = start;
2839         details.last_index = start + nr - 1;
2840         if (details.last_index < details.first_index)
2841                 details.last_index = ULONG_MAX;
2842
2843         i_mmap_lock_write(mapping);
2844         if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
2845                 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2846         i_mmap_unlock_write(mapping);
2847 }
2848
2849 /**
2850  * unmap_mapping_range - unmap the portion of all mmaps in the specified
2851  * address_space corresponding to the specified byte range in the underlying
2852  * file.
2853  *
2854  * @mapping: the address space containing mmaps to be unmapped.
2855  * @holebegin: byte in first page to unmap, relative to the start of
2856  * the underlying file.  This will be rounded down to a PAGE_SIZE
2857  * boundary.  Note that this is different from truncate_pagecache(), which
2858  * must keep the partial page.  In contrast, we must get rid of
2859  * partial pages.
2860  * @holelen: size of prospective hole in bytes.  This will be rounded
2861  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
2862  * end of the file.
2863  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2864  * but 0 when invalidating pagecache, don't throw away private data.
2865  */
2866 void unmap_mapping_range(struct address_space *mapping,
2867                 loff_t const holebegin, loff_t const holelen, int even_cows)
2868 {
2869         pgoff_t hba = holebegin >> PAGE_SHIFT;
2870         pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2871
2872         /* Check for overflow. */
2873         if (sizeof(holelen) > sizeof(hlen)) {
2874                 long long holeend =
2875                         (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2876                 if (holeend & ~(long long)ULONG_MAX)
2877                         hlen = ULONG_MAX - hba + 1;
2878         }
2879
2880         unmap_mapping_pages(mapping, hba, hlen, even_cows);
2881 }
2882 EXPORT_SYMBOL(unmap_mapping_range);
2883
2884 /*
2885  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2886  * but allow concurrent faults), and pte mapped but not yet locked.
2887  * We return with pte unmapped and unlocked.
2888  *
2889  * We return with the mmap_sem locked or unlocked in the same cases
2890  * as does filemap_fault().
2891  */
2892 int do_swap_page(struct vm_fault *vmf)
2893 {
2894         struct vm_area_struct *vma = vmf->vma;
2895         struct page *page = NULL, *swapcache;
2896         struct mem_cgroup *memcg;
2897         swp_entry_t entry;
2898         pte_t pte;
2899         int locked;
2900         int exclusive = 0;
2901         int ret = 0;
2902
2903         if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte))
2904                 goto out;
2905
2906         entry = pte_to_swp_entry(vmf->orig_pte);
2907         if (unlikely(non_swap_entry(entry))) {
2908                 if (is_migration_entry(entry)) {
2909                         migration_entry_wait(vma->vm_mm, vmf->pmd,
2910                                              vmf->address);
2911                 } else if (is_device_private_entry(entry)) {
2912                         /*
2913                          * For un-addressable device memory we call the pgmap
2914                          * fault handler callback. The callback must migrate
2915                          * the page back to some CPU accessible page.
2916                          */
2917                         ret = device_private_entry_fault(vma, vmf->address, entry,
2918                                                  vmf->flags, vmf->pmd);
2919                 } else if (is_hwpoison_entry(entry)) {
2920                         ret = VM_FAULT_HWPOISON;
2921                 } else {
2922                         print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
2923                         ret = VM_FAULT_SIGBUS;
2924                 }
2925                 goto out;
2926         }
2927
2928
2929         delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2930         page = lookup_swap_cache(entry, vma, vmf->address);
2931         swapcache = page;
2932
2933         if (!page) {
2934                 struct swap_info_struct *si = swp_swap_info(entry);
2935
2936                 if (si->flags & SWP_SYNCHRONOUS_IO &&
2937                                 __swap_count(si, entry) == 1) {
2938                         /* skip swapcache */
2939                         page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2940                                                         vmf->address);
2941                         if (page) {
2942                                 __SetPageLocked(page);
2943                                 __SetPageSwapBacked(page);
2944                                 set_page_private(page, entry.val);
2945                                 lru_cache_add_anon(page);
2946                                 swap_readpage(page, true);
2947                         }
2948                 } else {
2949                         page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
2950                                                 vmf);
2951                         swapcache = page;
2952                 }
2953
2954                 if (!page) {
2955                         /*
2956                          * Back out if somebody else faulted in this pte
2957                          * while we released the pte lock.
2958                          */
2959                         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2960                                         vmf->address, &vmf->ptl);
2961                         if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
2962                                 ret = VM_FAULT_OOM;
2963                         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2964                         goto unlock;
2965                 }
2966
2967                 /* Had to read the page from swap area: Major fault */
2968                 ret = VM_FAULT_MAJOR;
2969                 count_vm_event(PGMAJFAULT);
2970                 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
2971         } else if (PageHWPoison(page)) {
2972                 /*
2973                  * hwpoisoned dirty swapcache pages are kept for killing
2974                  * owner processes (which may be unknown at hwpoison time)
2975                  */
2976                 ret = VM_FAULT_HWPOISON;
2977                 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2978                 goto out_release;
2979         }
2980
2981         locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
2982
2983         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2984         if (!locked) {
2985                 ret |= VM_FAULT_RETRY;
2986                 goto out_release;
2987         }
2988
2989         /*
2990          * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2991          * release the swapcache from under us.  The page pin, and pte_same
2992          * test below, are not enough to exclude that.  Even if it is still
2993          * swapcache, we need to check that the page's swap has not changed.
2994          */
2995         if (unlikely((!PageSwapCache(page) ||
2996                         page_private(page) != entry.val)) && swapcache)
2997                 goto out_page;
2998
2999         page = ksm_might_need_to_copy(page, vma, vmf->address);
3000         if (unlikely(!page)) {
3001                 ret = VM_FAULT_OOM;
3002                 page = swapcache;
3003                 goto out_page;
3004         }
3005
3006         if (mem_cgroup_try_charge_delay(page, vma->vm_mm, GFP_KERNEL,
3007                                         &memcg, false)) {
3008                 ret = VM_FAULT_OOM;
3009                 goto out_page;
3010         }
3011
3012         /*
3013          * Back out if somebody else already faulted in this pte.
3014          */
3015         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3016                         &vmf->ptl);
3017         if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
3018                 goto out_nomap;
3019
3020         if (unlikely(!PageUptodate(page))) {
3021                 ret = VM_FAULT_SIGBUS;
3022                 goto out_nomap;
3023         }
3024
3025         /*
3026          * The page isn't present yet, go ahead with the fault.
3027          *
3028          * Be careful about the sequence of operations here.
3029          * To get its accounting right, reuse_swap_page() must be called
3030          * while the page is counted on swap but not yet in mapcount i.e.
3031          * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3032          * must be called after the swap_free(), or it will never succeed.
3033          */
3034
3035         inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3036         dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
3037         pte = mk_pte(page, vma->vm_page_prot);
3038         if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
3039                 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3040                 vmf->flags &= ~FAULT_FLAG_WRITE;
3041                 ret |= VM_FAULT_WRITE;
3042                 exclusive = RMAP_EXCLUSIVE;
3043         }
3044         flush_icache_page(vma, page);
3045         if (pte_swp_soft_dirty(vmf->orig_pte))
3046                 pte = pte_mksoft_dirty(pte);
3047         set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
3048         arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
3049         vmf->orig_pte = pte;
3050
3051         /* ksm created a completely new copy */
3052         if (unlikely(page != swapcache && swapcache)) {
3053                 page_add_new_anon_rmap(page, vma, vmf->address, false);
3054                 mem_cgroup_commit_charge(page, memcg, false, false);
3055                 lru_cache_add_active_or_unevictable(page, vma);
3056         } else {
3057                 do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
3058                 mem_cgroup_commit_charge(page, memcg, true, false);
3059                 activate_page(page);
3060         }
3061
3062         swap_free(entry);
3063         if (mem_cgroup_swap_full(page) ||
3064             (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
3065                 try_to_free_swap(page);
3066         unlock_page(page);
3067         if (page != swapcache && swapcache) {
3068                 /*
3069                  * Hold the lock to avoid the swap entry to be reused
3070                  * until we take the PT lock for the pte_same() check
3071                  * (to avoid false positives from pte_same). For
3072                  * further safety release the lock after the swap_free
3073                  * so that the swap count won't change under a
3074                  * parallel locked swapcache.
3075                  */
3076                 unlock_page(swapcache);
3077                 put_page(swapcache);
3078         }
3079
3080         if (vmf->flags & FAULT_FLAG_WRITE) {
3081                 ret |= do_wp_page(vmf);
3082                 if (ret & VM_FAULT_ERROR)
3083                         ret &= VM_FAULT_ERROR;
3084                 goto out;
3085         }
3086
3087         /* No need to invalidate - it was non-present before */
3088         update_mmu_cache(vma, vmf->address, vmf->pte);
3089 unlock:
3090         pte_unmap_unlock(vmf->pte, vmf->ptl);
3091 out:
3092         return ret;
3093 out_nomap:
3094         mem_cgroup_cancel_charge(page, memcg, false);
3095         pte_unmap_unlock(vmf->pte, vmf->ptl);
3096 out_page:
3097         unlock_page(page);
3098 out_release:
3099         put_page(page);
3100         if (page != swapcache && swapcache) {
3101                 unlock_page(swapcache);
3102                 put_page(swapcache);
3103         }
3104         return ret;
3105 }
3106
3107 /*
3108  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3109  * but allow concurrent faults), and pte mapped but not yet locked.
3110  * We return with mmap_sem still held, but pte unmapped and unlocked.
3111  */
3112 static int do_anonymous_page(struct vm_fault *vmf)
3113 {
3114         struct vm_area_struct *vma = vmf->vma;
3115         struct mem_cgroup *memcg;
3116         struct page *page;
3117         int ret = 0;
3118         pte_t entry;
3119
3120         /* File mapping without ->vm_ops ? */
3121         if (vma->vm_flags & VM_SHARED)
3122                 return VM_FAULT_SIGBUS;
3123
3124         /*
3125          * Use pte_alloc() instead of pte_alloc_map().  We can't run
3126          * pte_offset_map() on pmds where a huge pmd might be created
3127          * from a different thread.
3128          *
3129          * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
3130          * parallel threads are excluded by other means.
3131          *
3132          * Here we only have down_read(mmap_sem).
3133          */
3134         if (pte_alloc(vma->vm_mm, vmf->pmd, vmf->address))
3135                 return VM_FAULT_OOM;
3136
3137         /* See the comment in pte_alloc_one_map() */
3138         if (unlikely(pmd_trans_unstable(vmf->pmd)))
3139                 return 0;
3140
3141         /* Use the zero-page for reads */
3142         if (!(vmf->flags & FAULT_FLAG_WRITE) &&
3143                         !mm_forbids_zeropage(vma->vm_mm)) {
3144                 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
3145                                                 vma->vm_page_prot));
3146                 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3147                                 vmf->address, &vmf->ptl);
3148                 if (!pte_none(*vmf->pte))
3149                         goto unlock;
3150                 ret = check_stable_address_space(vma->vm_mm);
3151                 if (ret)
3152                         goto unlock;
3153                 /* Deliver the page fault to userland, check inside PT lock */
3154                 if (userfaultfd_missing(vma)) {
3155                         pte_unmap_unlock(vmf->pte, vmf->ptl);
3156                         return handle_userfault(vmf, VM_UFFD_MISSING);
3157                 }
3158                 goto setpte;
3159         }
3160
3161         /* Allocate our own private page. */
3162         if (unlikely(anon_vma_prepare(vma)))
3163                 goto oom;
3164         page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
3165         if (!page)
3166                 goto oom;
3167
3168         if (mem_cgroup_try_charge_delay(page, vma->vm_mm, GFP_KERNEL, &memcg,
3169                                         false))
3170                 goto oom_free_page;
3171
3172         /*
3173          * The memory barrier inside __SetPageUptodate makes sure that
3174          * preceeding stores to the page contents become visible before
3175          * the set_pte_at() write.
3176          */
3177         __SetPageUptodate(page);
3178
3179         entry = mk_pte(page, vma->vm_page_prot);
3180         if (vma->vm_flags & VM_WRITE)
3181                 entry = pte_mkwrite(pte_mkdirty(entry));
3182
3183         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3184                         &vmf->ptl);
3185         if (!pte_none(*vmf->pte))
3186                 goto release;
3187
3188         ret = check_stable_address_space(vma->vm_mm);
3189         if (ret)
3190                 goto release;
3191
3192         /* Deliver the page fault to userland, check inside PT lock */
3193         if (userfaultfd_missing(vma)) {
3194                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3195                 mem_cgroup_cancel_charge(page, memcg, false);
3196                 put_page(page);
3197                 return handle_userfault(vmf, VM_UFFD_MISSING);
3198         }
3199
3200         inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3201         page_add_new_anon_rmap(page, vma, vmf->address, false);
3202         mem_cgroup_commit_charge(page, memcg, false, false);
3203         lru_cache_add_active_or_unevictable(page, vma);
3204 setpte:
3205         set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3206
3207         /* No need to invalidate - it was non-present before */
3208         update_mmu_cache(vma, vmf->address, vmf->pte);
3209 unlock:
3210         pte_unmap_unlock(vmf->pte, vmf->ptl);
3211         return ret;
3212 release:
3213         mem_cgroup_cancel_charge(page, memcg, false);
3214         put_page(page);
3215         goto unlock;
3216 oom_free_page:
3217         put_page(page);
3218 oom:
3219         return VM_FAULT_OOM;
3220 }
3221
3222 /*
3223  * The mmap_sem must have been held on entry, and may have been
3224  * released depending on flags and vma->vm_ops->fault() return value.
3225  * See filemap_fault() and __lock_page_retry().
3226  */
3227 static int __do_fault(struct vm_fault *vmf)
3228 {
3229         struct vm_area_struct *vma = vmf->vma;
3230         int ret;
3231
3232         ret = vma->vm_ops->fault(vmf);
3233         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
3234                             VM_FAULT_DONE_COW)))
3235                 return ret;
3236
3237         if (unlikely(PageHWPoison(vmf->page))) {
3238                 if (ret & VM_FAULT_LOCKED)
3239                         unlock_page(vmf->page);
3240                 put_page(vmf->page);
3241                 vmf->page = NULL;
3242                 return VM_FAULT_HWPOISON;
3243         }
3244
3245         if (unlikely(!(ret & VM_FAULT_LOCKED)))
3246                 lock_page(vmf->page);
3247         else
3248                 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
3249
3250         return ret;
3251 }
3252
3253 /*
3254  * The ordering of these checks is important for pmds with _PAGE_DEVMAP set.
3255  * If we check pmd_trans_unstable() first we will trip the bad_pmd() check
3256  * inside of pmd_none_or_trans_huge_or_clear_bad(). This will end up correctly
3257  * returning 1 but not before it spams dmesg with the pmd_clear_bad() output.
3258  */
3259 static int pmd_devmap_trans_unstable(pmd_t *pmd)
3260 {
3261         return pmd_devmap(*pmd) || pmd_trans_unstable(pmd);
3262 }
3263
3264 static int pte_alloc_one_map(struct vm_fault *vmf)
3265 {
3266         struct vm_area_struct *vma = vmf->vma;
3267
3268         if (!pmd_none(*vmf->pmd))
3269                 goto map_pte;
3270         if (vmf->prealloc_pte) {
3271                 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3272                 if (unlikely(!pmd_none(*vmf->pmd))) {
3273                         spin_unlock(vmf->ptl);
3274                         goto map_pte;
3275                 }
3276
3277                 mm_inc_nr_ptes(vma->vm_mm);
3278                 pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3279                 spin_unlock(vmf->ptl);
3280                 vmf->prealloc_pte = NULL;
3281         } else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd, vmf->address))) {
3282                 return VM_FAULT_OOM;
3283         }
3284 map_pte:
3285         /*
3286          * If a huge pmd materialized under us just retry later.  Use
3287          * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead of
3288          * pmd_trans_huge() to ensure the pmd didn't become pmd_trans_huge
3289          * under us and then back to pmd_none, as a result of MADV_DONTNEED
3290          * running immediately after a huge pmd fault in a different thread of
3291          * this mm, in turn leading to a misleading pmd_trans_huge() retval.
3292          * All we have to ensure is that it is a regular pmd that we can walk
3293          * with pte_offset_map() and we can do that through an atomic read in
3294          * C, which is what pmd_trans_unstable() provides.
3295          */
3296         if (pmd_devmap_trans_unstable(vmf->pmd))
3297                 return VM_FAULT_NOPAGE;
3298
3299         /*
3300          * At this point we know that our vmf->pmd points to a page of ptes
3301          * and it cannot become pmd_none(), pmd_devmap() or pmd_trans_huge()
3302          * for the duration of the fault.  If a racing MADV_DONTNEED runs and
3303          * we zap the ptes pointed to by our vmf->pmd, the vmf->ptl will still
3304          * be valid and we will re-check to make sure the vmf->pte isn't
3305          * pte_none() under vmf->ptl protection when we return to
3306          * alloc_set_pte().
3307          */
3308         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3309                         &vmf->ptl);
3310         return 0;
3311 }
3312
3313 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3314
3315 #define HPAGE_CACHE_INDEX_MASK (HPAGE_PMD_NR - 1)
3316 static inline bool transhuge_vma_suitable(struct vm_area_struct *vma,
3317                 unsigned long haddr)
3318 {
3319         if (((vma->vm_start >> PAGE_SHIFT) & HPAGE_CACHE_INDEX_MASK) !=
3320                         (vma->vm_pgoff & HPAGE_CACHE_INDEX_MASK))
3321                 return false;
3322         if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
3323                 return false;
3324         return true;
3325 }
3326
3327 static void deposit_prealloc_pte(struct vm_fault *vmf)
3328 {
3329         struct vm_area_struct *vma = vmf->vma;
3330
3331         pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3332         /*
3333          * We are going to consume the prealloc table,
3334          * count that as nr_ptes.
3335          */
3336         mm_inc_nr_ptes(vma->vm_mm);
3337         vmf->prealloc_pte = NULL;
3338 }
3339
3340 static int do_set_pmd(struct vm_fault *vmf, struct page *page)
3341 {
3342         struct vm_area_struct *vma = vmf->vma;
3343         bool write = vmf->flags & FAULT_FLAG_WRITE;
3344         unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
3345         pmd_t entry;
3346         int i, ret;
3347
3348         if (!transhuge_vma_suitable(vma, haddr))
3349                 return VM_FAULT_FALLBACK;
3350
3351         ret = VM_FAULT_FALLBACK;
3352         page = compound_head(page);
3353
3354         /*
3355          * Archs like ppc64 need additonal space to store information
3356          * related to pte entry. Use the preallocated table for that.
3357          */
3358         if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
3359                 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm, vmf->address);
3360                 if (!vmf->prealloc_pte)
3361                         return VM_FAULT_OOM;
3362                 smp_wmb(); /* See comment in __pte_alloc() */
3363         }
3364
3365         vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3366         if (unlikely(!pmd_none(*vmf->pmd)))
3367                 goto out;
3368
3369         for (i = 0; i < HPAGE_PMD_NR; i++)
3370                 flush_icache_page(vma, page + i);
3371
3372         entry = mk_huge_pmd(page, vma->vm_page_prot);
3373         if (write)
3374                 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
3375
3376         add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
3377         page_add_file_rmap(page, true);
3378         /*
3379          * deposit and withdraw with pmd lock held
3380          */
3381         if (arch_needs_pgtable_deposit())
3382                 deposit_prealloc_pte(vmf);
3383
3384         set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
3385
3386         update_mmu_cache_pmd(vma, haddr, vmf->pmd);
3387
3388         /* fault is handled */
3389         ret = 0;
3390         count_vm_event(THP_FILE_MAPPED);
3391 out:
3392         spin_unlock(vmf->ptl);
3393         return ret;
3394 }
3395 #else
3396 static int do_set_pmd(struct vm_fault *vmf, struct page *page)
3397 {
3398         BUILD_BUG();
3399         return 0;
3400 }
3401 #endif
3402
3403 /**
3404  * alloc_set_pte - setup new PTE entry for given page and add reverse page
3405  * mapping. If needed, the fucntion allocates page table or use pre-allocated.
3406  *
3407  * @vmf: fault environment
3408  * @memcg: memcg to charge page (only for private mappings)
3409  * @page: page to map
3410  *
3411  * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on
3412  * return.
3413  *
3414  * Target users are page handler itself and implementations of
3415  * vm_ops->map_pages.
3416  */
3417 int alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
3418                 struct page *page)
3419 {
3420         struct vm_area_struct *vma = vmf->vma;
3421         bool write = vmf->flags & FAULT_FLAG_WRITE;
3422         pte_t entry;
3423         int ret;
3424
3425         if (pmd_none(*vmf->pmd) && PageTransCompound(page) &&
3426                         IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
3427                 /* THP on COW? */
3428                 VM_BUG_ON_PAGE(memcg, page);
3429
3430                 ret = do_set_pmd(vmf, page);
3431                 if (ret != VM_FAULT_FALLBACK)
3432                         return ret;
3433         }
3434
3435         if (!vmf->pte) {
3436                 ret = pte_alloc_one_map(vmf);
3437                 if (ret)
3438                         return ret;
3439         }
3440
3441         /* Re-check under ptl */
3442         if (unlikely(!pte_none(*vmf->pte)))
3443                 return VM_FAULT_NOPAGE;
3444
3445         flush_icache_page(vma, page);
3446         entry = mk_pte(page, vma->vm_page_prot);
3447         if (write)
3448                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3449         /* copy-on-write page */
3450         if (write && !(vma->vm_flags & VM_SHARED)) {
3451                 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3452                 page_add_new_anon_rmap(page, vma, vmf->address, false);
3453                 mem_cgroup_commit_charge(page, memcg, false, false);
3454                 lru_cache_add_active_or_unevictable(page, vma);
3455         } else {
3456                 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
3457                 page_add_file_rmap(page, false);
3458         }
3459         set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3460
3461         /* no need to invalidate: a not-present page won't be cached */
3462         update_mmu_cache(vma, vmf->address, vmf->pte);
3463
3464         return 0;
3465 }
3466
3467
3468 /**
3469  * finish_fault - finish page fault once we have prepared the page to fault
3470  *
3471  * @vmf: structure describing the fault
3472  *
3473  * This function handles all that is needed to finish a page fault once the
3474  * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
3475  * given page, adds reverse page mapping, handles memcg charges and LRU
3476  * addition. The function returns 0 on success, VM_FAULT_ code in case of
3477  * error.
3478  *
3479  * The function expects the page to be locked and on success it consumes a
3480  * reference of a page being mapped (for the PTE which maps it).
3481  */
3482 int finish_fault(struct vm_fault *vmf)
3483 {
3484         struct page *page;
3485         int ret = 0;
3486
3487         /* Did we COW the page? */
3488         if ((vmf->flags & FAULT_FLAG_WRITE) &&
3489             !(vmf->vma->vm_flags & VM_SHARED))
3490                 page = vmf->cow_page;
3491         else
3492                 page = vmf->page;
3493
3494         /*
3495          * check even for read faults because we might have lost our CoWed
3496          * page
3497          */
3498         if (!(vmf->vma->vm_flags & VM_SHARED))
3499                 ret = check_stable_address_space(vmf->vma->vm_mm);
3500         if (!ret)
3501                 ret = alloc_set_pte(vmf, vmf->memcg, page);
3502         if (vmf->pte)
3503                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3504         return ret;
3505 }
3506
3507 static unsigned long fault_around_bytes __read_mostly =
3508         rounddown_pow_of_two(65536);
3509
3510 #ifdef CONFIG_DEBUG_FS
3511 static int fault_around_bytes_get(void *data, u64 *val)
3512 {
3513         *val = fault_around_bytes;
3514         return 0;
3515 }
3516
3517 /*
3518  * fault_around_bytes must be rounded down to the nearest page order as it's
3519  * what do_fault_around() expects to see.
3520  */
3521 static int fault_around_bytes_set(void *data, u64 val)
3522 {
3523         if (val / PAGE_SIZE > PTRS_PER_PTE)
3524                 return -EINVAL;
3525         if (val > PAGE_SIZE)
3526                 fault_around_bytes = rounddown_pow_of_two(val);
3527         else
3528                 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
3529         return 0;
3530 }
3531 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
3532                 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
3533
3534 static int __init fault_around_debugfs(void)
3535 {
3536         void *ret;
3537
3538         ret = debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
3539                         &fault_around_bytes_fops);
3540         if (!ret)
3541                 pr_warn("Failed to create fault_around_bytes in debugfs");
3542         return 0;
3543 }
3544 late_initcall(fault_around_debugfs);
3545 #endif
3546
3547 /*
3548  * do_fault_around() tries to map few pages around the fault address. The hope
3549  * is that the pages will be needed soon and this will lower the number of
3550  * faults to handle.
3551  *
3552  * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
3553  * not ready to be mapped: not up-to-date, locked, etc.
3554  *
3555  * This function is called with the page table lock taken. In the split ptlock
3556  * case the page table lock only protects only those entries which belong to
3557  * the page table corresponding to the fault address.
3558  *
3559  * This function doesn't cross the VMA boundaries, in order to call map_pages()
3560  * only once.
3561  *
3562  * fault_around_bytes defines how many bytes we'll try to map.
3563  * do_fault_around() expects it to be set to a power of two less than or equal
3564  * to PTRS_PER_PTE.
3565  *
3566  * The virtual address of the area that we map is naturally aligned to
3567  * fault_around_bytes rounded down to the machine page size
3568  * (and therefore to page order).  This way it's easier to guarantee
3569  * that we don't cross page table boundaries.
3570  */
3571 static int do_fault_around(struct vm_fault *vmf)
3572 {
3573         unsigned long address = vmf->address, nr_pages, mask;
3574         pgoff_t start_pgoff = vmf->pgoff;
3575         pgoff_t end_pgoff;
3576         int off, ret = 0;
3577
3578         nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
3579         mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
3580
3581         vmf->address = max(address & mask, vmf->vma->vm_start);
3582         off = ((address - vmf->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
3583         start_pgoff -= off;
3584
3585         /*
3586          *  end_pgoff is either the end of the page table, the end of
3587          *  the vma or nr_pages from start_pgoff, depending what is nearest.
3588          */
3589         end_pgoff = start_pgoff -
3590                 ((vmf->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
3591                 PTRS_PER_PTE - 1;
3592         end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
3593                         start_pgoff + nr_pages - 1);
3594
3595         if (pmd_none(*vmf->pmd)) {
3596                 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm,
3597                                                   vmf->address);
3598                 if (!vmf->prealloc_pte)
3599                         goto out;
3600                 smp_wmb(); /* See comment in __pte_alloc() */
3601         }
3602
3603         vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
3604
3605         /* Huge page is mapped? Page fault is solved */
3606         if (pmd_trans_huge(*vmf->pmd)) {
3607                 ret = VM_FAULT_NOPAGE;
3608                 goto out;
3609         }
3610
3611         /* ->map_pages() haven't done anything useful. Cold page cache? */
3612         if (!vmf->pte)
3613                 goto out;
3614
3615         /* check if the page fault is solved */
3616         vmf->pte -= (vmf->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT);
3617         if (!pte_none(*vmf->pte))
3618                 ret = VM_FAULT_NOPAGE;
3619         pte_unmap_unlock(vmf->pte, vmf->ptl);
3620 out:
3621         vmf->address = address;
3622         vmf->pte = NULL;
3623         return ret;
3624 }
3625
3626 static int do_read_fault(struct vm_fault *vmf)
3627 {
3628         struct vm_area_struct *vma = vmf->vma;
3629         int ret = 0;
3630
3631         /*
3632          * Let's call ->map_pages() first and use ->fault() as fallback
3633          * if page by the offset is not ready to be mapped (cold cache or
3634          * something).
3635          */
3636         if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
3637                 ret = do_fault_around(vmf);
3638                 if (ret)
3639                         return ret;
3640         }
3641
3642         ret = __do_fault(vmf);
3643         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3644                 return ret;
3645
3646         ret |= finish_fault(vmf);
3647         unlock_page(vmf->page);
3648         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3649                 put_page(vmf->page);
3650         return ret;
3651 }
3652
3653 static int do_cow_fault(struct vm_fault *vmf)
3654 {
3655         struct vm_area_struct *vma = vmf->vma;
3656         int ret;
3657
3658         if (unlikely(anon_vma_prepare(vma)))
3659                 return VM_FAULT_OOM;
3660
3661         vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
3662         if (!vmf->cow_page)
3663                 return VM_FAULT_OOM;
3664
3665         if (mem_cgroup_try_charge_delay(vmf->cow_page, vma->vm_mm, GFP_KERNEL,
3666                                 &vmf->memcg, false)) {
3667                 put_page(vmf->cow_page);
3668                 return VM_FAULT_OOM;
3669         }
3670
3671         ret = __do_fault(vmf);
3672         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3673                 goto uncharge_out;
3674         if (ret & VM_FAULT_DONE_COW)
3675                 return ret;
3676
3677         copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
3678         __SetPageUptodate(vmf->cow_page);
3679
3680         ret |= finish_fault(vmf);
3681         unlock_page(vmf->page);
3682         put_page(vmf->page);
3683         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3684                 goto uncharge_out;
3685         return ret;
3686 uncharge_out:
3687         mem_cgroup_cancel_charge(vmf->cow_page, vmf->memcg, false);
3688         put_page(vmf->cow_page);
3689         return ret;
3690 }
3691
3692 static int do_shared_fault(struct vm_fault *vmf)
3693 {
3694         struct vm_area_struct *vma = vmf->vma;
3695         int ret, tmp;
3696
3697         ret = __do_fault(vmf);
3698         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3699                 return ret;
3700
3701         /*
3702          * Check if the backing address space wants to know that the page is
3703          * about to become writable
3704          */
3705         if (vma->vm_ops->page_mkwrite) {
3706                 unlock_page(vmf->page);
3707                 tmp = do_page_mkwrite(vmf);
3708                 if (unlikely(!tmp ||
3709                                 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3710                         put_page(vmf->page);
3711                         return tmp;
3712                 }
3713         }
3714
3715         ret |= finish_fault(vmf);
3716         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3717                                         VM_FAULT_RETRY))) {
3718                 unlock_page(vmf->page);
3719                 put_page(vmf->page);
3720                 return ret;
3721         }
3722
3723         fault_dirty_shared_page(vma, vmf->page);
3724         return ret;
3725 }
3726
3727 /*
3728  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3729  * but allow concurrent faults).
3730  * The mmap_sem may have been released depending on flags and our
3731  * return value.  See filemap_fault() and __lock_page_or_retry().
3732  */
3733 static int do_fault(struct vm_fault *vmf)
3734 {
3735         struct vm_area_struct *vma = vmf->vma;
3736         int ret;
3737
3738         /* The VMA was not fully populated on mmap() or missing VM_DONTEXPAND */
3739         if (!vma->vm_ops->fault)
3740                 ret = VM_FAULT_SIGBUS;
3741         else if (!(vmf->flags & FAULT_FLAG_WRITE))
3742                 ret = do_read_fault(vmf);
3743         else if (!(vma->vm_flags & VM_SHARED))
3744                 ret = do_cow_fault(vmf);
3745         else
3746                 ret = do_shared_fault(vmf);
3747
3748         /* preallocated pagetable is unused: free it */
3749         if (vmf->prealloc_pte) {
3750                 pte_free(vma->vm_mm, vmf->prealloc_pte);
3751                 vmf->prealloc_pte = NULL;
3752         }
3753         return ret;
3754 }
3755
3756 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3757                                 unsigned long addr, int page_nid,
3758                                 int *flags)
3759 {
3760         get_page(page);
3761
3762         count_vm_numa_event(NUMA_HINT_FAULTS);
3763         if (page_nid == numa_node_id()) {
3764                 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
3765                 *flags |= TNF_FAULT_LOCAL;
3766         }
3767
3768         return mpol_misplaced(page, vma, addr);
3769 }
3770
3771 static int do_numa_page(struct vm_fault *vmf)
3772 {
3773         struct vm_area_struct *vma = vmf->vma;
3774         struct page *page = NULL;
3775         int page_nid = -1;
3776         int last_cpupid;
3777         int target_nid;
3778         bool migrated = false;
3779         pte_t pte;
3780         bool was_writable = pte_savedwrite(vmf->orig_pte);
3781         int flags = 0;
3782
3783         /*
3784          * The "pte" at this point cannot be used safely without
3785          * validation through pte_unmap_same(). It's of NUMA type but
3786          * the pfn may be screwed if the read is non atomic.
3787          */
3788         vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
3789         spin_lock(vmf->ptl);
3790         if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
3791                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3792                 goto out;
3793         }
3794
3795         /*
3796          * Make it present again, Depending on how arch implementes non
3797          * accessible ptes, some can allow access by kernel mode.
3798          */
3799         pte = ptep_modify_prot_start(vma->vm_mm, vmf->address, vmf->pte);
3800         pte = pte_modify(pte, vma->vm_page_prot);
3801         pte = pte_mkyoung(pte);
3802         if (was_writable)
3803                 pte = pte_mkwrite(pte);
3804         ptep_modify_prot_commit(vma->vm_mm, vmf->address, vmf->pte, pte);
3805         update_mmu_cache(vma, vmf->address, vmf->pte);
3806
3807         page = vm_normal_page(vma, vmf->address, pte);
3808         if (!page) {
3809                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3810                 return 0;
3811         }
3812
3813         /* TODO: handle PTE-mapped THP */
3814         if (PageCompound(page)) {
3815                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3816                 return 0;
3817         }
3818
3819         /*
3820          * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
3821          * much anyway since they can be in shared cache state. This misses
3822          * the case where a mapping is writable but the process never writes
3823          * to it but pte_write gets cleared during protection updates and
3824          * pte_dirty has unpredictable behaviour between PTE scan updates,
3825          * background writeback, dirty balancing and application behaviour.
3826          */
3827         if (!pte_write(pte))
3828                 flags |= TNF_NO_GROUP;
3829
3830         /*
3831          * Flag if the page is shared between multiple address spaces. This
3832          * is later used when determining whether to group tasks together
3833          */
3834         if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
3835                 flags |= TNF_SHARED;
3836
3837         last_cpupid = page_cpupid_last(page);
3838         page_nid = page_to_nid(page);
3839         target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
3840                         &flags);
3841         pte_unmap_unlock(vmf->pte, vmf->ptl);
3842         if (target_nid == -1) {
3843                 put_page(page);
3844                 goto out;
3845         }
3846
3847         /* Migrate to the requested node */
3848         migrated = migrate_misplaced_page(page, vma, target_nid);
3849         if (migrated) {
3850                 page_nid = target_nid;
3851                 flags |= TNF_MIGRATED;
3852         } else
3853                 flags |= TNF_MIGRATE_FAIL;
3854
3855 out:
3856         if (page_nid != -1)
3857                 task_numa_fault(last_cpupid, page_nid, 1, flags);
3858         return 0;
3859 }
3860
3861 static inline int create_huge_pmd(struct vm_fault *vmf)
3862 {
3863         if (vma_is_anonymous(vmf->vma))
3864                 return do_huge_pmd_anonymous_page(vmf);
3865         if (vmf->vma->vm_ops->huge_fault)
3866                 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
3867         return VM_FAULT_FALLBACK;
3868 }
3869
3870 /* `inline' is required to avoid gcc 4.1.2 build error */
3871 static inline int wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd)
3872 {
3873         if (vma_is_anonymous(vmf->vma))
3874                 return do_huge_pmd_wp_page(vmf, orig_pmd);
3875         if (vmf->vma->vm_ops->huge_fault)
3876                 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
3877
3878         /* COW handled on pte level: split pmd */
3879         VM_BUG_ON_VMA(vmf->vma->vm_flags & VM_SHARED, vmf->vma);
3880         __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
3881
3882         return VM_FAULT_FALLBACK;
3883 }
3884
3885 static inline bool vma_is_accessible(struct vm_area_struct *vma)
3886 {
3887         return vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE);
3888 }
3889
3890 static int create_huge_pud(struct vm_fault *vmf)
3891 {
3892 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3893         /* No support for anonymous transparent PUD pages yet */
3894         if (vma_is_anonymous(vmf->vma))
3895                 return VM_FAULT_FALLBACK;
3896         if (vmf->vma->vm_ops->huge_fault)
3897                 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
3898 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3899         return VM_FAULT_FALLBACK;
3900 }
3901
3902 static int wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
3903 {
3904 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3905         /* No support for anonymous transparent PUD pages yet */
3906         if (vma_is_anonymous(vmf->vma))
3907                 return VM_FAULT_FALLBACK;
3908         if (vmf->vma->vm_ops->huge_fault)
3909                 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
3910 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3911         return VM_FAULT_FALLBACK;
3912 }
3913
3914 /*
3915  * These routines also need to handle stuff like marking pages dirty
3916  * and/or accessed for architectures that don't do it in hardware (most
3917  * RISC architectures).  The early dirtying is also good on the i386.
3918  *
3919  * There is also a hook called "update_mmu_cache()" that architectures
3920  * with external mmu caches can use to update those (ie the Sparc or
3921  * PowerPC hashed page tables that act as extended TLBs).
3922  *
3923  * We enter with non-exclusive mmap_sem (to exclude vma changes, but allow
3924  * concurrent faults).
3925  *
3926  * The mmap_sem may have been released depending on flags and our return value.
3927  * See filemap_fault() and __lock_page_or_retry().
3928  */
3929 static int handle_pte_fault(struct vm_fault *vmf)
3930 {
3931         pte_t entry;
3932
3933         if (unlikely(pmd_none(*vmf->pmd))) {
3934                 /*
3935                  * Leave __pte_alloc() until later: because vm_ops->fault may
3936                  * want to allocate huge page, and if we expose page table
3937                  * for an instant, it will be difficult to retract from
3938                  * concurrent faults and from rmap lookups.
3939                  */
3940                 vmf->pte = NULL;
3941         } else {
3942                 /* See comment in pte_alloc_one_map() */
3943                 if (pmd_devmap_trans_unstable(vmf->pmd))
3944                         return 0;
3945                 /*
3946                  * A regular pmd is established and it can't morph into a huge
3947                  * pmd from under us anymore at this point because we hold the
3948                  * mmap_sem read mode and khugepaged takes it in write mode.
3949                  * So now it's safe to run pte_offset_map().
3950                  */
3951                 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
3952                 vmf->orig_pte = *vmf->pte;
3953
3954                 /*
3955                  * some architectures can have larger ptes than wordsize,
3956                  * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
3957                  * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
3958                  * accesses.  The code below just needs a consistent view
3959                  * for the ifs and we later double check anyway with the
3960                  * ptl lock held. So here a barrier will do.
3961                  */
3962                 barrier();
3963                 if (pte_none(vmf->orig_pte)) {
3964                         pte_unmap(vmf->pte);
3965                         vmf->pte = NULL;
3966                 }
3967         }
3968
3969         if (!vmf->pte) {
3970                 if (vma_is_anonymous(vmf->vma))
3971                         return do_anonymous_page(vmf);
3972                 else
3973                         return do_fault(vmf);
3974         }
3975
3976         if (!pte_present(vmf->orig_pte))
3977                 return do_swap_page(vmf);
3978
3979         if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
3980                 return do_numa_page(vmf);
3981
3982         vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
3983         spin_lock(vmf->ptl);
3984         entry = vmf->orig_pte;
3985         if (unlikely(!pte_same(*vmf->pte, entry)))
3986                 goto unlock;
3987         if (vmf->flags & FAULT_FLAG_WRITE) {
3988                 if (!pte_write(entry))
3989                         return do_wp_page(vmf);
3990                 entry = pte_mkdirty(entry);
3991         }
3992         entry = pte_mkyoung(entry);
3993         if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
3994                                 vmf->flags & FAULT_FLAG_WRITE)) {
3995                 update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
3996         } else {
3997                 /*
3998                  * This is needed only for protection faults but the arch code
3999                  * is not yet telling us if this is a protection fault or not.
4000                  * This still avoids useless tlb flushes for .text page faults
4001                  * with threads.
4002                  */
4003                 if (vmf->flags & FAULT_FLAG_WRITE)
4004                         flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
4005         }
4006 unlock:
4007         pte_unmap_unlock(vmf->pte, vmf->ptl);
4008         return 0;
4009 }
4010
4011 /*
4012  * By the time we get here, we already hold the mm semaphore
4013  *
4014  * The mmap_sem may have been released depending on flags and our
4015  * return value.  See filemap_fault() and __lock_page_or_retry().
4016  */
4017 static int __handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
4018                 unsigned int flags)
4019 {
4020         struct vm_fault vmf = {
4021                 .vma = vma,
4022                 .address = address & PAGE_MASK,
4023                 .flags = flags,
4024                 .pgoff = linear_page_index(vma, address),
4025                 .gfp_mask = __get_fault_gfp_mask(vma),
4026         };
4027         unsigned int dirty = flags & FAULT_FLAG_WRITE;
4028         struct mm_struct *mm = vma->vm_mm;
4029         pgd_t *pgd;
4030         p4d_t *p4d;
4031         int ret;
4032
4033         pgd = pgd_offset(mm, address);
4034         p4d = p4d_alloc(mm, pgd, address);
4035         if (!p4d)
4036                 return VM_FAULT_OOM;
4037
4038         vmf.pud = pud_alloc(mm, p4d, address);
4039         if (!vmf.pud)
4040                 return VM_FAULT_OOM;
4041         if (pud_none(*vmf.pud) && transparent_hugepage_enabled(vma)) {
4042                 ret = create_huge_pud(&vmf);
4043                 if (!(ret & VM_FAULT_FALLBACK))
4044                         return ret;
4045         } else {
4046                 pud_t orig_pud = *vmf.pud;
4047
4048                 barrier();
4049                 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
4050
4051                         /* NUMA case for anonymous PUDs would go here */
4052
4053                         if (dirty && !pud_write(orig_pud)) {
4054                                 ret = wp_huge_pud(&vmf, orig_pud);
4055                                 if (!(ret & VM_FAULT_FALLBACK))
4056                                         return ret;
4057                         } else {
4058                                 huge_pud_set_accessed(&vmf, orig_pud);
4059                                 return 0;
4060                         }
4061                 }
4062         }
4063
4064         vmf.pmd = pmd_alloc(mm, vmf.pud, address);
4065         if (!vmf.pmd)
4066                 return VM_FAULT_OOM;
4067         if (pmd_none(*vmf.pmd) && transparent_hugepage_enabled(vma)) {
4068                 ret = create_huge_pmd(&vmf);
4069                 if (!(ret & VM_FAULT_FALLBACK))
4070                         return ret;
4071         } else {
4072                 pmd_t orig_pmd = *vmf.pmd;
4073
4074                 barrier();
4075                 if (unlikely(is_swap_pmd(orig_pmd))) {
4076                         VM_BUG_ON(thp_migration_supported() &&
4077                                           !is_pmd_migration_entry(orig_pmd));
4078                         if (is_pmd_migration_entry(orig_pmd))
4079                                 pmd_migration_entry_wait(mm, vmf.pmd);
4080                         return 0;
4081                 }
4082                 if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
4083                         if (pmd_protnone(orig_pmd) && vma_is_accessible(vma))
4084                                 return do_huge_pmd_numa_page(&vmf, orig_pmd);
4085
4086                         if (dirty && !pmd_write(orig_pmd)) {
4087                                 ret = wp_huge_pmd(&vmf, orig_pmd);
4088                                 if (!(ret & VM_FAULT_FALLBACK))
4089                                         return ret;
4090                         } else {
4091                                 huge_pmd_set_accessed(&vmf, orig_pmd);
4092                                 return 0;
4093                         }
4094                 }
4095         }
4096
4097         return handle_pte_fault(&vmf);
4098 }
4099
4100 /*
4101  * By the time we get here, we already hold the mm semaphore
4102  *
4103  * The mmap_sem may have been released depending on flags and our
4104  * return value.  See filemap_fault() and __lock_page_or_retry().
4105  */
4106 int handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
4107                 unsigned int flags)
4108 {
4109         int ret;
4110
4111         __set_current_state(TASK_RUNNING);
4112
4113         count_vm_event(PGFAULT);
4114         count_memcg_event_mm(vma->vm_mm, PGFAULT);
4115
4116         /* do counter updates before entering really critical section. */
4117         check_sync_rss_stat(current);
4118
4119         if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
4120                                             flags & FAULT_FLAG_INSTRUCTION,
4121                                             flags & FAULT_FLAG_REMOTE))
4122                 return VM_FAULT_SIGSEGV;
4123
4124         /*
4125          * Enable the memcg OOM handling for faults triggered in user
4126          * space.  Kernel faults are handled more gracefully.
4127          */
4128         if (flags & FAULT_FLAG_USER)
4129                 mem_cgroup_enter_user_fault();
4130
4131         if (unlikely(is_vm_hugetlb_page(vma)))
4132                 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
4133         else
4134                 ret = __handle_mm_fault(vma, address, flags);
4135
4136         if (flags & FAULT_FLAG_USER) {
4137                 mem_cgroup_exit_user_fault();
4138                 /*
4139                  * The task may have entered a memcg OOM situation but
4140                  * if the allocation error was handled gracefully (no
4141                  * VM_FAULT_OOM), there is no need to kill anything.
4142                  * Just clean up the OOM state peacefully.
4143                  */
4144                 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
4145                         mem_cgroup_oom_synchronize(false);
4146         }
4147
4148         return ret;
4149 }
4150 EXPORT_SYMBOL_GPL(handle_mm_fault);
4151
4152 #ifndef __PAGETABLE_P4D_FOLDED
4153 /*
4154  * Allocate p4d page table.
4155  * We've already handled the fast-path in-line.
4156  */
4157 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
4158 {
4159         p4d_t *new = p4d_alloc_one(mm, address);
4160         if (!new)
4161                 return -ENOMEM;
4162
4163         smp_wmb(); /* See comment in __pte_alloc */
4164
4165         spin_lock(&mm->page_table_lock);
4166         if (pgd_present(*pgd))          /* Another has populated it */
4167                 p4d_free(mm, new);
4168         else
4169                 pgd_populate(mm, pgd, new);
4170         spin_unlock(&mm->page_table_lock);
4171         return 0;
4172 }
4173 #endif /* __PAGETABLE_P4D_FOLDED */
4174
4175 #ifndef __PAGETABLE_PUD_FOLDED
4176 /*
4177  * Allocate page upper directory.
4178  * We've already handled the fast-path in-line.
4179  */
4180 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
4181 {
4182         pud_t *new = pud_alloc_one(mm, address);
4183         if (!new)
4184                 return -ENOMEM;
4185
4186         smp_wmb(); /* See comment in __pte_alloc */
4187
4188         spin_lock(&mm->page_table_lock);
4189 #ifndef __ARCH_HAS_5LEVEL_HACK
4190         if (!p4d_present(*p4d)) {
4191                 mm_inc_nr_puds(mm);
4192                 p4d_populate(mm, p4d, new);
4193         } else  /* Another has populated it */
4194                 pud_free(mm, new);
4195 #else
4196         if (!pgd_present(*p4d)) {
4197                 mm_inc_nr_puds(mm);
4198                 pgd_populate(mm, p4d, new);
4199         } else  /* Another has populated it */
4200                 pud_free(mm, new);
4201 #endif /* __ARCH_HAS_5LEVEL_HACK */
4202         spin_unlock(&mm->page_table_lock);
4203         return 0;
4204 }
4205 #endif /* __PAGETABLE_PUD_FOLDED */
4206
4207 #ifndef __PAGETABLE_PMD_FOLDED
4208 /*
4209  * Allocate page middle directory.
4210  * We've already handled the fast-path in-line.
4211  */
4212 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
4213 {
4214         spinlock_t *ptl;
4215         pmd_t *new = pmd_alloc_one(mm, address);
4216         if (!new)
4217                 return -ENOMEM;
4218
4219         smp_wmb(); /* See comment in __pte_alloc */
4220
4221         ptl = pud_lock(mm, pud);
4222 #ifndef __ARCH_HAS_4LEVEL_HACK
4223         if (!pud_present(*pud)) {
4224                 mm_inc_nr_pmds(mm);
4225                 pud_populate(mm, pud, new);
4226         } else  /* Another has populated it */
4227                 pmd_free(mm, new);
4228 #else
4229         if (!pgd_present(*pud)) {
4230                 mm_inc_nr_pmds(mm);
4231                 pgd_populate(mm, pud, new);
4232         } else /* Another has populated it */
4233                 pmd_free(mm, new);
4234 #endif /* __ARCH_HAS_4LEVEL_HACK */
4235         spin_unlock(ptl);
4236         return 0;
4237 }
4238 #endif /* __PAGETABLE_PMD_FOLDED */
4239
4240 static int __follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4241                             unsigned long *start, unsigned long *end,
4242                             pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4243 {
4244         pgd_t *pgd;
4245         p4d_t *p4d;
4246         pud_t *pud;
4247         pmd_t *pmd;
4248         pte_t *ptep;
4249
4250         pgd = pgd_offset(mm, address);
4251         if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
4252                 goto out;
4253
4254         p4d = p4d_offset(pgd, address);
4255         if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
4256                 goto out;
4257
4258         pud = pud_offset(p4d, address);
4259         if (pud_none(*pud) || unlikely(pud_bad(*pud)))
4260                 goto out;
4261
4262         pmd = pmd_offset(pud, address);
4263         VM_BUG_ON(pmd_trans_huge(*pmd));
4264
4265         if (pmd_huge(*pmd)) {
4266                 if (!pmdpp)
4267                         goto out;
4268
4269                 if (start && end) {
4270                         *start = address & PMD_MASK;
4271                         *end = *start + PMD_SIZE;
4272                         mmu_notifier_invalidate_range_start(mm, *start, *end);
4273                 }
4274                 *ptlp = pmd_lock(mm, pmd);
4275                 if (pmd_huge(*pmd)) {
4276                         *pmdpp = pmd;
4277                         return 0;
4278                 }
4279                 spin_unlock(*ptlp);
4280                 if (start && end)
4281                         mmu_notifier_invalidate_range_end(mm, *start, *end);
4282         }
4283
4284         if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
4285                 goto out;
4286
4287         if (start && end) {
4288                 *start = address & PAGE_MASK;
4289                 *end = *start + PAGE_SIZE;
4290                 mmu_notifier_invalidate_range_start(mm, *start, *end);
4291         }
4292         ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
4293         if (!pte_present(*ptep))
4294                 goto unlock;
4295         *ptepp = ptep;
4296         return 0;
4297 unlock:
4298         pte_unmap_unlock(ptep, *ptlp);
4299         if (start && end)
4300                 mmu_notifier_invalidate_range_end(mm, *start, *end);
4301 out:
4302         return -EINVAL;
4303 }
4304
4305 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
4306                              pte_t **ptepp, spinlock_t **ptlp)
4307 {
4308         int res;
4309
4310         /* (void) is needed to make gcc happy */
4311         (void) __cond_lock(*ptlp,
4312                            !(res = __follow_pte_pmd(mm, address, NULL, NULL,
4313                                                     ptepp, NULL, ptlp)));
4314         return res;
4315 }
4316
4317 int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4318                              unsigned long *start, unsigned long *end,
4319                              pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4320 {
4321         int res;
4322
4323         /* (void) is needed to make gcc happy */
4324         (void) __cond_lock(*ptlp,
4325                            !(res = __follow_pte_pmd(mm, address, start, end,
4326                                                     ptepp, pmdpp, ptlp)));
4327         return res;
4328 }
4329 EXPORT_SYMBOL(follow_pte_pmd);
4330
4331 /**
4332  * follow_pfn - look up PFN at a user virtual address
4333  * @vma: memory mapping
4334  * @address: user virtual address
4335  * @pfn: location to store found PFN
4336  *
4337  * Only IO mappings and raw PFN mappings are allowed.
4338  *
4339  * Returns zero and the pfn at @pfn on success, -ve otherwise.
4340  */
4341 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
4342         unsigned long *pfn)
4343 {
4344         int ret = -EINVAL;
4345         spinlock_t *ptl;
4346         pte_t *ptep;
4347
4348         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4349                 return ret;
4350
4351         ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
4352         if (ret)
4353                 return ret;
4354         *pfn = pte_pfn(*ptep);
4355         pte_unmap_unlock(ptep, ptl);
4356         return 0;
4357 }
4358 EXPORT_SYMBOL(follow_pfn);
4359
4360 #ifdef CONFIG_HAVE_IOREMAP_PROT
4361 int follow_phys(struct vm_area_struct *vma,
4362                 unsigned long address, unsigned int flags,
4363                 unsigned long *prot, resource_size_t *phys)
4364 {
4365         int ret = -EINVAL;
4366         pte_t *ptep, pte;
4367         spinlock_t *ptl;
4368
4369         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4370                 goto out;
4371
4372         if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
4373                 goto out;
4374         pte = *ptep;
4375
4376         if ((flags & FOLL_WRITE) && !pte_write(pte))
4377                 goto unlock;
4378
4379         *prot = pgprot_val(pte_pgprot(pte));
4380         *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
4381
4382         ret = 0;
4383 unlock:
4384         pte_unmap_unlock(ptep, ptl);
4385 out:
4386         return ret;
4387 }
4388
4389 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
4390                         void *buf, int len, int write)
4391 {
4392         resource_size_t phys_addr;
4393         unsigned long prot = 0;
4394         void __iomem *maddr;
4395         int offset = addr & (PAGE_SIZE-1);
4396
4397         if (follow_phys(vma, addr, write, &prot, &phys_addr))
4398                 return -EINVAL;
4399
4400         maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
4401         if (!maddr)
4402                 return -ENOMEM;
4403
4404         if (write)
4405                 memcpy_toio(maddr + offset, buf, len);
4406         else
4407                 memcpy_fromio(buf, maddr + offset, len);
4408         iounmap(maddr);
4409
4410         return len;
4411 }
4412 EXPORT_SYMBOL_GPL(generic_access_phys);
4413 #endif
4414
4415 /*
4416  * Access another process' address space as given in mm.  If non-NULL, use the
4417  * given task for page fault accounting.
4418  */
4419 int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
4420                 unsigned long addr, void *buf, int len, unsigned int gup_flags)
4421 {
4422         struct vm_area_struct *vma;
4423         void *old_buf = buf;
4424         int write = gup_flags & FOLL_WRITE;
4425
4426         down_read(&mm->mmap_sem);
4427         /* ignore errors, just check how much was successfully transferred */
4428         while (len) {
4429                 int bytes, ret, offset;
4430                 void *maddr;
4431                 struct page *page = NULL;
4432
4433                 ret = get_user_pages_remote(tsk, mm, addr, 1,
4434                                 gup_flags, &page, &vma, NULL);
4435                 if (ret <= 0) {
4436 #ifndef CONFIG_HAVE_IOREMAP_PROT
4437                         break;
4438 #else
4439                         /*
4440                          * Check if this is a VM_IO | VM_PFNMAP VMA, which
4441                          * we can access using slightly different code.
4442                          */
4443                         vma = find_vma(mm, addr);
4444                         if (!vma || vma->vm_start > addr)
4445                                 break;
4446                         if (vma->vm_ops && vma->vm_ops->access)
4447                                 ret = vma->vm_ops->access(vma, addr, buf,
4448                                                           len, write);
4449                         if (ret <= 0)
4450                                 break;
4451                         bytes = ret;
4452 #endif
4453                 } else {
4454                         bytes = len;
4455                         offset = addr & (PAGE_SIZE-1);
4456                         if (bytes > PAGE_SIZE-offset)
4457                                 bytes = PAGE_SIZE-offset;
4458
4459                         maddr = kmap(page);
4460                         if (write) {
4461                                 copy_to_user_page(vma, page, addr,
4462                                                   maddr + offset, buf, bytes);
4463                                 set_page_dirty_lock(page);
4464                         } else {
4465                                 copy_from_user_page(vma, page, addr,
4466                                                     buf, maddr + offset, bytes);
4467                         }
4468                         kunmap(page);
4469                         put_page(page);
4470                 }
4471                 len -= bytes;
4472                 buf += bytes;
4473                 addr += bytes;
4474         }
4475         up_read(&mm->mmap_sem);
4476
4477         return buf - old_buf;
4478 }
4479
4480 /**
4481  * access_remote_vm - access another process' address space
4482  * @mm:         the mm_struct of the target address space
4483  * @addr:       start address to access
4484  * @buf:        source or destination buffer
4485  * @len:        number of bytes to transfer
4486  * @gup_flags:  flags modifying lookup behaviour
4487  *
4488  * The caller must hold a reference on @mm.
4489  */
4490 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
4491                 void *buf, int len, unsigned int gup_flags)
4492 {
4493         return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
4494 }
4495
4496 /*
4497  * Access another process' address space.
4498  * Source/target buffer must be kernel space,
4499  * Do not walk the page table directly, use get_user_pages
4500  */
4501 int access_process_vm(struct task_struct *tsk, unsigned long addr,
4502                 void *buf, int len, unsigned int gup_flags)
4503 {
4504         struct mm_struct *mm;
4505         int ret;
4506
4507         mm = get_task_mm(tsk);
4508         if (!mm)
4509                 return 0;
4510
4511         ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
4512
4513         mmput(mm);
4514
4515         return ret;
4516 }
4517 EXPORT_SYMBOL_GPL(access_process_vm);
4518
4519 /*
4520  * Print the name of a VMA.
4521  */
4522 void print_vma_addr(char *prefix, unsigned long ip)
4523 {
4524         struct mm_struct *mm = current->mm;
4525         struct vm_area_struct *vma;
4526
4527         /*
4528          * we might be running from an atomic context so we cannot sleep
4529          */
4530         if (!down_read_trylock(&mm->mmap_sem))
4531                 return;
4532
4533         vma = find_vma(mm, ip);
4534         if (vma && vma->vm_file) {
4535                 struct file *f = vma->vm_file;
4536                 char *buf = (char *)__get_free_page(GFP_NOWAIT);
4537                 if (buf) {
4538                         char *p;
4539
4540                         p = file_path(f, buf, PAGE_SIZE);
4541                         if (IS_ERR(p))
4542                                 p = "?";
4543                         printk("%s%s[%lx+%lx]", prefix, kbasename(p),
4544                                         vma->vm_start,
4545                                         vma->vm_end - vma->vm_start);
4546                         free_page((unsigned long)buf);
4547                 }
4548         }
4549         up_read(&mm->mmap_sem);
4550 }
4551
4552 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4553 void __might_fault(const char *file, int line)
4554 {
4555         /*
4556          * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4557          * holding the mmap_sem, this is safe because kernel memory doesn't
4558          * get paged out, therefore we'll never actually fault, and the
4559          * below annotations will generate false positives.
4560          */
4561         if (uaccess_kernel())
4562                 return;
4563         if (pagefault_disabled())
4564                 return;
4565         __might_sleep(file, line, 0);
4566 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4567         if (current->mm)
4568                 might_lock_read(&current->mm->mmap_sem);
4569 #endif
4570 }
4571 EXPORT_SYMBOL(__might_fault);
4572 #endif
4573
4574 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4575 /*
4576  * Process all subpages of the specified huge page with the specified
4577  * operation.  The target subpage will be processed last to keep its
4578  * cache lines hot.
4579  */
4580 static inline void process_huge_page(
4581         unsigned long addr_hint, unsigned int pages_per_huge_page,
4582         void (*process_subpage)(unsigned long addr, int idx, void *arg),
4583         void *arg)
4584 {
4585         int i, n, base, l;
4586         unsigned long addr = addr_hint &
4587                 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4588
4589         /* Process target subpage last to keep its cache lines hot */
4590         might_sleep();
4591         n = (addr_hint - addr) / PAGE_SIZE;
4592         if (2 * n <= pages_per_huge_page) {
4593                 /* If target subpage in first half of huge page */
4594                 base = 0;
4595                 l = n;
4596                 /* Process subpages at the end of huge page */
4597                 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
4598                         cond_resched();
4599                         process_subpage(addr + i * PAGE_SIZE, i, arg);
4600                 }
4601         } else {
4602                 /* If target subpage in second half of huge page */
4603                 base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
4604                 l = pages_per_huge_page - n;
4605                 /* Process subpages at the begin of huge page */
4606                 for (i = 0; i < base; i++) {
4607                         cond_resched();
4608                         process_subpage(addr + i * PAGE_SIZE, i, arg);
4609                 }
4610         }
4611         /*
4612          * Process remaining subpages in left-right-left-right pattern
4613          * towards the target subpage
4614          */
4615         for (i = 0; i < l; i++) {
4616                 int left_idx = base + i;
4617                 int right_idx = base + 2 * l - 1 - i;
4618
4619                 cond_resched();
4620                 process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
4621                 cond_resched();
4622                 process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
4623         }
4624 }
4625
4626 static void clear_gigantic_page(struct page *page,
4627                                 unsigned long addr,
4628                                 unsigned int pages_per_huge_page)
4629 {
4630         int i;
4631         struct page *p = page;
4632
4633         might_sleep();
4634         for (i = 0; i < pages_per_huge_page;
4635              i++, p = mem_map_next(p, page, i)) {
4636                 cond_resched();
4637                 clear_user_highpage(p, addr + i * PAGE_SIZE);
4638         }
4639 }
4640
4641 static void clear_subpage(unsigned long addr, int idx, void *arg)
4642 {
4643         struct page *page = arg;
4644
4645         clear_user_highpage(page + idx, addr);
4646 }
4647
4648 void clear_huge_page(struct page *page,
4649                      unsigned long addr_hint, unsigned int pages_per_huge_page)
4650 {
4651         unsigned long addr = addr_hint &
4652                 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4653
4654         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4655                 clear_gigantic_page(page, addr, pages_per_huge_page);
4656                 return;
4657         }
4658
4659         process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
4660 }
4661
4662 static void copy_user_gigantic_page(struct page *dst, struct page *src,
4663                                     unsigned long addr,
4664                                     struct vm_area_struct *vma,
4665                                     unsigned int pages_per_huge_page)
4666 {
4667         int i;
4668         struct page *dst_base = dst;
4669         struct page *src_base = src;
4670
4671         for (i = 0; i < pages_per_huge_page; ) {
4672                 cond_resched();
4673                 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4674
4675                 i++;
4676                 dst = mem_map_next(dst, dst_base, i);
4677                 src = mem_map_next(src, src_base, i);
4678         }
4679 }
4680
4681 struct copy_subpage_arg {
4682         struct page *dst;
4683         struct page *src;
4684         struct vm_area_struct *vma;
4685 };
4686
4687 static void copy_subpage(unsigned long addr, int idx, void *arg)
4688 {
4689         struct copy_subpage_arg *copy_arg = arg;
4690
4691         copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
4692                            addr, copy_arg->vma);
4693 }
4694
4695 void copy_user_huge_page(struct page *dst, struct page *src,
4696                          unsigned long addr_hint, struct vm_area_struct *vma,
4697                          unsigned int pages_per_huge_page)
4698 {
4699         unsigned long addr = addr_hint &
4700                 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4701         struct copy_subpage_arg arg = {
4702                 .dst = dst,
4703                 .src = src,
4704                 .vma = vma,
4705         };
4706
4707         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4708                 copy_user_gigantic_page(dst, src, addr, vma,
4709                                         pages_per_huge_page);
4710                 return;
4711         }
4712
4713         process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
4714 }
4715
4716 long copy_huge_page_from_user(struct page *dst_page,
4717                                 const void __user *usr_src,
4718                                 unsigned int pages_per_huge_page,
4719                                 bool allow_pagefault)
4720 {
4721         void *src = (void *)usr_src;
4722         void *page_kaddr;
4723         unsigned long i, rc = 0;
4724         unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
4725
4726         for (i = 0; i < pages_per_huge_page; i++) {
4727                 if (allow_pagefault)
4728                         page_kaddr = kmap(dst_page + i);
4729                 else
4730                         page_kaddr = kmap_atomic(dst_page + i);
4731                 rc = copy_from_user(page_kaddr,
4732                                 (const void __user *)(src + i * PAGE_SIZE),
4733                                 PAGE_SIZE);
4734                 if (allow_pagefault)
4735                         kunmap(dst_page + i);
4736                 else
4737                         kunmap_atomic(page_kaddr);
4738
4739                 ret_val -= (PAGE_SIZE - rc);
4740                 if (rc)
4741                         break;
4742
4743                 cond_resched();
4744         }
4745         return ret_val;
4746 }
4747 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
4748
4749 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
4750
4751 static struct kmem_cache *page_ptl_cachep;
4752
4753 void __init ptlock_cache_init(void)
4754 {
4755         page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
4756                         SLAB_PANIC, NULL);
4757 }
4758
4759 bool ptlock_alloc(struct page *page)
4760 {
4761         spinlock_t *ptl;
4762
4763         ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
4764         if (!ptl)
4765                 return false;
4766         page->ptl = ptl;
4767         return true;
4768 }
4769
4770 void ptlock_free(struct page *page)
4771 {
4772         kmem_cache_free(page_ptl_cachep, page->ptl);
4773 }
4774 #endif