OSDN Git Service

memcg, oom: move out_of_memory back to the charge path
[android-x86/kernel.git] / mm / memory.c
1 /*
2  *  linux/mm/memory.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  */
6
7 /*
8  * demand-loading started 01.12.91 - seems it is high on the list of
9  * things wanted, and it should be easy to implement. - Linus
10  */
11
12 /*
13  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14  * pages started 02.12.91, seems to work. - Linus.
15  *
16  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17  * would have taken more than the 6M I have free, but it worked well as
18  * far as I could see.
19  *
20  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21  */
22
23 /*
24  * Real VM (paging to/from disk) started 18.12.91. Much more work and
25  * thought has to go into this. Oh, well..
26  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
27  *              Found it. Everything seems to work now.
28  * 20.12.91  -  Ok, making the swap-device changeable like the root.
29  */
30
31 /*
32  * 05.04.94  -  Multi-page memory management added for v1.1.
33  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
34  *
35  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
36  *              (Gerhard.Wichert@pdb.siemens.de)
37  *
38  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39  */
40
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/sched/mm.h>
44 #include <linux/sched/coredump.h>
45 #include <linux/sched/numa_balancing.h>
46 #include <linux/sched/task.h>
47 #include <linux/hugetlb.h>
48 #include <linux/mman.h>
49 #include <linux/swap.h>
50 #include <linux/highmem.h>
51 #include <linux/pagemap.h>
52 #include <linux/memremap.h>
53 #include <linux/ksm.h>
54 #include <linux/rmap.h>
55 #include <linux/export.h>
56 #include <linux/delayacct.h>
57 #include <linux/init.h>
58 #include <linux/pfn_t.h>
59 #include <linux/writeback.h>
60 #include <linux/memcontrol.h>
61 #include <linux/mmu_notifier.h>
62 #include <linux/swapops.h>
63 #include <linux/elf.h>
64 #include <linux/gfp.h>
65 #include <linux/migrate.h>
66 #include <linux/string.h>
67 #include <linux/dma-debug.h>
68 #include <linux/debugfs.h>
69 #include <linux/userfaultfd_k.h>
70 #include <linux/dax.h>
71 #include <linux/oom.h>
72
73 #include <asm/io.h>
74 #include <asm/mmu_context.h>
75 #include <asm/pgalloc.h>
76 #include <linux/uaccess.h>
77 #include <asm/tlb.h>
78 #include <asm/tlbflush.h>
79 #include <asm/pgtable.h>
80
81 #include "internal.h"
82
83 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
84 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
85 #endif
86
87 #ifndef CONFIG_NEED_MULTIPLE_NODES
88 /* use the per-pgdat data instead for discontigmem - mbligh */
89 unsigned long max_mapnr;
90 EXPORT_SYMBOL(max_mapnr);
91
92 struct page *mem_map;
93 EXPORT_SYMBOL(mem_map);
94 #endif
95
96 /*
97  * A number of key systems in x86 including ioremap() rely on the assumption
98  * that high_memory defines the upper bound on direct map memory, then end
99  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
100  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
101  * and ZONE_HIGHMEM.
102  */
103 void *high_memory;
104 EXPORT_SYMBOL(high_memory);
105
106 /*
107  * Randomize the address space (stacks, mmaps, brk, etc.).
108  *
109  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
110  *   as ancient (libc5 based) binaries can segfault. )
111  */
112 int randomize_va_space __read_mostly =
113 #ifdef CONFIG_COMPAT_BRK
114                                         1;
115 #else
116                                         2;
117 #endif
118
119 static int __init disable_randmaps(char *s)
120 {
121         randomize_va_space = 0;
122         return 1;
123 }
124 __setup("norandmaps", disable_randmaps);
125
126 unsigned long zero_pfn __read_mostly;
127 EXPORT_SYMBOL(zero_pfn);
128
129 unsigned long highest_memmap_pfn __read_mostly;
130
131 /*
132  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
133  */
134 static int __init init_zero_pfn(void)
135 {
136         zero_pfn = page_to_pfn(ZERO_PAGE(0));
137         return 0;
138 }
139 core_initcall(init_zero_pfn);
140
141
142 #if defined(SPLIT_RSS_COUNTING)
143
144 void sync_mm_rss(struct mm_struct *mm)
145 {
146         int i;
147
148         for (i = 0; i < NR_MM_COUNTERS; i++) {
149                 if (current->rss_stat.count[i]) {
150                         add_mm_counter(mm, i, current->rss_stat.count[i]);
151                         current->rss_stat.count[i] = 0;
152                 }
153         }
154         current->rss_stat.events = 0;
155 }
156
157 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
158 {
159         struct task_struct *task = current;
160
161         if (likely(task->mm == mm))
162                 task->rss_stat.count[member] += val;
163         else
164                 add_mm_counter(mm, member, val);
165 }
166 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
167 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
168
169 /* sync counter once per 64 page faults */
170 #define TASK_RSS_EVENTS_THRESH  (64)
171 static void check_sync_rss_stat(struct task_struct *task)
172 {
173         if (unlikely(task != current))
174                 return;
175         if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
176                 sync_mm_rss(task->mm);
177 }
178 #else /* SPLIT_RSS_COUNTING */
179
180 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
181 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
182
183 static void check_sync_rss_stat(struct task_struct *task)
184 {
185 }
186
187 #endif /* SPLIT_RSS_COUNTING */
188
189 #ifdef HAVE_GENERIC_MMU_GATHER
190
191 static bool tlb_next_batch(struct mmu_gather *tlb)
192 {
193         struct mmu_gather_batch *batch;
194
195         batch = tlb->active;
196         if (batch->next) {
197                 tlb->active = batch->next;
198                 return true;
199         }
200
201         if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
202                 return false;
203
204         batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
205         if (!batch)
206                 return false;
207
208         tlb->batch_count++;
209         batch->next = NULL;
210         batch->nr   = 0;
211         batch->max  = MAX_GATHER_BATCH;
212
213         tlb->active->next = batch;
214         tlb->active = batch;
215
216         return true;
217 }
218
219 void arch_tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm,
220                                 unsigned long start, unsigned long end)
221 {
222         tlb->mm = mm;
223
224         /* Is it from 0 to ~0? */
225         tlb->fullmm     = !(start | (end+1));
226         tlb->need_flush_all = 0;
227         tlb->local.next = NULL;
228         tlb->local.nr   = 0;
229         tlb->local.max  = ARRAY_SIZE(tlb->__pages);
230         tlb->active     = &tlb->local;
231         tlb->batch_count = 0;
232
233 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
234         tlb->batch = NULL;
235 #endif
236         tlb->page_size = 0;
237
238         __tlb_reset_range(tlb);
239 }
240
241 static void tlb_flush_mmu_tlbonly(struct mmu_gather *tlb)
242 {
243         if (!tlb->end)
244                 return;
245
246         tlb_flush(tlb);
247         mmu_notifier_invalidate_range(tlb->mm, tlb->start, tlb->end);
248 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
249         tlb_table_flush(tlb);
250 #endif
251         __tlb_reset_range(tlb);
252 }
253
254 static void tlb_flush_mmu_free(struct mmu_gather *tlb)
255 {
256         struct mmu_gather_batch *batch;
257
258         for (batch = &tlb->local; batch && batch->nr; batch = batch->next) {
259                 free_pages_and_swap_cache(batch->pages, batch->nr);
260                 batch->nr = 0;
261         }
262         tlb->active = &tlb->local;
263 }
264
265 void tlb_flush_mmu(struct mmu_gather *tlb)
266 {
267         tlb_flush_mmu_tlbonly(tlb);
268         tlb_flush_mmu_free(tlb);
269 }
270
271 /* tlb_finish_mmu
272  *      Called at the end of the shootdown operation to free up any resources
273  *      that were required.
274  */
275 void arch_tlb_finish_mmu(struct mmu_gather *tlb,
276                 unsigned long start, unsigned long end, bool force)
277 {
278         struct mmu_gather_batch *batch, *next;
279
280         if (force)
281                 __tlb_adjust_range(tlb, start, end - start);
282
283         tlb_flush_mmu(tlb);
284
285         /* keep the page table cache within bounds */
286         check_pgt_cache();
287
288         for (batch = tlb->local.next; batch; batch = next) {
289                 next = batch->next;
290                 free_pages((unsigned long)batch, 0);
291         }
292         tlb->local.next = NULL;
293 }
294
295 /* __tlb_remove_page
296  *      Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
297  *      handling the additional races in SMP caused by other CPUs caching valid
298  *      mappings in their TLBs. Returns the number of free page slots left.
299  *      When out of page slots we must call tlb_flush_mmu().
300  *returns true if the caller should flush.
301  */
302 bool __tlb_remove_page_size(struct mmu_gather *tlb, struct page *page, int page_size)
303 {
304         struct mmu_gather_batch *batch;
305
306         VM_BUG_ON(!tlb->end);
307         VM_WARN_ON(tlb->page_size != page_size);
308
309         batch = tlb->active;
310         /*
311          * Add the page and check if we are full. If so
312          * force a flush.
313          */
314         batch->pages[batch->nr++] = page;
315         if (batch->nr == batch->max) {
316                 if (!tlb_next_batch(tlb))
317                         return true;
318                 batch = tlb->active;
319         }
320         VM_BUG_ON_PAGE(batch->nr > batch->max, page);
321
322         return false;
323 }
324
325 #endif /* HAVE_GENERIC_MMU_GATHER */
326
327 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
328
329 static void tlb_remove_table_smp_sync(void *arg)
330 {
331         struct mm_struct __maybe_unused *mm = arg;
332         /*
333          * On most architectures this does nothing. Simply delivering the
334          * interrupt is enough to prevent races with software page table
335          * walking like that done in get_user_pages_fast.
336          *
337          * See the comment near struct mmu_table_batch.
338          */
339         tlb_flush_remove_tables_local(mm);
340 }
341
342 static void tlb_remove_table_one(void *table, struct mmu_gather *tlb)
343 {
344         /*
345          * This isn't an RCU grace period and hence the page-tables cannot be
346          * assumed to be actually RCU-freed.
347          *
348          * It is however sufficient for software page-table walkers that rely on
349          * IRQ disabling. See the comment near struct mmu_table_batch.
350          */
351         smp_call_function(tlb_remove_table_smp_sync, tlb->mm, 1);
352         __tlb_remove_table(table);
353 }
354
355 static void tlb_remove_table_rcu(struct rcu_head *head)
356 {
357         struct mmu_table_batch *batch;
358         int i;
359
360         batch = container_of(head, struct mmu_table_batch, rcu);
361
362         for (i = 0; i < batch->nr; i++)
363                 __tlb_remove_table(batch->tables[i]);
364
365         free_page((unsigned long)batch);
366 }
367
368 void tlb_table_flush(struct mmu_gather *tlb)
369 {
370         struct mmu_table_batch **batch = &tlb->batch;
371
372         tlb_flush_remove_tables(tlb->mm);
373
374         if (*batch) {
375                 call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
376                 *batch = NULL;
377         }
378 }
379
380 void tlb_remove_table(struct mmu_gather *tlb, void *table)
381 {
382         struct mmu_table_batch **batch = &tlb->batch;
383
384         /*
385          * When there's less then two users of this mm there cannot be a
386          * concurrent page-table walk.
387          */
388         if (atomic_read(&tlb->mm->mm_users) < 2) {
389                 __tlb_remove_table(table);
390                 return;
391         }
392
393         if (*batch == NULL) {
394                 *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
395                 if (*batch == NULL) {
396                         tlb_remove_table_one(table, tlb);
397                         return;
398                 }
399                 (*batch)->nr = 0;
400         }
401         (*batch)->tables[(*batch)->nr++] = table;
402         if ((*batch)->nr == MAX_TABLE_BATCH)
403                 tlb_table_flush(tlb);
404 }
405
406 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */
407
408 /**
409  * tlb_gather_mmu - initialize an mmu_gather structure for page-table tear-down
410  * @tlb: the mmu_gather structure to initialize
411  * @mm: the mm_struct of the target address space
412  * @start: start of the region that will be removed from the page-table
413  * @end: end of the region that will be removed from the page-table
414  *
415  * Called to initialize an (on-stack) mmu_gather structure for page-table
416  * tear-down from @mm. The @start and @end are set to 0 and -1
417  * respectively when @mm is without users and we're going to destroy
418  * the full address space (exit/execve).
419  */
420 void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm,
421                         unsigned long start, unsigned long end)
422 {
423         arch_tlb_gather_mmu(tlb, mm, start, end);
424         inc_tlb_flush_pending(tlb->mm);
425 }
426
427 void tlb_finish_mmu(struct mmu_gather *tlb,
428                 unsigned long start, unsigned long end)
429 {
430         /*
431          * If there are parallel threads are doing PTE changes on same range
432          * under non-exclusive lock(e.g., mmap_sem read-side) but defer TLB
433          * flush by batching, a thread has stable TLB entry can fail to flush
434          * the TLB by observing pte_none|!pte_dirty, for example so flush TLB
435          * forcefully if we detect parallel PTE batching threads.
436          */
437         bool force = mm_tlb_flush_nested(tlb->mm);
438
439         arch_tlb_finish_mmu(tlb, start, end, force);
440         dec_tlb_flush_pending(tlb->mm);
441 }
442
443 /*
444  * Note: this doesn't free the actual pages themselves. That
445  * has been handled earlier when unmapping all the memory regions.
446  */
447 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
448                            unsigned long addr)
449 {
450         pgtable_t token = pmd_pgtable(*pmd);
451         pmd_clear(pmd);
452         pte_free_tlb(tlb, token, addr);
453         mm_dec_nr_ptes(tlb->mm);
454 }
455
456 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
457                                 unsigned long addr, unsigned long end,
458                                 unsigned long floor, unsigned long ceiling)
459 {
460         pmd_t *pmd;
461         unsigned long next;
462         unsigned long start;
463
464         start = addr;
465         pmd = pmd_offset(pud, addr);
466         do {
467                 next = pmd_addr_end(addr, end);
468                 if (pmd_none_or_clear_bad(pmd))
469                         continue;
470                 free_pte_range(tlb, pmd, addr);
471         } while (pmd++, addr = next, addr != end);
472
473         start &= PUD_MASK;
474         if (start < floor)
475                 return;
476         if (ceiling) {
477                 ceiling &= PUD_MASK;
478                 if (!ceiling)
479                         return;
480         }
481         if (end - 1 > ceiling - 1)
482                 return;
483
484         pmd = pmd_offset(pud, start);
485         pud_clear(pud);
486         pmd_free_tlb(tlb, pmd, start);
487         mm_dec_nr_pmds(tlb->mm);
488 }
489
490 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
491                                 unsigned long addr, unsigned long end,
492                                 unsigned long floor, unsigned long ceiling)
493 {
494         pud_t *pud;
495         unsigned long next;
496         unsigned long start;
497
498         start = addr;
499         pud = pud_offset(p4d, addr);
500         do {
501                 next = pud_addr_end(addr, end);
502                 if (pud_none_or_clear_bad(pud))
503                         continue;
504                 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
505         } while (pud++, addr = next, addr != end);
506
507         start &= P4D_MASK;
508         if (start < floor)
509                 return;
510         if (ceiling) {
511                 ceiling &= P4D_MASK;
512                 if (!ceiling)
513                         return;
514         }
515         if (end - 1 > ceiling - 1)
516                 return;
517
518         pud = pud_offset(p4d, start);
519         p4d_clear(p4d);
520         pud_free_tlb(tlb, pud, start);
521         mm_dec_nr_puds(tlb->mm);
522 }
523
524 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
525                                 unsigned long addr, unsigned long end,
526                                 unsigned long floor, unsigned long ceiling)
527 {
528         p4d_t *p4d;
529         unsigned long next;
530         unsigned long start;
531
532         start = addr;
533         p4d = p4d_offset(pgd, addr);
534         do {
535                 next = p4d_addr_end(addr, end);
536                 if (p4d_none_or_clear_bad(p4d))
537                         continue;
538                 free_pud_range(tlb, p4d, addr, next, floor, ceiling);
539         } while (p4d++, addr = next, addr != end);
540
541         start &= PGDIR_MASK;
542         if (start < floor)
543                 return;
544         if (ceiling) {
545                 ceiling &= PGDIR_MASK;
546                 if (!ceiling)
547                         return;
548         }
549         if (end - 1 > ceiling - 1)
550                 return;
551
552         p4d = p4d_offset(pgd, start);
553         pgd_clear(pgd);
554         p4d_free_tlb(tlb, p4d, start);
555 }
556
557 /*
558  * This function frees user-level page tables of a process.
559  */
560 void free_pgd_range(struct mmu_gather *tlb,
561                         unsigned long addr, unsigned long end,
562                         unsigned long floor, unsigned long ceiling)
563 {
564         pgd_t *pgd;
565         unsigned long next;
566
567         /*
568          * The next few lines have given us lots of grief...
569          *
570          * Why are we testing PMD* at this top level?  Because often
571          * there will be no work to do at all, and we'd prefer not to
572          * go all the way down to the bottom just to discover that.
573          *
574          * Why all these "- 1"s?  Because 0 represents both the bottom
575          * of the address space and the top of it (using -1 for the
576          * top wouldn't help much: the masks would do the wrong thing).
577          * The rule is that addr 0 and floor 0 refer to the bottom of
578          * the address space, but end 0 and ceiling 0 refer to the top
579          * Comparisons need to use "end - 1" and "ceiling - 1" (though
580          * that end 0 case should be mythical).
581          *
582          * Wherever addr is brought up or ceiling brought down, we must
583          * be careful to reject "the opposite 0" before it confuses the
584          * subsequent tests.  But what about where end is brought down
585          * by PMD_SIZE below? no, end can't go down to 0 there.
586          *
587          * Whereas we round start (addr) and ceiling down, by different
588          * masks at different levels, in order to test whether a table
589          * now has no other vmas using it, so can be freed, we don't
590          * bother to round floor or end up - the tests don't need that.
591          */
592
593         addr &= PMD_MASK;
594         if (addr < floor) {
595                 addr += PMD_SIZE;
596                 if (!addr)
597                         return;
598         }
599         if (ceiling) {
600                 ceiling &= PMD_MASK;
601                 if (!ceiling)
602                         return;
603         }
604         if (end - 1 > ceiling - 1)
605                 end -= PMD_SIZE;
606         if (addr > end - 1)
607                 return;
608         /*
609          * We add page table cache pages with PAGE_SIZE,
610          * (see pte_free_tlb()), flush the tlb if we need
611          */
612         tlb_remove_check_page_size_change(tlb, PAGE_SIZE);
613         pgd = pgd_offset(tlb->mm, addr);
614         do {
615                 next = pgd_addr_end(addr, end);
616                 if (pgd_none_or_clear_bad(pgd))
617                         continue;
618                 free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
619         } while (pgd++, addr = next, addr != end);
620 }
621
622 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
623                 unsigned long floor, unsigned long ceiling)
624 {
625         while (vma) {
626                 struct vm_area_struct *next = vma->vm_next;
627                 unsigned long addr = vma->vm_start;
628
629                 /*
630                  * Hide vma from rmap and truncate_pagecache before freeing
631                  * pgtables
632                  */
633                 unlink_anon_vmas(vma);
634                 unlink_file_vma(vma);
635
636                 if (is_vm_hugetlb_page(vma)) {
637                         hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
638                                 floor, next ? next->vm_start : ceiling);
639                 } else {
640                         /*
641                          * Optimization: gather nearby vmas into one call down
642                          */
643                         while (next && next->vm_start <= vma->vm_end + PMD_SIZE
644                                && !is_vm_hugetlb_page(next)) {
645                                 vma = next;
646                                 next = vma->vm_next;
647                                 unlink_anon_vmas(vma);
648                                 unlink_file_vma(vma);
649                         }
650                         free_pgd_range(tlb, addr, vma->vm_end,
651                                 floor, next ? next->vm_start : ceiling);
652                 }
653                 vma = next;
654         }
655 }
656
657 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
658 {
659         spinlock_t *ptl;
660         pgtable_t new = pte_alloc_one(mm, address);
661         if (!new)
662                 return -ENOMEM;
663
664         /*
665          * Ensure all pte setup (eg. pte page lock and page clearing) are
666          * visible before the pte is made visible to other CPUs by being
667          * put into page tables.
668          *
669          * The other side of the story is the pointer chasing in the page
670          * table walking code (when walking the page table without locking;
671          * ie. most of the time). Fortunately, these data accesses consist
672          * of a chain of data-dependent loads, meaning most CPUs (alpha
673          * being the notable exception) will already guarantee loads are
674          * seen in-order. See the alpha page table accessors for the
675          * smp_read_barrier_depends() barriers in page table walking code.
676          */
677         smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
678
679         ptl = pmd_lock(mm, pmd);
680         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
681                 mm_inc_nr_ptes(mm);
682                 pmd_populate(mm, pmd, new);
683                 new = NULL;
684         }
685         spin_unlock(ptl);
686         if (new)
687                 pte_free(mm, new);
688         return 0;
689 }
690
691 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
692 {
693         pte_t *new = pte_alloc_one_kernel(&init_mm, address);
694         if (!new)
695                 return -ENOMEM;
696
697         smp_wmb(); /* See comment in __pte_alloc */
698
699         spin_lock(&init_mm.page_table_lock);
700         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
701                 pmd_populate_kernel(&init_mm, pmd, new);
702                 new = NULL;
703         }
704         spin_unlock(&init_mm.page_table_lock);
705         if (new)
706                 pte_free_kernel(&init_mm, new);
707         return 0;
708 }
709
710 static inline void init_rss_vec(int *rss)
711 {
712         memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
713 }
714
715 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
716 {
717         int i;
718
719         if (current->mm == mm)
720                 sync_mm_rss(mm);
721         for (i = 0; i < NR_MM_COUNTERS; i++)
722                 if (rss[i])
723                         add_mm_counter(mm, i, rss[i]);
724 }
725
726 /*
727  * This function is called to print an error when a bad pte
728  * is found. For example, we might have a PFN-mapped pte in
729  * a region that doesn't allow it.
730  *
731  * The calling function must still handle the error.
732  */
733 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
734                           pte_t pte, struct page *page)
735 {
736         pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
737         p4d_t *p4d = p4d_offset(pgd, addr);
738         pud_t *pud = pud_offset(p4d, addr);
739         pmd_t *pmd = pmd_offset(pud, addr);
740         struct address_space *mapping;
741         pgoff_t index;
742         static unsigned long resume;
743         static unsigned long nr_shown;
744         static unsigned long nr_unshown;
745
746         /*
747          * Allow a burst of 60 reports, then keep quiet for that minute;
748          * or allow a steady drip of one report per second.
749          */
750         if (nr_shown == 60) {
751                 if (time_before(jiffies, resume)) {
752                         nr_unshown++;
753                         return;
754                 }
755                 if (nr_unshown) {
756                         pr_alert("BUG: Bad page map: %lu messages suppressed\n",
757                                  nr_unshown);
758                         nr_unshown = 0;
759                 }
760                 nr_shown = 0;
761         }
762         if (nr_shown++ == 0)
763                 resume = jiffies + 60 * HZ;
764
765         mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
766         index = linear_page_index(vma, addr);
767
768         pr_alert("BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
769                  current->comm,
770                  (long long)pte_val(pte), (long long)pmd_val(*pmd));
771         if (page)
772                 dump_page(page, "bad pte");
773         pr_alert("addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
774                  (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
775         pr_alert("file:%pD fault:%pf mmap:%pf readpage:%pf\n",
776                  vma->vm_file,
777                  vma->vm_ops ? vma->vm_ops->fault : NULL,
778                  vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
779                  mapping ? mapping->a_ops->readpage : NULL);
780         dump_stack();
781         add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
782 }
783
784 /*
785  * vm_normal_page -- This function gets the "struct page" associated with a pte.
786  *
787  * "Special" mappings do not wish to be associated with a "struct page" (either
788  * it doesn't exist, or it exists but they don't want to touch it). In this
789  * case, NULL is returned here. "Normal" mappings do have a struct page.
790  *
791  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
792  * pte bit, in which case this function is trivial. Secondly, an architecture
793  * may not have a spare pte bit, which requires a more complicated scheme,
794  * described below.
795  *
796  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
797  * special mapping (even if there are underlying and valid "struct pages").
798  * COWed pages of a VM_PFNMAP are always normal.
799  *
800  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
801  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
802  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
803  * mapping will always honor the rule
804  *
805  *      pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
806  *
807  * And for normal mappings this is false.
808  *
809  * This restricts such mappings to be a linear translation from virtual address
810  * to pfn. To get around this restriction, we allow arbitrary mappings so long
811  * as the vma is not a COW mapping; in that case, we know that all ptes are
812  * special (because none can have been COWed).
813  *
814  *
815  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
816  *
817  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
818  * page" backing, however the difference is that _all_ pages with a struct
819  * page (that is, those where pfn_valid is true) are refcounted and considered
820  * normal pages by the VM. The disadvantage is that pages are refcounted
821  * (which can be slower and simply not an option for some PFNMAP users). The
822  * advantage is that we don't have to follow the strict linearity rule of
823  * PFNMAP mappings in order to support COWable mappings.
824  *
825  */
826 struct page *_vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
827                              pte_t pte, bool with_public_device)
828 {
829         unsigned long pfn = pte_pfn(pte);
830
831         if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
832                 if (likely(!pte_special(pte)))
833                         goto check_pfn;
834                 if (vma->vm_ops && vma->vm_ops->find_special_page)
835                         return vma->vm_ops->find_special_page(vma, addr);
836                 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
837                         return NULL;
838                 if (is_zero_pfn(pfn))
839                         return NULL;
840
841                 /*
842                  * Device public pages are special pages (they are ZONE_DEVICE
843                  * pages but different from persistent memory). They behave
844                  * allmost like normal pages. The difference is that they are
845                  * not on the lru and thus should never be involve with any-
846                  * thing that involve lru manipulation (mlock, numa balancing,
847                  * ...).
848                  *
849                  * This is why we still want to return NULL for such page from
850                  * vm_normal_page() so that we do not have to special case all
851                  * call site of vm_normal_page().
852                  */
853                 if (likely(pfn <= highest_memmap_pfn)) {
854                         struct page *page = pfn_to_page(pfn);
855
856                         if (is_device_public_page(page)) {
857                                 if (with_public_device)
858                                         return page;
859                                 return NULL;
860                         }
861                 }
862
863                 if (pte_devmap(pte))
864                         return NULL;
865
866                 print_bad_pte(vma, addr, pte, NULL);
867                 return NULL;
868         }
869
870         /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
871
872         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
873                 if (vma->vm_flags & VM_MIXEDMAP) {
874                         if (!pfn_valid(pfn))
875                                 return NULL;
876                         goto out;
877                 } else {
878                         unsigned long off;
879                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
880                         if (pfn == vma->vm_pgoff + off)
881                                 return NULL;
882                         if (!is_cow_mapping(vma->vm_flags))
883                                 return NULL;
884                 }
885         }
886
887         if (is_zero_pfn(pfn))
888                 return NULL;
889
890 check_pfn:
891         if (unlikely(pfn > highest_memmap_pfn)) {
892                 print_bad_pte(vma, addr, pte, NULL);
893                 return NULL;
894         }
895
896         /*
897          * NOTE! We still have PageReserved() pages in the page tables.
898          * eg. VDSO mappings can cause them to exist.
899          */
900 out:
901         return pfn_to_page(pfn);
902 }
903
904 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
905 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
906                                 pmd_t pmd)
907 {
908         unsigned long pfn = pmd_pfn(pmd);
909
910         /*
911          * There is no pmd_special() but there may be special pmds, e.g.
912          * in a direct-access (dax) mapping, so let's just replicate the
913          * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
914          */
915         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
916                 if (vma->vm_flags & VM_MIXEDMAP) {
917                         if (!pfn_valid(pfn))
918                                 return NULL;
919                         goto out;
920                 } else {
921                         unsigned long off;
922                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
923                         if (pfn == vma->vm_pgoff + off)
924                                 return NULL;
925                         if (!is_cow_mapping(vma->vm_flags))
926                                 return NULL;
927                 }
928         }
929
930         if (pmd_devmap(pmd))
931                 return NULL;
932         if (is_zero_pfn(pfn))
933                 return NULL;
934         if (unlikely(pfn > highest_memmap_pfn))
935                 return NULL;
936
937         /*
938          * NOTE! We still have PageReserved() pages in the page tables.
939          * eg. VDSO mappings can cause them to exist.
940          */
941 out:
942         return pfn_to_page(pfn);
943 }
944 #endif
945
946 /*
947  * copy one vm_area from one task to the other. Assumes the page tables
948  * already present in the new task to be cleared in the whole range
949  * covered by this vma.
950  */
951
952 static inline unsigned long
953 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
954                 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
955                 unsigned long addr, int *rss)
956 {
957         unsigned long vm_flags = vma->vm_flags;
958         pte_t pte = *src_pte;
959         struct page *page;
960
961         /* pte contains position in swap or file, so copy. */
962         if (unlikely(!pte_present(pte))) {
963                 swp_entry_t entry = pte_to_swp_entry(pte);
964
965                 if (likely(!non_swap_entry(entry))) {
966                         if (swap_duplicate(entry) < 0)
967                                 return entry.val;
968
969                         /* make sure dst_mm is on swapoff's mmlist. */
970                         if (unlikely(list_empty(&dst_mm->mmlist))) {
971                                 spin_lock(&mmlist_lock);
972                                 if (list_empty(&dst_mm->mmlist))
973                                         list_add(&dst_mm->mmlist,
974                                                         &src_mm->mmlist);
975                                 spin_unlock(&mmlist_lock);
976                         }
977                         rss[MM_SWAPENTS]++;
978                 } else if (is_migration_entry(entry)) {
979                         page = migration_entry_to_page(entry);
980
981                         rss[mm_counter(page)]++;
982
983                         if (is_write_migration_entry(entry) &&
984                                         is_cow_mapping(vm_flags)) {
985                                 /*
986                                  * COW mappings require pages in both
987                                  * parent and child to be set to read.
988                                  */
989                                 make_migration_entry_read(&entry);
990                                 pte = swp_entry_to_pte(entry);
991                                 if (pte_swp_soft_dirty(*src_pte))
992                                         pte = pte_swp_mksoft_dirty(pte);
993                                 set_pte_at(src_mm, addr, src_pte, pte);
994                         }
995                 } else if (is_device_private_entry(entry)) {
996                         page = device_private_entry_to_page(entry);
997
998                         /*
999                          * Update rss count even for unaddressable pages, as
1000                          * they should treated just like normal pages in this
1001                          * respect.
1002                          *
1003                          * We will likely want to have some new rss counters
1004                          * for unaddressable pages, at some point. But for now
1005                          * keep things as they are.
1006                          */
1007                         get_page(page);
1008                         rss[mm_counter(page)]++;
1009                         page_dup_rmap(page, false);
1010
1011                         /*
1012                          * We do not preserve soft-dirty information, because so
1013                          * far, checkpoint/restore is the only feature that
1014                          * requires that. And checkpoint/restore does not work
1015                          * when a device driver is involved (you cannot easily
1016                          * save and restore device driver state).
1017                          */
1018                         if (is_write_device_private_entry(entry) &&
1019                             is_cow_mapping(vm_flags)) {
1020                                 make_device_private_entry_read(&entry);
1021                                 pte = swp_entry_to_pte(entry);
1022                                 set_pte_at(src_mm, addr, src_pte, pte);
1023                         }
1024                 }
1025                 goto out_set_pte;
1026         }
1027
1028         /*
1029          * If it's a COW mapping, write protect it both
1030          * in the parent and the child
1031          */
1032         if (is_cow_mapping(vm_flags)) {
1033                 ptep_set_wrprotect(src_mm, addr, src_pte);
1034                 pte = pte_wrprotect(pte);
1035         }
1036
1037         /*
1038          * If it's a shared mapping, mark it clean in
1039          * the child
1040          */
1041         if (vm_flags & VM_SHARED)
1042                 pte = pte_mkclean(pte);
1043         pte = pte_mkold(pte);
1044
1045         page = vm_normal_page(vma, addr, pte);
1046         if (page) {
1047                 get_page(page);
1048                 page_dup_rmap(page, false);
1049                 rss[mm_counter(page)]++;
1050         } else if (pte_devmap(pte)) {
1051                 page = pte_page(pte);
1052
1053                 /*
1054                  * Cache coherent device memory behave like regular page and
1055                  * not like persistent memory page. For more informations see
1056                  * MEMORY_DEVICE_CACHE_COHERENT in memory_hotplug.h
1057                  */
1058                 if (is_device_public_page(page)) {
1059                         get_page(page);
1060                         page_dup_rmap(page, false);
1061                         rss[mm_counter(page)]++;
1062                 }
1063         }
1064
1065 out_set_pte:
1066         set_pte_at(dst_mm, addr, dst_pte, pte);
1067         return 0;
1068 }
1069
1070 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1071                    pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
1072                    unsigned long addr, unsigned long end)
1073 {
1074         pte_t *orig_src_pte, *orig_dst_pte;
1075         pte_t *src_pte, *dst_pte;
1076         spinlock_t *src_ptl, *dst_ptl;
1077         int progress = 0;
1078         int rss[NR_MM_COUNTERS];
1079         swp_entry_t entry = (swp_entry_t){0};
1080
1081 again:
1082         init_rss_vec(rss);
1083
1084         dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1085         if (!dst_pte)
1086                 return -ENOMEM;
1087         src_pte = pte_offset_map(src_pmd, addr);
1088         src_ptl = pte_lockptr(src_mm, src_pmd);
1089         spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1090         orig_src_pte = src_pte;
1091         orig_dst_pte = dst_pte;
1092         arch_enter_lazy_mmu_mode();
1093
1094         do {
1095                 /*
1096                  * We are holding two locks at this point - either of them
1097                  * could generate latencies in another task on another CPU.
1098                  */
1099                 if (progress >= 32) {
1100                         progress = 0;
1101                         if (need_resched() ||
1102                             spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
1103                                 break;
1104                 }
1105                 if (pte_none(*src_pte)) {
1106                         progress++;
1107                         continue;
1108                 }
1109                 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
1110                                                         vma, addr, rss);
1111                 if (entry.val)
1112                         break;
1113                 progress += 8;
1114         } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1115
1116         arch_leave_lazy_mmu_mode();
1117         spin_unlock(src_ptl);
1118         pte_unmap(orig_src_pte);
1119         add_mm_rss_vec(dst_mm, rss);
1120         pte_unmap_unlock(orig_dst_pte, dst_ptl);
1121         cond_resched();
1122
1123         if (entry.val) {
1124                 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
1125                         return -ENOMEM;
1126                 progress = 0;
1127         }
1128         if (addr != end)
1129                 goto again;
1130         return 0;
1131 }
1132
1133 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1134                 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
1135                 unsigned long addr, unsigned long end)
1136 {
1137         pmd_t *src_pmd, *dst_pmd;
1138         unsigned long next;
1139
1140         dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1141         if (!dst_pmd)
1142                 return -ENOMEM;
1143         src_pmd = pmd_offset(src_pud, addr);
1144         do {
1145                 next = pmd_addr_end(addr, end);
1146                 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
1147                         || pmd_devmap(*src_pmd)) {
1148                         int err;
1149                         VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, vma);
1150                         err = copy_huge_pmd(dst_mm, src_mm,
1151                                             dst_pmd, src_pmd, addr, vma);
1152                         if (err == -ENOMEM)
1153                                 return -ENOMEM;
1154                         if (!err)
1155                                 continue;
1156                         /* fall through */
1157                 }
1158                 if (pmd_none_or_clear_bad(src_pmd))
1159                         continue;
1160                 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
1161                                                 vma, addr, next))
1162                         return -ENOMEM;
1163         } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1164         return 0;
1165 }
1166
1167 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1168                 p4d_t *dst_p4d, p4d_t *src_p4d, struct vm_area_struct *vma,
1169                 unsigned long addr, unsigned long end)
1170 {
1171         pud_t *src_pud, *dst_pud;
1172         unsigned long next;
1173
1174         dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1175         if (!dst_pud)
1176                 return -ENOMEM;
1177         src_pud = pud_offset(src_p4d, addr);
1178         do {
1179                 next = pud_addr_end(addr, end);
1180                 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1181                         int err;
1182
1183                         VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, vma);
1184                         err = copy_huge_pud(dst_mm, src_mm,
1185                                             dst_pud, src_pud, addr, vma);
1186                         if (err == -ENOMEM)
1187                                 return -ENOMEM;
1188                         if (!err)
1189                                 continue;
1190                         /* fall through */
1191                 }
1192                 if (pud_none_or_clear_bad(src_pud))
1193                         continue;
1194                 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
1195                                                 vma, addr, next))
1196                         return -ENOMEM;
1197         } while (dst_pud++, src_pud++, addr = next, addr != end);
1198         return 0;
1199 }
1200
1201 static inline int copy_p4d_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1202                 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
1203                 unsigned long addr, unsigned long end)
1204 {
1205         p4d_t *src_p4d, *dst_p4d;
1206         unsigned long next;
1207
1208         dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1209         if (!dst_p4d)
1210                 return -ENOMEM;
1211         src_p4d = p4d_offset(src_pgd, addr);
1212         do {
1213                 next = p4d_addr_end(addr, end);
1214                 if (p4d_none_or_clear_bad(src_p4d))
1215                         continue;
1216                 if (copy_pud_range(dst_mm, src_mm, dst_p4d, src_p4d,
1217                                                 vma, addr, next))
1218                         return -ENOMEM;
1219         } while (dst_p4d++, src_p4d++, addr = next, addr != end);
1220         return 0;
1221 }
1222
1223 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1224                 struct vm_area_struct *vma)
1225 {
1226         pgd_t *src_pgd, *dst_pgd;
1227         unsigned long next;
1228         unsigned long addr = vma->vm_start;
1229         unsigned long end = vma->vm_end;
1230         unsigned long mmun_start;       /* For mmu_notifiers */
1231         unsigned long mmun_end;         /* For mmu_notifiers */
1232         bool is_cow;
1233         int ret;
1234
1235         /*
1236          * Don't copy ptes where a page fault will fill them correctly.
1237          * Fork becomes much lighter when there are big shared or private
1238          * readonly mappings. The tradeoff is that copy_page_range is more
1239          * efficient than faulting.
1240          */
1241         if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
1242                         !vma->anon_vma)
1243                 return 0;
1244
1245         if (is_vm_hugetlb_page(vma))
1246                 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1247
1248         if (unlikely(vma->vm_flags & VM_PFNMAP)) {
1249                 /*
1250                  * We do not free on error cases below as remove_vma
1251                  * gets called on error from higher level routine
1252                  */
1253                 ret = track_pfn_copy(vma);
1254                 if (ret)
1255                         return ret;
1256         }
1257
1258         /*
1259          * We need to invalidate the secondary MMU mappings only when
1260          * there could be a permission downgrade on the ptes of the
1261          * parent mm. And a permission downgrade will only happen if
1262          * is_cow_mapping() returns true.
1263          */
1264         is_cow = is_cow_mapping(vma->vm_flags);
1265         mmun_start = addr;
1266         mmun_end   = end;
1267         if (is_cow)
1268                 mmu_notifier_invalidate_range_start(src_mm, mmun_start,
1269                                                     mmun_end);
1270
1271         ret = 0;
1272         dst_pgd = pgd_offset(dst_mm, addr);
1273         src_pgd = pgd_offset(src_mm, addr);
1274         do {
1275                 next = pgd_addr_end(addr, end);
1276                 if (pgd_none_or_clear_bad(src_pgd))
1277                         continue;
1278                 if (unlikely(copy_p4d_range(dst_mm, src_mm, dst_pgd, src_pgd,
1279                                             vma, addr, next))) {
1280                         ret = -ENOMEM;
1281                         break;
1282                 }
1283         } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1284
1285         if (is_cow)
1286                 mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
1287         return ret;
1288 }
1289
1290 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1291                                 struct vm_area_struct *vma, pmd_t *pmd,
1292                                 unsigned long addr, unsigned long end,
1293                                 struct zap_details *details)
1294 {
1295         struct mm_struct *mm = tlb->mm;
1296         int force_flush = 0;
1297         int rss[NR_MM_COUNTERS];
1298         spinlock_t *ptl;
1299         pte_t *start_pte;
1300         pte_t *pte;
1301         swp_entry_t entry;
1302
1303         tlb_remove_check_page_size_change(tlb, PAGE_SIZE);
1304 again:
1305         init_rss_vec(rss);
1306         start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1307         pte = start_pte;
1308         flush_tlb_batched_pending(mm);
1309         arch_enter_lazy_mmu_mode();
1310         do {
1311                 pte_t ptent = *pte;
1312                 if (pte_none(ptent))
1313                         continue;
1314
1315                 if (pte_present(ptent)) {
1316                         struct page *page;
1317
1318                         page = _vm_normal_page(vma, addr, ptent, true);
1319                         if (unlikely(details) && page) {
1320                                 /*
1321                                  * unmap_shared_mapping_pages() wants to
1322                                  * invalidate cache without truncating:
1323                                  * unmap shared but keep private pages.
1324                                  */
1325                                 if (details->check_mapping &&
1326                                     details->check_mapping != page_rmapping(page))
1327                                         continue;
1328                         }
1329                         ptent = ptep_get_and_clear_full(mm, addr, pte,
1330                                                         tlb->fullmm);
1331                         tlb_remove_tlb_entry(tlb, pte, addr);
1332                         if (unlikely(!page))
1333                                 continue;
1334
1335                         if (!PageAnon(page)) {
1336                                 if (pte_dirty(ptent)) {
1337                                         force_flush = 1;
1338                                         set_page_dirty(page);
1339                                 }
1340                                 if (pte_young(ptent) &&
1341                                     likely(!(vma->vm_flags & VM_SEQ_READ)))
1342                                         mark_page_accessed(page);
1343                         }
1344                         rss[mm_counter(page)]--;
1345                         page_remove_rmap(page, false);
1346                         if (unlikely(page_mapcount(page) < 0))
1347                                 print_bad_pte(vma, addr, ptent, page);
1348                         if (unlikely(__tlb_remove_page(tlb, page))) {
1349                                 force_flush = 1;
1350                                 addr += PAGE_SIZE;
1351                                 break;
1352                         }
1353                         continue;
1354                 }
1355
1356                 entry = pte_to_swp_entry(ptent);
1357                 if (non_swap_entry(entry) && is_device_private_entry(entry)) {
1358                         struct page *page = device_private_entry_to_page(entry);
1359
1360                         if (unlikely(details && details->check_mapping)) {
1361                                 /*
1362                                  * unmap_shared_mapping_pages() wants to
1363                                  * invalidate cache without truncating:
1364                                  * unmap shared but keep private pages.
1365                                  */
1366                                 if (details->check_mapping !=
1367                                     page_rmapping(page))
1368                                         continue;
1369                         }
1370
1371                         pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1372                         rss[mm_counter(page)]--;
1373                         page_remove_rmap(page, false);
1374                         put_page(page);
1375                         continue;
1376                 }
1377
1378                 /* If details->check_mapping, we leave swap entries. */
1379                 if (unlikely(details))
1380                         continue;
1381
1382                 entry = pte_to_swp_entry(ptent);
1383                 if (!non_swap_entry(entry))
1384                         rss[MM_SWAPENTS]--;
1385                 else if (is_migration_entry(entry)) {
1386                         struct page *page;
1387
1388                         page = migration_entry_to_page(entry);
1389                         rss[mm_counter(page)]--;
1390                 }
1391                 if (unlikely(!free_swap_and_cache(entry)))
1392                         print_bad_pte(vma, addr, ptent, NULL);
1393                 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1394         } while (pte++, addr += PAGE_SIZE, addr != end);
1395
1396         add_mm_rss_vec(mm, rss);
1397         arch_leave_lazy_mmu_mode();
1398
1399         /* Do the actual TLB flush before dropping ptl */
1400         if (force_flush)
1401                 tlb_flush_mmu_tlbonly(tlb);
1402         pte_unmap_unlock(start_pte, ptl);
1403
1404         /*
1405          * If we forced a TLB flush (either due to running out of
1406          * batch buffers or because we needed to flush dirty TLB
1407          * entries before releasing the ptl), free the batched
1408          * memory too. Restart if we didn't do everything.
1409          */
1410         if (force_flush) {
1411                 force_flush = 0;
1412                 tlb_flush_mmu_free(tlb);
1413                 if (addr != end)
1414                         goto again;
1415         }
1416
1417         return addr;
1418 }
1419
1420 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1421                                 struct vm_area_struct *vma, pud_t *pud,
1422                                 unsigned long addr, unsigned long end,
1423                                 struct zap_details *details)
1424 {
1425         pmd_t *pmd;
1426         unsigned long next;
1427
1428         pmd = pmd_offset(pud, addr);
1429         do {
1430                 next = pmd_addr_end(addr, end);
1431                 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1432                         if (next - addr != HPAGE_PMD_SIZE)
1433                                 __split_huge_pmd(vma, pmd, addr, false, NULL);
1434                         else if (zap_huge_pmd(tlb, vma, pmd, addr))
1435                                 goto next;
1436                         /* fall through */
1437                 }
1438                 /*
1439                  * Here there can be other concurrent MADV_DONTNEED or
1440                  * trans huge page faults running, and if the pmd is
1441                  * none or trans huge it can change under us. This is
1442                  * because MADV_DONTNEED holds the mmap_sem in read
1443                  * mode.
1444                  */
1445                 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1446                         goto next;
1447                 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1448 next:
1449                 cond_resched();
1450         } while (pmd++, addr = next, addr != end);
1451
1452         return addr;
1453 }
1454
1455 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1456                                 struct vm_area_struct *vma, p4d_t *p4d,
1457                                 unsigned long addr, unsigned long end,
1458                                 struct zap_details *details)
1459 {
1460         pud_t *pud;
1461         unsigned long next;
1462
1463         pud = pud_offset(p4d, addr);
1464         do {
1465                 next = pud_addr_end(addr, end);
1466                 if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1467                         if (next - addr != HPAGE_PUD_SIZE) {
1468                                 VM_BUG_ON_VMA(!rwsem_is_locked(&tlb->mm->mmap_sem), vma);
1469                                 split_huge_pud(vma, pud, addr);
1470                         } else if (zap_huge_pud(tlb, vma, pud, addr))
1471                                 goto next;
1472                         /* fall through */
1473                 }
1474                 if (pud_none_or_clear_bad(pud))
1475                         continue;
1476                 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1477 next:
1478                 cond_resched();
1479         } while (pud++, addr = next, addr != end);
1480
1481         return addr;
1482 }
1483
1484 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1485                                 struct vm_area_struct *vma, pgd_t *pgd,
1486                                 unsigned long addr, unsigned long end,
1487                                 struct zap_details *details)
1488 {
1489         p4d_t *p4d;
1490         unsigned long next;
1491
1492         p4d = p4d_offset(pgd, addr);
1493         do {
1494                 next = p4d_addr_end(addr, end);
1495                 if (p4d_none_or_clear_bad(p4d))
1496                         continue;
1497                 next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1498         } while (p4d++, addr = next, addr != end);
1499
1500         return addr;
1501 }
1502
1503 void unmap_page_range(struct mmu_gather *tlb,
1504                              struct vm_area_struct *vma,
1505                              unsigned long addr, unsigned long end,
1506                              struct zap_details *details)
1507 {
1508         pgd_t *pgd;
1509         unsigned long next;
1510
1511         BUG_ON(addr >= end);
1512         tlb_start_vma(tlb, vma);
1513         pgd = pgd_offset(vma->vm_mm, addr);
1514         do {
1515                 next = pgd_addr_end(addr, end);
1516                 if (pgd_none_or_clear_bad(pgd))
1517                         continue;
1518                 next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1519         } while (pgd++, addr = next, addr != end);
1520         tlb_end_vma(tlb, vma);
1521 }
1522
1523
1524 static void unmap_single_vma(struct mmu_gather *tlb,
1525                 struct vm_area_struct *vma, unsigned long start_addr,
1526                 unsigned long end_addr,
1527                 struct zap_details *details)
1528 {
1529         unsigned long start = max(vma->vm_start, start_addr);
1530         unsigned long end;
1531
1532         if (start >= vma->vm_end)
1533                 return;
1534         end = min(vma->vm_end, end_addr);
1535         if (end <= vma->vm_start)
1536                 return;
1537
1538         if (vma->vm_file)
1539                 uprobe_munmap(vma, start, end);
1540
1541         if (unlikely(vma->vm_flags & VM_PFNMAP))
1542                 untrack_pfn(vma, 0, 0);
1543
1544         if (start != end) {
1545                 if (unlikely(is_vm_hugetlb_page(vma))) {
1546                         /*
1547                          * It is undesirable to test vma->vm_file as it
1548                          * should be non-null for valid hugetlb area.
1549                          * However, vm_file will be NULL in the error
1550                          * cleanup path of mmap_region. When
1551                          * hugetlbfs ->mmap method fails,
1552                          * mmap_region() nullifies vma->vm_file
1553                          * before calling this function to clean up.
1554                          * Since no pte has actually been setup, it is
1555                          * safe to do nothing in this case.
1556                          */
1557                         if (vma->vm_file) {
1558                                 i_mmap_lock_write(vma->vm_file->f_mapping);
1559                                 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1560                                 i_mmap_unlock_write(vma->vm_file->f_mapping);
1561                         }
1562                 } else
1563                         unmap_page_range(tlb, vma, start, end, details);
1564         }
1565 }
1566
1567 /**
1568  * unmap_vmas - unmap a range of memory covered by a list of vma's
1569  * @tlb: address of the caller's struct mmu_gather
1570  * @vma: the starting vma
1571  * @start_addr: virtual address at which to start unmapping
1572  * @end_addr: virtual address at which to end unmapping
1573  *
1574  * Unmap all pages in the vma list.
1575  *
1576  * Only addresses between `start' and `end' will be unmapped.
1577  *
1578  * The VMA list must be sorted in ascending virtual address order.
1579  *
1580  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1581  * range after unmap_vmas() returns.  So the only responsibility here is to
1582  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1583  * drops the lock and schedules.
1584  */
1585 void unmap_vmas(struct mmu_gather *tlb,
1586                 struct vm_area_struct *vma, unsigned long start_addr,
1587                 unsigned long end_addr)
1588 {
1589         struct mm_struct *mm = vma->vm_mm;
1590
1591         mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1592         for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1593                 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1594         mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1595 }
1596
1597 /**
1598  * zap_page_range - remove user pages in a given range
1599  * @vma: vm_area_struct holding the applicable pages
1600  * @start: starting address of pages to zap
1601  * @size: number of bytes to zap
1602  *
1603  * Caller must protect the VMA list
1604  */
1605 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1606                 unsigned long size)
1607 {
1608         struct mm_struct *mm = vma->vm_mm;
1609         struct mmu_gather tlb;
1610         unsigned long end = start + size;
1611
1612         lru_add_drain();
1613         tlb_gather_mmu(&tlb, mm, start, end);
1614         update_hiwater_rss(mm);
1615         mmu_notifier_invalidate_range_start(mm, start, end);
1616         for ( ; vma && vma->vm_start < end; vma = vma->vm_next) {
1617                 unmap_single_vma(&tlb, vma, start, end, NULL);
1618
1619                 /*
1620                  * zap_page_range does not specify whether mmap_sem should be
1621                  * held for read or write. That allows parallel zap_page_range
1622                  * operations to unmap a PTE and defer a flush meaning that
1623                  * this call observes pte_none and fails to flush the TLB.
1624                  * Rather than adding a complex API, ensure that no stale
1625                  * TLB entries exist when this call returns.
1626                  */
1627                 flush_tlb_range(vma, start, end);
1628         }
1629
1630         mmu_notifier_invalidate_range_end(mm, start, end);
1631         tlb_finish_mmu(&tlb, start, end);
1632 }
1633
1634 /**
1635  * zap_page_range_single - remove user pages in a given range
1636  * @vma: vm_area_struct holding the applicable pages
1637  * @address: starting address of pages to zap
1638  * @size: number of bytes to zap
1639  * @details: details of shared cache invalidation
1640  *
1641  * The range must fit into one VMA.
1642  */
1643 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1644                 unsigned long size, struct zap_details *details)
1645 {
1646         struct mm_struct *mm = vma->vm_mm;
1647         struct mmu_gather tlb;
1648         unsigned long end = address + size;
1649
1650         lru_add_drain();
1651         tlb_gather_mmu(&tlb, mm, address, end);
1652         update_hiwater_rss(mm);
1653         mmu_notifier_invalidate_range_start(mm, address, end);
1654         unmap_single_vma(&tlb, vma, address, end, details);
1655         mmu_notifier_invalidate_range_end(mm, address, end);
1656         tlb_finish_mmu(&tlb, address, end);
1657 }
1658
1659 /**
1660  * zap_vma_ptes - remove ptes mapping the vma
1661  * @vma: vm_area_struct holding ptes to be zapped
1662  * @address: starting address of pages to zap
1663  * @size: number of bytes to zap
1664  *
1665  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1666  *
1667  * The entire address range must be fully contained within the vma.
1668  *
1669  */
1670 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1671                 unsigned long size)
1672 {
1673         if (address < vma->vm_start || address + size > vma->vm_end ||
1674                         !(vma->vm_flags & VM_PFNMAP))
1675                 return;
1676
1677         zap_page_range_single(vma, address, size, NULL);
1678 }
1679 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1680
1681 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1682                         spinlock_t **ptl)
1683 {
1684         pgd_t *pgd;
1685         p4d_t *p4d;
1686         pud_t *pud;
1687         pmd_t *pmd;
1688
1689         pgd = pgd_offset(mm, addr);
1690         p4d = p4d_alloc(mm, pgd, addr);
1691         if (!p4d)
1692                 return NULL;
1693         pud = pud_alloc(mm, p4d, addr);
1694         if (!pud)
1695                 return NULL;
1696         pmd = pmd_alloc(mm, pud, addr);
1697         if (!pmd)
1698                 return NULL;
1699
1700         VM_BUG_ON(pmd_trans_huge(*pmd));
1701         return pte_alloc_map_lock(mm, pmd, addr, ptl);
1702 }
1703
1704 /*
1705  * This is the old fallback for page remapping.
1706  *
1707  * For historical reasons, it only allows reserved pages. Only
1708  * old drivers should use this, and they needed to mark their
1709  * pages reserved for the old functions anyway.
1710  */
1711 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1712                         struct page *page, pgprot_t prot)
1713 {
1714         struct mm_struct *mm = vma->vm_mm;
1715         int retval;
1716         pte_t *pte;
1717         spinlock_t *ptl;
1718
1719         retval = -EINVAL;
1720         if (PageAnon(page))
1721                 goto out;
1722         retval = -ENOMEM;
1723         flush_dcache_page(page);
1724         pte = get_locked_pte(mm, addr, &ptl);
1725         if (!pte)
1726                 goto out;
1727         retval = -EBUSY;
1728         if (!pte_none(*pte))
1729                 goto out_unlock;
1730
1731         /* Ok, finally just insert the thing.. */
1732         get_page(page);
1733         inc_mm_counter_fast(mm, mm_counter_file(page));
1734         page_add_file_rmap(page, false);
1735         set_pte_at(mm, addr, pte, mk_pte(page, prot));
1736
1737         retval = 0;
1738         pte_unmap_unlock(pte, ptl);
1739         return retval;
1740 out_unlock:
1741         pte_unmap_unlock(pte, ptl);
1742 out:
1743         return retval;
1744 }
1745
1746 /**
1747  * vm_insert_page - insert single page into user vma
1748  * @vma: user vma to map to
1749  * @addr: target user address of this page
1750  * @page: source kernel page
1751  *
1752  * This allows drivers to insert individual pages they've allocated
1753  * into a user vma.
1754  *
1755  * The page has to be a nice clean _individual_ kernel allocation.
1756  * If you allocate a compound page, you need to have marked it as
1757  * such (__GFP_COMP), or manually just split the page up yourself
1758  * (see split_page()).
1759  *
1760  * NOTE! Traditionally this was done with "remap_pfn_range()" which
1761  * took an arbitrary page protection parameter. This doesn't allow
1762  * that. Your vma protection will have to be set up correctly, which
1763  * means that if you want a shared writable mapping, you'd better
1764  * ask for a shared writable mapping!
1765  *
1766  * The page does not need to be reserved.
1767  *
1768  * Usually this function is called from f_op->mmap() handler
1769  * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1770  * Caller must set VM_MIXEDMAP on vma if it wants to call this
1771  * function from other places, for example from page-fault handler.
1772  */
1773 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1774                         struct page *page)
1775 {
1776         if (addr < vma->vm_start || addr >= vma->vm_end)
1777                 return -EFAULT;
1778         if (!page_count(page))
1779                 return -EINVAL;
1780         if (!(vma->vm_flags & VM_MIXEDMAP)) {
1781                 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
1782                 BUG_ON(vma->vm_flags & VM_PFNMAP);
1783                 vma->vm_flags |= VM_MIXEDMAP;
1784         }
1785         return insert_page(vma, addr, page, vma->vm_page_prot);
1786 }
1787 EXPORT_SYMBOL(vm_insert_page);
1788
1789 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1790                         pfn_t pfn, pgprot_t prot, bool mkwrite)
1791 {
1792         struct mm_struct *mm = vma->vm_mm;
1793         int retval;
1794         pte_t *pte, entry;
1795         spinlock_t *ptl;
1796
1797         retval = -ENOMEM;
1798         pte = get_locked_pte(mm, addr, &ptl);
1799         if (!pte)
1800                 goto out;
1801         retval = -EBUSY;
1802         if (!pte_none(*pte)) {
1803                 if (mkwrite) {
1804                         /*
1805                          * For read faults on private mappings the PFN passed
1806                          * in may not match the PFN we have mapped if the
1807                          * mapped PFN is a writeable COW page.  In the mkwrite
1808                          * case we are creating a writable PTE for a shared
1809                          * mapping and we expect the PFNs to match.
1810                          */
1811                         if (WARN_ON_ONCE(pte_pfn(*pte) != pfn_t_to_pfn(pfn)))
1812                                 goto out_unlock;
1813                         entry = *pte;
1814                         goto out_mkwrite;
1815                 } else
1816                         goto out_unlock;
1817         }
1818
1819         /* Ok, finally just insert the thing.. */
1820         if (pfn_t_devmap(pfn))
1821                 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
1822         else
1823                 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
1824
1825 out_mkwrite:
1826         if (mkwrite) {
1827                 entry = pte_mkyoung(entry);
1828                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1829         }
1830
1831         set_pte_at(mm, addr, pte, entry);
1832         update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1833
1834         retval = 0;
1835 out_unlock:
1836         pte_unmap_unlock(pte, ptl);
1837 out:
1838         return retval;
1839 }
1840
1841 /**
1842  * vm_insert_pfn - insert single pfn into user vma
1843  * @vma: user vma to map to
1844  * @addr: target user address of this page
1845  * @pfn: source kernel pfn
1846  *
1847  * Similar to vm_insert_page, this allows drivers to insert individual pages
1848  * they've allocated into a user vma. Same comments apply.
1849  *
1850  * This function should only be called from a vm_ops->fault handler, and
1851  * in that case the handler should return NULL.
1852  *
1853  * vma cannot be a COW mapping.
1854  *
1855  * As this is called only for pages that do not currently exist, we
1856  * do not need to flush old virtual caches or the TLB.
1857  */
1858 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1859                         unsigned long pfn)
1860 {
1861         return vm_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
1862 }
1863 EXPORT_SYMBOL(vm_insert_pfn);
1864
1865 /**
1866  * vm_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1867  * @vma: user vma to map to
1868  * @addr: target user address of this page
1869  * @pfn: source kernel pfn
1870  * @pgprot: pgprot flags for the inserted page
1871  *
1872  * This is exactly like vm_insert_pfn, except that it allows drivers to
1873  * to override pgprot on a per-page basis.
1874  *
1875  * This only makes sense for IO mappings, and it makes no sense for
1876  * cow mappings.  In general, using multiple vmas is preferable;
1877  * vm_insert_pfn_prot should only be used if using multiple VMAs is
1878  * impractical.
1879  */
1880 int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
1881                         unsigned long pfn, pgprot_t pgprot)
1882 {
1883         int ret;
1884         /*
1885          * Technically, architectures with pte_special can avoid all these
1886          * restrictions (same for remap_pfn_range).  However we would like
1887          * consistency in testing and feature parity among all, so we should
1888          * try to keep these invariants in place for everybody.
1889          */
1890         BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1891         BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1892                                                 (VM_PFNMAP|VM_MIXEDMAP));
1893         BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1894         BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1895
1896         if (addr < vma->vm_start || addr >= vma->vm_end)
1897                 return -EFAULT;
1898
1899         if (!pfn_modify_allowed(pfn, pgprot))
1900                 return -EACCES;
1901
1902         track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
1903
1904         ret = insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
1905                         false);
1906
1907         return ret;
1908 }
1909 EXPORT_SYMBOL(vm_insert_pfn_prot);
1910
1911 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
1912 {
1913         /* these checks mirror the abort conditions in vm_normal_page */
1914         if (vma->vm_flags & VM_MIXEDMAP)
1915                 return true;
1916         if (pfn_t_devmap(pfn))
1917                 return true;
1918         if (pfn_t_special(pfn))
1919                 return true;
1920         if (is_zero_pfn(pfn_t_to_pfn(pfn)))
1921                 return true;
1922         return false;
1923 }
1924
1925 static int __vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1926                         pfn_t pfn, bool mkwrite)
1927 {
1928         pgprot_t pgprot = vma->vm_page_prot;
1929
1930         BUG_ON(!vm_mixed_ok(vma, pfn));
1931
1932         if (addr < vma->vm_start || addr >= vma->vm_end)
1933                 return -EFAULT;
1934
1935         track_pfn_insert(vma, &pgprot, pfn);
1936
1937         if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
1938                 return -EACCES;
1939
1940         /*
1941          * If we don't have pte special, then we have to use the pfn_valid()
1942          * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1943          * refcount the page if pfn_valid is true (hence insert_page rather
1944          * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
1945          * without pte special, it would there be refcounted as a normal page.
1946          */
1947         if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
1948             !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
1949                 struct page *page;
1950
1951                 /*
1952                  * At this point we are committed to insert_page()
1953                  * regardless of whether the caller specified flags that
1954                  * result in pfn_t_has_page() == false.
1955                  */
1956                 page = pfn_to_page(pfn_t_to_pfn(pfn));
1957                 return insert_page(vma, addr, page, pgprot);
1958         }
1959         return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
1960 }
1961
1962 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1963                         pfn_t pfn)
1964 {
1965         return __vm_insert_mixed(vma, addr, pfn, false);
1966
1967 }
1968 EXPORT_SYMBOL(vm_insert_mixed);
1969
1970 /*
1971  *  If the insertion of PTE failed because someone else already added a
1972  *  different entry in the mean time, we treat that as success as we assume
1973  *  the same entry was actually inserted.
1974  */
1975
1976 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
1977                 unsigned long addr, pfn_t pfn)
1978 {
1979         int err;
1980
1981         err =  __vm_insert_mixed(vma, addr, pfn, true);
1982         if (err == -ENOMEM)
1983                 return VM_FAULT_OOM;
1984         if (err < 0 && err != -EBUSY)
1985                 return VM_FAULT_SIGBUS;
1986         return VM_FAULT_NOPAGE;
1987 }
1988 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
1989
1990 /*
1991  * maps a range of physical memory into the requested pages. the old
1992  * mappings are removed. any references to nonexistent pages results
1993  * in null mappings (currently treated as "copy-on-access")
1994  */
1995 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1996                         unsigned long addr, unsigned long end,
1997                         unsigned long pfn, pgprot_t prot)
1998 {
1999         pte_t *pte;
2000         spinlock_t *ptl;
2001         int err = 0;
2002
2003         pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2004         if (!pte)
2005                 return -ENOMEM;
2006         arch_enter_lazy_mmu_mode();
2007         do {
2008                 BUG_ON(!pte_none(*pte));
2009                 if (!pfn_modify_allowed(pfn, prot)) {
2010                         err = -EACCES;
2011                         break;
2012                 }
2013                 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2014                 pfn++;
2015         } while (pte++, addr += PAGE_SIZE, addr != end);
2016         arch_leave_lazy_mmu_mode();
2017         pte_unmap_unlock(pte - 1, ptl);
2018         return err;
2019 }
2020
2021 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2022                         unsigned long addr, unsigned long end,
2023                         unsigned long pfn, pgprot_t prot)
2024 {
2025         pmd_t *pmd;
2026         unsigned long next;
2027         int err;
2028
2029         pfn -= addr >> PAGE_SHIFT;
2030         pmd = pmd_alloc(mm, pud, addr);
2031         if (!pmd)
2032                 return -ENOMEM;
2033         VM_BUG_ON(pmd_trans_huge(*pmd));
2034         do {
2035                 next = pmd_addr_end(addr, end);
2036                 err = remap_pte_range(mm, pmd, addr, next,
2037                                 pfn + (addr >> PAGE_SHIFT), prot);
2038                 if (err)
2039                         return err;
2040         } while (pmd++, addr = next, addr != end);
2041         return 0;
2042 }
2043
2044 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
2045                         unsigned long addr, unsigned long end,
2046                         unsigned long pfn, pgprot_t prot)
2047 {
2048         pud_t *pud;
2049         unsigned long next;
2050         int err;
2051
2052         pfn -= addr >> PAGE_SHIFT;
2053         pud = pud_alloc(mm, p4d, addr);
2054         if (!pud)
2055                 return -ENOMEM;
2056         do {
2057                 next = pud_addr_end(addr, end);
2058                 err = remap_pmd_range(mm, pud, addr, next,
2059                                 pfn + (addr >> PAGE_SHIFT), prot);
2060                 if (err)
2061                         return err;
2062         } while (pud++, addr = next, addr != end);
2063         return 0;
2064 }
2065
2066 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2067                         unsigned long addr, unsigned long end,
2068                         unsigned long pfn, pgprot_t prot)
2069 {
2070         p4d_t *p4d;
2071         unsigned long next;
2072         int err;
2073
2074         pfn -= addr >> PAGE_SHIFT;
2075         p4d = p4d_alloc(mm, pgd, addr);
2076         if (!p4d)
2077                 return -ENOMEM;
2078         do {
2079                 next = p4d_addr_end(addr, end);
2080                 err = remap_pud_range(mm, p4d, addr, next,
2081                                 pfn + (addr >> PAGE_SHIFT), prot);
2082                 if (err)
2083                         return err;
2084         } while (p4d++, addr = next, addr != end);
2085         return 0;
2086 }
2087
2088 /**
2089  * remap_pfn_range - remap kernel memory to userspace
2090  * @vma: user vma to map to
2091  * @addr: target user address to start at
2092  * @pfn: physical address of kernel memory
2093  * @size: size of map area
2094  * @prot: page protection flags for this mapping
2095  *
2096  *  Note: this is only safe if the mm semaphore is held when called.
2097  */
2098 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2099                     unsigned long pfn, unsigned long size, pgprot_t prot)
2100 {
2101         pgd_t *pgd;
2102         unsigned long next;
2103         unsigned long end = addr + PAGE_ALIGN(size);
2104         struct mm_struct *mm = vma->vm_mm;
2105         unsigned long remap_pfn = pfn;
2106         int err;
2107
2108         /*
2109          * Physically remapped pages are special. Tell the
2110          * rest of the world about it:
2111          *   VM_IO tells people not to look at these pages
2112          *      (accesses can have side effects).
2113          *   VM_PFNMAP tells the core MM that the base pages are just
2114          *      raw PFN mappings, and do not have a "struct page" associated
2115          *      with them.
2116          *   VM_DONTEXPAND
2117          *      Disable vma merging and expanding with mremap().
2118          *   VM_DONTDUMP
2119          *      Omit vma from core dump, even when VM_IO turned off.
2120          *
2121          * There's a horrible special case to handle copy-on-write
2122          * behaviour that some programs depend on. We mark the "original"
2123          * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2124          * See vm_normal_page() for details.
2125          */
2126         if (is_cow_mapping(vma->vm_flags)) {
2127                 if (addr != vma->vm_start || end != vma->vm_end)
2128                         return -EINVAL;
2129                 vma->vm_pgoff = pfn;
2130         }
2131
2132         err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size));
2133         if (err)
2134                 return -EINVAL;
2135
2136         vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
2137
2138         BUG_ON(addr >= end);
2139         pfn -= addr >> PAGE_SHIFT;
2140         pgd = pgd_offset(mm, addr);
2141         flush_cache_range(vma, addr, end);
2142         do {
2143                 next = pgd_addr_end(addr, end);
2144                 err = remap_p4d_range(mm, pgd, addr, next,
2145                                 pfn + (addr >> PAGE_SHIFT), prot);
2146                 if (err)
2147                         break;
2148         } while (pgd++, addr = next, addr != end);
2149
2150         if (err)
2151                 untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size));
2152
2153         return err;
2154 }
2155 EXPORT_SYMBOL(remap_pfn_range);
2156
2157 /**
2158  * vm_iomap_memory - remap memory to userspace
2159  * @vma: user vma to map to
2160  * @start: start of area
2161  * @len: size of area
2162  *
2163  * This is a simplified io_remap_pfn_range() for common driver use. The
2164  * driver just needs to give us the physical memory range to be mapped,
2165  * we'll figure out the rest from the vma information.
2166  *
2167  * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2168  * whatever write-combining details or similar.
2169  */
2170 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2171 {
2172         unsigned long vm_len, pfn, pages;
2173
2174         /* Check that the physical memory area passed in looks valid */
2175         if (start + len < start)
2176                 return -EINVAL;
2177         /*
2178          * You *really* shouldn't map things that aren't page-aligned,
2179          * but we've historically allowed it because IO memory might
2180          * just have smaller alignment.
2181          */
2182         len += start & ~PAGE_MASK;
2183         pfn = start >> PAGE_SHIFT;
2184         pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2185         if (pfn + pages < pfn)
2186                 return -EINVAL;
2187
2188         /* We start the mapping 'vm_pgoff' pages into the area */
2189         if (vma->vm_pgoff > pages)
2190                 return -EINVAL;
2191         pfn += vma->vm_pgoff;
2192         pages -= vma->vm_pgoff;
2193
2194         /* Can we fit all of the mapping? */
2195         vm_len = vma->vm_end - vma->vm_start;
2196         if (vm_len >> PAGE_SHIFT > pages)
2197                 return -EINVAL;
2198
2199         /* Ok, let it rip */
2200         return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2201 }
2202 EXPORT_SYMBOL(vm_iomap_memory);
2203
2204 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2205                                      unsigned long addr, unsigned long end,
2206                                      pte_fn_t fn, void *data)
2207 {
2208         pte_t *pte;
2209         int err;
2210         pgtable_t token;
2211         spinlock_t *uninitialized_var(ptl);
2212
2213         pte = (mm == &init_mm) ?
2214                 pte_alloc_kernel(pmd, addr) :
2215                 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2216         if (!pte)
2217                 return -ENOMEM;
2218
2219         BUG_ON(pmd_huge(*pmd));
2220
2221         arch_enter_lazy_mmu_mode();
2222
2223         token = pmd_pgtable(*pmd);
2224
2225         do {
2226                 err = fn(pte++, token, addr, data);
2227                 if (err)
2228                         break;
2229         } while (addr += PAGE_SIZE, addr != end);
2230
2231         arch_leave_lazy_mmu_mode();
2232
2233         if (mm != &init_mm)
2234                 pte_unmap_unlock(pte-1, ptl);
2235         return err;
2236 }
2237
2238 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2239                                      unsigned long addr, unsigned long end,
2240                                      pte_fn_t fn, void *data)
2241 {
2242         pmd_t *pmd;
2243         unsigned long next;
2244         int err;
2245
2246         BUG_ON(pud_huge(*pud));
2247
2248         pmd = pmd_alloc(mm, pud, addr);
2249         if (!pmd)
2250                 return -ENOMEM;
2251         do {
2252                 next = pmd_addr_end(addr, end);
2253                 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
2254                 if (err)
2255                         break;
2256         } while (pmd++, addr = next, addr != end);
2257         return err;
2258 }
2259
2260 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2261                                      unsigned long addr, unsigned long end,
2262                                      pte_fn_t fn, void *data)
2263 {
2264         pud_t *pud;
2265         unsigned long next;
2266         int err;
2267
2268         pud = pud_alloc(mm, p4d, addr);
2269         if (!pud)
2270                 return -ENOMEM;
2271         do {
2272                 next = pud_addr_end(addr, end);
2273                 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
2274                 if (err)
2275                         break;
2276         } while (pud++, addr = next, addr != end);
2277         return err;
2278 }
2279
2280 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2281                                      unsigned long addr, unsigned long end,
2282                                      pte_fn_t fn, void *data)
2283 {
2284         p4d_t *p4d;
2285         unsigned long next;
2286         int err;
2287
2288         p4d = p4d_alloc(mm, pgd, addr);
2289         if (!p4d)
2290                 return -ENOMEM;
2291         do {
2292                 next = p4d_addr_end(addr, end);
2293                 err = apply_to_pud_range(mm, p4d, addr, next, fn, data);
2294                 if (err)
2295                         break;
2296         } while (p4d++, addr = next, addr != end);
2297         return err;
2298 }
2299
2300 /*
2301  * Scan a region of virtual memory, filling in page tables as necessary
2302  * and calling a provided function on each leaf page table.
2303  */
2304 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2305                         unsigned long size, pte_fn_t fn, void *data)
2306 {
2307         pgd_t *pgd;
2308         unsigned long next;
2309         unsigned long end = addr + size;
2310         int err;
2311
2312         if (WARN_ON(addr >= end))
2313                 return -EINVAL;
2314
2315         pgd = pgd_offset(mm, addr);
2316         do {
2317                 next = pgd_addr_end(addr, end);
2318                 err = apply_to_p4d_range(mm, pgd, addr, next, fn, data);
2319                 if (err)
2320                         break;
2321         } while (pgd++, addr = next, addr != end);
2322
2323         return err;
2324 }
2325 EXPORT_SYMBOL_GPL(apply_to_page_range);
2326
2327 /*
2328  * handle_pte_fault chooses page fault handler according to an entry which was
2329  * read non-atomically.  Before making any commitment, on those architectures
2330  * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2331  * parts, do_swap_page must check under lock before unmapping the pte and
2332  * proceeding (but do_wp_page is only called after already making such a check;
2333  * and do_anonymous_page can safely check later on).
2334  */
2335 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2336                                 pte_t *page_table, pte_t orig_pte)
2337 {
2338         int same = 1;
2339 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2340         if (sizeof(pte_t) > sizeof(unsigned long)) {
2341                 spinlock_t *ptl = pte_lockptr(mm, pmd);
2342                 spin_lock(ptl);
2343                 same = pte_same(*page_table, orig_pte);
2344                 spin_unlock(ptl);
2345         }
2346 #endif
2347         pte_unmap(page_table);
2348         return same;
2349 }
2350
2351 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
2352 {
2353         debug_dma_assert_idle(src);
2354
2355         /*
2356          * If the source page was a PFN mapping, we don't have
2357          * a "struct page" for it. We do a best-effort copy by
2358          * just copying from the original user address. If that
2359          * fails, we just zero-fill it. Live with it.
2360          */
2361         if (unlikely(!src)) {
2362                 void *kaddr = kmap_atomic(dst);
2363                 void __user *uaddr = (void __user *)(va & PAGE_MASK);
2364
2365                 /*
2366                  * This really shouldn't fail, because the page is there
2367                  * in the page tables. But it might just be unreadable,
2368                  * in which case we just give up and fill the result with
2369                  * zeroes.
2370                  */
2371                 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
2372                         clear_page(kaddr);
2373                 kunmap_atomic(kaddr);
2374                 flush_dcache_page(dst);
2375         } else
2376                 copy_user_highpage(dst, src, va, vma);
2377 }
2378
2379 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2380 {
2381         struct file *vm_file = vma->vm_file;
2382
2383         if (vm_file)
2384                 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2385
2386         /*
2387          * Special mappings (e.g. VDSO) do not have any file so fake
2388          * a default GFP_KERNEL for them.
2389          */
2390         return GFP_KERNEL;
2391 }
2392
2393 /*
2394  * Notify the address space that the page is about to become writable so that
2395  * it can prohibit this or wait for the page to get into an appropriate state.
2396  *
2397  * We do this without the lock held, so that it can sleep if it needs to.
2398  */
2399 static int do_page_mkwrite(struct vm_fault *vmf)
2400 {
2401         int ret;
2402         struct page *page = vmf->page;
2403         unsigned int old_flags = vmf->flags;
2404
2405         vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2406
2407         ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2408         /* Restore original flags so that caller is not surprised */
2409         vmf->flags = old_flags;
2410         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2411                 return ret;
2412         if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2413                 lock_page(page);
2414                 if (!page->mapping) {
2415                         unlock_page(page);
2416                         return 0; /* retry */
2417                 }
2418                 ret |= VM_FAULT_LOCKED;
2419         } else
2420                 VM_BUG_ON_PAGE(!PageLocked(page), page);
2421         return ret;
2422 }
2423
2424 /*
2425  * Handle dirtying of a page in shared file mapping on a write fault.
2426  *
2427  * The function expects the page to be locked and unlocks it.
2428  */
2429 static void fault_dirty_shared_page(struct vm_area_struct *vma,
2430                                     struct page *page)
2431 {
2432         struct address_space *mapping;
2433         bool dirtied;
2434         bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2435
2436         dirtied = set_page_dirty(page);
2437         VM_BUG_ON_PAGE(PageAnon(page), page);
2438         /*
2439          * Take a local copy of the address_space - page.mapping may be zeroed
2440          * by truncate after unlock_page().   The address_space itself remains
2441          * pinned by vma->vm_file's reference.  We rely on unlock_page()'s
2442          * release semantics to prevent the compiler from undoing this copying.
2443          */
2444         mapping = page_rmapping(page);
2445         unlock_page(page);
2446
2447         if ((dirtied || page_mkwrite) && mapping) {
2448                 /*
2449                  * Some device drivers do not set page.mapping
2450                  * but still dirty their pages
2451                  */
2452                 balance_dirty_pages_ratelimited(mapping);
2453         }
2454
2455         if (!page_mkwrite)
2456                 file_update_time(vma->vm_file);
2457 }
2458
2459 /*
2460  * Handle write page faults for pages that can be reused in the current vma
2461  *
2462  * This can happen either due to the mapping being with the VM_SHARED flag,
2463  * or due to us being the last reference standing to the page. In either
2464  * case, all we need to do here is to mark the page as writable and update
2465  * any related book-keeping.
2466  */
2467 static inline void wp_page_reuse(struct vm_fault *vmf)
2468         __releases(vmf->ptl)
2469 {
2470         struct vm_area_struct *vma = vmf->vma;
2471         struct page *page = vmf->page;
2472         pte_t entry;
2473         /*
2474          * Clear the pages cpupid information as the existing
2475          * information potentially belongs to a now completely
2476          * unrelated process.
2477          */
2478         if (page)
2479                 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2480
2481         flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2482         entry = pte_mkyoung(vmf->orig_pte);
2483         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2484         if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
2485                 update_mmu_cache(vma, vmf->address, vmf->pte);
2486         pte_unmap_unlock(vmf->pte, vmf->ptl);
2487 }
2488
2489 /*
2490  * Handle the case of a page which we actually need to copy to a new page.
2491  *
2492  * Called with mmap_sem locked and the old page referenced, but
2493  * without the ptl held.
2494  *
2495  * High level logic flow:
2496  *
2497  * - Allocate a page, copy the content of the old page to the new one.
2498  * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2499  * - Take the PTL. If the pte changed, bail out and release the allocated page
2500  * - If the pte is still the way we remember it, update the page table and all
2501  *   relevant references. This includes dropping the reference the page-table
2502  *   held to the old page, as well as updating the rmap.
2503  * - In any case, unlock the PTL and drop the reference we took to the old page.
2504  */
2505 static int wp_page_copy(struct vm_fault *vmf)
2506 {
2507         struct vm_area_struct *vma = vmf->vma;
2508         struct mm_struct *mm = vma->vm_mm;
2509         struct page *old_page = vmf->page;
2510         struct page *new_page = NULL;
2511         pte_t entry;
2512         int page_copied = 0;
2513         const unsigned long mmun_start = vmf->address & PAGE_MASK;
2514         const unsigned long mmun_end = mmun_start + PAGE_SIZE;
2515         struct mem_cgroup *memcg;
2516
2517         if (unlikely(anon_vma_prepare(vma)))
2518                 goto oom;
2519
2520         if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
2521                 new_page = alloc_zeroed_user_highpage_movable(vma,
2522                                                               vmf->address);
2523                 if (!new_page)
2524                         goto oom;
2525         } else {
2526                 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2527                                 vmf->address);
2528                 if (!new_page)
2529                         goto oom;
2530                 cow_user_page(new_page, old_page, vmf->address, vma);
2531         }
2532
2533         if (mem_cgroup_try_charge_delay(new_page, mm, GFP_KERNEL, &memcg, false))
2534                 goto oom_free_new;
2535
2536         __SetPageUptodate(new_page);
2537
2538         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2539
2540         /*
2541          * Re-check the pte - we dropped the lock
2542          */
2543         vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
2544         if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2545                 if (old_page) {
2546                         if (!PageAnon(old_page)) {
2547                                 dec_mm_counter_fast(mm,
2548                                                 mm_counter_file(old_page));
2549                                 inc_mm_counter_fast(mm, MM_ANONPAGES);
2550                         }
2551                 } else {
2552                         inc_mm_counter_fast(mm, MM_ANONPAGES);
2553                 }
2554                 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2555                 entry = mk_pte(new_page, vma->vm_page_prot);
2556                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2557                 /*
2558                  * Clear the pte entry and flush it first, before updating the
2559                  * pte with the new entry. This will avoid a race condition
2560                  * seen in the presence of one thread doing SMC and another
2561                  * thread doing COW.
2562                  */
2563                 ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
2564                 page_add_new_anon_rmap(new_page, vma, vmf->address, false);
2565                 mem_cgroup_commit_charge(new_page, memcg, false, false);
2566                 lru_cache_add_active_or_unevictable(new_page, vma);
2567                 /*
2568                  * We call the notify macro here because, when using secondary
2569                  * mmu page tables (such as kvm shadow page tables), we want the
2570                  * new page to be mapped directly into the secondary page table.
2571                  */
2572                 set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
2573                 update_mmu_cache(vma, vmf->address, vmf->pte);
2574                 if (old_page) {
2575                         /*
2576                          * Only after switching the pte to the new page may
2577                          * we remove the mapcount here. Otherwise another
2578                          * process may come and find the rmap count decremented
2579                          * before the pte is switched to the new page, and
2580                          * "reuse" the old page writing into it while our pte
2581                          * here still points into it and can be read by other
2582                          * threads.
2583                          *
2584                          * The critical issue is to order this
2585                          * page_remove_rmap with the ptp_clear_flush above.
2586                          * Those stores are ordered by (if nothing else,)
2587                          * the barrier present in the atomic_add_negative
2588                          * in page_remove_rmap.
2589                          *
2590                          * Then the TLB flush in ptep_clear_flush ensures that
2591                          * no process can access the old page before the
2592                          * decremented mapcount is visible. And the old page
2593                          * cannot be reused until after the decremented
2594                          * mapcount is visible. So transitively, TLBs to
2595                          * old page will be flushed before it can be reused.
2596                          */
2597                         page_remove_rmap(old_page, false);
2598                 }
2599
2600                 /* Free the old page.. */
2601                 new_page = old_page;
2602                 page_copied = 1;
2603         } else {
2604                 mem_cgroup_cancel_charge(new_page, memcg, false);
2605         }
2606
2607         if (new_page)
2608                 put_page(new_page);
2609
2610         pte_unmap_unlock(vmf->pte, vmf->ptl);
2611         /*
2612          * No need to double call mmu_notifier->invalidate_range() callback as
2613          * the above ptep_clear_flush_notify() did already call it.
2614          */
2615         mmu_notifier_invalidate_range_only_end(mm, mmun_start, mmun_end);
2616         if (old_page) {
2617                 /*
2618                  * Don't let another task, with possibly unlocked vma,
2619                  * keep the mlocked page.
2620                  */
2621                 if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2622                         lock_page(old_page);    /* LRU manipulation */
2623                         if (PageMlocked(old_page))
2624                                 munlock_vma_page(old_page);
2625                         unlock_page(old_page);
2626                 }
2627                 put_page(old_page);
2628         }
2629         return page_copied ? VM_FAULT_WRITE : 0;
2630 oom_free_new:
2631         put_page(new_page);
2632 oom:
2633         if (old_page)
2634                 put_page(old_page);
2635         return VM_FAULT_OOM;
2636 }
2637
2638 /**
2639  * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
2640  *                        writeable once the page is prepared
2641  *
2642  * @vmf: structure describing the fault
2643  *
2644  * This function handles all that is needed to finish a write page fault in a
2645  * shared mapping due to PTE being read-only once the mapped page is prepared.
2646  * It handles locking of PTE and modifying it. The function returns
2647  * VM_FAULT_WRITE on success, 0 when PTE got changed before we acquired PTE
2648  * lock.
2649  *
2650  * The function expects the page to be locked or other protection against
2651  * concurrent faults / writeback (such as DAX radix tree locks).
2652  */
2653 int finish_mkwrite_fault(struct vm_fault *vmf)
2654 {
2655         WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
2656         vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
2657                                        &vmf->ptl);
2658         /*
2659          * We might have raced with another page fault while we released the
2660          * pte_offset_map_lock.
2661          */
2662         if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2663                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2664                 return VM_FAULT_NOPAGE;
2665         }
2666         wp_page_reuse(vmf);
2667         return 0;
2668 }
2669
2670 /*
2671  * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2672  * mapping
2673  */
2674 static int wp_pfn_shared(struct vm_fault *vmf)
2675 {
2676         struct vm_area_struct *vma = vmf->vma;
2677
2678         if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
2679                 int ret;
2680
2681                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2682                 vmf->flags |= FAULT_FLAG_MKWRITE;
2683                 ret = vma->vm_ops->pfn_mkwrite(vmf);
2684                 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
2685                         return ret;
2686                 return finish_mkwrite_fault(vmf);
2687         }
2688         wp_page_reuse(vmf);
2689         return VM_FAULT_WRITE;
2690 }
2691
2692 static int wp_page_shared(struct vm_fault *vmf)
2693         __releases(vmf->ptl)
2694 {
2695         struct vm_area_struct *vma = vmf->vma;
2696
2697         get_page(vmf->page);
2698
2699         if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2700                 int tmp;
2701
2702                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2703                 tmp = do_page_mkwrite(vmf);
2704                 if (unlikely(!tmp || (tmp &
2705                                       (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2706                         put_page(vmf->page);
2707                         return tmp;
2708                 }
2709                 tmp = finish_mkwrite_fault(vmf);
2710                 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2711                         unlock_page(vmf->page);
2712                         put_page(vmf->page);
2713                         return tmp;
2714                 }
2715         } else {
2716                 wp_page_reuse(vmf);
2717                 lock_page(vmf->page);
2718         }
2719         fault_dirty_shared_page(vma, vmf->page);
2720         put_page(vmf->page);
2721
2722         return VM_FAULT_WRITE;
2723 }
2724
2725 /*
2726  * This routine handles present pages, when users try to write
2727  * to a shared page. It is done by copying the page to a new address
2728  * and decrementing the shared-page counter for the old page.
2729  *
2730  * Note that this routine assumes that the protection checks have been
2731  * done by the caller (the low-level page fault routine in most cases).
2732  * Thus we can safely just mark it writable once we've done any necessary
2733  * COW.
2734  *
2735  * We also mark the page dirty at this point even though the page will
2736  * change only once the write actually happens. This avoids a few races,
2737  * and potentially makes it more efficient.
2738  *
2739  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2740  * but allow concurrent faults), with pte both mapped and locked.
2741  * We return with mmap_sem still held, but pte unmapped and unlocked.
2742  */
2743 static int do_wp_page(struct vm_fault *vmf)
2744         __releases(vmf->ptl)
2745 {
2746         struct vm_area_struct *vma = vmf->vma;
2747
2748         vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
2749         if (!vmf->page) {
2750                 /*
2751                  * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2752                  * VM_PFNMAP VMA.
2753                  *
2754                  * We should not cow pages in a shared writeable mapping.
2755                  * Just mark the pages writable and/or call ops->pfn_mkwrite.
2756                  */
2757                 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2758                                      (VM_WRITE|VM_SHARED))
2759                         return wp_pfn_shared(vmf);
2760
2761                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2762                 return wp_page_copy(vmf);
2763         }
2764
2765         /*
2766          * Take out anonymous pages first, anonymous shared vmas are
2767          * not dirty accountable.
2768          */
2769         if (PageAnon(vmf->page) && !PageKsm(vmf->page)) {
2770                 int total_map_swapcount;
2771                 if (!trylock_page(vmf->page)) {
2772                         get_page(vmf->page);
2773                         pte_unmap_unlock(vmf->pte, vmf->ptl);
2774                         lock_page(vmf->page);
2775                         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2776                                         vmf->address, &vmf->ptl);
2777                         if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2778                                 unlock_page(vmf->page);
2779                                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2780                                 put_page(vmf->page);
2781                                 return 0;
2782                         }
2783                         put_page(vmf->page);
2784                 }
2785                 if (reuse_swap_page(vmf->page, &total_map_swapcount)) {
2786                         if (total_map_swapcount == 1) {
2787                                 /*
2788                                  * The page is all ours. Move it to
2789                                  * our anon_vma so the rmap code will
2790                                  * not search our parent or siblings.
2791                                  * Protected against the rmap code by
2792                                  * the page lock.
2793                                  */
2794                                 page_move_anon_rmap(vmf->page, vma);
2795                         }
2796                         unlock_page(vmf->page);
2797                         wp_page_reuse(vmf);
2798                         return VM_FAULT_WRITE;
2799                 }
2800                 unlock_page(vmf->page);
2801         } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2802                                         (VM_WRITE|VM_SHARED))) {
2803                 return wp_page_shared(vmf);
2804         }
2805
2806         /*
2807          * Ok, we need to copy. Oh, well..
2808          */
2809         get_page(vmf->page);
2810
2811         pte_unmap_unlock(vmf->pte, vmf->ptl);
2812         return wp_page_copy(vmf);
2813 }
2814
2815 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2816                 unsigned long start_addr, unsigned long end_addr,
2817                 struct zap_details *details)
2818 {
2819         zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2820 }
2821
2822 static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
2823                                             struct zap_details *details)
2824 {
2825         struct vm_area_struct *vma;
2826         pgoff_t vba, vea, zba, zea;
2827
2828         vma_interval_tree_foreach(vma, root,
2829                         details->first_index, details->last_index) {
2830
2831                 vba = vma->vm_pgoff;
2832                 vea = vba + vma_pages(vma) - 1;
2833                 zba = details->first_index;
2834                 if (zba < vba)
2835                         zba = vba;
2836                 zea = details->last_index;
2837                 if (zea > vea)
2838                         zea = vea;
2839
2840                 unmap_mapping_range_vma(vma,
2841                         ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2842                         ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2843                                 details);
2844         }
2845 }
2846
2847 /**
2848  * unmap_mapping_pages() - Unmap pages from processes.
2849  * @mapping: The address space containing pages to be unmapped.
2850  * @start: Index of first page to be unmapped.
2851  * @nr: Number of pages to be unmapped.  0 to unmap to end of file.
2852  * @even_cows: Whether to unmap even private COWed pages.
2853  *
2854  * Unmap the pages in this address space from any userspace process which
2855  * has them mmaped.  Generally, you want to remove COWed pages as well when
2856  * a file is being truncated, but not when invalidating pages from the page
2857  * cache.
2858  */
2859 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
2860                 pgoff_t nr, bool even_cows)
2861 {
2862         struct zap_details details = { };
2863
2864         details.check_mapping = even_cows ? NULL : mapping;
2865         details.first_index = start;
2866         details.last_index = start + nr - 1;
2867         if (details.last_index < details.first_index)
2868                 details.last_index = ULONG_MAX;
2869
2870         i_mmap_lock_write(mapping);
2871         if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
2872                 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2873         i_mmap_unlock_write(mapping);
2874 }
2875
2876 /**
2877  * unmap_mapping_range - unmap the portion of all mmaps in the specified
2878  * address_space corresponding to the specified byte range in the underlying
2879  * file.
2880  *
2881  * @mapping: the address space containing mmaps to be unmapped.
2882  * @holebegin: byte in first page to unmap, relative to the start of
2883  * the underlying file.  This will be rounded down to a PAGE_SIZE
2884  * boundary.  Note that this is different from truncate_pagecache(), which
2885  * must keep the partial page.  In contrast, we must get rid of
2886  * partial pages.
2887  * @holelen: size of prospective hole in bytes.  This will be rounded
2888  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
2889  * end of the file.
2890  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2891  * but 0 when invalidating pagecache, don't throw away private data.
2892  */
2893 void unmap_mapping_range(struct address_space *mapping,
2894                 loff_t const holebegin, loff_t const holelen, int even_cows)
2895 {
2896         pgoff_t hba = holebegin >> PAGE_SHIFT;
2897         pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2898
2899         /* Check for overflow. */
2900         if (sizeof(holelen) > sizeof(hlen)) {
2901                 long long holeend =
2902                         (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2903                 if (holeend & ~(long long)ULONG_MAX)
2904                         hlen = ULONG_MAX - hba + 1;
2905         }
2906
2907         unmap_mapping_pages(mapping, hba, hlen, even_cows);
2908 }
2909 EXPORT_SYMBOL(unmap_mapping_range);
2910
2911 /*
2912  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2913  * but allow concurrent faults), and pte mapped but not yet locked.
2914  * We return with pte unmapped and unlocked.
2915  *
2916  * We return with the mmap_sem locked or unlocked in the same cases
2917  * as does filemap_fault().
2918  */
2919 int do_swap_page(struct vm_fault *vmf)
2920 {
2921         struct vm_area_struct *vma = vmf->vma;
2922         struct page *page = NULL, *swapcache;
2923         struct mem_cgroup *memcg;
2924         swp_entry_t entry;
2925         pte_t pte;
2926         int locked;
2927         int exclusive = 0;
2928         int ret = 0;
2929
2930         if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte))
2931                 goto out;
2932
2933         entry = pte_to_swp_entry(vmf->orig_pte);
2934         if (unlikely(non_swap_entry(entry))) {
2935                 if (is_migration_entry(entry)) {
2936                         migration_entry_wait(vma->vm_mm, vmf->pmd,
2937                                              vmf->address);
2938                 } else if (is_device_private_entry(entry)) {
2939                         /*
2940                          * For un-addressable device memory we call the pgmap
2941                          * fault handler callback. The callback must migrate
2942                          * the page back to some CPU accessible page.
2943                          */
2944                         ret = device_private_entry_fault(vma, vmf->address, entry,
2945                                                  vmf->flags, vmf->pmd);
2946                 } else if (is_hwpoison_entry(entry)) {
2947                         ret = VM_FAULT_HWPOISON;
2948                 } else {
2949                         print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
2950                         ret = VM_FAULT_SIGBUS;
2951                 }
2952                 goto out;
2953         }
2954
2955
2956         delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2957         page = lookup_swap_cache(entry, vma, vmf->address);
2958         swapcache = page;
2959
2960         if (!page) {
2961                 struct swap_info_struct *si = swp_swap_info(entry);
2962
2963                 if (si->flags & SWP_SYNCHRONOUS_IO &&
2964                                 __swap_count(si, entry) == 1) {
2965                         /* skip swapcache */
2966                         page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2967                                                         vmf->address);
2968                         if (page) {
2969                                 __SetPageLocked(page);
2970                                 __SetPageSwapBacked(page);
2971                                 set_page_private(page, entry.val);
2972                                 lru_cache_add_anon(page);
2973                                 swap_readpage(page, true);
2974                         }
2975                 } else {
2976                         page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
2977                                                 vmf);
2978                         swapcache = page;
2979                 }
2980
2981                 if (!page) {
2982                         /*
2983                          * Back out if somebody else faulted in this pte
2984                          * while we released the pte lock.
2985                          */
2986                         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2987                                         vmf->address, &vmf->ptl);
2988                         if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
2989                                 ret = VM_FAULT_OOM;
2990                         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2991                         goto unlock;
2992                 }
2993
2994                 /* Had to read the page from swap area: Major fault */
2995                 ret = VM_FAULT_MAJOR;
2996                 count_vm_event(PGMAJFAULT);
2997                 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
2998         } else if (PageHWPoison(page)) {
2999                 /*
3000                  * hwpoisoned dirty swapcache pages are kept for killing
3001                  * owner processes (which may be unknown at hwpoison time)
3002                  */
3003                 ret = VM_FAULT_HWPOISON;
3004                 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3005                 goto out_release;
3006         }
3007
3008         locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
3009
3010         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3011         if (!locked) {
3012                 ret |= VM_FAULT_RETRY;
3013                 goto out_release;
3014         }
3015
3016         /*
3017          * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
3018          * release the swapcache from under us.  The page pin, and pte_same
3019          * test below, are not enough to exclude that.  Even if it is still
3020          * swapcache, we need to check that the page's swap has not changed.
3021          */
3022         if (unlikely((!PageSwapCache(page) ||
3023                         page_private(page) != entry.val)) && swapcache)
3024                 goto out_page;
3025
3026         page = ksm_might_need_to_copy(page, vma, vmf->address);
3027         if (unlikely(!page)) {
3028                 ret = VM_FAULT_OOM;
3029                 page = swapcache;
3030                 goto out_page;
3031         }
3032
3033         if (mem_cgroup_try_charge_delay(page, vma->vm_mm, GFP_KERNEL,
3034                                         &memcg, false)) {
3035                 ret = VM_FAULT_OOM;
3036                 goto out_page;
3037         }
3038
3039         /*
3040          * Back out if somebody else already faulted in this pte.
3041          */
3042         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3043                         &vmf->ptl);
3044         if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
3045                 goto out_nomap;
3046
3047         if (unlikely(!PageUptodate(page))) {
3048                 ret = VM_FAULT_SIGBUS;
3049                 goto out_nomap;
3050         }
3051
3052         /*
3053          * The page isn't present yet, go ahead with the fault.
3054          *
3055          * Be careful about the sequence of operations here.
3056          * To get its accounting right, reuse_swap_page() must be called
3057          * while the page is counted on swap but not yet in mapcount i.e.
3058          * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3059          * must be called after the swap_free(), or it will never succeed.
3060          */
3061
3062         inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3063         dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
3064         pte = mk_pte(page, vma->vm_page_prot);
3065         if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
3066                 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3067                 vmf->flags &= ~FAULT_FLAG_WRITE;
3068                 ret |= VM_FAULT_WRITE;
3069                 exclusive = RMAP_EXCLUSIVE;
3070         }
3071         flush_icache_page(vma, page);
3072         if (pte_swp_soft_dirty(vmf->orig_pte))
3073                 pte = pte_mksoft_dirty(pte);
3074         set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
3075         arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
3076         vmf->orig_pte = pte;
3077
3078         /* ksm created a completely new copy */
3079         if (unlikely(page != swapcache && swapcache)) {
3080                 page_add_new_anon_rmap(page, vma, vmf->address, false);
3081                 mem_cgroup_commit_charge(page, memcg, false, false);
3082                 lru_cache_add_active_or_unevictable(page, vma);
3083         } else {
3084                 do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
3085                 mem_cgroup_commit_charge(page, memcg, true, false);
3086                 activate_page(page);
3087         }
3088
3089         swap_free(entry);
3090         if (mem_cgroup_swap_full(page) ||
3091             (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
3092                 try_to_free_swap(page);
3093         unlock_page(page);
3094         if (page != swapcache && swapcache) {
3095                 /*
3096                  * Hold the lock to avoid the swap entry to be reused
3097                  * until we take the PT lock for the pte_same() check
3098                  * (to avoid false positives from pte_same). For
3099                  * further safety release the lock after the swap_free
3100                  * so that the swap count won't change under a
3101                  * parallel locked swapcache.
3102                  */
3103                 unlock_page(swapcache);
3104                 put_page(swapcache);
3105         }
3106
3107         if (vmf->flags & FAULT_FLAG_WRITE) {
3108                 ret |= do_wp_page(vmf);
3109                 if (ret & VM_FAULT_ERROR)
3110                         ret &= VM_FAULT_ERROR;
3111                 goto out;
3112         }
3113
3114         /* No need to invalidate - it was non-present before */
3115         update_mmu_cache(vma, vmf->address, vmf->pte);
3116 unlock:
3117         pte_unmap_unlock(vmf->pte, vmf->ptl);
3118 out:
3119         return ret;
3120 out_nomap:
3121         mem_cgroup_cancel_charge(page, memcg, false);
3122         pte_unmap_unlock(vmf->pte, vmf->ptl);
3123 out_page:
3124         unlock_page(page);
3125 out_release:
3126         put_page(page);
3127         if (page != swapcache && swapcache) {
3128                 unlock_page(swapcache);
3129                 put_page(swapcache);
3130         }
3131         return ret;
3132 }
3133
3134 /*
3135  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3136  * but allow concurrent faults), and pte mapped but not yet locked.
3137  * We return with mmap_sem still held, but pte unmapped and unlocked.
3138  */
3139 static int do_anonymous_page(struct vm_fault *vmf)
3140 {
3141         struct vm_area_struct *vma = vmf->vma;
3142         struct mem_cgroup *memcg;
3143         struct page *page;
3144         int ret = 0;
3145         pte_t entry;
3146
3147         /* File mapping without ->vm_ops ? */
3148         if (vma->vm_flags & VM_SHARED)
3149                 return VM_FAULT_SIGBUS;
3150
3151         /*
3152          * Use pte_alloc() instead of pte_alloc_map().  We can't run
3153          * pte_offset_map() on pmds where a huge pmd might be created
3154          * from a different thread.
3155          *
3156          * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
3157          * parallel threads are excluded by other means.
3158          *
3159          * Here we only have down_read(mmap_sem).
3160          */
3161         if (pte_alloc(vma->vm_mm, vmf->pmd, vmf->address))
3162                 return VM_FAULT_OOM;
3163
3164         /* See the comment in pte_alloc_one_map() */
3165         if (unlikely(pmd_trans_unstable(vmf->pmd)))
3166                 return 0;
3167
3168         /* Use the zero-page for reads */
3169         if (!(vmf->flags & FAULT_FLAG_WRITE) &&
3170                         !mm_forbids_zeropage(vma->vm_mm)) {
3171                 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
3172                                                 vma->vm_page_prot));
3173                 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3174                                 vmf->address, &vmf->ptl);
3175                 if (!pte_none(*vmf->pte))
3176                         goto unlock;
3177                 ret = check_stable_address_space(vma->vm_mm);
3178                 if (ret)
3179                         goto unlock;
3180                 /* Deliver the page fault to userland, check inside PT lock */
3181                 if (userfaultfd_missing(vma)) {
3182                         pte_unmap_unlock(vmf->pte, vmf->ptl);
3183                         return handle_userfault(vmf, VM_UFFD_MISSING);
3184                 }
3185                 goto setpte;
3186         }
3187
3188         /* Allocate our own private page. */
3189         if (unlikely(anon_vma_prepare(vma)))
3190                 goto oom;
3191         page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
3192         if (!page)
3193                 goto oom;
3194
3195         if (mem_cgroup_try_charge_delay(page, vma->vm_mm, GFP_KERNEL, &memcg,
3196                                         false))
3197                 goto oom_free_page;
3198
3199         /*
3200          * The memory barrier inside __SetPageUptodate makes sure that
3201          * preceeding stores to the page contents become visible before
3202          * the set_pte_at() write.
3203          */
3204         __SetPageUptodate(page);
3205
3206         entry = mk_pte(page, vma->vm_page_prot);
3207         if (vma->vm_flags & VM_WRITE)
3208                 entry = pte_mkwrite(pte_mkdirty(entry));
3209
3210         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3211                         &vmf->ptl);
3212         if (!pte_none(*vmf->pte))
3213                 goto release;
3214
3215         ret = check_stable_address_space(vma->vm_mm);
3216         if (ret)
3217                 goto release;
3218
3219         /* Deliver the page fault to userland, check inside PT lock */
3220         if (userfaultfd_missing(vma)) {
3221                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3222                 mem_cgroup_cancel_charge(page, memcg, false);
3223                 put_page(page);
3224                 return handle_userfault(vmf, VM_UFFD_MISSING);
3225         }
3226
3227         inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3228         page_add_new_anon_rmap(page, vma, vmf->address, false);
3229         mem_cgroup_commit_charge(page, memcg, false, false);
3230         lru_cache_add_active_or_unevictable(page, vma);
3231 setpte:
3232         set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3233
3234         /* No need to invalidate - it was non-present before */
3235         update_mmu_cache(vma, vmf->address, vmf->pte);
3236 unlock:
3237         pte_unmap_unlock(vmf->pte, vmf->ptl);
3238         return ret;
3239 release:
3240         mem_cgroup_cancel_charge(page, memcg, false);
3241         put_page(page);
3242         goto unlock;
3243 oom_free_page:
3244         put_page(page);
3245 oom:
3246         return VM_FAULT_OOM;
3247 }
3248
3249 /*
3250  * The mmap_sem must have been held on entry, and may have been
3251  * released depending on flags and vma->vm_ops->fault() return value.
3252  * See filemap_fault() and __lock_page_retry().
3253  */
3254 static int __do_fault(struct vm_fault *vmf)
3255 {
3256         struct vm_area_struct *vma = vmf->vma;
3257         int ret;
3258
3259         ret = vma->vm_ops->fault(vmf);
3260         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
3261                             VM_FAULT_DONE_COW)))
3262                 return ret;
3263
3264         if (unlikely(PageHWPoison(vmf->page))) {
3265                 if (ret & VM_FAULT_LOCKED)
3266                         unlock_page(vmf->page);
3267                 put_page(vmf->page);
3268                 vmf->page = NULL;
3269                 return VM_FAULT_HWPOISON;
3270         }
3271
3272         if (unlikely(!(ret & VM_FAULT_LOCKED)))
3273                 lock_page(vmf->page);
3274         else
3275                 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
3276
3277         return ret;
3278 }
3279
3280 /*
3281  * The ordering of these checks is important for pmds with _PAGE_DEVMAP set.
3282  * If we check pmd_trans_unstable() first we will trip the bad_pmd() check
3283  * inside of pmd_none_or_trans_huge_or_clear_bad(). This will end up correctly
3284  * returning 1 but not before it spams dmesg with the pmd_clear_bad() output.
3285  */
3286 static int pmd_devmap_trans_unstable(pmd_t *pmd)
3287 {
3288         return pmd_devmap(*pmd) || pmd_trans_unstable(pmd);
3289 }
3290
3291 static int pte_alloc_one_map(struct vm_fault *vmf)
3292 {
3293         struct vm_area_struct *vma = vmf->vma;
3294
3295         if (!pmd_none(*vmf->pmd))
3296                 goto map_pte;
3297         if (vmf->prealloc_pte) {
3298                 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3299                 if (unlikely(!pmd_none(*vmf->pmd))) {
3300                         spin_unlock(vmf->ptl);
3301                         goto map_pte;
3302                 }
3303
3304                 mm_inc_nr_ptes(vma->vm_mm);
3305                 pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3306                 spin_unlock(vmf->ptl);
3307                 vmf->prealloc_pte = NULL;
3308         } else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd, vmf->address))) {
3309                 return VM_FAULT_OOM;
3310         }
3311 map_pte:
3312         /*
3313          * If a huge pmd materialized under us just retry later.  Use
3314          * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead of
3315          * pmd_trans_huge() to ensure the pmd didn't become pmd_trans_huge
3316          * under us and then back to pmd_none, as a result of MADV_DONTNEED
3317          * running immediately after a huge pmd fault in a different thread of
3318          * this mm, in turn leading to a misleading pmd_trans_huge() retval.
3319          * All we have to ensure is that it is a regular pmd that we can walk
3320          * with pte_offset_map() and we can do that through an atomic read in
3321          * C, which is what pmd_trans_unstable() provides.
3322          */
3323         if (pmd_devmap_trans_unstable(vmf->pmd))
3324                 return VM_FAULT_NOPAGE;
3325
3326         /*
3327          * At this point we know that our vmf->pmd points to a page of ptes
3328          * and it cannot become pmd_none(), pmd_devmap() or pmd_trans_huge()
3329          * for the duration of the fault.  If a racing MADV_DONTNEED runs and
3330          * we zap the ptes pointed to by our vmf->pmd, the vmf->ptl will still
3331          * be valid and we will re-check to make sure the vmf->pte isn't
3332          * pte_none() under vmf->ptl protection when we return to
3333          * alloc_set_pte().
3334          */
3335         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3336                         &vmf->ptl);
3337         return 0;
3338 }
3339
3340 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3341
3342 #define HPAGE_CACHE_INDEX_MASK (HPAGE_PMD_NR - 1)
3343 static inline bool transhuge_vma_suitable(struct vm_area_struct *vma,
3344                 unsigned long haddr)
3345 {
3346         if (((vma->vm_start >> PAGE_SHIFT) & HPAGE_CACHE_INDEX_MASK) !=
3347                         (vma->vm_pgoff & HPAGE_CACHE_INDEX_MASK))
3348                 return false;
3349         if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
3350                 return false;
3351         return true;
3352 }
3353
3354 static void deposit_prealloc_pte(struct vm_fault *vmf)
3355 {
3356         struct vm_area_struct *vma = vmf->vma;
3357
3358         pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3359         /*
3360          * We are going to consume the prealloc table,
3361          * count that as nr_ptes.
3362          */
3363         mm_inc_nr_ptes(vma->vm_mm);
3364         vmf->prealloc_pte = NULL;
3365 }
3366
3367 static int do_set_pmd(struct vm_fault *vmf, struct page *page)
3368 {
3369         struct vm_area_struct *vma = vmf->vma;
3370         bool write = vmf->flags & FAULT_FLAG_WRITE;
3371         unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
3372         pmd_t entry;
3373         int i, ret;
3374
3375         if (!transhuge_vma_suitable(vma, haddr))
3376                 return VM_FAULT_FALLBACK;
3377
3378         ret = VM_FAULT_FALLBACK;
3379         page = compound_head(page);
3380
3381         /*
3382          * Archs like ppc64 need additonal space to store information
3383          * related to pte entry. Use the preallocated table for that.
3384          */
3385         if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
3386                 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm, vmf->address);
3387                 if (!vmf->prealloc_pte)
3388                         return VM_FAULT_OOM;
3389                 smp_wmb(); /* See comment in __pte_alloc() */
3390         }
3391
3392         vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3393         if (unlikely(!pmd_none(*vmf->pmd)))
3394                 goto out;
3395
3396         for (i = 0; i < HPAGE_PMD_NR; i++)
3397                 flush_icache_page(vma, page + i);
3398
3399         entry = mk_huge_pmd(page, vma->vm_page_prot);
3400         if (write)
3401                 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
3402
3403         add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
3404         page_add_file_rmap(page, true);
3405         /*
3406          * deposit and withdraw with pmd lock held
3407          */
3408         if (arch_needs_pgtable_deposit())
3409                 deposit_prealloc_pte(vmf);
3410
3411         set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
3412
3413         update_mmu_cache_pmd(vma, haddr, vmf->pmd);
3414
3415         /* fault is handled */
3416         ret = 0;
3417         count_vm_event(THP_FILE_MAPPED);
3418 out:
3419         spin_unlock(vmf->ptl);
3420         return ret;
3421 }
3422 #else
3423 static int do_set_pmd(struct vm_fault *vmf, struct page *page)
3424 {
3425         BUILD_BUG();
3426         return 0;
3427 }
3428 #endif
3429
3430 /**
3431  * alloc_set_pte - setup new PTE entry for given page and add reverse page
3432  * mapping. If needed, the fucntion allocates page table or use pre-allocated.
3433  *
3434  * @vmf: fault environment
3435  * @memcg: memcg to charge page (only for private mappings)
3436  * @page: page to map
3437  *
3438  * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on
3439  * return.
3440  *
3441  * Target users are page handler itself and implementations of
3442  * vm_ops->map_pages.
3443  */
3444 int alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
3445                 struct page *page)
3446 {
3447         struct vm_area_struct *vma = vmf->vma;
3448         bool write = vmf->flags & FAULT_FLAG_WRITE;
3449         pte_t entry;
3450         int ret;
3451
3452         if (pmd_none(*vmf->pmd) && PageTransCompound(page) &&
3453                         IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
3454                 /* THP on COW? */
3455                 VM_BUG_ON_PAGE(memcg, page);
3456
3457                 ret = do_set_pmd(vmf, page);
3458                 if (ret != VM_FAULT_FALLBACK)
3459                         return ret;
3460         }
3461
3462         if (!vmf->pte) {
3463                 ret = pte_alloc_one_map(vmf);
3464                 if (ret)
3465                         return ret;
3466         }
3467
3468         /* Re-check under ptl */
3469         if (unlikely(!pte_none(*vmf->pte)))
3470                 return VM_FAULT_NOPAGE;
3471
3472         flush_icache_page(vma, page);
3473         entry = mk_pte(page, vma->vm_page_prot);
3474         if (write)
3475                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3476         /* copy-on-write page */
3477         if (write && !(vma->vm_flags & VM_SHARED)) {
3478                 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3479                 page_add_new_anon_rmap(page, vma, vmf->address, false);
3480                 mem_cgroup_commit_charge(page, memcg, false, false);
3481                 lru_cache_add_active_or_unevictable(page, vma);
3482         } else {
3483                 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
3484                 page_add_file_rmap(page, false);
3485         }
3486         set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3487
3488         /* no need to invalidate: a not-present page won't be cached */
3489         update_mmu_cache(vma, vmf->address, vmf->pte);
3490
3491         return 0;
3492 }
3493
3494
3495 /**
3496  * finish_fault - finish page fault once we have prepared the page to fault
3497  *
3498  * @vmf: structure describing the fault
3499  *
3500  * This function handles all that is needed to finish a page fault once the
3501  * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
3502  * given page, adds reverse page mapping, handles memcg charges and LRU
3503  * addition. The function returns 0 on success, VM_FAULT_ code in case of
3504  * error.
3505  *
3506  * The function expects the page to be locked and on success it consumes a
3507  * reference of a page being mapped (for the PTE which maps it).
3508  */
3509 int finish_fault(struct vm_fault *vmf)
3510 {
3511         struct page *page;
3512         int ret = 0;
3513
3514         /* Did we COW the page? */
3515         if ((vmf->flags & FAULT_FLAG_WRITE) &&
3516             !(vmf->vma->vm_flags & VM_SHARED))
3517                 page = vmf->cow_page;
3518         else
3519                 page = vmf->page;
3520
3521         /*
3522          * check even for read faults because we might have lost our CoWed
3523          * page
3524          */
3525         if (!(vmf->vma->vm_flags & VM_SHARED))
3526                 ret = check_stable_address_space(vmf->vma->vm_mm);
3527         if (!ret)
3528                 ret = alloc_set_pte(vmf, vmf->memcg, page);
3529         if (vmf->pte)
3530                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3531         return ret;
3532 }
3533
3534 static unsigned long fault_around_bytes __read_mostly =
3535         rounddown_pow_of_two(65536);
3536
3537 #ifdef CONFIG_DEBUG_FS
3538 static int fault_around_bytes_get(void *data, u64 *val)
3539 {
3540         *val = fault_around_bytes;
3541         return 0;
3542 }
3543
3544 /*
3545  * fault_around_bytes must be rounded down to the nearest page order as it's
3546  * what do_fault_around() expects to see.
3547  */
3548 static int fault_around_bytes_set(void *data, u64 val)
3549 {
3550         if (val / PAGE_SIZE > PTRS_PER_PTE)
3551                 return -EINVAL;
3552         if (val > PAGE_SIZE)
3553                 fault_around_bytes = rounddown_pow_of_two(val);
3554         else
3555                 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
3556         return 0;
3557 }
3558 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
3559                 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
3560
3561 static int __init fault_around_debugfs(void)
3562 {
3563         void *ret;
3564
3565         ret = debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
3566                         &fault_around_bytes_fops);
3567         if (!ret)
3568                 pr_warn("Failed to create fault_around_bytes in debugfs");
3569         return 0;
3570 }
3571 late_initcall(fault_around_debugfs);
3572 #endif
3573
3574 /*
3575  * do_fault_around() tries to map few pages around the fault address. The hope
3576  * is that the pages will be needed soon and this will lower the number of
3577  * faults to handle.
3578  *
3579  * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
3580  * not ready to be mapped: not up-to-date, locked, etc.
3581  *
3582  * This function is called with the page table lock taken. In the split ptlock
3583  * case the page table lock only protects only those entries which belong to
3584  * the page table corresponding to the fault address.
3585  *
3586  * This function doesn't cross the VMA boundaries, in order to call map_pages()
3587  * only once.
3588  *
3589  * fault_around_bytes defines how many bytes we'll try to map.
3590  * do_fault_around() expects it to be set to a power of two less than or equal
3591  * to PTRS_PER_PTE.
3592  *
3593  * The virtual address of the area that we map is naturally aligned to
3594  * fault_around_bytes rounded down to the machine page size
3595  * (and therefore to page order).  This way it's easier to guarantee
3596  * that we don't cross page table boundaries.
3597  */
3598 static int do_fault_around(struct vm_fault *vmf)
3599 {
3600         unsigned long address = vmf->address, nr_pages, mask;
3601         pgoff_t start_pgoff = vmf->pgoff;
3602         pgoff_t end_pgoff;
3603         int off, ret = 0;
3604
3605         nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
3606         mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
3607
3608         vmf->address = max(address & mask, vmf->vma->vm_start);
3609         off = ((address - vmf->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
3610         start_pgoff -= off;
3611
3612         /*
3613          *  end_pgoff is either the end of the page table, the end of
3614          *  the vma or nr_pages from start_pgoff, depending what is nearest.
3615          */
3616         end_pgoff = start_pgoff -
3617                 ((vmf->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
3618                 PTRS_PER_PTE - 1;
3619         end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
3620                         start_pgoff + nr_pages - 1);
3621
3622         if (pmd_none(*vmf->pmd)) {
3623                 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm,
3624                                                   vmf->address);
3625                 if (!vmf->prealloc_pte)
3626                         goto out;
3627                 smp_wmb(); /* See comment in __pte_alloc() */
3628         }
3629
3630         vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
3631
3632         /* Huge page is mapped? Page fault is solved */
3633         if (pmd_trans_huge(*vmf->pmd)) {
3634                 ret = VM_FAULT_NOPAGE;
3635                 goto out;
3636         }
3637
3638         /* ->map_pages() haven't done anything useful. Cold page cache? */
3639         if (!vmf->pte)
3640                 goto out;
3641
3642         /* check if the page fault is solved */
3643         vmf->pte -= (vmf->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT);
3644         if (!pte_none(*vmf->pte))
3645                 ret = VM_FAULT_NOPAGE;
3646         pte_unmap_unlock(vmf->pte, vmf->ptl);
3647 out:
3648         vmf->address = address;
3649         vmf->pte = NULL;
3650         return ret;
3651 }
3652
3653 static int do_read_fault(struct vm_fault *vmf)
3654 {
3655         struct vm_area_struct *vma = vmf->vma;
3656         int ret = 0;
3657
3658         /*
3659          * Let's call ->map_pages() first and use ->fault() as fallback
3660          * if page by the offset is not ready to be mapped (cold cache or
3661          * something).
3662          */
3663         if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
3664                 ret = do_fault_around(vmf);
3665                 if (ret)
3666                         return ret;
3667         }
3668
3669         ret = __do_fault(vmf);
3670         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3671                 return ret;
3672
3673         ret |= finish_fault(vmf);
3674         unlock_page(vmf->page);
3675         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3676                 put_page(vmf->page);
3677         return ret;
3678 }
3679
3680 static int do_cow_fault(struct vm_fault *vmf)
3681 {
3682         struct vm_area_struct *vma = vmf->vma;
3683         int ret;
3684
3685         if (unlikely(anon_vma_prepare(vma)))
3686                 return VM_FAULT_OOM;
3687
3688         vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
3689         if (!vmf->cow_page)
3690                 return VM_FAULT_OOM;
3691
3692         if (mem_cgroup_try_charge_delay(vmf->cow_page, vma->vm_mm, GFP_KERNEL,
3693                                 &vmf->memcg, false)) {
3694                 put_page(vmf->cow_page);
3695                 return VM_FAULT_OOM;
3696         }
3697
3698         ret = __do_fault(vmf);
3699         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3700                 goto uncharge_out;
3701         if (ret & VM_FAULT_DONE_COW)
3702                 return ret;
3703
3704         copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
3705         __SetPageUptodate(vmf->cow_page);
3706
3707         ret |= finish_fault(vmf);
3708         unlock_page(vmf->page);
3709         put_page(vmf->page);
3710         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3711                 goto uncharge_out;
3712         return ret;
3713 uncharge_out:
3714         mem_cgroup_cancel_charge(vmf->cow_page, vmf->memcg, false);
3715         put_page(vmf->cow_page);
3716         return ret;
3717 }
3718
3719 static int do_shared_fault(struct vm_fault *vmf)
3720 {
3721         struct vm_area_struct *vma = vmf->vma;
3722         int ret, tmp;
3723
3724         ret = __do_fault(vmf);
3725         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3726                 return ret;
3727
3728         /*
3729          * Check if the backing address space wants to know that the page is
3730          * about to become writable
3731          */
3732         if (vma->vm_ops->page_mkwrite) {
3733                 unlock_page(vmf->page);
3734                 tmp = do_page_mkwrite(vmf);
3735                 if (unlikely(!tmp ||
3736                                 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3737                         put_page(vmf->page);
3738                         return tmp;
3739                 }
3740         }
3741
3742         ret |= finish_fault(vmf);
3743         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3744                                         VM_FAULT_RETRY))) {
3745                 unlock_page(vmf->page);
3746                 put_page(vmf->page);
3747                 return ret;
3748         }
3749
3750         fault_dirty_shared_page(vma, vmf->page);
3751         return ret;
3752 }
3753
3754 /*
3755  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3756  * but allow concurrent faults).
3757  * The mmap_sem may have been released depending on flags and our
3758  * return value.  See filemap_fault() and __lock_page_or_retry().
3759  */
3760 static int do_fault(struct vm_fault *vmf)
3761 {
3762         struct vm_area_struct *vma = vmf->vma;
3763         int ret;
3764
3765         /* The VMA was not fully populated on mmap() or missing VM_DONTEXPAND */
3766         if (!vma->vm_ops->fault)
3767                 ret = VM_FAULT_SIGBUS;
3768         else if (!(vmf->flags & FAULT_FLAG_WRITE))
3769                 ret = do_read_fault(vmf);
3770         else if (!(vma->vm_flags & VM_SHARED))
3771                 ret = do_cow_fault(vmf);
3772         else
3773                 ret = do_shared_fault(vmf);
3774
3775         /* preallocated pagetable is unused: free it */
3776         if (vmf->prealloc_pte) {
3777                 pte_free(vma->vm_mm, vmf->prealloc_pte);
3778                 vmf->prealloc_pte = NULL;
3779         }
3780         return ret;
3781 }
3782
3783 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3784                                 unsigned long addr, int page_nid,
3785                                 int *flags)
3786 {
3787         get_page(page);
3788
3789         count_vm_numa_event(NUMA_HINT_FAULTS);
3790         if (page_nid == numa_node_id()) {
3791                 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
3792                 *flags |= TNF_FAULT_LOCAL;
3793         }
3794
3795         return mpol_misplaced(page, vma, addr);
3796 }
3797
3798 static int do_numa_page(struct vm_fault *vmf)
3799 {
3800         struct vm_area_struct *vma = vmf->vma;
3801         struct page *page = NULL;
3802         int page_nid = -1;
3803         int last_cpupid;
3804         int target_nid;
3805         bool migrated = false;
3806         pte_t pte;
3807         bool was_writable = pte_savedwrite(vmf->orig_pte);
3808         int flags = 0;
3809
3810         /*
3811          * The "pte" at this point cannot be used safely without
3812          * validation through pte_unmap_same(). It's of NUMA type but
3813          * the pfn may be screwed if the read is non atomic.
3814          */
3815         vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
3816         spin_lock(vmf->ptl);
3817         if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
3818                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3819                 goto out;
3820         }
3821
3822         /*
3823          * Make it present again, Depending on how arch implementes non
3824          * accessible ptes, some can allow access by kernel mode.
3825          */
3826         pte = ptep_modify_prot_start(vma->vm_mm, vmf->address, vmf->pte);
3827         pte = pte_modify(pte, vma->vm_page_prot);
3828         pte = pte_mkyoung(pte);
3829         if (was_writable)
3830                 pte = pte_mkwrite(pte);
3831         ptep_modify_prot_commit(vma->vm_mm, vmf->address, vmf->pte, pte);
3832         update_mmu_cache(vma, vmf->address, vmf->pte);
3833
3834         page = vm_normal_page(vma, vmf->address, pte);
3835         if (!page) {
3836                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3837                 return 0;
3838         }
3839
3840         /* TODO: handle PTE-mapped THP */
3841         if (PageCompound(page)) {
3842                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3843                 return 0;
3844         }
3845
3846         /*
3847          * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
3848          * much anyway since they can be in shared cache state. This misses
3849          * the case where a mapping is writable but the process never writes
3850          * to it but pte_write gets cleared during protection updates and
3851          * pte_dirty has unpredictable behaviour between PTE scan updates,
3852          * background writeback, dirty balancing and application behaviour.
3853          */
3854         if (!pte_write(pte))
3855                 flags |= TNF_NO_GROUP;
3856
3857         /*
3858          * Flag if the page is shared between multiple address spaces. This
3859          * is later used when determining whether to group tasks together
3860          */
3861         if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
3862                 flags |= TNF_SHARED;
3863
3864         last_cpupid = page_cpupid_last(page);
3865         page_nid = page_to_nid(page);
3866         target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
3867                         &flags);
3868         pte_unmap_unlock(vmf->pte, vmf->ptl);
3869         if (target_nid == -1) {
3870                 put_page(page);
3871                 goto out;
3872         }
3873
3874         /* Migrate to the requested node */
3875         migrated = migrate_misplaced_page(page, vma, target_nid);
3876         if (migrated) {
3877                 page_nid = target_nid;
3878                 flags |= TNF_MIGRATED;
3879         } else
3880                 flags |= TNF_MIGRATE_FAIL;
3881
3882 out:
3883         if (page_nid != -1)
3884                 task_numa_fault(last_cpupid, page_nid, 1, flags);
3885         return 0;
3886 }
3887
3888 static inline int create_huge_pmd(struct vm_fault *vmf)
3889 {
3890         if (vma_is_anonymous(vmf->vma))
3891                 return do_huge_pmd_anonymous_page(vmf);
3892         if (vmf->vma->vm_ops->huge_fault)
3893                 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
3894         return VM_FAULT_FALLBACK;
3895 }
3896
3897 /* `inline' is required to avoid gcc 4.1.2 build error */
3898 static inline int wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd)
3899 {
3900         if (vma_is_anonymous(vmf->vma))
3901                 return do_huge_pmd_wp_page(vmf, orig_pmd);
3902         if (vmf->vma->vm_ops->huge_fault)
3903                 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
3904
3905         /* COW handled on pte level: split pmd */
3906         VM_BUG_ON_VMA(vmf->vma->vm_flags & VM_SHARED, vmf->vma);
3907         __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
3908
3909         return VM_FAULT_FALLBACK;
3910 }
3911
3912 static inline bool vma_is_accessible(struct vm_area_struct *vma)
3913 {
3914         return vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE);
3915 }
3916
3917 static int create_huge_pud(struct vm_fault *vmf)
3918 {
3919 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3920         /* No support for anonymous transparent PUD pages yet */
3921         if (vma_is_anonymous(vmf->vma))
3922                 return VM_FAULT_FALLBACK;
3923         if (vmf->vma->vm_ops->huge_fault)
3924                 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
3925 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3926         return VM_FAULT_FALLBACK;
3927 }
3928
3929 static int wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
3930 {
3931 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3932         /* No support for anonymous transparent PUD pages yet */
3933         if (vma_is_anonymous(vmf->vma))
3934                 return VM_FAULT_FALLBACK;
3935         if (vmf->vma->vm_ops->huge_fault)
3936                 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
3937 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3938         return VM_FAULT_FALLBACK;
3939 }
3940
3941 /*
3942  * These routines also need to handle stuff like marking pages dirty
3943  * and/or accessed for architectures that don't do it in hardware (most
3944  * RISC architectures).  The early dirtying is also good on the i386.
3945  *
3946  * There is also a hook called "update_mmu_cache()" that architectures
3947  * with external mmu caches can use to update those (ie the Sparc or
3948  * PowerPC hashed page tables that act as extended TLBs).
3949  *
3950  * We enter with non-exclusive mmap_sem (to exclude vma changes, but allow
3951  * concurrent faults).
3952  *
3953  * The mmap_sem may have been released depending on flags and our return value.
3954  * See filemap_fault() and __lock_page_or_retry().
3955  */
3956 static int handle_pte_fault(struct vm_fault *vmf)
3957 {
3958         pte_t entry;
3959
3960         if (unlikely(pmd_none(*vmf->pmd))) {
3961                 /*
3962                  * Leave __pte_alloc() until later: because vm_ops->fault may
3963                  * want to allocate huge page, and if we expose page table
3964                  * for an instant, it will be difficult to retract from
3965                  * concurrent faults and from rmap lookups.
3966                  */
3967                 vmf->pte = NULL;
3968         } else {
3969                 /* See comment in pte_alloc_one_map() */
3970                 if (pmd_devmap_trans_unstable(vmf->pmd))
3971                         return 0;
3972                 /*
3973                  * A regular pmd is established and it can't morph into a huge
3974                  * pmd from under us anymore at this point because we hold the
3975                  * mmap_sem read mode and khugepaged takes it in write mode.
3976                  * So now it's safe to run pte_offset_map().
3977                  */
3978                 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
3979                 vmf->orig_pte = *vmf->pte;
3980
3981                 /*
3982                  * some architectures can have larger ptes than wordsize,
3983                  * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
3984                  * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
3985                  * accesses.  The code below just needs a consistent view
3986                  * for the ifs and we later double check anyway with the
3987                  * ptl lock held. So here a barrier will do.
3988                  */
3989                 barrier();
3990                 if (pte_none(vmf->orig_pte)) {
3991                         pte_unmap(vmf->pte);
3992                         vmf->pte = NULL;
3993                 }
3994         }
3995
3996         if (!vmf->pte) {
3997                 if (vma_is_anonymous(vmf->vma))
3998                         return do_anonymous_page(vmf);
3999                 else
4000                         return do_fault(vmf);
4001         }
4002
4003         if (!pte_present(vmf->orig_pte))
4004                 return do_swap_page(vmf);
4005
4006         if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
4007                 return do_numa_page(vmf);
4008
4009         vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
4010         spin_lock(vmf->ptl);
4011         entry = vmf->orig_pte;
4012         if (unlikely(!pte_same(*vmf->pte, entry)))
4013                 goto unlock;
4014         if (vmf->flags & FAULT_FLAG_WRITE) {
4015                 if (!pte_write(entry))
4016                         return do_wp_page(vmf);
4017                 entry = pte_mkdirty(entry);
4018         }
4019         entry = pte_mkyoung(entry);
4020         if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
4021                                 vmf->flags & FAULT_FLAG_WRITE)) {
4022                 update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
4023         } else {
4024                 /*
4025                  * This is needed only for protection faults but the arch code
4026                  * is not yet telling us if this is a protection fault or not.
4027                  * This still avoids useless tlb flushes for .text page faults
4028                  * with threads.
4029                  */
4030                 if (vmf->flags & FAULT_FLAG_WRITE)
4031                         flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
4032         }
4033 unlock:
4034         pte_unmap_unlock(vmf->pte, vmf->ptl);
4035         return 0;
4036 }
4037
4038 /*
4039  * By the time we get here, we already hold the mm semaphore
4040  *
4041  * The mmap_sem may have been released depending on flags and our
4042  * return value.  See filemap_fault() and __lock_page_or_retry().
4043  */
4044 static int __handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
4045                 unsigned int flags)
4046 {
4047         struct vm_fault vmf = {
4048                 .vma = vma,
4049                 .address = address & PAGE_MASK,
4050                 .flags = flags,
4051                 .pgoff = linear_page_index(vma, address),
4052                 .gfp_mask = __get_fault_gfp_mask(vma),
4053         };
4054         unsigned int dirty = flags & FAULT_FLAG_WRITE;
4055         struct mm_struct *mm = vma->vm_mm;
4056         pgd_t *pgd;
4057         p4d_t *p4d;
4058         int ret;
4059
4060         pgd = pgd_offset(mm, address);
4061         p4d = p4d_alloc(mm, pgd, address);
4062         if (!p4d)
4063                 return VM_FAULT_OOM;
4064
4065         vmf.pud = pud_alloc(mm, p4d, address);
4066         if (!vmf.pud)
4067                 return VM_FAULT_OOM;
4068         if (pud_none(*vmf.pud) && transparent_hugepage_enabled(vma)) {
4069                 ret = create_huge_pud(&vmf);
4070                 if (!(ret & VM_FAULT_FALLBACK))
4071                         return ret;
4072         } else {
4073                 pud_t orig_pud = *vmf.pud;
4074
4075                 barrier();
4076                 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
4077
4078                         /* NUMA case for anonymous PUDs would go here */
4079
4080                         if (dirty && !pud_write(orig_pud)) {
4081                                 ret = wp_huge_pud(&vmf, orig_pud);
4082                                 if (!(ret & VM_FAULT_FALLBACK))
4083                                         return ret;
4084                         } else {
4085                                 huge_pud_set_accessed(&vmf, orig_pud);
4086                                 return 0;
4087                         }
4088                 }
4089         }
4090
4091         vmf.pmd = pmd_alloc(mm, vmf.pud, address);
4092         if (!vmf.pmd)
4093                 return VM_FAULT_OOM;
4094         if (pmd_none(*vmf.pmd) && transparent_hugepage_enabled(vma)) {
4095                 ret = create_huge_pmd(&vmf);
4096                 if (!(ret & VM_FAULT_FALLBACK))
4097                         return ret;
4098         } else {
4099                 pmd_t orig_pmd = *vmf.pmd;
4100
4101                 barrier();
4102                 if (unlikely(is_swap_pmd(orig_pmd))) {
4103                         VM_BUG_ON(thp_migration_supported() &&
4104                                           !is_pmd_migration_entry(orig_pmd));
4105                         if (is_pmd_migration_entry(orig_pmd))
4106                                 pmd_migration_entry_wait(mm, vmf.pmd);
4107                         return 0;
4108                 }
4109                 if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
4110                         if (pmd_protnone(orig_pmd) && vma_is_accessible(vma))
4111                                 return do_huge_pmd_numa_page(&vmf, orig_pmd);
4112
4113                         if (dirty && !pmd_write(orig_pmd)) {
4114                                 ret = wp_huge_pmd(&vmf, orig_pmd);
4115                                 if (!(ret & VM_FAULT_FALLBACK))
4116                                         return ret;
4117                         } else {
4118                                 huge_pmd_set_accessed(&vmf, orig_pmd);
4119                                 return 0;
4120                         }
4121                 }
4122         }
4123
4124         return handle_pte_fault(&vmf);
4125 }
4126
4127 /*
4128  * By the time we get here, we already hold the mm semaphore
4129  *
4130  * The mmap_sem may have been released depending on flags and our
4131  * return value.  See filemap_fault() and __lock_page_or_retry().
4132  */
4133 int handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
4134                 unsigned int flags)
4135 {
4136         int ret;
4137
4138         __set_current_state(TASK_RUNNING);
4139
4140         count_vm_event(PGFAULT);
4141         count_memcg_event_mm(vma->vm_mm, PGFAULT);
4142
4143         /* do counter updates before entering really critical section. */
4144         check_sync_rss_stat(current);
4145
4146         if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
4147                                             flags & FAULT_FLAG_INSTRUCTION,
4148                                             flags & FAULT_FLAG_REMOTE))
4149                 return VM_FAULT_SIGSEGV;
4150
4151         /*
4152          * Enable the memcg OOM handling for faults triggered in user
4153          * space.  Kernel faults are handled more gracefully.
4154          */
4155         if (flags & FAULT_FLAG_USER)
4156                 mem_cgroup_enter_user_fault();
4157
4158         if (unlikely(is_vm_hugetlb_page(vma)))
4159                 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
4160         else
4161                 ret = __handle_mm_fault(vma, address, flags);
4162
4163         if (flags & FAULT_FLAG_USER) {
4164                 mem_cgroup_exit_user_fault();
4165                 /*
4166                  * The task may have entered a memcg OOM situation but
4167                  * if the allocation error was handled gracefully (no
4168                  * VM_FAULT_OOM), there is no need to kill anything.
4169                  * Just clean up the OOM state peacefully.
4170                  */
4171                 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
4172                         mem_cgroup_oom_synchronize(false);
4173         }
4174
4175         return ret;
4176 }
4177 EXPORT_SYMBOL_GPL(handle_mm_fault);
4178
4179 #ifndef __PAGETABLE_P4D_FOLDED
4180 /*
4181  * Allocate p4d page table.
4182  * We've already handled the fast-path in-line.
4183  */
4184 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
4185 {
4186         p4d_t *new = p4d_alloc_one(mm, address);
4187         if (!new)
4188                 return -ENOMEM;
4189
4190         smp_wmb(); /* See comment in __pte_alloc */
4191
4192         spin_lock(&mm->page_table_lock);
4193         if (pgd_present(*pgd))          /* Another has populated it */
4194                 p4d_free(mm, new);
4195         else
4196                 pgd_populate(mm, pgd, new);
4197         spin_unlock(&mm->page_table_lock);
4198         return 0;
4199 }
4200 #endif /* __PAGETABLE_P4D_FOLDED */
4201
4202 #ifndef __PAGETABLE_PUD_FOLDED
4203 /*
4204  * Allocate page upper directory.
4205  * We've already handled the fast-path in-line.
4206  */
4207 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
4208 {
4209         pud_t *new = pud_alloc_one(mm, address);
4210         if (!new)
4211                 return -ENOMEM;
4212
4213         smp_wmb(); /* See comment in __pte_alloc */
4214
4215         spin_lock(&mm->page_table_lock);
4216 #ifndef __ARCH_HAS_5LEVEL_HACK
4217         if (!p4d_present(*p4d)) {
4218                 mm_inc_nr_puds(mm);
4219                 p4d_populate(mm, p4d, new);
4220         } else  /* Another has populated it */
4221                 pud_free(mm, new);
4222 #else
4223         if (!pgd_present(*p4d)) {
4224                 mm_inc_nr_puds(mm);
4225                 pgd_populate(mm, p4d, new);
4226         } else  /* Another has populated it */
4227                 pud_free(mm, new);
4228 #endif /* __ARCH_HAS_5LEVEL_HACK */
4229         spin_unlock(&mm->page_table_lock);
4230         return 0;
4231 }
4232 #endif /* __PAGETABLE_PUD_FOLDED */
4233
4234 #ifndef __PAGETABLE_PMD_FOLDED
4235 /*
4236  * Allocate page middle directory.
4237  * We've already handled the fast-path in-line.
4238  */
4239 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
4240 {
4241         spinlock_t *ptl;
4242         pmd_t *new = pmd_alloc_one(mm, address);
4243         if (!new)
4244                 return -ENOMEM;
4245
4246         smp_wmb(); /* See comment in __pte_alloc */
4247
4248         ptl = pud_lock(mm, pud);
4249 #ifndef __ARCH_HAS_4LEVEL_HACK
4250         if (!pud_present(*pud)) {
4251                 mm_inc_nr_pmds(mm);
4252                 pud_populate(mm, pud, new);
4253         } else  /* Another has populated it */
4254                 pmd_free(mm, new);
4255 #else
4256         if (!pgd_present(*pud)) {
4257                 mm_inc_nr_pmds(mm);
4258                 pgd_populate(mm, pud, new);
4259         } else /* Another has populated it */
4260                 pmd_free(mm, new);
4261 #endif /* __ARCH_HAS_4LEVEL_HACK */
4262         spin_unlock(ptl);
4263         return 0;
4264 }
4265 #endif /* __PAGETABLE_PMD_FOLDED */
4266
4267 static int __follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4268                             unsigned long *start, unsigned long *end,
4269                             pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4270 {
4271         pgd_t *pgd;
4272         p4d_t *p4d;
4273         pud_t *pud;
4274         pmd_t *pmd;
4275         pte_t *ptep;
4276
4277         pgd = pgd_offset(mm, address);
4278         if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
4279                 goto out;
4280
4281         p4d = p4d_offset(pgd, address);
4282         if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
4283                 goto out;
4284
4285         pud = pud_offset(p4d, address);
4286         if (pud_none(*pud) || unlikely(pud_bad(*pud)))
4287                 goto out;
4288
4289         pmd = pmd_offset(pud, address);
4290         VM_BUG_ON(pmd_trans_huge(*pmd));
4291
4292         if (pmd_huge(*pmd)) {
4293                 if (!pmdpp)
4294                         goto out;
4295
4296                 if (start && end) {
4297                         *start = address & PMD_MASK;
4298                         *end = *start + PMD_SIZE;
4299                         mmu_notifier_invalidate_range_start(mm, *start, *end);
4300                 }
4301                 *ptlp = pmd_lock(mm, pmd);
4302                 if (pmd_huge(*pmd)) {
4303                         *pmdpp = pmd;
4304                         return 0;
4305                 }
4306                 spin_unlock(*ptlp);
4307                 if (start && end)
4308                         mmu_notifier_invalidate_range_end(mm, *start, *end);
4309         }
4310
4311         if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
4312                 goto out;
4313
4314         if (start && end) {
4315                 *start = address & PAGE_MASK;
4316                 *end = *start + PAGE_SIZE;
4317                 mmu_notifier_invalidate_range_start(mm, *start, *end);
4318         }
4319         ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
4320         if (!pte_present(*ptep))
4321                 goto unlock;
4322         *ptepp = ptep;
4323         return 0;
4324 unlock:
4325         pte_unmap_unlock(ptep, *ptlp);
4326         if (start && end)
4327                 mmu_notifier_invalidate_range_end(mm, *start, *end);
4328 out:
4329         return -EINVAL;
4330 }
4331
4332 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
4333                              pte_t **ptepp, spinlock_t **ptlp)
4334 {
4335         int res;
4336
4337         /* (void) is needed to make gcc happy */
4338         (void) __cond_lock(*ptlp,
4339                            !(res = __follow_pte_pmd(mm, address, NULL, NULL,
4340                                                     ptepp, NULL, ptlp)));
4341         return res;
4342 }
4343
4344 int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4345                              unsigned long *start, unsigned long *end,
4346                              pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4347 {
4348         int res;
4349
4350         /* (void) is needed to make gcc happy */
4351         (void) __cond_lock(*ptlp,
4352                            !(res = __follow_pte_pmd(mm, address, start, end,
4353                                                     ptepp, pmdpp, ptlp)));
4354         return res;
4355 }
4356 EXPORT_SYMBOL(follow_pte_pmd);
4357
4358 /**
4359  * follow_pfn - look up PFN at a user virtual address
4360  * @vma: memory mapping
4361  * @address: user virtual address
4362  * @pfn: location to store found PFN
4363  *
4364  * Only IO mappings and raw PFN mappings are allowed.
4365  *
4366  * Returns zero and the pfn at @pfn on success, -ve otherwise.
4367  */
4368 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
4369         unsigned long *pfn)
4370 {
4371         int ret = -EINVAL;
4372         spinlock_t *ptl;
4373         pte_t *ptep;
4374
4375         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4376                 return ret;
4377
4378         ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
4379         if (ret)
4380                 return ret;
4381         *pfn = pte_pfn(*ptep);
4382         pte_unmap_unlock(ptep, ptl);
4383         return 0;
4384 }
4385 EXPORT_SYMBOL(follow_pfn);
4386
4387 #ifdef CONFIG_HAVE_IOREMAP_PROT
4388 int follow_phys(struct vm_area_struct *vma,
4389                 unsigned long address, unsigned int flags,
4390                 unsigned long *prot, resource_size_t *phys)
4391 {
4392         int ret = -EINVAL;
4393         pte_t *ptep, pte;
4394         spinlock_t *ptl;
4395
4396         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4397                 goto out;
4398
4399         if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
4400                 goto out;
4401         pte = *ptep;
4402
4403         if ((flags & FOLL_WRITE) && !pte_write(pte))
4404                 goto unlock;
4405
4406         *prot = pgprot_val(pte_pgprot(pte));
4407         *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
4408
4409         ret = 0;
4410 unlock:
4411         pte_unmap_unlock(ptep, ptl);
4412 out:
4413         return ret;
4414 }
4415
4416 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
4417                         void *buf, int len, int write)
4418 {
4419         resource_size_t phys_addr;
4420         unsigned long prot = 0;
4421         void __iomem *maddr;
4422         int offset = addr & (PAGE_SIZE-1);
4423
4424         if (follow_phys(vma, addr, write, &prot, &phys_addr))
4425                 return -EINVAL;
4426
4427         maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
4428         if (!maddr)
4429                 return -ENOMEM;
4430
4431         if (write)
4432                 memcpy_toio(maddr + offset, buf, len);
4433         else
4434                 memcpy_fromio(buf, maddr + offset, len);
4435         iounmap(maddr);
4436
4437         return len;
4438 }
4439 EXPORT_SYMBOL_GPL(generic_access_phys);
4440 #endif
4441
4442 /*
4443  * Access another process' address space as given in mm.  If non-NULL, use the
4444  * given task for page fault accounting.
4445  */
4446 int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
4447                 unsigned long addr, void *buf, int len, unsigned int gup_flags)
4448 {
4449         struct vm_area_struct *vma;
4450         void *old_buf = buf;
4451         int write = gup_flags & FOLL_WRITE;
4452
4453         down_read(&mm->mmap_sem);
4454         /* ignore errors, just check how much was successfully transferred */
4455         while (len) {
4456                 int bytes, ret, offset;
4457                 void *maddr;
4458                 struct page *page = NULL;
4459
4460                 ret = get_user_pages_remote(tsk, mm, addr, 1,
4461                                 gup_flags, &page, &vma, NULL);
4462                 if (ret <= 0) {
4463 #ifndef CONFIG_HAVE_IOREMAP_PROT
4464                         break;
4465 #else
4466                         /*
4467                          * Check if this is a VM_IO | VM_PFNMAP VMA, which
4468                          * we can access using slightly different code.
4469                          */
4470                         vma = find_vma(mm, addr);
4471                         if (!vma || vma->vm_start > addr)
4472                                 break;
4473                         if (vma->vm_ops && vma->vm_ops->access)
4474                                 ret = vma->vm_ops->access(vma, addr, buf,
4475                                                           len, write);
4476                         if (ret <= 0)
4477                                 break;
4478                         bytes = ret;
4479 #endif
4480                 } else {
4481                         bytes = len;
4482                         offset = addr & (PAGE_SIZE-1);
4483                         if (bytes > PAGE_SIZE-offset)
4484                                 bytes = PAGE_SIZE-offset;
4485
4486                         maddr = kmap(page);
4487                         if (write) {
4488                                 copy_to_user_page(vma, page, addr,
4489                                                   maddr + offset, buf, bytes);
4490                                 set_page_dirty_lock(page);
4491                         } else {
4492                                 copy_from_user_page(vma, page, addr,
4493                                                     buf, maddr + offset, bytes);
4494                         }
4495                         kunmap(page);
4496                         put_page(page);
4497                 }
4498                 len -= bytes;
4499                 buf += bytes;
4500                 addr += bytes;
4501         }
4502         up_read(&mm->mmap_sem);
4503
4504         return buf - old_buf;
4505 }
4506
4507 /**
4508  * access_remote_vm - access another process' address space
4509  * @mm:         the mm_struct of the target address space
4510  * @addr:       start address to access
4511  * @buf:        source or destination buffer
4512  * @len:        number of bytes to transfer
4513  * @gup_flags:  flags modifying lookup behaviour
4514  *
4515  * The caller must hold a reference on @mm.
4516  */
4517 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
4518                 void *buf, int len, unsigned int gup_flags)
4519 {
4520         return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
4521 }
4522
4523 /*
4524  * Access another process' address space.
4525  * Source/target buffer must be kernel space,
4526  * Do not walk the page table directly, use get_user_pages
4527  */
4528 int access_process_vm(struct task_struct *tsk, unsigned long addr,
4529                 void *buf, int len, unsigned int gup_flags)
4530 {
4531         struct mm_struct *mm;
4532         int ret;
4533
4534         mm = get_task_mm(tsk);
4535         if (!mm)
4536                 return 0;
4537
4538         ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
4539
4540         mmput(mm);
4541
4542         return ret;
4543 }
4544 EXPORT_SYMBOL_GPL(access_process_vm);
4545
4546 /*
4547  * Print the name of a VMA.
4548  */
4549 void print_vma_addr(char *prefix, unsigned long ip)
4550 {
4551         struct mm_struct *mm = current->mm;
4552         struct vm_area_struct *vma;
4553
4554         /*
4555          * we might be running from an atomic context so we cannot sleep
4556          */
4557         if (!down_read_trylock(&mm->mmap_sem))
4558                 return;
4559
4560         vma = find_vma(mm, ip);
4561         if (vma && vma->vm_file) {
4562                 struct file *f = vma->vm_file;
4563                 char *buf = (char *)__get_free_page(GFP_NOWAIT);
4564                 if (buf) {
4565                         char *p;
4566
4567                         p = file_path(f, buf, PAGE_SIZE);
4568                         if (IS_ERR(p))
4569                                 p = "?";
4570                         printk("%s%s[%lx+%lx]", prefix, kbasename(p),
4571                                         vma->vm_start,
4572                                         vma->vm_end - vma->vm_start);
4573                         free_page((unsigned long)buf);
4574                 }
4575         }
4576         up_read(&mm->mmap_sem);
4577 }
4578
4579 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4580 void __might_fault(const char *file, int line)
4581 {
4582         /*
4583          * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4584          * holding the mmap_sem, this is safe because kernel memory doesn't
4585          * get paged out, therefore we'll never actually fault, and the
4586          * below annotations will generate false positives.
4587          */
4588         if (uaccess_kernel())
4589                 return;
4590         if (pagefault_disabled())
4591                 return;
4592         __might_sleep(file, line, 0);
4593 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4594         if (current->mm)
4595                 might_lock_read(&current->mm->mmap_sem);
4596 #endif
4597 }
4598 EXPORT_SYMBOL(__might_fault);
4599 #endif
4600
4601 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4602 /*
4603  * Process all subpages of the specified huge page with the specified
4604  * operation.  The target subpage will be processed last to keep its
4605  * cache lines hot.
4606  */
4607 static inline void process_huge_page(
4608         unsigned long addr_hint, unsigned int pages_per_huge_page,
4609         void (*process_subpage)(unsigned long addr, int idx, void *arg),
4610         void *arg)
4611 {
4612         int i, n, base, l;
4613         unsigned long addr = addr_hint &
4614                 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4615
4616         /* Process target subpage last to keep its cache lines hot */
4617         might_sleep();
4618         n = (addr_hint - addr) / PAGE_SIZE;
4619         if (2 * n <= pages_per_huge_page) {
4620                 /* If target subpage in first half of huge page */
4621                 base = 0;
4622                 l = n;
4623                 /* Process subpages at the end of huge page */
4624                 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
4625                         cond_resched();
4626                         process_subpage(addr + i * PAGE_SIZE, i, arg);
4627                 }
4628         } else {
4629                 /* If target subpage in second half of huge page */
4630                 base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
4631                 l = pages_per_huge_page - n;
4632                 /* Process subpages at the begin of huge page */
4633                 for (i = 0; i < base; i++) {
4634                         cond_resched();
4635                         process_subpage(addr + i * PAGE_SIZE, i, arg);
4636                 }
4637         }
4638         /*
4639          * Process remaining subpages in left-right-left-right pattern
4640          * towards the target subpage
4641          */
4642         for (i = 0; i < l; i++) {
4643                 int left_idx = base + i;
4644                 int right_idx = base + 2 * l - 1 - i;
4645
4646                 cond_resched();
4647                 process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
4648                 cond_resched();
4649                 process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
4650         }
4651 }
4652
4653 static void clear_gigantic_page(struct page *page,
4654                                 unsigned long addr,
4655                                 unsigned int pages_per_huge_page)
4656 {
4657         int i;
4658         struct page *p = page;
4659
4660         might_sleep();
4661         for (i = 0; i < pages_per_huge_page;
4662              i++, p = mem_map_next(p, page, i)) {
4663                 cond_resched();
4664                 clear_user_highpage(p, addr + i * PAGE_SIZE);
4665         }
4666 }
4667
4668 static void clear_subpage(unsigned long addr, int idx, void *arg)
4669 {
4670         struct page *page = arg;
4671
4672         clear_user_highpage(page + idx, addr);
4673 }
4674
4675 void clear_huge_page(struct page *page,
4676                      unsigned long addr_hint, unsigned int pages_per_huge_page)
4677 {
4678         unsigned long addr = addr_hint &
4679                 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4680
4681         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4682                 clear_gigantic_page(page, addr, pages_per_huge_page);
4683                 return;
4684         }
4685
4686         process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
4687 }
4688
4689 static void copy_user_gigantic_page(struct page *dst, struct page *src,
4690                                     unsigned long addr,
4691                                     struct vm_area_struct *vma,
4692                                     unsigned int pages_per_huge_page)
4693 {
4694         int i;
4695         struct page *dst_base = dst;
4696         struct page *src_base = src;
4697
4698         for (i = 0; i < pages_per_huge_page; ) {
4699                 cond_resched();
4700                 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4701
4702                 i++;
4703                 dst = mem_map_next(dst, dst_base, i);
4704                 src = mem_map_next(src, src_base, i);
4705         }
4706 }
4707
4708 struct copy_subpage_arg {
4709         struct page *dst;
4710         struct page *src;
4711         struct vm_area_struct *vma;
4712 };
4713
4714 static void copy_subpage(unsigned long addr, int idx, void *arg)
4715 {
4716         struct copy_subpage_arg *copy_arg = arg;
4717
4718         copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
4719                            addr, copy_arg->vma);
4720 }
4721
4722 void copy_user_huge_page(struct page *dst, struct page *src,
4723                          unsigned long addr_hint, struct vm_area_struct *vma,
4724                          unsigned int pages_per_huge_page)
4725 {
4726         unsigned long addr = addr_hint &
4727                 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4728         struct copy_subpage_arg arg = {
4729                 .dst = dst,
4730                 .src = src,
4731                 .vma = vma,
4732         };
4733
4734         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4735                 copy_user_gigantic_page(dst, src, addr, vma,
4736                                         pages_per_huge_page);
4737                 return;
4738         }
4739
4740         process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
4741 }
4742
4743 long copy_huge_page_from_user(struct page *dst_page,
4744                                 const void __user *usr_src,
4745                                 unsigned int pages_per_huge_page,
4746                                 bool allow_pagefault)
4747 {
4748         void *src = (void *)usr_src;
4749         void *page_kaddr;
4750         unsigned long i, rc = 0;
4751         unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
4752
4753         for (i = 0; i < pages_per_huge_page; i++) {
4754                 if (allow_pagefault)
4755                         page_kaddr = kmap(dst_page + i);
4756                 else
4757                         page_kaddr = kmap_atomic(dst_page + i);
4758                 rc = copy_from_user(page_kaddr,
4759                                 (const void __user *)(src + i * PAGE_SIZE),
4760                                 PAGE_SIZE);
4761                 if (allow_pagefault)
4762                         kunmap(dst_page + i);
4763                 else
4764                         kunmap_atomic(page_kaddr);
4765
4766                 ret_val -= (PAGE_SIZE - rc);
4767                 if (rc)
4768                         break;
4769
4770                 cond_resched();
4771         }
4772         return ret_val;
4773 }
4774 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
4775
4776 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
4777
4778 static struct kmem_cache *page_ptl_cachep;
4779
4780 void __init ptlock_cache_init(void)
4781 {
4782         page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
4783                         SLAB_PANIC, NULL);
4784 }
4785
4786 bool ptlock_alloc(struct page *page)
4787 {
4788         spinlock_t *ptl;
4789
4790         ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
4791         if (!ptl)
4792                 return false;
4793         page->ptl = ptl;
4794         return true;
4795 }
4796
4797 void ptlock_free(struct page *page)
4798 {
4799         kmem_cache_free(page_ptl_cachep, page->ptl);
4800 }
4801 #endif