OSDN Git Service

c96281458c83751ff3421a5239cd3e5075b562f7
[uclinux-h8/linux.git] / mm / memory.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/memory.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  */
7
8 /*
9  * demand-loading started 01.12.91 - seems it is high on the list of
10  * things wanted, and it should be easy to implement. - Linus
11  */
12
13 /*
14  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
15  * pages started 02.12.91, seems to work. - Linus.
16  *
17  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
18  * would have taken more than the 6M I have free, but it worked well as
19  * far as I could see.
20  *
21  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
22  */
23
24 /*
25  * Real VM (paging to/from disk) started 18.12.91. Much more work and
26  * thought has to go into this. Oh, well..
27  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
28  *              Found it. Everything seems to work now.
29  * 20.12.91  -  Ok, making the swap-device changeable like the root.
30  */
31
32 /*
33  * 05.04.94  -  Multi-page memory management added for v1.1.
34  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
35  *
36  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
37  *              (Gerhard.Wichert@pdb.siemens.de)
38  *
39  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
40  */
41
42 #include <linux/kernel_stat.h>
43 #include <linux/mm.h>
44 #include <linux/mm_inline.h>
45 #include <linux/sched/mm.h>
46 #include <linux/sched/coredump.h>
47 #include <linux/sched/numa_balancing.h>
48 #include <linux/sched/task.h>
49 #include <linux/hugetlb.h>
50 #include <linux/mman.h>
51 #include <linux/swap.h>
52 #include <linux/highmem.h>
53 #include <linux/pagemap.h>
54 #include <linux/memremap.h>
55 #include <linux/ksm.h>
56 #include <linux/rmap.h>
57 #include <linux/export.h>
58 #include <linux/delayacct.h>
59 #include <linux/init.h>
60 #include <linux/pfn_t.h>
61 #include <linux/writeback.h>
62 #include <linux/memcontrol.h>
63 #include <linux/mmu_notifier.h>
64 #include <linux/swapops.h>
65 #include <linux/elf.h>
66 #include <linux/gfp.h>
67 #include <linux/migrate.h>
68 #include <linux/string.h>
69 #include <linux/debugfs.h>
70 #include <linux/userfaultfd_k.h>
71 #include <linux/dax.h>
72 #include <linux/oom.h>
73 #include <linux/numa.h>
74 #include <linux/perf_event.h>
75 #include <linux/ptrace.h>
76 #include <linux/vmalloc.h>
77
78 #include <trace/events/kmem.h>
79
80 #include <asm/io.h>
81 #include <asm/mmu_context.h>
82 #include <asm/pgalloc.h>
83 #include <linux/uaccess.h>
84 #include <asm/tlb.h>
85 #include <asm/tlbflush.h>
86
87 #include "pgalloc-track.h"
88 #include "internal.h"
89
90 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
91 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
92 #endif
93
94 #ifndef CONFIG_NUMA
95 unsigned long max_mapnr;
96 EXPORT_SYMBOL(max_mapnr);
97
98 struct page *mem_map;
99 EXPORT_SYMBOL(mem_map);
100 #endif
101
102 /*
103  * A number of key systems in x86 including ioremap() rely on the assumption
104  * that high_memory defines the upper bound on direct map memory, then end
105  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
106  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
107  * and ZONE_HIGHMEM.
108  */
109 void *high_memory;
110 EXPORT_SYMBOL(high_memory);
111
112 /*
113  * Randomize the address space (stacks, mmaps, brk, etc.).
114  *
115  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
116  *   as ancient (libc5 based) binaries can segfault. )
117  */
118 int randomize_va_space __read_mostly =
119 #ifdef CONFIG_COMPAT_BRK
120                                         1;
121 #else
122                                         2;
123 #endif
124
125 #ifndef arch_faults_on_old_pte
126 static inline bool arch_faults_on_old_pte(void)
127 {
128         /*
129          * Those arches which don't have hw access flag feature need to
130          * implement their own helper. By default, "true" means pagefault
131          * will be hit on old pte.
132          */
133         return true;
134 }
135 #endif
136
137 #ifndef arch_wants_old_prefaulted_pte
138 static inline bool arch_wants_old_prefaulted_pte(void)
139 {
140         /*
141          * Transitioning a PTE from 'old' to 'young' can be expensive on
142          * some architectures, even if it's performed in hardware. By
143          * default, "false" means prefaulted entries will be 'young'.
144          */
145         return false;
146 }
147 #endif
148
149 static int __init disable_randmaps(char *s)
150 {
151         randomize_va_space = 0;
152         return 1;
153 }
154 __setup("norandmaps", disable_randmaps);
155
156 unsigned long zero_pfn __read_mostly;
157 EXPORT_SYMBOL(zero_pfn);
158
159 unsigned long highest_memmap_pfn __read_mostly;
160
161 /*
162  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
163  */
164 static int __init init_zero_pfn(void)
165 {
166         zero_pfn = page_to_pfn(ZERO_PAGE(0));
167         return 0;
168 }
169 early_initcall(init_zero_pfn);
170
171 void mm_trace_rss_stat(struct mm_struct *mm, int member, long count)
172 {
173         trace_rss_stat(mm, member, count);
174 }
175
176 #if defined(SPLIT_RSS_COUNTING)
177
178 void sync_mm_rss(struct mm_struct *mm)
179 {
180         int i;
181
182         for (i = 0; i < NR_MM_COUNTERS; i++) {
183                 if (current->rss_stat.count[i]) {
184                         add_mm_counter(mm, i, current->rss_stat.count[i]);
185                         current->rss_stat.count[i] = 0;
186                 }
187         }
188         current->rss_stat.events = 0;
189 }
190
191 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
192 {
193         struct task_struct *task = current;
194
195         if (likely(task->mm == mm))
196                 task->rss_stat.count[member] += val;
197         else
198                 add_mm_counter(mm, member, val);
199 }
200 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
201 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
202
203 /* sync counter once per 64 page faults */
204 #define TASK_RSS_EVENTS_THRESH  (64)
205 static void check_sync_rss_stat(struct task_struct *task)
206 {
207         if (unlikely(task != current))
208                 return;
209         if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
210                 sync_mm_rss(task->mm);
211 }
212 #else /* SPLIT_RSS_COUNTING */
213
214 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
215 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
216
217 static void check_sync_rss_stat(struct task_struct *task)
218 {
219 }
220
221 #endif /* SPLIT_RSS_COUNTING */
222
223 /*
224  * Note: this doesn't free the actual pages themselves. That
225  * has been handled earlier when unmapping all the memory regions.
226  */
227 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
228                            unsigned long addr)
229 {
230         pgtable_t token = pmd_pgtable(*pmd);
231         pmd_clear(pmd);
232         pte_free_tlb(tlb, token, addr);
233         mm_dec_nr_ptes(tlb->mm);
234 }
235
236 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
237                                 unsigned long addr, unsigned long end,
238                                 unsigned long floor, unsigned long ceiling)
239 {
240         pmd_t *pmd;
241         unsigned long next;
242         unsigned long start;
243
244         start = addr;
245         pmd = pmd_offset(pud, addr);
246         do {
247                 next = pmd_addr_end(addr, end);
248                 if (pmd_none_or_clear_bad(pmd))
249                         continue;
250                 free_pte_range(tlb, pmd, addr);
251         } while (pmd++, addr = next, addr != end);
252
253         start &= PUD_MASK;
254         if (start < floor)
255                 return;
256         if (ceiling) {
257                 ceiling &= PUD_MASK;
258                 if (!ceiling)
259                         return;
260         }
261         if (end - 1 > ceiling - 1)
262                 return;
263
264         pmd = pmd_offset(pud, start);
265         pud_clear(pud);
266         pmd_free_tlb(tlb, pmd, start);
267         mm_dec_nr_pmds(tlb->mm);
268 }
269
270 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
271                                 unsigned long addr, unsigned long end,
272                                 unsigned long floor, unsigned long ceiling)
273 {
274         pud_t *pud;
275         unsigned long next;
276         unsigned long start;
277
278         start = addr;
279         pud = pud_offset(p4d, addr);
280         do {
281                 next = pud_addr_end(addr, end);
282                 if (pud_none_or_clear_bad(pud))
283                         continue;
284                 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
285         } while (pud++, addr = next, addr != end);
286
287         start &= P4D_MASK;
288         if (start < floor)
289                 return;
290         if (ceiling) {
291                 ceiling &= P4D_MASK;
292                 if (!ceiling)
293                         return;
294         }
295         if (end - 1 > ceiling - 1)
296                 return;
297
298         pud = pud_offset(p4d, start);
299         p4d_clear(p4d);
300         pud_free_tlb(tlb, pud, start);
301         mm_dec_nr_puds(tlb->mm);
302 }
303
304 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
305                                 unsigned long addr, unsigned long end,
306                                 unsigned long floor, unsigned long ceiling)
307 {
308         p4d_t *p4d;
309         unsigned long next;
310         unsigned long start;
311
312         start = addr;
313         p4d = p4d_offset(pgd, addr);
314         do {
315                 next = p4d_addr_end(addr, end);
316                 if (p4d_none_or_clear_bad(p4d))
317                         continue;
318                 free_pud_range(tlb, p4d, addr, next, floor, ceiling);
319         } while (p4d++, addr = next, addr != end);
320
321         start &= PGDIR_MASK;
322         if (start < floor)
323                 return;
324         if (ceiling) {
325                 ceiling &= PGDIR_MASK;
326                 if (!ceiling)
327                         return;
328         }
329         if (end - 1 > ceiling - 1)
330                 return;
331
332         p4d = p4d_offset(pgd, start);
333         pgd_clear(pgd);
334         p4d_free_tlb(tlb, p4d, start);
335 }
336
337 /*
338  * This function frees user-level page tables of a process.
339  */
340 void free_pgd_range(struct mmu_gather *tlb,
341                         unsigned long addr, unsigned long end,
342                         unsigned long floor, unsigned long ceiling)
343 {
344         pgd_t *pgd;
345         unsigned long next;
346
347         /*
348          * The next few lines have given us lots of grief...
349          *
350          * Why are we testing PMD* at this top level?  Because often
351          * there will be no work to do at all, and we'd prefer not to
352          * go all the way down to the bottom just to discover that.
353          *
354          * Why all these "- 1"s?  Because 0 represents both the bottom
355          * of the address space and the top of it (using -1 for the
356          * top wouldn't help much: the masks would do the wrong thing).
357          * The rule is that addr 0 and floor 0 refer to the bottom of
358          * the address space, but end 0 and ceiling 0 refer to the top
359          * Comparisons need to use "end - 1" and "ceiling - 1" (though
360          * that end 0 case should be mythical).
361          *
362          * Wherever addr is brought up or ceiling brought down, we must
363          * be careful to reject "the opposite 0" before it confuses the
364          * subsequent tests.  But what about where end is brought down
365          * by PMD_SIZE below? no, end can't go down to 0 there.
366          *
367          * Whereas we round start (addr) and ceiling down, by different
368          * masks at different levels, in order to test whether a table
369          * now has no other vmas using it, so can be freed, we don't
370          * bother to round floor or end up - the tests don't need that.
371          */
372
373         addr &= PMD_MASK;
374         if (addr < floor) {
375                 addr += PMD_SIZE;
376                 if (!addr)
377                         return;
378         }
379         if (ceiling) {
380                 ceiling &= PMD_MASK;
381                 if (!ceiling)
382                         return;
383         }
384         if (end - 1 > ceiling - 1)
385                 end -= PMD_SIZE;
386         if (addr > end - 1)
387                 return;
388         /*
389          * We add page table cache pages with PAGE_SIZE,
390          * (see pte_free_tlb()), flush the tlb if we need
391          */
392         tlb_change_page_size(tlb, PAGE_SIZE);
393         pgd = pgd_offset(tlb->mm, addr);
394         do {
395                 next = pgd_addr_end(addr, end);
396                 if (pgd_none_or_clear_bad(pgd))
397                         continue;
398                 free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
399         } while (pgd++, addr = next, addr != end);
400 }
401
402 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
403                 unsigned long floor, unsigned long ceiling)
404 {
405         while (vma) {
406                 struct vm_area_struct *next = vma->vm_next;
407                 unsigned long addr = vma->vm_start;
408
409                 /*
410                  * Hide vma from rmap and truncate_pagecache before freeing
411                  * pgtables
412                  */
413                 unlink_anon_vmas(vma);
414                 unlink_file_vma(vma);
415
416                 if (is_vm_hugetlb_page(vma)) {
417                         hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
418                                 floor, next ? next->vm_start : ceiling);
419                 } else {
420                         /*
421                          * Optimization: gather nearby vmas into one call down
422                          */
423                         while (next && next->vm_start <= vma->vm_end + PMD_SIZE
424                                && !is_vm_hugetlb_page(next)) {
425                                 vma = next;
426                                 next = vma->vm_next;
427                                 unlink_anon_vmas(vma);
428                                 unlink_file_vma(vma);
429                         }
430                         free_pgd_range(tlb, addr, vma->vm_end,
431                                 floor, next ? next->vm_start : ceiling);
432                 }
433                 vma = next;
434         }
435 }
436
437 void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte)
438 {
439         spinlock_t *ptl = pmd_lock(mm, pmd);
440
441         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
442                 mm_inc_nr_ptes(mm);
443                 /*
444                  * Ensure all pte setup (eg. pte page lock and page clearing) are
445                  * visible before the pte is made visible to other CPUs by being
446                  * put into page tables.
447                  *
448                  * The other side of the story is the pointer chasing in the page
449                  * table walking code (when walking the page table without locking;
450                  * ie. most of the time). Fortunately, these data accesses consist
451                  * of a chain of data-dependent loads, meaning most CPUs (alpha
452                  * being the notable exception) will already guarantee loads are
453                  * seen in-order. See the alpha page table accessors for the
454                  * smp_rmb() barriers in page table walking code.
455                  */
456                 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
457                 pmd_populate(mm, pmd, *pte);
458                 *pte = NULL;
459         }
460         spin_unlock(ptl);
461 }
462
463 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
464 {
465         pgtable_t new = pte_alloc_one(mm);
466         if (!new)
467                 return -ENOMEM;
468
469         pmd_install(mm, pmd, &new);
470         if (new)
471                 pte_free(mm, new);
472         return 0;
473 }
474
475 int __pte_alloc_kernel(pmd_t *pmd)
476 {
477         pte_t *new = pte_alloc_one_kernel(&init_mm);
478         if (!new)
479                 return -ENOMEM;
480
481         spin_lock(&init_mm.page_table_lock);
482         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
483                 smp_wmb(); /* See comment in pmd_install() */
484                 pmd_populate_kernel(&init_mm, pmd, new);
485                 new = NULL;
486         }
487         spin_unlock(&init_mm.page_table_lock);
488         if (new)
489                 pte_free_kernel(&init_mm, new);
490         return 0;
491 }
492
493 static inline void init_rss_vec(int *rss)
494 {
495         memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
496 }
497
498 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
499 {
500         int i;
501
502         if (current->mm == mm)
503                 sync_mm_rss(mm);
504         for (i = 0; i < NR_MM_COUNTERS; i++)
505                 if (rss[i])
506                         add_mm_counter(mm, i, rss[i]);
507 }
508
509 /*
510  * This function is called to print an error when a bad pte
511  * is found. For example, we might have a PFN-mapped pte in
512  * a region that doesn't allow it.
513  *
514  * The calling function must still handle the error.
515  */
516 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
517                           pte_t pte, struct page *page)
518 {
519         pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
520         p4d_t *p4d = p4d_offset(pgd, addr);
521         pud_t *pud = pud_offset(p4d, addr);
522         pmd_t *pmd = pmd_offset(pud, addr);
523         struct address_space *mapping;
524         pgoff_t index;
525         static unsigned long resume;
526         static unsigned long nr_shown;
527         static unsigned long nr_unshown;
528
529         /*
530          * Allow a burst of 60 reports, then keep quiet for that minute;
531          * or allow a steady drip of one report per second.
532          */
533         if (nr_shown == 60) {
534                 if (time_before(jiffies, resume)) {
535                         nr_unshown++;
536                         return;
537                 }
538                 if (nr_unshown) {
539                         pr_alert("BUG: Bad page map: %lu messages suppressed\n",
540                                  nr_unshown);
541                         nr_unshown = 0;
542                 }
543                 nr_shown = 0;
544         }
545         if (nr_shown++ == 0)
546                 resume = jiffies + 60 * HZ;
547
548         mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
549         index = linear_page_index(vma, addr);
550
551         pr_alert("BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
552                  current->comm,
553                  (long long)pte_val(pte), (long long)pmd_val(*pmd));
554         if (page)
555                 dump_page(page, "bad pte");
556         pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
557                  (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
558         pr_alert("file:%pD fault:%ps mmap:%ps readpage:%ps\n",
559                  vma->vm_file,
560                  vma->vm_ops ? vma->vm_ops->fault : NULL,
561                  vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
562                  mapping ? mapping->a_ops->readpage : NULL);
563         dump_stack();
564         add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
565 }
566
567 /*
568  * vm_normal_page -- This function gets the "struct page" associated with a pte.
569  *
570  * "Special" mappings do not wish to be associated with a "struct page" (either
571  * it doesn't exist, or it exists but they don't want to touch it). In this
572  * case, NULL is returned here. "Normal" mappings do have a struct page.
573  *
574  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
575  * pte bit, in which case this function is trivial. Secondly, an architecture
576  * may not have a spare pte bit, which requires a more complicated scheme,
577  * described below.
578  *
579  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
580  * special mapping (even if there are underlying and valid "struct pages").
581  * COWed pages of a VM_PFNMAP are always normal.
582  *
583  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
584  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
585  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
586  * mapping will always honor the rule
587  *
588  *      pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
589  *
590  * And for normal mappings this is false.
591  *
592  * This restricts such mappings to be a linear translation from virtual address
593  * to pfn. To get around this restriction, we allow arbitrary mappings so long
594  * as the vma is not a COW mapping; in that case, we know that all ptes are
595  * special (because none can have been COWed).
596  *
597  *
598  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
599  *
600  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
601  * page" backing, however the difference is that _all_ pages with a struct
602  * page (that is, those where pfn_valid is true) are refcounted and considered
603  * normal pages by the VM. The disadvantage is that pages are refcounted
604  * (which can be slower and simply not an option for some PFNMAP users). The
605  * advantage is that we don't have to follow the strict linearity rule of
606  * PFNMAP mappings in order to support COWable mappings.
607  *
608  */
609 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
610                             pte_t pte)
611 {
612         unsigned long pfn = pte_pfn(pte);
613
614         if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
615                 if (likely(!pte_special(pte)))
616                         goto check_pfn;
617                 if (vma->vm_ops && vma->vm_ops->find_special_page)
618                         return vma->vm_ops->find_special_page(vma, addr);
619                 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
620                         return NULL;
621                 if (is_zero_pfn(pfn))
622                         return NULL;
623                 if (pte_devmap(pte))
624                         return NULL;
625
626                 print_bad_pte(vma, addr, pte, NULL);
627                 return NULL;
628         }
629
630         /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
631
632         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
633                 if (vma->vm_flags & VM_MIXEDMAP) {
634                         if (!pfn_valid(pfn))
635                                 return NULL;
636                         goto out;
637                 } else {
638                         unsigned long off;
639                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
640                         if (pfn == vma->vm_pgoff + off)
641                                 return NULL;
642                         if (!is_cow_mapping(vma->vm_flags))
643                                 return NULL;
644                 }
645         }
646
647         if (is_zero_pfn(pfn))
648                 return NULL;
649
650 check_pfn:
651         if (unlikely(pfn > highest_memmap_pfn)) {
652                 print_bad_pte(vma, addr, pte, NULL);
653                 return NULL;
654         }
655
656         /*
657          * NOTE! We still have PageReserved() pages in the page tables.
658          * eg. VDSO mappings can cause them to exist.
659          */
660 out:
661         return pfn_to_page(pfn);
662 }
663
664 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
665 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
666                                 pmd_t pmd)
667 {
668         unsigned long pfn = pmd_pfn(pmd);
669
670         /*
671          * There is no pmd_special() but there may be special pmds, e.g.
672          * in a direct-access (dax) mapping, so let's just replicate the
673          * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
674          */
675         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
676                 if (vma->vm_flags & VM_MIXEDMAP) {
677                         if (!pfn_valid(pfn))
678                                 return NULL;
679                         goto out;
680                 } else {
681                         unsigned long off;
682                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
683                         if (pfn == vma->vm_pgoff + off)
684                                 return NULL;
685                         if (!is_cow_mapping(vma->vm_flags))
686                                 return NULL;
687                 }
688         }
689
690         if (pmd_devmap(pmd))
691                 return NULL;
692         if (is_huge_zero_pmd(pmd))
693                 return NULL;
694         if (unlikely(pfn > highest_memmap_pfn))
695                 return NULL;
696
697         /*
698          * NOTE! We still have PageReserved() pages in the page tables.
699          * eg. VDSO mappings can cause them to exist.
700          */
701 out:
702         return pfn_to_page(pfn);
703 }
704 #endif
705
706 static void restore_exclusive_pte(struct vm_area_struct *vma,
707                                   struct page *page, unsigned long address,
708                                   pte_t *ptep)
709 {
710         pte_t pte;
711         swp_entry_t entry;
712
713         pte = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot)));
714         if (pte_swp_soft_dirty(*ptep))
715                 pte = pte_mksoft_dirty(pte);
716
717         entry = pte_to_swp_entry(*ptep);
718         if (pte_swp_uffd_wp(*ptep))
719                 pte = pte_mkuffd_wp(pte);
720         else if (is_writable_device_exclusive_entry(entry))
721                 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
722
723         /*
724          * No need to take a page reference as one was already
725          * created when the swap entry was made.
726          */
727         if (PageAnon(page))
728                 page_add_anon_rmap(page, vma, address, false);
729         else
730                 /*
731                  * Currently device exclusive access only supports anonymous
732                  * memory so the entry shouldn't point to a filebacked page.
733                  */
734                 WARN_ON_ONCE(!PageAnon(page));
735
736         set_pte_at(vma->vm_mm, address, ptep, pte);
737
738         if (vma->vm_flags & VM_LOCKED)
739                 mlock_vma_page(page);
740
741         /*
742          * No need to invalidate - it was non-present before. However
743          * secondary CPUs may have mappings that need invalidating.
744          */
745         update_mmu_cache(vma, address, ptep);
746 }
747
748 /*
749  * Tries to restore an exclusive pte if the page lock can be acquired without
750  * sleeping.
751  */
752 static int
753 try_restore_exclusive_pte(pte_t *src_pte, struct vm_area_struct *vma,
754                         unsigned long addr)
755 {
756         swp_entry_t entry = pte_to_swp_entry(*src_pte);
757         struct page *page = pfn_swap_entry_to_page(entry);
758
759         if (trylock_page(page)) {
760                 restore_exclusive_pte(vma, page, addr, src_pte);
761                 unlock_page(page);
762                 return 0;
763         }
764
765         return -EBUSY;
766 }
767
768 /*
769  * copy one vm_area from one task to the other. Assumes the page tables
770  * already present in the new task to be cleared in the whole range
771  * covered by this vma.
772  */
773
774 static unsigned long
775 copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
776                 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *dst_vma,
777                 struct vm_area_struct *src_vma, unsigned long addr, int *rss)
778 {
779         unsigned long vm_flags = dst_vma->vm_flags;
780         pte_t pte = *src_pte;
781         struct page *page;
782         swp_entry_t entry = pte_to_swp_entry(pte);
783
784         if (likely(!non_swap_entry(entry))) {
785                 if (swap_duplicate(entry) < 0)
786                         return -EIO;
787
788                 /* make sure dst_mm is on swapoff's mmlist. */
789                 if (unlikely(list_empty(&dst_mm->mmlist))) {
790                         spin_lock(&mmlist_lock);
791                         if (list_empty(&dst_mm->mmlist))
792                                 list_add(&dst_mm->mmlist,
793                                                 &src_mm->mmlist);
794                         spin_unlock(&mmlist_lock);
795                 }
796                 rss[MM_SWAPENTS]++;
797         } else if (is_migration_entry(entry)) {
798                 page = pfn_swap_entry_to_page(entry);
799
800                 rss[mm_counter(page)]++;
801
802                 if (is_writable_migration_entry(entry) &&
803                                 is_cow_mapping(vm_flags)) {
804                         /*
805                          * COW mappings require pages in both
806                          * parent and child to be set to read.
807                          */
808                         entry = make_readable_migration_entry(
809                                                         swp_offset(entry));
810                         pte = swp_entry_to_pte(entry);
811                         if (pte_swp_soft_dirty(*src_pte))
812                                 pte = pte_swp_mksoft_dirty(pte);
813                         if (pte_swp_uffd_wp(*src_pte))
814                                 pte = pte_swp_mkuffd_wp(pte);
815                         set_pte_at(src_mm, addr, src_pte, pte);
816                 }
817         } else if (is_device_private_entry(entry)) {
818                 page = pfn_swap_entry_to_page(entry);
819
820                 /*
821                  * Update rss count even for unaddressable pages, as
822                  * they should treated just like normal pages in this
823                  * respect.
824                  *
825                  * We will likely want to have some new rss counters
826                  * for unaddressable pages, at some point. But for now
827                  * keep things as they are.
828                  */
829                 get_page(page);
830                 rss[mm_counter(page)]++;
831                 page_dup_rmap(page, false);
832
833                 /*
834                  * We do not preserve soft-dirty information, because so
835                  * far, checkpoint/restore is the only feature that
836                  * requires that. And checkpoint/restore does not work
837                  * when a device driver is involved (you cannot easily
838                  * save and restore device driver state).
839                  */
840                 if (is_writable_device_private_entry(entry) &&
841                     is_cow_mapping(vm_flags)) {
842                         entry = make_readable_device_private_entry(
843                                                         swp_offset(entry));
844                         pte = swp_entry_to_pte(entry);
845                         if (pte_swp_uffd_wp(*src_pte))
846                                 pte = pte_swp_mkuffd_wp(pte);
847                         set_pte_at(src_mm, addr, src_pte, pte);
848                 }
849         } else if (is_device_exclusive_entry(entry)) {
850                 /*
851                  * Make device exclusive entries present by restoring the
852                  * original entry then copying as for a present pte. Device
853                  * exclusive entries currently only support private writable
854                  * (ie. COW) mappings.
855                  */
856                 VM_BUG_ON(!is_cow_mapping(src_vma->vm_flags));
857                 if (try_restore_exclusive_pte(src_pte, src_vma, addr))
858                         return -EBUSY;
859                 return -ENOENT;
860         }
861         if (!userfaultfd_wp(dst_vma))
862                 pte = pte_swp_clear_uffd_wp(pte);
863         set_pte_at(dst_mm, addr, dst_pte, pte);
864         return 0;
865 }
866
867 /*
868  * Copy a present and normal page if necessary.
869  *
870  * NOTE! The usual case is that this doesn't need to do
871  * anything, and can just return a positive value. That
872  * will let the caller know that it can just increase
873  * the page refcount and re-use the pte the traditional
874  * way.
875  *
876  * But _if_ we need to copy it because it needs to be
877  * pinned in the parent (and the child should get its own
878  * copy rather than just a reference to the same page),
879  * we'll do that here and return zero to let the caller
880  * know we're done.
881  *
882  * And if we need a pre-allocated page but don't yet have
883  * one, return a negative error to let the preallocation
884  * code know so that it can do so outside the page table
885  * lock.
886  */
887 static inline int
888 copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
889                   pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
890                   struct page **prealloc, pte_t pte, struct page *page)
891 {
892         struct page *new_page;
893
894         /*
895          * What we want to do is to check whether this page may
896          * have been pinned by the parent process.  If so,
897          * instead of wrprotect the pte on both sides, we copy
898          * the page immediately so that we'll always guarantee
899          * the pinned page won't be randomly replaced in the
900          * future.
901          *
902          * The page pinning checks are just "has this mm ever
903          * seen pinning", along with the (inexact) check of
904          * the page count. That might give false positives for
905          * for pinning, but it will work correctly.
906          */
907         if (likely(!page_needs_cow_for_dma(src_vma, page)))
908                 return 1;
909
910         new_page = *prealloc;
911         if (!new_page)
912                 return -EAGAIN;
913
914         /*
915          * We have a prealloc page, all good!  Take it
916          * over and copy the page & arm it.
917          */
918         *prealloc = NULL;
919         copy_user_highpage(new_page, page, addr, src_vma);
920         __SetPageUptodate(new_page);
921         page_add_new_anon_rmap(new_page, dst_vma, addr, false);
922         lru_cache_add_inactive_or_unevictable(new_page, dst_vma);
923         rss[mm_counter(new_page)]++;
924
925         /* All done, just insert the new page copy in the child */
926         pte = mk_pte(new_page, dst_vma->vm_page_prot);
927         pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma);
928         if (userfaultfd_pte_wp(dst_vma, *src_pte))
929                 /* Uffd-wp needs to be delivered to dest pte as well */
930                 pte = pte_wrprotect(pte_mkuffd_wp(pte));
931         set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
932         return 0;
933 }
934
935 /*
936  * Copy one pte.  Returns 0 if succeeded, or -EAGAIN if one preallocated page
937  * is required to copy this pte.
938  */
939 static inline int
940 copy_present_pte(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
941                  pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
942                  struct page **prealloc)
943 {
944         struct mm_struct *src_mm = src_vma->vm_mm;
945         unsigned long vm_flags = src_vma->vm_flags;
946         pte_t pte = *src_pte;
947         struct page *page;
948
949         page = vm_normal_page(src_vma, addr, pte);
950         if (page) {
951                 int retval;
952
953                 retval = copy_present_page(dst_vma, src_vma, dst_pte, src_pte,
954                                            addr, rss, prealloc, pte, page);
955                 if (retval <= 0)
956                         return retval;
957
958                 get_page(page);
959                 page_dup_rmap(page, false);
960                 rss[mm_counter(page)]++;
961         }
962
963         /*
964          * If it's a COW mapping, write protect it both
965          * in the parent and the child
966          */
967         if (is_cow_mapping(vm_flags) && pte_write(pte)) {
968                 ptep_set_wrprotect(src_mm, addr, src_pte);
969                 pte = pte_wrprotect(pte);
970         }
971
972         /*
973          * If it's a shared mapping, mark it clean in
974          * the child
975          */
976         if (vm_flags & VM_SHARED)
977                 pte = pte_mkclean(pte);
978         pte = pte_mkold(pte);
979
980         if (!userfaultfd_wp(dst_vma))
981                 pte = pte_clear_uffd_wp(pte);
982
983         set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
984         return 0;
985 }
986
987 static inline struct page *
988 page_copy_prealloc(struct mm_struct *src_mm, struct vm_area_struct *vma,
989                    unsigned long addr)
990 {
991         struct page *new_page;
992
993         new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, addr);
994         if (!new_page)
995                 return NULL;
996
997         if (mem_cgroup_charge(page_folio(new_page), src_mm, GFP_KERNEL)) {
998                 put_page(new_page);
999                 return NULL;
1000         }
1001         cgroup_throttle_swaprate(new_page, GFP_KERNEL);
1002
1003         return new_page;
1004 }
1005
1006 static int
1007 copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1008                pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1009                unsigned long end)
1010 {
1011         struct mm_struct *dst_mm = dst_vma->vm_mm;
1012         struct mm_struct *src_mm = src_vma->vm_mm;
1013         pte_t *orig_src_pte, *orig_dst_pte;
1014         pte_t *src_pte, *dst_pte;
1015         spinlock_t *src_ptl, *dst_ptl;
1016         int progress, ret = 0;
1017         int rss[NR_MM_COUNTERS];
1018         swp_entry_t entry = (swp_entry_t){0};
1019         struct page *prealloc = NULL;
1020
1021 again:
1022         progress = 0;
1023         init_rss_vec(rss);
1024
1025         dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1026         if (!dst_pte) {
1027                 ret = -ENOMEM;
1028                 goto out;
1029         }
1030         src_pte = pte_offset_map(src_pmd, addr);
1031         src_ptl = pte_lockptr(src_mm, src_pmd);
1032         spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1033         orig_src_pte = src_pte;
1034         orig_dst_pte = dst_pte;
1035         arch_enter_lazy_mmu_mode();
1036
1037         do {
1038                 /*
1039                  * We are holding two locks at this point - either of them
1040                  * could generate latencies in another task on another CPU.
1041                  */
1042                 if (progress >= 32) {
1043                         progress = 0;
1044                         if (need_resched() ||
1045                             spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
1046                                 break;
1047                 }
1048                 if (pte_none(*src_pte)) {
1049                         progress++;
1050                         continue;
1051                 }
1052                 if (unlikely(!pte_present(*src_pte))) {
1053                         ret = copy_nonpresent_pte(dst_mm, src_mm,
1054                                                   dst_pte, src_pte,
1055                                                   dst_vma, src_vma,
1056                                                   addr, rss);
1057                         if (ret == -EIO) {
1058                                 entry = pte_to_swp_entry(*src_pte);
1059                                 break;
1060                         } else if (ret == -EBUSY) {
1061                                 break;
1062                         } else if (!ret) {
1063                                 progress += 8;
1064                                 continue;
1065                         }
1066
1067                         /*
1068                          * Device exclusive entry restored, continue by copying
1069                          * the now present pte.
1070                          */
1071                         WARN_ON_ONCE(ret != -ENOENT);
1072                 }
1073                 /* copy_present_pte() will clear `*prealloc' if consumed */
1074                 ret = copy_present_pte(dst_vma, src_vma, dst_pte, src_pte,
1075                                        addr, rss, &prealloc);
1076                 /*
1077                  * If we need a pre-allocated page for this pte, drop the
1078                  * locks, allocate, and try again.
1079                  */
1080                 if (unlikely(ret == -EAGAIN))
1081                         break;
1082                 if (unlikely(prealloc)) {
1083                         /*
1084                          * pre-alloc page cannot be reused by next time so as
1085                          * to strictly follow mempolicy (e.g., alloc_page_vma()
1086                          * will allocate page according to address).  This
1087                          * could only happen if one pinned pte changed.
1088                          */
1089                         put_page(prealloc);
1090                         prealloc = NULL;
1091                 }
1092                 progress += 8;
1093         } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1094
1095         arch_leave_lazy_mmu_mode();
1096         spin_unlock(src_ptl);
1097         pte_unmap(orig_src_pte);
1098         add_mm_rss_vec(dst_mm, rss);
1099         pte_unmap_unlock(orig_dst_pte, dst_ptl);
1100         cond_resched();
1101
1102         if (ret == -EIO) {
1103                 VM_WARN_ON_ONCE(!entry.val);
1104                 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) {
1105                         ret = -ENOMEM;
1106                         goto out;
1107                 }
1108                 entry.val = 0;
1109         } else if (ret == -EBUSY) {
1110                 goto out;
1111         } else if (ret ==  -EAGAIN) {
1112                 prealloc = page_copy_prealloc(src_mm, src_vma, addr);
1113                 if (!prealloc)
1114                         return -ENOMEM;
1115         } else if (ret) {
1116                 VM_WARN_ON_ONCE(1);
1117         }
1118
1119         /* We've captured and resolved the error. Reset, try again. */
1120         ret = 0;
1121
1122         if (addr != end)
1123                 goto again;
1124 out:
1125         if (unlikely(prealloc))
1126                 put_page(prealloc);
1127         return ret;
1128 }
1129
1130 static inline int
1131 copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1132                pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1133                unsigned long end)
1134 {
1135         struct mm_struct *dst_mm = dst_vma->vm_mm;
1136         struct mm_struct *src_mm = src_vma->vm_mm;
1137         pmd_t *src_pmd, *dst_pmd;
1138         unsigned long next;
1139
1140         dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1141         if (!dst_pmd)
1142                 return -ENOMEM;
1143         src_pmd = pmd_offset(src_pud, addr);
1144         do {
1145                 next = pmd_addr_end(addr, end);
1146                 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
1147                         || pmd_devmap(*src_pmd)) {
1148                         int err;
1149                         VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma);
1150                         err = copy_huge_pmd(dst_mm, src_mm, dst_pmd, src_pmd,
1151                                             addr, dst_vma, src_vma);
1152                         if (err == -ENOMEM)
1153                                 return -ENOMEM;
1154                         if (!err)
1155                                 continue;
1156                         /* fall through */
1157                 }
1158                 if (pmd_none_or_clear_bad(src_pmd))
1159                         continue;
1160                 if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd,
1161                                    addr, next))
1162                         return -ENOMEM;
1163         } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1164         return 0;
1165 }
1166
1167 static inline int
1168 copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1169                p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr,
1170                unsigned long end)
1171 {
1172         struct mm_struct *dst_mm = dst_vma->vm_mm;
1173         struct mm_struct *src_mm = src_vma->vm_mm;
1174         pud_t *src_pud, *dst_pud;
1175         unsigned long next;
1176
1177         dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1178         if (!dst_pud)
1179                 return -ENOMEM;
1180         src_pud = pud_offset(src_p4d, addr);
1181         do {
1182                 next = pud_addr_end(addr, end);
1183                 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1184                         int err;
1185
1186                         VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma);
1187                         err = copy_huge_pud(dst_mm, src_mm,
1188                                             dst_pud, src_pud, addr, src_vma);
1189                         if (err == -ENOMEM)
1190                                 return -ENOMEM;
1191                         if (!err)
1192                                 continue;
1193                         /* fall through */
1194                 }
1195                 if (pud_none_or_clear_bad(src_pud))
1196                         continue;
1197                 if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud,
1198                                    addr, next))
1199                         return -ENOMEM;
1200         } while (dst_pud++, src_pud++, addr = next, addr != end);
1201         return 0;
1202 }
1203
1204 static inline int
1205 copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1206                pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr,
1207                unsigned long end)
1208 {
1209         struct mm_struct *dst_mm = dst_vma->vm_mm;
1210         p4d_t *src_p4d, *dst_p4d;
1211         unsigned long next;
1212
1213         dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1214         if (!dst_p4d)
1215                 return -ENOMEM;
1216         src_p4d = p4d_offset(src_pgd, addr);
1217         do {
1218                 next = p4d_addr_end(addr, end);
1219                 if (p4d_none_or_clear_bad(src_p4d))
1220                         continue;
1221                 if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d,
1222                                    addr, next))
1223                         return -ENOMEM;
1224         } while (dst_p4d++, src_p4d++, addr = next, addr != end);
1225         return 0;
1226 }
1227
1228 int
1229 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1230 {
1231         pgd_t *src_pgd, *dst_pgd;
1232         unsigned long next;
1233         unsigned long addr = src_vma->vm_start;
1234         unsigned long end = src_vma->vm_end;
1235         struct mm_struct *dst_mm = dst_vma->vm_mm;
1236         struct mm_struct *src_mm = src_vma->vm_mm;
1237         struct mmu_notifier_range range;
1238         bool is_cow;
1239         int ret;
1240
1241         /*
1242          * Don't copy ptes where a page fault will fill them correctly.
1243          * Fork becomes much lighter when there are big shared or private
1244          * readonly mappings. The tradeoff is that copy_page_range is more
1245          * efficient than faulting.
1246          */
1247         if (!(src_vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
1248             !src_vma->anon_vma)
1249                 return 0;
1250
1251         if (is_vm_hugetlb_page(src_vma))
1252                 return copy_hugetlb_page_range(dst_mm, src_mm, src_vma);
1253
1254         if (unlikely(src_vma->vm_flags & VM_PFNMAP)) {
1255                 /*
1256                  * We do not free on error cases below as remove_vma
1257                  * gets called on error from higher level routine
1258                  */
1259                 ret = track_pfn_copy(src_vma);
1260                 if (ret)
1261                         return ret;
1262         }
1263
1264         /*
1265          * We need to invalidate the secondary MMU mappings only when
1266          * there could be a permission downgrade on the ptes of the
1267          * parent mm. And a permission downgrade will only happen if
1268          * is_cow_mapping() returns true.
1269          */
1270         is_cow = is_cow_mapping(src_vma->vm_flags);
1271
1272         if (is_cow) {
1273                 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
1274                                         0, src_vma, src_mm, addr, end);
1275                 mmu_notifier_invalidate_range_start(&range);
1276                 /*
1277                  * Disabling preemption is not needed for the write side, as
1278                  * the read side doesn't spin, but goes to the mmap_lock.
1279                  *
1280                  * Use the raw variant of the seqcount_t write API to avoid
1281                  * lockdep complaining about preemptibility.
1282                  */
1283                 mmap_assert_write_locked(src_mm);
1284                 raw_write_seqcount_begin(&src_mm->write_protect_seq);
1285         }
1286
1287         ret = 0;
1288         dst_pgd = pgd_offset(dst_mm, addr);
1289         src_pgd = pgd_offset(src_mm, addr);
1290         do {
1291                 next = pgd_addr_end(addr, end);
1292                 if (pgd_none_or_clear_bad(src_pgd))
1293                         continue;
1294                 if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd,
1295                                             addr, next))) {
1296                         ret = -ENOMEM;
1297                         break;
1298                 }
1299         } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1300
1301         if (is_cow) {
1302                 raw_write_seqcount_end(&src_mm->write_protect_seq);
1303                 mmu_notifier_invalidate_range_end(&range);
1304         }
1305         return ret;
1306 }
1307
1308 /*
1309  * Parameter block passed down to zap_pte_range in exceptional cases.
1310  */
1311 struct zap_details {
1312         struct folio *single_folio;     /* Locked folio to be unmapped */
1313         bool even_cows;                 /* Zap COWed private pages too? */
1314 };
1315
1316 /* Whether we should zap all COWed (private) pages too */
1317 static inline bool should_zap_cows(struct zap_details *details)
1318 {
1319         /* By default, zap all pages */
1320         if (!details)
1321                 return true;
1322
1323         /* Or, we zap COWed pages only if the caller wants to */
1324         return details->even_cows;
1325 }
1326
1327 /* Decides whether we should zap this page with the page pointer specified */
1328 static inline bool should_zap_page(struct zap_details *details, struct page *page)
1329 {
1330         /* If we can make a decision without *page.. */
1331         if (should_zap_cows(details))
1332                 return true;
1333
1334         /* E.g. the caller passes NULL for the case of a zero page */
1335         if (!page)
1336                 return true;
1337
1338         /* Otherwise we should only zap non-anon pages */
1339         return !PageAnon(page);
1340 }
1341
1342 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1343                                 struct vm_area_struct *vma, pmd_t *pmd,
1344                                 unsigned long addr, unsigned long end,
1345                                 struct zap_details *details)
1346 {
1347         struct mm_struct *mm = tlb->mm;
1348         int force_flush = 0;
1349         int rss[NR_MM_COUNTERS];
1350         spinlock_t *ptl;
1351         pte_t *start_pte;
1352         pte_t *pte;
1353         swp_entry_t entry;
1354
1355         tlb_change_page_size(tlb, PAGE_SIZE);
1356 again:
1357         init_rss_vec(rss);
1358         start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1359         pte = start_pte;
1360         flush_tlb_batched_pending(mm);
1361         arch_enter_lazy_mmu_mode();
1362         do {
1363                 pte_t ptent = *pte;
1364                 struct page *page;
1365
1366                 if (pte_none(ptent))
1367                         continue;
1368
1369                 if (need_resched())
1370                         break;
1371
1372                 if (pte_present(ptent)) {
1373                         page = vm_normal_page(vma, addr, ptent);
1374                         if (unlikely(!should_zap_page(details, page)))
1375                                 continue;
1376                         ptent = ptep_get_and_clear_full(mm, addr, pte,
1377                                                         tlb->fullmm);
1378                         tlb_remove_tlb_entry(tlb, pte, addr);
1379                         if (unlikely(!page))
1380                                 continue;
1381
1382                         if (!PageAnon(page)) {
1383                                 if (pte_dirty(ptent)) {
1384                                         force_flush = 1;
1385                                         set_page_dirty(page);
1386                                 }
1387                                 if (pte_young(ptent) &&
1388                                     likely(!(vma->vm_flags & VM_SEQ_READ)))
1389                                         mark_page_accessed(page);
1390                         }
1391                         rss[mm_counter(page)]--;
1392                         page_remove_rmap(page, false);
1393                         if (unlikely(page_mapcount(page) < 0))
1394                                 print_bad_pte(vma, addr, ptent, page);
1395                         if (unlikely(__tlb_remove_page(tlb, page))) {
1396                                 force_flush = 1;
1397                                 addr += PAGE_SIZE;
1398                                 break;
1399                         }
1400                         continue;
1401                 }
1402
1403                 entry = pte_to_swp_entry(ptent);
1404                 if (is_device_private_entry(entry) ||
1405                     is_device_exclusive_entry(entry)) {
1406                         page = pfn_swap_entry_to_page(entry);
1407                         if (unlikely(!should_zap_page(details, page)))
1408                                 continue;
1409                         rss[mm_counter(page)]--;
1410                         if (is_device_private_entry(entry))
1411                                 page_remove_rmap(page, false);
1412                         put_page(page);
1413                 } else if (!non_swap_entry(entry)) {
1414                         /* Genuine swap entry, hence a private anon page */
1415                         if (!should_zap_cows(details))
1416                                 continue;
1417                         rss[MM_SWAPENTS]--;
1418                         if (unlikely(!free_swap_and_cache(entry)))
1419                                 print_bad_pte(vma, addr, ptent, NULL);
1420                 } else if (is_migration_entry(entry)) {
1421                         page = pfn_swap_entry_to_page(entry);
1422                         if (!should_zap_page(details, page))
1423                                 continue;
1424                         rss[mm_counter(page)]--;
1425                 } else if (is_hwpoison_entry(entry)) {
1426                         if (!should_zap_cows(details))
1427                                 continue;
1428                 } else {
1429                         /* We should have covered all the swap entry types */
1430                         WARN_ON_ONCE(1);
1431                 }
1432                 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1433         } while (pte++, addr += PAGE_SIZE, addr != end);
1434
1435         add_mm_rss_vec(mm, rss);
1436         arch_leave_lazy_mmu_mode();
1437
1438         /* Do the actual TLB flush before dropping ptl */
1439         if (force_flush)
1440                 tlb_flush_mmu_tlbonly(tlb);
1441         pte_unmap_unlock(start_pte, ptl);
1442
1443         /*
1444          * If we forced a TLB flush (either due to running out of
1445          * batch buffers or because we needed to flush dirty TLB
1446          * entries before releasing the ptl), free the batched
1447          * memory too. Restart if we didn't do everything.
1448          */
1449         if (force_flush) {
1450                 force_flush = 0;
1451                 tlb_flush_mmu(tlb);
1452         }
1453
1454         if (addr != end) {
1455                 cond_resched();
1456                 goto again;
1457         }
1458
1459         return addr;
1460 }
1461
1462 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1463                                 struct vm_area_struct *vma, pud_t *pud,
1464                                 unsigned long addr, unsigned long end,
1465                                 struct zap_details *details)
1466 {
1467         pmd_t *pmd;
1468         unsigned long next;
1469
1470         pmd = pmd_offset(pud, addr);
1471         do {
1472                 next = pmd_addr_end(addr, end);
1473                 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1474                         if (next - addr != HPAGE_PMD_SIZE)
1475                                 __split_huge_pmd(vma, pmd, addr, false, NULL);
1476                         else if (zap_huge_pmd(tlb, vma, pmd, addr))
1477                                 goto next;
1478                         /* fall through */
1479                 } else if (details && details->single_folio &&
1480                            folio_test_pmd_mappable(details->single_folio) &&
1481                            next - addr == HPAGE_PMD_SIZE && pmd_none(*pmd)) {
1482                         spinlock_t *ptl = pmd_lock(tlb->mm, pmd);
1483                         /*
1484                          * Take and drop THP pmd lock so that we cannot return
1485                          * prematurely, while zap_huge_pmd() has cleared *pmd,
1486                          * but not yet decremented compound_mapcount().
1487                          */
1488                         spin_unlock(ptl);
1489                 }
1490
1491                 /*
1492                  * Here there can be other concurrent MADV_DONTNEED or
1493                  * trans huge page faults running, and if the pmd is
1494                  * none or trans huge it can change under us. This is
1495                  * because MADV_DONTNEED holds the mmap_lock in read
1496                  * mode.
1497                  */
1498                 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1499                         goto next;
1500                 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1501 next:
1502                 cond_resched();
1503         } while (pmd++, addr = next, addr != end);
1504
1505         return addr;
1506 }
1507
1508 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1509                                 struct vm_area_struct *vma, p4d_t *p4d,
1510                                 unsigned long addr, unsigned long end,
1511                                 struct zap_details *details)
1512 {
1513         pud_t *pud;
1514         unsigned long next;
1515
1516         pud = pud_offset(p4d, addr);
1517         do {
1518                 next = pud_addr_end(addr, end);
1519                 if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1520                         if (next - addr != HPAGE_PUD_SIZE) {
1521                                 mmap_assert_locked(tlb->mm);
1522                                 split_huge_pud(vma, pud, addr);
1523                         } else if (zap_huge_pud(tlb, vma, pud, addr))
1524                                 goto next;
1525                         /* fall through */
1526                 }
1527                 if (pud_none_or_clear_bad(pud))
1528                         continue;
1529                 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1530 next:
1531                 cond_resched();
1532         } while (pud++, addr = next, addr != end);
1533
1534         return addr;
1535 }
1536
1537 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1538                                 struct vm_area_struct *vma, pgd_t *pgd,
1539                                 unsigned long addr, unsigned long end,
1540                                 struct zap_details *details)
1541 {
1542         p4d_t *p4d;
1543         unsigned long next;
1544
1545         p4d = p4d_offset(pgd, addr);
1546         do {
1547                 next = p4d_addr_end(addr, end);
1548                 if (p4d_none_or_clear_bad(p4d))
1549                         continue;
1550                 next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1551         } while (p4d++, addr = next, addr != end);
1552
1553         return addr;
1554 }
1555
1556 void unmap_page_range(struct mmu_gather *tlb,
1557                              struct vm_area_struct *vma,
1558                              unsigned long addr, unsigned long end,
1559                              struct zap_details *details)
1560 {
1561         pgd_t *pgd;
1562         unsigned long next;
1563
1564         BUG_ON(addr >= end);
1565         tlb_start_vma(tlb, vma);
1566         pgd = pgd_offset(vma->vm_mm, addr);
1567         do {
1568                 next = pgd_addr_end(addr, end);
1569                 if (pgd_none_or_clear_bad(pgd))
1570                         continue;
1571                 next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1572         } while (pgd++, addr = next, addr != end);
1573         tlb_end_vma(tlb, vma);
1574 }
1575
1576
1577 static void unmap_single_vma(struct mmu_gather *tlb,
1578                 struct vm_area_struct *vma, unsigned long start_addr,
1579                 unsigned long end_addr,
1580                 struct zap_details *details)
1581 {
1582         unsigned long start = max(vma->vm_start, start_addr);
1583         unsigned long end;
1584
1585         if (start >= vma->vm_end)
1586                 return;
1587         end = min(vma->vm_end, end_addr);
1588         if (end <= vma->vm_start)
1589                 return;
1590
1591         if (vma->vm_file)
1592                 uprobe_munmap(vma, start, end);
1593
1594         if (unlikely(vma->vm_flags & VM_PFNMAP))
1595                 untrack_pfn(vma, 0, 0);
1596
1597         if (start != end) {
1598                 if (unlikely(is_vm_hugetlb_page(vma))) {
1599                         /*
1600                          * It is undesirable to test vma->vm_file as it
1601                          * should be non-null for valid hugetlb area.
1602                          * However, vm_file will be NULL in the error
1603                          * cleanup path of mmap_region. When
1604                          * hugetlbfs ->mmap method fails,
1605                          * mmap_region() nullifies vma->vm_file
1606                          * before calling this function to clean up.
1607                          * Since no pte has actually been setup, it is
1608                          * safe to do nothing in this case.
1609                          */
1610                         if (vma->vm_file) {
1611                                 i_mmap_lock_write(vma->vm_file->f_mapping);
1612                                 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1613                                 i_mmap_unlock_write(vma->vm_file->f_mapping);
1614                         }
1615                 } else
1616                         unmap_page_range(tlb, vma, start, end, details);
1617         }
1618 }
1619
1620 /**
1621  * unmap_vmas - unmap a range of memory covered by a list of vma's
1622  * @tlb: address of the caller's struct mmu_gather
1623  * @vma: the starting vma
1624  * @start_addr: virtual address at which to start unmapping
1625  * @end_addr: virtual address at which to end unmapping
1626  *
1627  * Unmap all pages in the vma list.
1628  *
1629  * Only addresses between `start' and `end' will be unmapped.
1630  *
1631  * The VMA list must be sorted in ascending virtual address order.
1632  *
1633  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1634  * range after unmap_vmas() returns.  So the only responsibility here is to
1635  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1636  * drops the lock and schedules.
1637  */
1638 void unmap_vmas(struct mmu_gather *tlb,
1639                 struct vm_area_struct *vma, unsigned long start_addr,
1640                 unsigned long end_addr)
1641 {
1642         struct mmu_notifier_range range;
1643
1644         mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, vma->vm_mm,
1645                                 start_addr, end_addr);
1646         mmu_notifier_invalidate_range_start(&range);
1647         for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1648                 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1649         mmu_notifier_invalidate_range_end(&range);
1650 }
1651
1652 /**
1653  * zap_page_range - remove user pages in a given range
1654  * @vma: vm_area_struct holding the applicable pages
1655  * @start: starting address of pages to zap
1656  * @size: number of bytes to zap
1657  *
1658  * Caller must protect the VMA list
1659  */
1660 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1661                 unsigned long size)
1662 {
1663         struct mmu_notifier_range range;
1664         struct mmu_gather tlb;
1665
1666         lru_add_drain();
1667         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1668                                 start, start + size);
1669         tlb_gather_mmu(&tlb, vma->vm_mm);
1670         update_hiwater_rss(vma->vm_mm);
1671         mmu_notifier_invalidate_range_start(&range);
1672         for ( ; vma && vma->vm_start < range.end; vma = vma->vm_next)
1673                 unmap_single_vma(&tlb, vma, start, range.end, NULL);
1674         mmu_notifier_invalidate_range_end(&range);
1675         tlb_finish_mmu(&tlb);
1676 }
1677
1678 /**
1679  * zap_page_range_single - remove user pages in a given range
1680  * @vma: vm_area_struct holding the applicable pages
1681  * @address: starting address of pages to zap
1682  * @size: number of bytes to zap
1683  * @details: details of shared cache invalidation
1684  *
1685  * The range must fit into one VMA.
1686  */
1687 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1688                 unsigned long size, struct zap_details *details)
1689 {
1690         struct mmu_notifier_range range;
1691         struct mmu_gather tlb;
1692
1693         lru_add_drain();
1694         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1695                                 address, address + size);
1696         tlb_gather_mmu(&tlb, vma->vm_mm);
1697         update_hiwater_rss(vma->vm_mm);
1698         mmu_notifier_invalidate_range_start(&range);
1699         unmap_single_vma(&tlb, vma, address, range.end, details);
1700         mmu_notifier_invalidate_range_end(&range);
1701         tlb_finish_mmu(&tlb);
1702 }
1703
1704 /**
1705  * zap_vma_ptes - remove ptes mapping the vma
1706  * @vma: vm_area_struct holding ptes to be zapped
1707  * @address: starting address of pages to zap
1708  * @size: number of bytes to zap
1709  *
1710  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1711  *
1712  * The entire address range must be fully contained within the vma.
1713  *
1714  */
1715 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1716                 unsigned long size)
1717 {
1718         if (!range_in_vma(vma, address, address + size) ||
1719                         !(vma->vm_flags & VM_PFNMAP))
1720                 return;
1721
1722         zap_page_range_single(vma, address, size, NULL);
1723 }
1724 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1725
1726 static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr)
1727 {
1728         pgd_t *pgd;
1729         p4d_t *p4d;
1730         pud_t *pud;
1731         pmd_t *pmd;
1732
1733         pgd = pgd_offset(mm, addr);
1734         p4d = p4d_alloc(mm, pgd, addr);
1735         if (!p4d)
1736                 return NULL;
1737         pud = pud_alloc(mm, p4d, addr);
1738         if (!pud)
1739                 return NULL;
1740         pmd = pmd_alloc(mm, pud, addr);
1741         if (!pmd)
1742                 return NULL;
1743
1744         VM_BUG_ON(pmd_trans_huge(*pmd));
1745         return pmd;
1746 }
1747
1748 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1749                         spinlock_t **ptl)
1750 {
1751         pmd_t *pmd = walk_to_pmd(mm, addr);
1752
1753         if (!pmd)
1754                 return NULL;
1755         return pte_alloc_map_lock(mm, pmd, addr, ptl);
1756 }
1757
1758 static int validate_page_before_insert(struct page *page)
1759 {
1760         if (PageAnon(page) || PageSlab(page) || page_has_type(page))
1761                 return -EINVAL;
1762         flush_dcache_page(page);
1763         return 0;
1764 }
1765
1766 static int insert_page_into_pte_locked(struct mm_struct *mm, pte_t *pte,
1767                         unsigned long addr, struct page *page, pgprot_t prot)
1768 {
1769         if (!pte_none(*pte))
1770                 return -EBUSY;
1771         /* Ok, finally just insert the thing.. */
1772         get_page(page);
1773         inc_mm_counter_fast(mm, mm_counter_file(page));
1774         page_add_file_rmap(page, false);
1775         set_pte_at(mm, addr, pte, mk_pte(page, prot));
1776         return 0;
1777 }
1778
1779 /*
1780  * This is the old fallback for page remapping.
1781  *
1782  * For historical reasons, it only allows reserved pages. Only
1783  * old drivers should use this, and they needed to mark their
1784  * pages reserved for the old functions anyway.
1785  */
1786 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1787                         struct page *page, pgprot_t prot)
1788 {
1789         struct mm_struct *mm = vma->vm_mm;
1790         int retval;
1791         pte_t *pte;
1792         spinlock_t *ptl;
1793
1794         retval = validate_page_before_insert(page);
1795         if (retval)
1796                 goto out;
1797         retval = -ENOMEM;
1798         pte = get_locked_pte(mm, addr, &ptl);
1799         if (!pte)
1800                 goto out;
1801         retval = insert_page_into_pte_locked(mm, pte, addr, page, prot);
1802         pte_unmap_unlock(pte, ptl);
1803 out:
1804         return retval;
1805 }
1806
1807 #ifdef pte_index
1808 static int insert_page_in_batch_locked(struct mm_struct *mm, pte_t *pte,
1809                         unsigned long addr, struct page *page, pgprot_t prot)
1810 {
1811         int err;
1812
1813         if (!page_count(page))
1814                 return -EINVAL;
1815         err = validate_page_before_insert(page);
1816         if (err)
1817                 return err;
1818         return insert_page_into_pte_locked(mm, pte, addr, page, prot);
1819 }
1820
1821 /* insert_pages() amortizes the cost of spinlock operations
1822  * when inserting pages in a loop. Arch *must* define pte_index.
1823  */
1824 static int insert_pages(struct vm_area_struct *vma, unsigned long addr,
1825                         struct page **pages, unsigned long *num, pgprot_t prot)
1826 {
1827         pmd_t *pmd = NULL;
1828         pte_t *start_pte, *pte;
1829         spinlock_t *pte_lock;
1830         struct mm_struct *const mm = vma->vm_mm;
1831         unsigned long curr_page_idx = 0;
1832         unsigned long remaining_pages_total = *num;
1833         unsigned long pages_to_write_in_pmd;
1834         int ret;
1835 more:
1836         ret = -EFAULT;
1837         pmd = walk_to_pmd(mm, addr);
1838         if (!pmd)
1839                 goto out;
1840
1841         pages_to_write_in_pmd = min_t(unsigned long,
1842                 remaining_pages_total, PTRS_PER_PTE - pte_index(addr));
1843
1844         /* Allocate the PTE if necessary; takes PMD lock once only. */
1845         ret = -ENOMEM;
1846         if (pte_alloc(mm, pmd))
1847                 goto out;
1848
1849         while (pages_to_write_in_pmd) {
1850                 int pte_idx = 0;
1851                 const int batch_size = min_t(int, pages_to_write_in_pmd, 8);
1852
1853                 start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock);
1854                 for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) {
1855                         int err = insert_page_in_batch_locked(mm, pte,
1856                                 addr, pages[curr_page_idx], prot);
1857                         if (unlikely(err)) {
1858                                 pte_unmap_unlock(start_pte, pte_lock);
1859                                 ret = err;
1860                                 remaining_pages_total -= pte_idx;
1861                                 goto out;
1862                         }
1863                         addr += PAGE_SIZE;
1864                         ++curr_page_idx;
1865                 }
1866                 pte_unmap_unlock(start_pte, pte_lock);
1867                 pages_to_write_in_pmd -= batch_size;
1868                 remaining_pages_total -= batch_size;
1869         }
1870         if (remaining_pages_total)
1871                 goto more;
1872         ret = 0;
1873 out:
1874         *num = remaining_pages_total;
1875         return ret;
1876 }
1877 #endif  /* ifdef pte_index */
1878
1879 /**
1880  * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock.
1881  * @vma: user vma to map to
1882  * @addr: target start user address of these pages
1883  * @pages: source kernel pages
1884  * @num: in: number of pages to map. out: number of pages that were *not*
1885  * mapped. (0 means all pages were successfully mapped).
1886  *
1887  * Preferred over vm_insert_page() when inserting multiple pages.
1888  *
1889  * In case of error, we may have mapped a subset of the provided
1890  * pages. It is the caller's responsibility to account for this case.
1891  *
1892  * The same restrictions apply as in vm_insert_page().
1893  */
1894 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
1895                         struct page **pages, unsigned long *num)
1896 {
1897 #ifdef pte_index
1898         const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1;
1899
1900         if (addr < vma->vm_start || end_addr >= vma->vm_end)
1901                 return -EFAULT;
1902         if (!(vma->vm_flags & VM_MIXEDMAP)) {
1903                 BUG_ON(mmap_read_trylock(vma->vm_mm));
1904                 BUG_ON(vma->vm_flags & VM_PFNMAP);
1905                 vma->vm_flags |= VM_MIXEDMAP;
1906         }
1907         /* Defer page refcount checking till we're about to map that page. */
1908         return insert_pages(vma, addr, pages, num, vma->vm_page_prot);
1909 #else
1910         unsigned long idx = 0, pgcount = *num;
1911         int err = -EINVAL;
1912
1913         for (; idx < pgcount; ++idx) {
1914                 err = vm_insert_page(vma, addr + (PAGE_SIZE * idx), pages[idx]);
1915                 if (err)
1916                         break;
1917         }
1918         *num = pgcount - idx;
1919         return err;
1920 #endif  /* ifdef pte_index */
1921 }
1922 EXPORT_SYMBOL(vm_insert_pages);
1923
1924 /**
1925  * vm_insert_page - insert single page into user vma
1926  * @vma: user vma to map to
1927  * @addr: target user address of this page
1928  * @page: source kernel page
1929  *
1930  * This allows drivers to insert individual pages they've allocated
1931  * into a user vma.
1932  *
1933  * The page has to be a nice clean _individual_ kernel allocation.
1934  * If you allocate a compound page, you need to have marked it as
1935  * such (__GFP_COMP), or manually just split the page up yourself
1936  * (see split_page()).
1937  *
1938  * NOTE! Traditionally this was done with "remap_pfn_range()" which
1939  * took an arbitrary page protection parameter. This doesn't allow
1940  * that. Your vma protection will have to be set up correctly, which
1941  * means that if you want a shared writable mapping, you'd better
1942  * ask for a shared writable mapping!
1943  *
1944  * The page does not need to be reserved.
1945  *
1946  * Usually this function is called from f_op->mmap() handler
1947  * under mm->mmap_lock write-lock, so it can change vma->vm_flags.
1948  * Caller must set VM_MIXEDMAP on vma if it wants to call this
1949  * function from other places, for example from page-fault handler.
1950  *
1951  * Return: %0 on success, negative error code otherwise.
1952  */
1953 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1954                         struct page *page)
1955 {
1956         if (addr < vma->vm_start || addr >= vma->vm_end)
1957                 return -EFAULT;
1958         if (!page_count(page))
1959                 return -EINVAL;
1960         if (!(vma->vm_flags & VM_MIXEDMAP)) {
1961                 BUG_ON(mmap_read_trylock(vma->vm_mm));
1962                 BUG_ON(vma->vm_flags & VM_PFNMAP);
1963                 vma->vm_flags |= VM_MIXEDMAP;
1964         }
1965         return insert_page(vma, addr, page, vma->vm_page_prot);
1966 }
1967 EXPORT_SYMBOL(vm_insert_page);
1968
1969 /*
1970  * __vm_map_pages - maps range of kernel pages into user vma
1971  * @vma: user vma to map to
1972  * @pages: pointer to array of source kernel pages
1973  * @num: number of pages in page array
1974  * @offset: user's requested vm_pgoff
1975  *
1976  * This allows drivers to map range of kernel pages into a user vma.
1977  *
1978  * Return: 0 on success and error code otherwise.
1979  */
1980 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1981                                 unsigned long num, unsigned long offset)
1982 {
1983         unsigned long count = vma_pages(vma);
1984         unsigned long uaddr = vma->vm_start;
1985         int ret, i;
1986
1987         /* Fail if the user requested offset is beyond the end of the object */
1988         if (offset >= num)
1989                 return -ENXIO;
1990
1991         /* Fail if the user requested size exceeds available object size */
1992         if (count > num - offset)
1993                 return -ENXIO;
1994
1995         for (i = 0; i < count; i++) {
1996                 ret = vm_insert_page(vma, uaddr, pages[offset + i]);
1997                 if (ret < 0)
1998                         return ret;
1999                 uaddr += PAGE_SIZE;
2000         }
2001
2002         return 0;
2003 }
2004
2005 /**
2006  * vm_map_pages - maps range of kernel pages starts with non zero offset
2007  * @vma: user vma to map to
2008  * @pages: pointer to array of source kernel pages
2009  * @num: number of pages in page array
2010  *
2011  * Maps an object consisting of @num pages, catering for the user's
2012  * requested vm_pgoff
2013  *
2014  * If we fail to insert any page into the vma, the function will return
2015  * immediately leaving any previously inserted pages present.  Callers
2016  * from the mmap handler may immediately return the error as their caller
2017  * will destroy the vma, removing any successfully inserted pages. Other
2018  * callers should make their own arrangements for calling unmap_region().
2019  *
2020  * Context: Process context. Called by mmap handlers.
2021  * Return: 0 on success and error code otherwise.
2022  */
2023 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2024                                 unsigned long num)
2025 {
2026         return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
2027 }
2028 EXPORT_SYMBOL(vm_map_pages);
2029
2030 /**
2031  * vm_map_pages_zero - map range of kernel pages starts with zero offset
2032  * @vma: user vma to map to
2033  * @pages: pointer to array of source kernel pages
2034  * @num: number of pages in page array
2035  *
2036  * Similar to vm_map_pages(), except that it explicitly sets the offset
2037  * to 0. This function is intended for the drivers that did not consider
2038  * vm_pgoff.
2039  *
2040  * Context: Process context. Called by mmap handlers.
2041  * Return: 0 on success and error code otherwise.
2042  */
2043 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
2044                                 unsigned long num)
2045 {
2046         return __vm_map_pages(vma, pages, num, 0);
2047 }
2048 EXPORT_SYMBOL(vm_map_pages_zero);
2049
2050 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2051                         pfn_t pfn, pgprot_t prot, bool mkwrite)
2052 {
2053         struct mm_struct *mm = vma->vm_mm;
2054         pte_t *pte, entry;
2055         spinlock_t *ptl;
2056
2057         pte = get_locked_pte(mm, addr, &ptl);
2058         if (!pte)
2059                 return VM_FAULT_OOM;
2060         if (!pte_none(*pte)) {
2061                 if (mkwrite) {
2062                         /*
2063                          * For read faults on private mappings the PFN passed
2064                          * in may not match the PFN we have mapped if the
2065                          * mapped PFN is a writeable COW page.  In the mkwrite
2066                          * case we are creating a writable PTE for a shared
2067                          * mapping and we expect the PFNs to match. If they
2068                          * don't match, we are likely racing with block
2069                          * allocation and mapping invalidation so just skip the
2070                          * update.
2071                          */
2072                         if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) {
2073                                 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte)));
2074                                 goto out_unlock;
2075                         }
2076                         entry = pte_mkyoung(*pte);
2077                         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2078                         if (ptep_set_access_flags(vma, addr, pte, entry, 1))
2079                                 update_mmu_cache(vma, addr, pte);
2080                 }
2081                 goto out_unlock;
2082         }
2083
2084         /* Ok, finally just insert the thing.. */
2085         if (pfn_t_devmap(pfn))
2086                 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
2087         else
2088                 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
2089
2090         if (mkwrite) {
2091                 entry = pte_mkyoung(entry);
2092                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2093         }
2094
2095         set_pte_at(mm, addr, pte, entry);
2096         update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
2097
2098 out_unlock:
2099         pte_unmap_unlock(pte, ptl);
2100         return VM_FAULT_NOPAGE;
2101 }
2102
2103 /**
2104  * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
2105  * @vma: user vma to map to
2106  * @addr: target user address of this page
2107  * @pfn: source kernel pfn
2108  * @pgprot: pgprot flags for the inserted page
2109  *
2110  * This is exactly like vmf_insert_pfn(), except that it allows drivers
2111  * to override pgprot on a per-page basis.
2112  *
2113  * This only makes sense for IO mappings, and it makes no sense for
2114  * COW mappings.  In general, using multiple vmas is preferable;
2115  * vmf_insert_pfn_prot should only be used if using multiple VMAs is
2116  * impractical.
2117  *
2118  * See vmf_insert_mixed_prot() for a discussion of the implication of using
2119  * a value of @pgprot different from that of @vma->vm_page_prot.
2120  *
2121  * Context: Process context.  May allocate using %GFP_KERNEL.
2122  * Return: vm_fault_t value.
2123  */
2124 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2125                         unsigned long pfn, pgprot_t pgprot)
2126 {
2127         /*
2128          * Technically, architectures with pte_special can avoid all these
2129          * restrictions (same for remap_pfn_range).  However we would like
2130          * consistency in testing and feature parity among all, so we should
2131          * try to keep these invariants in place for everybody.
2132          */
2133         BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2134         BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2135                                                 (VM_PFNMAP|VM_MIXEDMAP));
2136         BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2137         BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2138
2139         if (addr < vma->vm_start || addr >= vma->vm_end)
2140                 return VM_FAULT_SIGBUS;
2141
2142         if (!pfn_modify_allowed(pfn, pgprot))
2143                 return VM_FAULT_SIGBUS;
2144
2145         track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
2146
2147         return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
2148                         false);
2149 }
2150 EXPORT_SYMBOL(vmf_insert_pfn_prot);
2151
2152 /**
2153  * vmf_insert_pfn - insert single pfn into user vma
2154  * @vma: user vma to map to
2155  * @addr: target user address of this page
2156  * @pfn: source kernel pfn
2157  *
2158  * Similar to vm_insert_page, this allows drivers to insert individual pages
2159  * they've allocated into a user vma. Same comments apply.
2160  *
2161  * This function should only be called from a vm_ops->fault handler, and
2162  * in that case the handler should return the result of this function.
2163  *
2164  * vma cannot be a COW mapping.
2165  *
2166  * As this is called only for pages that do not currently exist, we
2167  * do not need to flush old virtual caches or the TLB.
2168  *
2169  * Context: Process context.  May allocate using %GFP_KERNEL.
2170  * Return: vm_fault_t value.
2171  */
2172 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2173                         unsigned long pfn)
2174 {
2175         return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
2176 }
2177 EXPORT_SYMBOL(vmf_insert_pfn);
2178
2179 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
2180 {
2181         /* these checks mirror the abort conditions in vm_normal_page */
2182         if (vma->vm_flags & VM_MIXEDMAP)
2183                 return true;
2184         if (pfn_t_devmap(pfn))
2185                 return true;
2186         if (pfn_t_special(pfn))
2187                 return true;
2188         if (is_zero_pfn(pfn_t_to_pfn(pfn)))
2189                 return true;
2190         return false;
2191 }
2192
2193 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
2194                 unsigned long addr, pfn_t pfn, pgprot_t pgprot,
2195                 bool mkwrite)
2196 {
2197         int err;
2198
2199         BUG_ON(!vm_mixed_ok(vma, pfn));
2200
2201         if (addr < vma->vm_start || addr >= vma->vm_end)
2202                 return VM_FAULT_SIGBUS;
2203
2204         track_pfn_insert(vma, &pgprot, pfn);
2205
2206         if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
2207                 return VM_FAULT_SIGBUS;
2208
2209         /*
2210          * If we don't have pte special, then we have to use the pfn_valid()
2211          * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2212          * refcount the page if pfn_valid is true (hence insert_page rather
2213          * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
2214          * without pte special, it would there be refcounted as a normal page.
2215          */
2216         if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
2217             !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
2218                 struct page *page;
2219
2220                 /*
2221                  * At this point we are committed to insert_page()
2222                  * regardless of whether the caller specified flags that
2223                  * result in pfn_t_has_page() == false.
2224                  */
2225                 page = pfn_to_page(pfn_t_to_pfn(pfn));
2226                 err = insert_page(vma, addr, page, pgprot);
2227         } else {
2228                 return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
2229         }
2230
2231         if (err == -ENOMEM)
2232                 return VM_FAULT_OOM;
2233         if (err < 0 && err != -EBUSY)
2234                 return VM_FAULT_SIGBUS;
2235
2236         return VM_FAULT_NOPAGE;
2237 }
2238
2239 /**
2240  * vmf_insert_mixed_prot - insert single pfn into user vma with specified pgprot
2241  * @vma: user vma to map to
2242  * @addr: target user address of this page
2243  * @pfn: source kernel pfn
2244  * @pgprot: pgprot flags for the inserted page
2245  *
2246  * This is exactly like vmf_insert_mixed(), except that it allows drivers
2247  * to override pgprot on a per-page basis.
2248  *
2249  * Typically this function should be used by drivers to set caching- and
2250  * encryption bits different than those of @vma->vm_page_prot, because
2251  * the caching- or encryption mode may not be known at mmap() time.
2252  * This is ok as long as @vma->vm_page_prot is not used by the core vm
2253  * to set caching and encryption bits for those vmas (except for COW pages).
2254  * This is ensured by core vm only modifying these page table entries using
2255  * functions that don't touch caching- or encryption bits, using pte_modify()
2256  * if needed. (See for example mprotect()).
2257  * Also when new page-table entries are created, this is only done using the
2258  * fault() callback, and never using the value of vma->vm_page_prot,
2259  * except for page-table entries that point to anonymous pages as the result
2260  * of COW.
2261  *
2262  * Context: Process context.  May allocate using %GFP_KERNEL.
2263  * Return: vm_fault_t value.
2264  */
2265 vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
2266                                  pfn_t pfn, pgprot_t pgprot)
2267 {
2268         return __vm_insert_mixed(vma, addr, pfn, pgprot, false);
2269 }
2270 EXPORT_SYMBOL(vmf_insert_mixed_prot);
2271
2272 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2273                 pfn_t pfn)
2274 {
2275         return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, false);
2276 }
2277 EXPORT_SYMBOL(vmf_insert_mixed);
2278
2279 /*
2280  *  If the insertion of PTE failed because someone else already added a
2281  *  different entry in the mean time, we treat that as success as we assume
2282  *  the same entry was actually inserted.
2283  */
2284 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2285                 unsigned long addr, pfn_t pfn)
2286 {
2287         return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, true);
2288 }
2289 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
2290
2291 /*
2292  * maps a range of physical memory into the requested pages. the old
2293  * mappings are removed. any references to nonexistent pages results
2294  * in null mappings (currently treated as "copy-on-access")
2295  */
2296 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2297                         unsigned long addr, unsigned long end,
2298                         unsigned long pfn, pgprot_t prot)
2299 {
2300         pte_t *pte, *mapped_pte;
2301         spinlock_t *ptl;
2302         int err = 0;
2303
2304         mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2305         if (!pte)
2306                 return -ENOMEM;
2307         arch_enter_lazy_mmu_mode();
2308         do {
2309                 BUG_ON(!pte_none(*pte));
2310                 if (!pfn_modify_allowed(pfn, prot)) {
2311                         err = -EACCES;
2312                         break;
2313                 }
2314                 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2315                 pfn++;
2316         } while (pte++, addr += PAGE_SIZE, addr != end);
2317         arch_leave_lazy_mmu_mode();
2318         pte_unmap_unlock(mapped_pte, ptl);
2319         return err;
2320 }
2321
2322 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2323                         unsigned long addr, unsigned long end,
2324                         unsigned long pfn, pgprot_t prot)
2325 {
2326         pmd_t *pmd;
2327         unsigned long next;
2328         int err;
2329
2330         pfn -= addr >> PAGE_SHIFT;
2331         pmd = pmd_alloc(mm, pud, addr);
2332         if (!pmd)
2333                 return -ENOMEM;
2334         VM_BUG_ON(pmd_trans_huge(*pmd));
2335         do {
2336                 next = pmd_addr_end(addr, end);
2337                 err = remap_pte_range(mm, pmd, addr, next,
2338                                 pfn + (addr >> PAGE_SHIFT), prot);
2339                 if (err)
2340                         return err;
2341         } while (pmd++, addr = next, addr != end);
2342         return 0;
2343 }
2344
2345 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
2346                         unsigned long addr, unsigned long end,
2347                         unsigned long pfn, pgprot_t prot)
2348 {
2349         pud_t *pud;
2350         unsigned long next;
2351         int err;
2352
2353         pfn -= addr >> PAGE_SHIFT;
2354         pud = pud_alloc(mm, p4d, addr);
2355         if (!pud)
2356                 return -ENOMEM;
2357         do {
2358                 next = pud_addr_end(addr, end);
2359                 err = remap_pmd_range(mm, pud, addr, next,
2360                                 pfn + (addr >> PAGE_SHIFT), prot);
2361                 if (err)
2362                         return err;
2363         } while (pud++, addr = next, addr != end);
2364         return 0;
2365 }
2366
2367 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2368                         unsigned long addr, unsigned long end,
2369                         unsigned long pfn, pgprot_t prot)
2370 {
2371         p4d_t *p4d;
2372         unsigned long next;
2373         int err;
2374
2375         pfn -= addr >> PAGE_SHIFT;
2376         p4d = p4d_alloc(mm, pgd, addr);
2377         if (!p4d)
2378                 return -ENOMEM;
2379         do {
2380                 next = p4d_addr_end(addr, end);
2381                 err = remap_pud_range(mm, p4d, addr, next,
2382                                 pfn + (addr >> PAGE_SHIFT), prot);
2383                 if (err)
2384                         return err;
2385         } while (p4d++, addr = next, addr != end);
2386         return 0;
2387 }
2388
2389 /*
2390  * Variant of remap_pfn_range that does not call track_pfn_remap.  The caller
2391  * must have pre-validated the caching bits of the pgprot_t.
2392  */
2393 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
2394                 unsigned long pfn, unsigned long size, pgprot_t prot)
2395 {
2396         pgd_t *pgd;
2397         unsigned long next;
2398         unsigned long end = addr + PAGE_ALIGN(size);
2399         struct mm_struct *mm = vma->vm_mm;
2400         int err;
2401
2402         if (WARN_ON_ONCE(!PAGE_ALIGNED(addr)))
2403                 return -EINVAL;
2404
2405         /*
2406          * Physically remapped pages are special. Tell the
2407          * rest of the world about it:
2408          *   VM_IO tells people not to look at these pages
2409          *      (accesses can have side effects).
2410          *   VM_PFNMAP tells the core MM that the base pages are just
2411          *      raw PFN mappings, and do not have a "struct page" associated
2412          *      with them.
2413          *   VM_DONTEXPAND
2414          *      Disable vma merging and expanding with mremap().
2415          *   VM_DONTDUMP
2416          *      Omit vma from core dump, even when VM_IO turned off.
2417          *
2418          * There's a horrible special case to handle copy-on-write
2419          * behaviour that some programs depend on. We mark the "original"
2420          * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2421          * See vm_normal_page() for details.
2422          */
2423         if (is_cow_mapping(vma->vm_flags)) {
2424                 if (addr != vma->vm_start || end != vma->vm_end)
2425                         return -EINVAL;
2426                 vma->vm_pgoff = pfn;
2427         }
2428
2429         vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
2430
2431         BUG_ON(addr >= end);
2432         pfn -= addr >> PAGE_SHIFT;
2433         pgd = pgd_offset(mm, addr);
2434         flush_cache_range(vma, addr, end);
2435         do {
2436                 next = pgd_addr_end(addr, end);
2437                 err = remap_p4d_range(mm, pgd, addr, next,
2438                                 pfn + (addr >> PAGE_SHIFT), prot);
2439                 if (err)
2440                         return err;
2441         } while (pgd++, addr = next, addr != end);
2442
2443         return 0;
2444 }
2445
2446 /**
2447  * remap_pfn_range - remap kernel memory to userspace
2448  * @vma: user vma to map to
2449  * @addr: target page aligned user address to start at
2450  * @pfn: page frame number of kernel physical memory address
2451  * @size: size of mapping area
2452  * @prot: page protection flags for this mapping
2453  *
2454  * Note: this is only safe if the mm semaphore is held when called.
2455  *
2456  * Return: %0 on success, negative error code otherwise.
2457  */
2458 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2459                     unsigned long pfn, unsigned long size, pgprot_t prot)
2460 {
2461         int err;
2462
2463         err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
2464         if (err)
2465                 return -EINVAL;
2466
2467         err = remap_pfn_range_notrack(vma, addr, pfn, size, prot);
2468         if (err)
2469                 untrack_pfn(vma, pfn, PAGE_ALIGN(size));
2470         return err;
2471 }
2472 EXPORT_SYMBOL(remap_pfn_range);
2473
2474 /**
2475  * vm_iomap_memory - remap memory to userspace
2476  * @vma: user vma to map to
2477  * @start: start of the physical memory to be mapped
2478  * @len: size of area
2479  *
2480  * This is a simplified io_remap_pfn_range() for common driver use. The
2481  * driver just needs to give us the physical memory range to be mapped,
2482  * we'll figure out the rest from the vma information.
2483  *
2484  * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2485  * whatever write-combining details or similar.
2486  *
2487  * Return: %0 on success, negative error code otherwise.
2488  */
2489 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2490 {
2491         unsigned long vm_len, pfn, pages;
2492
2493         /* Check that the physical memory area passed in looks valid */
2494         if (start + len < start)
2495                 return -EINVAL;
2496         /*
2497          * You *really* shouldn't map things that aren't page-aligned,
2498          * but we've historically allowed it because IO memory might
2499          * just have smaller alignment.
2500          */
2501         len += start & ~PAGE_MASK;
2502         pfn = start >> PAGE_SHIFT;
2503         pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2504         if (pfn + pages < pfn)
2505                 return -EINVAL;
2506
2507         /* We start the mapping 'vm_pgoff' pages into the area */
2508         if (vma->vm_pgoff > pages)
2509                 return -EINVAL;
2510         pfn += vma->vm_pgoff;
2511         pages -= vma->vm_pgoff;
2512
2513         /* Can we fit all of the mapping? */
2514         vm_len = vma->vm_end - vma->vm_start;
2515         if (vm_len >> PAGE_SHIFT > pages)
2516                 return -EINVAL;
2517
2518         /* Ok, let it rip */
2519         return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2520 }
2521 EXPORT_SYMBOL(vm_iomap_memory);
2522
2523 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2524                                      unsigned long addr, unsigned long end,
2525                                      pte_fn_t fn, void *data, bool create,
2526                                      pgtbl_mod_mask *mask)
2527 {
2528         pte_t *pte, *mapped_pte;
2529         int err = 0;
2530         spinlock_t *ptl;
2531
2532         if (create) {
2533                 mapped_pte = pte = (mm == &init_mm) ?
2534                         pte_alloc_kernel_track(pmd, addr, mask) :
2535                         pte_alloc_map_lock(mm, pmd, addr, &ptl);
2536                 if (!pte)
2537                         return -ENOMEM;
2538         } else {
2539                 mapped_pte = pte = (mm == &init_mm) ?
2540                         pte_offset_kernel(pmd, addr) :
2541                         pte_offset_map_lock(mm, pmd, addr, &ptl);
2542         }
2543
2544         BUG_ON(pmd_huge(*pmd));
2545
2546         arch_enter_lazy_mmu_mode();
2547
2548         if (fn) {
2549                 do {
2550                         if (create || !pte_none(*pte)) {
2551                                 err = fn(pte++, addr, data);
2552                                 if (err)
2553                                         break;
2554                         }
2555                 } while (addr += PAGE_SIZE, addr != end);
2556         }
2557         *mask |= PGTBL_PTE_MODIFIED;
2558
2559         arch_leave_lazy_mmu_mode();
2560
2561         if (mm != &init_mm)
2562                 pte_unmap_unlock(mapped_pte, ptl);
2563         return err;
2564 }
2565
2566 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2567                                      unsigned long addr, unsigned long end,
2568                                      pte_fn_t fn, void *data, bool create,
2569                                      pgtbl_mod_mask *mask)
2570 {
2571         pmd_t *pmd;
2572         unsigned long next;
2573         int err = 0;
2574
2575         BUG_ON(pud_huge(*pud));
2576
2577         if (create) {
2578                 pmd = pmd_alloc_track(mm, pud, addr, mask);
2579                 if (!pmd)
2580                         return -ENOMEM;
2581         } else {
2582                 pmd = pmd_offset(pud, addr);
2583         }
2584         do {
2585                 next = pmd_addr_end(addr, end);
2586                 if (pmd_none(*pmd) && !create)
2587                         continue;
2588                 if (WARN_ON_ONCE(pmd_leaf(*pmd)))
2589                         return -EINVAL;
2590                 if (!pmd_none(*pmd) && WARN_ON_ONCE(pmd_bad(*pmd))) {
2591                         if (!create)
2592                                 continue;
2593                         pmd_clear_bad(pmd);
2594                 }
2595                 err = apply_to_pte_range(mm, pmd, addr, next,
2596                                          fn, data, create, mask);
2597                 if (err)
2598                         break;
2599         } while (pmd++, addr = next, addr != end);
2600
2601         return err;
2602 }
2603
2604 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2605                                      unsigned long addr, unsigned long end,
2606                                      pte_fn_t fn, void *data, bool create,
2607                                      pgtbl_mod_mask *mask)
2608 {
2609         pud_t *pud;
2610         unsigned long next;
2611         int err = 0;
2612
2613         if (create) {
2614                 pud = pud_alloc_track(mm, p4d, addr, mask);
2615                 if (!pud)
2616                         return -ENOMEM;
2617         } else {
2618                 pud = pud_offset(p4d, addr);
2619         }
2620         do {
2621                 next = pud_addr_end(addr, end);
2622                 if (pud_none(*pud) && !create)
2623                         continue;
2624                 if (WARN_ON_ONCE(pud_leaf(*pud)))
2625                         return -EINVAL;
2626                 if (!pud_none(*pud) && WARN_ON_ONCE(pud_bad(*pud))) {
2627                         if (!create)
2628                                 continue;
2629                         pud_clear_bad(pud);
2630                 }
2631                 err = apply_to_pmd_range(mm, pud, addr, next,
2632                                          fn, data, create, mask);
2633                 if (err)
2634                         break;
2635         } while (pud++, addr = next, addr != end);
2636
2637         return err;
2638 }
2639
2640 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2641                                      unsigned long addr, unsigned long end,
2642                                      pte_fn_t fn, void *data, bool create,
2643                                      pgtbl_mod_mask *mask)
2644 {
2645         p4d_t *p4d;
2646         unsigned long next;
2647         int err = 0;
2648
2649         if (create) {
2650                 p4d = p4d_alloc_track(mm, pgd, addr, mask);
2651                 if (!p4d)
2652                         return -ENOMEM;
2653         } else {
2654                 p4d = p4d_offset(pgd, addr);
2655         }
2656         do {
2657                 next = p4d_addr_end(addr, end);
2658                 if (p4d_none(*p4d) && !create)
2659                         continue;
2660                 if (WARN_ON_ONCE(p4d_leaf(*p4d)))
2661                         return -EINVAL;
2662                 if (!p4d_none(*p4d) && WARN_ON_ONCE(p4d_bad(*p4d))) {
2663                         if (!create)
2664                                 continue;
2665                         p4d_clear_bad(p4d);
2666                 }
2667                 err = apply_to_pud_range(mm, p4d, addr, next,
2668                                          fn, data, create, mask);
2669                 if (err)
2670                         break;
2671         } while (p4d++, addr = next, addr != end);
2672
2673         return err;
2674 }
2675
2676 static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2677                                  unsigned long size, pte_fn_t fn,
2678                                  void *data, bool create)
2679 {
2680         pgd_t *pgd;
2681         unsigned long start = addr, next;
2682         unsigned long end = addr + size;
2683         pgtbl_mod_mask mask = 0;
2684         int err = 0;
2685
2686         if (WARN_ON(addr >= end))
2687                 return -EINVAL;
2688
2689         pgd = pgd_offset(mm, addr);
2690         do {
2691                 next = pgd_addr_end(addr, end);
2692                 if (pgd_none(*pgd) && !create)
2693                         continue;
2694                 if (WARN_ON_ONCE(pgd_leaf(*pgd)))
2695                         return -EINVAL;
2696                 if (!pgd_none(*pgd) && WARN_ON_ONCE(pgd_bad(*pgd))) {
2697                         if (!create)
2698                                 continue;
2699                         pgd_clear_bad(pgd);
2700                 }
2701                 err = apply_to_p4d_range(mm, pgd, addr, next,
2702                                          fn, data, create, &mask);
2703                 if (err)
2704                         break;
2705         } while (pgd++, addr = next, addr != end);
2706
2707         if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
2708                 arch_sync_kernel_mappings(start, start + size);
2709
2710         return err;
2711 }
2712
2713 /*
2714  * Scan a region of virtual memory, filling in page tables as necessary
2715  * and calling a provided function on each leaf page table.
2716  */
2717 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2718                         unsigned long size, pte_fn_t fn, void *data)
2719 {
2720         return __apply_to_page_range(mm, addr, size, fn, data, true);
2721 }
2722 EXPORT_SYMBOL_GPL(apply_to_page_range);
2723
2724 /*
2725  * Scan a region of virtual memory, calling a provided function on
2726  * each leaf page table where it exists.
2727  *
2728  * Unlike apply_to_page_range, this does _not_ fill in page tables
2729  * where they are absent.
2730  */
2731 int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr,
2732                                  unsigned long size, pte_fn_t fn, void *data)
2733 {
2734         return __apply_to_page_range(mm, addr, size, fn, data, false);
2735 }
2736 EXPORT_SYMBOL_GPL(apply_to_existing_page_range);
2737
2738 /*
2739  * handle_pte_fault chooses page fault handler according to an entry which was
2740  * read non-atomically.  Before making any commitment, on those architectures
2741  * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2742  * parts, do_swap_page must check under lock before unmapping the pte and
2743  * proceeding (but do_wp_page is only called after already making such a check;
2744  * and do_anonymous_page can safely check later on).
2745  */
2746 static inline int pte_unmap_same(struct vm_fault *vmf)
2747 {
2748         int same = 1;
2749 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION)
2750         if (sizeof(pte_t) > sizeof(unsigned long)) {
2751                 spinlock_t *ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
2752                 spin_lock(ptl);
2753                 same = pte_same(*vmf->pte, vmf->orig_pte);
2754                 spin_unlock(ptl);
2755         }
2756 #endif
2757         pte_unmap(vmf->pte);
2758         vmf->pte = NULL;
2759         return same;
2760 }
2761
2762 static inline bool cow_user_page(struct page *dst, struct page *src,
2763                                  struct vm_fault *vmf)
2764 {
2765         bool ret;
2766         void *kaddr;
2767         void __user *uaddr;
2768         bool locked = false;
2769         struct vm_area_struct *vma = vmf->vma;
2770         struct mm_struct *mm = vma->vm_mm;
2771         unsigned long addr = vmf->address;
2772
2773         if (likely(src)) {
2774                 copy_user_highpage(dst, src, addr, vma);
2775                 return true;
2776         }
2777
2778         /*
2779          * If the source page was a PFN mapping, we don't have
2780          * a "struct page" for it. We do a best-effort copy by
2781          * just copying from the original user address. If that
2782          * fails, we just zero-fill it. Live with it.
2783          */
2784         kaddr = kmap_atomic(dst);
2785         uaddr = (void __user *)(addr & PAGE_MASK);
2786
2787         /*
2788          * On architectures with software "accessed" bits, we would
2789          * take a double page fault, so mark it accessed here.
2790          */
2791         if (arch_faults_on_old_pte() && !pte_young(vmf->orig_pte)) {
2792                 pte_t entry;
2793
2794                 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2795                 locked = true;
2796                 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2797                         /*
2798                          * Other thread has already handled the fault
2799                          * and update local tlb only
2800                          */
2801                         update_mmu_tlb(vma, addr, vmf->pte);
2802                         ret = false;
2803                         goto pte_unlock;
2804                 }
2805
2806                 entry = pte_mkyoung(vmf->orig_pte);
2807                 if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
2808                         update_mmu_cache(vma, addr, vmf->pte);
2809         }
2810
2811         /*
2812          * This really shouldn't fail, because the page is there
2813          * in the page tables. But it might just be unreadable,
2814          * in which case we just give up and fill the result with
2815          * zeroes.
2816          */
2817         if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2818                 if (locked)
2819                         goto warn;
2820
2821                 /* Re-validate under PTL if the page is still mapped */
2822                 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2823                 locked = true;
2824                 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2825                         /* The PTE changed under us, update local tlb */
2826                         update_mmu_tlb(vma, addr, vmf->pte);
2827                         ret = false;
2828                         goto pte_unlock;
2829                 }
2830
2831                 /*
2832                  * The same page can be mapped back since last copy attempt.
2833                  * Try to copy again under PTL.
2834                  */
2835                 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2836                         /*
2837                          * Give a warn in case there can be some obscure
2838                          * use-case
2839                          */
2840 warn:
2841                         WARN_ON_ONCE(1);
2842                         clear_page(kaddr);
2843                 }
2844         }
2845
2846         ret = true;
2847
2848 pte_unlock:
2849         if (locked)
2850                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2851         kunmap_atomic(kaddr);
2852         flush_dcache_page(dst);
2853
2854         return ret;
2855 }
2856
2857 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2858 {
2859         struct file *vm_file = vma->vm_file;
2860
2861         if (vm_file)
2862                 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2863
2864         /*
2865          * Special mappings (e.g. VDSO) do not have any file so fake
2866          * a default GFP_KERNEL for them.
2867          */
2868         return GFP_KERNEL;
2869 }
2870
2871 /*
2872  * Notify the address space that the page is about to become writable so that
2873  * it can prohibit this or wait for the page to get into an appropriate state.
2874  *
2875  * We do this without the lock held, so that it can sleep if it needs to.
2876  */
2877 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf)
2878 {
2879         vm_fault_t ret;
2880         struct page *page = vmf->page;
2881         unsigned int old_flags = vmf->flags;
2882
2883         vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2884
2885         if (vmf->vma->vm_file &&
2886             IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
2887                 return VM_FAULT_SIGBUS;
2888
2889         ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2890         /* Restore original flags so that caller is not surprised */
2891         vmf->flags = old_flags;
2892         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2893                 return ret;
2894         if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2895                 lock_page(page);
2896                 if (!page->mapping) {
2897                         unlock_page(page);
2898                         return 0; /* retry */
2899                 }
2900                 ret |= VM_FAULT_LOCKED;
2901         } else
2902                 VM_BUG_ON_PAGE(!PageLocked(page), page);
2903         return ret;
2904 }
2905
2906 /*
2907  * Handle dirtying of a page in shared file mapping on a write fault.
2908  *
2909  * The function expects the page to be locked and unlocks it.
2910  */
2911 static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
2912 {
2913         struct vm_area_struct *vma = vmf->vma;
2914         struct address_space *mapping;
2915         struct page *page = vmf->page;
2916         bool dirtied;
2917         bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2918
2919         dirtied = set_page_dirty(page);
2920         VM_BUG_ON_PAGE(PageAnon(page), page);
2921         /*
2922          * Take a local copy of the address_space - page.mapping may be zeroed
2923          * by truncate after unlock_page().   The address_space itself remains
2924          * pinned by vma->vm_file's reference.  We rely on unlock_page()'s
2925          * release semantics to prevent the compiler from undoing this copying.
2926          */
2927         mapping = page_rmapping(page);
2928         unlock_page(page);
2929
2930         if (!page_mkwrite)
2931                 file_update_time(vma->vm_file);
2932
2933         /*
2934          * Throttle page dirtying rate down to writeback speed.
2935          *
2936          * mapping may be NULL here because some device drivers do not
2937          * set page.mapping but still dirty their pages
2938          *
2939          * Drop the mmap_lock before waiting on IO, if we can. The file
2940          * is pinning the mapping, as per above.
2941          */
2942         if ((dirtied || page_mkwrite) && mapping) {
2943                 struct file *fpin;
2944
2945                 fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2946                 balance_dirty_pages_ratelimited(mapping);
2947                 if (fpin) {
2948                         fput(fpin);
2949                         return VM_FAULT_RETRY;
2950                 }
2951         }
2952
2953         return 0;
2954 }
2955
2956 /*
2957  * Handle write page faults for pages that can be reused in the current vma
2958  *
2959  * This can happen either due to the mapping being with the VM_SHARED flag,
2960  * or due to us being the last reference standing to the page. In either
2961  * case, all we need to do here is to mark the page as writable and update
2962  * any related book-keeping.
2963  */
2964 static inline void wp_page_reuse(struct vm_fault *vmf)
2965         __releases(vmf->ptl)
2966 {
2967         struct vm_area_struct *vma = vmf->vma;
2968         struct page *page = vmf->page;
2969         pte_t entry;
2970         /*
2971          * Clear the pages cpupid information as the existing
2972          * information potentially belongs to a now completely
2973          * unrelated process.
2974          */
2975         if (page)
2976                 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2977
2978         flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2979         entry = pte_mkyoung(vmf->orig_pte);
2980         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2981         if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
2982                 update_mmu_cache(vma, vmf->address, vmf->pte);
2983         pte_unmap_unlock(vmf->pte, vmf->ptl);
2984         count_vm_event(PGREUSE);
2985 }
2986
2987 /*
2988  * Handle the case of a page which we actually need to copy to a new page.
2989  *
2990  * Called with mmap_lock locked and the old page referenced, but
2991  * without the ptl held.
2992  *
2993  * High level logic flow:
2994  *
2995  * - Allocate a page, copy the content of the old page to the new one.
2996  * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2997  * - Take the PTL. If the pte changed, bail out and release the allocated page
2998  * - If the pte is still the way we remember it, update the page table and all
2999  *   relevant references. This includes dropping the reference the page-table
3000  *   held to the old page, as well as updating the rmap.
3001  * - In any case, unlock the PTL and drop the reference we took to the old page.
3002  */
3003 static vm_fault_t wp_page_copy(struct vm_fault *vmf)
3004 {
3005         struct vm_area_struct *vma = vmf->vma;
3006         struct mm_struct *mm = vma->vm_mm;
3007         struct page *old_page = vmf->page;
3008         struct page *new_page = NULL;
3009         pte_t entry;
3010         int page_copied = 0;
3011         struct mmu_notifier_range range;
3012
3013         if (unlikely(anon_vma_prepare(vma)))
3014                 goto oom;
3015
3016         if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
3017                 new_page = alloc_zeroed_user_highpage_movable(vma,
3018                                                               vmf->address);
3019                 if (!new_page)
3020                         goto oom;
3021         } else {
3022                 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
3023                                 vmf->address);
3024                 if (!new_page)
3025                         goto oom;
3026
3027                 if (!cow_user_page(new_page, old_page, vmf)) {
3028                         /*
3029                          * COW failed, if the fault was solved by other,
3030                          * it's fine. If not, userspace would re-fault on
3031                          * the same address and we will handle the fault
3032                          * from the second attempt.
3033                          */
3034                         put_page(new_page);
3035                         if (old_page)
3036                                 put_page(old_page);
3037                         return 0;
3038                 }
3039         }
3040
3041         if (mem_cgroup_charge(page_folio(new_page), mm, GFP_KERNEL))
3042                 goto oom_free_new;
3043         cgroup_throttle_swaprate(new_page, GFP_KERNEL);
3044
3045         __SetPageUptodate(new_page);
3046
3047         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
3048                                 vmf->address & PAGE_MASK,
3049                                 (vmf->address & PAGE_MASK) + PAGE_SIZE);
3050         mmu_notifier_invalidate_range_start(&range);
3051
3052         /*
3053          * Re-check the pte - we dropped the lock
3054          */
3055         vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
3056         if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
3057                 if (old_page) {
3058                         if (!PageAnon(old_page)) {
3059                                 dec_mm_counter_fast(mm,
3060                                                 mm_counter_file(old_page));
3061                                 inc_mm_counter_fast(mm, MM_ANONPAGES);
3062                         }
3063                 } else {
3064                         inc_mm_counter_fast(mm, MM_ANONPAGES);
3065                 }
3066                 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
3067                 entry = mk_pte(new_page, vma->vm_page_prot);
3068                 entry = pte_sw_mkyoung(entry);
3069                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3070
3071                 /*
3072                  * Clear the pte entry and flush it first, before updating the
3073                  * pte with the new entry, to keep TLBs on different CPUs in
3074                  * sync. This code used to set the new PTE then flush TLBs, but
3075                  * that left a window where the new PTE could be loaded into
3076                  * some TLBs while the old PTE remains in others.
3077                  */
3078                 ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
3079                 page_add_new_anon_rmap(new_page, vma, vmf->address, false);
3080                 lru_cache_add_inactive_or_unevictable(new_page, vma);
3081                 /*
3082                  * We call the notify macro here because, when using secondary
3083                  * mmu page tables (such as kvm shadow page tables), we want the
3084                  * new page to be mapped directly into the secondary page table.
3085                  */
3086                 set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
3087                 update_mmu_cache(vma, vmf->address, vmf->pte);
3088                 if (old_page) {
3089                         /*
3090                          * Only after switching the pte to the new page may
3091                          * we remove the mapcount here. Otherwise another
3092                          * process may come and find the rmap count decremented
3093                          * before the pte is switched to the new page, and
3094                          * "reuse" the old page writing into it while our pte
3095                          * here still points into it and can be read by other
3096                          * threads.
3097                          *
3098                          * The critical issue is to order this
3099                          * page_remove_rmap with the ptp_clear_flush above.
3100                          * Those stores are ordered by (if nothing else,)
3101                          * the barrier present in the atomic_add_negative
3102                          * in page_remove_rmap.
3103                          *
3104                          * Then the TLB flush in ptep_clear_flush ensures that
3105                          * no process can access the old page before the
3106                          * decremented mapcount is visible. And the old page
3107                          * cannot be reused until after the decremented
3108                          * mapcount is visible. So transitively, TLBs to
3109                          * old page will be flushed before it can be reused.
3110                          */
3111                         page_remove_rmap(old_page, false);
3112                 }
3113
3114                 /* Free the old page.. */
3115                 new_page = old_page;
3116                 page_copied = 1;
3117         } else {
3118                 update_mmu_tlb(vma, vmf->address, vmf->pte);
3119         }
3120
3121         if (new_page)
3122                 put_page(new_page);
3123
3124         pte_unmap_unlock(vmf->pte, vmf->ptl);
3125         /*
3126          * No need to double call mmu_notifier->invalidate_range() callback as
3127          * the above ptep_clear_flush_notify() did already call it.
3128          */
3129         mmu_notifier_invalidate_range_only_end(&range);
3130         if (old_page) {
3131                 /*
3132                  * Don't let another task, with possibly unlocked vma,
3133                  * keep the mlocked page.
3134                  */
3135                 if (page_copied && (vma->vm_flags & VM_LOCKED)) {
3136                         lock_page(old_page);    /* LRU manipulation */
3137                         if (PageMlocked(old_page))
3138                                 munlock_vma_page(old_page);
3139                         unlock_page(old_page);
3140                 }
3141                 if (page_copied)
3142                         free_swap_cache(old_page);
3143                 put_page(old_page);
3144         }
3145         return page_copied ? VM_FAULT_WRITE : 0;
3146 oom_free_new:
3147         put_page(new_page);
3148 oom:
3149         if (old_page)
3150                 put_page(old_page);
3151         return VM_FAULT_OOM;
3152 }
3153
3154 /**
3155  * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
3156  *                        writeable once the page is prepared
3157  *
3158  * @vmf: structure describing the fault
3159  *
3160  * This function handles all that is needed to finish a write page fault in a
3161  * shared mapping due to PTE being read-only once the mapped page is prepared.
3162  * It handles locking of PTE and modifying it.
3163  *
3164  * The function expects the page to be locked or other protection against
3165  * concurrent faults / writeback (such as DAX radix tree locks).
3166  *
3167  * Return: %0 on success, %VM_FAULT_NOPAGE when PTE got changed before
3168  * we acquired PTE lock.
3169  */
3170 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
3171 {
3172         WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
3173         vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
3174                                        &vmf->ptl);
3175         /*
3176          * We might have raced with another page fault while we released the
3177          * pte_offset_map_lock.
3178          */
3179         if (!pte_same(*vmf->pte, vmf->orig_pte)) {
3180                 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
3181                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3182                 return VM_FAULT_NOPAGE;
3183         }
3184         wp_page_reuse(vmf);
3185         return 0;
3186 }
3187
3188 /*
3189  * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
3190  * mapping
3191  */
3192 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
3193 {
3194         struct vm_area_struct *vma = vmf->vma;
3195
3196         if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
3197                 vm_fault_t ret;
3198
3199                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3200                 vmf->flags |= FAULT_FLAG_MKWRITE;
3201                 ret = vma->vm_ops->pfn_mkwrite(vmf);
3202                 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
3203                         return ret;
3204                 return finish_mkwrite_fault(vmf);
3205         }
3206         wp_page_reuse(vmf);
3207         return VM_FAULT_WRITE;
3208 }
3209
3210 static vm_fault_t wp_page_shared(struct vm_fault *vmf)
3211         __releases(vmf->ptl)
3212 {
3213         struct vm_area_struct *vma = vmf->vma;
3214         vm_fault_t ret = VM_FAULT_WRITE;
3215
3216         get_page(vmf->page);
3217
3218         if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
3219                 vm_fault_t tmp;
3220
3221                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3222                 tmp = do_page_mkwrite(vmf);
3223                 if (unlikely(!tmp || (tmp &
3224                                       (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3225                         put_page(vmf->page);
3226                         return tmp;
3227                 }
3228                 tmp = finish_mkwrite_fault(vmf);
3229                 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3230                         unlock_page(vmf->page);
3231                         put_page(vmf->page);
3232                         return tmp;
3233                 }
3234         } else {
3235                 wp_page_reuse(vmf);
3236                 lock_page(vmf->page);
3237         }
3238         ret |= fault_dirty_shared_page(vmf);
3239         put_page(vmf->page);
3240
3241         return ret;
3242 }
3243
3244 /*
3245  * This routine handles present pages, when users try to write
3246  * to a shared page. It is done by copying the page to a new address
3247  * and decrementing the shared-page counter for the old page.
3248  *
3249  * Note that this routine assumes that the protection checks have been
3250  * done by the caller (the low-level page fault routine in most cases).
3251  * Thus we can safely just mark it writable once we've done any necessary
3252  * COW.
3253  *
3254  * We also mark the page dirty at this point even though the page will
3255  * change only once the write actually happens. This avoids a few races,
3256  * and potentially makes it more efficient.
3257  *
3258  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3259  * but allow concurrent faults), with pte both mapped and locked.
3260  * We return with mmap_lock still held, but pte unmapped and unlocked.
3261  */
3262 static vm_fault_t do_wp_page(struct vm_fault *vmf)
3263         __releases(vmf->ptl)
3264 {
3265         struct vm_area_struct *vma = vmf->vma;
3266
3267         if (userfaultfd_pte_wp(vma, *vmf->pte)) {
3268                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3269                 return handle_userfault(vmf, VM_UFFD_WP);
3270         }
3271
3272         /*
3273          * Userfaultfd write-protect can defer flushes. Ensure the TLB
3274          * is flushed in this case before copying.
3275          */
3276         if (unlikely(userfaultfd_wp(vmf->vma) &&
3277                      mm_tlb_flush_pending(vmf->vma->vm_mm)))
3278                 flush_tlb_page(vmf->vma, vmf->address);
3279
3280         vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
3281         if (!vmf->page) {
3282                 /*
3283                  * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
3284                  * VM_PFNMAP VMA.
3285                  *
3286                  * We should not cow pages in a shared writeable mapping.
3287                  * Just mark the pages writable and/or call ops->pfn_mkwrite.
3288                  */
3289                 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
3290                                      (VM_WRITE|VM_SHARED))
3291                         return wp_pfn_shared(vmf);
3292
3293                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3294                 return wp_page_copy(vmf);
3295         }
3296
3297         /*
3298          * Take out anonymous pages first, anonymous shared vmas are
3299          * not dirty accountable.
3300          */
3301         if (PageAnon(vmf->page)) {
3302                 struct page *page = vmf->page;
3303
3304                 /* PageKsm() doesn't necessarily raise the page refcount */
3305                 if (PageKsm(page) || page_count(page) != 1)
3306                         goto copy;
3307                 if (!trylock_page(page))
3308                         goto copy;
3309                 if (PageKsm(page) || page_mapcount(page) != 1 || page_count(page) != 1) {
3310                         unlock_page(page);
3311                         goto copy;
3312                 }
3313                 /*
3314                  * Ok, we've got the only map reference, and the only
3315                  * page count reference, and the page is locked,
3316                  * it's dark out, and we're wearing sunglasses. Hit it.
3317                  */
3318                 unlock_page(page);
3319                 wp_page_reuse(vmf);
3320                 return VM_FAULT_WRITE;
3321         } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
3322                                         (VM_WRITE|VM_SHARED))) {
3323                 return wp_page_shared(vmf);
3324         }
3325 copy:
3326         /*
3327          * Ok, we need to copy. Oh, well..
3328          */
3329         get_page(vmf->page);
3330
3331         pte_unmap_unlock(vmf->pte, vmf->ptl);
3332         return wp_page_copy(vmf);
3333 }
3334
3335 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
3336                 unsigned long start_addr, unsigned long end_addr,
3337                 struct zap_details *details)
3338 {
3339         zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
3340 }
3341
3342 static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
3343                                             pgoff_t first_index,
3344                                             pgoff_t last_index,
3345                                             struct zap_details *details)
3346 {
3347         struct vm_area_struct *vma;
3348         pgoff_t vba, vea, zba, zea;
3349
3350         vma_interval_tree_foreach(vma, root, first_index, last_index) {
3351                 vba = vma->vm_pgoff;
3352                 vea = vba + vma_pages(vma) - 1;
3353                 zba = max(first_index, vba);
3354                 zea = min(last_index, vea);
3355
3356                 unmap_mapping_range_vma(vma,
3357                         ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
3358                         ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
3359                                 details);
3360         }
3361 }
3362
3363 /**
3364  * unmap_mapping_folio() - Unmap single folio from processes.
3365  * @folio: The locked folio to be unmapped.
3366  *
3367  * Unmap this folio from any userspace process which still has it mmaped.
3368  * Typically, for efficiency, the range of nearby pages has already been
3369  * unmapped by unmap_mapping_pages() or unmap_mapping_range().  But once
3370  * truncation or invalidation holds the lock on a folio, it may find that
3371  * the page has been remapped again: and then uses unmap_mapping_folio()
3372  * to unmap it finally.
3373  */
3374 void unmap_mapping_folio(struct folio *folio)
3375 {
3376         struct address_space *mapping = folio->mapping;
3377         struct zap_details details = { };
3378         pgoff_t first_index;
3379         pgoff_t last_index;
3380
3381         VM_BUG_ON(!folio_test_locked(folio));
3382
3383         first_index = folio->index;
3384         last_index = folio->index + folio_nr_pages(folio) - 1;
3385
3386         details.even_cows = false;
3387         details.single_folio = folio;
3388
3389         i_mmap_lock_write(mapping);
3390         if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3391                 unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3392                                          last_index, &details);
3393         i_mmap_unlock_write(mapping);
3394 }
3395
3396 /**
3397  * unmap_mapping_pages() - Unmap pages from processes.
3398  * @mapping: The address space containing pages to be unmapped.
3399  * @start: Index of first page to be unmapped.
3400  * @nr: Number of pages to be unmapped.  0 to unmap to end of file.
3401  * @even_cows: Whether to unmap even private COWed pages.
3402  *
3403  * Unmap the pages in this address space from any userspace process which
3404  * has them mmaped.  Generally, you want to remove COWed pages as well when
3405  * a file is being truncated, but not when invalidating pages from the page
3406  * cache.
3407  */
3408 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
3409                 pgoff_t nr, bool even_cows)
3410 {
3411         struct zap_details details = { };
3412         pgoff_t first_index = start;
3413         pgoff_t last_index = start + nr - 1;
3414
3415         details.even_cows = even_cows;
3416         if (last_index < first_index)
3417                 last_index = ULONG_MAX;
3418
3419         i_mmap_lock_write(mapping);
3420         if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3421                 unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3422                                          last_index, &details);
3423         i_mmap_unlock_write(mapping);
3424 }
3425 EXPORT_SYMBOL_GPL(unmap_mapping_pages);
3426
3427 /**
3428  * unmap_mapping_range - unmap the portion of all mmaps in the specified
3429  * address_space corresponding to the specified byte range in the underlying
3430  * file.
3431  *
3432  * @mapping: the address space containing mmaps to be unmapped.
3433  * @holebegin: byte in first page to unmap, relative to the start of
3434  * the underlying file.  This will be rounded down to a PAGE_SIZE
3435  * boundary.  Note that this is different from truncate_pagecache(), which
3436  * must keep the partial page.  In contrast, we must get rid of
3437  * partial pages.
3438  * @holelen: size of prospective hole in bytes.  This will be rounded
3439  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
3440  * end of the file.
3441  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
3442  * but 0 when invalidating pagecache, don't throw away private data.
3443  */
3444 void unmap_mapping_range(struct address_space *mapping,
3445                 loff_t const holebegin, loff_t const holelen, int even_cows)
3446 {
3447         pgoff_t hba = holebegin >> PAGE_SHIFT;
3448         pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3449
3450         /* Check for overflow. */
3451         if (sizeof(holelen) > sizeof(hlen)) {
3452                 long long holeend =
3453                         (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3454                 if (holeend & ~(long long)ULONG_MAX)
3455                         hlen = ULONG_MAX - hba + 1;
3456         }
3457
3458         unmap_mapping_pages(mapping, hba, hlen, even_cows);
3459 }
3460 EXPORT_SYMBOL(unmap_mapping_range);
3461
3462 /*
3463  * Restore a potential device exclusive pte to a working pte entry
3464  */
3465 static vm_fault_t remove_device_exclusive_entry(struct vm_fault *vmf)
3466 {
3467         struct page *page = vmf->page;
3468         struct vm_area_struct *vma = vmf->vma;
3469         struct mmu_notifier_range range;
3470
3471         if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags))
3472                 return VM_FAULT_RETRY;
3473         mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0, vma,
3474                                 vma->vm_mm, vmf->address & PAGE_MASK,
3475                                 (vmf->address & PAGE_MASK) + PAGE_SIZE, NULL);
3476         mmu_notifier_invalidate_range_start(&range);
3477
3478         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3479                                 &vmf->ptl);
3480         if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
3481                 restore_exclusive_pte(vma, page, vmf->address, vmf->pte);
3482
3483         pte_unmap_unlock(vmf->pte, vmf->ptl);
3484         unlock_page(page);
3485
3486         mmu_notifier_invalidate_range_end(&range);
3487         return 0;
3488 }
3489
3490 /*
3491  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3492  * but allow concurrent faults), and pte mapped but not yet locked.
3493  * We return with pte unmapped and unlocked.
3494  *
3495  * We return with the mmap_lock locked or unlocked in the same cases
3496  * as does filemap_fault().
3497  */
3498 vm_fault_t do_swap_page(struct vm_fault *vmf)
3499 {
3500         struct vm_area_struct *vma = vmf->vma;
3501         struct page *page = NULL, *swapcache;
3502         struct swap_info_struct *si = NULL;
3503         swp_entry_t entry;
3504         pte_t pte;
3505         int locked;
3506         int exclusive = 0;
3507         vm_fault_t ret = 0;
3508         void *shadow = NULL;
3509
3510         if (!pte_unmap_same(vmf))
3511                 goto out;
3512
3513         entry = pte_to_swp_entry(vmf->orig_pte);
3514         if (unlikely(non_swap_entry(entry))) {
3515                 if (is_migration_entry(entry)) {
3516                         migration_entry_wait(vma->vm_mm, vmf->pmd,
3517                                              vmf->address);
3518                 } else if (is_device_exclusive_entry(entry)) {
3519                         vmf->page = pfn_swap_entry_to_page(entry);
3520                         ret = remove_device_exclusive_entry(vmf);
3521                 } else if (is_device_private_entry(entry)) {
3522                         vmf->page = pfn_swap_entry_to_page(entry);
3523                         ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
3524                 } else if (is_hwpoison_entry(entry)) {
3525                         ret = VM_FAULT_HWPOISON;
3526                 } else {
3527                         print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
3528                         ret = VM_FAULT_SIGBUS;
3529                 }
3530                 goto out;
3531         }
3532
3533         /* Prevent swapoff from happening to us. */
3534         si = get_swap_device(entry);
3535         if (unlikely(!si))
3536                 goto out;
3537
3538         page = lookup_swap_cache(entry, vma, vmf->address);
3539         swapcache = page;
3540
3541         if (!page) {
3542                 if (data_race(si->flags & SWP_SYNCHRONOUS_IO) &&
3543                     __swap_count(entry) == 1) {
3544                         /* skip swapcache */
3545                         page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
3546                                                         vmf->address);
3547                         if (page) {
3548                                 __SetPageLocked(page);
3549                                 __SetPageSwapBacked(page);
3550
3551                                 if (mem_cgroup_swapin_charge_page(page,
3552                                         vma->vm_mm, GFP_KERNEL, entry)) {
3553                                         ret = VM_FAULT_OOM;
3554                                         goto out_page;
3555                                 }
3556                                 mem_cgroup_swapin_uncharge_swap(entry);
3557
3558                                 shadow = get_shadow_from_swap_cache(entry);
3559                                 if (shadow)
3560                                         workingset_refault(page_folio(page),
3561                                                                 shadow);
3562
3563                                 lru_cache_add(page);
3564
3565                                 /* To provide entry to swap_readpage() */
3566                                 set_page_private(page, entry.val);
3567                                 swap_readpage(page, true);
3568                                 set_page_private(page, 0);
3569                         }
3570                 } else {
3571                         page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
3572                                                 vmf);
3573                         swapcache = page;
3574                 }
3575
3576                 if (!page) {
3577                         /*
3578                          * Back out if somebody else faulted in this pte
3579                          * while we released the pte lock.
3580                          */
3581                         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3582                                         vmf->address, &vmf->ptl);
3583                         if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
3584                                 ret = VM_FAULT_OOM;
3585                         goto unlock;
3586                 }
3587
3588                 /* Had to read the page from swap area: Major fault */
3589                 ret = VM_FAULT_MAJOR;
3590                 count_vm_event(PGMAJFAULT);
3591                 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
3592         } else if (PageHWPoison(page)) {
3593                 /*
3594                  * hwpoisoned dirty swapcache pages are kept for killing
3595                  * owner processes (which may be unknown at hwpoison time)
3596                  */
3597                 ret = VM_FAULT_HWPOISON;
3598                 goto out_release;
3599         }
3600
3601         locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
3602
3603         if (!locked) {
3604                 ret |= VM_FAULT_RETRY;
3605                 goto out_release;
3606         }
3607
3608         /*
3609          * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
3610          * release the swapcache from under us.  The page pin, and pte_same
3611          * test below, are not enough to exclude that.  Even if it is still
3612          * swapcache, we need to check that the page's swap has not changed.
3613          */
3614         if (unlikely((!PageSwapCache(page) ||
3615                         page_private(page) != entry.val)) && swapcache)
3616                 goto out_page;
3617
3618         page = ksm_might_need_to_copy(page, vma, vmf->address);
3619         if (unlikely(!page)) {
3620                 ret = VM_FAULT_OOM;
3621                 page = swapcache;
3622                 goto out_page;
3623         }
3624
3625         cgroup_throttle_swaprate(page, GFP_KERNEL);
3626
3627         /*
3628          * Back out if somebody else already faulted in this pte.
3629          */
3630         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3631                         &vmf->ptl);
3632         if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
3633                 goto out_nomap;
3634
3635         if (unlikely(!PageUptodate(page))) {
3636                 ret = VM_FAULT_SIGBUS;
3637                 goto out_nomap;
3638         }
3639
3640         /*
3641          * The page isn't present yet, go ahead with the fault.
3642          *
3643          * Be careful about the sequence of operations here.
3644          * To get its accounting right, reuse_swap_page() must be called
3645          * while the page is counted on swap but not yet in mapcount i.e.
3646          * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3647          * must be called after the swap_free(), or it will never succeed.
3648          */
3649
3650         inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3651         dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
3652         pte = mk_pte(page, vma->vm_page_prot);
3653         if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
3654                 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3655                 vmf->flags &= ~FAULT_FLAG_WRITE;
3656                 ret |= VM_FAULT_WRITE;
3657                 exclusive = RMAP_EXCLUSIVE;
3658         }
3659         flush_icache_page(vma, page);
3660         if (pte_swp_soft_dirty(vmf->orig_pte))
3661                 pte = pte_mksoft_dirty(pte);
3662         if (pte_swp_uffd_wp(vmf->orig_pte)) {
3663                 pte = pte_mkuffd_wp(pte);
3664                 pte = pte_wrprotect(pte);
3665         }
3666         vmf->orig_pte = pte;
3667
3668         /* ksm created a completely new copy */
3669         if (unlikely(page != swapcache && swapcache)) {
3670                 page_add_new_anon_rmap(page, vma, vmf->address, false);
3671                 lru_cache_add_inactive_or_unevictable(page, vma);
3672         } else {
3673                 do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
3674         }
3675
3676         set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
3677         arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
3678
3679         swap_free(entry);
3680         if (mem_cgroup_swap_full(page) ||
3681             (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
3682                 try_to_free_swap(page);
3683         unlock_page(page);
3684         if (page != swapcache && swapcache) {
3685                 /*
3686                  * Hold the lock to avoid the swap entry to be reused
3687                  * until we take the PT lock for the pte_same() check
3688                  * (to avoid false positives from pte_same). For
3689                  * further safety release the lock after the swap_free
3690                  * so that the swap count won't change under a
3691                  * parallel locked swapcache.
3692                  */
3693                 unlock_page(swapcache);
3694                 put_page(swapcache);
3695         }
3696
3697         if (vmf->flags & FAULT_FLAG_WRITE) {
3698                 ret |= do_wp_page(vmf);
3699                 if (ret & VM_FAULT_ERROR)
3700                         ret &= VM_FAULT_ERROR;
3701                 goto out;
3702         }
3703
3704         /* No need to invalidate - it was non-present before */
3705         update_mmu_cache(vma, vmf->address, vmf->pte);
3706 unlock:
3707         pte_unmap_unlock(vmf->pte, vmf->ptl);
3708 out:
3709         if (si)
3710                 put_swap_device(si);
3711         return ret;
3712 out_nomap:
3713         pte_unmap_unlock(vmf->pte, vmf->ptl);
3714 out_page:
3715         unlock_page(page);
3716 out_release:
3717         put_page(page);
3718         if (page != swapcache && swapcache) {
3719                 unlock_page(swapcache);
3720                 put_page(swapcache);
3721         }
3722         if (si)
3723                 put_swap_device(si);
3724         return ret;
3725 }
3726
3727 /*
3728  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3729  * but allow concurrent faults), and pte mapped but not yet locked.
3730  * We return with mmap_lock still held, but pte unmapped and unlocked.
3731  */
3732 static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
3733 {
3734         struct vm_area_struct *vma = vmf->vma;
3735         struct page *page;
3736         vm_fault_t ret = 0;
3737         pte_t entry;
3738
3739         /* File mapping without ->vm_ops ? */
3740         if (vma->vm_flags & VM_SHARED)
3741                 return VM_FAULT_SIGBUS;
3742
3743         /*
3744          * Use pte_alloc() instead of pte_alloc_map().  We can't run
3745          * pte_offset_map() on pmds where a huge pmd might be created
3746          * from a different thread.
3747          *
3748          * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when
3749          * parallel threads are excluded by other means.
3750          *
3751          * Here we only have mmap_read_lock(mm).
3752          */
3753         if (pte_alloc(vma->vm_mm, vmf->pmd))
3754                 return VM_FAULT_OOM;
3755
3756         /* See comment in handle_pte_fault() */
3757         if (unlikely(pmd_trans_unstable(vmf->pmd)))
3758                 return 0;
3759
3760         /* Use the zero-page for reads */
3761         if (!(vmf->flags & FAULT_FLAG_WRITE) &&
3762                         !mm_forbids_zeropage(vma->vm_mm)) {
3763                 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
3764                                                 vma->vm_page_prot));
3765                 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3766                                 vmf->address, &vmf->ptl);
3767                 if (!pte_none(*vmf->pte)) {
3768                         update_mmu_tlb(vma, vmf->address, vmf->pte);
3769                         goto unlock;
3770                 }
3771                 ret = check_stable_address_space(vma->vm_mm);
3772                 if (ret)
3773                         goto unlock;
3774                 /* Deliver the page fault to userland, check inside PT lock */
3775                 if (userfaultfd_missing(vma)) {
3776                         pte_unmap_unlock(vmf->pte, vmf->ptl);
3777                         return handle_userfault(vmf, VM_UFFD_MISSING);
3778                 }
3779                 goto setpte;
3780         }
3781
3782         /* Allocate our own private page. */
3783         if (unlikely(anon_vma_prepare(vma)))
3784                 goto oom;
3785         page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
3786         if (!page)
3787                 goto oom;
3788
3789         if (mem_cgroup_charge(page_folio(page), vma->vm_mm, GFP_KERNEL))
3790                 goto oom_free_page;
3791         cgroup_throttle_swaprate(page, GFP_KERNEL);
3792
3793         /*
3794          * The memory barrier inside __SetPageUptodate makes sure that
3795          * preceding stores to the page contents become visible before
3796          * the set_pte_at() write.
3797          */
3798         __SetPageUptodate(page);
3799
3800         entry = mk_pte(page, vma->vm_page_prot);
3801         entry = pte_sw_mkyoung(entry);
3802         if (vma->vm_flags & VM_WRITE)
3803                 entry = pte_mkwrite(pte_mkdirty(entry));
3804
3805         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3806                         &vmf->ptl);
3807         if (!pte_none(*vmf->pte)) {
3808                 update_mmu_cache(vma, vmf->address, vmf->pte);
3809                 goto release;
3810         }
3811
3812         ret = check_stable_address_space(vma->vm_mm);
3813         if (ret)
3814                 goto release;
3815
3816         /* Deliver the page fault to userland, check inside PT lock */
3817         if (userfaultfd_missing(vma)) {
3818                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3819                 put_page(page);
3820                 return handle_userfault(vmf, VM_UFFD_MISSING);
3821         }
3822
3823         inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3824         page_add_new_anon_rmap(page, vma, vmf->address, false);
3825         lru_cache_add_inactive_or_unevictable(page, vma);
3826 setpte:
3827         set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3828
3829         /* No need to invalidate - it was non-present before */
3830         update_mmu_cache(vma, vmf->address, vmf->pte);
3831 unlock:
3832         pte_unmap_unlock(vmf->pte, vmf->ptl);
3833         return ret;
3834 release:
3835         put_page(page);
3836         goto unlock;
3837 oom_free_page:
3838         put_page(page);
3839 oom:
3840         return VM_FAULT_OOM;
3841 }
3842
3843 /*
3844  * The mmap_lock must have been held on entry, and may have been
3845  * released depending on flags and vma->vm_ops->fault() return value.
3846  * See filemap_fault() and __lock_page_retry().
3847  */
3848 static vm_fault_t __do_fault(struct vm_fault *vmf)
3849 {
3850         struct vm_area_struct *vma = vmf->vma;
3851         vm_fault_t ret;
3852
3853         /*
3854          * Preallocate pte before we take page_lock because this might lead to
3855          * deadlocks for memcg reclaim which waits for pages under writeback:
3856          *                              lock_page(A)
3857          *                              SetPageWriteback(A)
3858          *                              unlock_page(A)
3859          * lock_page(B)
3860          *                              lock_page(B)
3861          * pte_alloc_one
3862          *   shrink_page_list
3863          *     wait_on_page_writeback(A)
3864          *                              SetPageWriteback(B)
3865          *                              unlock_page(B)
3866          *                              # flush A, B to clear the writeback
3867          */
3868         if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
3869                 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
3870                 if (!vmf->prealloc_pte)
3871                         return VM_FAULT_OOM;
3872         }
3873
3874         ret = vma->vm_ops->fault(vmf);
3875         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
3876                             VM_FAULT_DONE_COW)))
3877                 return ret;
3878
3879         if (unlikely(PageHWPoison(vmf->page))) {
3880                 if (ret & VM_FAULT_LOCKED)
3881                         unlock_page(vmf->page);
3882                 put_page(vmf->page);
3883                 vmf->page = NULL;
3884                 return VM_FAULT_HWPOISON;
3885         }
3886
3887         if (unlikely(!(ret & VM_FAULT_LOCKED)))
3888                 lock_page(vmf->page);
3889         else
3890                 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
3891
3892         return ret;
3893 }
3894
3895 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3896 static void deposit_prealloc_pte(struct vm_fault *vmf)
3897 {
3898         struct vm_area_struct *vma = vmf->vma;
3899
3900         pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3901         /*
3902          * We are going to consume the prealloc table,
3903          * count that as nr_ptes.
3904          */
3905         mm_inc_nr_ptes(vma->vm_mm);
3906         vmf->prealloc_pte = NULL;
3907 }
3908
3909 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3910 {
3911         struct vm_area_struct *vma = vmf->vma;
3912         bool write = vmf->flags & FAULT_FLAG_WRITE;
3913         unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
3914         pmd_t entry;
3915         int i;
3916         vm_fault_t ret = VM_FAULT_FALLBACK;
3917
3918         if (!transhuge_vma_suitable(vma, haddr))
3919                 return ret;
3920
3921         page = compound_head(page);
3922         if (compound_order(page) != HPAGE_PMD_ORDER)
3923                 return ret;
3924
3925         /*
3926          * Just backoff if any subpage of a THP is corrupted otherwise
3927          * the corrupted page may mapped by PMD silently to escape the
3928          * check.  This kind of THP just can be PTE mapped.  Access to
3929          * the corrupted subpage should trigger SIGBUS as expected.
3930          */
3931         if (unlikely(PageHasHWPoisoned(page)))
3932                 return ret;
3933
3934         /*
3935          * Archs like ppc64 need additional space to store information
3936          * related to pte entry. Use the preallocated table for that.
3937          */
3938         if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
3939                 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
3940                 if (!vmf->prealloc_pte)
3941                         return VM_FAULT_OOM;
3942         }
3943
3944         vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3945         if (unlikely(!pmd_none(*vmf->pmd)))
3946                 goto out;
3947
3948         for (i = 0; i < HPAGE_PMD_NR; i++)
3949                 flush_icache_page(vma, page + i);
3950
3951         entry = mk_huge_pmd(page, vma->vm_page_prot);
3952         if (write)
3953                 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
3954
3955         add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
3956         page_add_file_rmap(page, true);
3957         /*
3958          * deposit and withdraw with pmd lock held
3959          */
3960         if (arch_needs_pgtable_deposit())
3961                 deposit_prealloc_pte(vmf);
3962
3963         set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
3964
3965         update_mmu_cache_pmd(vma, haddr, vmf->pmd);
3966
3967         /* fault is handled */
3968         ret = 0;
3969         count_vm_event(THP_FILE_MAPPED);
3970 out:
3971         spin_unlock(vmf->ptl);
3972         return ret;
3973 }
3974 #else
3975 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3976 {
3977         return VM_FAULT_FALLBACK;
3978 }
3979 #endif
3980
3981 void do_set_pte(struct vm_fault *vmf, struct page *page, unsigned long addr)
3982 {
3983         struct vm_area_struct *vma = vmf->vma;
3984         bool write = vmf->flags & FAULT_FLAG_WRITE;
3985         bool prefault = vmf->address != addr;
3986         pte_t entry;
3987
3988         flush_icache_page(vma, page);
3989         entry = mk_pte(page, vma->vm_page_prot);
3990
3991         if (prefault && arch_wants_old_prefaulted_pte())
3992                 entry = pte_mkold(entry);
3993         else
3994                 entry = pte_sw_mkyoung(entry);
3995
3996         if (write)
3997                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3998         /* copy-on-write page */
3999         if (write && !(vma->vm_flags & VM_SHARED)) {
4000                 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
4001                 page_add_new_anon_rmap(page, vma, addr, false);
4002                 lru_cache_add_inactive_or_unevictable(page, vma);
4003         } else {
4004                 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
4005                 page_add_file_rmap(page, false);
4006         }
4007         set_pte_at(vma->vm_mm, addr, vmf->pte, entry);
4008 }
4009
4010 /**
4011  * finish_fault - finish page fault once we have prepared the page to fault
4012  *
4013  * @vmf: structure describing the fault
4014  *
4015  * This function handles all that is needed to finish a page fault once the
4016  * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
4017  * given page, adds reverse page mapping, handles memcg charges and LRU
4018  * addition.
4019  *
4020  * The function expects the page to be locked and on success it consumes a
4021  * reference of a page being mapped (for the PTE which maps it).
4022  *
4023  * Return: %0 on success, %VM_FAULT_ code in case of error.
4024  */
4025 vm_fault_t finish_fault(struct vm_fault *vmf)
4026 {
4027         struct vm_area_struct *vma = vmf->vma;
4028         struct page *page;
4029         vm_fault_t ret;
4030
4031         /* Did we COW the page? */
4032         if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
4033                 page = vmf->cow_page;
4034         else
4035                 page = vmf->page;
4036
4037         /*
4038          * check even for read faults because we might have lost our CoWed
4039          * page
4040          */
4041         if (!(vma->vm_flags & VM_SHARED)) {
4042                 ret = check_stable_address_space(vma->vm_mm);
4043                 if (ret)
4044                         return ret;
4045         }
4046
4047         if (pmd_none(*vmf->pmd)) {
4048                 if (PageTransCompound(page)) {
4049                         ret = do_set_pmd(vmf, page);
4050                         if (ret != VM_FAULT_FALLBACK)
4051                                 return ret;
4052                 }
4053
4054                 if (vmf->prealloc_pte)
4055                         pmd_install(vma->vm_mm, vmf->pmd, &vmf->prealloc_pte);
4056                 else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd)))
4057                         return VM_FAULT_OOM;
4058         }
4059
4060         /* See comment in handle_pte_fault() */
4061         if (pmd_devmap_trans_unstable(vmf->pmd))
4062                 return 0;
4063
4064         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4065                                       vmf->address, &vmf->ptl);
4066         ret = 0;
4067         /* Re-check under ptl */
4068         if (likely(pte_none(*vmf->pte)))
4069                 do_set_pte(vmf, page, vmf->address);
4070         else
4071                 ret = VM_FAULT_NOPAGE;
4072
4073         update_mmu_tlb(vma, vmf->address, vmf->pte);
4074         pte_unmap_unlock(vmf->pte, vmf->ptl);
4075         return ret;
4076 }
4077
4078 static unsigned long fault_around_bytes __read_mostly =
4079         rounddown_pow_of_two(65536);
4080
4081 #ifdef CONFIG_DEBUG_FS
4082 static int fault_around_bytes_get(void *data, u64 *val)
4083 {
4084         *val = fault_around_bytes;
4085         return 0;
4086 }
4087
4088 /*
4089  * fault_around_bytes must be rounded down to the nearest page order as it's
4090  * what do_fault_around() expects to see.
4091  */
4092 static int fault_around_bytes_set(void *data, u64 val)
4093 {
4094         if (val / PAGE_SIZE > PTRS_PER_PTE)
4095                 return -EINVAL;
4096         if (val > PAGE_SIZE)
4097                 fault_around_bytes = rounddown_pow_of_two(val);
4098         else
4099                 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
4100         return 0;
4101 }
4102 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
4103                 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
4104
4105 static int __init fault_around_debugfs(void)
4106 {
4107         debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
4108                                    &fault_around_bytes_fops);
4109         return 0;
4110 }
4111 late_initcall(fault_around_debugfs);
4112 #endif
4113
4114 /*
4115  * do_fault_around() tries to map few pages around the fault address. The hope
4116  * is that the pages will be needed soon and this will lower the number of
4117  * faults to handle.
4118  *
4119  * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
4120  * not ready to be mapped: not up-to-date, locked, etc.
4121  *
4122  * This function is called with the page table lock taken. In the split ptlock
4123  * case the page table lock only protects only those entries which belong to
4124  * the page table corresponding to the fault address.
4125  *
4126  * This function doesn't cross the VMA boundaries, in order to call map_pages()
4127  * only once.
4128  *
4129  * fault_around_bytes defines how many bytes we'll try to map.
4130  * do_fault_around() expects it to be set to a power of two less than or equal
4131  * to PTRS_PER_PTE.
4132  *
4133  * The virtual address of the area that we map is naturally aligned to
4134  * fault_around_bytes rounded down to the machine page size
4135  * (and therefore to page order).  This way it's easier to guarantee
4136  * that we don't cross page table boundaries.
4137  */
4138 static vm_fault_t do_fault_around(struct vm_fault *vmf)
4139 {
4140         unsigned long address = vmf->address, nr_pages, mask;
4141         pgoff_t start_pgoff = vmf->pgoff;
4142         pgoff_t end_pgoff;
4143         int off;
4144
4145         nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
4146         mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
4147
4148         address = max(address & mask, vmf->vma->vm_start);
4149         off = ((vmf->address - address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
4150         start_pgoff -= off;
4151
4152         /*
4153          *  end_pgoff is either the end of the page table, the end of
4154          *  the vma or nr_pages from start_pgoff, depending what is nearest.
4155          */
4156         end_pgoff = start_pgoff -
4157                 ((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
4158                 PTRS_PER_PTE - 1;
4159         end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
4160                         start_pgoff + nr_pages - 1);
4161
4162         if (pmd_none(*vmf->pmd)) {
4163                 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
4164                 if (!vmf->prealloc_pte)
4165                         return VM_FAULT_OOM;
4166         }
4167
4168         return vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
4169 }
4170
4171 static vm_fault_t do_read_fault(struct vm_fault *vmf)
4172 {
4173         struct vm_area_struct *vma = vmf->vma;
4174         vm_fault_t ret = 0;
4175
4176         /*
4177          * Let's call ->map_pages() first and use ->fault() as fallback
4178          * if page by the offset is not ready to be mapped (cold cache or
4179          * something).
4180          */
4181         if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
4182                 if (likely(!userfaultfd_minor(vmf->vma))) {
4183                         ret = do_fault_around(vmf);
4184                         if (ret)
4185                                 return ret;
4186                 }
4187         }
4188
4189         ret = __do_fault(vmf);
4190         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4191                 return ret;
4192
4193         ret |= finish_fault(vmf);
4194         unlock_page(vmf->page);
4195         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4196                 put_page(vmf->page);
4197         return ret;
4198 }
4199
4200 static vm_fault_t do_cow_fault(struct vm_fault *vmf)
4201 {
4202         struct vm_area_struct *vma = vmf->vma;
4203         vm_fault_t ret;
4204
4205         if (unlikely(anon_vma_prepare(vma)))
4206                 return VM_FAULT_OOM;
4207
4208         vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
4209         if (!vmf->cow_page)
4210                 return VM_FAULT_OOM;
4211
4212         if (mem_cgroup_charge(page_folio(vmf->cow_page), vma->vm_mm,
4213                                 GFP_KERNEL)) {
4214                 put_page(vmf->cow_page);
4215                 return VM_FAULT_OOM;
4216         }
4217         cgroup_throttle_swaprate(vmf->cow_page, GFP_KERNEL);
4218
4219         ret = __do_fault(vmf);
4220         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4221                 goto uncharge_out;
4222         if (ret & VM_FAULT_DONE_COW)
4223                 return ret;
4224
4225         copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
4226         __SetPageUptodate(vmf->cow_page);
4227
4228         ret |= finish_fault(vmf);
4229         unlock_page(vmf->page);
4230         put_page(vmf->page);
4231         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4232                 goto uncharge_out;
4233         return ret;
4234 uncharge_out:
4235         put_page(vmf->cow_page);
4236         return ret;
4237 }
4238
4239 static vm_fault_t do_shared_fault(struct vm_fault *vmf)
4240 {
4241         struct vm_area_struct *vma = vmf->vma;
4242         vm_fault_t ret, tmp;
4243
4244         ret = __do_fault(vmf);
4245         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4246                 return ret;
4247
4248         /*
4249          * Check if the backing address space wants to know that the page is
4250          * about to become writable
4251          */
4252         if (vma->vm_ops->page_mkwrite) {
4253                 unlock_page(vmf->page);
4254                 tmp = do_page_mkwrite(vmf);
4255                 if (unlikely(!tmp ||
4256                                 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
4257                         put_page(vmf->page);
4258                         return tmp;
4259                 }
4260         }
4261
4262         ret |= finish_fault(vmf);
4263         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
4264                                         VM_FAULT_RETRY))) {
4265                 unlock_page(vmf->page);
4266                 put_page(vmf->page);
4267                 return ret;
4268         }
4269
4270         ret |= fault_dirty_shared_page(vmf);
4271         return ret;
4272 }
4273
4274 /*
4275  * We enter with non-exclusive mmap_lock (to exclude vma changes,
4276  * but allow concurrent faults).
4277  * The mmap_lock may have been released depending on flags and our
4278  * return value.  See filemap_fault() and __folio_lock_or_retry().
4279  * If mmap_lock is released, vma may become invalid (for example
4280  * by other thread calling munmap()).
4281  */
4282 static vm_fault_t do_fault(struct vm_fault *vmf)
4283 {
4284         struct vm_area_struct *vma = vmf->vma;
4285         struct mm_struct *vm_mm = vma->vm_mm;
4286         vm_fault_t ret;
4287
4288         /*
4289          * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
4290          */
4291         if (!vma->vm_ops->fault) {
4292                 /*
4293                  * If we find a migration pmd entry or a none pmd entry, which
4294                  * should never happen, return SIGBUS
4295                  */
4296                 if (unlikely(!pmd_present(*vmf->pmd)))
4297                         ret = VM_FAULT_SIGBUS;
4298                 else {
4299                         vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm,
4300                                                        vmf->pmd,
4301                                                        vmf->address,
4302                                                        &vmf->ptl);
4303                         /*
4304                          * Make sure this is not a temporary clearing of pte
4305                          * by holding ptl and checking again. A R/M/W update
4306                          * of pte involves: take ptl, clearing the pte so that
4307                          * we don't have concurrent modification by hardware
4308                          * followed by an update.
4309                          */
4310                         if (unlikely(pte_none(*vmf->pte)))
4311                                 ret = VM_FAULT_SIGBUS;
4312                         else
4313                                 ret = VM_FAULT_NOPAGE;
4314
4315                         pte_unmap_unlock(vmf->pte, vmf->ptl);
4316                 }
4317         } else if (!(vmf->flags & FAULT_FLAG_WRITE))
4318                 ret = do_read_fault(vmf);
4319         else if (!(vma->vm_flags & VM_SHARED))
4320                 ret = do_cow_fault(vmf);
4321         else
4322                 ret = do_shared_fault(vmf);
4323
4324         /* preallocated pagetable is unused: free it */
4325         if (vmf->prealloc_pte) {
4326                 pte_free(vm_mm, vmf->prealloc_pte);
4327                 vmf->prealloc_pte = NULL;
4328         }
4329         return ret;
4330 }
4331
4332 int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
4333                       unsigned long addr, int page_nid, int *flags)
4334 {
4335         get_page(page);
4336
4337         count_vm_numa_event(NUMA_HINT_FAULTS);
4338         if (page_nid == numa_node_id()) {
4339                 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
4340                 *flags |= TNF_FAULT_LOCAL;
4341         }
4342
4343         return mpol_misplaced(page, vma, addr);
4344 }
4345
4346 static vm_fault_t do_numa_page(struct vm_fault *vmf)
4347 {
4348         struct vm_area_struct *vma = vmf->vma;
4349         struct page *page = NULL;
4350         int page_nid = NUMA_NO_NODE;
4351         int last_cpupid;
4352         int target_nid;
4353         pte_t pte, old_pte;
4354         bool was_writable = pte_savedwrite(vmf->orig_pte);
4355         int flags = 0;
4356
4357         /*
4358          * The "pte" at this point cannot be used safely without
4359          * validation through pte_unmap_same(). It's of NUMA type but
4360          * the pfn may be screwed if the read is non atomic.
4361          */
4362         vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
4363         spin_lock(vmf->ptl);
4364         if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
4365                 pte_unmap_unlock(vmf->pte, vmf->ptl);
4366                 goto out;
4367         }
4368
4369         /* Get the normal PTE  */
4370         old_pte = ptep_get(vmf->pte);
4371         pte = pte_modify(old_pte, vma->vm_page_prot);
4372
4373         page = vm_normal_page(vma, vmf->address, pte);
4374         if (!page)
4375                 goto out_map;
4376
4377         /* TODO: handle PTE-mapped THP */
4378         if (PageCompound(page))
4379                 goto out_map;
4380
4381         /*
4382          * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
4383          * much anyway since they can be in shared cache state. This misses
4384          * the case where a mapping is writable but the process never writes
4385          * to it but pte_write gets cleared during protection updates and
4386          * pte_dirty has unpredictable behaviour between PTE scan updates,
4387          * background writeback, dirty balancing and application behaviour.
4388          */
4389         if (!was_writable)
4390                 flags |= TNF_NO_GROUP;
4391
4392         /*
4393          * Flag if the page is shared between multiple address spaces. This
4394          * is later used when determining whether to group tasks together
4395          */
4396         if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
4397                 flags |= TNF_SHARED;
4398
4399         last_cpupid = page_cpupid_last(page);
4400         page_nid = page_to_nid(page);
4401         target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
4402                         &flags);
4403         if (target_nid == NUMA_NO_NODE) {
4404                 put_page(page);
4405                 goto out_map;
4406         }
4407         pte_unmap_unlock(vmf->pte, vmf->ptl);
4408
4409         /* Migrate to the requested node */
4410         if (migrate_misplaced_page(page, vma, target_nid)) {
4411                 page_nid = target_nid;
4412                 flags |= TNF_MIGRATED;
4413         } else {
4414                 flags |= TNF_MIGRATE_FAIL;
4415                 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
4416                 spin_lock(vmf->ptl);
4417                 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
4418                         pte_unmap_unlock(vmf->pte, vmf->ptl);
4419                         goto out;
4420                 }
4421                 goto out_map;
4422         }
4423
4424 out:
4425         if (page_nid != NUMA_NO_NODE)
4426                 task_numa_fault(last_cpupid, page_nid, 1, flags);
4427         return 0;
4428 out_map:
4429         /*
4430          * Make it present again, depending on how arch implements
4431          * non-accessible ptes, some can allow access by kernel mode.
4432          */
4433         old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
4434         pte = pte_modify(old_pte, vma->vm_page_prot);
4435         pte = pte_mkyoung(pte);
4436         if (was_writable)
4437                 pte = pte_mkwrite(pte);
4438         ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
4439         update_mmu_cache(vma, vmf->address, vmf->pte);
4440         pte_unmap_unlock(vmf->pte, vmf->ptl);
4441         goto out;
4442 }
4443
4444 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
4445 {
4446         if (vma_is_anonymous(vmf->vma))
4447                 return do_huge_pmd_anonymous_page(vmf);
4448         if (vmf->vma->vm_ops->huge_fault)
4449                 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4450         return VM_FAULT_FALLBACK;
4451 }
4452
4453 /* `inline' is required to avoid gcc 4.1.2 build error */
4454 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf)
4455 {
4456         if (vma_is_anonymous(vmf->vma)) {
4457                 if (userfaultfd_huge_pmd_wp(vmf->vma, vmf->orig_pmd))
4458                         return handle_userfault(vmf, VM_UFFD_WP);
4459                 return do_huge_pmd_wp_page(vmf);
4460         }
4461         if (vmf->vma->vm_ops->huge_fault) {
4462                 vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4463
4464                 if (!(ret & VM_FAULT_FALLBACK))
4465                         return ret;
4466         }
4467
4468         /* COW or write-notify handled on pte level: split pmd. */
4469         __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
4470
4471         return VM_FAULT_FALLBACK;
4472 }
4473
4474 static vm_fault_t create_huge_pud(struct vm_fault *vmf)
4475 {
4476 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) &&                     \
4477         defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
4478         /* No support for anonymous transparent PUD pages yet */
4479         if (vma_is_anonymous(vmf->vma))
4480                 goto split;
4481         if (vmf->vma->vm_ops->huge_fault) {
4482                 vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4483
4484                 if (!(ret & VM_FAULT_FALLBACK))
4485                         return ret;
4486         }
4487 split:
4488         /* COW or write-notify not handled on PUD level: split pud.*/
4489         __split_huge_pud(vmf->vma, vmf->pud, vmf->address);
4490 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4491         return VM_FAULT_FALLBACK;
4492 }
4493
4494 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
4495 {
4496 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4497         /* No support for anonymous transparent PUD pages yet */
4498         if (vma_is_anonymous(vmf->vma))
4499                 return VM_FAULT_FALLBACK;
4500         if (vmf->vma->vm_ops->huge_fault)
4501                 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4502 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4503         return VM_FAULT_FALLBACK;
4504 }
4505
4506 /*
4507  * These routines also need to handle stuff like marking pages dirty
4508  * and/or accessed for architectures that don't do it in hardware (most
4509  * RISC architectures).  The early dirtying is also good on the i386.
4510  *
4511  * There is also a hook called "update_mmu_cache()" that architectures
4512  * with external mmu caches can use to update those (ie the Sparc or
4513  * PowerPC hashed page tables that act as extended TLBs).
4514  *
4515  * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow
4516  * concurrent faults).
4517  *
4518  * The mmap_lock may have been released depending on flags and our return value.
4519  * See filemap_fault() and __folio_lock_or_retry().
4520  */
4521 static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
4522 {
4523         pte_t entry;
4524
4525         if (unlikely(pmd_none(*vmf->pmd))) {
4526                 /*
4527                  * Leave __pte_alloc() until later: because vm_ops->fault may
4528                  * want to allocate huge page, and if we expose page table
4529                  * for an instant, it will be difficult to retract from
4530                  * concurrent faults and from rmap lookups.
4531                  */
4532                 vmf->pte = NULL;
4533         } else {
4534                 /*
4535                  * If a huge pmd materialized under us just retry later.  Use
4536                  * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead
4537                  * of pmd_trans_huge() to ensure the pmd didn't become
4538                  * pmd_trans_huge under us and then back to pmd_none, as a
4539                  * result of MADV_DONTNEED running immediately after a huge pmd
4540                  * fault in a different thread of this mm, in turn leading to a
4541                  * misleading pmd_trans_huge() retval. All we have to ensure is
4542                  * that it is a regular pmd that we can walk with
4543                  * pte_offset_map() and we can do that through an atomic read
4544                  * in C, which is what pmd_trans_unstable() provides.
4545                  */
4546                 if (pmd_devmap_trans_unstable(vmf->pmd))
4547                         return 0;
4548                 /*
4549                  * A regular pmd is established and it can't morph into a huge
4550                  * pmd from under us anymore at this point because we hold the
4551                  * mmap_lock read mode and khugepaged takes it in write mode.
4552                  * So now it's safe to run pte_offset_map().
4553                  */
4554                 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
4555                 vmf->orig_pte = *vmf->pte;
4556
4557                 /*
4558                  * some architectures can have larger ptes than wordsize,
4559                  * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
4560                  * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
4561                  * accesses.  The code below just needs a consistent view
4562                  * for the ifs and we later double check anyway with the
4563                  * ptl lock held. So here a barrier will do.
4564                  */
4565                 barrier();
4566                 if (pte_none(vmf->orig_pte)) {
4567                         pte_unmap(vmf->pte);
4568                         vmf->pte = NULL;
4569                 }
4570         }
4571
4572         if (!vmf->pte) {
4573                 if (vma_is_anonymous(vmf->vma))
4574                         return do_anonymous_page(vmf);
4575                 else
4576                         return do_fault(vmf);
4577         }
4578
4579         if (!pte_present(vmf->orig_pte))
4580                 return do_swap_page(vmf);
4581
4582         if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
4583                 return do_numa_page(vmf);
4584
4585         vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
4586         spin_lock(vmf->ptl);
4587         entry = vmf->orig_pte;
4588         if (unlikely(!pte_same(*vmf->pte, entry))) {
4589                 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
4590                 goto unlock;
4591         }
4592         if (vmf->flags & FAULT_FLAG_WRITE) {
4593                 if (!pte_write(entry))
4594                         return do_wp_page(vmf);
4595                 entry = pte_mkdirty(entry);
4596         }
4597         entry = pte_mkyoung(entry);
4598         if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
4599                                 vmf->flags & FAULT_FLAG_WRITE)) {
4600                 update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
4601         } else {
4602                 /* Skip spurious TLB flush for retried page fault */
4603                 if (vmf->flags & FAULT_FLAG_TRIED)
4604                         goto unlock;
4605                 /*
4606                  * This is needed only for protection faults but the arch code
4607                  * is not yet telling us if this is a protection fault or not.
4608                  * This still avoids useless tlb flushes for .text page faults
4609                  * with threads.
4610                  */
4611                 if (vmf->flags & FAULT_FLAG_WRITE)
4612                         flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
4613         }
4614 unlock:
4615         pte_unmap_unlock(vmf->pte, vmf->ptl);
4616         return 0;
4617 }
4618
4619 /*
4620  * By the time we get here, we already hold the mm semaphore
4621  *
4622  * The mmap_lock may have been released depending on flags and our
4623  * return value.  See filemap_fault() and __folio_lock_or_retry().
4624  */
4625 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
4626                 unsigned long address, unsigned int flags)
4627 {
4628         struct vm_fault vmf = {
4629                 .vma = vma,
4630                 .address = address & PAGE_MASK,
4631                 .flags = flags,
4632                 .pgoff = linear_page_index(vma, address),
4633                 .gfp_mask = __get_fault_gfp_mask(vma),
4634         };
4635         unsigned int dirty = flags & FAULT_FLAG_WRITE;
4636         struct mm_struct *mm = vma->vm_mm;
4637         pgd_t *pgd;
4638         p4d_t *p4d;
4639         vm_fault_t ret;
4640
4641         pgd = pgd_offset(mm, address);
4642         p4d = p4d_alloc(mm, pgd, address);
4643         if (!p4d)
4644                 return VM_FAULT_OOM;
4645
4646         vmf.pud = pud_alloc(mm, p4d, address);
4647         if (!vmf.pud)
4648                 return VM_FAULT_OOM;
4649 retry_pud:
4650         if (pud_none(*vmf.pud) && __transparent_hugepage_enabled(vma)) {
4651                 ret = create_huge_pud(&vmf);
4652                 if (!(ret & VM_FAULT_FALLBACK))
4653                         return ret;
4654         } else {
4655                 pud_t orig_pud = *vmf.pud;
4656
4657                 barrier();
4658                 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
4659
4660                         /* NUMA case for anonymous PUDs would go here */
4661
4662                         if (dirty && !pud_write(orig_pud)) {
4663                                 ret = wp_huge_pud(&vmf, orig_pud);
4664                                 if (!(ret & VM_FAULT_FALLBACK))
4665                                         return ret;
4666                         } else {
4667                                 huge_pud_set_accessed(&vmf, orig_pud);
4668                                 return 0;
4669                         }
4670                 }
4671         }
4672
4673         vmf.pmd = pmd_alloc(mm, vmf.pud, address);
4674         if (!vmf.pmd)
4675                 return VM_FAULT_OOM;
4676
4677         /* Huge pud page fault raced with pmd_alloc? */
4678         if (pud_trans_unstable(vmf.pud))
4679                 goto retry_pud;
4680
4681         if (pmd_none(*vmf.pmd) && __transparent_hugepage_enabled(vma)) {
4682                 ret = create_huge_pmd(&vmf);
4683                 if (!(ret & VM_FAULT_FALLBACK))
4684                         return ret;
4685         } else {
4686                 vmf.orig_pmd = *vmf.pmd;
4687
4688                 barrier();
4689                 if (unlikely(is_swap_pmd(vmf.orig_pmd))) {
4690                         VM_BUG_ON(thp_migration_supported() &&
4691                                           !is_pmd_migration_entry(vmf.orig_pmd));
4692                         if (is_pmd_migration_entry(vmf.orig_pmd))
4693                                 pmd_migration_entry_wait(mm, vmf.pmd);
4694                         return 0;
4695                 }
4696                 if (pmd_trans_huge(vmf.orig_pmd) || pmd_devmap(vmf.orig_pmd)) {
4697                         if (pmd_protnone(vmf.orig_pmd) && vma_is_accessible(vma))
4698                                 return do_huge_pmd_numa_page(&vmf);
4699
4700                         if (dirty && !pmd_write(vmf.orig_pmd)) {
4701                                 ret = wp_huge_pmd(&vmf);
4702                                 if (!(ret & VM_FAULT_FALLBACK))
4703                                         return ret;
4704                         } else {
4705                                 huge_pmd_set_accessed(&vmf);
4706                                 return 0;
4707                         }
4708                 }
4709         }
4710
4711         return handle_pte_fault(&vmf);
4712 }
4713
4714 /**
4715  * mm_account_fault - Do page fault accounting
4716  *
4717  * @regs: the pt_regs struct pointer.  When set to NULL, will skip accounting
4718  *        of perf event counters, but we'll still do the per-task accounting to
4719  *        the task who triggered this page fault.
4720  * @address: the faulted address.
4721  * @flags: the fault flags.
4722  * @ret: the fault retcode.
4723  *
4724  * This will take care of most of the page fault accounting.  Meanwhile, it
4725  * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter
4726  * updates.  However, note that the handling of PERF_COUNT_SW_PAGE_FAULTS should
4727  * still be in per-arch page fault handlers at the entry of page fault.
4728  */
4729 static inline void mm_account_fault(struct pt_regs *regs,
4730                                     unsigned long address, unsigned int flags,
4731                                     vm_fault_t ret)
4732 {
4733         bool major;
4734
4735         /*
4736          * We don't do accounting for some specific faults:
4737          *
4738          * - Unsuccessful faults (e.g. when the address wasn't valid).  That
4739          *   includes arch_vma_access_permitted() failing before reaching here.
4740          *   So this is not a "this many hardware page faults" counter.  We
4741          *   should use the hw profiling for that.
4742          *
4743          * - Incomplete faults (VM_FAULT_RETRY).  They will only be counted
4744          *   once they're completed.
4745          */
4746         if (ret & (VM_FAULT_ERROR | VM_FAULT_RETRY))
4747                 return;
4748
4749         /*
4750          * We define the fault as a major fault when the final successful fault
4751          * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't
4752          * handle it immediately previously).
4753          */
4754         major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED);
4755
4756         if (major)
4757                 current->maj_flt++;
4758         else
4759                 current->min_flt++;
4760
4761         /*
4762          * If the fault is done for GUP, regs will be NULL.  We only do the
4763          * accounting for the per thread fault counters who triggered the
4764          * fault, and we skip the perf event updates.
4765          */
4766         if (!regs)
4767                 return;
4768
4769         if (major)
4770                 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
4771         else
4772                 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
4773 }
4774
4775 /*
4776  * By the time we get here, we already hold the mm semaphore
4777  *
4778  * The mmap_lock may have been released depending on flags and our
4779  * return value.  See filemap_fault() and __folio_lock_or_retry().
4780  */
4781 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
4782                            unsigned int flags, struct pt_regs *regs)
4783 {
4784         vm_fault_t ret;
4785
4786         __set_current_state(TASK_RUNNING);
4787
4788         count_vm_event(PGFAULT);
4789         count_memcg_event_mm(vma->vm_mm, PGFAULT);
4790
4791         /* do counter updates before entering really critical section. */
4792         check_sync_rss_stat(current);
4793
4794         if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
4795                                             flags & FAULT_FLAG_INSTRUCTION,
4796                                             flags & FAULT_FLAG_REMOTE))
4797                 return VM_FAULT_SIGSEGV;
4798
4799         /*
4800          * Enable the memcg OOM handling for faults triggered in user
4801          * space.  Kernel faults are handled more gracefully.
4802          */
4803         if (flags & FAULT_FLAG_USER)
4804                 mem_cgroup_enter_user_fault();
4805
4806         if (unlikely(is_vm_hugetlb_page(vma)))
4807                 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
4808         else
4809                 ret = __handle_mm_fault(vma, address, flags);
4810
4811         if (flags & FAULT_FLAG_USER) {
4812                 mem_cgroup_exit_user_fault();
4813                 /*
4814                  * The task may have entered a memcg OOM situation but
4815                  * if the allocation error was handled gracefully (no
4816                  * VM_FAULT_OOM), there is no need to kill anything.
4817                  * Just clean up the OOM state peacefully.
4818                  */
4819                 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
4820                         mem_cgroup_oom_synchronize(false);
4821         }
4822
4823         mm_account_fault(regs, address, flags, ret);
4824
4825         return ret;
4826 }
4827 EXPORT_SYMBOL_GPL(handle_mm_fault);
4828
4829 #ifndef __PAGETABLE_P4D_FOLDED
4830 /*
4831  * Allocate p4d page table.
4832  * We've already handled the fast-path in-line.
4833  */
4834 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
4835 {
4836         p4d_t *new = p4d_alloc_one(mm, address);
4837         if (!new)
4838                 return -ENOMEM;
4839
4840         spin_lock(&mm->page_table_lock);
4841         if (pgd_present(*pgd)) {        /* Another has populated it */
4842                 p4d_free(mm, new);
4843         } else {
4844                 smp_wmb(); /* See comment in pmd_install() */
4845                 pgd_populate(mm, pgd, new);
4846         }
4847         spin_unlock(&mm->page_table_lock);
4848         return 0;
4849 }
4850 #endif /* __PAGETABLE_P4D_FOLDED */
4851
4852 #ifndef __PAGETABLE_PUD_FOLDED
4853 /*
4854  * Allocate page upper directory.
4855  * We've already handled the fast-path in-line.
4856  */
4857 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
4858 {
4859         pud_t *new = pud_alloc_one(mm, address);
4860         if (!new)
4861                 return -ENOMEM;
4862
4863         spin_lock(&mm->page_table_lock);
4864         if (!p4d_present(*p4d)) {
4865                 mm_inc_nr_puds(mm);
4866                 smp_wmb(); /* See comment in pmd_install() */
4867                 p4d_populate(mm, p4d, new);
4868         } else  /* Another has populated it */
4869                 pud_free(mm, new);
4870         spin_unlock(&mm->page_table_lock);
4871         return 0;
4872 }
4873 #endif /* __PAGETABLE_PUD_FOLDED */
4874
4875 #ifndef __PAGETABLE_PMD_FOLDED
4876 /*
4877  * Allocate page middle directory.
4878  * We've already handled the fast-path in-line.
4879  */
4880 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
4881 {
4882         spinlock_t *ptl;
4883         pmd_t *new = pmd_alloc_one(mm, address);
4884         if (!new)
4885                 return -ENOMEM;
4886
4887         ptl = pud_lock(mm, pud);
4888         if (!pud_present(*pud)) {
4889                 mm_inc_nr_pmds(mm);
4890                 smp_wmb(); /* See comment in pmd_install() */
4891                 pud_populate(mm, pud, new);
4892         } else {        /* Another has populated it */
4893                 pmd_free(mm, new);
4894         }
4895         spin_unlock(ptl);
4896         return 0;
4897 }
4898 #endif /* __PAGETABLE_PMD_FOLDED */
4899
4900 int follow_invalidate_pte(struct mm_struct *mm, unsigned long address,
4901                           struct mmu_notifier_range *range, pte_t **ptepp,
4902                           pmd_t **pmdpp, spinlock_t **ptlp)
4903 {
4904         pgd_t *pgd;
4905         p4d_t *p4d;
4906         pud_t *pud;
4907         pmd_t *pmd;
4908         pte_t *ptep;
4909
4910         pgd = pgd_offset(mm, address);
4911         if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
4912                 goto out;
4913
4914         p4d = p4d_offset(pgd, address);
4915         if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
4916                 goto out;
4917
4918         pud = pud_offset(p4d, address);
4919         if (pud_none(*pud) || unlikely(pud_bad(*pud)))
4920                 goto out;
4921
4922         pmd = pmd_offset(pud, address);
4923         VM_BUG_ON(pmd_trans_huge(*pmd));
4924
4925         if (pmd_huge(*pmd)) {
4926                 if (!pmdpp)
4927                         goto out;
4928
4929                 if (range) {
4930                         mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0,
4931                                                 NULL, mm, address & PMD_MASK,
4932                                                 (address & PMD_MASK) + PMD_SIZE);
4933                         mmu_notifier_invalidate_range_start(range);
4934                 }
4935                 *ptlp = pmd_lock(mm, pmd);
4936                 if (pmd_huge(*pmd)) {
4937                         *pmdpp = pmd;
4938                         return 0;
4939                 }
4940                 spin_unlock(*ptlp);
4941                 if (range)
4942                         mmu_notifier_invalidate_range_end(range);
4943         }
4944
4945         if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
4946                 goto out;
4947
4948         if (range) {
4949                 mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0, NULL, mm,
4950                                         address & PAGE_MASK,
4951                                         (address & PAGE_MASK) + PAGE_SIZE);
4952                 mmu_notifier_invalidate_range_start(range);
4953         }
4954         ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
4955         if (!pte_present(*ptep))
4956                 goto unlock;
4957         *ptepp = ptep;
4958         return 0;
4959 unlock:
4960         pte_unmap_unlock(ptep, *ptlp);
4961         if (range)
4962                 mmu_notifier_invalidate_range_end(range);
4963 out:
4964         return -EINVAL;
4965 }
4966
4967 /**
4968  * follow_pte - look up PTE at a user virtual address
4969  * @mm: the mm_struct of the target address space
4970  * @address: user virtual address
4971  * @ptepp: location to store found PTE
4972  * @ptlp: location to store the lock for the PTE
4973  *
4974  * On a successful return, the pointer to the PTE is stored in @ptepp;
4975  * the corresponding lock is taken and its location is stored in @ptlp.
4976  * The contents of the PTE are only stable until @ptlp is released;
4977  * any further use, if any, must be protected against invalidation
4978  * with MMU notifiers.
4979  *
4980  * Only IO mappings and raw PFN mappings are allowed.  The mmap semaphore
4981  * should be taken for read.
4982  *
4983  * KVM uses this function.  While it is arguably less bad than ``follow_pfn``,
4984  * it is not a good general-purpose API.
4985  *
4986  * Return: zero on success, -ve otherwise.
4987  */
4988 int follow_pte(struct mm_struct *mm, unsigned long address,
4989                pte_t **ptepp, spinlock_t **ptlp)
4990 {
4991         return follow_invalidate_pte(mm, address, NULL, ptepp, NULL, ptlp);
4992 }
4993 EXPORT_SYMBOL_GPL(follow_pte);
4994
4995 /**
4996  * follow_pfn - look up PFN at a user virtual address
4997  * @vma: memory mapping
4998  * @address: user virtual address
4999  * @pfn: location to store found PFN
5000  *
5001  * Only IO mappings and raw PFN mappings are allowed.
5002  *
5003  * This function does not allow the caller to read the permissions
5004  * of the PTE.  Do not use it.
5005  *
5006  * Return: zero and the pfn at @pfn on success, -ve otherwise.
5007  */
5008 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
5009         unsigned long *pfn)
5010 {
5011         int ret = -EINVAL;
5012         spinlock_t *ptl;
5013         pte_t *ptep;
5014
5015         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5016                 return ret;
5017
5018         ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
5019         if (ret)
5020                 return ret;
5021         *pfn = pte_pfn(*ptep);
5022         pte_unmap_unlock(ptep, ptl);
5023         return 0;
5024 }
5025 EXPORT_SYMBOL(follow_pfn);
5026
5027 #ifdef CONFIG_HAVE_IOREMAP_PROT
5028 int follow_phys(struct vm_area_struct *vma,
5029                 unsigned long address, unsigned int flags,
5030                 unsigned long *prot, resource_size_t *phys)
5031 {
5032         int ret = -EINVAL;
5033         pte_t *ptep, pte;
5034         spinlock_t *ptl;
5035
5036         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5037                 goto out;
5038
5039         if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
5040                 goto out;
5041         pte = *ptep;
5042
5043         if ((flags & FOLL_WRITE) && !pte_write(pte))
5044                 goto unlock;
5045
5046         *prot = pgprot_val(pte_pgprot(pte));
5047         *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
5048
5049         ret = 0;
5050 unlock:
5051         pte_unmap_unlock(ptep, ptl);
5052 out:
5053         return ret;
5054 }
5055
5056 /**
5057  * generic_access_phys - generic implementation for iomem mmap access
5058  * @vma: the vma to access
5059  * @addr: userspace address, not relative offset within @vma
5060  * @buf: buffer to read/write
5061  * @len: length of transfer
5062  * @write: set to FOLL_WRITE when writing, otherwise reading
5063  *
5064  * This is a generic implementation for &vm_operations_struct.access for an
5065  * iomem mapping. This callback is used by access_process_vm() when the @vma is
5066  * not page based.
5067  */
5068 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
5069                         void *buf, int len, int write)
5070 {
5071         resource_size_t phys_addr;
5072         unsigned long prot = 0;
5073         void __iomem *maddr;
5074         pte_t *ptep, pte;
5075         spinlock_t *ptl;
5076         int offset = offset_in_page(addr);
5077         int ret = -EINVAL;
5078
5079         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5080                 return -EINVAL;
5081
5082 retry:
5083         if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
5084                 return -EINVAL;
5085         pte = *ptep;
5086         pte_unmap_unlock(ptep, ptl);
5087
5088         prot = pgprot_val(pte_pgprot(pte));
5089         phys_addr = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
5090
5091         if ((write & FOLL_WRITE) && !pte_write(pte))
5092                 return -EINVAL;
5093
5094         maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
5095         if (!maddr)
5096                 return -ENOMEM;
5097
5098         if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
5099                 goto out_unmap;
5100
5101         if (!pte_same(pte, *ptep)) {
5102                 pte_unmap_unlock(ptep, ptl);
5103                 iounmap(maddr);
5104
5105                 goto retry;
5106         }
5107
5108         if (write)
5109                 memcpy_toio(maddr + offset, buf, len);
5110         else
5111                 memcpy_fromio(buf, maddr + offset, len);
5112         ret = len;
5113         pte_unmap_unlock(ptep, ptl);
5114 out_unmap:
5115         iounmap(maddr);
5116
5117         return ret;
5118 }
5119 EXPORT_SYMBOL_GPL(generic_access_phys);
5120 #endif
5121
5122 /*
5123  * Access another process' address space as given in mm.
5124  */
5125 int __access_remote_vm(struct mm_struct *mm, unsigned long addr, void *buf,
5126                        int len, unsigned int gup_flags)
5127 {
5128         struct vm_area_struct *vma;
5129         void *old_buf = buf;
5130         int write = gup_flags & FOLL_WRITE;
5131
5132         if (mmap_read_lock_killable(mm))
5133                 return 0;
5134
5135         /* ignore errors, just check how much was successfully transferred */
5136         while (len) {
5137                 int bytes, ret, offset;
5138                 void *maddr;
5139                 struct page *page = NULL;
5140
5141                 ret = get_user_pages_remote(mm, addr, 1,
5142                                 gup_flags, &page, &vma, NULL);
5143                 if (ret <= 0) {
5144 #ifndef CONFIG_HAVE_IOREMAP_PROT
5145                         break;
5146 #else
5147                         /*
5148                          * Check if this is a VM_IO | VM_PFNMAP VMA, which
5149                          * we can access using slightly different code.
5150                          */
5151                         vma = vma_lookup(mm, addr);
5152                         if (!vma)
5153                                 break;
5154                         if (vma->vm_ops && vma->vm_ops->access)
5155                                 ret = vma->vm_ops->access(vma, addr, buf,
5156                                                           len, write);
5157                         if (ret <= 0)
5158                                 break;
5159                         bytes = ret;
5160 #endif
5161                 } else {
5162                         bytes = len;
5163                         offset = addr & (PAGE_SIZE-1);
5164                         if (bytes > PAGE_SIZE-offset)
5165                                 bytes = PAGE_SIZE-offset;
5166
5167                         maddr = kmap(page);
5168                         if (write) {
5169                                 copy_to_user_page(vma, page, addr,
5170                                                   maddr + offset, buf, bytes);
5171                                 set_page_dirty_lock(page);
5172                         } else {
5173                                 copy_from_user_page(vma, page, addr,
5174                                                     buf, maddr + offset, bytes);
5175                         }
5176                         kunmap(page);
5177                         put_page(page);
5178                 }
5179                 len -= bytes;
5180                 buf += bytes;
5181                 addr += bytes;
5182         }
5183         mmap_read_unlock(mm);
5184
5185         return buf - old_buf;
5186 }
5187
5188 /**
5189  * access_remote_vm - access another process' address space
5190  * @mm:         the mm_struct of the target address space
5191  * @addr:       start address to access
5192  * @buf:        source or destination buffer
5193  * @len:        number of bytes to transfer
5194  * @gup_flags:  flags modifying lookup behaviour
5195  *
5196  * The caller must hold a reference on @mm.
5197  *
5198  * Return: number of bytes copied from source to destination.
5199  */
5200 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
5201                 void *buf, int len, unsigned int gup_flags)
5202 {
5203         return __access_remote_vm(mm, addr, buf, len, gup_flags);
5204 }
5205
5206 /*
5207  * Access another process' address space.
5208  * Source/target buffer must be kernel space,
5209  * Do not walk the page table directly, use get_user_pages
5210  */
5211 int access_process_vm(struct task_struct *tsk, unsigned long addr,
5212                 void *buf, int len, unsigned int gup_flags)
5213 {
5214         struct mm_struct *mm;
5215         int ret;
5216
5217         mm = get_task_mm(tsk);
5218         if (!mm)
5219                 return 0;
5220
5221         ret = __access_remote_vm(mm, addr, buf, len, gup_flags);
5222
5223         mmput(mm);
5224
5225         return ret;
5226 }
5227 EXPORT_SYMBOL_GPL(access_process_vm);
5228
5229 /*
5230  * Print the name of a VMA.
5231  */
5232 void print_vma_addr(char *prefix, unsigned long ip)
5233 {
5234         struct mm_struct *mm = current->mm;
5235         struct vm_area_struct *vma;
5236
5237         /*
5238          * we might be running from an atomic context so we cannot sleep
5239          */
5240         if (!mmap_read_trylock(mm))
5241                 return;
5242
5243         vma = find_vma(mm, ip);
5244         if (vma && vma->vm_file) {
5245                 struct file *f = vma->vm_file;
5246                 char *buf = (char *)__get_free_page(GFP_NOWAIT);
5247                 if (buf) {
5248                         char *p;
5249
5250                         p = file_path(f, buf, PAGE_SIZE);
5251                         if (IS_ERR(p))
5252                                 p = "?";
5253                         printk("%s%s[%lx+%lx]", prefix, kbasename(p),
5254                                         vma->vm_start,
5255                                         vma->vm_end - vma->vm_start);
5256                         free_page((unsigned long)buf);
5257                 }
5258         }
5259         mmap_read_unlock(mm);
5260 }
5261
5262 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
5263 void __might_fault(const char *file, int line)
5264 {
5265         /*
5266          * Some code (nfs/sunrpc) uses socket ops on kernel memory while
5267          * holding the mmap_lock, this is safe because kernel memory doesn't
5268          * get paged out, therefore we'll never actually fault, and the
5269          * below annotations will generate false positives.
5270          */
5271         if (uaccess_kernel())
5272                 return;
5273         if (pagefault_disabled())
5274                 return;
5275         __might_sleep(file, line);
5276 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
5277         if (current->mm)
5278                 might_lock_read(&current->mm->mmap_lock);
5279 #endif
5280 }
5281 EXPORT_SYMBOL(__might_fault);
5282 #endif
5283
5284 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
5285 /*
5286  * Process all subpages of the specified huge page with the specified
5287  * operation.  The target subpage will be processed last to keep its
5288  * cache lines hot.
5289  */
5290 static inline void process_huge_page(
5291         unsigned long addr_hint, unsigned int pages_per_huge_page,
5292         void (*process_subpage)(unsigned long addr, int idx, void *arg),
5293         void *arg)
5294 {
5295         int i, n, base, l;
5296         unsigned long addr = addr_hint &
5297                 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5298
5299         /* Process target subpage last to keep its cache lines hot */
5300         might_sleep();
5301         n = (addr_hint - addr) / PAGE_SIZE;
5302         if (2 * n <= pages_per_huge_page) {
5303                 /* If target subpage in first half of huge page */
5304                 base = 0;
5305                 l = n;
5306                 /* Process subpages at the end of huge page */
5307                 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
5308                         cond_resched();
5309                         process_subpage(addr + i * PAGE_SIZE, i, arg);
5310                 }
5311         } else {
5312                 /* If target subpage in second half of huge page */
5313                 base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
5314                 l = pages_per_huge_page - n;
5315                 /* Process subpages at the begin of huge page */
5316                 for (i = 0; i < base; i++) {
5317                         cond_resched();
5318                         process_subpage(addr + i * PAGE_SIZE, i, arg);
5319                 }
5320         }
5321         /*
5322          * Process remaining subpages in left-right-left-right pattern
5323          * towards the target subpage
5324          */
5325         for (i = 0; i < l; i++) {
5326                 int left_idx = base + i;
5327                 int right_idx = base + 2 * l - 1 - i;
5328
5329                 cond_resched();
5330                 process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
5331                 cond_resched();
5332                 process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
5333         }
5334 }
5335
5336 static void clear_gigantic_page(struct page *page,
5337                                 unsigned long addr,
5338                                 unsigned int pages_per_huge_page)
5339 {
5340         int i;
5341         struct page *p = page;
5342
5343         might_sleep();
5344         for (i = 0; i < pages_per_huge_page;
5345              i++, p = mem_map_next(p, page, i)) {
5346                 cond_resched();
5347                 clear_user_highpage(p, addr + i * PAGE_SIZE);
5348         }
5349 }
5350
5351 static void clear_subpage(unsigned long addr, int idx, void *arg)
5352 {
5353         struct page *page = arg;
5354
5355         clear_user_highpage(page + idx, addr);
5356 }
5357
5358 void clear_huge_page(struct page *page,
5359                      unsigned long addr_hint, unsigned int pages_per_huge_page)
5360 {
5361         unsigned long addr = addr_hint &
5362                 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5363
5364         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5365                 clear_gigantic_page(page, addr, pages_per_huge_page);
5366                 return;
5367         }
5368
5369         process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
5370 }
5371
5372 static void copy_user_gigantic_page(struct page *dst, struct page *src,
5373                                     unsigned long addr,
5374                                     struct vm_area_struct *vma,
5375                                     unsigned int pages_per_huge_page)
5376 {
5377         int i;
5378         struct page *dst_base = dst;
5379         struct page *src_base = src;
5380
5381         for (i = 0; i < pages_per_huge_page; ) {
5382                 cond_resched();
5383                 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
5384
5385                 i++;
5386                 dst = mem_map_next(dst, dst_base, i);
5387                 src = mem_map_next(src, src_base, i);
5388         }
5389 }
5390
5391 struct copy_subpage_arg {
5392         struct page *dst;
5393         struct page *src;
5394         struct vm_area_struct *vma;
5395 };
5396
5397 static void copy_subpage(unsigned long addr, int idx, void *arg)
5398 {
5399         struct copy_subpage_arg *copy_arg = arg;
5400
5401         copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
5402                            addr, copy_arg->vma);
5403 }
5404
5405 void copy_user_huge_page(struct page *dst, struct page *src,
5406                          unsigned long addr_hint, struct vm_area_struct *vma,
5407                          unsigned int pages_per_huge_page)
5408 {
5409         unsigned long addr = addr_hint &
5410                 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5411         struct copy_subpage_arg arg = {
5412                 .dst = dst,
5413                 .src = src,
5414                 .vma = vma,
5415         };
5416
5417         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5418                 copy_user_gigantic_page(dst, src, addr, vma,
5419                                         pages_per_huge_page);
5420                 return;
5421         }
5422
5423         process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
5424 }
5425
5426 long copy_huge_page_from_user(struct page *dst_page,
5427                                 const void __user *usr_src,
5428                                 unsigned int pages_per_huge_page,
5429                                 bool allow_pagefault)
5430 {
5431         void *page_kaddr;
5432         unsigned long i, rc = 0;
5433         unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
5434         struct page *subpage = dst_page;
5435
5436         for (i = 0; i < pages_per_huge_page;
5437              i++, subpage = mem_map_next(subpage, dst_page, i)) {
5438                 if (allow_pagefault)
5439                         page_kaddr = kmap(subpage);
5440                 else
5441                         page_kaddr = kmap_atomic(subpage);
5442                 rc = copy_from_user(page_kaddr,
5443                                 usr_src + i * PAGE_SIZE, PAGE_SIZE);
5444                 if (allow_pagefault)
5445                         kunmap(subpage);
5446                 else
5447                         kunmap_atomic(page_kaddr);
5448
5449                 ret_val -= (PAGE_SIZE - rc);
5450                 if (rc)
5451                         break;
5452
5453                 flush_dcache_page(subpage);
5454
5455                 cond_resched();
5456         }
5457         return ret_val;
5458 }
5459 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
5460
5461 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
5462
5463 static struct kmem_cache *page_ptl_cachep;
5464
5465 void __init ptlock_cache_init(void)
5466 {
5467         page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
5468                         SLAB_PANIC, NULL);
5469 }
5470
5471 bool ptlock_alloc(struct page *page)
5472 {
5473         spinlock_t *ptl;
5474
5475         ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
5476         if (!ptl)
5477                 return false;
5478         page->ptl = ptl;
5479         return true;
5480 }
5481
5482 void ptlock_free(struct page *page)
5483 {
5484         kmem_cache_free(page_ptl_cachep, page->ptl);
5485 }
5486 #endif