OSDN Git Service

d5bb1465d30c84502ad4018c951d8e2ee829c264
[sagit-ice-cold/kernel_xiaomi_msm8998.git] / mm / memory.c
1 /*
2  *  linux/mm/memory.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  */
6
7 /*
8  * demand-loading started 01.12.91 - seems it is high on the list of
9  * things wanted, and it should be easy to implement. - Linus
10  */
11
12 /*
13  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14  * pages started 02.12.91, seems to work. - Linus.
15  *
16  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17  * would have taken more than the 6M I have free, but it worked well as
18  * far as I could see.
19  *
20  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21  */
22
23 /*
24  * Real VM (paging to/from disk) started 18.12.91. Much more work and
25  * thought has to go into this. Oh, well..
26  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
27  *              Found it. Everything seems to work now.
28  * 20.12.91  -  Ok, making the swap-device changeable like the root.
29  */
30
31 /*
32  * 05.04.94  -  Multi-page memory management added for v1.1.
33  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
34  *
35  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
36  *              (Gerhard.Wichert@pdb.siemens.de)
37  *
38  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39  */
40
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/ksm.h>
49 #include <linux/rmap.h>
50 #include <linux/export.h>
51 #include <linux/delayacct.h>
52 #include <linux/init.h>
53 #include <linux/writeback.h>
54 #include <linux/memcontrol.h>
55 #include <linux/mmu_notifier.h>
56 #include <linux/kallsyms.h>
57 #include <linux/swapops.h>
58 #include <linux/elf.h>
59 #include <linux/gfp.h>
60 #include <linux/migrate.h>
61 #include <linux/string.h>
62 #include <linux/dma-debug.h>
63 #include <linux/debugfs.h>
64 #include <linux/userfaultfd_k.h>
65
66 #include <asm/io.h>
67 #include <asm/pgalloc.h>
68 #include <asm/uaccess.h>
69 #include <asm/tlb.h>
70 #include <asm/tlbflush.h>
71 #include <asm/pgtable.h>
72
73 #include "internal.h"
74
75 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
76 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
77 #endif
78
79 #ifndef CONFIG_NEED_MULTIPLE_NODES
80 /* use the per-pgdat data instead for discontigmem - mbligh */
81 unsigned long max_mapnr;
82 struct page *mem_map;
83
84 EXPORT_SYMBOL(max_mapnr);
85 EXPORT_SYMBOL(mem_map);
86 #endif
87
88 /*
89  * A number of key systems in x86 including ioremap() rely on the assumption
90  * that high_memory defines the upper bound on direct map memory, then end
91  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
92  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
93  * and ZONE_HIGHMEM.
94  */
95 void * high_memory;
96
97 EXPORT_SYMBOL(high_memory);
98
99 /*
100  * Randomize the address space (stacks, mmaps, brk, etc.).
101  *
102  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
103  *   as ancient (libc5 based) binaries can segfault. )
104  */
105 int randomize_va_space __read_mostly =
106 #ifdef CONFIG_COMPAT_BRK
107                                         1;
108 #else
109                                         2;
110 #endif
111
112 static int __init disable_randmaps(char *s)
113 {
114         randomize_va_space = 0;
115         return 1;
116 }
117 __setup("norandmaps", disable_randmaps);
118
119 unsigned long zero_pfn __read_mostly;
120 unsigned long highest_memmap_pfn __read_mostly;
121
122 EXPORT_SYMBOL(zero_pfn);
123
124 /*
125  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
126  */
127 static int __init init_zero_pfn(void)
128 {
129         zero_pfn = page_to_pfn(ZERO_PAGE(0));
130         return 0;
131 }
132 core_initcall(init_zero_pfn);
133
134
135 #if defined(SPLIT_RSS_COUNTING)
136
137 void sync_mm_rss(struct mm_struct *mm)
138 {
139         int i;
140
141         for (i = 0; i < NR_MM_COUNTERS; i++) {
142                 if (current->rss_stat.count[i]) {
143                         add_mm_counter(mm, i, current->rss_stat.count[i]);
144                         current->rss_stat.count[i] = 0;
145                 }
146         }
147         current->rss_stat.events = 0;
148 }
149
150 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
151 {
152         struct task_struct *task = current;
153
154         if (likely(task->mm == mm))
155                 task->rss_stat.count[member] += val;
156         else
157                 add_mm_counter(mm, member, val);
158 }
159 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
160 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
161
162 /* sync counter once per 64 page faults */
163 #define TASK_RSS_EVENTS_THRESH  (64)
164 static void check_sync_rss_stat(struct task_struct *task)
165 {
166         if (unlikely(task != current))
167                 return;
168         if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
169                 sync_mm_rss(task->mm);
170 }
171 #else /* SPLIT_RSS_COUNTING */
172
173 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
174 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
175
176 static void check_sync_rss_stat(struct task_struct *task)
177 {
178 }
179
180 #endif /* SPLIT_RSS_COUNTING */
181
182 #ifdef HAVE_GENERIC_MMU_GATHER
183
184 static bool tlb_next_batch(struct mmu_gather *tlb)
185 {
186         struct mmu_gather_batch *batch;
187
188         batch = tlb->active;
189         if (batch->next) {
190                 tlb->active = batch->next;
191                 return true;
192         }
193
194         if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
195                 return false;
196
197         batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
198         if (!batch)
199                 return false;
200
201         tlb->batch_count++;
202         batch->next = NULL;
203         batch->nr   = 0;
204         batch->max  = MAX_GATHER_BATCH;
205
206         tlb->active->next = batch;
207         tlb->active = batch;
208
209         return true;
210 }
211
212 /* tlb_gather_mmu
213  *      Called to initialize an (on-stack) mmu_gather structure for page-table
214  *      tear-down from @mm. The @fullmm argument is used when @mm is without
215  *      users and we're going to destroy the full address space (exit/execve).
216  */
217 void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, unsigned long start, unsigned long end)
218 {
219         tlb->mm = mm;
220
221         /* Is it from 0 to ~0? */
222         tlb->fullmm     = !(start | (end+1));
223         tlb->need_flush_all = 0;
224         tlb->local.next = NULL;
225         tlb->local.nr   = 0;
226         tlb->local.max  = ARRAY_SIZE(tlb->__pages);
227         tlb->active     = &tlb->local;
228         tlb->batch_count = 0;
229
230 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
231         tlb->batch = NULL;
232 #endif
233
234         __tlb_reset_range(tlb);
235 }
236
237 static void tlb_flush_mmu_tlbonly(struct mmu_gather *tlb)
238 {
239         if (!tlb->end)
240                 return;
241
242         tlb_flush(tlb);
243         mmu_notifier_invalidate_range(tlb->mm, tlb->start, tlb->end);
244 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
245         tlb_table_flush(tlb);
246 #endif
247         __tlb_reset_range(tlb);
248 }
249
250 static void tlb_flush_mmu_free(struct mmu_gather *tlb)
251 {
252         struct mmu_gather_batch *batch;
253
254         for (batch = &tlb->local; batch && batch->nr; batch = batch->next) {
255                 free_pages_and_swap_cache(batch->pages, batch->nr);
256                 batch->nr = 0;
257         }
258         tlb->active = &tlb->local;
259 }
260
261 void tlb_flush_mmu(struct mmu_gather *tlb)
262 {
263         tlb_flush_mmu_tlbonly(tlb);
264         tlb_flush_mmu_free(tlb);
265 }
266
267 /* tlb_finish_mmu
268  *      Called at the end of the shootdown operation to free up any resources
269  *      that were required.
270  */
271 void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end)
272 {
273         struct mmu_gather_batch *batch, *next;
274
275         tlb_flush_mmu(tlb);
276
277         /* keep the page table cache within bounds */
278         check_pgt_cache();
279
280         for (batch = tlb->local.next; batch; batch = next) {
281                 next = batch->next;
282                 free_pages((unsigned long)batch, 0);
283         }
284         tlb->local.next = NULL;
285 }
286
287 /* __tlb_remove_page
288  *      Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
289  *      handling the additional races in SMP caused by other CPUs caching valid
290  *      mappings in their TLBs. Returns the number of free page slots left.
291  *      When out of page slots we must call tlb_flush_mmu().
292  */
293 int __tlb_remove_page(struct mmu_gather *tlb, struct page *page)
294 {
295         struct mmu_gather_batch *batch;
296
297         VM_BUG_ON(!tlb->end);
298
299         batch = tlb->active;
300         batch->pages[batch->nr++] = page;
301         if (batch->nr == batch->max) {
302                 if (!tlb_next_batch(tlb))
303                         return 0;
304                 batch = tlb->active;
305         }
306         VM_BUG_ON_PAGE(batch->nr > batch->max, page);
307
308         return batch->max - batch->nr;
309 }
310
311 #endif /* HAVE_GENERIC_MMU_GATHER */
312
313 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
314
315 /*
316  * See the comment near struct mmu_table_batch.
317  */
318
319 static void tlb_remove_table_smp_sync(void *arg)
320 {
321         /* Simply deliver the interrupt */
322 }
323
324 static void tlb_remove_table_one(void *table)
325 {
326         /*
327          * This isn't an RCU grace period and hence the page-tables cannot be
328          * assumed to be actually RCU-freed.
329          *
330          * It is however sufficient for software page-table walkers that rely on
331          * IRQ disabling. See the comment near struct mmu_table_batch.
332          */
333         smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
334         __tlb_remove_table(table);
335 }
336
337 static void tlb_remove_table_rcu(struct rcu_head *head)
338 {
339         struct mmu_table_batch *batch;
340         int i;
341
342         batch = container_of(head, struct mmu_table_batch, rcu);
343
344         for (i = 0; i < batch->nr; i++)
345                 __tlb_remove_table(batch->tables[i]);
346
347         free_page((unsigned long)batch);
348 }
349
350 void tlb_table_flush(struct mmu_gather *tlb)
351 {
352         struct mmu_table_batch **batch = &tlb->batch;
353
354         if (*batch) {
355                 call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
356                 *batch = NULL;
357         }
358 }
359
360 void tlb_remove_table(struct mmu_gather *tlb, void *table)
361 {
362         struct mmu_table_batch **batch = &tlb->batch;
363
364         /*
365          * When there's less then two users of this mm there cannot be a
366          * concurrent page-table walk.
367          */
368         if (atomic_read(&tlb->mm->mm_users) < 2) {
369                 __tlb_remove_table(table);
370                 return;
371         }
372
373         if (*batch == NULL) {
374                 *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
375                 if (*batch == NULL) {
376                         tlb_remove_table_one(table);
377                         return;
378                 }
379                 (*batch)->nr = 0;
380         }
381         (*batch)->tables[(*batch)->nr++] = table;
382         if ((*batch)->nr == MAX_TABLE_BATCH)
383                 tlb_table_flush(tlb);
384 }
385
386 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */
387
388 /*
389  * Note: this doesn't free the actual pages themselves. That
390  * has been handled earlier when unmapping all the memory regions.
391  */
392 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
393                            unsigned long addr)
394 {
395         pgtable_t token = pmd_pgtable(*pmd);
396         pmd_clear(pmd);
397         pte_free_tlb(tlb, token, addr);
398         atomic_long_dec(&tlb->mm->nr_ptes);
399 }
400
401 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
402                                 unsigned long addr, unsigned long end,
403                                 unsigned long floor, unsigned long ceiling)
404 {
405         pmd_t *pmd;
406         unsigned long next;
407         unsigned long start;
408
409         start = addr;
410         pmd = pmd_offset(pud, addr);
411         do {
412                 next = pmd_addr_end(addr, end);
413                 if (pmd_none_or_clear_bad(pmd))
414                         continue;
415                 free_pte_range(tlb, pmd, addr);
416         } while (pmd++, addr = next, addr != end);
417
418         start &= PUD_MASK;
419         if (start < floor)
420                 return;
421         if (ceiling) {
422                 ceiling &= PUD_MASK;
423                 if (!ceiling)
424                         return;
425         }
426         if (end - 1 > ceiling - 1)
427                 return;
428
429         pmd = pmd_offset(pud, start);
430         pud_clear(pud);
431         pmd_free_tlb(tlb, pmd, start);
432         mm_dec_nr_pmds(tlb->mm);
433 }
434
435 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
436                                 unsigned long addr, unsigned long end,
437                                 unsigned long floor, unsigned long ceiling)
438 {
439         pud_t *pud;
440         unsigned long next;
441         unsigned long start;
442
443         start = addr;
444         pud = pud_offset(pgd, addr);
445         do {
446                 next = pud_addr_end(addr, end);
447                 if (pud_none_or_clear_bad(pud))
448                         continue;
449                 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
450         } while (pud++, addr = next, addr != end);
451
452         start &= PGDIR_MASK;
453         if (start < floor)
454                 return;
455         if (ceiling) {
456                 ceiling &= PGDIR_MASK;
457                 if (!ceiling)
458                         return;
459         }
460         if (end - 1 > ceiling - 1)
461                 return;
462
463         pud = pud_offset(pgd, start);
464         pgd_clear(pgd);
465         pud_free_tlb(tlb, pud, start);
466 }
467
468 /*
469  * This function frees user-level page tables of a process.
470  */
471 void free_pgd_range(struct mmu_gather *tlb,
472                         unsigned long addr, unsigned long end,
473                         unsigned long floor, unsigned long ceiling)
474 {
475         pgd_t *pgd;
476         unsigned long next;
477
478         /*
479          * The next few lines have given us lots of grief...
480          *
481          * Why are we testing PMD* at this top level?  Because often
482          * there will be no work to do at all, and we'd prefer not to
483          * go all the way down to the bottom just to discover that.
484          *
485          * Why all these "- 1"s?  Because 0 represents both the bottom
486          * of the address space and the top of it (using -1 for the
487          * top wouldn't help much: the masks would do the wrong thing).
488          * The rule is that addr 0 and floor 0 refer to the bottom of
489          * the address space, but end 0 and ceiling 0 refer to the top
490          * Comparisons need to use "end - 1" and "ceiling - 1" (though
491          * that end 0 case should be mythical).
492          *
493          * Wherever addr is brought up or ceiling brought down, we must
494          * be careful to reject "the opposite 0" before it confuses the
495          * subsequent tests.  But what about where end is brought down
496          * by PMD_SIZE below? no, end can't go down to 0 there.
497          *
498          * Whereas we round start (addr) and ceiling down, by different
499          * masks at different levels, in order to test whether a table
500          * now has no other vmas using it, so can be freed, we don't
501          * bother to round floor or end up - the tests don't need that.
502          */
503
504         addr &= PMD_MASK;
505         if (addr < floor) {
506                 addr += PMD_SIZE;
507                 if (!addr)
508                         return;
509         }
510         if (ceiling) {
511                 ceiling &= PMD_MASK;
512                 if (!ceiling)
513                         return;
514         }
515         if (end - 1 > ceiling - 1)
516                 end -= PMD_SIZE;
517         if (addr > end - 1)
518                 return;
519
520         pgd = pgd_offset(tlb->mm, addr);
521         do {
522                 next = pgd_addr_end(addr, end);
523                 if (pgd_none_or_clear_bad(pgd))
524                         continue;
525                 free_pud_range(tlb, pgd, addr, next, floor, ceiling);
526         } while (pgd++, addr = next, addr != end);
527 }
528
529 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
530                 unsigned long floor, unsigned long ceiling)
531 {
532         while (vma) {
533                 struct vm_area_struct *next = vma->vm_next;
534                 unsigned long addr = vma->vm_start;
535
536                 /*
537                  * Hide vma from rmap and truncate_pagecache before freeing
538                  * pgtables
539                  */
540                 unlink_anon_vmas(vma);
541                 unlink_file_vma(vma);
542
543                 if (is_vm_hugetlb_page(vma)) {
544                         hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
545                                 floor, next? next->vm_start: ceiling);
546                 } else {
547                         /*
548                          * Optimization: gather nearby vmas into one call down
549                          */
550                         while (next && next->vm_start <= vma->vm_end + PMD_SIZE
551                                && !is_vm_hugetlb_page(next)) {
552                                 vma = next;
553                                 next = vma->vm_next;
554                                 unlink_anon_vmas(vma);
555                                 unlink_file_vma(vma);
556                         }
557                         free_pgd_range(tlb, addr, vma->vm_end,
558                                 floor, next? next->vm_start: ceiling);
559                 }
560                 vma = next;
561         }
562 }
563
564 int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
565                 pmd_t *pmd, unsigned long address)
566 {
567         spinlock_t *ptl;
568         pgtable_t new = pte_alloc_one(mm, address);
569         int wait_split_huge_page;
570         if (!new)
571                 return -ENOMEM;
572
573         /*
574          * Ensure all pte setup (eg. pte page lock and page clearing) are
575          * visible before the pte is made visible to other CPUs by being
576          * put into page tables.
577          *
578          * The other side of the story is the pointer chasing in the page
579          * table walking code (when walking the page table without locking;
580          * ie. most of the time). Fortunately, these data accesses consist
581          * of a chain of data-dependent loads, meaning most CPUs (alpha
582          * being the notable exception) will already guarantee loads are
583          * seen in-order. See the alpha page table accessors for the
584          * smp_read_barrier_depends() barriers in page table walking code.
585          */
586         smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
587
588         ptl = pmd_lock(mm, pmd);
589         wait_split_huge_page = 0;
590         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
591                 atomic_long_inc(&mm->nr_ptes);
592                 pmd_populate(mm, pmd, new);
593                 new = NULL;
594         } else if (unlikely(pmd_trans_splitting(*pmd)))
595                 wait_split_huge_page = 1;
596         spin_unlock(ptl);
597         if (new)
598                 pte_free(mm, new);
599         if (wait_split_huge_page)
600                 wait_split_huge_page(vma->anon_vma, pmd);
601         return 0;
602 }
603
604 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
605 {
606         pte_t *new = pte_alloc_one_kernel(&init_mm, address);
607         if (!new)
608                 return -ENOMEM;
609
610         smp_wmb(); /* See comment in __pte_alloc */
611
612         spin_lock(&init_mm.page_table_lock);
613         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
614                 pmd_populate_kernel(&init_mm, pmd, new);
615                 new = NULL;
616         } else
617                 VM_BUG_ON(pmd_trans_splitting(*pmd));
618         spin_unlock(&init_mm.page_table_lock);
619         if (new)
620                 pte_free_kernel(&init_mm, new);
621         return 0;
622 }
623
624 static inline void init_rss_vec(int *rss)
625 {
626         memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
627 }
628
629 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
630 {
631         int i;
632
633         if (current->mm == mm)
634                 sync_mm_rss(mm);
635         for (i = 0; i < NR_MM_COUNTERS; i++)
636                 if (rss[i])
637                         add_mm_counter(mm, i, rss[i]);
638 }
639
640 /*
641  * This function is called to print an error when a bad pte
642  * is found. For example, we might have a PFN-mapped pte in
643  * a region that doesn't allow it.
644  *
645  * The calling function must still handle the error.
646  */
647 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
648                           pte_t pte, struct page *page)
649 {
650         pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
651         pud_t *pud = pud_offset(pgd, addr);
652         pmd_t *pmd = pmd_offset(pud, addr);
653         struct address_space *mapping;
654         pgoff_t index;
655         static unsigned long resume;
656         static unsigned long nr_shown;
657         static unsigned long nr_unshown;
658
659         /*
660          * Allow a burst of 60 reports, then keep quiet for that minute;
661          * or allow a steady drip of one report per second.
662          */
663         if (nr_shown == 60) {
664                 if (time_before(jiffies, resume)) {
665                         nr_unshown++;
666                         return;
667                 }
668                 if (nr_unshown) {
669                         printk(KERN_ALERT
670                                 "BUG: Bad page map: %lu messages suppressed\n",
671                                 nr_unshown);
672                         nr_unshown = 0;
673                 }
674                 nr_shown = 0;
675         }
676         if (nr_shown++ == 0)
677                 resume = jiffies + 60 * HZ;
678
679         mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
680         index = linear_page_index(vma, addr);
681
682         printk(KERN_ALERT
683                 "BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
684                 current->comm,
685                 (long long)pte_val(pte), (long long)pmd_val(*pmd));
686         if (page)
687                 dump_page(page, "bad pte");
688         printk(KERN_ALERT
689                 "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
690                 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
691         /*
692          * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
693          */
694         pr_alert("file:%pD fault:%pf mmap:%pf readpage:%pf\n",
695                  vma->vm_file,
696                  vma->vm_ops ? vma->vm_ops->fault : NULL,
697                  vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
698                  mapping ? mapping->a_ops->readpage : NULL);
699         dump_stack();
700         add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
701 }
702
703 /*
704  * vm_normal_page -- This function gets the "struct page" associated with a pte.
705  *
706  * "Special" mappings do not wish to be associated with a "struct page" (either
707  * it doesn't exist, or it exists but they don't want to touch it). In this
708  * case, NULL is returned here. "Normal" mappings do have a struct page.
709  *
710  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
711  * pte bit, in which case this function is trivial. Secondly, an architecture
712  * may not have a spare pte bit, which requires a more complicated scheme,
713  * described below.
714  *
715  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
716  * special mapping (even if there are underlying and valid "struct pages").
717  * COWed pages of a VM_PFNMAP are always normal.
718  *
719  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
720  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
721  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
722  * mapping will always honor the rule
723  *
724  *      pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
725  *
726  * And for normal mappings this is false.
727  *
728  * This restricts such mappings to be a linear translation from virtual address
729  * to pfn. To get around this restriction, we allow arbitrary mappings so long
730  * as the vma is not a COW mapping; in that case, we know that all ptes are
731  * special (because none can have been COWed).
732  *
733  *
734  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
735  *
736  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
737  * page" backing, however the difference is that _all_ pages with a struct
738  * page (that is, those where pfn_valid is true) are refcounted and considered
739  * normal pages by the VM. The disadvantage is that pages are refcounted
740  * (which can be slower and simply not an option for some PFNMAP users). The
741  * advantage is that we don't have to follow the strict linearity rule of
742  * PFNMAP mappings in order to support COWable mappings.
743  *
744  */
745 #ifdef __HAVE_ARCH_PTE_SPECIAL
746 # define HAVE_PTE_SPECIAL 1
747 #else
748 # define HAVE_PTE_SPECIAL 0
749 #endif
750 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
751                                 pte_t pte)
752 {
753         unsigned long pfn = pte_pfn(pte);
754
755         if (HAVE_PTE_SPECIAL) {
756                 if (likely(!pte_special(pte)))
757                         goto check_pfn;
758                 if (vma->vm_ops && vma->vm_ops->find_special_page)
759                         return vma->vm_ops->find_special_page(vma, addr);
760                 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
761                         return NULL;
762                 if (!is_zero_pfn(pfn))
763                         print_bad_pte(vma, addr, pte, NULL);
764                 return NULL;
765         }
766
767         /* !HAVE_PTE_SPECIAL case follows: */
768
769         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
770                 if (vma->vm_flags & VM_MIXEDMAP) {
771                         if (!pfn_valid(pfn))
772                                 return NULL;
773                         goto out;
774                 } else {
775                         unsigned long off;
776                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
777                         if (pfn == vma->vm_pgoff + off)
778                                 return NULL;
779                         if (!is_cow_mapping(vma->vm_flags))
780                                 return NULL;
781                 }
782         }
783
784         if (is_zero_pfn(pfn))
785                 return NULL;
786 check_pfn:
787         if (unlikely(pfn > highest_memmap_pfn)) {
788                 print_bad_pte(vma, addr, pte, NULL);
789                 return NULL;
790         }
791
792         /*
793          * NOTE! We still have PageReserved() pages in the page tables.
794          * eg. VDSO mappings can cause them to exist.
795          */
796 out:
797         return pfn_to_page(pfn);
798 }
799
800 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
801 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
802                                 pmd_t pmd)
803 {
804         unsigned long pfn = pmd_pfn(pmd);
805
806         /*
807          * There is no pmd_special() but there may be special pmds, e.g.
808          * in a direct-access (dax) mapping, so let's just replicate the
809          * !HAVE_PTE_SPECIAL case from vm_normal_page() here.
810          */
811         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
812                 if (vma->vm_flags & VM_MIXEDMAP) {
813                         if (!pfn_valid(pfn))
814                                 return NULL;
815                         goto out;
816                 } else {
817                         unsigned long off;
818                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
819                         if (pfn == vma->vm_pgoff + off)
820                                 return NULL;
821                         if (!is_cow_mapping(vma->vm_flags))
822                                 return NULL;
823                 }
824         }
825
826         if (is_zero_pfn(pfn))
827                 return NULL;
828         if (unlikely(pfn > highest_memmap_pfn))
829                 return NULL;
830
831         /*
832          * NOTE! We still have PageReserved() pages in the page tables.
833          * eg. VDSO mappings can cause them to exist.
834          */
835 out:
836         return pfn_to_page(pfn);
837 }
838 #endif
839
840 /*
841  * copy one vm_area from one task to the other. Assumes the page tables
842  * already present in the new task to be cleared in the whole range
843  * covered by this vma.
844  */
845
846 static inline unsigned long
847 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
848                 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
849                 unsigned long addr, int *rss)
850 {
851         unsigned long vm_flags = vma->vm_flags;
852         pte_t pte = *src_pte;
853         struct page *page;
854
855         /* pte contains position in swap or file, so copy. */
856         if (unlikely(!pte_present(pte))) {
857                 swp_entry_t entry = pte_to_swp_entry(pte);
858
859                 if (likely(!non_swap_entry(entry))) {
860                         if (swap_duplicate(entry) < 0)
861                                 return entry.val;
862
863                         /* make sure dst_mm is on swapoff's mmlist. */
864                         if (unlikely(list_empty(&dst_mm->mmlist))) {
865                                 spin_lock(&mmlist_lock);
866                                 if (list_empty(&dst_mm->mmlist))
867                                         list_add(&dst_mm->mmlist,
868                                                         &src_mm->mmlist);
869                                 spin_unlock(&mmlist_lock);
870                         }
871                         rss[MM_SWAPENTS]++;
872                 } else if (is_migration_entry(entry)) {
873                         page = migration_entry_to_page(entry);
874
875                         if (PageAnon(page))
876                                 rss[MM_ANONPAGES]++;
877                         else
878                                 rss[MM_FILEPAGES]++;
879
880                         if (is_write_migration_entry(entry) &&
881                                         is_cow_mapping(vm_flags)) {
882                                 /*
883                                  * COW mappings require pages in both
884                                  * parent and child to be set to read.
885                                  */
886                                 make_migration_entry_read(&entry);
887                                 pte = swp_entry_to_pte(entry);
888                                 if (pte_swp_soft_dirty(*src_pte))
889                                         pte = pte_swp_mksoft_dirty(pte);
890                                 set_pte_at(src_mm, addr, src_pte, pte);
891                         }
892                 }
893                 goto out_set_pte;
894         }
895
896         /*
897          * If it's a COW mapping, write protect it both
898          * in the parent and the child
899          */
900         if (is_cow_mapping(vm_flags)) {
901                 ptep_set_wrprotect(src_mm, addr, src_pte);
902                 pte = pte_wrprotect(pte);
903         }
904
905         /*
906          * If it's a shared mapping, mark it clean in
907          * the child
908          */
909         if (vm_flags & VM_SHARED)
910                 pte = pte_mkclean(pte);
911         pte = pte_mkold(pte);
912
913         page = vm_normal_page(vma, addr, pte);
914         if (page) {
915                 get_page(page);
916                 page_dup_rmap(page);
917                 if (PageAnon(page))
918                         rss[MM_ANONPAGES]++;
919                 else
920                         rss[MM_FILEPAGES]++;
921         }
922
923 out_set_pte:
924         set_pte_at(dst_mm, addr, dst_pte, pte);
925         return 0;
926 }
927
928 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
929                    pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
930                    unsigned long addr, unsigned long end)
931 {
932         pte_t *orig_src_pte, *orig_dst_pte;
933         pte_t *src_pte, *dst_pte;
934         spinlock_t *src_ptl, *dst_ptl;
935         int progress = 0;
936         int rss[NR_MM_COUNTERS];
937         swp_entry_t entry = (swp_entry_t){0};
938
939 again:
940         init_rss_vec(rss);
941
942         dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
943         if (!dst_pte)
944                 return -ENOMEM;
945         src_pte = pte_offset_map(src_pmd, addr);
946         src_ptl = pte_lockptr(src_mm, src_pmd);
947         spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
948         orig_src_pte = src_pte;
949         orig_dst_pte = dst_pte;
950         arch_enter_lazy_mmu_mode();
951
952         do {
953                 /*
954                  * We are holding two locks at this point - either of them
955                  * could generate latencies in another task on another CPU.
956                  */
957                 if (progress >= 32) {
958                         progress = 0;
959                         if (need_resched() ||
960                             spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
961                                 break;
962                 }
963                 if (pte_none(*src_pte)) {
964                         progress++;
965                         continue;
966                 }
967                 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
968                                                         vma, addr, rss);
969                 if (entry.val)
970                         break;
971                 progress += 8;
972         } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
973
974         arch_leave_lazy_mmu_mode();
975         spin_unlock(src_ptl);
976         pte_unmap(orig_src_pte);
977         add_mm_rss_vec(dst_mm, rss);
978         pte_unmap_unlock(orig_dst_pte, dst_ptl);
979         cond_resched();
980
981         if (entry.val) {
982                 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
983                         return -ENOMEM;
984                 progress = 0;
985         }
986         if (addr != end)
987                 goto again;
988         return 0;
989 }
990
991 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
992                 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
993                 unsigned long addr, unsigned long end)
994 {
995         pmd_t *src_pmd, *dst_pmd;
996         unsigned long next;
997
998         dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
999         if (!dst_pmd)
1000                 return -ENOMEM;
1001         src_pmd = pmd_offset(src_pud, addr);
1002         do {
1003                 next = pmd_addr_end(addr, end);
1004                 if (pmd_trans_huge(*src_pmd)) {
1005                         int err;
1006                         VM_BUG_ON(next-addr != HPAGE_PMD_SIZE);
1007                         err = copy_huge_pmd(dst_mm, src_mm,
1008                                             dst_pmd, src_pmd, addr, vma);
1009                         if (err == -ENOMEM)
1010                                 return -ENOMEM;
1011                         if (!err)
1012                                 continue;
1013                         /* fall through */
1014                 }
1015                 if (pmd_none_or_clear_bad(src_pmd))
1016                         continue;
1017                 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
1018                                                 vma, addr, next))
1019                         return -ENOMEM;
1020         } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1021         return 0;
1022 }
1023
1024 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1025                 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
1026                 unsigned long addr, unsigned long end)
1027 {
1028         pud_t *src_pud, *dst_pud;
1029         unsigned long next;
1030
1031         dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
1032         if (!dst_pud)
1033                 return -ENOMEM;
1034         src_pud = pud_offset(src_pgd, addr);
1035         do {
1036                 next = pud_addr_end(addr, end);
1037                 if (pud_none_or_clear_bad(src_pud))
1038                         continue;
1039                 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
1040                                                 vma, addr, next))
1041                         return -ENOMEM;
1042         } while (dst_pud++, src_pud++, addr = next, addr != end);
1043         return 0;
1044 }
1045
1046 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1047                 struct vm_area_struct *vma)
1048 {
1049         pgd_t *src_pgd, *dst_pgd;
1050         unsigned long next;
1051         unsigned long addr = vma->vm_start;
1052         unsigned long end = vma->vm_end;
1053         unsigned long mmun_start;       /* For mmu_notifiers */
1054         unsigned long mmun_end;         /* For mmu_notifiers */
1055         bool is_cow;
1056         int ret;
1057
1058         /*
1059          * Don't copy ptes where a page fault will fill them correctly.
1060          * Fork becomes much lighter when there are big shared or private
1061          * readonly mappings. The tradeoff is that copy_page_range is more
1062          * efficient than faulting.
1063          */
1064         if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
1065                         !vma->anon_vma)
1066                 return 0;
1067
1068         if (is_vm_hugetlb_page(vma))
1069                 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1070
1071         if (unlikely(vma->vm_flags & VM_PFNMAP)) {
1072                 /*
1073                  * We do not free on error cases below as remove_vma
1074                  * gets called on error from higher level routine
1075                  */
1076                 ret = track_pfn_copy(vma);
1077                 if (ret)
1078                         return ret;
1079         }
1080
1081         /*
1082          * We need to invalidate the secondary MMU mappings only when
1083          * there could be a permission downgrade on the ptes of the
1084          * parent mm. And a permission downgrade will only happen if
1085          * is_cow_mapping() returns true.
1086          */
1087         is_cow = is_cow_mapping(vma->vm_flags);
1088         mmun_start = addr;
1089         mmun_end   = end;
1090         if (is_cow)
1091                 mmu_notifier_invalidate_range_start(src_mm, mmun_start,
1092                                                     mmun_end);
1093
1094         ret = 0;
1095         dst_pgd = pgd_offset(dst_mm, addr);
1096         src_pgd = pgd_offset(src_mm, addr);
1097         do {
1098                 next = pgd_addr_end(addr, end);
1099                 if (pgd_none_or_clear_bad(src_pgd))
1100                         continue;
1101                 if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
1102                                             vma, addr, next))) {
1103                         ret = -ENOMEM;
1104                         break;
1105                 }
1106         } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1107
1108         if (is_cow)
1109                 mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
1110         return ret;
1111 }
1112
1113 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1114                                 struct vm_area_struct *vma, pmd_t *pmd,
1115                                 unsigned long addr, unsigned long end,
1116                                 struct zap_details *details)
1117 {
1118         struct mm_struct *mm = tlb->mm;
1119         int force_flush = 0;
1120         int rss[NR_MM_COUNTERS];
1121         spinlock_t *ptl;
1122         pte_t *start_pte;
1123         pte_t *pte;
1124         swp_entry_t entry;
1125
1126 again:
1127         init_rss_vec(rss);
1128         start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1129         pte = start_pte;
1130         flush_tlb_batched_pending(mm);
1131         arch_enter_lazy_mmu_mode();
1132         do {
1133                 pte_t ptent = *pte;
1134                 if (pte_none(ptent)) {
1135                         continue;
1136                 }
1137
1138                 if (pte_present(ptent)) {
1139                         struct page *page;
1140
1141                         page = vm_normal_page(vma, addr, ptent);
1142                         if (unlikely(details) && page) {
1143                                 /*
1144                                  * unmap_shared_mapping_pages() wants to
1145                                  * invalidate cache without truncating:
1146                                  * unmap shared but keep private pages.
1147                                  */
1148                                 if (details->check_mapping &&
1149                                     details->check_mapping != page->mapping)
1150                                         continue;
1151                         }
1152                         ptent = ptep_get_and_clear_full(mm, addr, pte,
1153                                                         tlb->fullmm);
1154                         tlb_remove_tlb_entry(tlb, pte, addr);
1155                         if (unlikely(!page))
1156                                 continue;
1157                         if (PageAnon(page))
1158                                 rss[MM_ANONPAGES]--;
1159                         else {
1160                                 if (pte_dirty(ptent)) {
1161                                         force_flush = 1;
1162                                         set_page_dirty(page);
1163                                 }
1164                                 if (pte_young(ptent) &&
1165                                     likely(!(vma->vm_flags & VM_SEQ_READ)))
1166                                         mark_page_accessed(page);
1167                                 rss[MM_FILEPAGES]--;
1168                         }
1169                         page_remove_rmap(page);
1170                         if (unlikely(page_mapcount(page) < 0))
1171                                 print_bad_pte(vma, addr, ptent, page);
1172                         if (unlikely(!__tlb_remove_page(tlb, page))) {
1173                                 force_flush = 1;
1174                                 addr += PAGE_SIZE;
1175                                 break;
1176                         }
1177                         continue;
1178                 }
1179                 /* If details->check_mapping, we leave swap entries. */
1180                 if (unlikely(details))
1181                         continue;
1182
1183                 entry = pte_to_swp_entry(ptent);
1184                 if (!non_swap_entry(entry))
1185                         rss[MM_SWAPENTS]--;
1186                 else if (is_migration_entry(entry)) {
1187                         struct page *page;
1188
1189                         page = migration_entry_to_page(entry);
1190
1191                         if (PageAnon(page))
1192                                 rss[MM_ANONPAGES]--;
1193                         else
1194                                 rss[MM_FILEPAGES]--;
1195                 }
1196                 if (unlikely(!free_swap_and_cache(entry)))
1197                         print_bad_pte(vma, addr, ptent, NULL);
1198                 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1199         } while (pte++, addr += PAGE_SIZE, addr != end);
1200
1201         add_mm_rss_vec(mm, rss);
1202         arch_leave_lazy_mmu_mode();
1203
1204         /* Do the actual TLB flush before dropping ptl */
1205         if (force_flush)
1206                 tlb_flush_mmu_tlbonly(tlb);
1207         pte_unmap_unlock(start_pte, ptl);
1208
1209         /*
1210          * If we forced a TLB flush (either due to running out of
1211          * batch buffers or because we needed to flush dirty TLB
1212          * entries before releasing the ptl), free the batched
1213          * memory too. Restart if we didn't do everything.
1214          */
1215         if (force_flush) {
1216                 force_flush = 0;
1217                 tlb_flush_mmu_free(tlb);
1218
1219                 if (addr != end)
1220                         goto again;
1221         }
1222
1223         return addr;
1224 }
1225
1226 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1227                                 struct vm_area_struct *vma, pud_t *pud,
1228                                 unsigned long addr, unsigned long end,
1229                                 struct zap_details *details)
1230 {
1231         pmd_t *pmd;
1232         unsigned long next;
1233
1234         pmd = pmd_offset(pud, addr);
1235         do {
1236                 next = pmd_addr_end(addr, end);
1237                 if (pmd_trans_huge(*pmd)) {
1238                         if (next - addr != HPAGE_PMD_SIZE) {
1239 #ifdef CONFIG_DEBUG_VM
1240                                 if (!rwsem_is_locked(&tlb->mm->mmap_sem)) {
1241                                         pr_err("%s: mmap_sem is unlocked! addr=0x%lx end=0x%lx vma->vm_start=0x%lx vma->vm_end=0x%lx\n",
1242                                                 __func__, addr, end,
1243                                                 vma->vm_start,
1244                                                 vma->vm_end);
1245                                         BUG();
1246                                 }
1247 #endif
1248                                 split_huge_page_pmd(vma, addr, pmd);
1249                         } else if (zap_huge_pmd(tlb, vma, pmd, addr))
1250                                 goto next;
1251                         /* fall through */
1252                 }
1253                 /*
1254                  * Here there can be other concurrent MADV_DONTNEED or
1255                  * trans huge page faults running, and if the pmd is
1256                  * none or trans huge it can change under us. This is
1257                  * because MADV_DONTNEED holds the mmap_sem in read
1258                  * mode.
1259                  */
1260                 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1261                         goto next;
1262                 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1263 next:
1264                 cond_resched();
1265         } while (pmd++, addr = next, addr != end);
1266
1267         return addr;
1268 }
1269
1270 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1271                                 struct vm_area_struct *vma, pgd_t *pgd,
1272                                 unsigned long addr, unsigned long end,
1273                                 struct zap_details *details)
1274 {
1275         pud_t *pud;
1276         unsigned long next;
1277
1278         pud = pud_offset(pgd, addr);
1279         do {
1280                 next = pud_addr_end(addr, end);
1281                 if (pud_none_or_clear_bad(pud))
1282                         continue;
1283                 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1284         } while (pud++, addr = next, addr != end);
1285
1286         return addr;
1287 }
1288
1289 static void unmap_page_range(struct mmu_gather *tlb,
1290                              struct vm_area_struct *vma,
1291                              unsigned long addr, unsigned long end,
1292                              struct zap_details *details)
1293 {
1294         pgd_t *pgd;
1295         unsigned long next;
1296
1297         if (details && !details->check_mapping)
1298                 details = NULL;
1299
1300         BUG_ON(addr >= end);
1301         tlb_start_vma(tlb, vma);
1302         pgd = pgd_offset(vma->vm_mm, addr);
1303         do {
1304                 next = pgd_addr_end(addr, end);
1305                 if (pgd_none_or_clear_bad(pgd))
1306                         continue;
1307                 next = zap_pud_range(tlb, vma, pgd, addr, next, details);
1308         } while (pgd++, addr = next, addr != end);
1309         tlb_end_vma(tlb, vma);
1310 }
1311
1312
1313 static void unmap_single_vma(struct mmu_gather *tlb,
1314                 struct vm_area_struct *vma, unsigned long start_addr,
1315                 unsigned long end_addr,
1316                 struct zap_details *details)
1317 {
1318         unsigned long start = max(vma->vm_start, start_addr);
1319         unsigned long end;
1320
1321         if (start >= vma->vm_end)
1322                 return;
1323         end = min(vma->vm_end, end_addr);
1324         if (end <= vma->vm_start)
1325                 return;
1326
1327         if (vma->vm_file)
1328                 uprobe_munmap(vma, start, end);
1329
1330         if (unlikely(vma->vm_flags & VM_PFNMAP))
1331                 untrack_pfn(vma, 0, 0);
1332
1333         if (start != end) {
1334                 if (unlikely(is_vm_hugetlb_page(vma))) {
1335                         /*
1336                          * It is undesirable to test vma->vm_file as it
1337                          * should be non-null for valid hugetlb area.
1338                          * However, vm_file will be NULL in the error
1339                          * cleanup path of mmap_region. When
1340                          * hugetlbfs ->mmap method fails,
1341                          * mmap_region() nullifies vma->vm_file
1342                          * before calling this function to clean up.
1343                          * Since no pte has actually been setup, it is
1344                          * safe to do nothing in this case.
1345                          */
1346                         if (vma->vm_file) {
1347                                 i_mmap_lock_write(vma->vm_file->f_mapping);
1348                                 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1349                                 i_mmap_unlock_write(vma->vm_file->f_mapping);
1350                         }
1351                 } else
1352                         unmap_page_range(tlb, vma, start, end, details);
1353         }
1354 }
1355
1356 /**
1357  * unmap_vmas - unmap a range of memory covered by a list of vma's
1358  * @tlb: address of the caller's struct mmu_gather
1359  * @vma: the starting vma
1360  * @start_addr: virtual address at which to start unmapping
1361  * @end_addr: virtual address at which to end unmapping
1362  *
1363  * Unmap all pages in the vma list.
1364  *
1365  * Only addresses between `start' and `end' will be unmapped.
1366  *
1367  * The VMA list must be sorted in ascending virtual address order.
1368  *
1369  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1370  * range after unmap_vmas() returns.  So the only responsibility here is to
1371  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1372  * drops the lock and schedules.
1373  */
1374 void unmap_vmas(struct mmu_gather *tlb,
1375                 struct vm_area_struct *vma, unsigned long start_addr,
1376                 unsigned long end_addr)
1377 {
1378         struct mm_struct *mm = vma->vm_mm;
1379
1380         mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1381         for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1382                 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1383         mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1384 }
1385
1386 /**
1387  * zap_page_range - remove user pages in a given range
1388  * @vma: vm_area_struct holding the applicable pages
1389  * @start: starting address of pages to zap
1390  * @size: number of bytes to zap
1391  * @details: details of shared cache invalidation
1392  *
1393  * Caller must protect the VMA list
1394  */
1395 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1396                 unsigned long size, struct zap_details *details)
1397 {
1398         struct mm_struct *mm = vma->vm_mm;
1399         struct mmu_gather tlb;
1400         unsigned long end = start + size;
1401
1402         lru_add_drain();
1403         tlb_gather_mmu(&tlb, mm, start, end);
1404         update_hiwater_rss(mm);
1405         mmu_notifier_invalidate_range_start(mm, start, end);
1406         for ( ; vma && vma->vm_start < end; vma = vma->vm_next)
1407                 unmap_single_vma(&tlb, vma, start, end, details);
1408         mmu_notifier_invalidate_range_end(mm, start, end);
1409         tlb_finish_mmu(&tlb, start, end);
1410 }
1411
1412 /**
1413  * zap_page_range_single - remove user pages in a given range
1414  * @vma: vm_area_struct holding the applicable pages
1415  * @address: starting address of pages to zap
1416  * @size: number of bytes to zap
1417  * @details: details of shared cache invalidation
1418  *
1419  * The range must fit into one VMA.
1420  */
1421 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1422                 unsigned long size, struct zap_details *details)
1423 {
1424         struct mm_struct *mm = vma->vm_mm;
1425         struct mmu_gather tlb;
1426         unsigned long end = address + size;
1427
1428         lru_add_drain();
1429         tlb_gather_mmu(&tlb, mm, address, end);
1430         update_hiwater_rss(mm);
1431         mmu_notifier_invalidate_range_start(mm, address, end);
1432         unmap_single_vma(&tlb, vma, address, end, details);
1433         mmu_notifier_invalidate_range_end(mm, address, end);
1434         tlb_finish_mmu(&tlb, address, end);
1435 }
1436
1437 /**
1438  * zap_vma_ptes - remove ptes mapping the vma
1439  * @vma: vm_area_struct holding ptes to be zapped
1440  * @address: starting address of pages to zap
1441  * @size: number of bytes to zap
1442  *
1443  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1444  *
1445  * The entire address range must be fully contained within the vma.
1446  *
1447  * Returns 0 if successful.
1448  */
1449 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1450                 unsigned long size)
1451 {
1452         if (address < vma->vm_start || address + size > vma->vm_end ||
1453                         !(vma->vm_flags & VM_PFNMAP))
1454                 return -1;
1455         zap_page_range_single(vma, address, size, NULL);
1456         return 0;
1457 }
1458 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1459
1460 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1461                         spinlock_t **ptl)
1462 {
1463         pgd_t * pgd = pgd_offset(mm, addr);
1464         pud_t * pud = pud_alloc(mm, pgd, addr);
1465         if (pud) {
1466                 pmd_t * pmd = pmd_alloc(mm, pud, addr);
1467                 if (pmd) {
1468                         VM_BUG_ON(pmd_trans_huge(*pmd));
1469                         return pte_alloc_map_lock(mm, pmd, addr, ptl);
1470                 }
1471         }
1472         return NULL;
1473 }
1474
1475 /*
1476  * This is the old fallback for page remapping.
1477  *
1478  * For historical reasons, it only allows reserved pages. Only
1479  * old drivers should use this, and they needed to mark their
1480  * pages reserved for the old functions anyway.
1481  */
1482 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1483                         struct page *page, pgprot_t prot)
1484 {
1485         struct mm_struct *mm = vma->vm_mm;
1486         int retval;
1487         pte_t *pte;
1488         spinlock_t *ptl;
1489
1490         retval = -EINVAL;
1491         if (PageAnon(page))
1492                 goto out;
1493         retval = -ENOMEM;
1494         flush_dcache_page(page);
1495         pte = get_locked_pte(mm, addr, &ptl);
1496         if (!pte)
1497                 goto out;
1498         retval = -EBUSY;
1499         if (!pte_none(*pte))
1500                 goto out_unlock;
1501
1502         /* Ok, finally just insert the thing.. */
1503         get_page(page);
1504         inc_mm_counter_fast(mm, MM_FILEPAGES);
1505         page_add_file_rmap(page);
1506         set_pte_at(mm, addr, pte, mk_pte(page, prot));
1507
1508         retval = 0;
1509         pte_unmap_unlock(pte, ptl);
1510         return retval;
1511 out_unlock:
1512         pte_unmap_unlock(pte, ptl);
1513 out:
1514         return retval;
1515 }
1516
1517 /**
1518  * vm_insert_page - insert single page into user vma
1519  * @vma: user vma to map to
1520  * @addr: target user address of this page
1521  * @page: source kernel page
1522  *
1523  * This allows drivers to insert individual pages they've allocated
1524  * into a user vma.
1525  *
1526  * The page has to be a nice clean _individual_ kernel allocation.
1527  * If you allocate a compound page, you need to have marked it as
1528  * such (__GFP_COMP), or manually just split the page up yourself
1529  * (see split_page()).
1530  *
1531  * NOTE! Traditionally this was done with "remap_pfn_range()" which
1532  * took an arbitrary page protection parameter. This doesn't allow
1533  * that. Your vma protection will have to be set up correctly, which
1534  * means that if you want a shared writable mapping, you'd better
1535  * ask for a shared writable mapping!
1536  *
1537  * The page does not need to be reserved.
1538  *
1539  * Usually this function is called from f_op->mmap() handler
1540  * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1541  * Caller must set VM_MIXEDMAP on vma if it wants to call this
1542  * function from other places, for example from page-fault handler.
1543  */
1544 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1545                         struct page *page)
1546 {
1547         if (addr < vma->vm_start || addr >= vma->vm_end)
1548                 return -EFAULT;
1549         if (!page_count(page))
1550                 return -EINVAL;
1551         if (!(vma->vm_flags & VM_MIXEDMAP)) {
1552                 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
1553                 BUG_ON(vma->vm_flags & VM_PFNMAP);
1554                 vma->vm_flags |= VM_MIXEDMAP;
1555         }
1556         return insert_page(vma, addr, page, vma->vm_page_prot);
1557 }
1558 EXPORT_SYMBOL(vm_insert_page);
1559
1560 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1561                         unsigned long pfn, pgprot_t prot)
1562 {
1563         struct mm_struct *mm = vma->vm_mm;
1564         int retval;
1565         pte_t *pte, entry;
1566         spinlock_t *ptl;
1567
1568         retval = -ENOMEM;
1569         pte = get_locked_pte(mm, addr, &ptl);
1570         if (!pte)
1571                 goto out;
1572         retval = -EBUSY;
1573         if (!pte_none(*pte))
1574                 goto out_unlock;
1575
1576         /* Ok, finally just insert the thing.. */
1577         entry = pte_mkspecial(pfn_pte(pfn, prot));
1578         set_pte_at(mm, addr, pte, entry);
1579         update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1580
1581         retval = 0;
1582 out_unlock:
1583         pte_unmap_unlock(pte, ptl);
1584 out:
1585         return retval;
1586 }
1587
1588 /**
1589  * vm_insert_pfn - insert single pfn into user vma
1590  * @vma: user vma to map to
1591  * @addr: target user address of this page
1592  * @pfn: source kernel pfn
1593  *
1594  * Similar to vm_insert_page, this allows drivers to insert individual pages
1595  * they've allocated into a user vma. Same comments apply.
1596  *
1597  * This function should only be called from a vm_ops->fault handler, and
1598  * in that case the handler should return NULL.
1599  *
1600  * vma cannot be a COW mapping.
1601  *
1602  * As this is called only for pages that do not currently exist, we
1603  * do not need to flush old virtual caches or the TLB.
1604  */
1605 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1606                         unsigned long pfn)
1607 {
1608         return vm_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
1609 }
1610 EXPORT_SYMBOL(vm_insert_pfn);
1611
1612 /**
1613  * vm_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1614  * @vma: user vma to map to
1615  * @addr: target user address of this page
1616  * @pfn: source kernel pfn
1617  * @pgprot: pgprot flags for the inserted page
1618  *
1619  * This is exactly like vm_insert_pfn, except that it allows drivers to
1620  * to override pgprot on a per-page basis.
1621  *
1622  * This only makes sense for IO mappings, and it makes no sense for
1623  * cow mappings.  In general, using multiple vmas is preferable;
1624  * vm_insert_pfn_prot should only be used if using multiple VMAs is
1625  * impractical.
1626  */
1627 int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
1628                         unsigned long pfn, pgprot_t pgprot)
1629 {
1630         int ret;
1631         /*
1632          * Technically, architectures with pte_special can avoid all these
1633          * restrictions (same for remap_pfn_range).  However we would like
1634          * consistency in testing and feature parity among all, so we should
1635          * try to keep these invariants in place for everybody.
1636          */
1637         BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1638         BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1639                                                 (VM_PFNMAP|VM_MIXEDMAP));
1640         BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1641         BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1642
1643         if (addr < vma->vm_start || addr >= vma->vm_end)
1644                 return -EFAULT;
1645         if (track_pfn_insert(vma, &pgprot, pfn))
1646                 return -EINVAL;
1647
1648         if (!pfn_modify_allowed(pfn, pgprot))
1649                 return -EACCES;
1650
1651         ret = insert_pfn(vma, addr, pfn, pgprot);
1652
1653         return ret;
1654 }
1655 EXPORT_SYMBOL(vm_insert_pfn_prot);
1656
1657 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1658                         unsigned long pfn)
1659 {
1660         pgprot_t pgprot = vma->vm_page_prot;
1661
1662         BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
1663
1664         if (addr < vma->vm_start || addr >= vma->vm_end)
1665                 return -EFAULT;
1666         if (track_pfn_insert(vma, &pgprot, pfn))
1667                 return -EINVAL;
1668
1669         if (!pfn_modify_allowed(pfn, pgprot))
1670                 return -EACCES;
1671
1672         /*
1673          * If we don't have pte special, then we have to use the pfn_valid()
1674          * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1675          * refcount the page if pfn_valid is true (hence insert_page rather
1676          * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
1677          * without pte special, it would there be refcounted as a normal page.
1678          */
1679         if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
1680                 struct page *page;
1681
1682                 page = pfn_to_page(pfn);
1683                 return insert_page(vma, addr, page, pgprot);
1684         }
1685         return insert_pfn(vma, addr, pfn, pgprot);
1686 }
1687 EXPORT_SYMBOL(vm_insert_mixed);
1688
1689 /*
1690  * maps a range of physical memory into the requested pages. the old
1691  * mappings are removed. any references to nonexistent pages results
1692  * in null mappings (currently treated as "copy-on-access")
1693  */
1694 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1695                         unsigned long addr, unsigned long end,
1696                         unsigned long pfn, pgprot_t prot)
1697 {
1698         pte_t *pte;
1699         spinlock_t *ptl;
1700         int err = 0;
1701
1702         pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1703         if (!pte)
1704                 return -ENOMEM;
1705         arch_enter_lazy_mmu_mode();
1706         do {
1707                 BUG_ON(!pte_none(*pte));
1708                 if (!pfn_modify_allowed(pfn, prot)) {
1709                         err = -EACCES;
1710                         break;
1711                 }
1712                 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1713                 pfn++;
1714         } while (pte++, addr += PAGE_SIZE, addr != end);
1715         arch_leave_lazy_mmu_mode();
1716         pte_unmap_unlock(pte - 1, ptl);
1717         return err;
1718 }
1719
1720 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1721                         unsigned long addr, unsigned long end,
1722                         unsigned long pfn, pgprot_t prot)
1723 {
1724         pmd_t *pmd;
1725         unsigned long next;
1726         int err;
1727
1728         pfn -= addr >> PAGE_SHIFT;
1729         pmd = pmd_alloc(mm, pud, addr);
1730         if (!pmd)
1731                 return -ENOMEM;
1732         VM_BUG_ON(pmd_trans_huge(*pmd));
1733         do {
1734                 next = pmd_addr_end(addr, end);
1735                 err = remap_pte_range(mm, pmd, addr, next,
1736                                 pfn + (addr >> PAGE_SHIFT), prot);
1737                 if (err)
1738                         return err;
1739         } while (pmd++, addr = next, addr != end);
1740         return 0;
1741 }
1742
1743 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1744                         unsigned long addr, unsigned long end,
1745                         unsigned long pfn, pgprot_t prot)
1746 {
1747         pud_t *pud;
1748         unsigned long next;
1749         int err;
1750
1751         pfn -= addr >> PAGE_SHIFT;
1752         pud = pud_alloc(mm, pgd, addr);
1753         if (!pud)
1754                 return -ENOMEM;
1755         do {
1756                 next = pud_addr_end(addr, end);
1757                 err = remap_pmd_range(mm, pud, addr, next,
1758                                 pfn + (addr >> PAGE_SHIFT), prot);
1759                 if (err)
1760                         return err;
1761         } while (pud++, addr = next, addr != end);
1762         return 0;
1763 }
1764
1765 /**
1766  * remap_pfn_range - remap kernel memory to userspace
1767  * @vma: user vma to map to
1768  * @addr: target user address to start at
1769  * @pfn: physical address of kernel memory
1770  * @size: size of map area
1771  * @prot: page protection flags for this mapping
1772  *
1773  *  Note: this is only safe if the mm semaphore is held when called.
1774  */
1775 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1776                     unsigned long pfn, unsigned long size, pgprot_t prot)
1777 {
1778         pgd_t *pgd;
1779         unsigned long next;
1780         unsigned long end = addr + PAGE_ALIGN(size);
1781         struct mm_struct *mm = vma->vm_mm;
1782         int err;
1783
1784         /*
1785          * Physically remapped pages are special. Tell the
1786          * rest of the world about it:
1787          *   VM_IO tells people not to look at these pages
1788          *      (accesses can have side effects).
1789          *   VM_PFNMAP tells the core MM that the base pages are just
1790          *      raw PFN mappings, and do not have a "struct page" associated
1791          *      with them.
1792          *   VM_DONTEXPAND
1793          *      Disable vma merging and expanding with mremap().
1794          *   VM_DONTDUMP
1795          *      Omit vma from core dump, even when VM_IO turned off.
1796          *
1797          * There's a horrible special case to handle copy-on-write
1798          * behaviour that some programs depend on. We mark the "original"
1799          * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1800          * See vm_normal_page() for details.
1801          */
1802         if (is_cow_mapping(vma->vm_flags)) {
1803                 if (addr != vma->vm_start || end != vma->vm_end)
1804                         return -EINVAL;
1805                 vma->vm_pgoff = pfn;
1806         }
1807
1808         err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
1809         if (err)
1810                 return -EINVAL;
1811
1812         vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1813
1814         BUG_ON(addr >= end);
1815         pfn -= addr >> PAGE_SHIFT;
1816         pgd = pgd_offset(mm, addr);
1817         flush_cache_range(vma, addr, end);
1818         do {
1819                 next = pgd_addr_end(addr, end);
1820                 err = remap_pud_range(mm, pgd, addr, next,
1821                                 pfn + (addr >> PAGE_SHIFT), prot);
1822                 if (err)
1823                         break;
1824         } while (pgd++, addr = next, addr != end);
1825
1826         if (err)
1827                 untrack_pfn(vma, pfn, PAGE_ALIGN(size));
1828
1829         return err;
1830 }
1831 EXPORT_SYMBOL(remap_pfn_range);
1832
1833 /**
1834  * vm_iomap_memory - remap memory to userspace
1835  * @vma: user vma to map to
1836  * @start: start of area
1837  * @len: size of area
1838  *
1839  * This is a simplified io_remap_pfn_range() for common driver use. The
1840  * driver just needs to give us the physical memory range to be mapped,
1841  * we'll figure out the rest from the vma information.
1842  *
1843  * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
1844  * whatever write-combining details or similar.
1845  */
1846 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1847 {
1848         unsigned long vm_len, pfn, pages;
1849
1850         /* Check that the physical memory area passed in looks valid */
1851         if (start + len < start)
1852                 return -EINVAL;
1853         /*
1854          * You *really* shouldn't map things that aren't page-aligned,
1855          * but we've historically allowed it because IO memory might
1856          * just have smaller alignment.
1857          */
1858         len += start & ~PAGE_MASK;
1859         pfn = start >> PAGE_SHIFT;
1860         pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
1861         if (pfn + pages < pfn)
1862                 return -EINVAL;
1863
1864         /* We start the mapping 'vm_pgoff' pages into the area */
1865         if (vma->vm_pgoff > pages)
1866                 return -EINVAL;
1867         pfn += vma->vm_pgoff;
1868         pages -= vma->vm_pgoff;
1869
1870         /* Can we fit all of the mapping? */
1871         vm_len = vma->vm_end - vma->vm_start;
1872         if (vm_len >> PAGE_SHIFT > pages)
1873                 return -EINVAL;
1874
1875         /* Ok, let it rip */
1876         return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
1877 }
1878 EXPORT_SYMBOL(vm_iomap_memory);
1879
1880 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
1881                                      unsigned long addr, unsigned long end,
1882                                      pte_fn_t fn, void *data)
1883 {
1884         pte_t *pte;
1885         int err;
1886         pgtable_t token;
1887         spinlock_t *uninitialized_var(ptl);
1888
1889         pte = (mm == &init_mm) ?
1890                 pte_alloc_kernel(pmd, addr) :
1891                 pte_alloc_map_lock(mm, pmd, addr, &ptl);
1892         if (!pte)
1893                 return -ENOMEM;
1894
1895         BUG_ON(pmd_huge(*pmd));
1896
1897         arch_enter_lazy_mmu_mode();
1898
1899         token = pmd_pgtable(*pmd);
1900
1901         do {
1902                 err = fn(pte++, token, addr, data);
1903                 if (err)
1904                         break;
1905         } while (addr += PAGE_SIZE, addr != end);
1906
1907         arch_leave_lazy_mmu_mode();
1908
1909         if (mm != &init_mm)
1910                 pte_unmap_unlock(pte-1, ptl);
1911         return err;
1912 }
1913
1914 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
1915                                      unsigned long addr, unsigned long end,
1916                                      pte_fn_t fn, void *data)
1917 {
1918         pmd_t *pmd;
1919         unsigned long next;
1920         int err;
1921
1922         BUG_ON(pud_huge(*pud));
1923
1924         pmd = pmd_alloc(mm, pud, addr);
1925         if (!pmd)
1926                 return -ENOMEM;
1927         do {
1928                 next = pmd_addr_end(addr, end);
1929                 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
1930                 if (err)
1931                         break;
1932         } while (pmd++, addr = next, addr != end);
1933         return err;
1934 }
1935
1936 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
1937                                      unsigned long addr, unsigned long end,
1938                                      pte_fn_t fn, void *data)
1939 {
1940         pud_t *pud;
1941         unsigned long next;
1942         int err;
1943
1944         pud = pud_alloc(mm, pgd, addr);
1945         if (!pud)
1946                 return -ENOMEM;
1947         do {
1948                 next = pud_addr_end(addr, end);
1949                 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
1950                 if (err)
1951                         break;
1952         } while (pud++, addr = next, addr != end);
1953         return err;
1954 }
1955
1956 /*
1957  * Scan a region of virtual memory, filling in page tables as necessary
1958  * and calling a provided function on each leaf page table.
1959  */
1960 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
1961                         unsigned long size, pte_fn_t fn, void *data)
1962 {
1963         pgd_t *pgd;
1964         unsigned long next;
1965         unsigned long end = addr + size;
1966         int err;
1967
1968         BUG_ON(addr >= end);
1969         pgd = pgd_offset(mm, addr);
1970         do {
1971                 next = pgd_addr_end(addr, end);
1972                 err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
1973                 if (err)
1974                         break;
1975         } while (pgd++, addr = next, addr != end);
1976
1977         return err;
1978 }
1979 EXPORT_SYMBOL_GPL(apply_to_page_range);
1980
1981 /*
1982  * handle_pte_fault chooses page fault handler according to an entry which was
1983  * read non-atomically.  Before making any commitment, on those architectures
1984  * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
1985  * parts, do_swap_page must check under lock before unmapping the pte and
1986  * proceeding (but do_wp_page is only called after already making such a check;
1987  * and do_anonymous_page can safely check later on).
1988  */
1989 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
1990                                 pte_t *page_table, pte_t orig_pte)
1991 {
1992         int same = 1;
1993 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1994         if (sizeof(pte_t) > sizeof(unsigned long)) {
1995                 spinlock_t *ptl = pte_lockptr(mm, pmd);
1996                 spin_lock(ptl);
1997                 same = pte_same(*page_table, orig_pte);
1998                 spin_unlock(ptl);
1999         }
2000 #endif
2001         pte_unmap(page_table);
2002         return same;
2003 }
2004
2005 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
2006 {
2007         debug_dma_assert_idle(src);
2008
2009         /*
2010          * If the source page was a PFN mapping, we don't have
2011          * a "struct page" for it. We do a best-effort copy by
2012          * just copying from the original user address. If that
2013          * fails, we just zero-fill it. Live with it.
2014          */
2015         if (unlikely(!src)) {
2016                 void *kaddr = kmap_atomic(dst);
2017                 void __user *uaddr = (void __user *)(va & PAGE_MASK);
2018
2019                 /*
2020                  * This really shouldn't fail, because the page is there
2021                  * in the page tables. But it might just be unreadable,
2022                  * in which case we just give up and fill the result with
2023                  * zeroes.
2024                  */
2025                 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
2026                         clear_page(kaddr);
2027                 kunmap_atomic(kaddr);
2028                 flush_dcache_page(dst);
2029         } else
2030                 copy_user_highpage(dst, src, va, vma);
2031 }
2032
2033 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2034 {
2035         struct file *vm_file = vma->vm_file;
2036
2037         if (vm_file)
2038                 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2039
2040         /*
2041          * Special mappings (e.g. VDSO) do not have any file so fake
2042          * a default GFP_KERNEL for them.
2043          */
2044         return GFP_KERNEL;
2045 }
2046
2047 /*
2048  * Notify the address space that the page is about to become writable so that
2049  * it can prohibit this or wait for the page to get into an appropriate state.
2050  *
2051  * We do this without the lock held, so that it can sleep if it needs to.
2052  */
2053 static int do_page_mkwrite(struct vm_area_struct *vma, struct page *page,
2054                unsigned long address)
2055 {
2056         struct vm_fault vmf;
2057         int ret;
2058
2059         vmf.virtual_address = (void __user *)(address & PAGE_MASK);
2060         vmf.pgoff = page->index;
2061         vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2062         vmf.gfp_mask = __get_fault_gfp_mask(vma);
2063         vmf.page = page;
2064         vmf.cow_page = NULL;
2065
2066         ret = vma->vm_ops->page_mkwrite(vma, &vmf);
2067         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2068                 return ret;
2069         if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2070                 lock_page(page);
2071                 if (!page->mapping) {
2072                         unlock_page(page);
2073                         return 0; /* retry */
2074                 }
2075                 ret |= VM_FAULT_LOCKED;
2076         } else
2077                 VM_BUG_ON_PAGE(!PageLocked(page), page);
2078         return ret;
2079 }
2080
2081 /*
2082  * Handle write page faults for pages that can be reused in the current vma
2083  *
2084  * This can happen either due to the mapping being with the VM_SHARED flag,
2085  * or due to us being the last reference standing to the page. In either
2086  * case, all we need to do here is to mark the page as writable and update
2087  * any related book-keeping.
2088  */
2089 static inline int wp_page_reuse(struct mm_struct *mm,
2090                         struct vm_area_struct *vma, unsigned long address,
2091                         pte_t *page_table, spinlock_t *ptl, pte_t orig_pte,
2092                         struct page *page, int page_mkwrite,
2093                         int dirty_shared)
2094         __releases(ptl)
2095 {
2096         pte_t entry;
2097         /*
2098          * Clear the pages cpupid information as the existing
2099          * information potentially belongs to a now completely
2100          * unrelated process.
2101          */
2102         if (page)
2103                 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2104
2105         flush_cache_page(vma, address, pte_pfn(orig_pte));
2106         entry = pte_mkyoung(orig_pte);
2107         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2108         if (ptep_set_access_flags(vma, address, page_table, entry, 1))
2109                 update_mmu_cache(vma, address, page_table);
2110         pte_unmap_unlock(page_table, ptl);
2111
2112         if (dirty_shared) {
2113                 struct address_space *mapping;
2114                 int dirtied;
2115
2116                 if (!page_mkwrite)
2117                         lock_page(page);
2118
2119                 dirtied = set_page_dirty(page);
2120                 VM_BUG_ON_PAGE(PageAnon(page), page);
2121                 mapping = page->mapping;
2122                 unlock_page(page);
2123                 page_cache_release(page);
2124
2125                 if ((dirtied || page_mkwrite) && mapping) {
2126                         /*
2127                          * Some device drivers do not set page.mapping
2128                          * but still dirty their pages
2129                          */
2130                         balance_dirty_pages_ratelimited(mapping);
2131                 }
2132
2133                 if (!page_mkwrite)
2134                         file_update_time(vma->vm_file);
2135         }
2136
2137         return VM_FAULT_WRITE;
2138 }
2139
2140 /*
2141  * Handle the case of a page which we actually need to copy to a new page.
2142  *
2143  * Called with mmap_sem locked and the old page referenced, but
2144  * without the ptl held.
2145  *
2146  * High level logic flow:
2147  *
2148  * - Allocate a page, copy the content of the old page to the new one.
2149  * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2150  * - Take the PTL. If the pte changed, bail out and release the allocated page
2151  * - If the pte is still the way we remember it, update the page table and all
2152  *   relevant references. This includes dropping the reference the page-table
2153  *   held to the old page, as well as updating the rmap.
2154  * - In any case, unlock the PTL and drop the reference we took to the old page.
2155  */
2156 static int wp_page_copy(struct mm_struct *mm, struct vm_area_struct *vma,
2157                         unsigned long address, pte_t *page_table, pmd_t *pmd,
2158                         pte_t orig_pte, struct page *old_page)
2159 {
2160         struct page *new_page = NULL;
2161         spinlock_t *ptl = NULL;
2162         pte_t entry;
2163         int page_copied = 0;
2164         const unsigned long mmun_start = address & PAGE_MASK;   /* For mmu_notifiers */
2165         const unsigned long mmun_end = mmun_start + PAGE_SIZE;  /* For mmu_notifiers */
2166         struct mem_cgroup *memcg;
2167
2168         if (unlikely(anon_vma_prepare(vma)))
2169                 goto oom;
2170
2171         if (is_zero_pfn(pte_pfn(orig_pte))) {
2172                 new_page = alloc_zeroed_user_highpage_movable(vma, address);
2173                 if (!new_page)
2174                         goto oom;
2175         } else {
2176                 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2177                 if (!new_page)
2178                         goto oom;
2179                 cow_user_page(new_page, old_page, address, vma);
2180         }
2181
2182         if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg))
2183                 goto oom_free_new;
2184
2185         __SetPageUptodate(new_page);
2186
2187         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2188
2189         /*
2190          * Re-check the pte - we dropped the lock
2191          */
2192         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2193         if (likely(pte_same(*page_table, orig_pte))) {
2194                 if (old_page) {
2195                         if (!PageAnon(old_page)) {
2196                                 dec_mm_counter_fast(mm, MM_FILEPAGES);
2197                                 inc_mm_counter_fast(mm, MM_ANONPAGES);
2198                         }
2199                 } else {
2200                         inc_mm_counter_fast(mm, MM_ANONPAGES);
2201                 }
2202                 flush_cache_page(vma, address, pte_pfn(orig_pte));
2203                 entry = mk_pte(new_page, vma->vm_page_prot);
2204                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2205                 /*
2206                  * Clear the pte entry and flush it first, before updating the
2207                  * pte with the new entry. This will avoid a race condition
2208                  * seen in the presence of one thread doing SMC and another
2209                  * thread doing COW.
2210                  */
2211                 ptep_clear_flush_notify(vma, address, page_table);
2212                 page_add_new_anon_rmap(new_page, vma, address);
2213                 mem_cgroup_commit_charge(new_page, memcg, false);
2214                 lru_cache_add_active_or_unevictable(new_page, vma);
2215                 /*
2216                  * We call the notify macro here because, when using secondary
2217                  * mmu page tables (such as kvm shadow page tables), we want the
2218                  * new page to be mapped directly into the secondary page table.
2219                  */
2220                 set_pte_at_notify(mm, address, page_table, entry);
2221                 update_mmu_cache(vma, address, page_table);
2222                 if (old_page) {
2223                         /*
2224                          * Only after switching the pte to the new page may
2225                          * we remove the mapcount here. Otherwise another
2226                          * process may come and find the rmap count decremented
2227                          * before the pte is switched to the new page, and
2228                          * "reuse" the old page writing into it while our pte
2229                          * here still points into it and can be read by other
2230                          * threads.
2231                          *
2232                          * The critical issue is to order this
2233                          * page_remove_rmap with the ptp_clear_flush above.
2234                          * Those stores are ordered by (if nothing else,)
2235                          * the barrier present in the atomic_add_negative
2236                          * in page_remove_rmap.
2237                          *
2238                          * Then the TLB flush in ptep_clear_flush ensures that
2239                          * no process can access the old page before the
2240                          * decremented mapcount is visible. And the old page
2241                          * cannot be reused until after the decremented
2242                          * mapcount is visible. So transitively, TLBs to
2243                          * old page will be flushed before it can be reused.
2244                          */
2245                         page_remove_rmap(old_page);
2246                 }
2247
2248                 /* Free the old page.. */
2249                 new_page = old_page;
2250                 page_copied = 1;
2251         } else {
2252                 mem_cgroup_cancel_charge(new_page, memcg);
2253         }
2254
2255         if (new_page)
2256                 page_cache_release(new_page);
2257
2258         pte_unmap_unlock(page_table, ptl);
2259         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2260         if (old_page) {
2261                 /*
2262                  * Don't let another task, with possibly unlocked vma,
2263                  * keep the mlocked page.
2264                  */
2265                 if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2266                         lock_page(old_page);    /* LRU manipulation */
2267                         munlock_vma_page(old_page);
2268                         unlock_page(old_page);
2269                 }
2270                 page_cache_release(old_page);
2271         }
2272         return page_copied ? VM_FAULT_WRITE : 0;
2273 oom_free_new:
2274         page_cache_release(new_page);
2275 oom:
2276         if (old_page)
2277                 page_cache_release(old_page);
2278         return VM_FAULT_OOM;
2279 }
2280
2281 /*
2282  * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2283  * mapping
2284  */
2285 static int wp_pfn_shared(struct mm_struct *mm,
2286                         struct vm_area_struct *vma, unsigned long address,
2287                         pte_t *page_table, spinlock_t *ptl, pte_t orig_pte,
2288                         pmd_t *pmd)
2289 {
2290         if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
2291                 struct vm_fault vmf = {
2292                         .page = NULL,
2293                         .pgoff = linear_page_index(vma, address),
2294                         .virtual_address = (void __user *)(address & PAGE_MASK),
2295                         .flags = FAULT_FLAG_WRITE | FAULT_FLAG_MKWRITE,
2296                 };
2297                 int ret;
2298
2299                 pte_unmap_unlock(page_table, ptl);
2300                 ret = vma->vm_ops->pfn_mkwrite(vma, &vmf);
2301                 if (ret & VM_FAULT_ERROR)
2302                         return ret;
2303                 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2304                 /*
2305                  * We might have raced with another page fault while we
2306                  * released the pte_offset_map_lock.
2307                  */
2308                 if (!pte_same(*page_table, orig_pte)) {
2309                         pte_unmap_unlock(page_table, ptl);
2310                         return 0;
2311                 }
2312         }
2313         return wp_page_reuse(mm, vma, address, page_table, ptl, orig_pte,
2314                              NULL, 0, 0);
2315 }
2316
2317 static int wp_page_shared(struct mm_struct *mm, struct vm_area_struct *vma,
2318                           unsigned long address, pte_t *page_table,
2319                           pmd_t *pmd, spinlock_t *ptl, pte_t orig_pte,
2320                           struct page *old_page)
2321         __releases(ptl)
2322 {
2323         int page_mkwrite = 0;
2324
2325         page_cache_get(old_page);
2326
2327         /*
2328          * Only catch write-faults on shared writable pages,
2329          * read-only shared pages can get COWed by
2330          * get_user_pages(.write=1, .force=1).
2331          */
2332         if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2333                 int tmp;
2334
2335                 pte_unmap_unlock(page_table, ptl);
2336                 tmp = do_page_mkwrite(vma, old_page, address);
2337                 if (unlikely(!tmp || (tmp &
2338                                       (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2339                         page_cache_release(old_page);
2340                         return tmp;
2341                 }
2342                 /*
2343                  * Since we dropped the lock we need to revalidate
2344                  * the PTE as someone else may have changed it.  If
2345                  * they did, we just return, as we can count on the
2346                  * MMU to tell us if they didn't also make it writable.
2347                  */
2348                 page_table = pte_offset_map_lock(mm, pmd, address,
2349                                                  &ptl);
2350                 if (!pte_same(*page_table, orig_pte)) {
2351                         unlock_page(old_page);
2352                         pte_unmap_unlock(page_table, ptl);
2353                         page_cache_release(old_page);
2354                         return 0;
2355                 }
2356                 page_mkwrite = 1;
2357         }
2358
2359         return wp_page_reuse(mm, vma, address, page_table, ptl,
2360                              orig_pte, old_page, page_mkwrite, 1);
2361 }
2362
2363 /*
2364  * This routine handles present pages, when users try to write
2365  * to a shared page. It is done by copying the page to a new address
2366  * and decrementing the shared-page counter for the old page.
2367  *
2368  * Note that this routine assumes that the protection checks have been
2369  * done by the caller (the low-level page fault routine in most cases).
2370  * Thus we can safely just mark it writable once we've done any necessary
2371  * COW.
2372  *
2373  * We also mark the page dirty at this point even though the page will
2374  * change only once the write actually happens. This avoids a few races,
2375  * and potentially makes it more efficient.
2376  *
2377  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2378  * but allow concurrent faults), with pte both mapped and locked.
2379  * We return with mmap_sem still held, but pte unmapped and unlocked.
2380  */
2381 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
2382                 unsigned long address, pte_t *page_table, pmd_t *pmd,
2383                 spinlock_t *ptl, pte_t orig_pte)
2384         __releases(ptl)
2385 {
2386         struct page *old_page;
2387
2388         old_page = vm_normal_page(vma, address, orig_pte);
2389         if (!old_page) {
2390                 /*
2391                  * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2392                  * VM_PFNMAP VMA.
2393                  *
2394                  * We should not cow pages in a shared writeable mapping.
2395                  * Just mark the pages writable and/or call ops->pfn_mkwrite.
2396                  */
2397                 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2398                                      (VM_WRITE|VM_SHARED))
2399                         return wp_pfn_shared(mm, vma, address, page_table, ptl,
2400                                              orig_pte, pmd);
2401
2402                 pte_unmap_unlock(page_table, ptl);
2403                 return wp_page_copy(mm, vma, address, page_table, pmd,
2404                                     orig_pte, old_page);
2405         }
2406
2407         /*
2408          * Take out anonymous pages first, anonymous shared vmas are
2409          * not dirty accountable.
2410          */
2411         if (PageAnon(old_page) && !PageKsm(old_page)) {
2412                 if (!trylock_page(old_page)) {
2413                         page_cache_get(old_page);
2414                         pte_unmap_unlock(page_table, ptl);
2415                         lock_page(old_page);
2416                         page_table = pte_offset_map_lock(mm, pmd, address,
2417                                                          &ptl);
2418                         if (!pte_same(*page_table, orig_pte)) {
2419                                 unlock_page(old_page);
2420                                 pte_unmap_unlock(page_table, ptl);
2421                                 page_cache_release(old_page);
2422                                 return 0;
2423                         }
2424                         page_cache_release(old_page);
2425                 }
2426                 if (reuse_swap_page(old_page)) {
2427                         /*
2428                          * The page is all ours.  Move it to our anon_vma so
2429                          * the rmap code will not search our parent or siblings.
2430                          * Protected against the rmap code by the page lock.
2431                          */
2432                         page_move_anon_rmap(old_page, vma, address);
2433                         unlock_page(old_page);
2434                         return wp_page_reuse(mm, vma, address, page_table, ptl,
2435                                              orig_pte, old_page, 0, 0);
2436                 }
2437                 unlock_page(old_page);
2438         } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2439                                         (VM_WRITE|VM_SHARED))) {
2440                 return wp_page_shared(mm, vma, address, page_table, pmd,
2441                                       ptl, orig_pte, old_page);
2442         }
2443
2444         /*
2445          * Ok, we need to copy. Oh, well..
2446          */
2447         page_cache_get(old_page);
2448
2449         pte_unmap_unlock(page_table, ptl);
2450         return wp_page_copy(mm, vma, address, page_table, pmd,
2451                             orig_pte, old_page);
2452 }
2453
2454 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2455                 unsigned long start_addr, unsigned long end_addr,
2456                 struct zap_details *details)
2457 {
2458         zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2459 }
2460
2461 static inline void unmap_mapping_range_tree(struct rb_root *root,
2462                                             struct zap_details *details)
2463 {
2464         struct vm_area_struct *vma;
2465         pgoff_t vba, vea, zba, zea;
2466
2467         vma_interval_tree_foreach(vma, root,
2468                         details->first_index, details->last_index) {
2469
2470                 vba = vma->vm_pgoff;
2471                 vea = vba + vma_pages(vma) - 1;
2472                 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2473                 zba = details->first_index;
2474                 if (zba < vba)
2475                         zba = vba;
2476                 zea = details->last_index;
2477                 if (zea > vea)
2478                         zea = vea;
2479
2480                 unmap_mapping_range_vma(vma,
2481                         ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2482                         ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2483                                 details);
2484         }
2485 }
2486
2487 /**
2488  * unmap_mapping_range - unmap the portion of all mmaps in the specified
2489  * address_space corresponding to the specified page range in the underlying
2490  * file.
2491  *
2492  * @mapping: the address space containing mmaps to be unmapped.
2493  * @holebegin: byte in first page to unmap, relative to the start of
2494  * the underlying file.  This will be rounded down to a PAGE_SIZE
2495  * boundary.  Note that this is different from truncate_pagecache(), which
2496  * must keep the partial page.  In contrast, we must get rid of
2497  * partial pages.
2498  * @holelen: size of prospective hole in bytes.  This will be rounded
2499  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
2500  * end of the file.
2501  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2502  * but 0 when invalidating pagecache, don't throw away private data.
2503  */
2504 void unmap_mapping_range(struct address_space *mapping,
2505                 loff_t const holebegin, loff_t const holelen, int even_cows)
2506 {
2507         struct zap_details details;
2508         pgoff_t hba = holebegin >> PAGE_SHIFT;
2509         pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2510
2511         /* Check for overflow. */
2512         if (sizeof(holelen) > sizeof(hlen)) {
2513                 long long holeend =
2514                         (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2515                 if (holeend & ~(long long)ULONG_MAX)
2516                         hlen = ULONG_MAX - hba + 1;
2517         }
2518
2519         details.check_mapping = even_cows? NULL: mapping;
2520         details.first_index = hba;
2521         details.last_index = hba + hlen - 1;
2522         if (details.last_index < details.first_index)
2523                 details.last_index = ULONG_MAX;
2524
2525
2526         /* DAX uses i_mmap_lock to serialise file truncate vs page fault */
2527         i_mmap_lock_write(mapping);
2528         if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap)))
2529                 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2530         i_mmap_unlock_write(mapping);
2531 }
2532 EXPORT_SYMBOL(unmap_mapping_range);
2533
2534 /*
2535  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2536  * but allow concurrent faults), and pte mapped but not yet locked.
2537  * We return with pte unmapped and unlocked.
2538  *
2539  * We return with the mmap_sem locked or unlocked in the same cases
2540  * as does filemap_fault().
2541  */
2542 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2543                 unsigned long address, pte_t *page_table, pmd_t *pmd,
2544                 unsigned int flags, pte_t orig_pte)
2545 {
2546         spinlock_t *ptl;
2547         struct page *page, *swapcache;
2548         struct mem_cgroup *memcg;
2549         swp_entry_t entry;
2550         pte_t pte;
2551         int locked;
2552         int exclusive = 0;
2553         int ret = 0;
2554
2555         if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2556                 goto out;
2557
2558         entry = pte_to_swp_entry(orig_pte);
2559         if (unlikely(non_swap_entry(entry))) {
2560                 if (is_migration_entry(entry)) {
2561                         migration_entry_wait(mm, pmd, address);
2562                 } else if (is_hwpoison_entry(entry)) {
2563                         ret = VM_FAULT_HWPOISON;
2564                 } else {
2565                         print_bad_pte(vma, address, orig_pte, NULL);
2566                         ret = VM_FAULT_SIGBUS;
2567                 }
2568                 goto out;
2569         }
2570         delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2571         page = lookup_swap_cache(entry);
2572         if (!page) {
2573                 page = swapin_readahead(entry,
2574                                         GFP_HIGHUSER_MOVABLE, vma, address);
2575                 if (!page) {
2576                         /*
2577                          * Back out if somebody else faulted in this pte
2578                          * while we released the pte lock.
2579                          */
2580                         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2581                         if (likely(pte_same(*page_table, orig_pte)))
2582                                 ret = VM_FAULT_OOM;
2583                         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2584                         goto unlock;
2585                 }
2586
2587                 /* Had to read the page from swap area: Major fault */
2588                 ret = VM_FAULT_MAJOR;
2589                 count_vm_event(PGMAJFAULT);
2590                 mem_cgroup_count_vm_event(mm, PGMAJFAULT);
2591         } else if (PageHWPoison(page)) {
2592                 /*
2593                  * hwpoisoned dirty swapcache pages are kept for killing
2594                  * owner processes (which may be unknown at hwpoison time)
2595                  */
2596                 ret = VM_FAULT_HWPOISON;
2597                 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2598                 swapcache = page;
2599                 goto out_release;
2600         }
2601
2602         swapcache = page;
2603         locked = lock_page_or_retry(page, mm, flags);
2604
2605         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2606         if (!locked) {
2607                 ret |= VM_FAULT_RETRY;
2608                 goto out_release;
2609         }
2610
2611         /*
2612          * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2613          * release the swapcache from under us.  The page pin, and pte_same
2614          * test below, are not enough to exclude that.  Even if it is still
2615          * swapcache, we need to check that the page's swap has not changed.
2616          */
2617         if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
2618                 goto out_page;
2619
2620         page = ksm_might_need_to_copy(page, vma, address);
2621         if (unlikely(!page)) {
2622                 ret = VM_FAULT_OOM;
2623                 page = swapcache;
2624                 goto out_page;
2625         }
2626
2627         if (mem_cgroup_try_charge(page, mm, GFP_KERNEL, &memcg)) {
2628                 ret = VM_FAULT_OOM;
2629                 goto out_page;
2630         }
2631
2632         /*
2633          * Back out if somebody else already faulted in this pte.
2634          */
2635         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2636         if (unlikely(!pte_same(*page_table, orig_pte)))
2637                 goto out_nomap;
2638
2639         if (unlikely(!PageUptodate(page))) {
2640                 ret = VM_FAULT_SIGBUS;
2641                 goto out_nomap;
2642         }
2643
2644         /*
2645          * The page isn't present yet, go ahead with the fault.
2646          *
2647          * Be careful about the sequence of operations here.
2648          * To get its accounting right, reuse_swap_page() must be called
2649          * while the page is counted on swap but not yet in mapcount i.e.
2650          * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2651          * must be called after the swap_free(), or it will never succeed.
2652          */
2653
2654         inc_mm_counter_fast(mm, MM_ANONPAGES);
2655         dec_mm_counter_fast(mm, MM_SWAPENTS);
2656         pte = mk_pte(page, vma->vm_page_prot);
2657         if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
2658                 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2659                 flags &= ~FAULT_FLAG_WRITE;
2660                 ret |= VM_FAULT_WRITE;
2661                 exclusive = 1;
2662         }
2663         flush_icache_page(vma, page);
2664         if (pte_swp_soft_dirty(orig_pte))
2665                 pte = pte_mksoft_dirty(pte);
2666         set_pte_at(mm, address, page_table, pte);
2667         if (page == swapcache) {
2668                 do_page_add_anon_rmap(page, vma, address, exclusive);
2669                 mem_cgroup_commit_charge(page, memcg, true);
2670         } else { /* ksm created a completely new copy */
2671                 page_add_new_anon_rmap(page, vma, address);
2672                 mem_cgroup_commit_charge(page, memcg, false);
2673                 lru_cache_add_active_or_unevictable(page, vma);
2674         }
2675
2676         swap_free(entry);
2677         if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
2678                 try_to_free_swap(page);
2679         unlock_page(page);
2680         if (page != swapcache) {
2681                 /*
2682                  * Hold the lock to avoid the swap entry to be reused
2683                  * until we take the PT lock for the pte_same() check
2684                  * (to avoid false positives from pte_same). For
2685                  * further safety release the lock after the swap_free
2686                  * so that the swap count won't change under a
2687                  * parallel locked swapcache.
2688                  */
2689                 unlock_page(swapcache);
2690                 page_cache_release(swapcache);
2691         }
2692
2693         if (flags & FAULT_FLAG_WRITE) {
2694                 ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
2695                 if (ret & VM_FAULT_ERROR)
2696                         ret &= VM_FAULT_ERROR;
2697                 goto out;
2698         }
2699
2700         /* No need to invalidate - it was non-present before */
2701         update_mmu_cache(vma, address, page_table);
2702 unlock:
2703         pte_unmap_unlock(page_table, ptl);
2704 out:
2705         return ret;
2706 out_nomap:
2707         mem_cgroup_cancel_charge(page, memcg);
2708         pte_unmap_unlock(page_table, ptl);
2709 out_page:
2710         unlock_page(page);
2711 out_release:
2712         page_cache_release(page);
2713         if (page != swapcache) {
2714                 unlock_page(swapcache);
2715                 page_cache_release(swapcache);
2716         }
2717         return ret;
2718 }
2719
2720 /*
2721  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2722  * but allow concurrent faults), and pte mapped but not yet locked.
2723  * We return with mmap_sem still held, but pte unmapped and unlocked.
2724  */
2725 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
2726                 unsigned long address, pte_t *page_table, pmd_t *pmd,
2727                 unsigned int flags)
2728 {
2729         struct mem_cgroup *memcg;
2730         struct page *page;
2731         spinlock_t *ptl;
2732         pte_t entry;
2733
2734         pte_unmap(page_table);
2735
2736         /* File mapping without ->vm_ops ? */
2737         if (vma->vm_flags & VM_SHARED)
2738                 return VM_FAULT_SIGBUS;
2739
2740         /* Use the zero-page for reads */
2741         if (!(flags & FAULT_FLAG_WRITE) && !mm_forbids_zeropage(mm)) {
2742                 entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
2743                                                 vma->vm_page_prot));
2744                 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2745                 if (!pte_none(*page_table))
2746                         goto unlock;
2747                 /* Deliver the page fault to userland, check inside PT lock */
2748                 if (userfaultfd_missing(vma)) {
2749                         pte_unmap_unlock(page_table, ptl);
2750                         return handle_userfault(vma, address, flags,
2751                                                 VM_UFFD_MISSING);
2752                 }
2753                 goto setpte;
2754         }
2755
2756         /* Allocate our own private page. */
2757         if (unlikely(anon_vma_prepare(vma)))
2758                 goto oom;
2759         page = alloc_zeroed_user_highpage_movable(vma, address);
2760         if (!page)
2761                 goto oom;
2762
2763         if (mem_cgroup_try_charge(page, mm, GFP_KERNEL, &memcg))
2764                 goto oom_free_page;
2765
2766         /*
2767          * The memory barrier inside __SetPageUptodate makes sure that
2768          * preceeding stores to the page contents become visible before
2769          * the set_pte_at() write.
2770          */
2771         __SetPageUptodate(page);
2772
2773         entry = mk_pte(page, vma->vm_page_prot);
2774         if (vma->vm_flags & VM_WRITE)
2775                 entry = pte_mkwrite(pte_mkdirty(entry));
2776
2777         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2778         if (!pte_none(*page_table))
2779                 goto release;
2780
2781         /* Deliver the page fault to userland, check inside PT lock */
2782         if (userfaultfd_missing(vma)) {
2783                 pte_unmap_unlock(page_table, ptl);
2784                 mem_cgroup_cancel_charge(page, memcg);
2785                 page_cache_release(page);
2786                 return handle_userfault(vma, address, flags,
2787                                         VM_UFFD_MISSING);
2788         }
2789
2790         inc_mm_counter_fast(mm, MM_ANONPAGES);
2791         page_add_new_anon_rmap(page, vma, address);
2792         mem_cgroup_commit_charge(page, memcg, false);
2793         lru_cache_add_active_or_unevictable(page, vma);
2794 setpte:
2795         set_pte_at(mm, address, page_table, entry);
2796
2797         /* No need to invalidate - it was non-present before */
2798         update_mmu_cache(vma, address, page_table);
2799 unlock:
2800         pte_unmap_unlock(page_table, ptl);
2801         return 0;
2802 release:
2803         mem_cgroup_cancel_charge(page, memcg);
2804         page_cache_release(page);
2805         goto unlock;
2806 oom_free_page:
2807         page_cache_release(page);
2808 oom:
2809         return VM_FAULT_OOM;
2810 }
2811
2812 /*
2813  * The mmap_sem must have been held on entry, and may have been
2814  * released depending on flags and vma->vm_ops->fault() return value.
2815  * See filemap_fault() and __lock_page_retry().
2816  */
2817 static int __do_fault(struct vm_area_struct *vma, unsigned long address,
2818                         pgoff_t pgoff, unsigned int flags,
2819                         struct page *cow_page, struct page **page)
2820 {
2821         struct vm_fault vmf;
2822         int ret;
2823
2824         vmf.virtual_address = (void __user *)(address & PAGE_MASK);
2825         vmf.pgoff = pgoff;
2826         vmf.flags = flags;
2827         vmf.page = NULL;
2828         vmf.gfp_mask = __get_fault_gfp_mask(vma);
2829         vmf.cow_page = cow_page;
2830
2831         ret = vma->vm_ops->fault(vma, &vmf);
2832         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
2833                 return ret;
2834         if (!vmf.page)
2835                 goto out;
2836
2837         if (unlikely(PageHWPoison(vmf.page))) {
2838                 if (ret & VM_FAULT_LOCKED)
2839                         unlock_page(vmf.page);
2840                 page_cache_release(vmf.page);
2841                 return VM_FAULT_HWPOISON;
2842         }
2843
2844         if (unlikely(!(ret & VM_FAULT_LOCKED)))
2845                 lock_page(vmf.page);
2846         else
2847                 VM_BUG_ON_PAGE(!PageLocked(vmf.page), vmf.page);
2848
2849  out:
2850         *page = vmf.page;
2851         return ret;
2852 }
2853
2854 /**
2855  * do_set_pte - setup new PTE entry for given page and add reverse page mapping.
2856  *
2857  * @vma: virtual memory area
2858  * @address: user virtual address
2859  * @page: page to map
2860  * @pte: pointer to target page table entry
2861  * @write: true, if new entry is writable
2862  * @anon: true, if it's anonymous page
2863  *
2864  * Caller must hold page table lock relevant for @pte.
2865  *
2866  * Target users are page handler itself and implementations of
2867  * vm_ops->map_pages.
2868  */
2869 void do_set_pte(struct vm_area_struct *vma, unsigned long address,
2870                 struct page *page, pte_t *pte, bool write, bool anon)
2871 {
2872         pte_t entry;
2873
2874         flush_icache_page(vma, page);
2875         entry = mk_pte(page, vma->vm_page_prot);
2876         if (write)
2877                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2878         if (anon) {
2879                 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
2880                 page_add_new_anon_rmap(page, vma, address);
2881         } else {
2882                 inc_mm_counter_fast(vma->vm_mm, MM_FILEPAGES);
2883                 page_add_file_rmap(page);
2884         }
2885         set_pte_at(vma->vm_mm, address, pte, entry);
2886
2887         /* no need to invalidate: a not-present page won't be cached */
2888         update_mmu_cache(vma, address, pte);
2889 }
2890
2891 static unsigned long fault_around_bytes __read_mostly =
2892         rounddown_pow_of_two(65536);
2893
2894 #ifdef CONFIG_DEBUG_FS
2895 static int fault_around_bytes_get(void *data, u64 *val)
2896 {
2897         *val = fault_around_bytes;
2898         return 0;
2899 }
2900
2901 /*
2902  * fault_around_pages() and fault_around_mask() expects fault_around_bytes
2903  * rounded down to nearest page order. It's what do_fault_around() expects to
2904  * see.
2905  */
2906 static int fault_around_bytes_set(void *data, u64 val)
2907 {
2908         if (val / PAGE_SIZE > PTRS_PER_PTE)
2909                 return -EINVAL;
2910         if (val > PAGE_SIZE)
2911                 fault_around_bytes = rounddown_pow_of_two(val);
2912         else
2913                 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
2914         return 0;
2915 }
2916 DEFINE_SIMPLE_ATTRIBUTE(fault_around_bytes_fops,
2917                 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
2918
2919 static int __init fault_around_debugfs(void)
2920 {
2921         void *ret;
2922
2923         ret = debugfs_create_file("fault_around_bytes", 0644, NULL, NULL,
2924                         &fault_around_bytes_fops);
2925         if (!ret)
2926                 pr_warn("Failed to create fault_around_bytes in debugfs");
2927         return 0;
2928 }
2929 late_initcall(fault_around_debugfs);
2930 #endif
2931
2932 /*
2933  * do_fault_around() tries to map few pages around the fault address. The hope
2934  * is that the pages will be needed soon and this will lower the number of
2935  * faults to handle.
2936  *
2937  * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
2938  * not ready to be mapped: not up-to-date, locked, etc.
2939  *
2940  * This function is called with the page table lock taken. In the split ptlock
2941  * case the page table lock only protects only those entries which belong to
2942  * the page table corresponding to the fault address.
2943  *
2944  * This function doesn't cross the VMA boundaries, in order to call map_pages()
2945  * only once.
2946  *
2947  * fault_around_pages() defines how many pages we'll try to map.
2948  * do_fault_around() expects it to return a power of two less than or equal to
2949  * PTRS_PER_PTE.
2950  *
2951  * The virtual address of the area that we map is naturally aligned to the
2952  * fault_around_pages() value (and therefore to page order).  This way it's
2953  * easier to guarantee that we don't cross page table boundaries.
2954  */
2955 static void do_fault_around(struct vm_area_struct *vma, unsigned long address,
2956                 pte_t *pte, pgoff_t pgoff, unsigned int flags)
2957 {
2958         unsigned long start_addr, nr_pages, mask;
2959         pgoff_t max_pgoff;
2960         struct vm_fault vmf;
2961         int off;
2962
2963         nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
2964         mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
2965
2966         start_addr = max(address & mask, vma->vm_start);
2967         off = ((address - start_addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
2968         pte -= off;
2969         pgoff -= off;
2970
2971         /*
2972          *  max_pgoff is either end of page table or end of vma
2973          *  or fault_around_pages() from pgoff, depending what is nearest.
2974          */
2975         max_pgoff = pgoff - ((start_addr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
2976                 PTRS_PER_PTE - 1;
2977         max_pgoff = min3(max_pgoff, vma_pages(vma) + vma->vm_pgoff - 1,
2978                         pgoff + nr_pages - 1);
2979
2980         /* Check if it makes any sense to call ->map_pages */
2981         while (!pte_none(*pte)) {
2982                 if (++pgoff > max_pgoff)
2983                         return;
2984                 start_addr += PAGE_SIZE;
2985                 if (start_addr >= vma->vm_end)
2986                         return;
2987                 pte++;
2988         }
2989
2990         vmf.virtual_address = (void __user *) start_addr;
2991         vmf.pte = pte;
2992         vmf.pgoff = pgoff;
2993         vmf.max_pgoff = max_pgoff;
2994         vmf.flags = flags;
2995         vmf.gfp_mask = __get_fault_gfp_mask(vma);
2996         vma->vm_ops->map_pages(vma, &vmf);
2997 }
2998
2999 static int do_read_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3000                 unsigned long address, pmd_t *pmd,
3001                 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
3002 {
3003         struct page *fault_page;
3004         spinlock_t *ptl;
3005         pte_t *pte;
3006         int ret = 0;
3007
3008         /*
3009          * Let's call ->map_pages() first and use ->fault() as fallback
3010          * if page by the offset is not ready to be mapped (cold cache or
3011          * something).
3012          */
3013         if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
3014                 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
3015                 do_fault_around(vma, address, pte, pgoff, flags);
3016                 if (!pte_same(*pte, orig_pte))
3017                         goto unlock_out;
3018                 pte_unmap_unlock(pte, ptl);
3019         }
3020
3021         ret = __do_fault(vma, address, pgoff, flags, NULL, &fault_page);
3022         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3023                 return ret;
3024
3025         pte = pte_offset_map_lock(mm, pmd, address, &ptl);
3026         if (unlikely(!pte_same(*pte, orig_pte))) {
3027                 pte_unmap_unlock(pte, ptl);
3028                 unlock_page(fault_page);
3029                 page_cache_release(fault_page);
3030                 return ret;
3031         }
3032         do_set_pte(vma, address, fault_page, pte, false, false);
3033         unlock_page(fault_page);
3034 unlock_out:
3035         pte_unmap_unlock(pte, ptl);
3036         return ret;
3037 }
3038
3039 static int do_cow_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3040                 unsigned long address, pmd_t *pmd,
3041                 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
3042 {
3043         struct page *fault_page, *new_page;
3044         struct mem_cgroup *memcg;
3045         spinlock_t *ptl;
3046         pte_t *pte;
3047         int ret;
3048
3049         if (unlikely(anon_vma_prepare(vma)))
3050                 return VM_FAULT_OOM;
3051
3052         new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
3053         if (!new_page)
3054                 return VM_FAULT_OOM;
3055
3056         if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg)) {
3057                 page_cache_release(new_page);
3058                 return VM_FAULT_OOM;
3059         }
3060
3061         ret = __do_fault(vma, address, pgoff, flags, new_page, &fault_page);
3062         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3063                 goto uncharge_out;
3064
3065         if (fault_page)
3066                 copy_user_highpage(new_page, fault_page, address, vma);
3067         __SetPageUptodate(new_page);
3068
3069         pte = pte_offset_map_lock(mm, pmd, address, &ptl);
3070         if (unlikely(!pte_same(*pte, orig_pte))) {
3071                 pte_unmap_unlock(pte, ptl);
3072                 if (fault_page) {
3073                         unlock_page(fault_page);
3074                         page_cache_release(fault_page);
3075                 } else {
3076                         /*
3077                          * The fault handler has no page to lock, so it holds
3078                          * i_mmap_lock for read to protect against truncate.
3079                          */
3080                         i_mmap_unlock_read(vma->vm_file->f_mapping);
3081                 }
3082                 goto uncharge_out;
3083         }
3084         do_set_pte(vma, address, new_page, pte, true, true);
3085         mem_cgroup_commit_charge(new_page, memcg, false);
3086         lru_cache_add_active_or_unevictable(new_page, vma);
3087         pte_unmap_unlock(pte, ptl);
3088         if (fault_page) {
3089                 unlock_page(fault_page);
3090                 page_cache_release(fault_page);
3091         } else {
3092                 /*
3093                  * The fault handler has no page to lock, so it holds
3094                  * i_mmap_lock for read to protect against truncate.
3095                  */
3096                 i_mmap_unlock_read(vma->vm_file->f_mapping);
3097         }
3098         return ret;
3099 uncharge_out:
3100         mem_cgroup_cancel_charge(new_page, memcg);
3101         page_cache_release(new_page);
3102         return ret;
3103 }
3104
3105 static int do_shared_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3106                 unsigned long address, pmd_t *pmd,
3107                 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
3108 {
3109         struct page *fault_page;
3110         struct address_space *mapping;
3111         spinlock_t *ptl;
3112         pte_t *pte;
3113         int dirtied = 0;
3114         int ret, tmp;
3115
3116         ret = __do_fault(vma, address, pgoff, flags, NULL, &fault_page);
3117         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3118                 return ret;
3119
3120         /*
3121          * Check if the backing address space wants to know that the page is
3122          * about to become writable
3123          */
3124         if (vma->vm_ops->page_mkwrite) {
3125                 unlock_page(fault_page);
3126                 tmp = do_page_mkwrite(vma, fault_page, address);
3127                 if (unlikely(!tmp ||
3128                                 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3129                         page_cache_release(fault_page);
3130                         return tmp;
3131                 }
3132         }
3133
3134         pte = pte_offset_map_lock(mm, pmd, address, &ptl);
3135         if (unlikely(!pte_same(*pte, orig_pte))) {
3136                 pte_unmap_unlock(pte, ptl);
3137                 unlock_page(fault_page);
3138                 page_cache_release(fault_page);
3139                 return ret;
3140         }
3141         do_set_pte(vma, address, fault_page, pte, true, false);
3142         pte_unmap_unlock(pte, ptl);
3143
3144         if (set_page_dirty(fault_page))
3145                 dirtied = 1;
3146         /*
3147          * Take a local copy of the address_space - page.mapping may be zeroed
3148          * by truncate after unlock_page().   The address_space itself remains
3149          * pinned by vma->vm_file's reference.  We rely on unlock_page()'s
3150          * release semantics to prevent the compiler from undoing this copying.
3151          */
3152         mapping = fault_page->mapping;
3153         unlock_page(fault_page);
3154         if ((dirtied || vma->vm_ops->page_mkwrite) && mapping) {
3155                 /*
3156                  * Some device drivers do not set page.mapping but still
3157                  * dirty their pages
3158                  */
3159                 balance_dirty_pages_ratelimited(mapping);
3160         }
3161
3162         if (!vma->vm_ops->page_mkwrite)
3163                 file_update_time(vma->vm_file);
3164
3165         return ret;
3166 }
3167
3168 /*
3169  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3170  * but allow concurrent faults).
3171  * The mmap_sem may have been released depending on flags and our
3172  * return value.  See filemap_fault() and __lock_page_or_retry().
3173  */
3174 static int do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3175                 unsigned long address, pte_t *page_table, pmd_t *pmd,
3176                 unsigned int flags, pte_t orig_pte)
3177 {
3178         pgoff_t pgoff = (((address & PAGE_MASK)
3179                         - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
3180
3181         pte_unmap(page_table);
3182         /* The VMA was not fully populated on mmap() or missing VM_DONTEXPAND */
3183         if (!vma->vm_ops->fault)
3184                 return VM_FAULT_SIGBUS;
3185         if (!(flags & FAULT_FLAG_WRITE))
3186                 return do_read_fault(mm, vma, address, pmd, pgoff, flags,
3187                                 orig_pte);
3188         if (!(vma->vm_flags & VM_SHARED))
3189                 return do_cow_fault(mm, vma, address, pmd, pgoff, flags,
3190                                 orig_pte);
3191         return do_shared_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3192 }
3193
3194 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3195                                 unsigned long addr, int page_nid,
3196                                 int *flags)
3197 {
3198         get_page(page);
3199
3200         count_vm_numa_event(NUMA_HINT_FAULTS);
3201         if (page_nid == numa_node_id()) {
3202                 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
3203                 *flags |= TNF_FAULT_LOCAL;
3204         }
3205
3206         return mpol_misplaced(page, vma, addr);
3207 }
3208
3209 static int do_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
3210                    unsigned long addr, pte_t pte, pte_t *ptep, pmd_t *pmd)
3211 {
3212         struct page *page = NULL;
3213         spinlock_t *ptl;
3214         int page_nid = -1;
3215         int last_cpupid;
3216         int target_nid;
3217         bool migrated = false;
3218         bool was_writable = pte_write(pte);
3219         int flags = 0;
3220
3221         /* A PROT_NONE fault should not end up here */
3222         BUG_ON(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)));
3223
3224         /*
3225         * The "pte" at this point cannot be used safely without
3226         * validation through pte_unmap_same(). It's of NUMA type but
3227         * the pfn may be screwed if the read is non atomic.
3228         *
3229         * We can safely just do a "set_pte_at()", because the old
3230         * page table entry is not accessible, so there would be no
3231         * concurrent hardware modifications to the PTE.
3232         */
3233         ptl = pte_lockptr(mm, pmd);
3234         spin_lock(ptl);
3235         if (unlikely(!pte_same(*ptep, pte))) {
3236                 pte_unmap_unlock(ptep, ptl);
3237                 goto out;
3238         }
3239
3240         /* Make it present again */
3241         pte = pte_modify(pte, vma->vm_page_prot);
3242         pte = pte_mkyoung(pte);
3243         if (was_writable)
3244                 pte = pte_mkwrite(pte);
3245         set_pte_at(mm, addr, ptep, pte);
3246         update_mmu_cache(vma, addr, ptep);
3247
3248         page = vm_normal_page(vma, addr, pte);
3249         if (!page) {
3250                 pte_unmap_unlock(ptep, ptl);
3251                 return 0;
3252         }
3253
3254         /*
3255          * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
3256          * much anyway since they can be in shared cache state. This misses
3257          * the case where a mapping is writable but the process never writes
3258          * to it but pte_write gets cleared during protection updates and
3259          * pte_dirty has unpredictable behaviour between PTE scan updates,
3260          * background writeback, dirty balancing and application behaviour.
3261          */
3262         if (!(vma->vm_flags & VM_WRITE))
3263                 flags |= TNF_NO_GROUP;
3264
3265         /*
3266          * Flag if the page is shared between multiple address spaces. This
3267          * is later used when determining whether to group tasks together
3268          */
3269         if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
3270                 flags |= TNF_SHARED;
3271
3272         last_cpupid = page_cpupid_last(page);
3273         page_nid = page_to_nid(page);
3274         target_nid = numa_migrate_prep(page, vma, addr, page_nid, &flags);
3275         pte_unmap_unlock(ptep, ptl);
3276         if (target_nid == -1) {
3277                 put_page(page);
3278                 goto out;
3279         }
3280
3281         /* Migrate to the requested node */
3282         migrated = migrate_misplaced_page(page, vma, target_nid);
3283         if (migrated) {
3284                 page_nid = target_nid;
3285                 flags |= TNF_MIGRATED;
3286         } else
3287                 flags |= TNF_MIGRATE_FAIL;
3288
3289 out:
3290         if (page_nid != -1)
3291                 task_numa_fault(last_cpupid, page_nid, 1, flags);
3292         return 0;
3293 }
3294
3295 static int create_huge_pmd(struct mm_struct *mm, struct vm_area_struct *vma,
3296                         unsigned long address, pmd_t *pmd, unsigned int flags)
3297 {
3298         if (vma_is_anonymous(vma))
3299                 return do_huge_pmd_anonymous_page(mm, vma, address, pmd, flags);
3300         if (vma->vm_ops->pmd_fault)
3301                 return vma->vm_ops->pmd_fault(vma, address, pmd, flags);
3302         return VM_FAULT_FALLBACK;
3303 }
3304
3305 static int wp_huge_pmd(struct mm_struct *mm, struct vm_area_struct *vma,
3306                         unsigned long address, pmd_t *pmd, pmd_t orig_pmd,
3307                         unsigned int flags)
3308 {
3309         if (vma_is_anonymous(vma))
3310                 return do_huge_pmd_wp_page(mm, vma, address, pmd, orig_pmd);
3311         if (vma->vm_ops->pmd_fault)
3312                 return vma->vm_ops->pmd_fault(vma, address, pmd, flags);
3313         return VM_FAULT_FALLBACK;
3314 }
3315
3316 /*
3317  * These routines also need to handle stuff like marking pages dirty
3318  * and/or accessed for architectures that don't do it in hardware (most
3319  * RISC architectures).  The early dirtying is also good on the i386.
3320  *
3321  * There is also a hook called "update_mmu_cache()" that architectures
3322  * with external mmu caches can use to update those (ie the Sparc or
3323  * PowerPC hashed page tables that act as extended TLBs).
3324  *
3325  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3326  * but allow concurrent faults), and pte mapped but not yet locked.
3327  * We return with pte unmapped and unlocked.
3328  *
3329  * The mmap_sem may have been released depending on flags and our
3330  * return value.  See filemap_fault() and __lock_page_or_retry().
3331  */
3332 static int handle_pte_fault(struct mm_struct *mm,
3333                      struct vm_area_struct *vma, unsigned long address,
3334                      pte_t *pte, pmd_t *pmd, unsigned int flags)
3335 {
3336         pte_t entry;
3337         spinlock_t *ptl;
3338
3339         /*
3340          * some architectures can have larger ptes than wordsize,
3341          * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and CONFIG_32BIT=y,
3342          * so READ_ONCE or ACCESS_ONCE cannot guarantee atomic accesses.
3343          * The code below just needs a consistent view for the ifs and
3344          * we later double check anyway with the ptl lock held. So here
3345          * a barrier will do.
3346          */
3347         entry = *pte;
3348         barrier();
3349         if (!pte_present(entry)) {
3350                 if (pte_none(entry)) {
3351                         if (vma_is_anonymous(vma))
3352                                 return do_anonymous_page(mm, vma, address,
3353                                                          pte, pmd, flags);
3354                         else
3355                                 return do_fault(mm, vma, address, pte, pmd,
3356                                                 flags, entry);
3357                 }
3358                 return do_swap_page(mm, vma, address,
3359                                         pte, pmd, flags, entry);
3360         }
3361
3362         if (pte_protnone(entry))
3363                 return do_numa_page(mm, vma, address, entry, pte, pmd);
3364
3365         ptl = pte_lockptr(mm, pmd);
3366         spin_lock(ptl);
3367         if (unlikely(!pte_same(*pte, entry)))
3368                 goto unlock;
3369         if (flags & FAULT_FLAG_WRITE) {
3370                 if (!pte_write(entry))
3371                         return do_wp_page(mm, vma, address,
3372                                         pte, pmd, ptl, entry);
3373                 entry = pte_mkdirty(entry);
3374         }
3375         entry = pte_mkyoung(entry);
3376         if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
3377                 update_mmu_cache(vma, address, pte);
3378         } else {
3379                 /*
3380                  * This is needed only for protection faults but the arch code
3381                  * is not yet telling us if this is a protection fault or not.
3382                  * This still avoids useless tlb flushes for .text page faults
3383                  * with threads.
3384                  */
3385                 if (flags & FAULT_FLAG_WRITE)
3386                         flush_tlb_fix_spurious_fault(vma, address);
3387         }
3388 unlock:
3389         pte_unmap_unlock(pte, ptl);
3390         return 0;
3391 }
3392
3393 /*
3394  * By the time we get here, we already hold the mm semaphore
3395  *
3396  * The mmap_sem may have been released depending on flags and our
3397  * return value.  See filemap_fault() and __lock_page_or_retry().
3398  */
3399 static int __handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3400                              unsigned long address, unsigned int flags)
3401 {
3402         pgd_t *pgd;
3403         pud_t *pud;
3404         pmd_t *pmd;
3405         pte_t *pte;
3406
3407         if (unlikely(is_vm_hugetlb_page(vma)))
3408                 return hugetlb_fault(mm, vma, address, flags);
3409
3410         pgd = pgd_offset(mm, address);
3411         pud = pud_alloc(mm, pgd, address);
3412         if (!pud)
3413                 return VM_FAULT_OOM;
3414         pmd = pmd_alloc(mm, pud, address);
3415         if (!pmd)
3416                 return VM_FAULT_OOM;
3417         if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) {
3418                 int ret = create_huge_pmd(mm, vma, address, pmd, flags);
3419                 if (!(ret & VM_FAULT_FALLBACK))
3420                         return ret;
3421         } else {
3422                 pmd_t orig_pmd = *pmd;
3423                 int ret;
3424
3425                 barrier();
3426                 if (pmd_trans_huge(orig_pmd)) {
3427                         unsigned int dirty = flags & FAULT_FLAG_WRITE;
3428
3429                         /*
3430                          * If the pmd is splitting, return and retry the
3431                          * the fault.  Alternative: wait until the split
3432                          * is done, and goto retry.
3433                          */
3434                         if (pmd_trans_splitting(orig_pmd))
3435                                 return 0;
3436
3437                         if (pmd_protnone(orig_pmd))
3438                                 return do_huge_pmd_numa_page(mm, vma, address,
3439                                                              orig_pmd, pmd);
3440
3441                         if (dirty && !pmd_write(orig_pmd)) {
3442                                 ret = wp_huge_pmd(mm, vma, address, pmd,
3443                                                         orig_pmd, flags);
3444                                 if (!(ret & VM_FAULT_FALLBACK))
3445                                         return ret;
3446                         } else {
3447                                 huge_pmd_set_accessed(mm, vma, address, pmd,
3448                                                       orig_pmd, dirty);
3449                                 return 0;
3450                         }
3451                 }
3452         }
3453
3454         /*
3455          * Use __pte_alloc instead of pte_alloc_map, because we can't
3456          * run pte_offset_map on the pmd, if an huge pmd could
3457          * materialize from under us from a different thread.
3458          */
3459         if (unlikely(pmd_none(*pmd)) &&
3460             unlikely(__pte_alloc(mm, vma, pmd, address)))
3461                 return VM_FAULT_OOM;
3462         /*
3463          * If a huge pmd materialized under us just retry later.  Use
3464          * pmd_trans_unstable() instead of pmd_trans_huge() to ensure the pmd
3465          * didn't become pmd_trans_huge under us and then back to pmd_none, as
3466          * a result of MADV_DONTNEED running immediately after a huge pmd fault
3467          * in a different thread of this mm, in turn leading to a misleading
3468          * pmd_trans_huge() retval.  All we have to ensure is that it is a
3469          * regular pmd that we can walk with pte_offset_map() and we can do that
3470          * through an atomic read in C, which is what pmd_trans_unstable()
3471          * provides.
3472          */
3473         if (unlikely(pmd_trans_unstable(pmd)))
3474                 return 0;
3475         /*
3476          * A regular pmd is established and it can't morph into a huge pmd
3477          * from under us anymore at this point because we hold the mmap_sem
3478          * read mode and khugepaged takes it in write mode. So now it's
3479          * safe to run pte_offset_map().
3480          */
3481         pte = pte_offset_map(pmd, address);
3482
3483         return handle_pte_fault(mm, vma, address, pte, pmd, flags);
3484 }
3485
3486 /*
3487  * By the time we get here, we already hold the mm semaphore
3488  *
3489  * The mmap_sem may have been released depending on flags and our
3490  * return value.  See filemap_fault() and __lock_page_or_retry().
3491  */
3492 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3493                     unsigned long address, unsigned int flags)
3494 {
3495         int ret;
3496
3497         __set_current_state(TASK_RUNNING);
3498
3499         count_vm_event(PGFAULT);
3500         mem_cgroup_count_vm_event(mm, PGFAULT);
3501
3502         /* do counter updates before entering really critical section. */
3503         check_sync_rss_stat(current);
3504
3505         /*
3506          * Enable the memcg OOM handling for faults triggered in user
3507          * space.  Kernel faults are handled more gracefully.
3508          */
3509         if (flags & FAULT_FLAG_USER)
3510                 mem_cgroup_oom_enable();
3511
3512         ret = __handle_mm_fault(mm, vma, address, flags);
3513
3514         if (flags & FAULT_FLAG_USER) {
3515                 mem_cgroup_oom_disable();
3516                 /*
3517                  * The task may have entered a memcg OOM situation but
3518                  * if the allocation error was handled gracefully (no
3519                  * VM_FAULT_OOM), there is no need to kill anything.
3520                  * Just clean up the OOM state peacefully.
3521                  */
3522                 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
3523                         mem_cgroup_oom_synchronize(false);
3524         }
3525
3526         return ret;
3527 }
3528 EXPORT_SYMBOL_GPL(handle_mm_fault);
3529
3530 #ifndef __PAGETABLE_PUD_FOLDED
3531 /*
3532  * Allocate page upper directory.
3533  * We've already handled the fast-path in-line.
3534  */
3535 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
3536 {
3537         pud_t *new = pud_alloc_one(mm, address);
3538         if (!new)
3539                 return -ENOMEM;
3540
3541         smp_wmb(); /* See comment in __pte_alloc */
3542
3543         spin_lock(&mm->page_table_lock);
3544         if (pgd_present(*pgd))          /* Another has populated it */
3545                 pud_free(mm, new);
3546         else
3547                 pgd_populate(mm, pgd, new);
3548         spin_unlock(&mm->page_table_lock);
3549         return 0;
3550 }
3551 #endif /* __PAGETABLE_PUD_FOLDED */
3552
3553 #ifndef __PAGETABLE_PMD_FOLDED
3554 /*
3555  * Allocate page middle directory.
3556  * We've already handled the fast-path in-line.
3557  */
3558 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
3559 {
3560         pmd_t *new = pmd_alloc_one(mm, address);
3561         if (!new)
3562                 return -ENOMEM;
3563
3564         smp_wmb(); /* See comment in __pte_alloc */
3565
3566         spin_lock(&mm->page_table_lock);
3567 #ifndef __ARCH_HAS_4LEVEL_HACK
3568         if (!pud_present(*pud)) {
3569                 mm_inc_nr_pmds(mm);
3570                 pud_populate(mm, pud, new);
3571         } else  /* Another has populated it */
3572                 pmd_free(mm, new);
3573 #else
3574         if (!pgd_present(*pud)) {
3575                 mm_inc_nr_pmds(mm);
3576                 pgd_populate(mm, pud, new);
3577         } else /* Another has populated it */
3578                 pmd_free(mm, new);
3579 #endif /* __ARCH_HAS_4LEVEL_HACK */
3580         spin_unlock(&mm->page_table_lock);
3581         return 0;
3582 }
3583 #endif /* __PAGETABLE_PMD_FOLDED */
3584
3585 static int __follow_pte(struct mm_struct *mm, unsigned long address,
3586                 pte_t **ptepp, spinlock_t **ptlp)
3587 {
3588         pgd_t *pgd;
3589         pud_t *pud;
3590         pmd_t *pmd;
3591         pte_t *ptep;
3592
3593         pgd = pgd_offset(mm, address);
3594         if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
3595                 goto out;
3596
3597         pud = pud_offset(pgd, address);
3598         if (pud_none(*pud) || unlikely(pud_bad(*pud)))
3599                 goto out;
3600
3601         pmd = pmd_offset(pud, address);
3602         VM_BUG_ON(pmd_trans_huge(*pmd));
3603         if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
3604                 goto out;
3605
3606         /* We cannot handle huge page PFN maps. Luckily they don't exist. */
3607         if (pmd_huge(*pmd))
3608                 goto out;
3609
3610         ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
3611         if (!ptep)
3612                 goto out;
3613         if (!pte_present(*ptep))
3614                 goto unlock;
3615         *ptepp = ptep;
3616         return 0;
3617 unlock:
3618         pte_unmap_unlock(ptep, *ptlp);
3619 out:
3620         return -EINVAL;
3621 }
3622
3623 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
3624                              pte_t **ptepp, spinlock_t **ptlp)
3625 {
3626         int res;
3627
3628         /* (void) is needed to make gcc happy */
3629         (void) __cond_lock(*ptlp,
3630                            !(res = __follow_pte(mm, address, ptepp, ptlp)));
3631         return res;
3632 }
3633
3634 /**
3635  * follow_pfn - look up PFN at a user virtual address
3636  * @vma: memory mapping
3637  * @address: user virtual address
3638  * @pfn: location to store found PFN
3639  *
3640  * Only IO mappings and raw PFN mappings are allowed.
3641  *
3642  * Returns zero and the pfn at @pfn on success, -ve otherwise.
3643  */
3644 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
3645         unsigned long *pfn)
3646 {
3647         int ret = -EINVAL;
3648         spinlock_t *ptl;
3649         pte_t *ptep;
3650
3651         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3652                 return ret;
3653
3654         ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
3655         if (ret)
3656                 return ret;
3657         *pfn = pte_pfn(*ptep);
3658         pte_unmap_unlock(ptep, ptl);
3659         return 0;
3660 }
3661 EXPORT_SYMBOL(follow_pfn);
3662
3663 #ifdef CONFIG_HAVE_IOREMAP_PROT
3664 int follow_phys(struct vm_area_struct *vma,
3665                 unsigned long address, unsigned int flags,
3666                 unsigned long *prot, resource_size_t *phys)
3667 {
3668         int ret = -EINVAL;
3669         pte_t *ptep, pte;
3670         spinlock_t *ptl;
3671
3672         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3673                 goto out;
3674
3675         if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
3676                 goto out;
3677         pte = *ptep;
3678
3679         if ((flags & FOLL_WRITE) && !pte_write(pte))
3680                 goto unlock;
3681
3682         *prot = pgprot_val(pte_pgprot(pte));
3683         *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
3684
3685         ret = 0;
3686 unlock:
3687         pte_unmap_unlock(ptep, ptl);
3688 out:
3689         return ret;
3690 }
3691
3692 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
3693                         void *buf, int len, int write)
3694 {
3695         resource_size_t phys_addr;
3696         unsigned long prot = 0;
3697         void __iomem *maddr;
3698         int offset = addr & (PAGE_SIZE-1);
3699
3700         if (follow_phys(vma, addr, write, &prot, &phys_addr))
3701                 return -EINVAL;
3702
3703         maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
3704         if (write)
3705                 memcpy_toio(maddr + offset, buf, len);
3706         else
3707                 memcpy_fromio(buf, maddr + offset, len);
3708         iounmap(maddr);
3709
3710         return len;
3711 }
3712 EXPORT_SYMBOL_GPL(generic_access_phys);
3713 #endif
3714
3715 /*
3716  * Access another process' address space as given in mm.  If non-NULL, use the
3717  * given task for page fault accounting.
3718  */
3719 static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
3720                 unsigned long addr, void *buf, int len, int write)
3721 {
3722         struct vm_area_struct *vma;
3723         void *old_buf = buf;
3724
3725         down_read(&mm->mmap_sem);
3726         /* ignore errors, just check how much was successfully transferred */
3727         while (len) {
3728                 int bytes, ret, offset;
3729                 void *maddr;
3730                 struct page *page = NULL;
3731
3732                 ret = get_user_pages(tsk, mm, addr, 1,
3733                                 write, 1, &page, &vma);
3734                 if (ret <= 0) {
3735 #ifndef CONFIG_HAVE_IOREMAP_PROT
3736                         break;
3737 #else
3738                         /*
3739                          * Check if this is a VM_IO | VM_PFNMAP VMA, which
3740                          * we can access using slightly different code.
3741                          */
3742                         vma = find_vma(mm, addr);
3743                         if (!vma || vma->vm_start > addr)
3744                                 break;
3745                         if (vma->vm_ops && vma->vm_ops->access)
3746                                 ret = vma->vm_ops->access(vma, addr, buf,
3747                                                           len, write);
3748                         if (ret <= 0)
3749                                 break;
3750                         bytes = ret;
3751 #endif
3752                 } else {
3753                         bytes = len;
3754                         offset = addr & (PAGE_SIZE-1);
3755                         if (bytes > PAGE_SIZE-offset)
3756                                 bytes = PAGE_SIZE-offset;
3757
3758                         maddr = kmap(page);
3759                         if (write) {
3760                                 copy_to_user_page(vma, page, addr,
3761                                                   maddr + offset, buf, bytes);
3762                                 set_page_dirty_lock(page);
3763                         } else {
3764                                 copy_from_user_page(vma, page, addr,
3765                                                     buf, maddr + offset, bytes);
3766                         }
3767                         kunmap(page);
3768                         page_cache_release(page);
3769                 }
3770                 len -= bytes;
3771                 buf += bytes;
3772                 addr += bytes;
3773         }
3774         up_read(&mm->mmap_sem);
3775
3776         return buf - old_buf;
3777 }
3778
3779 /**
3780  * access_remote_vm - access another process' address space
3781  * @mm:         the mm_struct of the target address space
3782  * @addr:       start address to access
3783  * @buf:        source or destination buffer
3784  * @len:        number of bytes to transfer
3785  * @write:      whether the access is a write
3786  *
3787  * The caller must hold a reference on @mm.
3788  */
3789 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
3790                 void *buf, int len, int write)
3791 {
3792         return __access_remote_vm(NULL, mm, addr, buf, len, write);
3793 }
3794
3795 /*
3796  * Access another process' address space.
3797  * Source/target buffer must be kernel space,
3798  * Do not walk the page table directly, use get_user_pages
3799  */
3800 int access_process_vm(struct task_struct *tsk, unsigned long addr,
3801                 void *buf, int len, int write)
3802 {
3803         struct mm_struct *mm;
3804         int ret;
3805
3806         mm = get_task_mm(tsk);
3807         if (!mm)
3808                 return 0;
3809
3810         ret = __access_remote_vm(tsk, mm, addr, buf, len, write);
3811         mmput(mm);
3812
3813         return ret;
3814 }
3815
3816 /*
3817  * Print the name of a VMA.
3818  */
3819 void print_vma_addr(char *prefix, unsigned long ip)
3820 {
3821         struct mm_struct *mm = current->mm;
3822         struct vm_area_struct *vma;
3823
3824         /*
3825          * Do not print if we are in atomic
3826          * contexts (in exception stacks, etc.):
3827          */
3828         if (preempt_count())
3829                 return;
3830
3831         down_read(&mm->mmap_sem);
3832         vma = find_vma(mm, ip);
3833         if (vma && vma->vm_file) {
3834                 struct file *f = vma->vm_file;
3835                 char *buf = (char *)__get_free_page(GFP_KERNEL);
3836                 if (buf) {
3837                         char *p;
3838
3839                         p = file_path(f, buf, PAGE_SIZE);
3840                         if (IS_ERR(p))
3841                                 p = "?";
3842                         printk("%s%s[%lx+%lx]", prefix, kbasename(p),
3843                                         vma->vm_start,
3844                                         vma->vm_end - vma->vm_start);
3845                         free_page((unsigned long)buf);
3846                 }
3847         }
3848         up_read(&mm->mmap_sem);
3849 }
3850
3851 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
3852 void __might_fault(const char *file, int line)
3853 {
3854         /*
3855          * Some code (nfs/sunrpc) uses socket ops on kernel memory while
3856          * holding the mmap_sem, this is safe because kernel memory doesn't
3857          * get paged out, therefore we'll never actually fault, and the
3858          * below annotations will generate false positives.
3859          */
3860         if (segment_eq(get_fs(), KERNEL_DS))
3861                 return;
3862         if (pagefault_disabled())
3863                 return;
3864         __might_sleep(file, line, 0);
3865 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
3866         if (current->mm)
3867                 might_lock_read(&current->mm->mmap_sem);
3868 #endif
3869 }
3870 EXPORT_SYMBOL(__might_fault);
3871 #endif
3872
3873 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
3874 static void clear_gigantic_page(struct page *page,
3875                                 unsigned long addr,
3876                                 unsigned int pages_per_huge_page)
3877 {
3878         int i;
3879         struct page *p = page;
3880
3881         might_sleep();
3882         for (i = 0; i < pages_per_huge_page;
3883              i++, p = mem_map_next(p, page, i)) {
3884                 cond_resched();
3885                 clear_user_highpage(p, addr + i * PAGE_SIZE);
3886         }
3887 }
3888 void clear_huge_page(struct page *page,
3889                      unsigned long addr, unsigned int pages_per_huge_page)
3890 {
3891         int i;
3892
3893         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
3894                 clear_gigantic_page(page, addr, pages_per_huge_page);
3895                 return;
3896         }
3897
3898         might_sleep();
3899         for (i = 0; i < pages_per_huge_page; i++) {
3900                 cond_resched();
3901                 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
3902         }
3903 }
3904
3905 static void copy_user_gigantic_page(struct page *dst, struct page *src,
3906                                     unsigned long addr,
3907                                     struct vm_area_struct *vma,
3908                                     unsigned int pages_per_huge_page)
3909 {
3910         int i;
3911         struct page *dst_base = dst;
3912         struct page *src_base = src;
3913
3914         for (i = 0; i < pages_per_huge_page; ) {
3915                 cond_resched();
3916                 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
3917
3918                 i++;
3919                 dst = mem_map_next(dst, dst_base, i);
3920                 src = mem_map_next(src, src_base, i);
3921         }
3922 }
3923
3924 void copy_user_huge_page(struct page *dst, struct page *src,
3925                          unsigned long addr, struct vm_area_struct *vma,
3926                          unsigned int pages_per_huge_page)
3927 {
3928         int i;
3929
3930         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
3931                 copy_user_gigantic_page(dst, src, addr, vma,
3932                                         pages_per_huge_page);
3933                 return;
3934         }
3935
3936         might_sleep();
3937         for (i = 0; i < pages_per_huge_page; i++) {
3938                 cond_resched();
3939                 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
3940         }
3941 }
3942 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
3943
3944 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
3945
3946 static struct kmem_cache *page_ptl_cachep;
3947
3948 void __init ptlock_cache_init(void)
3949 {
3950         page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
3951                         SLAB_PANIC, NULL);
3952 }
3953
3954 bool ptlock_alloc(struct page *page)
3955 {
3956         spinlock_t *ptl;
3957
3958         ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
3959         if (!ptl)
3960                 return false;
3961         page->ptl = ptl;
3962         return true;
3963 }
3964
3965 void ptlock_free(struct page *page)
3966 {
3967         kmem_cache_free(page_ptl_cachep, page->ptl);
3968 }
3969 #endif