OSDN Git Service

f703fe8c83460202354ca1c8cc693eb99b682c2e
[tomoyo/tomoyo-test1.git] / mm / memory.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/memory.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  */
7
8 /*
9  * demand-loading started 01.12.91 - seems it is high on the list of
10  * things wanted, and it should be easy to implement. - Linus
11  */
12
13 /*
14  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
15  * pages started 02.12.91, seems to work. - Linus.
16  *
17  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
18  * would have taken more than the 6M I have free, but it worked well as
19  * far as I could see.
20  *
21  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
22  */
23
24 /*
25  * Real VM (paging to/from disk) started 18.12.91. Much more work and
26  * thought has to go into this. Oh, well..
27  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
28  *              Found it. Everything seems to work now.
29  * 20.12.91  -  Ok, making the swap-device changeable like the root.
30  */
31
32 /*
33  * 05.04.94  -  Multi-page memory management added for v1.1.
34  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
35  *
36  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
37  *              (Gerhard.Wichert@pdb.siemens.de)
38  *
39  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
40  */
41
42 #include <linux/kernel_stat.h>
43 #include <linux/mm.h>
44 #include <linux/sched/mm.h>
45 #include <linux/sched/coredump.h>
46 #include <linux/sched/numa_balancing.h>
47 #include <linux/sched/task.h>
48 #include <linux/hugetlb.h>
49 #include <linux/mman.h>
50 #include <linux/swap.h>
51 #include <linux/highmem.h>
52 #include <linux/pagemap.h>
53 #include <linux/memremap.h>
54 #include <linux/ksm.h>
55 #include <linux/rmap.h>
56 #include <linux/export.h>
57 #include <linux/delayacct.h>
58 #include <linux/init.h>
59 #include <linux/pfn_t.h>
60 #include <linux/writeback.h>
61 #include <linux/memcontrol.h>
62 #include <linux/mmu_notifier.h>
63 #include <linux/swapops.h>
64 #include <linux/elf.h>
65 #include <linux/gfp.h>
66 #include <linux/migrate.h>
67 #include <linux/string.h>
68 #include <linux/dma-debug.h>
69 #include <linux/debugfs.h>
70 #include <linux/userfaultfd_k.h>
71 #include <linux/dax.h>
72 #include <linux/oom.h>
73 #include <linux/numa.h>
74
75 #include <trace/events/kmem.h>
76
77 #include <asm/io.h>
78 #include <asm/mmu_context.h>
79 #include <asm/pgalloc.h>
80 #include <linux/uaccess.h>
81 #include <asm/tlb.h>
82 #include <asm/tlbflush.h>
83 #include <asm/pgtable.h>
84
85 #include "internal.h"
86
87 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
88 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
89 #endif
90
91 #ifndef CONFIG_NEED_MULTIPLE_NODES
92 /* use the per-pgdat data instead for discontigmem - mbligh */
93 unsigned long max_mapnr;
94 EXPORT_SYMBOL(max_mapnr);
95
96 struct page *mem_map;
97 EXPORT_SYMBOL(mem_map);
98 #endif
99
100 /*
101  * A number of key systems in x86 including ioremap() rely on the assumption
102  * that high_memory defines the upper bound on direct map memory, then end
103  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
104  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
105  * and ZONE_HIGHMEM.
106  */
107 void *high_memory;
108 EXPORT_SYMBOL(high_memory);
109
110 /*
111  * Randomize the address space (stacks, mmaps, brk, etc.).
112  *
113  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
114  *   as ancient (libc5 based) binaries can segfault. )
115  */
116 int randomize_va_space __read_mostly =
117 #ifdef CONFIG_COMPAT_BRK
118                                         1;
119 #else
120                                         2;
121 #endif
122
123 #ifndef arch_faults_on_old_pte
124 static inline bool arch_faults_on_old_pte(void)
125 {
126         /*
127          * Those arches which don't have hw access flag feature need to
128          * implement their own helper. By default, "true" means pagefault
129          * will be hit on old pte.
130          */
131         return true;
132 }
133 #endif
134
135 static int __init disable_randmaps(char *s)
136 {
137         randomize_va_space = 0;
138         return 1;
139 }
140 __setup("norandmaps", disable_randmaps);
141
142 unsigned long zero_pfn __read_mostly;
143 EXPORT_SYMBOL(zero_pfn);
144
145 unsigned long highest_memmap_pfn __read_mostly;
146
147 /*
148  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
149  */
150 static int __init init_zero_pfn(void)
151 {
152         zero_pfn = page_to_pfn(ZERO_PAGE(0));
153         return 0;
154 }
155 core_initcall(init_zero_pfn);
156
157 void mm_trace_rss_stat(struct mm_struct *mm, int member, long count)
158 {
159         trace_rss_stat(mm, member, count);
160 }
161
162 #if defined(SPLIT_RSS_COUNTING)
163
164 void sync_mm_rss(struct mm_struct *mm)
165 {
166         int i;
167
168         for (i = 0; i < NR_MM_COUNTERS; i++) {
169                 if (current->rss_stat.count[i]) {
170                         add_mm_counter(mm, i, current->rss_stat.count[i]);
171                         current->rss_stat.count[i] = 0;
172                 }
173         }
174         current->rss_stat.events = 0;
175 }
176
177 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
178 {
179         struct task_struct *task = current;
180
181         if (likely(task->mm == mm))
182                 task->rss_stat.count[member] += val;
183         else
184                 add_mm_counter(mm, member, val);
185 }
186 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
187 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
188
189 /* sync counter once per 64 page faults */
190 #define TASK_RSS_EVENTS_THRESH  (64)
191 static void check_sync_rss_stat(struct task_struct *task)
192 {
193         if (unlikely(task != current))
194                 return;
195         if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
196                 sync_mm_rss(task->mm);
197 }
198 #else /* SPLIT_RSS_COUNTING */
199
200 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
201 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
202
203 static void check_sync_rss_stat(struct task_struct *task)
204 {
205 }
206
207 #endif /* SPLIT_RSS_COUNTING */
208
209 /*
210  * Note: this doesn't free the actual pages themselves. That
211  * has been handled earlier when unmapping all the memory regions.
212  */
213 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
214                            unsigned long addr)
215 {
216         pgtable_t token = pmd_pgtable(*pmd);
217         pmd_clear(pmd);
218         pte_free_tlb(tlb, token, addr);
219         mm_dec_nr_ptes(tlb->mm);
220 }
221
222 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
223                                 unsigned long addr, unsigned long end,
224                                 unsigned long floor, unsigned long ceiling)
225 {
226         pmd_t *pmd;
227         unsigned long next;
228         unsigned long start;
229
230         start = addr;
231         pmd = pmd_offset(pud, addr);
232         do {
233                 next = pmd_addr_end(addr, end);
234                 if (pmd_none_or_clear_bad(pmd))
235                         continue;
236                 free_pte_range(tlb, pmd, addr);
237         } while (pmd++, addr = next, addr != end);
238
239         start &= PUD_MASK;
240         if (start < floor)
241                 return;
242         if (ceiling) {
243                 ceiling &= PUD_MASK;
244                 if (!ceiling)
245                         return;
246         }
247         if (end - 1 > ceiling - 1)
248                 return;
249
250         pmd = pmd_offset(pud, start);
251         pud_clear(pud);
252         pmd_free_tlb(tlb, pmd, start);
253         mm_dec_nr_pmds(tlb->mm);
254 }
255
256 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
257                                 unsigned long addr, unsigned long end,
258                                 unsigned long floor, unsigned long ceiling)
259 {
260         pud_t *pud;
261         unsigned long next;
262         unsigned long start;
263
264         start = addr;
265         pud = pud_offset(p4d, addr);
266         do {
267                 next = pud_addr_end(addr, end);
268                 if (pud_none_or_clear_bad(pud))
269                         continue;
270                 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
271         } while (pud++, addr = next, addr != end);
272
273         start &= P4D_MASK;
274         if (start < floor)
275                 return;
276         if (ceiling) {
277                 ceiling &= P4D_MASK;
278                 if (!ceiling)
279                         return;
280         }
281         if (end - 1 > ceiling - 1)
282                 return;
283
284         pud = pud_offset(p4d, start);
285         p4d_clear(p4d);
286         pud_free_tlb(tlb, pud, start);
287         mm_dec_nr_puds(tlb->mm);
288 }
289
290 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
291                                 unsigned long addr, unsigned long end,
292                                 unsigned long floor, unsigned long ceiling)
293 {
294         p4d_t *p4d;
295         unsigned long next;
296         unsigned long start;
297
298         start = addr;
299         p4d = p4d_offset(pgd, addr);
300         do {
301                 next = p4d_addr_end(addr, end);
302                 if (p4d_none_or_clear_bad(p4d))
303                         continue;
304                 free_pud_range(tlb, p4d, addr, next, floor, ceiling);
305         } while (p4d++, addr = next, addr != end);
306
307         start &= PGDIR_MASK;
308         if (start < floor)
309                 return;
310         if (ceiling) {
311                 ceiling &= PGDIR_MASK;
312                 if (!ceiling)
313                         return;
314         }
315         if (end - 1 > ceiling - 1)
316                 return;
317
318         p4d = p4d_offset(pgd, start);
319         pgd_clear(pgd);
320         p4d_free_tlb(tlb, p4d, start);
321 }
322
323 /*
324  * This function frees user-level page tables of a process.
325  */
326 void free_pgd_range(struct mmu_gather *tlb,
327                         unsigned long addr, unsigned long end,
328                         unsigned long floor, unsigned long ceiling)
329 {
330         pgd_t *pgd;
331         unsigned long next;
332
333         /*
334          * The next few lines have given us lots of grief...
335          *
336          * Why are we testing PMD* at this top level?  Because often
337          * there will be no work to do at all, and we'd prefer not to
338          * go all the way down to the bottom just to discover that.
339          *
340          * Why all these "- 1"s?  Because 0 represents both the bottom
341          * of the address space and the top of it (using -1 for the
342          * top wouldn't help much: the masks would do the wrong thing).
343          * The rule is that addr 0 and floor 0 refer to the bottom of
344          * the address space, but end 0 and ceiling 0 refer to the top
345          * Comparisons need to use "end - 1" and "ceiling - 1" (though
346          * that end 0 case should be mythical).
347          *
348          * Wherever addr is brought up or ceiling brought down, we must
349          * be careful to reject "the opposite 0" before it confuses the
350          * subsequent tests.  But what about where end is brought down
351          * by PMD_SIZE below? no, end can't go down to 0 there.
352          *
353          * Whereas we round start (addr) and ceiling down, by different
354          * masks at different levels, in order to test whether a table
355          * now has no other vmas using it, so can be freed, we don't
356          * bother to round floor or end up - the tests don't need that.
357          */
358
359         addr &= PMD_MASK;
360         if (addr < floor) {
361                 addr += PMD_SIZE;
362                 if (!addr)
363                         return;
364         }
365         if (ceiling) {
366                 ceiling &= PMD_MASK;
367                 if (!ceiling)
368                         return;
369         }
370         if (end - 1 > ceiling - 1)
371                 end -= PMD_SIZE;
372         if (addr > end - 1)
373                 return;
374         /*
375          * We add page table cache pages with PAGE_SIZE,
376          * (see pte_free_tlb()), flush the tlb if we need
377          */
378         tlb_change_page_size(tlb, PAGE_SIZE);
379         pgd = pgd_offset(tlb->mm, addr);
380         do {
381                 next = pgd_addr_end(addr, end);
382                 if (pgd_none_or_clear_bad(pgd))
383                         continue;
384                 free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
385         } while (pgd++, addr = next, addr != end);
386 }
387
388 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
389                 unsigned long floor, unsigned long ceiling)
390 {
391         while (vma) {
392                 struct vm_area_struct *next = vma->vm_next;
393                 unsigned long addr = vma->vm_start;
394
395                 /*
396                  * Hide vma from rmap and truncate_pagecache before freeing
397                  * pgtables
398                  */
399                 unlink_anon_vmas(vma);
400                 unlink_file_vma(vma);
401
402                 if (is_vm_hugetlb_page(vma)) {
403                         hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
404                                 floor, next ? next->vm_start : ceiling);
405                 } else {
406                         /*
407                          * Optimization: gather nearby vmas into one call down
408                          */
409                         while (next && next->vm_start <= vma->vm_end + PMD_SIZE
410                                && !is_vm_hugetlb_page(next)) {
411                                 vma = next;
412                                 next = vma->vm_next;
413                                 unlink_anon_vmas(vma);
414                                 unlink_file_vma(vma);
415                         }
416                         free_pgd_range(tlb, addr, vma->vm_end,
417                                 floor, next ? next->vm_start : ceiling);
418                 }
419                 vma = next;
420         }
421 }
422
423 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
424 {
425         spinlock_t *ptl;
426         pgtable_t new = pte_alloc_one(mm);
427         if (!new)
428                 return -ENOMEM;
429
430         /*
431          * Ensure all pte setup (eg. pte page lock and page clearing) are
432          * visible before the pte is made visible to other CPUs by being
433          * put into page tables.
434          *
435          * The other side of the story is the pointer chasing in the page
436          * table walking code (when walking the page table without locking;
437          * ie. most of the time). Fortunately, these data accesses consist
438          * of a chain of data-dependent loads, meaning most CPUs (alpha
439          * being the notable exception) will already guarantee loads are
440          * seen in-order. See the alpha page table accessors for the
441          * smp_read_barrier_depends() barriers in page table walking code.
442          */
443         smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
444
445         ptl = pmd_lock(mm, pmd);
446         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
447                 mm_inc_nr_ptes(mm);
448                 pmd_populate(mm, pmd, new);
449                 new = NULL;
450         }
451         spin_unlock(ptl);
452         if (new)
453                 pte_free(mm, new);
454         return 0;
455 }
456
457 int __pte_alloc_kernel(pmd_t *pmd)
458 {
459         pte_t *new = pte_alloc_one_kernel(&init_mm);
460         if (!new)
461                 return -ENOMEM;
462
463         smp_wmb(); /* See comment in __pte_alloc */
464
465         spin_lock(&init_mm.page_table_lock);
466         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
467                 pmd_populate_kernel(&init_mm, pmd, new);
468                 new = NULL;
469         }
470         spin_unlock(&init_mm.page_table_lock);
471         if (new)
472                 pte_free_kernel(&init_mm, new);
473         return 0;
474 }
475
476 static inline void init_rss_vec(int *rss)
477 {
478         memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
479 }
480
481 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
482 {
483         int i;
484
485         if (current->mm == mm)
486                 sync_mm_rss(mm);
487         for (i = 0; i < NR_MM_COUNTERS; i++)
488                 if (rss[i])
489                         add_mm_counter(mm, i, rss[i]);
490 }
491
492 /*
493  * This function is called to print an error when a bad pte
494  * is found. For example, we might have a PFN-mapped pte in
495  * a region that doesn't allow it.
496  *
497  * The calling function must still handle the error.
498  */
499 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
500                           pte_t pte, struct page *page)
501 {
502         pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
503         p4d_t *p4d = p4d_offset(pgd, addr);
504         pud_t *pud = pud_offset(p4d, addr);
505         pmd_t *pmd = pmd_offset(pud, addr);
506         struct address_space *mapping;
507         pgoff_t index;
508         static unsigned long resume;
509         static unsigned long nr_shown;
510         static unsigned long nr_unshown;
511
512         /*
513          * Allow a burst of 60 reports, then keep quiet for that minute;
514          * or allow a steady drip of one report per second.
515          */
516         if (nr_shown == 60) {
517                 if (time_before(jiffies, resume)) {
518                         nr_unshown++;
519                         return;
520                 }
521                 if (nr_unshown) {
522                         pr_alert("BUG: Bad page map: %lu messages suppressed\n",
523                                  nr_unshown);
524                         nr_unshown = 0;
525                 }
526                 nr_shown = 0;
527         }
528         if (nr_shown++ == 0)
529                 resume = jiffies + 60 * HZ;
530
531         mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
532         index = linear_page_index(vma, addr);
533
534         pr_alert("BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
535                  current->comm,
536                  (long long)pte_val(pte), (long long)pmd_val(*pmd));
537         if (page)
538                 dump_page(page, "bad pte");
539         pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
540                  (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
541         pr_alert("file:%pD fault:%ps mmap:%ps readpage:%ps\n",
542                  vma->vm_file,
543                  vma->vm_ops ? vma->vm_ops->fault : NULL,
544                  vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
545                  mapping ? mapping->a_ops->readpage : NULL);
546         dump_stack();
547         add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
548 }
549
550 /*
551  * vm_normal_page -- This function gets the "struct page" associated with a pte.
552  *
553  * "Special" mappings do not wish to be associated with a "struct page" (either
554  * it doesn't exist, or it exists but they don't want to touch it). In this
555  * case, NULL is returned here. "Normal" mappings do have a struct page.
556  *
557  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
558  * pte bit, in which case this function is trivial. Secondly, an architecture
559  * may not have a spare pte bit, which requires a more complicated scheme,
560  * described below.
561  *
562  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
563  * special mapping (even if there are underlying and valid "struct pages").
564  * COWed pages of a VM_PFNMAP are always normal.
565  *
566  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
567  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
568  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
569  * mapping will always honor the rule
570  *
571  *      pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
572  *
573  * And for normal mappings this is false.
574  *
575  * This restricts such mappings to be a linear translation from virtual address
576  * to pfn. To get around this restriction, we allow arbitrary mappings so long
577  * as the vma is not a COW mapping; in that case, we know that all ptes are
578  * special (because none can have been COWed).
579  *
580  *
581  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
582  *
583  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
584  * page" backing, however the difference is that _all_ pages with a struct
585  * page (that is, those where pfn_valid is true) are refcounted and considered
586  * normal pages by the VM. The disadvantage is that pages are refcounted
587  * (which can be slower and simply not an option for some PFNMAP users). The
588  * advantage is that we don't have to follow the strict linearity rule of
589  * PFNMAP mappings in order to support COWable mappings.
590  *
591  */
592 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
593                             pte_t pte)
594 {
595         unsigned long pfn = pte_pfn(pte);
596
597         if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
598                 if (likely(!pte_special(pte)))
599                         goto check_pfn;
600                 if (vma->vm_ops && vma->vm_ops->find_special_page)
601                         return vma->vm_ops->find_special_page(vma, addr);
602                 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
603                         return NULL;
604                 if (is_zero_pfn(pfn))
605                         return NULL;
606                 if (pte_devmap(pte))
607                         return NULL;
608
609                 print_bad_pte(vma, addr, pte, NULL);
610                 return NULL;
611         }
612
613         /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
614
615         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
616                 if (vma->vm_flags & VM_MIXEDMAP) {
617                         if (!pfn_valid(pfn))
618                                 return NULL;
619                         goto out;
620                 } else {
621                         unsigned long off;
622                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
623                         if (pfn == vma->vm_pgoff + off)
624                                 return NULL;
625                         if (!is_cow_mapping(vma->vm_flags))
626                                 return NULL;
627                 }
628         }
629
630         if (is_zero_pfn(pfn))
631                 return NULL;
632
633 check_pfn:
634         if (unlikely(pfn > highest_memmap_pfn)) {
635                 print_bad_pte(vma, addr, pte, NULL);
636                 return NULL;
637         }
638
639         /*
640          * NOTE! We still have PageReserved() pages in the page tables.
641          * eg. VDSO mappings can cause them to exist.
642          */
643 out:
644         return pfn_to_page(pfn);
645 }
646
647 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
648 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
649                                 pmd_t pmd)
650 {
651         unsigned long pfn = pmd_pfn(pmd);
652
653         /*
654          * There is no pmd_special() but there may be special pmds, e.g.
655          * in a direct-access (dax) mapping, so let's just replicate the
656          * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
657          */
658         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
659                 if (vma->vm_flags & VM_MIXEDMAP) {
660                         if (!pfn_valid(pfn))
661                                 return NULL;
662                         goto out;
663                 } else {
664                         unsigned long off;
665                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
666                         if (pfn == vma->vm_pgoff + off)
667                                 return NULL;
668                         if (!is_cow_mapping(vma->vm_flags))
669                                 return NULL;
670                 }
671         }
672
673         if (pmd_devmap(pmd))
674                 return NULL;
675         if (is_huge_zero_pmd(pmd))
676                 return NULL;
677         if (unlikely(pfn > highest_memmap_pfn))
678                 return NULL;
679
680         /*
681          * NOTE! We still have PageReserved() pages in the page tables.
682          * eg. VDSO mappings can cause them to exist.
683          */
684 out:
685         return pfn_to_page(pfn);
686 }
687 #endif
688
689 /*
690  * copy one vm_area from one task to the other. Assumes the page tables
691  * already present in the new task to be cleared in the whole range
692  * covered by this vma.
693  */
694
695 static inline unsigned long
696 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
697                 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
698                 unsigned long addr, int *rss)
699 {
700         unsigned long vm_flags = vma->vm_flags;
701         pte_t pte = *src_pte;
702         struct page *page;
703
704         /* pte contains position in swap or file, so copy. */
705         if (unlikely(!pte_present(pte))) {
706                 swp_entry_t entry = pte_to_swp_entry(pte);
707
708                 if (likely(!non_swap_entry(entry))) {
709                         if (swap_duplicate(entry) < 0)
710                                 return entry.val;
711
712                         /* make sure dst_mm is on swapoff's mmlist. */
713                         if (unlikely(list_empty(&dst_mm->mmlist))) {
714                                 spin_lock(&mmlist_lock);
715                                 if (list_empty(&dst_mm->mmlist))
716                                         list_add(&dst_mm->mmlist,
717                                                         &src_mm->mmlist);
718                                 spin_unlock(&mmlist_lock);
719                         }
720                         rss[MM_SWAPENTS]++;
721                 } else if (is_migration_entry(entry)) {
722                         page = migration_entry_to_page(entry);
723
724                         rss[mm_counter(page)]++;
725
726                         if (is_write_migration_entry(entry) &&
727                                         is_cow_mapping(vm_flags)) {
728                                 /*
729                                  * COW mappings require pages in both
730                                  * parent and child to be set to read.
731                                  */
732                                 make_migration_entry_read(&entry);
733                                 pte = swp_entry_to_pte(entry);
734                                 if (pte_swp_soft_dirty(*src_pte))
735                                         pte = pte_swp_mksoft_dirty(pte);
736                                 if (pte_swp_uffd_wp(*src_pte))
737                                         pte = pte_swp_mkuffd_wp(pte);
738                                 set_pte_at(src_mm, addr, src_pte, pte);
739                         }
740                 } else if (is_device_private_entry(entry)) {
741                         page = device_private_entry_to_page(entry);
742
743                         /*
744                          * Update rss count even for unaddressable pages, as
745                          * they should treated just like normal pages in this
746                          * respect.
747                          *
748                          * We will likely want to have some new rss counters
749                          * for unaddressable pages, at some point. But for now
750                          * keep things as they are.
751                          */
752                         get_page(page);
753                         rss[mm_counter(page)]++;
754                         page_dup_rmap(page, false);
755
756                         /*
757                          * We do not preserve soft-dirty information, because so
758                          * far, checkpoint/restore is the only feature that
759                          * requires that. And checkpoint/restore does not work
760                          * when a device driver is involved (you cannot easily
761                          * save and restore device driver state).
762                          */
763                         if (is_write_device_private_entry(entry) &&
764                             is_cow_mapping(vm_flags)) {
765                                 make_device_private_entry_read(&entry);
766                                 pte = swp_entry_to_pte(entry);
767                                 if (pte_swp_uffd_wp(*src_pte))
768                                         pte = pte_swp_mkuffd_wp(pte);
769                                 set_pte_at(src_mm, addr, src_pte, pte);
770                         }
771                 }
772                 goto out_set_pte;
773         }
774
775         /*
776          * If it's a COW mapping, write protect it both
777          * in the parent and the child
778          */
779         if (is_cow_mapping(vm_flags) && pte_write(pte)) {
780                 ptep_set_wrprotect(src_mm, addr, src_pte);
781                 pte = pte_wrprotect(pte);
782         }
783
784         /*
785          * If it's a shared mapping, mark it clean in
786          * the child
787          */
788         if (vm_flags & VM_SHARED)
789                 pte = pte_mkclean(pte);
790         pte = pte_mkold(pte);
791
792         /*
793          * Make sure the _PAGE_UFFD_WP bit is cleared if the new VMA
794          * does not have the VM_UFFD_WP, which means that the uffd
795          * fork event is not enabled.
796          */
797         if (!(vm_flags & VM_UFFD_WP))
798                 pte = pte_clear_uffd_wp(pte);
799
800         page = vm_normal_page(vma, addr, pte);
801         if (page) {
802                 get_page(page);
803                 page_dup_rmap(page, false);
804                 rss[mm_counter(page)]++;
805         } else if (pte_devmap(pte)) {
806                 page = pte_page(pte);
807         }
808
809 out_set_pte:
810         set_pte_at(dst_mm, addr, dst_pte, pte);
811         return 0;
812 }
813
814 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
815                    pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
816                    unsigned long addr, unsigned long end)
817 {
818         pte_t *orig_src_pte, *orig_dst_pte;
819         pte_t *src_pte, *dst_pte;
820         spinlock_t *src_ptl, *dst_ptl;
821         int progress = 0;
822         int rss[NR_MM_COUNTERS];
823         swp_entry_t entry = (swp_entry_t){0};
824
825 again:
826         init_rss_vec(rss);
827
828         dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
829         if (!dst_pte)
830                 return -ENOMEM;
831         src_pte = pte_offset_map(src_pmd, addr);
832         src_ptl = pte_lockptr(src_mm, src_pmd);
833         spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
834         orig_src_pte = src_pte;
835         orig_dst_pte = dst_pte;
836         arch_enter_lazy_mmu_mode();
837
838         do {
839                 /*
840                  * We are holding two locks at this point - either of them
841                  * could generate latencies in another task on another CPU.
842                  */
843                 if (progress >= 32) {
844                         progress = 0;
845                         if (need_resched() ||
846                             spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
847                                 break;
848                 }
849                 if (pte_none(*src_pte)) {
850                         progress++;
851                         continue;
852                 }
853                 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
854                                                         vma, addr, rss);
855                 if (entry.val)
856                         break;
857                 progress += 8;
858         } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
859
860         arch_leave_lazy_mmu_mode();
861         spin_unlock(src_ptl);
862         pte_unmap(orig_src_pte);
863         add_mm_rss_vec(dst_mm, rss);
864         pte_unmap_unlock(orig_dst_pte, dst_ptl);
865         cond_resched();
866
867         if (entry.val) {
868                 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
869                         return -ENOMEM;
870                 progress = 0;
871         }
872         if (addr != end)
873                 goto again;
874         return 0;
875 }
876
877 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
878                 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
879                 unsigned long addr, unsigned long end)
880 {
881         pmd_t *src_pmd, *dst_pmd;
882         unsigned long next;
883
884         dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
885         if (!dst_pmd)
886                 return -ENOMEM;
887         src_pmd = pmd_offset(src_pud, addr);
888         do {
889                 next = pmd_addr_end(addr, end);
890                 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
891                         || pmd_devmap(*src_pmd)) {
892                         int err;
893                         VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, vma);
894                         err = copy_huge_pmd(dst_mm, src_mm,
895                                             dst_pmd, src_pmd, addr, vma);
896                         if (err == -ENOMEM)
897                                 return -ENOMEM;
898                         if (!err)
899                                 continue;
900                         /* fall through */
901                 }
902                 if (pmd_none_or_clear_bad(src_pmd))
903                         continue;
904                 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
905                                                 vma, addr, next))
906                         return -ENOMEM;
907         } while (dst_pmd++, src_pmd++, addr = next, addr != end);
908         return 0;
909 }
910
911 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
912                 p4d_t *dst_p4d, p4d_t *src_p4d, struct vm_area_struct *vma,
913                 unsigned long addr, unsigned long end)
914 {
915         pud_t *src_pud, *dst_pud;
916         unsigned long next;
917
918         dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
919         if (!dst_pud)
920                 return -ENOMEM;
921         src_pud = pud_offset(src_p4d, addr);
922         do {
923                 next = pud_addr_end(addr, end);
924                 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
925                         int err;
926
927                         VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, vma);
928                         err = copy_huge_pud(dst_mm, src_mm,
929                                             dst_pud, src_pud, addr, vma);
930                         if (err == -ENOMEM)
931                                 return -ENOMEM;
932                         if (!err)
933                                 continue;
934                         /* fall through */
935                 }
936                 if (pud_none_or_clear_bad(src_pud))
937                         continue;
938                 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
939                                                 vma, addr, next))
940                         return -ENOMEM;
941         } while (dst_pud++, src_pud++, addr = next, addr != end);
942         return 0;
943 }
944
945 static inline int copy_p4d_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
946                 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
947                 unsigned long addr, unsigned long end)
948 {
949         p4d_t *src_p4d, *dst_p4d;
950         unsigned long next;
951
952         dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
953         if (!dst_p4d)
954                 return -ENOMEM;
955         src_p4d = p4d_offset(src_pgd, addr);
956         do {
957                 next = p4d_addr_end(addr, end);
958                 if (p4d_none_or_clear_bad(src_p4d))
959                         continue;
960                 if (copy_pud_range(dst_mm, src_mm, dst_p4d, src_p4d,
961                                                 vma, addr, next))
962                         return -ENOMEM;
963         } while (dst_p4d++, src_p4d++, addr = next, addr != end);
964         return 0;
965 }
966
967 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
968                 struct vm_area_struct *vma)
969 {
970         pgd_t *src_pgd, *dst_pgd;
971         unsigned long next;
972         unsigned long addr = vma->vm_start;
973         unsigned long end = vma->vm_end;
974         struct mmu_notifier_range range;
975         bool is_cow;
976         int ret;
977
978         /*
979          * Don't copy ptes where a page fault will fill them correctly.
980          * Fork becomes much lighter when there are big shared or private
981          * readonly mappings. The tradeoff is that copy_page_range is more
982          * efficient than faulting.
983          */
984         if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
985                         !vma->anon_vma)
986                 return 0;
987
988         if (is_vm_hugetlb_page(vma))
989                 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
990
991         if (unlikely(vma->vm_flags & VM_PFNMAP)) {
992                 /*
993                  * We do not free on error cases below as remove_vma
994                  * gets called on error from higher level routine
995                  */
996                 ret = track_pfn_copy(vma);
997                 if (ret)
998                         return ret;
999         }
1000
1001         /*
1002          * We need to invalidate the secondary MMU mappings only when
1003          * there could be a permission downgrade on the ptes of the
1004          * parent mm. And a permission downgrade will only happen if
1005          * is_cow_mapping() returns true.
1006          */
1007         is_cow = is_cow_mapping(vma->vm_flags);
1008
1009         if (is_cow) {
1010                 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
1011                                         0, vma, src_mm, addr, end);
1012                 mmu_notifier_invalidate_range_start(&range);
1013         }
1014
1015         ret = 0;
1016         dst_pgd = pgd_offset(dst_mm, addr);
1017         src_pgd = pgd_offset(src_mm, addr);
1018         do {
1019                 next = pgd_addr_end(addr, end);
1020                 if (pgd_none_or_clear_bad(src_pgd))
1021                         continue;
1022                 if (unlikely(copy_p4d_range(dst_mm, src_mm, dst_pgd, src_pgd,
1023                                             vma, addr, next))) {
1024                         ret = -ENOMEM;
1025                         break;
1026                 }
1027         } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1028
1029         if (is_cow)
1030                 mmu_notifier_invalidate_range_end(&range);
1031         return ret;
1032 }
1033
1034 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1035                                 struct vm_area_struct *vma, pmd_t *pmd,
1036                                 unsigned long addr, unsigned long end,
1037                                 struct zap_details *details)
1038 {
1039         struct mm_struct *mm = tlb->mm;
1040         int force_flush = 0;
1041         int rss[NR_MM_COUNTERS];
1042         spinlock_t *ptl;
1043         pte_t *start_pte;
1044         pte_t *pte;
1045         swp_entry_t entry;
1046
1047         tlb_change_page_size(tlb, PAGE_SIZE);
1048 again:
1049         init_rss_vec(rss);
1050         start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1051         pte = start_pte;
1052         flush_tlb_batched_pending(mm);
1053         arch_enter_lazy_mmu_mode();
1054         do {
1055                 pte_t ptent = *pte;
1056                 if (pte_none(ptent))
1057                         continue;
1058
1059                 if (need_resched())
1060                         break;
1061
1062                 if (pte_present(ptent)) {
1063                         struct page *page;
1064
1065                         page = vm_normal_page(vma, addr, ptent);
1066                         if (unlikely(details) && page) {
1067                                 /*
1068                                  * unmap_shared_mapping_pages() wants to
1069                                  * invalidate cache without truncating:
1070                                  * unmap shared but keep private pages.
1071                                  */
1072                                 if (details->check_mapping &&
1073                                     details->check_mapping != page_rmapping(page))
1074                                         continue;
1075                         }
1076                         ptent = ptep_get_and_clear_full(mm, addr, pte,
1077                                                         tlb->fullmm);
1078                         tlb_remove_tlb_entry(tlb, pte, addr);
1079                         if (unlikely(!page))
1080                                 continue;
1081
1082                         if (!PageAnon(page)) {
1083                                 if (pte_dirty(ptent)) {
1084                                         force_flush = 1;
1085                                         set_page_dirty(page);
1086                                 }
1087                                 if (pte_young(ptent) &&
1088                                     likely(!(vma->vm_flags & VM_SEQ_READ)))
1089                                         mark_page_accessed(page);
1090                         }
1091                         rss[mm_counter(page)]--;
1092                         page_remove_rmap(page, false);
1093                         if (unlikely(page_mapcount(page) < 0))
1094                                 print_bad_pte(vma, addr, ptent, page);
1095                         if (unlikely(__tlb_remove_page(tlb, page))) {
1096                                 force_flush = 1;
1097                                 addr += PAGE_SIZE;
1098                                 break;
1099                         }
1100                         continue;
1101                 }
1102
1103                 entry = pte_to_swp_entry(ptent);
1104                 if (non_swap_entry(entry) && is_device_private_entry(entry)) {
1105                         struct page *page = device_private_entry_to_page(entry);
1106
1107                         if (unlikely(details && details->check_mapping)) {
1108                                 /*
1109                                  * unmap_shared_mapping_pages() wants to
1110                                  * invalidate cache without truncating:
1111                                  * unmap shared but keep private pages.
1112                                  */
1113                                 if (details->check_mapping !=
1114                                     page_rmapping(page))
1115                                         continue;
1116                         }
1117
1118                         pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1119                         rss[mm_counter(page)]--;
1120                         page_remove_rmap(page, false);
1121                         put_page(page);
1122                         continue;
1123                 }
1124
1125                 /* If details->check_mapping, we leave swap entries. */
1126                 if (unlikely(details))
1127                         continue;
1128
1129                 if (!non_swap_entry(entry))
1130                         rss[MM_SWAPENTS]--;
1131                 else if (is_migration_entry(entry)) {
1132                         struct page *page;
1133
1134                         page = migration_entry_to_page(entry);
1135                         rss[mm_counter(page)]--;
1136                 }
1137                 if (unlikely(!free_swap_and_cache(entry)))
1138                         print_bad_pte(vma, addr, ptent, NULL);
1139                 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1140         } while (pte++, addr += PAGE_SIZE, addr != end);
1141
1142         add_mm_rss_vec(mm, rss);
1143         arch_leave_lazy_mmu_mode();
1144
1145         /* Do the actual TLB flush before dropping ptl */
1146         if (force_flush)
1147                 tlb_flush_mmu_tlbonly(tlb);
1148         pte_unmap_unlock(start_pte, ptl);
1149
1150         /*
1151          * If we forced a TLB flush (either due to running out of
1152          * batch buffers or because we needed to flush dirty TLB
1153          * entries before releasing the ptl), free the batched
1154          * memory too. Restart if we didn't do everything.
1155          */
1156         if (force_flush) {
1157                 force_flush = 0;
1158                 tlb_flush_mmu(tlb);
1159         }
1160
1161         if (addr != end) {
1162                 cond_resched();
1163                 goto again;
1164         }
1165
1166         return addr;
1167 }
1168
1169 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1170                                 struct vm_area_struct *vma, pud_t *pud,
1171                                 unsigned long addr, unsigned long end,
1172                                 struct zap_details *details)
1173 {
1174         pmd_t *pmd;
1175         unsigned long next;
1176
1177         pmd = pmd_offset(pud, addr);
1178         do {
1179                 next = pmd_addr_end(addr, end);
1180                 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1181                         if (next - addr != HPAGE_PMD_SIZE)
1182                                 __split_huge_pmd(vma, pmd, addr, false, NULL);
1183                         else if (zap_huge_pmd(tlb, vma, pmd, addr))
1184                                 goto next;
1185                         /* fall through */
1186                 }
1187                 /*
1188                  * Here there can be other concurrent MADV_DONTNEED or
1189                  * trans huge page faults running, and if the pmd is
1190                  * none or trans huge it can change under us. This is
1191                  * because MADV_DONTNEED holds the mmap_sem in read
1192                  * mode.
1193                  */
1194                 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1195                         goto next;
1196                 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1197 next:
1198                 cond_resched();
1199         } while (pmd++, addr = next, addr != end);
1200
1201         return addr;
1202 }
1203
1204 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1205                                 struct vm_area_struct *vma, p4d_t *p4d,
1206                                 unsigned long addr, unsigned long end,
1207                                 struct zap_details *details)
1208 {
1209         pud_t *pud;
1210         unsigned long next;
1211
1212         pud = pud_offset(p4d, addr);
1213         do {
1214                 next = pud_addr_end(addr, end);
1215                 if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1216                         if (next - addr != HPAGE_PUD_SIZE) {
1217                                 VM_BUG_ON_VMA(!rwsem_is_locked(&tlb->mm->mmap_sem), vma);
1218                                 split_huge_pud(vma, pud, addr);
1219                         } else if (zap_huge_pud(tlb, vma, pud, addr))
1220                                 goto next;
1221                         /* fall through */
1222                 }
1223                 if (pud_none_or_clear_bad(pud))
1224                         continue;
1225                 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1226 next:
1227                 cond_resched();
1228         } while (pud++, addr = next, addr != end);
1229
1230         return addr;
1231 }
1232
1233 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1234                                 struct vm_area_struct *vma, pgd_t *pgd,
1235                                 unsigned long addr, unsigned long end,
1236                                 struct zap_details *details)
1237 {
1238         p4d_t *p4d;
1239         unsigned long next;
1240
1241         p4d = p4d_offset(pgd, addr);
1242         do {
1243                 next = p4d_addr_end(addr, end);
1244                 if (p4d_none_or_clear_bad(p4d))
1245                         continue;
1246                 next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1247         } while (p4d++, addr = next, addr != end);
1248
1249         return addr;
1250 }
1251
1252 void unmap_page_range(struct mmu_gather *tlb,
1253                              struct vm_area_struct *vma,
1254                              unsigned long addr, unsigned long end,
1255                              struct zap_details *details)
1256 {
1257         pgd_t *pgd;
1258         unsigned long next;
1259
1260         BUG_ON(addr >= end);
1261         tlb_start_vma(tlb, vma);
1262         pgd = pgd_offset(vma->vm_mm, addr);
1263         do {
1264                 next = pgd_addr_end(addr, end);
1265                 if (pgd_none_or_clear_bad(pgd))
1266                         continue;
1267                 next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1268         } while (pgd++, addr = next, addr != end);
1269         tlb_end_vma(tlb, vma);
1270 }
1271
1272
1273 static void unmap_single_vma(struct mmu_gather *tlb,
1274                 struct vm_area_struct *vma, unsigned long start_addr,
1275                 unsigned long end_addr,
1276                 struct zap_details *details)
1277 {
1278         unsigned long start = max(vma->vm_start, start_addr);
1279         unsigned long end;
1280
1281         if (start >= vma->vm_end)
1282                 return;
1283         end = min(vma->vm_end, end_addr);
1284         if (end <= vma->vm_start)
1285                 return;
1286
1287         if (vma->vm_file)
1288                 uprobe_munmap(vma, start, end);
1289
1290         if (unlikely(vma->vm_flags & VM_PFNMAP))
1291                 untrack_pfn(vma, 0, 0);
1292
1293         if (start != end) {
1294                 if (unlikely(is_vm_hugetlb_page(vma))) {
1295                         /*
1296                          * It is undesirable to test vma->vm_file as it
1297                          * should be non-null for valid hugetlb area.
1298                          * However, vm_file will be NULL in the error
1299                          * cleanup path of mmap_region. When
1300                          * hugetlbfs ->mmap method fails,
1301                          * mmap_region() nullifies vma->vm_file
1302                          * before calling this function to clean up.
1303                          * Since no pte has actually been setup, it is
1304                          * safe to do nothing in this case.
1305                          */
1306                         if (vma->vm_file) {
1307                                 i_mmap_lock_write(vma->vm_file->f_mapping);
1308                                 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1309                                 i_mmap_unlock_write(vma->vm_file->f_mapping);
1310                         }
1311                 } else
1312                         unmap_page_range(tlb, vma, start, end, details);
1313         }
1314 }
1315
1316 /**
1317  * unmap_vmas - unmap a range of memory covered by a list of vma's
1318  * @tlb: address of the caller's struct mmu_gather
1319  * @vma: the starting vma
1320  * @start_addr: virtual address at which to start unmapping
1321  * @end_addr: virtual address at which to end unmapping
1322  *
1323  * Unmap all pages in the vma list.
1324  *
1325  * Only addresses between `start' and `end' will be unmapped.
1326  *
1327  * The VMA list must be sorted in ascending virtual address order.
1328  *
1329  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1330  * range after unmap_vmas() returns.  So the only responsibility here is to
1331  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1332  * drops the lock and schedules.
1333  */
1334 void unmap_vmas(struct mmu_gather *tlb,
1335                 struct vm_area_struct *vma, unsigned long start_addr,
1336                 unsigned long end_addr)
1337 {
1338         struct mmu_notifier_range range;
1339
1340         mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, vma->vm_mm,
1341                                 start_addr, end_addr);
1342         mmu_notifier_invalidate_range_start(&range);
1343         for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1344                 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1345         mmu_notifier_invalidate_range_end(&range);
1346 }
1347
1348 /**
1349  * zap_page_range - remove user pages in a given range
1350  * @vma: vm_area_struct holding the applicable pages
1351  * @start: starting address of pages to zap
1352  * @size: number of bytes to zap
1353  *
1354  * Caller must protect the VMA list
1355  */
1356 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1357                 unsigned long size)
1358 {
1359         struct mmu_notifier_range range;
1360         struct mmu_gather tlb;
1361
1362         lru_add_drain();
1363         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1364                                 start, start + size);
1365         tlb_gather_mmu(&tlb, vma->vm_mm, start, range.end);
1366         update_hiwater_rss(vma->vm_mm);
1367         mmu_notifier_invalidate_range_start(&range);
1368         for ( ; vma && vma->vm_start < range.end; vma = vma->vm_next)
1369                 unmap_single_vma(&tlb, vma, start, range.end, NULL);
1370         mmu_notifier_invalidate_range_end(&range);
1371         tlb_finish_mmu(&tlb, start, range.end);
1372 }
1373
1374 /**
1375  * zap_page_range_single - remove user pages in a given range
1376  * @vma: vm_area_struct holding the applicable pages
1377  * @address: starting address of pages to zap
1378  * @size: number of bytes to zap
1379  * @details: details of shared cache invalidation
1380  *
1381  * The range must fit into one VMA.
1382  */
1383 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1384                 unsigned long size, struct zap_details *details)
1385 {
1386         struct mmu_notifier_range range;
1387         struct mmu_gather tlb;
1388
1389         lru_add_drain();
1390         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1391                                 address, address + size);
1392         tlb_gather_mmu(&tlb, vma->vm_mm, address, range.end);
1393         update_hiwater_rss(vma->vm_mm);
1394         mmu_notifier_invalidate_range_start(&range);
1395         unmap_single_vma(&tlb, vma, address, range.end, details);
1396         mmu_notifier_invalidate_range_end(&range);
1397         tlb_finish_mmu(&tlb, address, range.end);
1398 }
1399
1400 /**
1401  * zap_vma_ptes - remove ptes mapping the vma
1402  * @vma: vm_area_struct holding ptes to be zapped
1403  * @address: starting address of pages to zap
1404  * @size: number of bytes to zap
1405  *
1406  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1407  *
1408  * The entire address range must be fully contained within the vma.
1409  *
1410  */
1411 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1412                 unsigned long size)
1413 {
1414         if (address < vma->vm_start || address + size > vma->vm_end ||
1415                         !(vma->vm_flags & VM_PFNMAP))
1416                 return;
1417
1418         zap_page_range_single(vma, address, size, NULL);
1419 }
1420 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1421
1422 static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr)
1423 {
1424         pgd_t *pgd;
1425         p4d_t *p4d;
1426         pud_t *pud;
1427         pmd_t *pmd;
1428
1429         pgd = pgd_offset(mm, addr);
1430         p4d = p4d_alloc(mm, pgd, addr);
1431         if (!p4d)
1432                 return NULL;
1433         pud = pud_alloc(mm, p4d, addr);
1434         if (!pud)
1435                 return NULL;
1436         pmd = pmd_alloc(mm, pud, addr);
1437         if (!pmd)
1438                 return NULL;
1439
1440         VM_BUG_ON(pmd_trans_huge(*pmd));
1441         return pmd;
1442 }
1443
1444 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1445                         spinlock_t **ptl)
1446 {
1447         pmd_t *pmd = walk_to_pmd(mm, addr);
1448
1449         if (!pmd)
1450                 return NULL;
1451         return pte_alloc_map_lock(mm, pmd, addr, ptl);
1452 }
1453
1454 static int validate_page_before_insert(struct page *page)
1455 {
1456         if (PageAnon(page) || PageSlab(page) || page_has_type(page))
1457                 return -EINVAL;
1458         flush_dcache_page(page);
1459         return 0;
1460 }
1461
1462 static int insert_page_into_pte_locked(struct mm_struct *mm, pte_t *pte,
1463                         unsigned long addr, struct page *page, pgprot_t prot)
1464 {
1465         if (!pte_none(*pte))
1466                 return -EBUSY;
1467         /* Ok, finally just insert the thing.. */
1468         get_page(page);
1469         inc_mm_counter_fast(mm, mm_counter_file(page));
1470         page_add_file_rmap(page, false);
1471         set_pte_at(mm, addr, pte, mk_pte(page, prot));
1472         return 0;
1473 }
1474
1475 /*
1476  * This is the old fallback for page remapping.
1477  *
1478  * For historical reasons, it only allows reserved pages. Only
1479  * old drivers should use this, and they needed to mark their
1480  * pages reserved for the old functions anyway.
1481  */
1482 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1483                         struct page *page, pgprot_t prot)
1484 {
1485         struct mm_struct *mm = vma->vm_mm;
1486         int retval;
1487         pte_t *pte;
1488         spinlock_t *ptl;
1489
1490         retval = validate_page_before_insert(page);
1491         if (retval)
1492                 goto out;
1493         retval = -ENOMEM;
1494         pte = get_locked_pte(mm, addr, &ptl);
1495         if (!pte)
1496                 goto out;
1497         retval = insert_page_into_pte_locked(mm, pte, addr, page, prot);
1498         pte_unmap_unlock(pte, ptl);
1499 out:
1500         return retval;
1501 }
1502
1503 #ifdef pte_index
1504 static int insert_page_in_batch_locked(struct mm_struct *mm, pmd_t *pmd,
1505                         unsigned long addr, struct page *page, pgprot_t prot)
1506 {
1507         int err;
1508
1509         if (!page_count(page))
1510                 return -EINVAL;
1511         err = validate_page_before_insert(page);
1512         return err ? err : insert_page_into_pte_locked(
1513                 mm, pte_offset_map(pmd, addr), addr, page, prot);
1514 }
1515
1516 /* insert_pages() amortizes the cost of spinlock operations
1517  * when inserting pages in a loop. Arch *must* define pte_index.
1518  */
1519 static int insert_pages(struct vm_area_struct *vma, unsigned long addr,
1520                         struct page **pages, unsigned long *num, pgprot_t prot)
1521 {
1522         pmd_t *pmd = NULL;
1523         spinlock_t *pte_lock = NULL;
1524         struct mm_struct *const mm = vma->vm_mm;
1525         unsigned long curr_page_idx = 0;
1526         unsigned long remaining_pages_total = *num;
1527         unsigned long pages_to_write_in_pmd;
1528         int ret;
1529 more:
1530         ret = -EFAULT;
1531         pmd = walk_to_pmd(mm, addr);
1532         if (!pmd)
1533                 goto out;
1534
1535         pages_to_write_in_pmd = min_t(unsigned long,
1536                 remaining_pages_total, PTRS_PER_PTE - pte_index(addr));
1537
1538         /* Allocate the PTE if necessary; takes PMD lock once only. */
1539         ret = -ENOMEM;
1540         if (pte_alloc(mm, pmd))
1541                 goto out;
1542         pte_lock = pte_lockptr(mm, pmd);
1543
1544         while (pages_to_write_in_pmd) {
1545                 int pte_idx = 0;
1546                 const int batch_size = min_t(int, pages_to_write_in_pmd, 8);
1547
1548                 spin_lock(pte_lock);
1549                 for (; pte_idx < batch_size; ++pte_idx) {
1550                         int err = insert_page_in_batch_locked(mm, pmd,
1551                                 addr, pages[curr_page_idx], prot);
1552                         if (unlikely(err)) {
1553                                 spin_unlock(pte_lock);
1554                                 ret = err;
1555                                 remaining_pages_total -= pte_idx;
1556                                 goto out;
1557                         }
1558                         addr += PAGE_SIZE;
1559                         ++curr_page_idx;
1560                 }
1561                 spin_unlock(pte_lock);
1562                 pages_to_write_in_pmd -= batch_size;
1563                 remaining_pages_total -= batch_size;
1564         }
1565         if (remaining_pages_total)
1566                 goto more;
1567         ret = 0;
1568 out:
1569         *num = remaining_pages_total;
1570         return ret;
1571 }
1572 #endif  /* ifdef pte_index */
1573
1574 /**
1575  * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock.
1576  * @vma: user vma to map to
1577  * @addr: target start user address of these pages
1578  * @pages: source kernel pages
1579  * @num: in: number of pages to map. out: number of pages that were *not*
1580  * mapped. (0 means all pages were successfully mapped).
1581  *
1582  * Preferred over vm_insert_page() when inserting multiple pages.
1583  *
1584  * In case of error, we may have mapped a subset of the provided
1585  * pages. It is the caller's responsibility to account for this case.
1586  *
1587  * The same restrictions apply as in vm_insert_page().
1588  */
1589 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
1590                         struct page **pages, unsigned long *num)
1591 {
1592 #ifdef pte_index
1593         const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1;
1594
1595         if (addr < vma->vm_start || end_addr >= vma->vm_end)
1596                 return -EFAULT;
1597         if (!(vma->vm_flags & VM_MIXEDMAP)) {
1598                 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
1599                 BUG_ON(vma->vm_flags & VM_PFNMAP);
1600                 vma->vm_flags |= VM_MIXEDMAP;
1601         }
1602         /* Defer page refcount checking till we're about to map that page. */
1603         return insert_pages(vma, addr, pages, num, vma->vm_page_prot);
1604 #else
1605         unsigned long idx = 0, pgcount = *num;
1606         int err;
1607
1608         for (; idx < pgcount; ++idx) {
1609                 err = vm_insert_page(vma, addr + (PAGE_SIZE * idx), pages[idx]);
1610                 if (err)
1611                         break;
1612         }
1613         *num = pgcount - idx;
1614         return err;
1615 #endif  /* ifdef pte_index */
1616 }
1617 EXPORT_SYMBOL(vm_insert_pages);
1618
1619 /**
1620  * vm_insert_page - insert single page into user vma
1621  * @vma: user vma to map to
1622  * @addr: target user address of this page
1623  * @page: source kernel page
1624  *
1625  * This allows drivers to insert individual pages they've allocated
1626  * into a user vma.
1627  *
1628  * The page has to be a nice clean _individual_ kernel allocation.
1629  * If you allocate a compound page, you need to have marked it as
1630  * such (__GFP_COMP), or manually just split the page up yourself
1631  * (see split_page()).
1632  *
1633  * NOTE! Traditionally this was done with "remap_pfn_range()" which
1634  * took an arbitrary page protection parameter. This doesn't allow
1635  * that. Your vma protection will have to be set up correctly, which
1636  * means that if you want a shared writable mapping, you'd better
1637  * ask for a shared writable mapping!
1638  *
1639  * The page does not need to be reserved.
1640  *
1641  * Usually this function is called from f_op->mmap() handler
1642  * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1643  * Caller must set VM_MIXEDMAP on vma if it wants to call this
1644  * function from other places, for example from page-fault handler.
1645  *
1646  * Return: %0 on success, negative error code otherwise.
1647  */
1648 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1649                         struct page *page)
1650 {
1651         if (addr < vma->vm_start || addr >= vma->vm_end)
1652                 return -EFAULT;
1653         if (!page_count(page))
1654                 return -EINVAL;
1655         if (!(vma->vm_flags & VM_MIXEDMAP)) {
1656                 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
1657                 BUG_ON(vma->vm_flags & VM_PFNMAP);
1658                 vma->vm_flags |= VM_MIXEDMAP;
1659         }
1660         return insert_page(vma, addr, page, vma->vm_page_prot);
1661 }
1662 EXPORT_SYMBOL(vm_insert_page);
1663
1664 /*
1665  * __vm_map_pages - maps range of kernel pages into user vma
1666  * @vma: user vma to map to
1667  * @pages: pointer to array of source kernel pages
1668  * @num: number of pages in page array
1669  * @offset: user's requested vm_pgoff
1670  *
1671  * This allows drivers to map range of kernel pages into a user vma.
1672  *
1673  * Return: 0 on success and error code otherwise.
1674  */
1675 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1676                                 unsigned long num, unsigned long offset)
1677 {
1678         unsigned long count = vma_pages(vma);
1679         unsigned long uaddr = vma->vm_start;
1680         int ret, i;
1681
1682         /* Fail if the user requested offset is beyond the end of the object */
1683         if (offset >= num)
1684                 return -ENXIO;
1685
1686         /* Fail if the user requested size exceeds available object size */
1687         if (count > num - offset)
1688                 return -ENXIO;
1689
1690         for (i = 0; i < count; i++) {
1691                 ret = vm_insert_page(vma, uaddr, pages[offset + i]);
1692                 if (ret < 0)
1693                         return ret;
1694                 uaddr += PAGE_SIZE;
1695         }
1696
1697         return 0;
1698 }
1699
1700 /**
1701  * vm_map_pages - maps range of kernel pages starts with non zero offset
1702  * @vma: user vma to map to
1703  * @pages: pointer to array of source kernel pages
1704  * @num: number of pages in page array
1705  *
1706  * Maps an object consisting of @num pages, catering for the user's
1707  * requested vm_pgoff
1708  *
1709  * If we fail to insert any page into the vma, the function will return
1710  * immediately leaving any previously inserted pages present.  Callers
1711  * from the mmap handler may immediately return the error as their caller
1712  * will destroy the vma, removing any successfully inserted pages. Other
1713  * callers should make their own arrangements for calling unmap_region().
1714  *
1715  * Context: Process context. Called by mmap handlers.
1716  * Return: 0 on success and error code otherwise.
1717  */
1718 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1719                                 unsigned long num)
1720 {
1721         return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
1722 }
1723 EXPORT_SYMBOL(vm_map_pages);
1724
1725 /**
1726  * vm_map_pages_zero - map range of kernel pages starts with zero offset
1727  * @vma: user vma to map to
1728  * @pages: pointer to array of source kernel pages
1729  * @num: number of pages in page array
1730  *
1731  * Similar to vm_map_pages(), except that it explicitly sets the offset
1732  * to 0. This function is intended for the drivers that did not consider
1733  * vm_pgoff.
1734  *
1735  * Context: Process context. Called by mmap handlers.
1736  * Return: 0 on success and error code otherwise.
1737  */
1738 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
1739                                 unsigned long num)
1740 {
1741         return __vm_map_pages(vma, pages, num, 0);
1742 }
1743 EXPORT_SYMBOL(vm_map_pages_zero);
1744
1745 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1746                         pfn_t pfn, pgprot_t prot, bool mkwrite)
1747 {
1748         struct mm_struct *mm = vma->vm_mm;
1749         pte_t *pte, entry;
1750         spinlock_t *ptl;
1751
1752         pte = get_locked_pte(mm, addr, &ptl);
1753         if (!pte)
1754                 return VM_FAULT_OOM;
1755         if (!pte_none(*pte)) {
1756                 if (mkwrite) {
1757                         /*
1758                          * For read faults on private mappings the PFN passed
1759                          * in may not match the PFN we have mapped if the
1760                          * mapped PFN is a writeable COW page.  In the mkwrite
1761                          * case we are creating a writable PTE for a shared
1762                          * mapping and we expect the PFNs to match. If they
1763                          * don't match, we are likely racing with block
1764                          * allocation and mapping invalidation so just skip the
1765                          * update.
1766                          */
1767                         if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) {
1768                                 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte)));
1769                                 goto out_unlock;
1770                         }
1771                         entry = pte_mkyoung(*pte);
1772                         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1773                         if (ptep_set_access_flags(vma, addr, pte, entry, 1))
1774                                 update_mmu_cache(vma, addr, pte);
1775                 }
1776                 goto out_unlock;
1777         }
1778
1779         /* Ok, finally just insert the thing.. */
1780         if (pfn_t_devmap(pfn))
1781                 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
1782         else
1783                 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
1784
1785         if (mkwrite) {
1786                 entry = pte_mkyoung(entry);
1787                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1788         }
1789
1790         set_pte_at(mm, addr, pte, entry);
1791         update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1792
1793 out_unlock:
1794         pte_unmap_unlock(pte, ptl);
1795         return VM_FAULT_NOPAGE;
1796 }
1797
1798 /**
1799  * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1800  * @vma: user vma to map to
1801  * @addr: target user address of this page
1802  * @pfn: source kernel pfn
1803  * @pgprot: pgprot flags for the inserted page
1804  *
1805  * This is exactly like vmf_insert_pfn(), except that it allows drivers to
1806  * to override pgprot on a per-page basis.
1807  *
1808  * This only makes sense for IO mappings, and it makes no sense for
1809  * COW mappings.  In general, using multiple vmas is preferable;
1810  * vmf_insert_pfn_prot should only be used if using multiple VMAs is
1811  * impractical.
1812  *
1813  * See vmf_insert_mixed_prot() for a discussion of the implication of using
1814  * a value of @pgprot different from that of @vma->vm_page_prot.
1815  *
1816  * Context: Process context.  May allocate using %GFP_KERNEL.
1817  * Return: vm_fault_t value.
1818  */
1819 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
1820                         unsigned long pfn, pgprot_t pgprot)
1821 {
1822         /*
1823          * Technically, architectures with pte_special can avoid all these
1824          * restrictions (same for remap_pfn_range).  However we would like
1825          * consistency in testing and feature parity among all, so we should
1826          * try to keep these invariants in place for everybody.
1827          */
1828         BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1829         BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1830                                                 (VM_PFNMAP|VM_MIXEDMAP));
1831         BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1832         BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1833
1834         if (addr < vma->vm_start || addr >= vma->vm_end)
1835                 return VM_FAULT_SIGBUS;
1836
1837         if (!pfn_modify_allowed(pfn, pgprot))
1838                 return VM_FAULT_SIGBUS;
1839
1840         track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
1841
1842         return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
1843                         false);
1844 }
1845 EXPORT_SYMBOL(vmf_insert_pfn_prot);
1846
1847 /**
1848  * vmf_insert_pfn - insert single pfn into user vma
1849  * @vma: user vma to map to
1850  * @addr: target user address of this page
1851  * @pfn: source kernel pfn
1852  *
1853  * Similar to vm_insert_page, this allows drivers to insert individual pages
1854  * they've allocated into a user vma. Same comments apply.
1855  *
1856  * This function should only be called from a vm_ops->fault handler, and
1857  * in that case the handler should return the result of this function.
1858  *
1859  * vma cannot be a COW mapping.
1860  *
1861  * As this is called only for pages that do not currently exist, we
1862  * do not need to flush old virtual caches or the TLB.
1863  *
1864  * Context: Process context.  May allocate using %GFP_KERNEL.
1865  * Return: vm_fault_t value.
1866  */
1867 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1868                         unsigned long pfn)
1869 {
1870         return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
1871 }
1872 EXPORT_SYMBOL(vmf_insert_pfn);
1873
1874 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
1875 {
1876         /* these checks mirror the abort conditions in vm_normal_page */
1877         if (vma->vm_flags & VM_MIXEDMAP)
1878                 return true;
1879         if (pfn_t_devmap(pfn))
1880                 return true;
1881         if (pfn_t_special(pfn))
1882                 return true;
1883         if (is_zero_pfn(pfn_t_to_pfn(pfn)))
1884                 return true;
1885         return false;
1886 }
1887
1888 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
1889                 unsigned long addr, pfn_t pfn, pgprot_t pgprot,
1890                 bool mkwrite)
1891 {
1892         int err;
1893
1894         BUG_ON(!vm_mixed_ok(vma, pfn));
1895
1896         if (addr < vma->vm_start || addr >= vma->vm_end)
1897                 return VM_FAULT_SIGBUS;
1898
1899         track_pfn_insert(vma, &pgprot, pfn);
1900
1901         if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
1902                 return VM_FAULT_SIGBUS;
1903
1904         /*
1905          * If we don't have pte special, then we have to use the pfn_valid()
1906          * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1907          * refcount the page if pfn_valid is true (hence insert_page rather
1908          * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
1909          * without pte special, it would there be refcounted as a normal page.
1910          */
1911         if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
1912             !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
1913                 struct page *page;
1914
1915                 /*
1916                  * At this point we are committed to insert_page()
1917                  * regardless of whether the caller specified flags that
1918                  * result in pfn_t_has_page() == false.
1919                  */
1920                 page = pfn_to_page(pfn_t_to_pfn(pfn));
1921                 err = insert_page(vma, addr, page, pgprot);
1922         } else {
1923                 return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
1924         }
1925
1926         if (err == -ENOMEM)
1927                 return VM_FAULT_OOM;
1928         if (err < 0 && err != -EBUSY)
1929                 return VM_FAULT_SIGBUS;
1930
1931         return VM_FAULT_NOPAGE;
1932 }
1933
1934 /**
1935  * vmf_insert_mixed_prot - insert single pfn into user vma with specified pgprot
1936  * @vma: user vma to map to
1937  * @addr: target user address of this page
1938  * @pfn: source kernel pfn
1939  * @pgprot: pgprot flags for the inserted page
1940  *
1941  * This is exactly like vmf_insert_mixed(), except that it allows drivers to
1942  * to override pgprot on a per-page basis.
1943  *
1944  * Typically this function should be used by drivers to set caching- and
1945  * encryption bits different than those of @vma->vm_page_prot, because
1946  * the caching- or encryption mode may not be known at mmap() time.
1947  * This is ok as long as @vma->vm_page_prot is not used by the core vm
1948  * to set caching and encryption bits for those vmas (except for COW pages).
1949  * This is ensured by core vm only modifying these page table entries using
1950  * functions that don't touch caching- or encryption bits, using pte_modify()
1951  * if needed. (See for example mprotect()).
1952  * Also when new page-table entries are created, this is only done using the
1953  * fault() callback, and never using the value of vma->vm_page_prot,
1954  * except for page-table entries that point to anonymous pages as the result
1955  * of COW.
1956  *
1957  * Context: Process context.  May allocate using %GFP_KERNEL.
1958  * Return: vm_fault_t value.
1959  */
1960 vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
1961                                  pfn_t pfn, pgprot_t pgprot)
1962 {
1963         return __vm_insert_mixed(vma, addr, pfn, pgprot, false);
1964 }
1965 EXPORT_SYMBOL(vmf_insert_mixed_prot);
1966
1967 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1968                 pfn_t pfn)
1969 {
1970         return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, false);
1971 }
1972 EXPORT_SYMBOL(vmf_insert_mixed);
1973
1974 /*
1975  *  If the insertion of PTE failed because someone else already added a
1976  *  different entry in the mean time, we treat that as success as we assume
1977  *  the same entry was actually inserted.
1978  */
1979 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
1980                 unsigned long addr, pfn_t pfn)
1981 {
1982         return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, true);
1983 }
1984 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
1985
1986 /*
1987  * maps a range of physical memory into the requested pages. the old
1988  * mappings are removed. any references to nonexistent pages results
1989  * in null mappings (currently treated as "copy-on-access")
1990  */
1991 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1992                         unsigned long addr, unsigned long end,
1993                         unsigned long pfn, pgprot_t prot)
1994 {
1995         pte_t *pte;
1996         spinlock_t *ptl;
1997         int err = 0;
1998
1999         pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2000         if (!pte)
2001                 return -ENOMEM;
2002         arch_enter_lazy_mmu_mode();
2003         do {
2004                 BUG_ON(!pte_none(*pte));
2005                 if (!pfn_modify_allowed(pfn, prot)) {
2006                         err = -EACCES;
2007                         break;
2008                 }
2009                 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2010                 pfn++;
2011         } while (pte++, addr += PAGE_SIZE, addr != end);
2012         arch_leave_lazy_mmu_mode();
2013         pte_unmap_unlock(pte - 1, ptl);
2014         return err;
2015 }
2016
2017 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2018                         unsigned long addr, unsigned long end,
2019                         unsigned long pfn, pgprot_t prot)
2020 {
2021         pmd_t *pmd;
2022         unsigned long next;
2023         int err;
2024
2025         pfn -= addr >> PAGE_SHIFT;
2026         pmd = pmd_alloc(mm, pud, addr);
2027         if (!pmd)
2028                 return -ENOMEM;
2029         VM_BUG_ON(pmd_trans_huge(*pmd));
2030         do {
2031                 next = pmd_addr_end(addr, end);
2032                 err = remap_pte_range(mm, pmd, addr, next,
2033                                 pfn + (addr >> PAGE_SHIFT), prot);
2034                 if (err)
2035                         return err;
2036         } while (pmd++, addr = next, addr != end);
2037         return 0;
2038 }
2039
2040 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
2041                         unsigned long addr, unsigned long end,
2042                         unsigned long pfn, pgprot_t prot)
2043 {
2044         pud_t *pud;
2045         unsigned long next;
2046         int err;
2047
2048         pfn -= addr >> PAGE_SHIFT;
2049         pud = pud_alloc(mm, p4d, addr);
2050         if (!pud)
2051                 return -ENOMEM;
2052         do {
2053                 next = pud_addr_end(addr, end);
2054                 err = remap_pmd_range(mm, pud, addr, next,
2055                                 pfn + (addr >> PAGE_SHIFT), prot);
2056                 if (err)
2057                         return err;
2058         } while (pud++, addr = next, addr != end);
2059         return 0;
2060 }
2061
2062 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2063                         unsigned long addr, unsigned long end,
2064                         unsigned long pfn, pgprot_t prot)
2065 {
2066         p4d_t *p4d;
2067         unsigned long next;
2068         int err;
2069
2070         pfn -= addr >> PAGE_SHIFT;
2071         p4d = p4d_alloc(mm, pgd, addr);
2072         if (!p4d)
2073                 return -ENOMEM;
2074         do {
2075                 next = p4d_addr_end(addr, end);
2076                 err = remap_pud_range(mm, p4d, addr, next,
2077                                 pfn + (addr >> PAGE_SHIFT), prot);
2078                 if (err)
2079                         return err;
2080         } while (p4d++, addr = next, addr != end);
2081         return 0;
2082 }
2083
2084 /**
2085  * remap_pfn_range - remap kernel memory to userspace
2086  * @vma: user vma to map to
2087  * @addr: target user address to start at
2088  * @pfn: page frame number of kernel physical memory address
2089  * @size: size of mapping area
2090  * @prot: page protection flags for this mapping
2091  *
2092  * Note: this is only safe if the mm semaphore is held when called.
2093  *
2094  * Return: %0 on success, negative error code otherwise.
2095  */
2096 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2097                     unsigned long pfn, unsigned long size, pgprot_t prot)
2098 {
2099         pgd_t *pgd;
2100         unsigned long next;
2101         unsigned long end = addr + PAGE_ALIGN(size);
2102         struct mm_struct *mm = vma->vm_mm;
2103         unsigned long remap_pfn = pfn;
2104         int err;
2105
2106         /*
2107          * Physically remapped pages are special. Tell the
2108          * rest of the world about it:
2109          *   VM_IO tells people not to look at these pages
2110          *      (accesses can have side effects).
2111          *   VM_PFNMAP tells the core MM that the base pages are just
2112          *      raw PFN mappings, and do not have a "struct page" associated
2113          *      with them.
2114          *   VM_DONTEXPAND
2115          *      Disable vma merging and expanding with mremap().
2116          *   VM_DONTDUMP
2117          *      Omit vma from core dump, even when VM_IO turned off.
2118          *
2119          * There's a horrible special case to handle copy-on-write
2120          * behaviour that some programs depend on. We mark the "original"
2121          * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2122          * See vm_normal_page() for details.
2123          */
2124         if (is_cow_mapping(vma->vm_flags)) {
2125                 if (addr != vma->vm_start || end != vma->vm_end)
2126                         return -EINVAL;
2127                 vma->vm_pgoff = pfn;
2128         }
2129
2130         err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size));
2131         if (err)
2132                 return -EINVAL;
2133
2134         vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
2135
2136         BUG_ON(addr >= end);
2137         pfn -= addr >> PAGE_SHIFT;
2138         pgd = pgd_offset(mm, addr);
2139         flush_cache_range(vma, addr, end);
2140         do {
2141                 next = pgd_addr_end(addr, end);
2142                 err = remap_p4d_range(mm, pgd, addr, next,
2143                                 pfn + (addr >> PAGE_SHIFT), prot);
2144                 if (err)
2145                         break;
2146         } while (pgd++, addr = next, addr != end);
2147
2148         if (err)
2149                 untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size));
2150
2151         return err;
2152 }
2153 EXPORT_SYMBOL(remap_pfn_range);
2154
2155 /**
2156  * vm_iomap_memory - remap memory to userspace
2157  * @vma: user vma to map to
2158  * @start: start of the physical memory to be mapped
2159  * @len: size of area
2160  *
2161  * This is a simplified io_remap_pfn_range() for common driver use. The
2162  * driver just needs to give us the physical memory range to be mapped,
2163  * we'll figure out the rest from the vma information.
2164  *
2165  * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2166  * whatever write-combining details or similar.
2167  *
2168  * Return: %0 on success, negative error code otherwise.
2169  */
2170 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2171 {
2172         unsigned long vm_len, pfn, pages;
2173
2174         /* Check that the physical memory area passed in looks valid */
2175         if (start + len < start)
2176                 return -EINVAL;
2177         /*
2178          * You *really* shouldn't map things that aren't page-aligned,
2179          * but we've historically allowed it because IO memory might
2180          * just have smaller alignment.
2181          */
2182         len += start & ~PAGE_MASK;
2183         pfn = start >> PAGE_SHIFT;
2184         pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2185         if (pfn + pages < pfn)
2186                 return -EINVAL;
2187
2188         /* We start the mapping 'vm_pgoff' pages into the area */
2189         if (vma->vm_pgoff > pages)
2190                 return -EINVAL;
2191         pfn += vma->vm_pgoff;
2192         pages -= vma->vm_pgoff;
2193
2194         /* Can we fit all of the mapping? */
2195         vm_len = vma->vm_end - vma->vm_start;
2196         if (vm_len >> PAGE_SHIFT > pages)
2197                 return -EINVAL;
2198
2199         /* Ok, let it rip */
2200         return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2201 }
2202 EXPORT_SYMBOL(vm_iomap_memory);
2203
2204 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2205                                      unsigned long addr, unsigned long end,
2206                                      pte_fn_t fn, void *data, bool create)
2207 {
2208         pte_t *pte;
2209         int err = 0;
2210         spinlock_t *uninitialized_var(ptl);
2211
2212         if (create) {
2213                 pte = (mm == &init_mm) ?
2214                         pte_alloc_kernel(pmd, addr) :
2215                         pte_alloc_map_lock(mm, pmd, addr, &ptl);
2216                 if (!pte)
2217                         return -ENOMEM;
2218         } else {
2219                 pte = (mm == &init_mm) ?
2220                         pte_offset_kernel(pmd, addr) :
2221                         pte_offset_map_lock(mm, pmd, addr, &ptl);
2222         }
2223
2224         BUG_ON(pmd_huge(*pmd));
2225
2226         arch_enter_lazy_mmu_mode();
2227
2228         do {
2229                 if (create || !pte_none(*pte)) {
2230                         err = fn(pte++, addr, data);
2231                         if (err)
2232                                 break;
2233                 }
2234         } while (addr += PAGE_SIZE, addr != end);
2235
2236         arch_leave_lazy_mmu_mode();
2237
2238         if (mm != &init_mm)
2239                 pte_unmap_unlock(pte-1, ptl);
2240         return err;
2241 }
2242
2243 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2244                                      unsigned long addr, unsigned long end,
2245                                      pte_fn_t fn, void *data, bool create)
2246 {
2247         pmd_t *pmd;
2248         unsigned long next;
2249         int err = 0;
2250
2251         BUG_ON(pud_huge(*pud));
2252
2253         if (create) {
2254                 pmd = pmd_alloc(mm, pud, addr);
2255                 if (!pmd)
2256                         return -ENOMEM;
2257         } else {
2258                 pmd = pmd_offset(pud, addr);
2259         }
2260         do {
2261                 next = pmd_addr_end(addr, end);
2262                 if (create || !pmd_none_or_clear_bad(pmd)) {
2263                         err = apply_to_pte_range(mm, pmd, addr, next, fn, data,
2264                                                  create);
2265                         if (err)
2266                                 break;
2267                 }
2268         } while (pmd++, addr = next, addr != end);
2269         return err;
2270 }
2271
2272 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2273                                      unsigned long addr, unsigned long end,
2274                                      pte_fn_t fn, void *data, bool create)
2275 {
2276         pud_t *pud;
2277         unsigned long next;
2278         int err = 0;
2279
2280         if (create) {
2281                 pud = pud_alloc(mm, p4d, addr);
2282                 if (!pud)
2283                         return -ENOMEM;
2284         } else {
2285                 pud = pud_offset(p4d, addr);
2286         }
2287         do {
2288                 next = pud_addr_end(addr, end);
2289                 if (create || !pud_none_or_clear_bad(pud)) {
2290                         err = apply_to_pmd_range(mm, pud, addr, next, fn, data,
2291                                                  create);
2292                         if (err)
2293                                 break;
2294                 }
2295         } while (pud++, addr = next, addr != end);
2296         return err;
2297 }
2298
2299 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2300                                      unsigned long addr, unsigned long end,
2301                                      pte_fn_t fn, void *data, bool create)
2302 {
2303         p4d_t *p4d;
2304         unsigned long next;
2305         int err = 0;
2306
2307         if (create) {
2308                 p4d = p4d_alloc(mm, pgd, addr);
2309                 if (!p4d)
2310                         return -ENOMEM;
2311         } else {
2312                 p4d = p4d_offset(pgd, addr);
2313         }
2314         do {
2315                 next = p4d_addr_end(addr, end);
2316                 if (create || !p4d_none_or_clear_bad(p4d)) {
2317                         err = apply_to_pud_range(mm, p4d, addr, next, fn, data,
2318                                                  create);
2319                         if (err)
2320                                 break;
2321                 }
2322         } while (p4d++, addr = next, addr != end);
2323         return err;
2324 }
2325
2326 static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2327                                  unsigned long size, pte_fn_t fn,
2328                                  void *data, bool create)
2329 {
2330         pgd_t *pgd;
2331         unsigned long next;
2332         unsigned long end = addr + size;
2333         int err = 0;
2334
2335         if (WARN_ON(addr >= end))
2336                 return -EINVAL;
2337
2338         pgd = pgd_offset(mm, addr);
2339         do {
2340                 next = pgd_addr_end(addr, end);
2341                 if (!create && pgd_none_or_clear_bad(pgd))
2342                         continue;
2343                 err = apply_to_p4d_range(mm, pgd, addr, next, fn, data, create);
2344                 if (err)
2345                         break;
2346         } while (pgd++, addr = next, addr != end);
2347
2348         return err;
2349 }
2350
2351 /*
2352  * Scan a region of virtual memory, filling in page tables as necessary
2353  * and calling a provided function on each leaf page table.
2354  */
2355 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2356                         unsigned long size, pte_fn_t fn, void *data)
2357 {
2358         return __apply_to_page_range(mm, addr, size, fn, data, true);
2359 }
2360 EXPORT_SYMBOL_GPL(apply_to_page_range);
2361
2362 /*
2363  * Scan a region of virtual memory, calling a provided function on
2364  * each leaf page table where it exists.
2365  *
2366  * Unlike apply_to_page_range, this does _not_ fill in page tables
2367  * where they are absent.
2368  */
2369 int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr,
2370                                  unsigned long size, pte_fn_t fn, void *data)
2371 {
2372         return __apply_to_page_range(mm, addr, size, fn, data, false);
2373 }
2374 EXPORT_SYMBOL_GPL(apply_to_existing_page_range);
2375
2376 /*
2377  * handle_pte_fault chooses page fault handler according to an entry which was
2378  * read non-atomically.  Before making any commitment, on those architectures
2379  * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2380  * parts, do_swap_page must check under lock before unmapping the pte and
2381  * proceeding (but do_wp_page is only called after already making such a check;
2382  * and do_anonymous_page can safely check later on).
2383  */
2384 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2385                                 pte_t *page_table, pte_t orig_pte)
2386 {
2387         int same = 1;
2388 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION)
2389         if (sizeof(pte_t) > sizeof(unsigned long)) {
2390                 spinlock_t *ptl = pte_lockptr(mm, pmd);
2391                 spin_lock(ptl);
2392                 same = pte_same(*page_table, orig_pte);
2393                 spin_unlock(ptl);
2394         }
2395 #endif
2396         pte_unmap(page_table);
2397         return same;
2398 }
2399
2400 static inline bool cow_user_page(struct page *dst, struct page *src,
2401                                  struct vm_fault *vmf)
2402 {
2403         bool ret;
2404         void *kaddr;
2405         void __user *uaddr;
2406         bool locked = false;
2407         struct vm_area_struct *vma = vmf->vma;
2408         struct mm_struct *mm = vma->vm_mm;
2409         unsigned long addr = vmf->address;
2410
2411         debug_dma_assert_idle(src);
2412
2413         if (likely(src)) {
2414                 copy_user_highpage(dst, src, addr, vma);
2415                 return true;
2416         }
2417
2418         /*
2419          * If the source page was a PFN mapping, we don't have
2420          * a "struct page" for it. We do a best-effort copy by
2421          * just copying from the original user address. If that
2422          * fails, we just zero-fill it. Live with it.
2423          */
2424         kaddr = kmap_atomic(dst);
2425         uaddr = (void __user *)(addr & PAGE_MASK);
2426
2427         /*
2428          * On architectures with software "accessed" bits, we would
2429          * take a double page fault, so mark it accessed here.
2430          */
2431         if (arch_faults_on_old_pte() && !pte_young(vmf->orig_pte)) {
2432                 pte_t entry;
2433
2434                 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2435                 locked = true;
2436                 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2437                         /*
2438                          * Other thread has already handled the fault
2439                          * and we don't need to do anything. If it's
2440                          * not the case, the fault will be triggered
2441                          * again on the same address.
2442                          */
2443                         ret = false;
2444                         goto pte_unlock;
2445                 }
2446
2447                 entry = pte_mkyoung(vmf->orig_pte);
2448                 if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
2449                         update_mmu_cache(vma, addr, vmf->pte);
2450         }
2451
2452         /*
2453          * This really shouldn't fail, because the page is there
2454          * in the page tables. But it might just be unreadable,
2455          * in which case we just give up and fill the result with
2456          * zeroes.
2457          */
2458         if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2459                 if (locked)
2460                         goto warn;
2461
2462                 /* Re-validate under PTL if the page is still mapped */
2463                 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2464                 locked = true;
2465                 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2466                         /* The PTE changed under us. Retry page fault. */
2467                         ret = false;
2468                         goto pte_unlock;
2469                 }
2470
2471                 /*
2472                  * The same page can be mapped back since last copy attampt.
2473                  * Try to copy again under PTL.
2474                  */
2475                 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2476                         /*
2477                          * Give a warn in case there can be some obscure
2478                          * use-case
2479                          */
2480 warn:
2481                         WARN_ON_ONCE(1);
2482                         clear_page(kaddr);
2483                 }
2484         }
2485
2486         ret = true;
2487
2488 pte_unlock:
2489         if (locked)
2490                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2491         kunmap_atomic(kaddr);
2492         flush_dcache_page(dst);
2493
2494         return ret;
2495 }
2496
2497 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2498 {
2499         struct file *vm_file = vma->vm_file;
2500
2501         if (vm_file)
2502                 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2503
2504         /*
2505          * Special mappings (e.g. VDSO) do not have any file so fake
2506          * a default GFP_KERNEL for them.
2507          */
2508         return GFP_KERNEL;
2509 }
2510
2511 /*
2512  * Notify the address space that the page is about to become writable so that
2513  * it can prohibit this or wait for the page to get into an appropriate state.
2514  *
2515  * We do this without the lock held, so that it can sleep if it needs to.
2516  */
2517 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf)
2518 {
2519         vm_fault_t ret;
2520         struct page *page = vmf->page;
2521         unsigned int old_flags = vmf->flags;
2522
2523         vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2524
2525         if (vmf->vma->vm_file &&
2526             IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
2527                 return VM_FAULT_SIGBUS;
2528
2529         ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2530         /* Restore original flags so that caller is not surprised */
2531         vmf->flags = old_flags;
2532         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2533                 return ret;
2534         if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2535                 lock_page(page);
2536                 if (!page->mapping) {
2537                         unlock_page(page);
2538                         return 0; /* retry */
2539                 }
2540                 ret |= VM_FAULT_LOCKED;
2541         } else
2542                 VM_BUG_ON_PAGE(!PageLocked(page), page);
2543         return ret;
2544 }
2545
2546 /*
2547  * Handle dirtying of a page in shared file mapping on a write fault.
2548  *
2549  * The function expects the page to be locked and unlocks it.
2550  */
2551 static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
2552 {
2553         struct vm_area_struct *vma = vmf->vma;
2554         struct address_space *mapping;
2555         struct page *page = vmf->page;
2556         bool dirtied;
2557         bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2558
2559         dirtied = set_page_dirty(page);
2560         VM_BUG_ON_PAGE(PageAnon(page), page);
2561         /*
2562          * Take a local copy of the address_space - page.mapping may be zeroed
2563          * by truncate after unlock_page().   The address_space itself remains
2564          * pinned by vma->vm_file's reference.  We rely on unlock_page()'s
2565          * release semantics to prevent the compiler from undoing this copying.
2566          */
2567         mapping = page_rmapping(page);
2568         unlock_page(page);
2569
2570         if (!page_mkwrite)
2571                 file_update_time(vma->vm_file);
2572
2573         /*
2574          * Throttle page dirtying rate down to writeback speed.
2575          *
2576          * mapping may be NULL here because some device drivers do not
2577          * set page.mapping but still dirty their pages
2578          *
2579          * Drop the mmap_sem before waiting on IO, if we can. The file
2580          * is pinning the mapping, as per above.
2581          */
2582         if ((dirtied || page_mkwrite) && mapping) {
2583                 struct file *fpin;
2584
2585                 fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2586                 balance_dirty_pages_ratelimited(mapping);
2587                 if (fpin) {
2588                         fput(fpin);
2589                         return VM_FAULT_RETRY;
2590                 }
2591         }
2592
2593         return 0;
2594 }
2595
2596 /*
2597  * Handle write page faults for pages that can be reused in the current vma
2598  *
2599  * This can happen either due to the mapping being with the VM_SHARED flag,
2600  * or due to us being the last reference standing to the page. In either
2601  * case, all we need to do here is to mark the page as writable and update
2602  * any related book-keeping.
2603  */
2604 static inline void wp_page_reuse(struct vm_fault *vmf)
2605         __releases(vmf->ptl)
2606 {
2607         struct vm_area_struct *vma = vmf->vma;
2608         struct page *page = vmf->page;
2609         pte_t entry;
2610         /*
2611          * Clear the pages cpupid information as the existing
2612          * information potentially belongs to a now completely
2613          * unrelated process.
2614          */
2615         if (page)
2616                 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2617
2618         flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2619         entry = pte_mkyoung(vmf->orig_pte);
2620         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2621         if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
2622                 update_mmu_cache(vma, vmf->address, vmf->pte);
2623         pte_unmap_unlock(vmf->pte, vmf->ptl);
2624 }
2625
2626 /*
2627  * Handle the case of a page which we actually need to copy to a new page.
2628  *
2629  * Called with mmap_sem locked and the old page referenced, but
2630  * without the ptl held.
2631  *
2632  * High level logic flow:
2633  *
2634  * - Allocate a page, copy the content of the old page to the new one.
2635  * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2636  * - Take the PTL. If the pte changed, bail out and release the allocated page
2637  * - If the pte is still the way we remember it, update the page table and all
2638  *   relevant references. This includes dropping the reference the page-table
2639  *   held to the old page, as well as updating the rmap.
2640  * - In any case, unlock the PTL and drop the reference we took to the old page.
2641  */
2642 static vm_fault_t wp_page_copy(struct vm_fault *vmf)
2643 {
2644         struct vm_area_struct *vma = vmf->vma;
2645         struct mm_struct *mm = vma->vm_mm;
2646         struct page *old_page = vmf->page;
2647         struct page *new_page = NULL;
2648         pte_t entry;
2649         int page_copied = 0;
2650         struct mem_cgroup *memcg;
2651         struct mmu_notifier_range range;
2652
2653         if (unlikely(anon_vma_prepare(vma)))
2654                 goto oom;
2655
2656         if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
2657                 new_page = alloc_zeroed_user_highpage_movable(vma,
2658                                                               vmf->address);
2659                 if (!new_page)
2660                         goto oom;
2661         } else {
2662                 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2663                                 vmf->address);
2664                 if (!new_page)
2665                         goto oom;
2666
2667                 if (!cow_user_page(new_page, old_page, vmf)) {
2668                         /*
2669                          * COW failed, if the fault was solved by other,
2670                          * it's fine. If not, userspace would re-fault on
2671                          * the same address and we will handle the fault
2672                          * from the second attempt.
2673                          */
2674                         put_page(new_page);
2675                         if (old_page)
2676                                 put_page(old_page);
2677                         return 0;
2678                 }
2679         }
2680
2681         if (mem_cgroup_try_charge_delay(new_page, mm, GFP_KERNEL, &memcg, false))
2682                 goto oom_free_new;
2683
2684         __SetPageUptodate(new_page);
2685
2686         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
2687                                 vmf->address & PAGE_MASK,
2688                                 (vmf->address & PAGE_MASK) + PAGE_SIZE);
2689         mmu_notifier_invalidate_range_start(&range);
2690
2691         /*
2692          * Re-check the pte - we dropped the lock
2693          */
2694         vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
2695         if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2696                 if (old_page) {
2697                         if (!PageAnon(old_page)) {
2698                                 dec_mm_counter_fast(mm,
2699                                                 mm_counter_file(old_page));
2700                                 inc_mm_counter_fast(mm, MM_ANONPAGES);
2701                         }
2702                 } else {
2703                         inc_mm_counter_fast(mm, MM_ANONPAGES);
2704                 }
2705                 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2706                 entry = mk_pte(new_page, vma->vm_page_prot);
2707                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2708                 /*
2709                  * Clear the pte entry and flush it first, before updating the
2710                  * pte with the new entry. This will avoid a race condition
2711                  * seen in the presence of one thread doing SMC and another
2712                  * thread doing COW.
2713                  */
2714                 ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
2715                 page_add_new_anon_rmap(new_page, vma, vmf->address, false);
2716                 mem_cgroup_commit_charge(new_page, memcg, false, false);
2717                 lru_cache_add_active_or_unevictable(new_page, vma);
2718                 /*
2719                  * We call the notify macro here because, when using secondary
2720                  * mmu page tables (such as kvm shadow page tables), we want the
2721                  * new page to be mapped directly into the secondary page table.
2722                  */
2723                 set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
2724                 update_mmu_cache(vma, vmf->address, vmf->pte);
2725                 if (old_page) {
2726                         /*
2727                          * Only after switching the pte to the new page may
2728                          * we remove the mapcount here. Otherwise another
2729                          * process may come and find the rmap count decremented
2730                          * before the pte is switched to the new page, and
2731                          * "reuse" the old page writing into it while our pte
2732                          * here still points into it and can be read by other
2733                          * threads.
2734                          *
2735                          * The critical issue is to order this
2736                          * page_remove_rmap with the ptp_clear_flush above.
2737                          * Those stores are ordered by (if nothing else,)
2738                          * the barrier present in the atomic_add_negative
2739                          * in page_remove_rmap.
2740                          *
2741                          * Then the TLB flush in ptep_clear_flush ensures that
2742                          * no process can access the old page before the
2743                          * decremented mapcount is visible. And the old page
2744                          * cannot be reused until after the decremented
2745                          * mapcount is visible. So transitively, TLBs to
2746                          * old page will be flushed before it can be reused.
2747                          */
2748                         page_remove_rmap(old_page, false);
2749                 }
2750
2751                 /* Free the old page.. */
2752                 new_page = old_page;
2753                 page_copied = 1;
2754         } else {
2755                 mem_cgroup_cancel_charge(new_page, memcg, false);
2756         }
2757
2758         if (new_page)
2759                 put_page(new_page);
2760
2761         pte_unmap_unlock(vmf->pte, vmf->ptl);
2762         /*
2763          * No need to double call mmu_notifier->invalidate_range() callback as
2764          * the above ptep_clear_flush_notify() did already call it.
2765          */
2766         mmu_notifier_invalidate_range_only_end(&range);
2767         if (old_page) {
2768                 /*
2769                  * Don't let another task, with possibly unlocked vma,
2770                  * keep the mlocked page.
2771                  */
2772                 if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2773                         lock_page(old_page);    /* LRU manipulation */
2774                         if (PageMlocked(old_page))
2775                                 munlock_vma_page(old_page);
2776                         unlock_page(old_page);
2777                 }
2778                 put_page(old_page);
2779         }
2780         return page_copied ? VM_FAULT_WRITE : 0;
2781 oom_free_new:
2782         put_page(new_page);
2783 oom:
2784         if (old_page)
2785                 put_page(old_page);
2786         return VM_FAULT_OOM;
2787 }
2788
2789 /**
2790  * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
2791  *                        writeable once the page is prepared
2792  *
2793  * @vmf: structure describing the fault
2794  *
2795  * This function handles all that is needed to finish a write page fault in a
2796  * shared mapping due to PTE being read-only once the mapped page is prepared.
2797  * It handles locking of PTE and modifying it.
2798  *
2799  * The function expects the page to be locked or other protection against
2800  * concurrent faults / writeback (such as DAX radix tree locks).
2801  *
2802  * Return: %VM_FAULT_WRITE on success, %0 when PTE got changed before
2803  * we acquired PTE lock.
2804  */
2805 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
2806 {
2807         WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
2808         vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
2809                                        &vmf->ptl);
2810         /*
2811          * We might have raced with another page fault while we released the
2812          * pte_offset_map_lock.
2813          */
2814         if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2815                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2816                 return VM_FAULT_NOPAGE;
2817         }
2818         wp_page_reuse(vmf);
2819         return 0;
2820 }
2821
2822 /*
2823  * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2824  * mapping
2825  */
2826 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
2827 {
2828         struct vm_area_struct *vma = vmf->vma;
2829
2830         if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
2831                 vm_fault_t ret;
2832
2833                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2834                 vmf->flags |= FAULT_FLAG_MKWRITE;
2835                 ret = vma->vm_ops->pfn_mkwrite(vmf);
2836                 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
2837                         return ret;
2838                 return finish_mkwrite_fault(vmf);
2839         }
2840         wp_page_reuse(vmf);
2841         return VM_FAULT_WRITE;
2842 }
2843
2844 static vm_fault_t wp_page_shared(struct vm_fault *vmf)
2845         __releases(vmf->ptl)
2846 {
2847         struct vm_area_struct *vma = vmf->vma;
2848         vm_fault_t ret = VM_FAULT_WRITE;
2849
2850         get_page(vmf->page);
2851
2852         if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2853                 vm_fault_t tmp;
2854
2855                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2856                 tmp = do_page_mkwrite(vmf);
2857                 if (unlikely(!tmp || (tmp &
2858                                       (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2859                         put_page(vmf->page);
2860                         return tmp;
2861                 }
2862                 tmp = finish_mkwrite_fault(vmf);
2863                 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2864                         unlock_page(vmf->page);
2865                         put_page(vmf->page);
2866                         return tmp;
2867                 }
2868         } else {
2869                 wp_page_reuse(vmf);
2870                 lock_page(vmf->page);
2871         }
2872         ret |= fault_dirty_shared_page(vmf);
2873         put_page(vmf->page);
2874
2875         return ret;
2876 }
2877
2878 /*
2879  * This routine handles present pages, when users try to write
2880  * to a shared page. It is done by copying the page to a new address
2881  * and decrementing the shared-page counter for the old page.
2882  *
2883  * Note that this routine assumes that the protection checks have been
2884  * done by the caller (the low-level page fault routine in most cases).
2885  * Thus we can safely just mark it writable once we've done any necessary
2886  * COW.
2887  *
2888  * We also mark the page dirty at this point even though the page will
2889  * change only once the write actually happens. This avoids a few races,
2890  * and potentially makes it more efficient.
2891  *
2892  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2893  * but allow concurrent faults), with pte both mapped and locked.
2894  * We return with mmap_sem still held, but pte unmapped and unlocked.
2895  */
2896 static vm_fault_t do_wp_page(struct vm_fault *vmf)
2897         __releases(vmf->ptl)
2898 {
2899         struct vm_area_struct *vma = vmf->vma;
2900
2901         if (userfaultfd_pte_wp(vma, *vmf->pte)) {
2902                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2903                 return handle_userfault(vmf, VM_UFFD_WP);
2904         }
2905
2906         vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
2907         if (!vmf->page) {
2908                 /*
2909                  * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2910                  * VM_PFNMAP VMA.
2911                  *
2912                  * We should not cow pages in a shared writeable mapping.
2913                  * Just mark the pages writable and/or call ops->pfn_mkwrite.
2914                  */
2915                 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2916                                      (VM_WRITE|VM_SHARED))
2917                         return wp_pfn_shared(vmf);
2918
2919                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2920                 return wp_page_copy(vmf);
2921         }
2922
2923         /*
2924          * Take out anonymous pages first, anonymous shared vmas are
2925          * not dirty accountable.
2926          */
2927         if (PageAnon(vmf->page)) {
2928                 int total_map_swapcount;
2929                 if (PageKsm(vmf->page) && (PageSwapCache(vmf->page) ||
2930                                            page_count(vmf->page) != 1))
2931                         goto copy;
2932                 if (!trylock_page(vmf->page)) {
2933                         get_page(vmf->page);
2934                         pte_unmap_unlock(vmf->pte, vmf->ptl);
2935                         lock_page(vmf->page);
2936                         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2937                                         vmf->address, &vmf->ptl);
2938                         if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2939                                 unlock_page(vmf->page);
2940                                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2941                                 put_page(vmf->page);
2942                                 return 0;
2943                         }
2944                         put_page(vmf->page);
2945                 }
2946                 if (PageKsm(vmf->page)) {
2947                         bool reused = reuse_ksm_page(vmf->page, vmf->vma,
2948                                                      vmf->address);
2949                         unlock_page(vmf->page);
2950                         if (!reused)
2951                                 goto copy;
2952                         wp_page_reuse(vmf);
2953                         return VM_FAULT_WRITE;
2954                 }
2955                 if (reuse_swap_page(vmf->page, &total_map_swapcount)) {
2956                         if (total_map_swapcount == 1) {
2957                                 /*
2958                                  * The page is all ours. Move it to
2959                                  * our anon_vma so the rmap code will
2960                                  * not search our parent or siblings.
2961                                  * Protected against the rmap code by
2962                                  * the page lock.
2963                                  */
2964                                 page_move_anon_rmap(vmf->page, vma);
2965                         }
2966                         unlock_page(vmf->page);
2967                         wp_page_reuse(vmf);
2968                         return VM_FAULT_WRITE;
2969                 }
2970                 unlock_page(vmf->page);
2971         } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2972                                         (VM_WRITE|VM_SHARED))) {
2973                 return wp_page_shared(vmf);
2974         }
2975 copy:
2976         /*
2977          * Ok, we need to copy. Oh, well..
2978          */
2979         get_page(vmf->page);
2980
2981         pte_unmap_unlock(vmf->pte, vmf->ptl);
2982         return wp_page_copy(vmf);
2983 }
2984
2985 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2986                 unsigned long start_addr, unsigned long end_addr,
2987                 struct zap_details *details)
2988 {
2989         zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2990 }
2991
2992 static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
2993                                             struct zap_details *details)
2994 {
2995         struct vm_area_struct *vma;
2996         pgoff_t vba, vea, zba, zea;
2997
2998         vma_interval_tree_foreach(vma, root,
2999                         details->first_index, details->last_index) {
3000
3001                 vba = vma->vm_pgoff;
3002                 vea = vba + vma_pages(vma) - 1;
3003                 zba = details->first_index;
3004                 if (zba < vba)
3005                         zba = vba;
3006                 zea = details->last_index;
3007                 if (zea > vea)
3008                         zea = vea;
3009
3010                 unmap_mapping_range_vma(vma,
3011                         ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
3012                         ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
3013                                 details);
3014         }
3015 }
3016
3017 /**
3018  * unmap_mapping_pages() - Unmap pages from processes.
3019  * @mapping: The address space containing pages to be unmapped.
3020  * @start: Index of first page to be unmapped.
3021  * @nr: Number of pages to be unmapped.  0 to unmap to end of file.
3022  * @even_cows: Whether to unmap even private COWed pages.
3023  *
3024  * Unmap the pages in this address space from any userspace process which
3025  * has them mmaped.  Generally, you want to remove COWed pages as well when
3026  * a file is being truncated, but not when invalidating pages from the page
3027  * cache.
3028  */
3029 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
3030                 pgoff_t nr, bool even_cows)
3031 {
3032         struct zap_details details = { };
3033
3034         details.check_mapping = even_cows ? NULL : mapping;
3035         details.first_index = start;
3036         details.last_index = start + nr - 1;
3037         if (details.last_index < details.first_index)
3038                 details.last_index = ULONG_MAX;
3039
3040         i_mmap_lock_write(mapping);
3041         if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3042                 unmap_mapping_range_tree(&mapping->i_mmap, &details);
3043         i_mmap_unlock_write(mapping);
3044 }
3045
3046 /**
3047  * unmap_mapping_range - unmap the portion of all mmaps in the specified
3048  * address_space corresponding to the specified byte range in the underlying
3049  * file.
3050  *
3051  * @mapping: the address space containing mmaps to be unmapped.
3052  * @holebegin: byte in first page to unmap, relative to the start of
3053  * the underlying file.  This will be rounded down to a PAGE_SIZE
3054  * boundary.  Note that this is different from truncate_pagecache(), which
3055  * must keep the partial page.  In contrast, we must get rid of
3056  * partial pages.
3057  * @holelen: size of prospective hole in bytes.  This will be rounded
3058  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
3059  * end of the file.
3060  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
3061  * but 0 when invalidating pagecache, don't throw away private data.
3062  */
3063 void unmap_mapping_range(struct address_space *mapping,
3064                 loff_t const holebegin, loff_t const holelen, int even_cows)
3065 {
3066         pgoff_t hba = holebegin >> PAGE_SHIFT;
3067         pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3068
3069         /* Check for overflow. */
3070         if (sizeof(holelen) > sizeof(hlen)) {
3071                 long long holeend =
3072                         (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3073                 if (holeend & ~(long long)ULONG_MAX)
3074                         hlen = ULONG_MAX - hba + 1;
3075         }
3076
3077         unmap_mapping_pages(mapping, hba, hlen, even_cows);
3078 }
3079 EXPORT_SYMBOL(unmap_mapping_range);
3080
3081 /*
3082  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3083  * but allow concurrent faults), and pte mapped but not yet locked.
3084  * We return with pte unmapped and unlocked.
3085  *
3086  * We return with the mmap_sem locked or unlocked in the same cases
3087  * as does filemap_fault().
3088  */
3089 vm_fault_t do_swap_page(struct vm_fault *vmf)
3090 {
3091         struct vm_area_struct *vma = vmf->vma;
3092         struct page *page = NULL, *swapcache;
3093         struct mem_cgroup *memcg;
3094         swp_entry_t entry;
3095         pte_t pte;
3096         int locked;
3097         int exclusive = 0;
3098         vm_fault_t ret = 0;
3099
3100         if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte))
3101                 goto out;
3102
3103         entry = pte_to_swp_entry(vmf->orig_pte);
3104         if (unlikely(non_swap_entry(entry))) {
3105                 if (is_migration_entry(entry)) {
3106                         migration_entry_wait(vma->vm_mm, vmf->pmd,
3107                                              vmf->address);
3108                 } else if (is_device_private_entry(entry)) {
3109                         vmf->page = device_private_entry_to_page(entry);
3110                         ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
3111                 } else if (is_hwpoison_entry(entry)) {
3112                         ret = VM_FAULT_HWPOISON;
3113                 } else {
3114                         print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
3115                         ret = VM_FAULT_SIGBUS;
3116                 }
3117                 goto out;
3118         }
3119
3120
3121         delayacct_set_flag(DELAYACCT_PF_SWAPIN);
3122         page = lookup_swap_cache(entry, vma, vmf->address);
3123         swapcache = page;
3124
3125         if (!page) {
3126                 struct swap_info_struct *si = swp_swap_info(entry);
3127
3128                 if (si->flags & SWP_SYNCHRONOUS_IO &&
3129                                 __swap_count(entry) == 1) {
3130                         /* skip swapcache */
3131                         page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
3132                                                         vmf->address);
3133                         if (page) {
3134                                 __SetPageLocked(page);
3135                                 __SetPageSwapBacked(page);
3136                                 set_page_private(page, entry.val);
3137                                 lru_cache_add_anon(page);
3138                                 swap_readpage(page, true);
3139                         }
3140                 } else {
3141                         page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
3142                                                 vmf);
3143                         swapcache = page;
3144                 }
3145
3146                 if (!page) {
3147                         /*
3148                          * Back out if somebody else faulted in this pte
3149                          * while we released the pte lock.
3150                          */
3151                         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3152                                         vmf->address, &vmf->ptl);
3153                         if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
3154                                 ret = VM_FAULT_OOM;
3155                         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3156                         goto unlock;
3157                 }
3158
3159                 /* Had to read the page from swap area: Major fault */
3160                 ret = VM_FAULT_MAJOR;
3161                 count_vm_event(PGMAJFAULT);
3162                 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
3163         } else if (PageHWPoison(page)) {
3164                 /*
3165                  * hwpoisoned dirty swapcache pages are kept for killing
3166                  * owner processes (which may be unknown at hwpoison time)
3167                  */
3168                 ret = VM_FAULT_HWPOISON;
3169                 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3170                 goto out_release;
3171         }
3172
3173         locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
3174
3175         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3176         if (!locked) {
3177                 ret |= VM_FAULT_RETRY;
3178                 goto out_release;
3179         }
3180
3181         /*
3182          * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
3183          * release the swapcache from under us.  The page pin, and pte_same
3184          * test below, are not enough to exclude that.  Even if it is still
3185          * swapcache, we need to check that the page's swap has not changed.
3186          */
3187         if (unlikely((!PageSwapCache(page) ||
3188                         page_private(page) != entry.val)) && swapcache)
3189                 goto out_page;
3190
3191         page = ksm_might_need_to_copy(page, vma, vmf->address);
3192         if (unlikely(!page)) {
3193                 ret = VM_FAULT_OOM;
3194                 page = swapcache;
3195                 goto out_page;
3196         }
3197
3198         if (mem_cgroup_try_charge_delay(page, vma->vm_mm, GFP_KERNEL,
3199                                         &memcg, false)) {
3200                 ret = VM_FAULT_OOM;
3201                 goto out_page;
3202         }
3203
3204         /*
3205          * Back out if somebody else already faulted in this pte.
3206          */
3207         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3208                         &vmf->ptl);
3209         if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
3210                 goto out_nomap;
3211
3212         if (unlikely(!PageUptodate(page))) {
3213                 ret = VM_FAULT_SIGBUS;
3214                 goto out_nomap;
3215         }
3216
3217         /*
3218          * The page isn't present yet, go ahead with the fault.
3219          *
3220          * Be careful about the sequence of operations here.
3221          * To get its accounting right, reuse_swap_page() must be called
3222          * while the page is counted on swap but not yet in mapcount i.e.
3223          * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3224          * must be called after the swap_free(), or it will never succeed.
3225          */
3226
3227         inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3228         dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
3229         pte = mk_pte(page, vma->vm_page_prot);
3230         if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
3231                 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3232                 vmf->flags &= ~FAULT_FLAG_WRITE;
3233                 ret |= VM_FAULT_WRITE;
3234                 exclusive = RMAP_EXCLUSIVE;
3235         }
3236         flush_icache_page(vma, page);
3237         if (pte_swp_soft_dirty(vmf->orig_pte))
3238                 pte = pte_mksoft_dirty(pte);
3239         if (pte_swp_uffd_wp(vmf->orig_pte)) {
3240                 pte = pte_mkuffd_wp(pte);
3241                 pte = pte_wrprotect(pte);
3242         }
3243         set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
3244         arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
3245         vmf->orig_pte = pte;
3246
3247         /* ksm created a completely new copy */
3248         if (unlikely(page != swapcache && swapcache)) {
3249                 page_add_new_anon_rmap(page, vma, vmf->address, false);
3250                 mem_cgroup_commit_charge(page, memcg, false, false);
3251                 lru_cache_add_active_or_unevictable(page, vma);
3252         } else {
3253                 do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
3254                 mem_cgroup_commit_charge(page, memcg, true, false);
3255                 activate_page(page);
3256         }
3257
3258         swap_free(entry);
3259         if (mem_cgroup_swap_full(page) ||
3260             (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
3261                 try_to_free_swap(page);
3262         unlock_page(page);
3263         if (page != swapcache && swapcache) {
3264                 /*
3265                  * Hold the lock to avoid the swap entry to be reused
3266                  * until we take the PT lock for the pte_same() check
3267                  * (to avoid false positives from pte_same). For
3268                  * further safety release the lock after the swap_free
3269                  * so that the swap count won't change under a
3270                  * parallel locked swapcache.
3271                  */
3272                 unlock_page(swapcache);
3273                 put_page(swapcache);
3274         }
3275
3276         if (vmf->flags & FAULT_FLAG_WRITE) {
3277                 ret |= do_wp_page(vmf);
3278                 if (ret & VM_FAULT_ERROR)
3279                         ret &= VM_FAULT_ERROR;
3280                 goto out;
3281         }
3282
3283         /* No need to invalidate - it was non-present before */
3284         update_mmu_cache(vma, vmf->address, vmf->pte);
3285 unlock:
3286         pte_unmap_unlock(vmf->pte, vmf->ptl);
3287 out:
3288         return ret;
3289 out_nomap:
3290         mem_cgroup_cancel_charge(page, memcg, false);
3291         pte_unmap_unlock(vmf->pte, vmf->ptl);
3292 out_page:
3293         unlock_page(page);
3294 out_release:
3295         put_page(page);
3296         if (page != swapcache && swapcache) {
3297                 unlock_page(swapcache);
3298                 put_page(swapcache);
3299         }
3300         return ret;
3301 }
3302
3303 /*
3304  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3305  * but allow concurrent faults), and pte mapped but not yet locked.
3306  * We return with mmap_sem still held, but pte unmapped and unlocked.
3307  */
3308 static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
3309 {
3310         struct vm_area_struct *vma = vmf->vma;
3311         struct mem_cgroup *memcg;
3312         struct page *page;
3313         vm_fault_t ret = 0;
3314         pte_t entry;
3315
3316         /* File mapping without ->vm_ops ? */
3317         if (vma->vm_flags & VM_SHARED)
3318                 return VM_FAULT_SIGBUS;
3319
3320         /*
3321          * Use pte_alloc() instead of pte_alloc_map().  We can't run
3322          * pte_offset_map() on pmds where a huge pmd might be created
3323          * from a different thread.
3324          *
3325          * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
3326          * parallel threads are excluded by other means.
3327          *
3328          * Here we only have down_read(mmap_sem).
3329          */
3330         if (pte_alloc(vma->vm_mm, vmf->pmd))
3331                 return VM_FAULT_OOM;
3332
3333         /* See the comment in pte_alloc_one_map() */
3334         if (unlikely(pmd_trans_unstable(vmf->pmd)))
3335                 return 0;
3336
3337         /* Use the zero-page for reads */
3338         if (!(vmf->flags & FAULT_FLAG_WRITE) &&
3339                         !mm_forbids_zeropage(vma->vm_mm)) {
3340                 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
3341                                                 vma->vm_page_prot));
3342                 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3343                                 vmf->address, &vmf->ptl);
3344                 if (!pte_none(*vmf->pte))
3345                         goto unlock;
3346                 ret = check_stable_address_space(vma->vm_mm);
3347                 if (ret)
3348                         goto unlock;
3349                 /* Deliver the page fault to userland, check inside PT lock */
3350                 if (userfaultfd_missing(vma)) {
3351                         pte_unmap_unlock(vmf->pte, vmf->ptl);
3352                         return handle_userfault(vmf, VM_UFFD_MISSING);
3353                 }
3354                 goto setpte;
3355         }
3356
3357         /* Allocate our own private page. */
3358         if (unlikely(anon_vma_prepare(vma)))
3359                 goto oom;
3360         page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
3361         if (!page)
3362                 goto oom;
3363
3364         if (mem_cgroup_try_charge_delay(page, vma->vm_mm, GFP_KERNEL, &memcg,
3365                                         false))
3366                 goto oom_free_page;
3367
3368         /*
3369          * The memory barrier inside __SetPageUptodate makes sure that
3370          * preceding stores to the page contents become visible before
3371          * the set_pte_at() write.
3372          */
3373         __SetPageUptodate(page);
3374
3375         entry = mk_pte(page, vma->vm_page_prot);
3376         if (vma->vm_flags & VM_WRITE)
3377                 entry = pte_mkwrite(pte_mkdirty(entry));
3378
3379         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3380                         &vmf->ptl);
3381         if (!pte_none(*vmf->pte))
3382                 goto release;
3383
3384         ret = check_stable_address_space(vma->vm_mm);
3385         if (ret)
3386                 goto release;
3387
3388         /* Deliver the page fault to userland, check inside PT lock */
3389         if (userfaultfd_missing(vma)) {
3390                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3391                 mem_cgroup_cancel_charge(page, memcg, false);
3392                 put_page(page);
3393                 return handle_userfault(vmf, VM_UFFD_MISSING);
3394         }
3395
3396         inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3397         page_add_new_anon_rmap(page, vma, vmf->address, false);
3398         mem_cgroup_commit_charge(page, memcg, false, false);
3399         lru_cache_add_active_or_unevictable(page, vma);
3400 setpte:
3401         set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3402
3403         /* No need to invalidate - it was non-present before */
3404         update_mmu_cache(vma, vmf->address, vmf->pte);
3405 unlock:
3406         pte_unmap_unlock(vmf->pte, vmf->ptl);
3407         return ret;
3408 release:
3409         mem_cgroup_cancel_charge(page, memcg, false);
3410         put_page(page);
3411         goto unlock;
3412 oom_free_page:
3413         put_page(page);
3414 oom:
3415         return VM_FAULT_OOM;
3416 }
3417
3418 /*
3419  * The mmap_sem must have been held on entry, and may have been
3420  * released depending on flags and vma->vm_ops->fault() return value.
3421  * See filemap_fault() and __lock_page_retry().
3422  */
3423 static vm_fault_t __do_fault(struct vm_fault *vmf)
3424 {
3425         struct vm_area_struct *vma = vmf->vma;
3426         vm_fault_t ret;
3427
3428         /*
3429          * Preallocate pte before we take page_lock because this might lead to
3430          * deadlocks for memcg reclaim which waits for pages under writeback:
3431          *                              lock_page(A)
3432          *                              SetPageWriteback(A)
3433          *                              unlock_page(A)
3434          * lock_page(B)
3435          *                              lock_page(B)
3436          * pte_alloc_pne
3437          *   shrink_page_list
3438          *     wait_on_page_writeback(A)
3439          *                              SetPageWriteback(B)
3440          *                              unlock_page(B)
3441          *                              # flush A, B to clear the writeback
3442          */
3443         if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
3444                 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
3445                 if (!vmf->prealloc_pte)
3446                         return VM_FAULT_OOM;
3447                 smp_wmb(); /* See comment in __pte_alloc() */
3448         }
3449
3450         ret = vma->vm_ops->fault(vmf);
3451         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
3452                             VM_FAULT_DONE_COW)))
3453                 return ret;
3454
3455         if (unlikely(PageHWPoison(vmf->page))) {
3456                 if (ret & VM_FAULT_LOCKED)
3457                         unlock_page(vmf->page);
3458                 put_page(vmf->page);
3459                 vmf->page = NULL;
3460                 return VM_FAULT_HWPOISON;
3461         }
3462
3463         if (unlikely(!(ret & VM_FAULT_LOCKED)))
3464                 lock_page(vmf->page);
3465         else
3466                 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
3467
3468         return ret;
3469 }
3470
3471 /*
3472  * The ordering of these checks is important for pmds with _PAGE_DEVMAP set.
3473  * If we check pmd_trans_unstable() first we will trip the bad_pmd() check
3474  * inside of pmd_none_or_trans_huge_or_clear_bad(). This will end up correctly
3475  * returning 1 but not before it spams dmesg with the pmd_clear_bad() output.
3476  */
3477 static int pmd_devmap_trans_unstable(pmd_t *pmd)
3478 {
3479         return pmd_devmap(*pmd) || pmd_trans_unstable(pmd);
3480 }
3481
3482 static vm_fault_t pte_alloc_one_map(struct vm_fault *vmf)
3483 {
3484         struct vm_area_struct *vma = vmf->vma;
3485
3486         if (!pmd_none(*vmf->pmd))
3487                 goto map_pte;
3488         if (vmf->prealloc_pte) {
3489                 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3490                 if (unlikely(!pmd_none(*vmf->pmd))) {
3491                         spin_unlock(vmf->ptl);
3492                         goto map_pte;
3493                 }
3494
3495                 mm_inc_nr_ptes(vma->vm_mm);
3496                 pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3497                 spin_unlock(vmf->ptl);
3498                 vmf->prealloc_pte = NULL;
3499         } else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd))) {
3500                 return VM_FAULT_OOM;
3501         }
3502 map_pte:
3503         /*
3504          * If a huge pmd materialized under us just retry later.  Use
3505          * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead of
3506          * pmd_trans_huge() to ensure the pmd didn't become pmd_trans_huge
3507          * under us and then back to pmd_none, as a result of MADV_DONTNEED
3508          * running immediately after a huge pmd fault in a different thread of
3509          * this mm, in turn leading to a misleading pmd_trans_huge() retval.
3510          * All we have to ensure is that it is a regular pmd that we can walk
3511          * with pte_offset_map() and we can do that through an atomic read in
3512          * C, which is what pmd_trans_unstable() provides.
3513          */
3514         if (pmd_devmap_trans_unstable(vmf->pmd))
3515                 return VM_FAULT_NOPAGE;
3516
3517         /*
3518          * At this point we know that our vmf->pmd points to a page of ptes
3519          * and it cannot become pmd_none(), pmd_devmap() or pmd_trans_huge()
3520          * for the duration of the fault.  If a racing MADV_DONTNEED runs and
3521          * we zap the ptes pointed to by our vmf->pmd, the vmf->ptl will still
3522          * be valid and we will re-check to make sure the vmf->pte isn't
3523          * pte_none() under vmf->ptl protection when we return to
3524          * alloc_set_pte().
3525          */
3526         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3527                         &vmf->ptl);
3528         return 0;
3529 }
3530
3531 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3532 static void deposit_prealloc_pte(struct vm_fault *vmf)
3533 {
3534         struct vm_area_struct *vma = vmf->vma;
3535
3536         pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3537         /*
3538          * We are going to consume the prealloc table,
3539          * count that as nr_ptes.
3540          */
3541         mm_inc_nr_ptes(vma->vm_mm);
3542         vmf->prealloc_pte = NULL;
3543 }
3544
3545 static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3546 {
3547         struct vm_area_struct *vma = vmf->vma;
3548         bool write = vmf->flags & FAULT_FLAG_WRITE;
3549         unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
3550         pmd_t entry;
3551         int i;
3552         vm_fault_t ret;
3553
3554         if (!transhuge_vma_suitable(vma, haddr))
3555                 return VM_FAULT_FALLBACK;
3556
3557         ret = VM_FAULT_FALLBACK;
3558         page = compound_head(page);
3559
3560         /*
3561          * Archs like ppc64 need additonal space to store information
3562          * related to pte entry. Use the preallocated table for that.
3563          */
3564         if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
3565                 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
3566                 if (!vmf->prealloc_pte)
3567                         return VM_FAULT_OOM;
3568                 smp_wmb(); /* See comment in __pte_alloc() */
3569         }
3570
3571         vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3572         if (unlikely(!pmd_none(*vmf->pmd)))
3573                 goto out;
3574
3575         for (i = 0; i < HPAGE_PMD_NR; i++)
3576                 flush_icache_page(vma, page + i);
3577
3578         entry = mk_huge_pmd(page, vma->vm_page_prot);
3579         if (write)
3580                 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
3581
3582         add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
3583         page_add_file_rmap(page, true);
3584         /*
3585          * deposit and withdraw with pmd lock held
3586          */
3587         if (arch_needs_pgtable_deposit())
3588                 deposit_prealloc_pte(vmf);
3589
3590         set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
3591
3592         update_mmu_cache_pmd(vma, haddr, vmf->pmd);
3593
3594         /* fault is handled */
3595         ret = 0;
3596         count_vm_event(THP_FILE_MAPPED);
3597 out:
3598         spin_unlock(vmf->ptl);
3599         return ret;
3600 }
3601 #else
3602 static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3603 {
3604         BUILD_BUG();
3605         return 0;
3606 }
3607 #endif
3608
3609 /**
3610  * alloc_set_pte - setup new PTE entry for given page and add reverse page
3611  * mapping. If needed, the fucntion allocates page table or use pre-allocated.
3612  *
3613  * @vmf: fault environment
3614  * @memcg: memcg to charge page (only for private mappings)
3615  * @page: page to map
3616  *
3617  * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on
3618  * return.
3619  *
3620  * Target users are page handler itself and implementations of
3621  * vm_ops->map_pages.
3622  *
3623  * Return: %0 on success, %VM_FAULT_ code in case of error.
3624  */
3625 vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
3626                 struct page *page)
3627 {
3628         struct vm_area_struct *vma = vmf->vma;
3629         bool write = vmf->flags & FAULT_FLAG_WRITE;
3630         pte_t entry;
3631         vm_fault_t ret;
3632
3633         if (pmd_none(*vmf->pmd) && PageTransCompound(page)) {
3634                 /* THP on COW? */
3635                 VM_BUG_ON_PAGE(memcg, page);
3636
3637                 ret = do_set_pmd(vmf, page);
3638                 if (ret != VM_FAULT_FALLBACK)
3639                         return ret;
3640         }
3641
3642         if (!vmf->pte) {
3643                 ret = pte_alloc_one_map(vmf);
3644                 if (ret)
3645                         return ret;
3646         }
3647
3648         /* Re-check under ptl */
3649         if (unlikely(!pte_none(*vmf->pte)))
3650                 return VM_FAULT_NOPAGE;
3651
3652         flush_icache_page(vma, page);
3653         entry = mk_pte(page, vma->vm_page_prot);
3654         if (write)
3655                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3656         /* copy-on-write page */
3657         if (write && !(vma->vm_flags & VM_SHARED)) {
3658                 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3659                 page_add_new_anon_rmap(page, vma, vmf->address, false);
3660                 mem_cgroup_commit_charge(page, memcg, false, false);
3661                 lru_cache_add_active_or_unevictable(page, vma);
3662         } else {
3663                 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
3664                 page_add_file_rmap(page, false);
3665         }
3666         set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3667
3668         /* no need to invalidate: a not-present page won't be cached */
3669         update_mmu_cache(vma, vmf->address, vmf->pte);
3670
3671         return 0;
3672 }
3673
3674
3675 /**
3676  * finish_fault - finish page fault once we have prepared the page to fault
3677  *
3678  * @vmf: structure describing the fault
3679  *
3680  * This function handles all that is needed to finish a page fault once the
3681  * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
3682  * given page, adds reverse page mapping, handles memcg charges and LRU
3683  * addition.
3684  *
3685  * The function expects the page to be locked and on success it consumes a
3686  * reference of a page being mapped (for the PTE which maps it).
3687  *
3688  * Return: %0 on success, %VM_FAULT_ code in case of error.
3689  */
3690 vm_fault_t finish_fault(struct vm_fault *vmf)
3691 {
3692         struct page *page;
3693         vm_fault_t ret = 0;
3694
3695         /* Did we COW the page? */
3696         if ((vmf->flags & FAULT_FLAG_WRITE) &&
3697             !(vmf->vma->vm_flags & VM_SHARED))
3698                 page = vmf->cow_page;
3699         else
3700                 page = vmf->page;
3701
3702         /*
3703          * check even for read faults because we might have lost our CoWed
3704          * page
3705          */
3706         if (!(vmf->vma->vm_flags & VM_SHARED))
3707                 ret = check_stable_address_space(vmf->vma->vm_mm);
3708         if (!ret)
3709                 ret = alloc_set_pte(vmf, vmf->memcg, page);
3710         if (vmf->pte)
3711                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3712         return ret;
3713 }
3714
3715 static unsigned long fault_around_bytes __read_mostly =
3716         rounddown_pow_of_two(65536);
3717
3718 #ifdef CONFIG_DEBUG_FS
3719 static int fault_around_bytes_get(void *data, u64 *val)
3720 {
3721         *val = fault_around_bytes;
3722         return 0;
3723 }
3724
3725 /*
3726  * fault_around_bytes must be rounded down to the nearest page order as it's
3727  * what do_fault_around() expects to see.
3728  */
3729 static int fault_around_bytes_set(void *data, u64 val)
3730 {
3731         if (val / PAGE_SIZE > PTRS_PER_PTE)
3732                 return -EINVAL;
3733         if (val > PAGE_SIZE)
3734                 fault_around_bytes = rounddown_pow_of_two(val);
3735         else
3736                 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
3737         return 0;
3738 }
3739 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
3740                 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
3741
3742 static int __init fault_around_debugfs(void)
3743 {
3744         debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
3745                                    &fault_around_bytes_fops);
3746         return 0;
3747 }
3748 late_initcall(fault_around_debugfs);
3749 #endif
3750
3751 /*
3752  * do_fault_around() tries to map few pages around the fault address. The hope
3753  * is that the pages will be needed soon and this will lower the number of
3754  * faults to handle.
3755  *
3756  * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
3757  * not ready to be mapped: not up-to-date, locked, etc.
3758  *
3759  * This function is called with the page table lock taken. In the split ptlock
3760  * case the page table lock only protects only those entries which belong to
3761  * the page table corresponding to the fault address.
3762  *
3763  * This function doesn't cross the VMA boundaries, in order to call map_pages()
3764  * only once.
3765  *
3766  * fault_around_bytes defines how many bytes we'll try to map.
3767  * do_fault_around() expects it to be set to a power of two less than or equal
3768  * to PTRS_PER_PTE.
3769  *
3770  * The virtual address of the area that we map is naturally aligned to
3771  * fault_around_bytes rounded down to the machine page size
3772  * (and therefore to page order).  This way it's easier to guarantee
3773  * that we don't cross page table boundaries.
3774  */
3775 static vm_fault_t do_fault_around(struct vm_fault *vmf)
3776 {
3777         unsigned long address = vmf->address, nr_pages, mask;
3778         pgoff_t start_pgoff = vmf->pgoff;
3779         pgoff_t end_pgoff;
3780         int off;
3781         vm_fault_t ret = 0;
3782
3783         nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
3784         mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
3785
3786         vmf->address = max(address & mask, vmf->vma->vm_start);
3787         off = ((address - vmf->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
3788         start_pgoff -= off;
3789
3790         /*
3791          *  end_pgoff is either the end of the page table, the end of
3792          *  the vma or nr_pages from start_pgoff, depending what is nearest.
3793          */
3794         end_pgoff = start_pgoff -
3795                 ((vmf->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
3796                 PTRS_PER_PTE - 1;
3797         end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
3798                         start_pgoff + nr_pages - 1);
3799
3800         if (pmd_none(*vmf->pmd)) {
3801                 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
3802                 if (!vmf->prealloc_pte)
3803                         goto out;
3804                 smp_wmb(); /* See comment in __pte_alloc() */
3805         }
3806
3807         vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
3808
3809         /* Huge page is mapped? Page fault is solved */
3810         if (pmd_trans_huge(*vmf->pmd)) {
3811                 ret = VM_FAULT_NOPAGE;
3812                 goto out;
3813         }
3814
3815         /* ->map_pages() haven't done anything useful. Cold page cache? */
3816         if (!vmf->pte)
3817                 goto out;
3818
3819         /* check if the page fault is solved */
3820         vmf->pte -= (vmf->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT);
3821         if (!pte_none(*vmf->pte))
3822                 ret = VM_FAULT_NOPAGE;
3823         pte_unmap_unlock(vmf->pte, vmf->ptl);
3824 out:
3825         vmf->address = address;
3826         vmf->pte = NULL;
3827         return ret;
3828 }
3829
3830 static vm_fault_t do_read_fault(struct vm_fault *vmf)
3831 {
3832         struct vm_area_struct *vma = vmf->vma;
3833         vm_fault_t ret = 0;
3834
3835         /*
3836          * Let's call ->map_pages() first and use ->fault() as fallback
3837          * if page by the offset is not ready to be mapped (cold cache or
3838          * something).
3839          */
3840         if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
3841                 ret = do_fault_around(vmf);
3842                 if (ret)
3843                         return ret;
3844         }
3845
3846         ret = __do_fault(vmf);
3847         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3848                 return ret;
3849
3850         ret |= finish_fault(vmf);
3851         unlock_page(vmf->page);
3852         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3853                 put_page(vmf->page);
3854         return ret;
3855 }
3856
3857 static vm_fault_t do_cow_fault(struct vm_fault *vmf)
3858 {
3859         struct vm_area_struct *vma = vmf->vma;
3860         vm_fault_t ret;
3861
3862         if (unlikely(anon_vma_prepare(vma)))
3863                 return VM_FAULT_OOM;
3864
3865         vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
3866         if (!vmf->cow_page)
3867                 return VM_FAULT_OOM;
3868
3869         if (mem_cgroup_try_charge_delay(vmf->cow_page, vma->vm_mm, GFP_KERNEL,
3870                                 &vmf->memcg, false)) {
3871                 put_page(vmf->cow_page);
3872                 return VM_FAULT_OOM;
3873         }
3874
3875         ret = __do_fault(vmf);
3876         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3877                 goto uncharge_out;
3878         if (ret & VM_FAULT_DONE_COW)
3879                 return ret;
3880
3881         copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
3882         __SetPageUptodate(vmf->cow_page);
3883
3884         ret |= finish_fault(vmf);
3885         unlock_page(vmf->page);
3886         put_page(vmf->page);
3887         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3888                 goto uncharge_out;
3889         return ret;
3890 uncharge_out:
3891         mem_cgroup_cancel_charge(vmf->cow_page, vmf->memcg, false);
3892         put_page(vmf->cow_page);
3893         return ret;
3894 }
3895
3896 static vm_fault_t do_shared_fault(struct vm_fault *vmf)
3897 {
3898         struct vm_area_struct *vma = vmf->vma;
3899         vm_fault_t ret, tmp;
3900
3901         ret = __do_fault(vmf);
3902         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3903                 return ret;
3904
3905         /*
3906          * Check if the backing address space wants to know that the page is
3907          * about to become writable
3908          */
3909         if (vma->vm_ops->page_mkwrite) {
3910                 unlock_page(vmf->page);
3911                 tmp = do_page_mkwrite(vmf);
3912                 if (unlikely(!tmp ||
3913                                 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3914                         put_page(vmf->page);
3915                         return tmp;
3916                 }
3917         }
3918
3919         ret |= finish_fault(vmf);
3920         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3921                                         VM_FAULT_RETRY))) {
3922                 unlock_page(vmf->page);
3923                 put_page(vmf->page);
3924                 return ret;
3925         }
3926
3927         ret |= fault_dirty_shared_page(vmf);
3928         return ret;
3929 }
3930
3931 /*
3932  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3933  * but allow concurrent faults).
3934  * The mmap_sem may have been released depending on flags and our
3935  * return value.  See filemap_fault() and __lock_page_or_retry().
3936  * If mmap_sem is released, vma may become invalid (for example
3937  * by other thread calling munmap()).
3938  */
3939 static vm_fault_t do_fault(struct vm_fault *vmf)
3940 {
3941         struct vm_area_struct *vma = vmf->vma;
3942         struct mm_struct *vm_mm = vma->vm_mm;
3943         vm_fault_t ret;
3944
3945         /*
3946          * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
3947          */
3948         if (!vma->vm_ops->fault) {
3949                 /*
3950                  * If we find a migration pmd entry or a none pmd entry, which
3951                  * should never happen, return SIGBUS
3952                  */
3953                 if (unlikely(!pmd_present(*vmf->pmd)))
3954                         ret = VM_FAULT_SIGBUS;
3955                 else {
3956                         vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm,
3957                                                        vmf->pmd,
3958                                                        vmf->address,
3959                                                        &vmf->ptl);
3960                         /*
3961                          * Make sure this is not a temporary clearing of pte
3962                          * by holding ptl and checking again. A R/M/W update
3963                          * of pte involves: take ptl, clearing the pte so that
3964                          * we don't have concurrent modification by hardware
3965                          * followed by an update.
3966                          */
3967                         if (unlikely(pte_none(*vmf->pte)))
3968                                 ret = VM_FAULT_SIGBUS;
3969                         else
3970                                 ret = VM_FAULT_NOPAGE;
3971
3972                         pte_unmap_unlock(vmf->pte, vmf->ptl);
3973                 }
3974         } else if (!(vmf->flags & FAULT_FLAG_WRITE))
3975                 ret = do_read_fault(vmf);
3976         else if (!(vma->vm_flags & VM_SHARED))
3977                 ret = do_cow_fault(vmf);
3978         else
3979                 ret = do_shared_fault(vmf);
3980
3981         /* preallocated pagetable is unused: free it */
3982         if (vmf->prealloc_pte) {
3983                 pte_free(vm_mm, vmf->prealloc_pte);
3984                 vmf->prealloc_pte = NULL;
3985         }
3986         return ret;
3987 }
3988
3989 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3990                                 unsigned long addr, int page_nid,
3991                                 int *flags)
3992 {
3993         get_page(page);
3994
3995         count_vm_numa_event(NUMA_HINT_FAULTS);
3996         if (page_nid == numa_node_id()) {
3997                 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
3998                 *flags |= TNF_FAULT_LOCAL;
3999         }
4000
4001         return mpol_misplaced(page, vma, addr);
4002 }
4003
4004 static vm_fault_t do_numa_page(struct vm_fault *vmf)
4005 {
4006         struct vm_area_struct *vma = vmf->vma;
4007         struct page *page = NULL;
4008         int page_nid = NUMA_NO_NODE;
4009         int last_cpupid;
4010         int target_nid;
4011         bool migrated = false;
4012         pte_t pte, old_pte;
4013         bool was_writable = pte_savedwrite(vmf->orig_pte);
4014         int flags = 0;
4015
4016         /*
4017          * The "pte" at this point cannot be used safely without
4018          * validation through pte_unmap_same(). It's of NUMA type but
4019          * the pfn may be screwed if the read is non atomic.
4020          */
4021         vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
4022         spin_lock(vmf->ptl);
4023         if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
4024                 pte_unmap_unlock(vmf->pte, vmf->ptl);
4025                 goto out;
4026         }
4027
4028         /*
4029          * Make it present again, Depending on how arch implementes non
4030          * accessible ptes, some can allow access by kernel mode.
4031          */
4032         old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
4033         pte = pte_modify(old_pte, vma->vm_page_prot);
4034         pte = pte_mkyoung(pte);
4035         if (was_writable)
4036                 pte = pte_mkwrite(pte);
4037         ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
4038         update_mmu_cache(vma, vmf->address, vmf->pte);
4039
4040         page = vm_normal_page(vma, vmf->address, pte);
4041         if (!page) {
4042                 pte_unmap_unlock(vmf->pte, vmf->ptl);
4043                 return 0;
4044         }
4045
4046         /* TODO: handle PTE-mapped THP */
4047         if (PageCompound(page)) {
4048                 pte_unmap_unlock(vmf->pte, vmf->ptl);
4049                 return 0;
4050         }
4051
4052         /*
4053          * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
4054          * much anyway since they can be in shared cache state. This misses
4055          * the case where a mapping is writable but the process never writes
4056          * to it but pte_write gets cleared during protection updates and
4057          * pte_dirty has unpredictable behaviour between PTE scan updates,
4058          * background writeback, dirty balancing and application behaviour.
4059          */
4060         if (!pte_write(pte))
4061                 flags |= TNF_NO_GROUP;
4062
4063         /*
4064          * Flag if the page is shared between multiple address spaces. This
4065          * is later used when determining whether to group tasks together
4066          */
4067         if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
4068                 flags |= TNF_SHARED;
4069
4070         last_cpupid = page_cpupid_last(page);
4071         page_nid = page_to_nid(page);
4072         target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
4073                         &flags);
4074         pte_unmap_unlock(vmf->pte, vmf->ptl);
4075         if (target_nid == NUMA_NO_NODE) {
4076                 put_page(page);
4077                 goto out;
4078         }
4079
4080         /* Migrate to the requested node */
4081         migrated = migrate_misplaced_page(page, vma, target_nid);
4082         if (migrated) {
4083                 page_nid = target_nid;
4084                 flags |= TNF_MIGRATED;
4085         } else
4086                 flags |= TNF_MIGRATE_FAIL;
4087
4088 out:
4089         if (page_nid != NUMA_NO_NODE)
4090                 task_numa_fault(last_cpupid, page_nid, 1, flags);
4091         return 0;
4092 }
4093
4094 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
4095 {
4096         if (vma_is_anonymous(vmf->vma))
4097                 return do_huge_pmd_anonymous_page(vmf);
4098         if (vmf->vma->vm_ops->huge_fault)
4099                 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4100         return VM_FAULT_FALLBACK;
4101 }
4102
4103 /* `inline' is required to avoid gcc 4.1.2 build error */
4104 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd)
4105 {
4106         if (vma_is_anonymous(vmf->vma)) {
4107                 if (userfaultfd_huge_pmd_wp(vmf->vma, orig_pmd))
4108                         return handle_userfault(vmf, VM_UFFD_WP);
4109                 return do_huge_pmd_wp_page(vmf, orig_pmd);
4110         }
4111         if (vmf->vma->vm_ops->huge_fault) {
4112                 vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4113
4114                 if (!(ret & VM_FAULT_FALLBACK))
4115                         return ret;
4116         }
4117
4118         /* COW or write-notify handled on pte level: split pmd. */
4119         __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
4120
4121         return VM_FAULT_FALLBACK;
4122 }
4123
4124 static vm_fault_t create_huge_pud(struct vm_fault *vmf)
4125 {
4126 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) &&                     \
4127         defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
4128         /* No support for anonymous transparent PUD pages yet */
4129         if (vma_is_anonymous(vmf->vma))
4130                 goto split;
4131         if (vmf->vma->vm_ops->huge_fault) {
4132                 vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4133
4134                 if (!(ret & VM_FAULT_FALLBACK))
4135                         return ret;
4136         }
4137 split:
4138         /* COW or write-notify not handled on PUD level: split pud.*/
4139         __split_huge_pud(vmf->vma, vmf->pud, vmf->address);
4140 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4141         return VM_FAULT_FALLBACK;
4142 }
4143
4144 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
4145 {
4146 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4147         /* No support for anonymous transparent PUD pages yet */
4148         if (vma_is_anonymous(vmf->vma))
4149                 return VM_FAULT_FALLBACK;
4150         if (vmf->vma->vm_ops->huge_fault)
4151                 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4152 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4153         return VM_FAULT_FALLBACK;
4154 }
4155
4156 /*
4157  * These routines also need to handle stuff like marking pages dirty
4158  * and/or accessed for architectures that don't do it in hardware (most
4159  * RISC architectures).  The early dirtying is also good on the i386.
4160  *
4161  * There is also a hook called "update_mmu_cache()" that architectures
4162  * with external mmu caches can use to update those (ie the Sparc or
4163  * PowerPC hashed page tables that act as extended TLBs).
4164  *
4165  * We enter with non-exclusive mmap_sem (to exclude vma changes, but allow
4166  * concurrent faults).
4167  *
4168  * The mmap_sem may have been released depending on flags and our return value.
4169  * See filemap_fault() and __lock_page_or_retry().
4170  */
4171 static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
4172 {
4173         pte_t entry;
4174
4175         if (unlikely(pmd_none(*vmf->pmd))) {
4176                 /*
4177                  * Leave __pte_alloc() until later: because vm_ops->fault may
4178                  * want to allocate huge page, and if we expose page table
4179                  * for an instant, it will be difficult to retract from
4180                  * concurrent faults and from rmap lookups.
4181                  */
4182                 vmf->pte = NULL;
4183         } else {
4184                 /* See comment in pte_alloc_one_map() */
4185                 if (pmd_devmap_trans_unstable(vmf->pmd))
4186                         return 0;
4187                 /*
4188                  * A regular pmd is established and it can't morph into a huge
4189                  * pmd from under us anymore at this point because we hold the
4190                  * mmap_sem read mode and khugepaged takes it in write mode.
4191                  * So now it's safe to run pte_offset_map().
4192                  */
4193                 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
4194                 vmf->orig_pte = *vmf->pte;
4195
4196                 /*
4197                  * some architectures can have larger ptes than wordsize,
4198                  * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
4199                  * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
4200                  * accesses.  The code below just needs a consistent view
4201                  * for the ifs and we later double check anyway with the
4202                  * ptl lock held. So here a barrier will do.
4203                  */
4204                 barrier();
4205                 if (pte_none(vmf->orig_pte)) {
4206                         pte_unmap(vmf->pte);
4207                         vmf->pte = NULL;
4208                 }
4209         }
4210
4211         if (!vmf->pte) {
4212                 if (vma_is_anonymous(vmf->vma))
4213                         return do_anonymous_page(vmf);
4214                 else
4215                         return do_fault(vmf);
4216         }
4217
4218         if (!pte_present(vmf->orig_pte))
4219                 return do_swap_page(vmf);
4220
4221         if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
4222                 return do_numa_page(vmf);
4223
4224         vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
4225         spin_lock(vmf->ptl);
4226         entry = vmf->orig_pte;
4227         if (unlikely(!pte_same(*vmf->pte, entry)))
4228                 goto unlock;
4229         if (vmf->flags & FAULT_FLAG_WRITE) {
4230                 if (!pte_write(entry))
4231                         return do_wp_page(vmf);
4232                 entry = pte_mkdirty(entry);
4233         }
4234         entry = pte_mkyoung(entry);
4235         if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
4236                                 vmf->flags & FAULT_FLAG_WRITE)) {
4237                 update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
4238         } else {
4239                 /*
4240                  * This is needed only for protection faults but the arch code
4241                  * is not yet telling us if this is a protection fault or not.
4242                  * This still avoids useless tlb flushes for .text page faults
4243                  * with threads.
4244                  */
4245                 if (vmf->flags & FAULT_FLAG_WRITE)
4246                         flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
4247         }
4248 unlock:
4249         pte_unmap_unlock(vmf->pte, vmf->ptl);
4250         return 0;
4251 }
4252
4253 /*
4254  * By the time we get here, we already hold the mm semaphore
4255  *
4256  * The mmap_sem may have been released depending on flags and our
4257  * return value.  See filemap_fault() and __lock_page_or_retry().
4258  */
4259 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
4260                 unsigned long address, unsigned int flags)
4261 {
4262         struct vm_fault vmf = {
4263                 .vma = vma,
4264                 .address = address & PAGE_MASK,
4265                 .flags = flags,
4266                 .pgoff = linear_page_index(vma, address),
4267                 .gfp_mask = __get_fault_gfp_mask(vma),
4268         };
4269         unsigned int dirty = flags & FAULT_FLAG_WRITE;
4270         struct mm_struct *mm = vma->vm_mm;
4271         pgd_t *pgd;
4272         p4d_t *p4d;
4273         vm_fault_t ret;
4274
4275         pgd = pgd_offset(mm, address);
4276         p4d = p4d_alloc(mm, pgd, address);
4277         if (!p4d)
4278                 return VM_FAULT_OOM;
4279
4280         vmf.pud = pud_alloc(mm, p4d, address);
4281         if (!vmf.pud)
4282                 return VM_FAULT_OOM;
4283 retry_pud:
4284         if (pud_none(*vmf.pud) && __transparent_hugepage_enabled(vma)) {
4285                 ret = create_huge_pud(&vmf);
4286                 if (!(ret & VM_FAULT_FALLBACK))
4287                         return ret;
4288         } else {
4289                 pud_t orig_pud = *vmf.pud;
4290
4291                 barrier();
4292                 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
4293
4294                         /* NUMA case for anonymous PUDs would go here */
4295
4296                         if (dirty && !pud_write(orig_pud)) {
4297                                 ret = wp_huge_pud(&vmf, orig_pud);
4298                                 if (!(ret & VM_FAULT_FALLBACK))
4299                                         return ret;
4300                         } else {
4301                                 huge_pud_set_accessed(&vmf, orig_pud);
4302                                 return 0;
4303                         }
4304                 }
4305         }
4306
4307         vmf.pmd = pmd_alloc(mm, vmf.pud, address);
4308         if (!vmf.pmd)
4309                 return VM_FAULT_OOM;
4310
4311         /* Huge pud page fault raced with pmd_alloc? */
4312         if (pud_trans_unstable(vmf.pud))
4313                 goto retry_pud;
4314
4315         if (pmd_none(*vmf.pmd) && __transparent_hugepage_enabled(vma)) {
4316                 ret = create_huge_pmd(&vmf);
4317                 if (!(ret & VM_FAULT_FALLBACK))
4318                         return ret;
4319         } else {
4320                 pmd_t orig_pmd = *vmf.pmd;
4321
4322                 barrier();
4323                 if (unlikely(is_swap_pmd(orig_pmd))) {
4324                         VM_BUG_ON(thp_migration_supported() &&
4325                                           !is_pmd_migration_entry(orig_pmd));
4326                         if (is_pmd_migration_entry(orig_pmd))
4327                                 pmd_migration_entry_wait(mm, vmf.pmd);
4328                         return 0;
4329                 }
4330                 if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
4331                         if (pmd_protnone(orig_pmd) && vma_is_accessible(vma))
4332                                 return do_huge_pmd_numa_page(&vmf, orig_pmd);
4333
4334                         if (dirty && !pmd_write(orig_pmd)) {
4335                                 ret = wp_huge_pmd(&vmf, orig_pmd);
4336                                 if (!(ret & VM_FAULT_FALLBACK))
4337                                         return ret;
4338                         } else {
4339                                 huge_pmd_set_accessed(&vmf, orig_pmd);
4340                                 return 0;
4341                         }
4342                 }
4343         }
4344
4345         return handle_pte_fault(&vmf);
4346 }
4347
4348 /*
4349  * By the time we get here, we already hold the mm semaphore
4350  *
4351  * The mmap_sem may have been released depending on flags and our
4352  * return value.  See filemap_fault() and __lock_page_or_retry().
4353  */
4354 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
4355                 unsigned int flags)
4356 {
4357         vm_fault_t ret;
4358
4359         __set_current_state(TASK_RUNNING);
4360
4361         count_vm_event(PGFAULT);
4362         count_memcg_event_mm(vma->vm_mm, PGFAULT);
4363
4364         /* do counter updates before entering really critical section. */
4365         check_sync_rss_stat(current);
4366
4367         if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
4368                                             flags & FAULT_FLAG_INSTRUCTION,
4369                                             flags & FAULT_FLAG_REMOTE))
4370                 return VM_FAULT_SIGSEGV;
4371
4372         /*
4373          * Enable the memcg OOM handling for faults triggered in user
4374          * space.  Kernel faults are handled more gracefully.
4375          */
4376         if (flags & FAULT_FLAG_USER)
4377                 mem_cgroup_enter_user_fault();
4378
4379         if (unlikely(is_vm_hugetlb_page(vma)))
4380                 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
4381         else
4382                 ret = __handle_mm_fault(vma, address, flags);
4383
4384         if (flags & FAULT_FLAG_USER) {
4385                 mem_cgroup_exit_user_fault();
4386                 /*
4387                  * The task may have entered a memcg OOM situation but
4388                  * if the allocation error was handled gracefully (no
4389                  * VM_FAULT_OOM), there is no need to kill anything.
4390                  * Just clean up the OOM state peacefully.
4391                  */
4392                 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
4393                         mem_cgroup_oom_synchronize(false);
4394         }
4395
4396         return ret;
4397 }
4398 EXPORT_SYMBOL_GPL(handle_mm_fault);
4399
4400 #ifndef __PAGETABLE_P4D_FOLDED
4401 /*
4402  * Allocate p4d page table.
4403  * We've already handled the fast-path in-line.
4404  */
4405 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
4406 {
4407         p4d_t *new = p4d_alloc_one(mm, address);
4408         if (!new)
4409                 return -ENOMEM;
4410
4411         smp_wmb(); /* See comment in __pte_alloc */
4412
4413         spin_lock(&mm->page_table_lock);
4414         if (pgd_present(*pgd))          /* Another has populated it */
4415                 p4d_free(mm, new);
4416         else
4417                 pgd_populate(mm, pgd, new);
4418         spin_unlock(&mm->page_table_lock);
4419         return 0;
4420 }
4421 #endif /* __PAGETABLE_P4D_FOLDED */
4422
4423 #ifndef __PAGETABLE_PUD_FOLDED
4424 /*
4425  * Allocate page upper directory.
4426  * We've already handled the fast-path in-line.
4427  */
4428 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
4429 {
4430         pud_t *new = pud_alloc_one(mm, address);
4431         if (!new)
4432                 return -ENOMEM;
4433
4434         smp_wmb(); /* See comment in __pte_alloc */
4435
4436         spin_lock(&mm->page_table_lock);
4437 #ifndef __ARCH_HAS_5LEVEL_HACK
4438         if (!p4d_present(*p4d)) {
4439                 mm_inc_nr_puds(mm);
4440                 p4d_populate(mm, p4d, new);
4441         } else  /* Another has populated it */
4442                 pud_free(mm, new);
4443 #else
4444         if (!pgd_present(*p4d)) {
4445                 mm_inc_nr_puds(mm);
4446                 pgd_populate(mm, p4d, new);
4447         } else  /* Another has populated it */
4448                 pud_free(mm, new);
4449 #endif /* __ARCH_HAS_5LEVEL_HACK */
4450         spin_unlock(&mm->page_table_lock);
4451         return 0;
4452 }
4453 #endif /* __PAGETABLE_PUD_FOLDED */
4454
4455 #ifndef __PAGETABLE_PMD_FOLDED
4456 /*
4457  * Allocate page middle directory.
4458  * We've already handled the fast-path in-line.
4459  */
4460 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
4461 {
4462         spinlock_t *ptl;
4463         pmd_t *new = pmd_alloc_one(mm, address);
4464         if (!new)
4465                 return -ENOMEM;
4466
4467         smp_wmb(); /* See comment in __pte_alloc */
4468
4469         ptl = pud_lock(mm, pud);
4470         if (!pud_present(*pud)) {
4471                 mm_inc_nr_pmds(mm);
4472                 pud_populate(mm, pud, new);
4473         } else  /* Another has populated it */
4474                 pmd_free(mm, new);
4475         spin_unlock(ptl);
4476         return 0;
4477 }
4478 #endif /* __PAGETABLE_PMD_FOLDED */
4479
4480 static int __follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4481                             struct mmu_notifier_range *range,
4482                             pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4483 {
4484         pgd_t *pgd;
4485         p4d_t *p4d;
4486         pud_t *pud;
4487         pmd_t *pmd;
4488         pte_t *ptep;
4489
4490         pgd = pgd_offset(mm, address);
4491         if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
4492                 goto out;
4493
4494         p4d = p4d_offset(pgd, address);
4495         if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
4496                 goto out;
4497
4498         pud = pud_offset(p4d, address);
4499         if (pud_none(*pud) || unlikely(pud_bad(*pud)))
4500                 goto out;
4501
4502         pmd = pmd_offset(pud, address);
4503         VM_BUG_ON(pmd_trans_huge(*pmd));
4504
4505         if (pmd_huge(*pmd)) {
4506                 if (!pmdpp)
4507                         goto out;
4508
4509                 if (range) {
4510                         mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0,
4511                                                 NULL, mm, address & PMD_MASK,
4512                                                 (address & PMD_MASK) + PMD_SIZE);
4513                         mmu_notifier_invalidate_range_start(range);
4514                 }
4515                 *ptlp = pmd_lock(mm, pmd);
4516                 if (pmd_huge(*pmd)) {
4517                         *pmdpp = pmd;
4518                         return 0;
4519                 }
4520                 spin_unlock(*ptlp);
4521                 if (range)
4522                         mmu_notifier_invalidate_range_end(range);
4523         }
4524
4525         if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
4526                 goto out;
4527
4528         if (range) {
4529                 mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0, NULL, mm,
4530                                         address & PAGE_MASK,
4531                                         (address & PAGE_MASK) + PAGE_SIZE);
4532                 mmu_notifier_invalidate_range_start(range);
4533         }
4534         ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
4535         if (!pte_present(*ptep))
4536                 goto unlock;
4537         *ptepp = ptep;
4538         return 0;
4539 unlock:
4540         pte_unmap_unlock(ptep, *ptlp);
4541         if (range)
4542                 mmu_notifier_invalidate_range_end(range);
4543 out:
4544         return -EINVAL;
4545 }
4546
4547 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
4548                              pte_t **ptepp, spinlock_t **ptlp)
4549 {
4550         int res;
4551
4552         /* (void) is needed to make gcc happy */
4553         (void) __cond_lock(*ptlp,
4554                            !(res = __follow_pte_pmd(mm, address, NULL,
4555                                                     ptepp, NULL, ptlp)));
4556         return res;
4557 }
4558
4559 int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4560                    struct mmu_notifier_range *range,
4561                    pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4562 {
4563         int res;
4564
4565         /* (void) is needed to make gcc happy */
4566         (void) __cond_lock(*ptlp,
4567                            !(res = __follow_pte_pmd(mm, address, range,
4568                                                     ptepp, pmdpp, ptlp)));
4569         return res;
4570 }
4571 EXPORT_SYMBOL(follow_pte_pmd);
4572
4573 /**
4574  * follow_pfn - look up PFN at a user virtual address
4575  * @vma: memory mapping
4576  * @address: user virtual address
4577  * @pfn: location to store found PFN
4578  *
4579  * Only IO mappings and raw PFN mappings are allowed.
4580  *
4581  * Return: zero and the pfn at @pfn on success, -ve otherwise.
4582  */
4583 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
4584         unsigned long *pfn)
4585 {
4586         int ret = -EINVAL;
4587         spinlock_t *ptl;
4588         pte_t *ptep;
4589
4590         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4591                 return ret;
4592
4593         ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
4594         if (ret)
4595                 return ret;
4596         *pfn = pte_pfn(*ptep);
4597         pte_unmap_unlock(ptep, ptl);
4598         return 0;
4599 }
4600 EXPORT_SYMBOL(follow_pfn);
4601
4602 #ifdef CONFIG_HAVE_IOREMAP_PROT
4603 int follow_phys(struct vm_area_struct *vma,
4604                 unsigned long address, unsigned int flags,
4605                 unsigned long *prot, resource_size_t *phys)
4606 {
4607         int ret = -EINVAL;
4608         pte_t *ptep, pte;
4609         spinlock_t *ptl;
4610
4611         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4612                 goto out;
4613
4614         if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
4615                 goto out;
4616         pte = *ptep;
4617
4618         if ((flags & FOLL_WRITE) && !pte_write(pte))
4619                 goto unlock;
4620
4621         *prot = pgprot_val(pte_pgprot(pte));
4622         *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
4623
4624         ret = 0;
4625 unlock:
4626         pte_unmap_unlock(ptep, ptl);
4627 out:
4628         return ret;
4629 }
4630
4631 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
4632                         void *buf, int len, int write)
4633 {
4634         resource_size_t phys_addr;
4635         unsigned long prot = 0;
4636         void __iomem *maddr;
4637         int offset = addr & (PAGE_SIZE-1);
4638
4639         if (follow_phys(vma, addr, write, &prot, &phys_addr))
4640                 return -EINVAL;
4641
4642         maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
4643         if (!maddr)
4644                 return -ENOMEM;
4645
4646         if (write)
4647                 memcpy_toio(maddr + offset, buf, len);
4648         else
4649                 memcpy_fromio(buf, maddr + offset, len);
4650         iounmap(maddr);
4651
4652         return len;
4653 }
4654 EXPORT_SYMBOL_GPL(generic_access_phys);
4655 #endif
4656
4657 /*
4658  * Access another process' address space as given in mm.  If non-NULL, use the
4659  * given task for page fault accounting.
4660  */
4661 int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
4662                 unsigned long addr, void *buf, int len, unsigned int gup_flags)
4663 {
4664         struct vm_area_struct *vma;
4665         void *old_buf = buf;
4666         int write = gup_flags & FOLL_WRITE;
4667
4668         if (down_read_killable(&mm->mmap_sem))
4669                 return 0;
4670
4671         /* ignore errors, just check how much was successfully transferred */
4672         while (len) {
4673                 int bytes, ret, offset;
4674                 void *maddr;
4675                 struct page *page = NULL;
4676
4677                 ret = get_user_pages_remote(tsk, mm, addr, 1,
4678                                 gup_flags, &page, &vma, NULL);
4679                 if (ret <= 0) {
4680 #ifndef CONFIG_HAVE_IOREMAP_PROT
4681                         break;
4682 #else
4683                         /*
4684                          * Check if this is a VM_IO | VM_PFNMAP VMA, which
4685                          * we can access using slightly different code.
4686                          */
4687                         vma = find_vma(mm, addr);
4688                         if (!vma || vma->vm_start > addr)
4689                                 break;
4690                         if (vma->vm_ops && vma->vm_ops->access)
4691                                 ret = vma->vm_ops->access(vma, addr, buf,
4692                                                           len, write);
4693                         if (ret <= 0)
4694                                 break;
4695                         bytes = ret;
4696 #endif
4697                 } else {
4698                         bytes = len;
4699                         offset = addr & (PAGE_SIZE-1);
4700                         if (bytes > PAGE_SIZE-offset)
4701                                 bytes = PAGE_SIZE-offset;
4702
4703                         maddr = kmap(page);
4704                         if (write) {
4705                                 copy_to_user_page(vma, page, addr,
4706                                                   maddr + offset, buf, bytes);
4707                                 set_page_dirty_lock(page);
4708                         } else {
4709                                 copy_from_user_page(vma, page, addr,
4710                                                     buf, maddr + offset, bytes);
4711                         }
4712                         kunmap(page);
4713                         put_page(page);
4714                 }
4715                 len -= bytes;
4716                 buf += bytes;
4717                 addr += bytes;
4718         }
4719         up_read(&mm->mmap_sem);
4720
4721         return buf - old_buf;
4722 }
4723
4724 /**
4725  * access_remote_vm - access another process' address space
4726  * @mm:         the mm_struct of the target address space
4727  * @addr:       start address to access
4728  * @buf:        source or destination buffer
4729  * @len:        number of bytes to transfer
4730  * @gup_flags:  flags modifying lookup behaviour
4731  *
4732  * The caller must hold a reference on @mm.
4733  *
4734  * Return: number of bytes copied from source to destination.
4735  */
4736 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
4737                 void *buf, int len, unsigned int gup_flags)
4738 {
4739         return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
4740 }
4741
4742 /*
4743  * Access another process' address space.
4744  * Source/target buffer must be kernel space,
4745  * Do not walk the page table directly, use get_user_pages
4746  */
4747 int access_process_vm(struct task_struct *tsk, unsigned long addr,
4748                 void *buf, int len, unsigned int gup_flags)
4749 {
4750         struct mm_struct *mm;
4751         int ret;
4752
4753         mm = get_task_mm(tsk);
4754         if (!mm)
4755                 return 0;
4756
4757         ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
4758
4759         mmput(mm);
4760
4761         return ret;
4762 }
4763 EXPORT_SYMBOL_GPL(access_process_vm);
4764
4765 /*
4766  * Print the name of a VMA.
4767  */
4768 void print_vma_addr(char *prefix, unsigned long ip)
4769 {
4770         struct mm_struct *mm = current->mm;
4771         struct vm_area_struct *vma;
4772
4773         /*
4774          * we might be running from an atomic context so we cannot sleep
4775          */
4776         if (!down_read_trylock(&mm->mmap_sem))
4777                 return;
4778
4779         vma = find_vma(mm, ip);
4780         if (vma && vma->vm_file) {
4781                 struct file *f = vma->vm_file;
4782                 char *buf = (char *)__get_free_page(GFP_NOWAIT);
4783                 if (buf) {
4784                         char *p;
4785
4786                         p = file_path(f, buf, PAGE_SIZE);
4787                         if (IS_ERR(p))
4788                                 p = "?";
4789                         printk("%s%s[%lx+%lx]", prefix, kbasename(p),
4790                                         vma->vm_start,
4791                                         vma->vm_end - vma->vm_start);
4792                         free_page((unsigned long)buf);
4793                 }
4794         }
4795         up_read(&mm->mmap_sem);
4796 }
4797
4798 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4799 void __might_fault(const char *file, int line)
4800 {
4801         /*
4802          * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4803          * holding the mmap_sem, this is safe because kernel memory doesn't
4804          * get paged out, therefore we'll never actually fault, and the
4805          * below annotations will generate false positives.
4806          */
4807         if (uaccess_kernel())
4808                 return;
4809         if (pagefault_disabled())
4810                 return;
4811         __might_sleep(file, line, 0);
4812 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4813         if (current->mm)
4814                 might_lock_read(&current->mm->mmap_sem);
4815 #endif
4816 }
4817 EXPORT_SYMBOL(__might_fault);
4818 #endif
4819
4820 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4821 /*
4822  * Process all subpages of the specified huge page with the specified
4823  * operation.  The target subpage will be processed last to keep its
4824  * cache lines hot.
4825  */
4826 static inline void process_huge_page(
4827         unsigned long addr_hint, unsigned int pages_per_huge_page,
4828         void (*process_subpage)(unsigned long addr, int idx, void *arg),
4829         void *arg)
4830 {
4831         int i, n, base, l;
4832         unsigned long addr = addr_hint &
4833                 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4834
4835         /* Process target subpage last to keep its cache lines hot */
4836         might_sleep();
4837         n = (addr_hint - addr) / PAGE_SIZE;
4838         if (2 * n <= pages_per_huge_page) {
4839                 /* If target subpage in first half of huge page */
4840                 base = 0;
4841                 l = n;
4842                 /* Process subpages at the end of huge page */
4843                 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
4844                         cond_resched();
4845                         process_subpage(addr + i * PAGE_SIZE, i, arg);
4846                 }
4847         } else {
4848                 /* If target subpage in second half of huge page */
4849                 base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
4850                 l = pages_per_huge_page - n;
4851                 /* Process subpages at the begin of huge page */
4852                 for (i = 0; i < base; i++) {
4853                         cond_resched();
4854                         process_subpage(addr + i * PAGE_SIZE, i, arg);
4855                 }
4856         }
4857         /*
4858          * Process remaining subpages in left-right-left-right pattern
4859          * towards the target subpage
4860          */
4861         for (i = 0; i < l; i++) {
4862                 int left_idx = base + i;
4863                 int right_idx = base + 2 * l - 1 - i;
4864
4865                 cond_resched();
4866                 process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
4867                 cond_resched();
4868                 process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
4869         }
4870 }
4871
4872 static void clear_gigantic_page(struct page *page,
4873                                 unsigned long addr,
4874                                 unsigned int pages_per_huge_page)
4875 {
4876         int i;
4877         struct page *p = page;
4878
4879         might_sleep();
4880         for (i = 0; i < pages_per_huge_page;
4881              i++, p = mem_map_next(p, page, i)) {
4882                 cond_resched();
4883                 clear_user_highpage(p, addr + i * PAGE_SIZE);
4884         }
4885 }
4886
4887 static void clear_subpage(unsigned long addr, int idx, void *arg)
4888 {
4889         struct page *page = arg;
4890
4891         clear_user_highpage(page + idx, addr);
4892 }
4893
4894 void clear_huge_page(struct page *page,
4895                      unsigned long addr_hint, unsigned int pages_per_huge_page)
4896 {
4897         unsigned long addr = addr_hint &
4898                 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4899
4900         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4901                 clear_gigantic_page(page, addr, pages_per_huge_page);
4902                 return;
4903         }
4904
4905         process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
4906 }
4907
4908 static void copy_user_gigantic_page(struct page *dst, struct page *src,
4909                                     unsigned long addr,
4910                                     struct vm_area_struct *vma,
4911                                     unsigned int pages_per_huge_page)
4912 {
4913         int i;
4914         struct page *dst_base = dst;
4915         struct page *src_base = src;
4916
4917         for (i = 0; i < pages_per_huge_page; ) {
4918                 cond_resched();
4919                 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4920
4921                 i++;
4922                 dst = mem_map_next(dst, dst_base, i);
4923                 src = mem_map_next(src, src_base, i);
4924         }
4925 }
4926
4927 struct copy_subpage_arg {
4928         struct page *dst;
4929         struct page *src;
4930         struct vm_area_struct *vma;
4931 };
4932
4933 static void copy_subpage(unsigned long addr, int idx, void *arg)
4934 {
4935         struct copy_subpage_arg *copy_arg = arg;
4936
4937         copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
4938                            addr, copy_arg->vma);
4939 }
4940
4941 void copy_user_huge_page(struct page *dst, struct page *src,
4942                          unsigned long addr_hint, struct vm_area_struct *vma,
4943                          unsigned int pages_per_huge_page)
4944 {
4945         unsigned long addr = addr_hint &
4946                 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4947         struct copy_subpage_arg arg = {
4948                 .dst = dst,
4949                 .src = src,
4950                 .vma = vma,
4951         };
4952
4953         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4954                 copy_user_gigantic_page(dst, src, addr, vma,
4955                                         pages_per_huge_page);
4956                 return;
4957         }
4958
4959         process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
4960 }
4961
4962 long copy_huge_page_from_user(struct page *dst_page,
4963                                 const void __user *usr_src,
4964                                 unsigned int pages_per_huge_page,
4965                                 bool allow_pagefault)
4966 {
4967         void *src = (void *)usr_src;
4968         void *page_kaddr;
4969         unsigned long i, rc = 0;
4970         unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
4971
4972         for (i = 0; i < pages_per_huge_page; i++) {
4973                 if (allow_pagefault)
4974                         page_kaddr = kmap(dst_page + i);
4975                 else
4976                         page_kaddr = kmap_atomic(dst_page + i);
4977                 rc = copy_from_user(page_kaddr,
4978                                 (const void __user *)(src + i * PAGE_SIZE),
4979                                 PAGE_SIZE);
4980                 if (allow_pagefault)
4981                         kunmap(dst_page + i);
4982                 else
4983                         kunmap_atomic(page_kaddr);
4984
4985                 ret_val -= (PAGE_SIZE - rc);
4986                 if (rc)
4987                         break;
4988
4989                 cond_resched();
4990         }
4991         return ret_val;
4992 }
4993 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
4994
4995 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
4996
4997 static struct kmem_cache *page_ptl_cachep;
4998
4999 void __init ptlock_cache_init(void)
5000 {
5001         page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
5002                         SLAB_PANIC, NULL);
5003 }
5004
5005 bool ptlock_alloc(struct page *page)
5006 {
5007         spinlock_t *ptl;
5008
5009         ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
5010         if (!ptl)
5011                 return false;
5012         page->ptl = ptl;
5013         return true;
5014 }
5015
5016 void ptlock_free(struct page *page)
5017 {
5018         kmem_cache_free(page_ptl_cachep, page->ptl);
5019 }
5020 #endif