OSDN Git Service

Merge tag 'threads-v5.8' of git://git.kernel.org/pub/scm/linux/kernel/git/brauner...
[tomoyo/tomoyo-test1.git] / mm / migrate.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Memory Migration functionality - linux/mm/migrate.c
4  *
5  * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
6  *
7  * Page migration was first developed in the context of the memory hotplug
8  * project. The main authors of the migration code are:
9  *
10  * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
11  * Hirokazu Takahashi <taka@valinux.co.jp>
12  * Dave Hansen <haveblue@us.ibm.com>
13  * Christoph Lameter
14  */
15
16 #include <linux/migrate.h>
17 #include <linux/export.h>
18 #include <linux/swap.h>
19 #include <linux/swapops.h>
20 #include <linux/pagemap.h>
21 #include <linux/buffer_head.h>
22 #include <linux/mm_inline.h>
23 #include <linux/nsproxy.h>
24 #include <linux/pagevec.h>
25 #include <linux/ksm.h>
26 #include <linux/rmap.h>
27 #include <linux/topology.h>
28 #include <linux/cpu.h>
29 #include <linux/cpuset.h>
30 #include <linux/writeback.h>
31 #include <linux/mempolicy.h>
32 #include <linux/vmalloc.h>
33 #include <linux/security.h>
34 #include <linux/backing-dev.h>
35 #include <linux/compaction.h>
36 #include <linux/syscalls.h>
37 #include <linux/compat.h>
38 #include <linux/hugetlb.h>
39 #include <linux/hugetlb_cgroup.h>
40 #include <linux/gfp.h>
41 #include <linux/pagewalk.h>
42 #include <linux/pfn_t.h>
43 #include <linux/memremap.h>
44 #include <linux/userfaultfd_k.h>
45 #include <linux/balloon_compaction.h>
46 #include <linux/mmu_notifier.h>
47 #include <linux/page_idle.h>
48 #include <linux/page_owner.h>
49 #include <linux/sched/mm.h>
50 #include <linux/ptrace.h>
51 #include <linux/oom.h>
52
53 #include <asm/tlbflush.h>
54
55 #define CREATE_TRACE_POINTS
56 #include <trace/events/migrate.h>
57
58 #include "internal.h"
59
60 /*
61  * migrate_prep() needs to be called before we start compiling a list of pages
62  * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
63  * undesirable, use migrate_prep_local()
64  */
65 int migrate_prep(void)
66 {
67         /*
68          * Clear the LRU lists so pages can be isolated.
69          * Note that pages may be moved off the LRU after we have
70          * drained them. Those pages will fail to migrate like other
71          * pages that may be busy.
72          */
73         lru_add_drain_all();
74
75         return 0;
76 }
77
78 /* Do the necessary work of migrate_prep but not if it involves other CPUs */
79 int migrate_prep_local(void)
80 {
81         lru_add_drain();
82
83         return 0;
84 }
85
86 int isolate_movable_page(struct page *page, isolate_mode_t mode)
87 {
88         struct address_space *mapping;
89
90         /*
91          * Avoid burning cycles with pages that are yet under __free_pages(),
92          * or just got freed under us.
93          *
94          * In case we 'win' a race for a movable page being freed under us and
95          * raise its refcount preventing __free_pages() from doing its job
96          * the put_page() at the end of this block will take care of
97          * release this page, thus avoiding a nasty leakage.
98          */
99         if (unlikely(!get_page_unless_zero(page)))
100                 goto out;
101
102         /*
103          * Check PageMovable before holding a PG_lock because page's owner
104          * assumes anybody doesn't touch PG_lock of newly allocated page
105          * so unconditionally grabbing the lock ruins page's owner side.
106          */
107         if (unlikely(!__PageMovable(page)))
108                 goto out_putpage;
109         /*
110          * As movable pages are not isolated from LRU lists, concurrent
111          * compaction threads can race against page migration functions
112          * as well as race against the releasing a page.
113          *
114          * In order to avoid having an already isolated movable page
115          * being (wrongly) re-isolated while it is under migration,
116          * or to avoid attempting to isolate pages being released,
117          * lets be sure we have the page lock
118          * before proceeding with the movable page isolation steps.
119          */
120         if (unlikely(!trylock_page(page)))
121                 goto out_putpage;
122
123         if (!PageMovable(page) || PageIsolated(page))
124                 goto out_no_isolated;
125
126         mapping = page_mapping(page);
127         VM_BUG_ON_PAGE(!mapping, page);
128
129         if (!mapping->a_ops->isolate_page(page, mode))
130                 goto out_no_isolated;
131
132         /* Driver shouldn't use PG_isolated bit of page->flags */
133         WARN_ON_ONCE(PageIsolated(page));
134         __SetPageIsolated(page);
135         unlock_page(page);
136
137         return 0;
138
139 out_no_isolated:
140         unlock_page(page);
141 out_putpage:
142         put_page(page);
143 out:
144         return -EBUSY;
145 }
146
147 /* It should be called on page which is PG_movable */
148 void putback_movable_page(struct page *page)
149 {
150         struct address_space *mapping;
151
152         VM_BUG_ON_PAGE(!PageLocked(page), page);
153         VM_BUG_ON_PAGE(!PageMovable(page), page);
154         VM_BUG_ON_PAGE(!PageIsolated(page), page);
155
156         mapping = page_mapping(page);
157         mapping->a_ops->putback_page(page);
158         __ClearPageIsolated(page);
159 }
160
161 /*
162  * Put previously isolated pages back onto the appropriate lists
163  * from where they were once taken off for compaction/migration.
164  *
165  * This function shall be used whenever the isolated pageset has been
166  * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
167  * and isolate_huge_page().
168  */
169 void putback_movable_pages(struct list_head *l)
170 {
171         struct page *page;
172         struct page *page2;
173
174         list_for_each_entry_safe(page, page2, l, lru) {
175                 if (unlikely(PageHuge(page))) {
176                         putback_active_hugepage(page);
177                         continue;
178                 }
179                 list_del(&page->lru);
180                 /*
181                  * We isolated non-lru movable page so here we can use
182                  * __PageMovable because LRU page's mapping cannot have
183                  * PAGE_MAPPING_MOVABLE.
184                  */
185                 if (unlikely(__PageMovable(page))) {
186                         VM_BUG_ON_PAGE(!PageIsolated(page), page);
187                         lock_page(page);
188                         if (PageMovable(page))
189                                 putback_movable_page(page);
190                         else
191                                 __ClearPageIsolated(page);
192                         unlock_page(page);
193                         put_page(page);
194                 } else {
195                         mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
196                                         page_is_file_lru(page), -hpage_nr_pages(page));
197                         putback_lru_page(page);
198                 }
199         }
200 }
201
202 /*
203  * Restore a potential migration pte to a working pte entry
204  */
205 static bool remove_migration_pte(struct page *page, struct vm_area_struct *vma,
206                                  unsigned long addr, void *old)
207 {
208         struct page_vma_mapped_walk pvmw = {
209                 .page = old,
210                 .vma = vma,
211                 .address = addr,
212                 .flags = PVMW_SYNC | PVMW_MIGRATION,
213         };
214         struct page *new;
215         pte_t pte;
216         swp_entry_t entry;
217
218         VM_BUG_ON_PAGE(PageTail(page), page);
219         while (page_vma_mapped_walk(&pvmw)) {
220                 if (PageKsm(page))
221                         new = page;
222                 else
223                         new = page - pvmw.page->index +
224                                 linear_page_index(vma, pvmw.address);
225
226 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
227                 /* PMD-mapped THP migration entry */
228                 if (!pvmw.pte) {
229                         VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page);
230                         remove_migration_pmd(&pvmw, new);
231                         continue;
232                 }
233 #endif
234
235                 get_page(new);
236                 pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot)));
237                 if (pte_swp_soft_dirty(*pvmw.pte))
238                         pte = pte_mksoft_dirty(pte);
239
240                 /*
241                  * Recheck VMA as permissions can change since migration started
242                  */
243                 entry = pte_to_swp_entry(*pvmw.pte);
244                 if (is_write_migration_entry(entry))
245                         pte = maybe_mkwrite(pte, vma);
246                 else if (pte_swp_uffd_wp(*pvmw.pte))
247                         pte = pte_mkuffd_wp(pte);
248
249                 if (unlikely(is_zone_device_page(new))) {
250                         if (is_device_private_page(new)) {
251                                 entry = make_device_private_entry(new, pte_write(pte));
252                                 pte = swp_entry_to_pte(entry);
253                                 if (pte_swp_uffd_wp(*pvmw.pte))
254                                         pte = pte_mkuffd_wp(pte);
255                         }
256                 }
257
258 #ifdef CONFIG_HUGETLB_PAGE
259                 if (PageHuge(new)) {
260                         pte = pte_mkhuge(pte);
261                         pte = arch_make_huge_pte(pte, vma, new, 0);
262                         set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
263                         if (PageAnon(new))
264                                 hugepage_add_anon_rmap(new, vma, pvmw.address);
265                         else
266                                 page_dup_rmap(new, true);
267                 } else
268 #endif
269                 {
270                         set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
271
272                         if (PageAnon(new))
273                                 page_add_anon_rmap(new, vma, pvmw.address, false);
274                         else
275                                 page_add_file_rmap(new, false);
276                 }
277                 if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new))
278                         mlock_vma_page(new);
279
280                 if (PageTransHuge(page) && PageMlocked(page))
281                         clear_page_mlock(page);
282
283                 /* No need to invalidate - it was non-present before */
284                 update_mmu_cache(vma, pvmw.address, pvmw.pte);
285         }
286
287         return true;
288 }
289
290 /*
291  * Get rid of all migration entries and replace them by
292  * references to the indicated page.
293  */
294 void remove_migration_ptes(struct page *old, struct page *new, bool locked)
295 {
296         struct rmap_walk_control rwc = {
297                 .rmap_one = remove_migration_pte,
298                 .arg = old,
299         };
300
301         if (locked)
302                 rmap_walk_locked(new, &rwc);
303         else
304                 rmap_walk(new, &rwc);
305 }
306
307 /*
308  * Something used the pte of a page under migration. We need to
309  * get to the page and wait until migration is finished.
310  * When we return from this function the fault will be retried.
311  */
312 void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
313                                 spinlock_t *ptl)
314 {
315         pte_t pte;
316         swp_entry_t entry;
317         struct page *page;
318
319         spin_lock(ptl);
320         pte = *ptep;
321         if (!is_swap_pte(pte))
322                 goto out;
323
324         entry = pte_to_swp_entry(pte);
325         if (!is_migration_entry(entry))
326                 goto out;
327
328         page = migration_entry_to_page(entry);
329
330         /*
331          * Once page cache replacement of page migration started, page_count
332          * is zero; but we must not call put_and_wait_on_page_locked() without
333          * a ref. Use get_page_unless_zero(), and just fault again if it fails.
334          */
335         if (!get_page_unless_zero(page))
336                 goto out;
337         pte_unmap_unlock(ptep, ptl);
338         put_and_wait_on_page_locked(page);
339         return;
340 out:
341         pte_unmap_unlock(ptep, ptl);
342 }
343
344 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
345                                 unsigned long address)
346 {
347         spinlock_t *ptl = pte_lockptr(mm, pmd);
348         pte_t *ptep = pte_offset_map(pmd, address);
349         __migration_entry_wait(mm, ptep, ptl);
350 }
351
352 void migration_entry_wait_huge(struct vm_area_struct *vma,
353                 struct mm_struct *mm, pte_t *pte)
354 {
355         spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
356         __migration_entry_wait(mm, pte, ptl);
357 }
358
359 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
360 void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd)
361 {
362         spinlock_t *ptl;
363         struct page *page;
364
365         ptl = pmd_lock(mm, pmd);
366         if (!is_pmd_migration_entry(*pmd))
367                 goto unlock;
368         page = migration_entry_to_page(pmd_to_swp_entry(*pmd));
369         if (!get_page_unless_zero(page))
370                 goto unlock;
371         spin_unlock(ptl);
372         put_and_wait_on_page_locked(page);
373         return;
374 unlock:
375         spin_unlock(ptl);
376 }
377 #endif
378
379 static int expected_page_refs(struct address_space *mapping, struct page *page)
380 {
381         int expected_count = 1;
382
383         /*
384          * Device public or private pages have an extra refcount as they are
385          * ZONE_DEVICE pages.
386          */
387         expected_count += is_device_private_page(page);
388         if (mapping)
389                 expected_count += hpage_nr_pages(page) + page_has_private(page);
390
391         return expected_count;
392 }
393
394 /*
395  * Replace the page in the mapping.
396  *
397  * The number of remaining references must be:
398  * 1 for anonymous pages without a mapping
399  * 2 for pages with a mapping
400  * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
401  */
402 int migrate_page_move_mapping(struct address_space *mapping,
403                 struct page *newpage, struct page *page, int extra_count)
404 {
405         XA_STATE(xas, &mapping->i_pages, page_index(page));
406         struct zone *oldzone, *newzone;
407         int dirty;
408         int expected_count = expected_page_refs(mapping, page) + extra_count;
409
410         if (!mapping) {
411                 /* Anonymous page without mapping */
412                 if (page_count(page) != expected_count)
413                         return -EAGAIN;
414
415                 /* No turning back from here */
416                 newpage->index = page->index;
417                 newpage->mapping = page->mapping;
418                 if (PageSwapBacked(page))
419                         __SetPageSwapBacked(newpage);
420
421                 return MIGRATEPAGE_SUCCESS;
422         }
423
424         oldzone = page_zone(page);
425         newzone = page_zone(newpage);
426
427         xas_lock_irq(&xas);
428         if (page_count(page) != expected_count || xas_load(&xas) != page) {
429                 xas_unlock_irq(&xas);
430                 return -EAGAIN;
431         }
432
433         if (!page_ref_freeze(page, expected_count)) {
434                 xas_unlock_irq(&xas);
435                 return -EAGAIN;
436         }
437
438         /*
439          * Now we know that no one else is looking at the page:
440          * no turning back from here.
441          */
442         newpage->index = page->index;
443         newpage->mapping = page->mapping;
444         page_ref_add(newpage, hpage_nr_pages(page)); /* add cache reference */
445         if (PageSwapBacked(page)) {
446                 __SetPageSwapBacked(newpage);
447                 if (PageSwapCache(page)) {
448                         SetPageSwapCache(newpage);
449                         set_page_private(newpage, page_private(page));
450                 }
451         } else {
452                 VM_BUG_ON_PAGE(PageSwapCache(page), page);
453         }
454
455         /* Move dirty while page refs frozen and newpage not yet exposed */
456         dirty = PageDirty(page);
457         if (dirty) {
458                 ClearPageDirty(page);
459                 SetPageDirty(newpage);
460         }
461
462         xas_store(&xas, newpage);
463         if (PageTransHuge(page)) {
464                 int i;
465
466                 for (i = 1; i < HPAGE_PMD_NR; i++) {
467                         xas_next(&xas);
468                         xas_store(&xas, newpage);
469                 }
470         }
471
472         /*
473          * Drop cache reference from old page by unfreezing
474          * to one less reference.
475          * We know this isn't the last reference.
476          */
477         page_ref_unfreeze(page, expected_count - hpage_nr_pages(page));
478
479         xas_unlock(&xas);
480         /* Leave irq disabled to prevent preemption while updating stats */
481
482         /*
483          * If moved to a different zone then also account
484          * the page for that zone. Other VM counters will be
485          * taken care of when we establish references to the
486          * new page and drop references to the old page.
487          *
488          * Note that anonymous pages are accounted for
489          * via NR_FILE_PAGES and NR_ANON_MAPPED if they
490          * are mapped to swap space.
491          */
492         if (newzone != oldzone) {
493                 __dec_node_state(oldzone->zone_pgdat, NR_FILE_PAGES);
494                 __inc_node_state(newzone->zone_pgdat, NR_FILE_PAGES);
495                 if (PageSwapBacked(page) && !PageSwapCache(page)) {
496                         __dec_node_state(oldzone->zone_pgdat, NR_SHMEM);
497                         __inc_node_state(newzone->zone_pgdat, NR_SHMEM);
498                 }
499                 if (dirty && mapping_cap_account_dirty(mapping)) {
500                         __dec_node_state(oldzone->zone_pgdat, NR_FILE_DIRTY);
501                         __dec_zone_state(oldzone, NR_ZONE_WRITE_PENDING);
502                         __inc_node_state(newzone->zone_pgdat, NR_FILE_DIRTY);
503                         __inc_zone_state(newzone, NR_ZONE_WRITE_PENDING);
504                 }
505         }
506         local_irq_enable();
507
508         return MIGRATEPAGE_SUCCESS;
509 }
510 EXPORT_SYMBOL(migrate_page_move_mapping);
511
512 /*
513  * The expected number of remaining references is the same as that
514  * of migrate_page_move_mapping().
515  */
516 int migrate_huge_page_move_mapping(struct address_space *mapping,
517                                    struct page *newpage, struct page *page)
518 {
519         XA_STATE(xas, &mapping->i_pages, page_index(page));
520         int expected_count;
521
522         xas_lock_irq(&xas);
523         expected_count = 2 + page_has_private(page);
524         if (page_count(page) != expected_count || xas_load(&xas) != page) {
525                 xas_unlock_irq(&xas);
526                 return -EAGAIN;
527         }
528
529         if (!page_ref_freeze(page, expected_count)) {
530                 xas_unlock_irq(&xas);
531                 return -EAGAIN;
532         }
533
534         newpage->index = page->index;
535         newpage->mapping = page->mapping;
536
537         get_page(newpage);
538
539         xas_store(&xas, newpage);
540
541         page_ref_unfreeze(page, expected_count - 1);
542
543         xas_unlock_irq(&xas);
544
545         return MIGRATEPAGE_SUCCESS;
546 }
547
548 /*
549  * Gigantic pages are so large that we do not guarantee that page++ pointer
550  * arithmetic will work across the entire page.  We need something more
551  * specialized.
552  */
553 static void __copy_gigantic_page(struct page *dst, struct page *src,
554                                 int nr_pages)
555 {
556         int i;
557         struct page *dst_base = dst;
558         struct page *src_base = src;
559
560         for (i = 0; i < nr_pages; ) {
561                 cond_resched();
562                 copy_highpage(dst, src);
563
564                 i++;
565                 dst = mem_map_next(dst, dst_base, i);
566                 src = mem_map_next(src, src_base, i);
567         }
568 }
569
570 static void copy_huge_page(struct page *dst, struct page *src)
571 {
572         int i;
573         int nr_pages;
574
575         if (PageHuge(src)) {
576                 /* hugetlbfs page */
577                 struct hstate *h = page_hstate(src);
578                 nr_pages = pages_per_huge_page(h);
579
580                 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
581                         __copy_gigantic_page(dst, src, nr_pages);
582                         return;
583                 }
584         } else {
585                 /* thp page */
586                 BUG_ON(!PageTransHuge(src));
587                 nr_pages = hpage_nr_pages(src);
588         }
589
590         for (i = 0; i < nr_pages; i++) {
591                 cond_resched();
592                 copy_highpage(dst + i, src + i);
593         }
594 }
595
596 /*
597  * Copy the page to its new location
598  */
599 void migrate_page_states(struct page *newpage, struct page *page)
600 {
601         int cpupid;
602
603         if (PageError(page))
604                 SetPageError(newpage);
605         if (PageReferenced(page))
606                 SetPageReferenced(newpage);
607         if (PageUptodate(page))
608                 SetPageUptodate(newpage);
609         if (TestClearPageActive(page)) {
610                 VM_BUG_ON_PAGE(PageUnevictable(page), page);
611                 SetPageActive(newpage);
612         } else if (TestClearPageUnevictable(page))
613                 SetPageUnevictable(newpage);
614         if (PageWorkingset(page))
615                 SetPageWorkingset(newpage);
616         if (PageChecked(page))
617                 SetPageChecked(newpage);
618         if (PageMappedToDisk(page))
619                 SetPageMappedToDisk(newpage);
620
621         /* Move dirty on pages not done by migrate_page_move_mapping() */
622         if (PageDirty(page))
623                 SetPageDirty(newpage);
624
625         if (page_is_young(page))
626                 set_page_young(newpage);
627         if (page_is_idle(page))
628                 set_page_idle(newpage);
629
630         /*
631          * Copy NUMA information to the new page, to prevent over-eager
632          * future migrations of this same page.
633          */
634         cpupid = page_cpupid_xchg_last(page, -1);
635         page_cpupid_xchg_last(newpage, cpupid);
636
637         ksm_migrate_page(newpage, page);
638         /*
639          * Please do not reorder this without considering how mm/ksm.c's
640          * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
641          */
642         if (PageSwapCache(page))
643                 ClearPageSwapCache(page);
644         ClearPagePrivate(page);
645         set_page_private(page, 0);
646
647         /*
648          * If any waiters have accumulated on the new page then
649          * wake them up.
650          */
651         if (PageWriteback(newpage))
652                 end_page_writeback(newpage);
653
654         /*
655          * PG_readahead shares the same bit with PG_reclaim.  The above
656          * end_page_writeback() may clear PG_readahead mistakenly, so set the
657          * bit after that.
658          */
659         if (PageReadahead(page))
660                 SetPageReadahead(newpage);
661
662         copy_page_owner(page, newpage);
663
664         mem_cgroup_migrate(page, newpage);
665 }
666 EXPORT_SYMBOL(migrate_page_states);
667
668 void migrate_page_copy(struct page *newpage, struct page *page)
669 {
670         if (PageHuge(page) || PageTransHuge(page))
671                 copy_huge_page(newpage, page);
672         else
673                 copy_highpage(newpage, page);
674
675         migrate_page_states(newpage, page);
676 }
677 EXPORT_SYMBOL(migrate_page_copy);
678
679 /************************************************************
680  *                    Migration functions
681  ***********************************************************/
682
683 /*
684  * Common logic to directly migrate a single LRU page suitable for
685  * pages that do not use PagePrivate/PagePrivate2.
686  *
687  * Pages are locked upon entry and exit.
688  */
689 int migrate_page(struct address_space *mapping,
690                 struct page *newpage, struct page *page,
691                 enum migrate_mode mode)
692 {
693         int rc;
694
695         BUG_ON(PageWriteback(page));    /* Writeback must be complete */
696
697         rc = migrate_page_move_mapping(mapping, newpage, page, 0);
698
699         if (rc != MIGRATEPAGE_SUCCESS)
700                 return rc;
701
702         if (mode != MIGRATE_SYNC_NO_COPY)
703                 migrate_page_copy(newpage, page);
704         else
705                 migrate_page_states(newpage, page);
706         return MIGRATEPAGE_SUCCESS;
707 }
708 EXPORT_SYMBOL(migrate_page);
709
710 #ifdef CONFIG_BLOCK
711 /* Returns true if all buffers are successfully locked */
712 static bool buffer_migrate_lock_buffers(struct buffer_head *head,
713                                                         enum migrate_mode mode)
714 {
715         struct buffer_head *bh = head;
716
717         /* Simple case, sync compaction */
718         if (mode != MIGRATE_ASYNC) {
719                 do {
720                         lock_buffer(bh);
721                         bh = bh->b_this_page;
722
723                 } while (bh != head);
724
725                 return true;
726         }
727
728         /* async case, we cannot block on lock_buffer so use trylock_buffer */
729         do {
730                 if (!trylock_buffer(bh)) {
731                         /*
732                          * We failed to lock the buffer and cannot stall in
733                          * async migration. Release the taken locks
734                          */
735                         struct buffer_head *failed_bh = bh;
736                         bh = head;
737                         while (bh != failed_bh) {
738                                 unlock_buffer(bh);
739                                 bh = bh->b_this_page;
740                         }
741                         return false;
742                 }
743
744                 bh = bh->b_this_page;
745         } while (bh != head);
746         return true;
747 }
748
749 static int __buffer_migrate_page(struct address_space *mapping,
750                 struct page *newpage, struct page *page, enum migrate_mode mode,
751                 bool check_refs)
752 {
753         struct buffer_head *bh, *head;
754         int rc;
755         int expected_count;
756
757         if (!page_has_buffers(page))
758                 return migrate_page(mapping, newpage, page, mode);
759
760         /* Check whether page does not have extra refs before we do more work */
761         expected_count = expected_page_refs(mapping, page);
762         if (page_count(page) != expected_count)
763                 return -EAGAIN;
764
765         head = page_buffers(page);
766         if (!buffer_migrate_lock_buffers(head, mode))
767                 return -EAGAIN;
768
769         if (check_refs) {
770                 bool busy;
771                 bool invalidated = false;
772
773 recheck_buffers:
774                 busy = false;
775                 spin_lock(&mapping->private_lock);
776                 bh = head;
777                 do {
778                         if (atomic_read(&bh->b_count)) {
779                                 busy = true;
780                                 break;
781                         }
782                         bh = bh->b_this_page;
783                 } while (bh != head);
784                 if (busy) {
785                         if (invalidated) {
786                                 rc = -EAGAIN;
787                                 goto unlock_buffers;
788                         }
789                         spin_unlock(&mapping->private_lock);
790                         invalidate_bh_lrus();
791                         invalidated = true;
792                         goto recheck_buffers;
793                 }
794         }
795
796         rc = migrate_page_move_mapping(mapping, newpage, page, 0);
797         if (rc != MIGRATEPAGE_SUCCESS)
798                 goto unlock_buffers;
799
800         attach_page_private(newpage, detach_page_private(page));
801
802         bh = head;
803         do {
804                 set_bh_page(bh, newpage, bh_offset(bh));
805                 bh = bh->b_this_page;
806
807         } while (bh != head);
808
809         if (mode != MIGRATE_SYNC_NO_COPY)
810                 migrate_page_copy(newpage, page);
811         else
812                 migrate_page_states(newpage, page);
813
814         rc = MIGRATEPAGE_SUCCESS;
815 unlock_buffers:
816         if (check_refs)
817                 spin_unlock(&mapping->private_lock);
818         bh = head;
819         do {
820                 unlock_buffer(bh);
821                 bh = bh->b_this_page;
822
823         } while (bh != head);
824
825         return rc;
826 }
827
828 /*
829  * Migration function for pages with buffers. This function can only be used
830  * if the underlying filesystem guarantees that no other references to "page"
831  * exist. For example attached buffer heads are accessed only under page lock.
832  */
833 int buffer_migrate_page(struct address_space *mapping,
834                 struct page *newpage, struct page *page, enum migrate_mode mode)
835 {
836         return __buffer_migrate_page(mapping, newpage, page, mode, false);
837 }
838 EXPORT_SYMBOL(buffer_migrate_page);
839
840 /*
841  * Same as above except that this variant is more careful and checks that there
842  * are also no buffer head references. This function is the right one for
843  * mappings where buffer heads are directly looked up and referenced (such as
844  * block device mappings).
845  */
846 int buffer_migrate_page_norefs(struct address_space *mapping,
847                 struct page *newpage, struct page *page, enum migrate_mode mode)
848 {
849         return __buffer_migrate_page(mapping, newpage, page, mode, true);
850 }
851 #endif
852
853 /*
854  * Writeback a page to clean the dirty state
855  */
856 static int writeout(struct address_space *mapping, struct page *page)
857 {
858         struct writeback_control wbc = {
859                 .sync_mode = WB_SYNC_NONE,
860                 .nr_to_write = 1,
861                 .range_start = 0,
862                 .range_end = LLONG_MAX,
863                 .for_reclaim = 1
864         };
865         int rc;
866
867         if (!mapping->a_ops->writepage)
868                 /* No write method for the address space */
869                 return -EINVAL;
870
871         if (!clear_page_dirty_for_io(page))
872                 /* Someone else already triggered a write */
873                 return -EAGAIN;
874
875         /*
876          * A dirty page may imply that the underlying filesystem has
877          * the page on some queue. So the page must be clean for
878          * migration. Writeout may mean we loose the lock and the
879          * page state is no longer what we checked for earlier.
880          * At this point we know that the migration attempt cannot
881          * be successful.
882          */
883         remove_migration_ptes(page, page, false);
884
885         rc = mapping->a_ops->writepage(page, &wbc);
886
887         if (rc != AOP_WRITEPAGE_ACTIVATE)
888                 /* unlocked. Relock */
889                 lock_page(page);
890
891         return (rc < 0) ? -EIO : -EAGAIN;
892 }
893
894 /*
895  * Default handling if a filesystem does not provide a migration function.
896  */
897 static int fallback_migrate_page(struct address_space *mapping,
898         struct page *newpage, struct page *page, enum migrate_mode mode)
899 {
900         if (PageDirty(page)) {
901                 /* Only writeback pages in full synchronous migration */
902                 switch (mode) {
903                 case MIGRATE_SYNC:
904                 case MIGRATE_SYNC_NO_COPY:
905                         break;
906                 default:
907                         return -EBUSY;
908                 }
909                 return writeout(mapping, page);
910         }
911
912         /*
913          * Buffers may be managed in a filesystem specific way.
914          * We must have no buffers or drop them.
915          */
916         if (page_has_private(page) &&
917             !try_to_release_page(page, GFP_KERNEL))
918                 return mode == MIGRATE_SYNC ? -EAGAIN : -EBUSY;
919
920         return migrate_page(mapping, newpage, page, mode);
921 }
922
923 /*
924  * Move a page to a newly allocated page
925  * The page is locked and all ptes have been successfully removed.
926  *
927  * The new page will have replaced the old page if this function
928  * is successful.
929  *
930  * Return value:
931  *   < 0 - error code
932  *  MIGRATEPAGE_SUCCESS - success
933  */
934 static int move_to_new_page(struct page *newpage, struct page *page,
935                                 enum migrate_mode mode)
936 {
937         struct address_space *mapping;
938         int rc = -EAGAIN;
939         bool is_lru = !__PageMovable(page);
940
941         VM_BUG_ON_PAGE(!PageLocked(page), page);
942         VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
943
944         mapping = page_mapping(page);
945
946         if (likely(is_lru)) {
947                 if (!mapping)
948                         rc = migrate_page(mapping, newpage, page, mode);
949                 else if (mapping->a_ops->migratepage)
950                         /*
951                          * Most pages have a mapping and most filesystems
952                          * provide a migratepage callback. Anonymous pages
953                          * are part of swap space which also has its own
954                          * migratepage callback. This is the most common path
955                          * for page migration.
956                          */
957                         rc = mapping->a_ops->migratepage(mapping, newpage,
958                                                         page, mode);
959                 else
960                         rc = fallback_migrate_page(mapping, newpage,
961                                                         page, mode);
962         } else {
963                 /*
964                  * In case of non-lru page, it could be released after
965                  * isolation step. In that case, we shouldn't try migration.
966                  */
967                 VM_BUG_ON_PAGE(!PageIsolated(page), page);
968                 if (!PageMovable(page)) {
969                         rc = MIGRATEPAGE_SUCCESS;
970                         __ClearPageIsolated(page);
971                         goto out;
972                 }
973
974                 rc = mapping->a_ops->migratepage(mapping, newpage,
975                                                 page, mode);
976                 WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS &&
977                         !PageIsolated(page));
978         }
979
980         /*
981          * When successful, old pagecache page->mapping must be cleared before
982          * page is freed; but stats require that PageAnon be left as PageAnon.
983          */
984         if (rc == MIGRATEPAGE_SUCCESS) {
985                 if (__PageMovable(page)) {
986                         VM_BUG_ON_PAGE(!PageIsolated(page), page);
987
988                         /*
989                          * We clear PG_movable under page_lock so any compactor
990                          * cannot try to migrate this page.
991                          */
992                         __ClearPageIsolated(page);
993                 }
994
995                 /*
996                  * Anonymous and movable page->mapping will be cleared by
997                  * free_pages_prepare so don't reset it here for keeping
998                  * the type to work PageAnon, for example.
999                  */
1000                 if (!PageMappingFlags(page))
1001                         page->mapping = NULL;
1002
1003                 if (likely(!is_zone_device_page(newpage)))
1004                         flush_dcache_page(newpage);
1005
1006         }
1007 out:
1008         return rc;
1009 }
1010
1011 static int __unmap_and_move(struct page *page, struct page *newpage,
1012                                 int force, enum migrate_mode mode)
1013 {
1014         int rc = -EAGAIN;
1015         int page_was_mapped = 0;
1016         struct anon_vma *anon_vma = NULL;
1017         bool is_lru = !__PageMovable(page);
1018
1019         if (!trylock_page(page)) {
1020                 if (!force || mode == MIGRATE_ASYNC)
1021                         goto out;
1022
1023                 /*
1024                  * It's not safe for direct compaction to call lock_page.
1025                  * For example, during page readahead pages are added locked
1026                  * to the LRU. Later, when the IO completes the pages are
1027                  * marked uptodate and unlocked. However, the queueing
1028                  * could be merging multiple pages for one bio (e.g.
1029                  * mpage_readahead). If an allocation happens for the
1030                  * second or third page, the process can end up locking
1031                  * the same page twice and deadlocking. Rather than
1032                  * trying to be clever about what pages can be locked,
1033                  * avoid the use of lock_page for direct compaction
1034                  * altogether.
1035                  */
1036                 if (current->flags & PF_MEMALLOC)
1037                         goto out;
1038
1039                 lock_page(page);
1040         }
1041
1042         if (PageWriteback(page)) {
1043                 /*
1044                  * Only in the case of a full synchronous migration is it
1045                  * necessary to wait for PageWriteback. In the async case,
1046                  * the retry loop is too short and in the sync-light case,
1047                  * the overhead of stalling is too much
1048                  */
1049                 switch (mode) {
1050                 case MIGRATE_SYNC:
1051                 case MIGRATE_SYNC_NO_COPY:
1052                         break;
1053                 default:
1054                         rc = -EBUSY;
1055                         goto out_unlock;
1056                 }
1057                 if (!force)
1058                         goto out_unlock;
1059                 wait_on_page_writeback(page);
1060         }
1061
1062         /*
1063          * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
1064          * we cannot notice that anon_vma is freed while we migrates a page.
1065          * This get_anon_vma() delays freeing anon_vma pointer until the end
1066          * of migration. File cache pages are no problem because of page_lock()
1067          * File Caches may use write_page() or lock_page() in migration, then,
1068          * just care Anon page here.
1069          *
1070          * Only page_get_anon_vma() understands the subtleties of
1071          * getting a hold on an anon_vma from outside one of its mms.
1072          * But if we cannot get anon_vma, then we won't need it anyway,
1073          * because that implies that the anon page is no longer mapped
1074          * (and cannot be remapped so long as we hold the page lock).
1075          */
1076         if (PageAnon(page) && !PageKsm(page))
1077                 anon_vma = page_get_anon_vma(page);
1078
1079         /*
1080          * Block others from accessing the new page when we get around to
1081          * establishing additional references. We are usually the only one
1082          * holding a reference to newpage at this point. We used to have a BUG
1083          * here if trylock_page(newpage) fails, but would like to allow for
1084          * cases where there might be a race with the previous use of newpage.
1085          * This is much like races on refcount of oldpage: just don't BUG().
1086          */
1087         if (unlikely(!trylock_page(newpage)))
1088                 goto out_unlock;
1089
1090         if (unlikely(!is_lru)) {
1091                 rc = move_to_new_page(newpage, page, mode);
1092                 goto out_unlock_both;
1093         }
1094
1095         /*
1096          * Corner case handling:
1097          * 1. When a new swap-cache page is read into, it is added to the LRU
1098          * and treated as swapcache but it has no rmap yet.
1099          * Calling try_to_unmap() against a page->mapping==NULL page will
1100          * trigger a BUG.  So handle it here.
1101          * 2. An orphaned page (see truncate_complete_page) might have
1102          * fs-private metadata. The page can be picked up due to memory
1103          * offlining.  Everywhere else except page reclaim, the page is
1104          * invisible to the vm, so the page can not be migrated.  So try to
1105          * free the metadata, so the page can be freed.
1106          */
1107         if (!page->mapping) {
1108                 VM_BUG_ON_PAGE(PageAnon(page), page);
1109                 if (page_has_private(page)) {
1110                         try_to_free_buffers(page);
1111                         goto out_unlock_both;
1112                 }
1113         } else if (page_mapped(page)) {
1114                 /* Establish migration ptes */
1115                 VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma,
1116                                 page);
1117                 try_to_unmap(page,
1118                         TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1119                 page_was_mapped = 1;
1120         }
1121
1122         if (!page_mapped(page))
1123                 rc = move_to_new_page(newpage, page, mode);
1124
1125         if (page_was_mapped)
1126                 remove_migration_ptes(page,
1127                         rc == MIGRATEPAGE_SUCCESS ? newpage : page, false);
1128
1129 out_unlock_both:
1130         unlock_page(newpage);
1131 out_unlock:
1132         /* Drop an anon_vma reference if we took one */
1133         if (anon_vma)
1134                 put_anon_vma(anon_vma);
1135         unlock_page(page);
1136 out:
1137         /*
1138          * If migration is successful, decrease refcount of the newpage
1139          * which will not free the page because new page owner increased
1140          * refcounter. As well, if it is LRU page, add the page to LRU
1141          * list in here. Use the old state of the isolated source page to
1142          * determine if we migrated a LRU page. newpage was already unlocked
1143          * and possibly modified by its owner - don't rely on the page
1144          * state.
1145          */
1146         if (rc == MIGRATEPAGE_SUCCESS) {
1147                 if (unlikely(!is_lru))
1148                         put_page(newpage);
1149                 else
1150                         putback_lru_page(newpage);
1151         }
1152
1153         return rc;
1154 }
1155
1156 /*
1157  * gcc 4.7 and 4.8 on arm get an ICEs when inlining unmap_and_move().  Work
1158  * around it.
1159  */
1160 #if defined(CONFIG_ARM) && \
1161         defined(GCC_VERSION) && GCC_VERSION < 40900 && GCC_VERSION >= 40700
1162 #define ICE_noinline noinline
1163 #else
1164 #define ICE_noinline
1165 #endif
1166
1167 /*
1168  * Obtain the lock on page, remove all ptes and migrate the page
1169  * to the newly allocated page in newpage.
1170  */
1171 static ICE_noinline int unmap_and_move(new_page_t get_new_page,
1172                                    free_page_t put_new_page,
1173                                    unsigned long private, struct page *page,
1174                                    int force, enum migrate_mode mode,
1175                                    enum migrate_reason reason)
1176 {
1177         int rc = MIGRATEPAGE_SUCCESS;
1178         struct page *newpage = NULL;
1179
1180         if (!thp_migration_supported() && PageTransHuge(page))
1181                 return -ENOMEM;
1182
1183         if (page_count(page) == 1) {
1184                 /* page was freed from under us. So we are done. */
1185                 ClearPageActive(page);
1186                 ClearPageUnevictable(page);
1187                 if (unlikely(__PageMovable(page))) {
1188                         lock_page(page);
1189                         if (!PageMovable(page))
1190                                 __ClearPageIsolated(page);
1191                         unlock_page(page);
1192                 }
1193                 goto out;
1194         }
1195
1196         newpage = get_new_page(page, private);
1197         if (!newpage)
1198                 return -ENOMEM;
1199
1200         rc = __unmap_and_move(page, newpage, force, mode);
1201         if (rc == MIGRATEPAGE_SUCCESS)
1202                 set_page_owner_migrate_reason(newpage, reason);
1203
1204 out:
1205         if (rc != -EAGAIN) {
1206                 /*
1207                  * A page that has been migrated has all references
1208                  * removed and will be freed. A page that has not been
1209                  * migrated will have kept its references and be restored.
1210                  */
1211                 list_del(&page->lru);
1212
1213                 /*
1214                  * Compaction can migrate also non-LRU pages which are
1215                  * not accounted to NR_ISOLATED_*. They can be recognized
1216                  * as __PageMovable
1217                  */
1218                 if (likely(!__PageMovable(page)))
1219                         mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
1220                                         page_is_file_lru(page), -hpage_nr_pages(page));
1221         }
1222
1223         /*
1224          * If migration is successful, releases reference grabbed during
1225          * isolation. Otherwise, restore the page to right list unless
1226          * we want to retry.
1227          */
1228         if (rc == MIGRATEPAGE_SUCCESS) {
1229                 put_page(page);
1230                 if (reason == MR_MEMORY_FAILURE) {
1231                         /*
1232                          * Set PG_HWPoison on just freed page
1233                          * intentionally. Although it's rather weird,
1234                          * it's how HWPoison flag works at the moment.
1235                          */
1236                         if (set_hwpoison_free_buddy_page(page))
1237                                 num_poisoned_pages_inc();
1238                 }
1239         } else {
1240                 if (rc != -EAGAIN) {
1241                         if (likely(!__PageMovable(page))) {
1242                                 putback_lru_page(page);
1243                                 goto put_new;
1244                         }
1245
1246                         lock_page(page);
1247                         if (PageMovable(page))
1248                                 putback_movable_page(page);
1249                         else
1250                                 __ClearPageIsolated(page);
1251                         unlock_page(page);
1252                         put_page(page);
1253                 }
1254 put_new:
1255                 if (put_new_page)
1256                         put_new_page(newpage, private);
1257                 else
1258                         put_page(newpage);
1259         }
1260
1261         return rc;
1262 }
1263
1264 /*
1265  * Counterpart of unmap_and_move_page() for hugepage migration.
1266  *
1267  * This function doesn't wait the completion of hugepage I/O
1268  * because there is no race between I/O and migration for hugepage.
1269  * Note that currently hugepage I/O occurs only in direct I/O
1270  * where no lock is held and PG_writeback is irrelevant,
1271  * and writeback status of all subpages are counted in the reference
1272  * count of the head page (i.e. if all subpages of a 2MB hugepage are
1273  * under direct I/O, the reference of the head page is 512 and a bit more.)
1274  * This means that when we try to migrate hugepage whose subpages are
1275  * doing direct I/O, some references remain after try_to_unmap() and
1276  * hugepage migration fails without data corruption.
1277  *
1278  * There is also no race when direct I/O is issued on the page under migration,
1279  * because then pte is replaced with migration swap entry and direct I/O code
1280  * will wait in the page fault for migration to complete.
1281  */
1282 static int unmap_and_move_huge_page(new_page_t get_new_page,
1283                                 free_page_t put_new_page, unsigned long private,
1284                                 struct page *hpage, int force,
1285                                 enum migrate_mode mode, int reason)
1286 {
1287         int rc = -EAGAIN;
1288         int page_was_mapped = 0;
1289         struct page *new_hpage;
1290         struct anon_vma *anon_vma = NULL;
1291         struct address_space *mapping = NULL;
1292
1293         /*
1294          * Migratability of hugepages depends on architectures and their size.
1295          * This check is necessary because some callers of hugepage migration
1296          * like soft offline and memory hotremove don't walk through page
1297          * tables or check whether the hugepage is pmd-based or not before
1298          * kicking migration.
1299          */
1300         if (!hugepage_migration_supported(page_hstate(hpage))) {
1301                 putback_active_hugepage(hpage);
1302                 return -ENOSYS;
1303         }
1304
1305         new_hpage = get_new_page(hpage, private);
1306         if (!new_hpage)
1307                 return -ENOMEM;
1308
1309         if (!trylock_page(hpage)) {
1310                 if (!force)
1311                         goto out;
1312                 switch (mode) {
1313                 case MIGRATE_SYNC:
1314                 case MIGRATE_SYNC_NO_COPY:
1315                         break;
1316                 default:
1317                         goto out;
1318                 }
1319                 lock_page(hpage);
1320         }
1321
1322         /*
1323          * Check for pages which are in the process of being freed.  Without
1324          * page_mapping() set, hugetlbfs specific move page routine will not
1325          * be called and we could leak usage counts for subpools.
1326          */
1327         if (page_private(hpage) && !page_mapping(hpage)) {
1328                 rc = -EBUSY;
1329                 goto out_unlock;
1330         }
1331
1332         if (PageAnon(hpage))
1333                 anon_vma = page_get_anon_vma(hpage);
1334
1335         if (unlikely(!trylock_page(new_hpage)))
1336                 goto put_anon;
1337
1338         if (page_mapped(hpage)) {
1339                 /*
1340                  * try_to_unmap could potentially call huge_pmd_unshare.
1341                  * Because of this, take semaphore in write mode here and
1342                  * set TTU_RMAP_LOCKED to let lower levels know we have
1343                  * taken the lock.
1344                  */
1345                 mapping = hugetlb_page_mapping_lock_write(hpage);
1346                 if (unlikely(!mapping))
1347                         goto unlock_put_anon;
1348
1349                 try_to_unmap(hpage,
1350                         TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS|
1351                         TTU_RMAP_LOCKED);
1352                 page_was_mapped = 1;
1353                 /*
1354                  * Leave mapping locked until after subsequent call to
1355                  * remove_migration_ptes()
1356                  */
1357         }
1358
1359         if (!page_mapped(hpage))
1360                 rc = move_to_new_page(new_hpage, hpage, mode);
1361
1362         if (page_was_mapped) {
1363                 remove_migration_ptes(hpage,
1364                         rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, true);
1365                 i_mmap_unlock_write(mapping);
1366         }
1367
1368 unlock_put_anon:
1369         unlock_page(new_hpage);
1370
1371 put_anon:
1372         if (anon_vma)
1373                 put_anon_vma(anon_vma);
1374
1375         if (rc == MIGRATEPAGE_SUCCESS) {
1376                 move_hugetlb_state(hpage, new_hpage, reason);
1377                 put_new_page = NULL;
1378         }
1379
1380 out_unlock:
1381         unlock_page(hpage);
1382 out:
1383         if (rc != -EAGAIN)
1384                 putback_active_hugepage(hpage);
1385
1386         /*
1387          * If migration was not successful and there's a freeing callback, use
1388          * it.  Otherwise, put_page() will drop the reference grabbed during
1389          * isolation.
1390          */
1391         if (put_new_page)
1392                 put_new_page(new_hpage, private);
1393         else
1394                 putback_active_hugepage(new_hpage);
1395
1396         return rc;
1397 }
1398
1399 /*
1400  * migrate_pages - migrate the pages specified in a list, to the free pages
1401  *                 supplied as the target for the page migration
1402  *
1403  * @from:               The list of pages to be migrated.
1404  * @get_new_page:       The function used to allocate free pages to be used
1405  *                      as the target of the page migration.
1406  * @put_new_page:       The function used to free target pages if migration
1407  *                      fails, or NULL if no special handling is necessary.
1408  * @private:            Private data to be passed on to get_new_page()
1409  * @mode:               The migration mode that specifies the constraints for
1410  *                      page migration, if any.
1411  * @reason:             The reason for page migration.
1412  *
1413  * The function returns after 10 attempts or if no pages are movable any more
1414  * because the list has become empty or no retryable pages exist any more.
1415  * The caller should call putback_movable_pages() to return pages to the LRU
1416  * or free list only if ret != 0.
1417  *
1418  * Returns the number of pages that were not migrated, or an error code.
1419  */
1420 int migrate_pages(struct list_head *from, new_page_t get_new_page,
1421                 free_page_t put_new_page, unsigned long private,
1422                 enum migrate_mode mode, int reason)
1423 {
1424         int retry = 1;
1425         int nr_failed = 0;
1426         int nr_succeeded = 0;
1427         int pass = 0;
1428         struct page *page;
1429         struct page *page2;
1430         int swapwrite = current->flags & PF_SWAPWRITE;
1431         int rc;
1432
1433         if (!swapwrite)
1434                 current->flags |= PF_SWAPWRITE;
1435
1436         for(pass = 0; pass < 10 && retry; pass++) {
1437                 retry = 0;
1438
1439                 list_for_each_entry_safe(page, page2, from, lru) {
1440 retry:
1441                         cond_resched();
1442
1443                         if (PageHuge(page))
1444                                 rc = unmap_and_move_huge_page(get_new_page,
1445                                                 put_new_page, private, page,
1446                                                 pass > 2, mode, reason);
1447                         else
1448                                 rc = unmap_and_move(get_new_page, put_new_page,
1449                                                 private, page, pass > 2, mode,
1450                                                 reason);
1451
1452                         switch(rc) {
1453                         case -ENOMEM:
1454                                 /*
1455                                  * THP migration might be unsupported or the
1456                                  * allocation could've failed so we should
1457                                  * retry on the same page with the THP split
1458                                  * to base pages.
1459                                  *
1460                                  * Head page is retried immediately and tail
1461                                  * pages are added to the tail of the list so
1462                                  * we encounter them after the rest of the list
1463                                  * is processed.
1464                                  */
1465                                 if (PageTransHuge(page) && !PageHuge(page)) {
1466                                         lock_page(page);
1467                                         rc = split_huge_page_to_list(page, from);
1468                                         unlock_page(page);
1469                                         if (!rc) {
1470                                                 list_safe_reset_next(page, page2, lru);
1471                                                 goto retry;
1472                                         }
1473                                 }
1474                                 nr_failed++;
1475                                 goto out;
1476                         case -EAGAIN:
1477                                 retry++;
1478                                 break;
1479                         case MIGRATEPAGE_SUCCESS:
1480                                 nr_succeeded++;
1481                                 break;
1482                         default:
1483                                 /*
1484                                  * Permanent failure (-EBUSY, -ENOSYS, etc.):
1485                                  * unlike -EAGAIN case, the failed page is
1486                                  * removed from migration page list and not
1487                                  * retried in the next outer loop.
1488                                  */
1489                                 nr_failed++;
1490                                 break;
1491                         }
1492                 }
1493         }
1494         nr_failed += retry;
1495         rc = nr_failed;
1496 out:
1497         if (nr_succeeded)
1498                 count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1499         if (nr_failed)
1500                 count_vm_events(PGMIGRATE_FAIL, nr_failed);
1501         trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason);
1502
1503         if (!swapwrite)
1504                 current->flags &= ~PF_SWAPWRITE;
1505
1506         return rc;
1507 }
1508
1509 #ifdef CONFIG_NUMA
1510
1511 static int store_status(int __user *status, int start, int value, int nr)
1512 {
1513         while (nr-- > 0) {
1514                 if (put_user(value, status + start))
1515                         return -EFAULT;
1516                 start++;
1517         }
1518
1519         return 0;
1520 }
1521
1522 static int do_move_pages_to_node(struct mm_struct *mm,
1523                 struct list_head *pagelist, int node)
1524 {
1525         int err;
1526
1527         err = migrate_pages(pagelist, alloc_new_node_page, NULL, node,
1528                         MIGRATE_SYNC, MR_SYSCALL);
1529         if (err)
1530                 putback_movable_pages(pagelist);
1531         return err;
1532 }
1533
1534 /*
1535  * Resolves the given address to a struct page, isolates it from the LRU and
1536  * puts it to the given pagelist.
1537  * Returns:
1538  *     errno - if the page cannot be found/isolated
1539  *     0 - when it doesn't have to be migrated because it is already on the
1540  *         target node
1541  *     1 - when it has been queued
1542  */
1543 static int add_page_for_migration(struct mm_struct *mm, unsigned long addr,
1544                 int node, struct list_head *pagelist, bool migrate_all)
1545 {
1546         struct vm_area_struct *vma;
1547         struct page *page;
1548         unsigned int follflags;
1549         int err;
1550
1551         down_read(&mm->mmap_sem);
1552         err = -EFAULT;
1553         vma = find_vma(mm, addr);
1554         if (!vma || addr < vma->vm_start || !vma_migratable(vma))
1555                 goto out;
1556
1557         /* FOLL_DUMP to ignore special (like zero) pages */
1558         follflags = FOLL_GET | FOLL_DUMP;
1559         page = follow_page(vma, addr, follflags);
1560
1561         err = PTR_ERR(page);
1562         if (IS_ERR(page))
1563                 goto out;
1564
1565         err = -ENOENT;
1566         if (!page)
1567                 goto out;
1568
1569         err = 0;
1570         if (page_to_nid(page) == node)
1571                 goto out_putpage;
1572
1573         err = -EACCES;
1574         if (page_mapcount(page) > 1 && !migrate_all)
1575                 goto out_putpage;
1576
1577         if (PageHuge(page)) {
1578                 if (PageHead(page)) {
1579                         isolate_huge_page(page, pagelist);
1580                         err = 1;
1581                 }
1582         } else {
1583                 struct page *head;
1584
1585                 head = compound_head(page);
1586                 err = isolate_lru_page(head);
1587                 if (err)
1588                         goto out_putpage;
1589
1590                 err = 1;
1591                 list_add_tail(&head->lru, pagelist);
1592                 mod_node_page_state(page_pgdat(head),
1593                         NR_ISOLATED_ANON + page_is_file_lru(head),
1594                         hpage_nr_pages(head));
1595         }
1596 out_putpage:
1597         /*
1598          * Either remove the duplicate refcount from
1599          * isolate_lru_page() or drop the page ref if it was
1600          * not isolated.
1601          */
1602         put_page(page);
1603 out:
1604         up_read(&mm->mmap_sem);
1605         return err;
1606 }
1607
1608 static int move_pages_and_store_status(struct mm_struct *mm, int node,
1609                 struct list_head *pagelist, int __user *status,
1610                 int start, int i, unsigned long nr_pages)
1611 {
1612         int err;
1613
1614         if (list_empty(pagelist))
1615                 return 0;
1616
1617         err = do_move_pages_to_node(mm, pagelist, node);
1618         if (err) {
1619                 /*
1620                  * Positive err means the number of failed
1621                  * pages to migrate.  Since we are going to
1622                  * abort and return the number of non-migrated
1623                  * pages, so need to incude the rest of the
1624                  * nr_pages that have not been attempted as
1625                  * well.
1626                  */
1627                 if (err > 0)
1628                         err += nr_pages - i - 1;
1629                 return err;
1630         }
1631         return store_status(status, start, node, i - start);
1632 }
1633
1634 /*
1635  * Migrate an array of page address onto an array of nodes and fill
1636  * the corresponding array of status.
1637  */
1638 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1639                          unsigned long nr_pages,
1640                          const void __user * __user *pages,
1641                          const int __user *nodes,
1642                          int __user *status, int flags)
1643 {
1644         int current_node = NUMA_NO_NODE;
1645         LIST_HEAD(pagelist);
1646         int start, i;
1647         int err = 0, err1;
1648
1649         migrate_prep();
1650
1651         for (i = start = 0; i < nr_pages; i++) {
1652                 const void __user *p;
1653                 unsigned long addr;
1654                 int node;
1655
1656                 err = -EFAULT;
1657                 if (get_user(p, pages + i))
1658                         goto out_flush;
1659                 if (get_user(node, nodes + i))
1660                         goto out_flush;
1661                 addr = (unsigned long)untagged_addr(p);
1662
1663                 err = -ENODEV;
1664                 if (node < 0 || node >= MAX_NUMNODES)
1665                         goto out_flush;
1666                 if (!node_state(node, N_MEMORY))
1667                         goto out_flush;
1668
1669                 err = -EACCES;
1670                 if (!node_isset(node, task_nodes))
1671                         goto out_flush;
1672
1673                 if (current_node == NUMA_NO_NODE) {
1674                         current_node = node;
1675                         start = i;
1676                 } else if (node != current_node) {
1677                         err = move_pages_and_store_status(mm, current_node,
1678                                         &pagelist, status, start, i, nr_pages);
1679                         if (err)
1680                                 goto out;
1681                         start = i;
1682                         current_node = node;
1683                 }
1684
1685                 /*
1686                  * Errors in the page lookup or isolation are not fatal and we simply
1687                  * report them via status
1688                  */
1689                 err = add_page_for_migration(mm, addr, current_node,
1690                                 &pagelist, flags & MPOL_MF_MOVE_ALL);
1691
1692                 if (err > 0) {
1693                         /* The page is successfully queued for migration */
1694                         continue;
1695                 }
1696
1697                 /*
1698                  * If the page is already on the target node (!err), store the
1699                  * node, otherwise, store the err.
1700                  */
1701                 err = store_status(status, i, err ? : current_node, 1);
1702                 if (err)
1703                         goto out_flush;
1704
1705                 err = move_pages_and_store_status(mm, current_node, &pagelist,
1706                                 status, start, i, nr_pages);
1707                 if (err)
1708                         goto out;
1709                 current_node = NUMA_NO_NODE;
1710         }
1711 out_flush:
1712         /* Make sure we do not overwrite the existing error */
1713         err1 = move_pages_and_store_status(mm, current_node, &pagelist,
1714                                 status, start, i, nr_pages);
1715         if (err >= 0)
1716                 err = err1;
1717 out:
1718         return err;
1719 }
1720
1721 /*
1722  * Determine the nodes of an array of pages and store it in an array of status.
1723  */
1724 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1725                                 const void __user **pages, int *status)
1726 {
1727         unsigned long i;
1728
1729         down_read(&mm->mmap_sem);
1730
1731         for (i = 0; i < nr_pages; i++) {
1732                 unsigned long addr = (unsigned long)(*pages);
1733                 struct vm_area_struct *vma;
1734                 struct page *page;
1735                 int err = -EFAULT;
1736
1737                 vma = find_vma(mm, addr);
1738                 if (!vma || addr < vma->vm_start)
1739                         goto set_status;
1740
1741                 /* FOLL_DUMP to ignore special (like zero) pages */
1742                 page = follow_page(vma, addr, FOLL_DUMP);
1743
1744                 err = PTR_ERR(page);
1745                 if (IS_ERR(page))
1746                         goto set_status;
1747
1748                 err = page ? page_to_nid(page) : -ENOENT;
1749 set_status:
1750                 *status = err;
1751
1752                 pages++;
1753                 status++;
1754         }
1755
1756         up_read(&mm->mmap_sem);
1757 }
1758
1759 /*
1760  * Determine the nodes of a user array of pages and store it in
1761  * a user array of status.
1762  */
1763 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1764                          const void __user * __user *pages,
1765                          int __user *status)
1766 {
1767 #define DO_PAGES_STAT_CHUNK_NR 16
1768         const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1769         int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1770
1771         while (nr_pages) {
1772                 unsigned long chunk_nr;
1773
1774                 chunk_nr = nr_pages;
1775                 if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1776                         chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1777
1778                 if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1779                         break;
1780
1781                 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1782
1783                 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1784                         break;
1785
1786                 pages += chunk_nr;
1787                 status += chunk_nr;
1788                 nr_pages -= chunk_nr;
1789         }
1790         return nr_pages ? -EFAULT : 0;
1791 }
1792
1793 /*
1794  * Move a list of pages in the address space of the currently executing
1795  * process.
1796  */
1797 static int kernel_move_pages(pid_t pid, unsigned long nr_pages,
1798                              const void __user * __user *pages,
1799                              const int __user *nodes,
1800                              int __user *status, int flags)
1801 {
1802         struct task_struct *task;
1803         struct mm_struct *mm;
1804         int err;
1805         nodemask_t task_nodes;
1806
1807         /* Check flags */
1808         if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1809                 return -EINVAL;
1810
1811         if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1812                 return -EPERM;
1813
1814         /* Find the mm_struct */
1815         rcu_read_lock();
1816         task = pid ? find_task_by_vpid(pid) : current;
1817         if (!task) {
1818                 rcu_read_unlock();
1819                 return -ESRCH;
1820         }
1821         get_task_struct(task);
1822
1823         /*
1824          * Check if this process has the right to modify the specified
1825          * process. Use the regular "ptrace_may_access()" checks.
1826          */
1827         if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1828                 rcu_read_unlock();
1829                 err = -EPERM;
1830                 goto out;
1831         }
1832         rcu_read_unlock();
1833
1834         err = security_task_movememory(task);
1835         if (err)
1836                 goto out;
1837
1838         task_nodes = cpuset_mems_allowed(task);
1839         mm = get_task_mm(task);
1840         put_task_struct(task);
1841
1842         if (!mm)
1843                 return -EINVAL;
1844
1845         if (nodes)
1846                 err = do_pages_move(mm, task_nodes, nr_pages, pages,
1847                                     nodes, status, flags);
1848         else
1849                 err = do_pages_stat(mm, nr_pages, pages, status);
1850
1851         mmput(mm);
1852         return err;
1853
1854 out:
1855         put_task_struct(task);
1856         return err;
1857 }
1858
1859 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1860                 const void __user * __user *, pages,
1861                 const int __user *, nodes,
1862                 int __user *, status, int, flags)
1863 {
1864         return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1865 }
1866
1867 #ifdef CONFIG_COMPAT
1868 COMPAT_SYSCALL_DEFINE6(move_pages, pid_t, pid, compat_ulong_t, nr_pages,
1869                        compat_uptr_t __user *, pages32,
1870                        const int __user *, nodes,
1871                        int __user *, status,
1872                        int, flags)
1873 {
1874         const void __user * __user *pages;
1875         int i;
1876
1877         pages = compat_alloc_user_space(nr_pages * sizeof(void *));
1878         for (i = 0; i < nr_pages; i++) {
1879                 compat_uptr_t p;
1880
1881                 if (get_user(p, pages32 + i) ||
1882                         put_user(compat_ptr(p), pages + i))
1883                         return -EFAULT;
1884         }
1885         return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1886 }
1887 #endif /* CONFIG_COMPAT */
1888
1889 #ifdef CONFIG_NUMA_BALANCING
1890 /*
1891  * Returns true if this is a safe migration target node for misplaced NUMA
1892  * pages. Currently it only checks the watermarks which crude
1893  */
1894 static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
1895                                    unsigned long nr_migrate_pages)
1896 {
1897         int z;
1898
1899         for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1900                 struct zone *zone = pgdat->node_zones + z;
1901
1902                 if (!populated_zone(zone))
1903                         continue;
1904
1905                 /* Avoid waking kswapd by allocating pages_to_migrate pages. */
1906                 if (!zone_watermark_ok(zone, 0,
1907                                        high_wmark_pages(zone) +
1908                                        nr_migrate_pages,
1909                                        ZONE_MOVABLE, 0))
1910                         continue;
1911                 return true;
1912         }
1913         return false;
1914 }
1915
1916 static struct page *alloc_misplaced_dst_page(struct page *page,
1917                                            unsigned long data)
1918 {
1919         int nid = (int) data;
1920         struct page *newpage;
1921
1922         newpage = __alloc_pages_node(nid,
1923                                          (GFP_HIGHUSER_MOVABLE |
1924                                           __GFP_THISNODE | __GFP_NOMEMALLOC |
1925                                           __GFP_NORETRY | __GFP_NOWARN) &
1926                                          ~__GFP_RECLAIM, 0);
1927
1928         return newpage;
1929 }
1930
1931 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
1932 {
1933         int page_lru;
1934
1935         VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
1936
1937         /* Avoid migrating to a node that is nearly full */
1938         if (!migrate_balanced_pgdat(pgdat, compound_nr(page)))
1939                 return 0;
1940
1941         if (isolate_lru_page(page))
1942                 return 0;
1943
1944         /*
1945          * migrate_misplaced_transhuge_page() skips page migration's usual
1946          * check on page_count(), so we must do it here, now that the page
1947          * has been isolated: a GUP pin, or any other pin, prevents migration.
1948          * The expected page count is 3: 1 for page's mapcount and 1 for the
1949          * caller's pin and 1 for the reference taken by isolate_lru_page().
1950          */
1951         if (PageTransHuge(page) && page_count(page) != 3) {
1952                 putback_lru_page(page);
1953                 return 0;
1954         }
1955
1956         page_lru = page_is_file_lru(page);
1957         mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_lru,
1958                                 hpage_nr_pages(page));
1959
1960         /*
1961          * Isolating the page has taken another reference, so the
1962          * caller's reference can be safely dropped without the page
1963          * disappearing underneath us during migration.
1964          */
1965         put_page(page);
1966         return 1;
1967 }
1968
1969 bool pmd_trans_migrating(pmd_t pmd)
1970 {
1971         struct page *page = pmd_page(pmd);
1972         return PageLocked(page);
1973 }
1974
1975 /*
1976  * Attempt to migrate a misplaced page to the specified destination
1977  * node. Caller is expected to have an elevated reference count on
1978  * the page that will be dropped by this function before returning.
1979  */
1980 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
1981                            int node)
1982 {
1983         pg_data_t *pgdat = NODE_DATA(node);
1984         int isolated;
1985         int nr_remaining;
1986         LIST_HEAD(migratepages);
1987
1988         /*
1989          * Don't migrate file pages that are mapped in multiple processes
1990          * with execute permissions as they are probably shared libraries.
1991          */
1992         if (page_mapcount(page) != 1 && page_is_file_lru(page) &&
1993             (vma->vm_flags & VM_EXEC))
1994                 goto out;
1995
1996         /*
1997          * Also do not migrate dirty pages as not all filesystems can move
1998          * dirty pages in MIGRATE_ASYNC mode which is a waste of cycles.
1999          */
2000         if (page_is_file_lru(page) && PageDirty(page))
2001                 goto out;
2002
2003         isolated = numamigrate_isolate_page(pgdat, page);
2004         if (!isolated)
2005                 goto out;
2006
2007         list_add(&page->lru, &migratepages);
2008         nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
2009                                      NULL, node, MIGRATE_ASYNC,
2010                                      MR_NUMA_MISPLACED);
2011         if (nr_remaining) {
2012                 if (!list_empty(&migratepages)) {
2013                         list_del(&page->lru);
2014                         dec_node_page_state(page, NR_ISOLATED_ANON +
2015                                         page_is_file_lru(page));
2016                         putback_lru_page(page);
2017                 }
2018                 isolated = 0;
2019         } else
2020                 count_vm_numa_event(NUMA_PAGE_MIGRATE);
2021         BUG_ON(!list_empty(&migratepages));
2022         return isolated;
2023
2024 out:
2025         put_page(page);
2026         return 0;
2027 }
2028 #endif /* CONFIG_NUMA_BALANCING */
2029
2030 #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
2031 /*
2032  * Migrates a THP to a given target node. page must be locked and is unlocked
2033  * before returning.
2034  */
2035 int migrate_misplaced_transhuge_page(struct mm_struct *mm,
2036                                 struct vm_area_struct *vma,
2037                                 pmd_t *pmd, pmd_t entry,
2038                                 unsigned long address,
2039                                 struct page *page, int node)
2040 {
2041         spinlock_t *ptl;
2042         pg_data_t *pgdat = NODE_DATA(node);
2043         int isolated = 0;
2044         struct page *new_page = NULL;
2045         int page_lru = page_is_file_lru(page);
2046         unsigned long start = address & HPAGE_PMD_MASK;
2047
2048         new_page = alloc_pages_node(node,
2049                 (GFP_TRANSHUGE_LIGHT | __GFP_THISNODE),
2050                 HPAGE_PMD_ORDER);
2051         if (!new_page)
2052                 goto out_fail;
2053         prep_transhuge_page(new_page);
2054
2055         isolated = numamigrate_isolate_page(pgdat, page);
2056         if (!isolated) {
2057                 put_page(new_page);
2058                 goto out_fail;
2059         }
2060
2061         /* Prepare a page as a migration target */
2062         __SetPageLocked(new_page);
2063         if (PageSwapBacked(page))
2064                 __SetPageSwapBacked(new_page);
2065
2066         /* anon mapping, we can simply copy page->mapping to the new page: */
2067         new_page->mapping = page->mapping;
2068         new_page->index = page->index;
2069         /* flush the cache before copying using the kernel virtual address */
2070         flush_cache_range(vma, start, start + HPAGE_PMD_SIZE);
2071         migrate_page_copy(new_page, page);
2072         WARN_ON(PageLRU(new_page));
2073
2074         /* Recheck the target PMD */
2075         ptl = pmd_lock(mm, pmd);
2076         if (unlikely(!pmd_same(*pmd, entry) || !page_ref_freeze(page, 2))) {
2077                 spin_unlock(ptl);
2078
2079                 /* Reverse changes made by migrate_page_copy() */
2080                 if (TestClearPageActive(new_page))
2081                         SetPageActive(page);
2082                 if (TestClearPageUnevictable(new_page))
2083                         SetPageUnevictable(page);
2084
2085                 unlock_page(new_page);
2086                 put_page(new_page);             /* Free it */
2087
2088                 /* Retake the callers reference and putback on LRU */
2089                 get_page(page);
2090                 putback_lru_page(page);
2091                 mod_node_page_state(page_pgdat(page),
2092                          NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
2093
2094                 goto out_unlock;
2095         }
2096
2097         entry = mk_huge_pmd(new_page, vma->vm_page_prot);
2098         entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
2099
2100         /*
2101          * Overwrite the old entry under pagetable lock and establish
2102          * the new PTE. Any parallel GUP will either observe the old
2103          * page blocking on the page lock, block on the page table
2104          * lock or observe the new page. The SetPageUptodate on the
2105          * new page and page_add_new_anon_rmap guarantee the copy is
2106          * visible before the pagetable update.
2107          */
2108         page_add_anon_rmap(new_page, vma, start, true);
2109         /*
2110          * At this point the pmd is numa/protnone (i.e. non present) and the TLB
2111          * has already been flushed globally.  So no TLB can be currently
2112          * caching this non present pmd mapping.  There's no need to clear the
2113          * pmd before doing set_pmd_at(), nor to flush the TLB after
2114          * set_pmd_at().  Clearing the pmd here would introduce a race
2115          * condition against MADV_DONTNEED, because MADV_DONTNEED only holds the
2116          * mmap_sem for reading.  If the pmd is set to NULL at any given time,
2117          * MADV_DONTNEED won't wait on the pmd lock and it'll skip clearing this
2118          * pmd.
2119          */
2120         set_pmd_at(mm, start, pmd, entry);
2121         update_mmu_cache_pmd(vma, address, &entry);
2122
2123         page_ref_unfreeze(page, 2);
2124         mlock_migrate_page(new_page, page);
2125         page_remove_rmap(page, true);
2126         set_page_owner_migrate_reason(new_page, MR_NUMA_MISPLACED);
2127
2128         spin_unlock(ptl);
2129
2130         /* Take an "isolate" reference and put new page on the LRU. */
2131         get_page(new_page);
2132         putback_lru_page(new_page);
2133
2134         unlock_page(new_page);
2135         unlock_page(page);
2136         put_page(page);                 /* Drop the rmap reference */
2137         put_page(page);                 /* Drop the LRU isolation reference */
2138
2139         count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
2140         count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);
2141
2142         mod_node_page_state(page_pgdat(page),
2143                         NR_ISOLATED_ANON + page_lru,
2144                         -HPAGE_PMD_NR);
2145         return isolated;
2146
2147 out_fail:
2148         count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
2149         ptl = pmd_lock(mm, pmd);
2150         if (pmd_same(*pmd, entry)) {
2151                 entry = pmd_modify(entry, vma->vm_page_prot);
2152                 set_pmd_at(mm, start, pmd, entry);
2153                 update_mmu_cache_pmd(vma, address, &entry);
2154         }
2155         spin_unlock(ptl);
2156
2157 out_unlock:
2158         unlock_page(page);
2159         put_page(page);
2160         return 0;
2161 }
2162 #endif /* CONFIG_NUMA_BALANCING */
2163
2164 #endif /* CONFIG_NUMA */
2165
2166 #ifdef CONFIG_DEVICE_PRIVATE
2167 static int migrate_vma_collect_hole(unsigned long start,
2168                                     unsigned long end,
2169                                     __always_unused int depth,
2170                                     struct mm_walk *walk)
2171 {
2172         struct migrate_vma *migrate = walk->private;
2173         unsigned long addr;
2174
2175         for (addr = start; addr < end; addr += PAGE_SIZE) {
2176                 migrate->src[migrate->npages] = MIGRATE_PFN_MIGRATE;
2177                 migrate->dst[migrate->npages] = 0;
2178                 migrate->npages++;
2179                 migrate->cpages++;
2180         }
2181
2182         return 0;
2183 }
2184
2185 static int migrate_vma_collect_skip(unsigned long start,
2186                                     unsigned long end,
2187                                     struct mm_walk *walk)
2188 {
2189         struct migrate_vma *migrate = walk->private;
2190         unsigned long addr;
2191
2192         for (addr = start; addr < end; addr += PAGE_SIZE) {
2193                 migrate->dst[migrate->npages] = 0;
2194                 migrate->src[migrate->npages++] = 0;
2195         }
2196
2197         return 0;
2198 }
2199
2200 static int migrate_vma_collect_pmd(pmd_t *pmdp,
2201                                    unsigned long start,
2202                                    unsigned long end,
2203                                    struct mm_walk *walk)
2204 {
2205         struct migrate_vma *migrate = walk->private;
2206         struct vm_area_struct *vma = walk->vma;
2207         struct mm_struct *mm = vma->vm_mm;
2208         unsigned long addr = start, unmapped = 0;
2209         spinlock_t *ptl;
2210         pte_t *ptep;
2211
2212 again:
2213         if (pmd_none(*pmdp))
2214                 return migrate_vma_collect_hole(start, end, -1, walk);
2215
2216         if (pmd_trans_huge(*pmdp)) {
2217                 struct page *page;
2218
2219                 ptl = pmd_lock(mm, pmdp);
2220                 if (unlikely(!pmd_trans_huge(*pmdp))) {
2221                         spin_unlock(ptl);
2222                         goto again;
2223                 }
2224
2225                 page = pmd_page(*pmdp);
2226                 if (is_huge_zero_page(page)) {
2227                         spin_unlock(ptl);
2228                         split_huge_pmd(vma, pmdp, addr);
2229                         if (pmd_trans_unstable(pmdp))
2230                                 return migrate_vma_collect_skip(start, end,
2231                                                                 walk);
2232                 } else {
2233                         int ret;
2234
2235                         get_page(page);
2236                         spin_unlock(ptl);
2237                         if (unlikely(!trylock_page(page)))
2238                                 return migrate_vma_collect_skip(start, end,
2239                                                                 walk);
2240                         ret = split_huge_page(page);
2241                         unlock_page(page);
2242                         put_page(page);
2243                         if (ret)
2244                                 return migrate_vma_collect_skip(start, end,
2245                                                                 walk);
2246                         if (pmd_none(*pmdp))
2247                                 return migrate_vma_collect_hole(start, end, -1,
2248                                                                 walk);
2249                 }
2250         }
2251
2252         if (unlikely(pmd_bad(*pmdp)))
2253                 return migrate_vma_collect_skip(start, end, walk);
2254
2255         ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2256         arch_enter_lazy_mmu_mode();
2257
2258         for (; addr < end; addr += PAGE_SIZE, ptep++) {
2259                 unsigned long mpfn = 0, pfn;
2260                 struct page *page;
2261                 swp_entry_t entry;
2262                 pte_t pte;
2263
2264                 pte = *ptep;
2265
2266                 if (pte_none(pte)) {
2267                         mpfn = MIGRATE_PFN_MIGRATE;
2268                         migrate->cpages++;
2269                         goto next;
2270                 }
2271
2272                 if (!pte_present(pte)) {
2273                         /*
2274                          * Only care about unaddressable device page special
2275                          * page table entry. Other special swap entries are not
2276                          * migratable, and we ignore regular swapped page.
2277                          */
2278                         entry = pte_to_swp_entry(pte);
2279                         if (!is_device_private_entry(entry))
2280                                 goto next;
2281
2282                         page = device_private_entry_to_page(entry);
2283                         if (page->pgmap->owner != migrate->src_owner)
2284                                 goto next;
2285
2286                         mpfn = migrate_pfn(page_to_pfn(page)) |
2287                                         MIGRATE_PFN_MIGRATE;
2288                         if (is_write_device_private_entry(entry))
2289                                 mpfn |= MIGRATE_PFN_WRITE;
2290                 } else {
2291                         if (migrate->src_owner)
2292                                 goto next;
2293                         pfn = pte_pfn(pte);
2294                         if (is_zero_pfn(pfn)) {
2295                                 mpfn = MIGRATE_PFN_MIGRATE;
2296                                 migrate->cpages++;
2297                                 goto next;
2298                         }
2299                         page = vm_normal_page(migrate->vma, addr, pte);
2300                         mpfn = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE;
2301                         mpfn |= pte_write(pte) ? MIGRATE_PFN_WRITE : 0;
2302                 }
2303
2304                 /* FIXME support THP */
2305                 if (!page || !page->mapping || PageTransCompound(page)) {
2306                         mpfn = 0;
2307                         goto next;
2308                 }
2309
2310                 /*
2311                  * By getting a reference on the page we pin it and that blocks
2312                  * any kind of migration. Side effect is that it "freezes" the
2313                  * pte.
2314                  *
2315                  * We drop this reference after isolating the page from the lru
2316                  * for non device page (device page are not on the lru and thus
2317                  * can't be dropped from it).
2318                  */
2319                 get_page(page);
2320                 migrate->cpages++;
2321
2322                 /*
2323                  * Optimize for the common case where page is only mapped once
2324                  * in one process. If we can lock the page, then we can safely
2325                  * set up a special migration page table entry now.
2326                  */
2327                 if (trylock_page(page)) {
2328                         pte_t swp_pte;
2329
2330                         mpfn |= MIGRATE_PFN_LOCKED;
2331                         ptep_get_and_clear(mm, addr, ptep);
2332
2333                         /* Setup special migration page table entry */
2334                         entry = make_migration_entry(page, mpfn &
2335                                                      MIGRATE_PFN_WRITE);
2336                         swp_pte = swp_entry_to_pte(entry);
2337                         if (pte_soft_dirty(pte))
2338                                 swp_pte = pte_swp_mksoft_dirty(swp_pte);
2339                         if (pte_uffd_wp(pte))
2340                                 swp_pte = pte_swp_mkuffd_wp(swp_pte);
2341                         set_pte_at(mm, addr, ptep, swp_pte);
2342
2343                         /*
2344                          * This is like regular unmap: we remove the rmap and
2345                          * drop page refcount. Page won't be freed, as we took
2346                          * a reference just above.
2347                          */
2348                         page_remove_rmap(page, false);
2349                         put_page(page);
2350
2351                         if (pte_present(pte))
2352                                 unmapped++;
2353                 }
2354
2355 next:
2356                 migrate->dst[migrate->npages] = 0;
2357                 migrate->src[migrate->npages++] = mpfn;
2358         }
2359         arch_leave_lazy_mmu_mode();
2360         pte_unmap_unlock(ptep - 1, ptl);
2361
2362         /* Only flush the TLB if we actually modified any entries */
2363         if (unmapped)
2364                 flush_tlb_range(walk->vma, start, end);
2365
2366         return 0;
2367 }
2368
2369 static const struct mm_walk_ops migrate_vma_walk_ops = {
2370         .pmd_entry              = migrate_vma_collect_pmd,
2371         .pte_hole               = migrate_vma_collect_hole,
2372 };
2373
2374 /*
2375  * migrate_vma_collect() - collect pages over a range of virtual addresses
2376  * @migrate: migrate struct containing all migration information
2377  *
2378  * This will walk the CPU page table. For each virtual address backed by a
2379  * valid page, it updates the src array and takes a reference on the page, in
2380  * order to pin the page until we lock it and unmap it.
2381  */
2382 static void migrate_vma_collect(struct migrate_vma *migrate)
2383 {
2384         struct mmu_notifier_range range;
2385
2386         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, NULL,
2387                         migrate->vma->vm_mm, migrate->start, migrate->end);
2388         mmu_notifier_invalidate_range_start(&range);
2389
2390         walk_page_range(migrate->vma->vm_mm, migrate->start, migrate->end,
2391                         &migrate_vma_walk_ops, migrate);
2392
2393         mmu_notifier_invalidate_range_end(&range);
2394         migrate->end = migrate->start + (migrate->npages << PAGE_SHIFT);
2395 }
2396
2397 /*
2398  * migrate_vma_check_page() - check if page is pinned or not
2399  * @page: struct page to check
2400  *
2401  * Pinned pages cannot be migrated. This is the same test as in
2402  * migrate_page_move_mapping(), except that here we allow migration of a
2403  * ZONE_DEVICE page.
2404  */
2405 static bool migrate_vma_check_page(struct page *page)
2406 {
2407         /*
2408          * One extra ref because caller holds an extra reference, either from
2409          * isolate_lru_page() for a regular page, or migrate_vma_collect() for
2410          * a device page.
2411          */
2412         int extra = 1;
2413
2414         /*
2415          * FIXME support THP (transparent huge page), it is bit more complex to
2416          * check them than regular pages, because they can be mapped with a pmd
2417          * or with a pte (split pte mapping).
2418          */
2419         if (PageCompound(page))
2420                 return false;
2421
2422         /* Page from ZONE_DEVICE have one extra reference */
2423         if (is_zone_device_page(page)) {
2424                 /*
2425                  * Private page can never be pin as they have no valid pte and
2426                  * GUP will fail for those. Yet if there is a pending migration
2427                  * a thread might try to wait on the pte migration entry and
2428                  * will bump the page reference count. Sadly there is no way to
2429                  * differentiate a regular pin from migration wait. Hence to
2430                  * avoid 2 racing thread trying to migrate back to CPU to enter
2431                  * infinite loop (one stoping migration because the other is
2432                  * waiting on pte migration entry). We always return true here.
2433                  *
2434                  * FIXME proper solution is to rework migration_entry_wait() so
2435                  * it does not need to take a reference on page.
2436                  */
2437                 return is_device_private_page(page);
2438         }
2439
2440         /* For file back page */
2441         if (page_mapping(page))
2442                 extra += 1 + page_has_private(page);
2443
2444         if ((page_count(page) - extra) > page_mapcount(page))
2445                 return false;
2446
2447         return true;
2448 }
2449
2450 /*
2451  * migrate_vma_prepare() - lock pages and isolate them from the lru
2452  * @migrate: migrate struct containing all migration information
2453  *
2454  * This locks pages that have been collected by migrate_vma_collect(). Once each
2455  * page is locked it is isolated from the lru (for non-device pages). Finally,
2456  * the ref taken by migrate_vma_collect() is dropped, as locked pages cannot be
2457  * migrated by concurrent kernel threads.
2458  */
2459 static void migrate_vma_prepare(struct migrate_vma *migrate)
2460 {
2461         const unsigned long npages = migrate->npages;
2462         const unsigned long start = migrate->start;
2463         unsigned long addr, i, restore = 0;
2464         bool allow_drain = true;
2465
2466         lru_add_drain();
2467
2468         for (i = 0; (i < npages) && migrate->cpages; i++) {
2469                 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2470                 bool remap = true;
2471
2472                 if (!page)
2473                         continue;
2474
2475                 if (!(migrate->src[i] & MIGRATE_PFN_LOCKED)) {
2476                         /*
2477                          * Because we are migrating several pages there can be
2478                          * a deadlock between 2 concurrent migration where each
2479                          * are waiting on each other page lock.
2480                          *
2481                          * Make migrate_vma() a best effort thing and backoff
2482                          * for any page we can not lock right away.
2483                          */
2484                         if (!trylock_page(page)) {
2485                                 migrate->src[i] = 0;
2486                                 migrate->cpages--;
2487                                 put_page(page);
2488                                 continue;
2489                         }
2490                         remap = false;
2491                         migrate->src[i] |= MIGRATE_PFN_LOCKED;
2492                 }
2493
2494                 /* ZONE_DEVICE pages are not on LRU */
2495                 if (!is_zone_device_page(page)) {
2496                         if (!PageLRU(page) && allow_drain) {
2497                                 /* Drain CPU's pagevec */
2498                                 lru_add_drain_all();
2499                                 allow_drain = false;
2500                         }
2501
2502                         if (isolate_lru_page(page)) {
2503                                 if (remap) {
2504                                         migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2505                                         migrate->cpages--;
2506                                         restore++;
2507                                 } else {
2508                                         migrate->src[i] = 0;
2509                                         unlock_page(page);
2510                                         migrate->cpages--;
2511                                         put_page(page);
2512                                 }
2513                                 continue;
2514                         }
2515
2516                         /* Drop the reference we took in collect */
2517                         put_page(page);
2518                 }
2519
2520                 if (!migrate_vma_check_page(page)) {
2521                         if (remap) {
2522                                 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2523                                 migrate->cpages--;
2524                                 restore++;
2525
2526                                 if (!is_zone_device_page(page)) {
2527                                         get_page(page);
2528                                         putback_lru_page(page);
2529                                 }
2530                         } else {
2531                                 migrate->src[i] = 0;
2532                                 unlock_page(page);
2533                                 migrate->cpages--;
2534
2535                                 if (!is_zone_device_page(page))
2536                                         putback_lru_page(page);
2537                                 else
2538                                         put_page(page);
2539                         }
2540                 }
2541         }
2542
2543         for (i = 0, addr = start; i < npages && restore; i++, addr += PAGE_SIZE) {
2544                 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2545
2546                 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2547                         continue;
2548
2549                 remove_migration_pte(page, migrate->vma, addr, page);
2550
2551                 migrate->src[i] = 0;
2552                 unlock_page(page);
2553                 put_page(page);
2554                 restore--;
2555         }
2556 }
2557
2558 /*
2559  * migrate_vma_unmap() - replace page mapping with special migration pte entry
2560  * @migrate: migrate struct containing all migration information
2561  *
2562  * Replace page mapping (CPU page table pte) with a special migration pte entry
2563  * and check again if it has been pinned. Pinned pages are restored because we
2564  * cannot migrate them.
2565  *
2566  * This is the last step before we call the device driver callback to allocate
2567  * destination memory and copy contents of original page over to new page.
2568  */
2569 static void migrate_vma_unmap(struct migrate_vma *migrate)
2570 {
2571         int flags = TTU_MIGRATION | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
2572         const unsigned long npages = migrate->npages;
2573         const unsigned long start = migrate->start;
2574         unsigned long addr, i, restore = 0;
2575
2576         for (i = 0; i < npages; i++) {
2577                 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2578
2579                 if (!page || !(migrate->src[i] & MIGRATE_PFN_MIGRATE))
2580                         continue;
2581
2582                 if (page_mapped(page)) {
2583                         try_to_unmap(page, flags);
2584                         if (page_mapped(page))
2585                                 goto restore;
2586                 }
2587
2588                 if (migrate_vma_check_page(page))
2589                         continue;
2590
2591 restore:
2592                 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2593                 migrate->cpages--;
2594                 restore++;
2595         }
2596
2597         for (addr = start, i = 0; i < npages && restore; addr += PAGE_SIZE, i++) {
2598                 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2599
2600                 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2601                         continue;
2602
2603                 remove_migration_ptes(page, page, false);
2604
2605                 migrate->src[i] = 0;
2606                 unlock_page(page);
2607                 restore--;
2608
2609                 if (is_zone_device_page(page))
2610                         put_page(page);
2611                 else
2612                         putback_lru_page(page);
2613         }
2614 }
2615
2616 /**
2617  * migrate_vma_setup() - prepare to migrate a range of memory
2618  * @args: contains the vma, start, and and pfns arrays for the migration
2619  *
2620  * Returns: negative errno on failures, 0 when 0 or more pages were migrated
2621  * without an error.
2622  *
2623  * Prepare to migrate a range of memory virtual address range by collecting all
2624  * the pages backing each virtual address in the range, saving them inside the
2625  * src array.  Then lock those pages and unmap them. Once the pages are locked
2626  * and unmapped, check whether each page is pinned or not.  Pages that aren't
2627  * pinned have the MIGRATE_PFN_MIGRATE flag set (by this function) in the
2628  * corresponding src array entry.  Then restores any pages that are pinned, by
2629  * remapping and unlocking those pages.
2630  *
2631  * The caller should then allocate destination memory and copy source memory to
2632  * it for all those entries (ie with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE
2633  * flag set).  Once these are allocated and copied, the caller must update each
2634  * corresponding entry in the dst array with the pfn value of the destination
2635  * page and with the MIGRATE_PFN_VALID and MIGRATE_PFN_LOCKED flags set
2636  * (destination pages must have their struct pages locked, via lock_page()).
2637  *
2638  * Note that the caller does not have to migrate all the pages that are marked
2639  * with MIGRATE_PFN_MIGRATE flag in src array unless this is a migration from
2640  * device memory to system memory.  If the caller cannot migrate a device page
2641  * back to system memory, then it must return VM_FAULT_SIGBUS, which has severe
2642  * consequences for the userspace process, so it must be avoided if at all
2643  * possible.
2644  *
2645  * For empty entries inside CPU page table (pte_none() or pmd_none() is true) we
2646  * do set MIGRATE_PFN_MIGRATE flag inside the corresponding source array thus
2647  * allowing the caller to allocate device memory for those unback virtual
2648  * address.  For this the caller simply has to allocate device memory and
2649  * properly set the destination entry like for regular migration.  Note that
2650  * this can still fails and thus inside the device driver must check if the
2651  * migration was successful for those entries after calling migrate_vma_pages()
2652  * just like for regular migration.
2653  *
2654  * After that, the callers must call migrate_vma_pages() to go over each entry
2655  * in the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag
2656  * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set,
2657  * then migrate_vma_pages() to migrate struct page information from the source
2658  * struct page to the destination struct page.  If it fails to migrate the
2659  * struct page information, then it clears the MIGRATE_PFN_MIGRATE flag in the
2660  * src array.
2661  *
2662  * At this point all successfully migrated pages have an entry in the src
2663  * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst
2664  * array entry with MIGRATE_PFN_VALID flag set.
2665  *
2666  * Once migrate_vma_pages() returns the caller may inspect which pages were
2667  * successfully migrated, and which were not.  Successfully migrated pages will
2668  * have the MIGRATE_PFN_MIGRATE flag set for their src array entry.
2669  *
2670  * It is safe to update device page table after migrate_vma_pages() because
2671  * both destination and source page are still locked, and the mmap_sem is held
2672  * in read mode (hence no one can unmap the range being migrated).
2673  *
2674  * Once the caller is done cleaning up things and updating its page table (if it
2675  * chose to do so, this is not an obligation) it finally calls
2676  * migrate_vma_finalize() to update the CPU page table to point to new pages
2677  * for successfully migrated pages or otherwise restore the CPU page table to
2678  * point to the original source pages.
2679  */
2680 int migrate_vma_setup(struct migrate_vma *args)
2681 {
2682         long nr_pages = (args->end - args->start) >> PAGE_SHIFT;
2683
2684         args->start &= PAGE_MASK;
2685         args->end &= PAGE_MASK;
2686         if (!args->vma || is_vm_hugetlb_page(args->vma) ||
2687             (args->vma->vm_flags & VM_SPECIAL) || vma_is_dax(args->vma))
2688                 return -EINVAL;
2689         if (nr_pages <= 0)
2690                 return -EINVAL;
2691         if (args->start < args->vma->vm_start ||
2692             args->start >= args->vma->vm_end)
2693                 return -EINVAL;
2694         if (args->end <= args->vma->vm_start || args->end > args->vma->vm_end)
2695                 return -EINVAL;
2696         if (!args->src || !args->dst)
2697                 return -EINVAL;
2698
2699         memset(args->src, 0, sizeof(*args->src) * nr_pages);
2700         args->cpages = 0;
2701         args->npages = 0;
2702
2703         migrate_vma_collect(args);
2704
2705         if (args->cpages)
2706                 migrate_vma_prepare(args);
2707         if (args->cpages)
2708                 migrate_vma_unmap(args);
2709
2710         /*
2711          * At this point pages are locked and unmapped, and thus they have
2712          * stable content and can safely be copied to destination memory that
2713          * is allocated by the drivers.
2714          */
2715         return 0;
2716
2717 }
2718 EXPORT_SYMBOL(migrate_vma_setup);
2719
2720 /*
2721  * This code closely matches the code in:
2722  *   __handle_mm_fault()
2723  *     handle_pte_fault()
2724  *       do_anonymous_page()
2725  * to map in an anonymous zero page but the struct page will be a ZONE_DEVICE
2726  * private page.
2727  */
2728 static void migrate_vma_insert_page(struct migrate_vma *migrate,
2729                                     unsigned long addr,
2730                                     struct page *page,
2731                                     unsigned long *src,
2732                                     unsigned long *dst)
2733 {
2734         struct vm_area_struct *vma = migrate->vma;
2735         struct mm_struct *mm = vma->vm_mm;
2736         struct mem_cgroup *memcg;
2737         bool flush = false;
2738         spinlock_t *ptl;
2739         pte_t entry;
2740         pgd_t *pgdp;
2741         p4d_t *p4dp;
2742         pud_t *pudp;
2743         pmd_t *pmdp;
2744         pte_t *ptep;
2745
2746         /* Only allow populating anonymous memory */
2747         if (!vma_is_anonymous(vma))
2748                 goto abort;
2749
2750         pgdp = pgd_offset(mm, addr);
2751         p4dp = p4d_alloc(mm, pgdp, addr);
2752         if (!p4dp)
2753                 goto abort;
2754         pudp = pud_alloc(mm, p4dp, addr);
2755         if (!pudp)
2756                 goto abort;
2757         pmdp = pmd_alloc(mm, pudp, addr);
2758         if (!pmdp)
2759                 goto abort;
2760
2761         if (pmd_trans_huge(*pmdp) || pmd_devmap(*pmdp))
2762                 goto abort;
2763
2764         /*
2765          * Use pte_alloc() instead of pte_alloc_map().  We can't run
2766          * pte_offset_map() on pmds where a huge pmd might be created
2767          * from a different thread.
2768          *
2769          * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
2770          * parallel threads are excluded by other means.
2771          *
2772          * Here we only have down_read(mmap_sem).
2773          */
2774         if (pte_alloc(mm, pmdp))
2775                 goto abort;
2776
2777         /* See the comment in pte_alloc_one_map() */
2778         if (unlikely(pmd_trans_unstable(pmdp)))
2779                 goto abort;
2780
2781         if (unlikely(anon_vma_prepare(vma)))
2782                 goto abort;
2783         if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL, &memcg, false))
2784                 goto abort;
2785
2786         /*
2787          * The memory barrier inside __SetPageUptodate makes sure that
2788          * preceding stores to the page contents become visible before
2789          * the set_pte_at() write.
2790          */
2791         __SetPageUptodate(page);
2792
2793         if (is_zone_device_page(page)) {
2794                 if (is_device_private_page(page)) {
2795                         swp_entry_t swp_entry;
2796
2797                         swp_entry = make_device_private_entry(page, vma->vm_flags & VM_WRITE);
2798                         entry = swp_entry_to_pte(swp_entry);
2799                 }
2800         } else {
2801                 entry = mk_pte(page, vma->vm_page_prot);
2802                 if (vma->vm_flags & VM_WRITE)
2803                         entry = pte_mkwrite(pte_mkdirty(entry));
2804         }
2805
2806         ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2807
2808         if (check_stable_address_space(mm))
2809                 goto unlock_abort;
2810
2811         if (pte_present(*ptep)) {
2812                 unsigned long pfn = pte_pfn(*ptep);
2813
2814                 if (!is_zero_pfn(pfn))
2815                         goto unlock_abort;
2816                 flush = true;
2817         } else if (!pte_none(*ptep))
2818                 goto unlock_abort;
2819
2820         /*
2821          * Check for userfaultfd but do not deliver the fault. Instead,
2822          * just back off.
2823          */
2824         if (userfaultfd_missing(vma))
2825                 goto unlock_abort;
2826
2827         inc_mm_counter(mm, MM_ANONPAGES);
2828         page_add_new_anon_rmap(page, vma, addr, false);
2829         mem_cgroup_commit_charge(page, memcg, false, false);
2830         if (!is_zone_device_page(page))
2831                 lru_cache_add_active_or_unevictable(page, vma);
2832         get_page(page);
2833
2834         if (flush) {
2835                 flush_cache_page(vma, addr, pte_pfn(*ptep));
2836                 ptep_clear_flush_notify(vma, addr, ptep);
2837                 set_pte_at_notify(mm, addr, ptep, entry);
2838                 update_mmu_cache(vma, addr, ptep);
2839         } else {
2840                 /* No need to invalidate - it was non-present before */
2841                 set_pte_at(mm, addr, ptep, entry);
2842                 update_mmu_cache(vma, addr, ptep);
2843         }
2844
2845         pte_unmap_unlock(ptep, ptl);
2846         *src = MIGRATE_PFN_MIGRATE;
2847         return;
2848
2849 unlock_abort:
2850         pte_unmap_unlock(ptep, ptl);
2851         mem_cgroup_cancel_charge(page, memcg, false);
2852 abort:
2853         *src &= ~MIGRATE_PFN_MIGRATE;
2854 }
2855
2856 /**
2857  * migrate_vma_pages() - migrate meta-data from src page to dst page
2858  * @migrate: migrate struct containing all migration information
2859  *
2860  * This migrates struct page meta-data from source struct page to destination
2861  * struct page. This effectively finishes the migration from source page to the
2862  * destination page.
2863  */
2864 void migrate_vma_pages(struct migrate_vma *migrate)
2865 {
2866         const unsigned long npages = migrate->npages;
2867         const unsigned long start = migrate->start;
2868         struct mmu_notifier_range range;
2869         unsigned long addr, i;
2870         bool notified = false;
2871
2872         for (i = 0, addr = start; i < npages; addr += PAGE_SIZE, i++) {
2873                 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
2874                 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2875                 struct address_space *mapping;
2876                 int r;
2877
2878                 if (!newpage) {
2879                         migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2880                         continue;
2881                 }
2882
2883                 if (!page) {
2884                         if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE))
2885                                 continue;
2886                         if (!notified) {
2887                                 notified = true;
2888
2889                                 mmu_notifier_range_init(&range,
2890                                                         MMU_NOTIFY_CLEAR, 0,
2891                                                         NULL,
2892                                                         migrate->vma->vm_mm,
2893                                                         addr, migrate->end);
2894                                 mmu_notifier_invalidate_range_start(&range);
2895                         }
2896                         migrate_vma_insert_page(migrate, addr, newpage,
2897                                                 &migrate->src[i],
2898                                                 &migrate->dst[i]);
2899                         continue;
2900                 }
2901
2902                 mapping = page_mapping(page);
2903
2904                 if (is_zone_device_page(newpage)) {
2905                         if (is_device_private_page(newpage)) {
2906                                 /*
2907                                  * For now only support private anonymous when
2908                                  * migrating to un-addressable device memory.
2909                                  */
2910                                 if (mapping) {
2911                                         migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2912                                         continue;
2913                                 }
2914                         } else {
2915                                 /*
2916                                  * Other types of ZONE_DEVICE page are not
2917                                  * supported.
2918                                  */
2919                                 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2920                                 continue;
2921                         }
2922                 }
2923
2924                 r = migrate_page(mapping, newpage, page, MIGRATE_SYNC_NO_COPY);
2925                 if (r != MIGRATEPAGE_SUCCESS)
2926                         migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2927         }
2928
2929         /*
2930          * No need to double call mmu_notifier->invalidate_range() callback as
2931          * the above ptep_clear_flush_notify() inside migrate_vma_insert_page()
2932          * did already call it.
2933          */
2934         if (notified)
2935                 mmu_notifier_invalidate_range_only_end(&range);
2936 }
2937 EXPORT_SYMBOL(migrate_vma_pages);
2938
2939 /**
2940  * migrate_vma_finalize() - restore CPU page table entry
2941  * @migrate: migrate struct containing all migration information
2942  *
2943  * This replaces the special migration pte entry with either a mapping to the
2944  * new page if migration was successful for that page, or to the original page
2945  * otherwise.
2946  *
2947  * This also unlocks the pages and puts them back on the lru, or drops the extra
2948  * refcount, for device pages.
2949  */
2950 void migrate_vma_finalize(struct migrate_vma *migrate)
2951 {
2952         const unsigned long npages = migrate->npages;
2953         unsigned long i;
2954
2955         for (i = 0; i < npages; i++) {
2956                 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
2957                 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2958
2959                 if (!page) {
2960                         if (newpage) {
2961                                 unlock_page(newpage);
2962                                 put_page(newpage);
2963                         }
2964                         continue;
2965                 }
2966
2967                 if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE) || !newpage) {
2968                         if (newpage) {
2969                                 unlock_page(newpage);
2970                                 put_page(newpage);
2971                         }
2972                         newpage = page;
2973                 }
2974
2975                 remove_migration_ptes(page, newpage, false);
2976                 unlock_page(page);
2977                 migrate->cpages--;
2978
2979                 if (is_zone_device_page(page))
2980                         put_page(page);
2981                 else
2982                         putback_lru_page(page);
2983
2984                 if (newpage != page) {
2985                         unlock_page(newpage);
2986                         if (is_zone_device_page(newpage))
2987                                 put_page(newpage);
2988                         else
2989                                 putback_lru_page(newpage);
2990                 }
2991         }
2992 }
2993 EXPORT_SYMBOL(migrate_vma_finalize);
2994 #endif /* CONFIG_DEVICE_PRIVATE */