OSDN Git Service

mm, migrate: remove reason argument from new_page_t
[tomoyo/tomoyo-test1.git] / mm / migrate.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Memory Migration functionality - linux/mm/migrate.c
4  *
5  * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
6  *
7  * Page migration was first developed in the context of the memory hotplug
8  * project. The main authors of the migration code are:
9  *
10  * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
11  * Hirokazu Takahashi <taka@valinux.co.jp>
12  * Dave Hansen <haveblue@us.ibm.com>
13  * Christoph Lameter
14  */
15
16 #include <linux/migrate.h>
17 #include <linux/export.h>
18 #include <linux/swap.h>
19 #include <linux/swapops.h>
20 #include <linux/pagemap.h>
21 #include <linux/buffer_head.h>
22 #include <linux/mm_inline.h>
23 #include <linux/nsproxy.h>
24 #include <linux/pagevec.h>
25 #include <linux/ksm.h>
26 #include <linux/rmap.h>
27 #include <linux/topology.h>
28 #include <linux/cpu.h>
29 #include <linux/cpuset.h>
30 #include <linux/writeback.h>
31 #include <linux/mempolicy.h>
32 #include <linux/vmalloc.h>
33 #include <linux/security.h>
34 #include <linux/backing-dev.h>
35 #include <linux/compaction.h>
36 #include <linux/syscalls.h>
37 #include <linux/compat.h>
38 #include <linux/hugetlb.h>
39 #include <linux/hugetlb_cgroup.h>
40 #include <linux/gfp.h>
41 #include <linux/pfn_t.h>
42 #include <linux/memremap.h>
43 #include <linux/userfaultfd_k.h>
44 #include <linux/balloon_compaction.h>
45 #include <linux/mmu_notifier.h>
46 #include <linux/page_idle.h>
47 #include <linux/page_owner.h>
48 #include <linux/sched/mm.h>
49 #include <linux/ptrace.h>
50
51 #include <asm/tlbflush.h>
52
53 #define CREATE_TRACE_POINTS
54 #include <trace/events/migrate.h>
55
56 #include "internal.h"
57
58 /*
59  * migrate_prep() needs to be called before we start compiling a list of pages
60  * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
61  * undesirable, use migrate_prep_local()
62  */
63 int migrate_prep(void)
64 {
65         /*
66          * Clear the LRU lists so pages can be isolated.
67          * Note that pages may be moved off the LRU after we have
68          * drained them. Those pages will fail to migrate like other
69          * pages that may be busy.
70          */
71         lru_add_drain_all();
72
73         return 0;
74 }
75
76 /* Do the necessary work of migrate_prep but not if it involves other CPUs */
77 int migrate_prep_local(void)
78 {
79         lru_add_drain();
80
81         return 0;
82 }
83
84 int isolate_movable_page(struct page *page, isolate_mode_t mode)
85 {
86         struct address_space *mapping;
87
88         /*
89          * Avoid burning cycles with pages that are yet under __free_pages(),
90          * or just got freed under us.
91          *
92          * In case we 'win' a race for a movable page being freed under us and
93          * raise its refcount preventing __free_pages() from doing its job
94          * the put_page() at the end of this block will take care of
95          * release this page, thus avoiding a nasty leakage.
96          */
97         if (unlikely(!get_page_unless_zero(page)))
98                 goto out;
99
100         /*
101          * Check PageMovable before holding a PG_lock because page's owner
102          * assumes anybody doesn't touch PG_lock of newly allocated page
103          * so unconditionally grapping the lock ruins page's owner side.
104          */
105         if (unlikely(!__PageMovable(page)))
106                 goto out_putpage;
107         /*
108          * As movable pages are not isolated from LRU lists, concurrent
109          * compaction threads can race against page migration functions
110          * as well as race against the releasing a page.
111          *
112          * In order to avoid having an already isolated movable page
113          * being (wrongly) re-isolated while it is under migration,
114          * or to avoid attempting to isolate pages being released,
115          * lets be sure we have the page lock
116          * before proceeding with the movable page isolation steps.
117          */
118         if (unlikely(!trylock_page(page)))
119                 goto out_putpage;
120
121         if (!PageMovable(page) || PageIsolated(page))
122                 goto out_no_isolated;
123
124         mapping = page_mapping(page);
125         VM_BUG_ON_PAGE(!mapping, page);
126
127         if (!mapping->a_ops->isolate_page(page, mode))
128                 goto out_no_isolated;
129
130         /* Driver shouldn't use PG_isolated bit of page->flags */
131         WARN_ON_ONCE(PageIsolated(page));
132         __SetPageIsolated(page);
133         unlock_page(page);
134
135         return 0;
136
137 out_no_isolated:
138         unlock_page(page);
139 out_putpage:
140         put_page(page);
141 out:
142         return -EBUSY;
143 }
144
145 /* It should be called on page which is PG_movable */
146 void putback_movable_page(struct page *page)
147 {
148         struct address_space *mapping;
149
150         VM_BUG_ON_PAGE(!PageLocked(page), page);
151         VM_BUG_ON_PAGE(!PageMovable(page), page);
152         VM_BUG_ON_PAGE(!PageIsolated(page), page);
153
154         mapping = page_mapping(page);
155         mapping->a_ops->putback_page(page);
156         __ClearPageIsolated(page);
157 }
158
159 /*
160  * Put previously isolated pages back onto the appropriate lists
161  * from where they were once taken off for compaction/migration.
162  *
163  * This function shall be used whenever the isolated pageset has been
164  * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
165  * and isolate_huge_page().
166  */
167 void putback_movable_pages(struct list_head *l)
168 {
169         struct page *page;
170         struct page *page2;
171
172         list_for_each_entry_safe(page, page2, l, lru) {
173                 if (unlikely(PageHuge(page))) {
174                         putback_active_hugepage(page);
175                         continue;
176                 }
177                 list_del(&page->lru);
178                 /*
179                  * We isolated non-lru movable page so here we can use
180                  * __PageMovable because LRU page's mapping cannot have
181                  * PAGE_MAPPING_MOVABLE.
182                  */
183                 if (unlikely(__PageMovable(page))) {
184                         VM_BUG_ON_PAGE(!PageIsolated(page), page);
185                         lock_page(page);
186                         if (PageMovable(page))
187                                 putback_movable_page(page);
188                         else
189                                 __ClearPageIsolated(page);
190                         unlock_page(page);
191                         put_page(page);
192                 } else {
193                         mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
194                                         page_is_file_cache(page), -hpage_nr_pages(page));
195                         putback_lru_page(page);
196                 }
197         }
198 }
199
200 /*
201  * Restore a potential migration pte to a working pte entry
202  */
203 static bool remove_migration_pte(struct page *page, struct vm_area_struct *vma,
204                                  unsigned long addr, void *old)
205 {
206         struct page_vma_mapped_walk pvmw = {
207                 .page = old,
208                 .vma = vma,
209                 .address = addr,
210                 .flags = PVMW_SYNC | PVMW_MIGRATION,
211         };
212         struct page *new;
213         pte_t pte;
214         swp_entry_t entry;
215
216         VM_BUG_ON_PAGE(PageTail(page), page);
217         while (page_vma_mapped_walk(&pvmw)) {
218                 if (PageKsm(page))
219                         new = page;
220                 else
221                         new = page - pvmw.page->index +
222                                 linear_page_index(vma, pvmw.address);
223
224 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
225                 /* PMD-mapped THP migration entry */
226                 if (!pvmw.pte) {
227                         VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page);
228                         remove_migration_pmd(&pvmw, new);
229                         continue;
230                 }
231 #endif
232
233                 get_page(new);
234                 pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot)));
235                 if (pte_swp_soft_dirty(*pvmw.pte))
236                         pte = pte_mksoft_dirty(pte);
237
238                 /*
239                  * Recheck VMA as permissions can change since migration started
240                  */
241                 entry = pte_to_swp_entry(*pvmw.pte);
242                 if (is_write_migration_entry(entry))
243                         pte = maybe_mkwrite(pte, vma);
244
245                 if (unlikely(is_zone_device_page(new))) {
246                         if (is_device_private_page(new)) {
247                                 entry = make_device_private_entry(new, pte_write(pte));
248                                 pte = swp_entry_to_pte(entry);
249                         } else if (is_device_public_page(new)) {
250                                 pte = pte_mkdevmap(pte);
251                                 flush_dcache_page(new);
252                         }
253                 } else
254                         flush_dcache_page(new);
255
256 #ifdef CONFIG_HUGETLB_PAGE
257                 if (PageHuge(new)) {
258                         pte = pte_mkhuge(pte);
259                         pte = arch_make_huge_pte(pte, vma, new, 0);
260                         set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
261                         if (PageAnon(new))
262                                 hugepage_add_anon_rmap(new, vma, pvmw.address);
263                         else
264                                 page_dup_rmap(new, true);
265                 } else
266 #endif
267                 {
268                         set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
269
270                         if (PageAnon(new))
271                                 page_add_anon_rmap(new, vma, pvmw.address, false);
272                         else
273                                 page_add_file_rmap(new, false);
274                 }
275                 if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new))
276                         mlock_vma_page(new);
277
278                 /* No need to invalidate - it was non-present before */
279                 update_mmu_cache(vma, pvmw.address, pvmw.pte);
280         }
281
282         return true;
283 }
284
285 /*
286  * Get rid of all migration entries and replace them by
287  * references to the indicated page.
288  */
289 void remove_migration_ptes(struct page *old, struct page *new, bool locked)
290 {
291         struct rmap_walk_control rwc = {
292                 .rmap_one = remove_migration_pte,
293                 .arg = old,
294         };
295
296         if (locked)
297                 rmap_walk_locked(new, &rwc);
298         else
299                 rmap_walk(new, &rwc);
300 }
301
302 /*
303  * Something used the pte of a page under migration. We need to
304  * get to the page and wait until migration is finished.
305  * When we return from this function the fault will be retried.
306  */
307 void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
308                                 spinlock_t *ptl)
309 {
310         pte_t pte;
311         swp_entry_t entry;
312         struct page *page;
313
314         spin_lock(ptl);
315         pte = *ptep;
316         if (!is_swap_pte(pte))
317                 goto out;
318
319         entry = pte_to_swp_entry(pte);
320         if (!is_migration_entry(entry))
321                 goto out;
322
323         page = migration_entry_to_page(entry);
324
325         /*
326          * Once radix-tree replacement of page migration started, page_count
327          * *must* be zero. And, we don't want to call wait_on_page_locked()
328          * against a page without get_page().
329          * So, we use get_page_unless_zero(), here. Even failed, page fault
330          * will occur again.
331          */
332         if (!get_page_unless_zero(page))
333                 goto out;
334         pte_unmap_unlock(ptep, ptl);
335         wait_on_page_locked(page);
336         put_page(page);
337         return;
338 out:
339         pte_unmap_unlock(ptep, ptl);
340 }
341
342 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
343                                 unsigned long address)
344 {
345         spinlock_t *ptl = pte_lockptr(mm, pmd);
346         pte_t *ptep = pte_offset_map(pmd, address);
347         __migration_entry_wait(mm, ptep, ptl);
348 }
349
350 void migration_entry_wait_huge(struct vm_area_struct *vma,
351                 struct mm_struct *mm, pte_t *pte)
352 {
353         spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
354         __migration_entry_wait(mm, pte, ptl);
355 }
356
357 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
358 void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd)
359 {
360         spinlock_t *ptl;
361         struct page *page;
362
363         ptl = pmd_lock(mm, pmd);
364         if (!is_pmd_migration_entry(*pmd))
365                 goto unlock;
366         page = migration_entry_to_page(pmd_to_swp_entry(*pmd));
367         if (!get_page_unless_zero(page))
368                 goto unlock;
369         spin_unlock(ptl);
370         wait_on_page_locked(page);
371         put_page(page);
372         return;
373 unlock:
374         spin_unlock(ptl);
375 }
376 #endif
377
378 #ifdef CONFIG_BLOCK
379 /* Returns true if all buffers are successfully locked */
380 static bool buffer_migrate_lock_buffers(struct buffer_head *head,
381                                                         enum migrate_mode mode)
382 {
383         struct buffer_head *bh = head;
384
385         /* Simple case, sync compaction */
386         if (mode != MIGRATE_ASYNC) {
387                 do {
388                         get_bh(bh);
389                         lock_buffer(bh);
390                         bh = bh->b_this_page;
391
392                 } while (bh != head);
393
394                 return true;
395         }
396
397         /* async case, we cannot block on lock_buffer so use trylock_buffer */
398         do {
399                 get_bh(bh);
400                 if (!trylock_buffer(bh)) {
401                         /*
402                          * We failed to lock the buffer and cannot stall in
403                          * async migration. Release the taken locks
404                          */
405                         struct buffer_head *failed_bh = bh;
406                         put_bh(failed_bh);
407                         bh = head;
408                         while (bh != failed_bh) {
409                                 unlock_buffer(bh);
410                                 put_bh(bh);
411                                 bh = bh->b_this_page;
412                         }
413                         return false;
414                 }
415
416                 bh = bh->b_this_page;
417         } while (bh != head);
418         return true;
419 }
420 #else
421 static inline bool buffer_migrate_lock_buffers(struct buffer_head *head,
422                                                         enum migrate_mode mode)
423 {
424         return true;
425 }
426 #endif /* CONFIG_BLOCK */
427
428 /*
429  * Replace the page in the mapping.
430  *
431  * The number of remaining references must be:
432  * 1 for anonymous pages without a mapping
433  * 2 for pages with a mapping
434  * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
435  */
436 int migrate_page_move_mapping(struct address_space *mapping,
437                 struct page *newpage, struct page *page,
438                 struct buffer_head *head, enum migrate_mode mode,
439                 int extra_count)
440 {
441         struct zone *oldzone, *newzone;
442         int dirty;
443         int expected_count = 1 + extra_count;
444         void **pslot;
445
446         /*
447          * Device public or private pages have an extra refcount as they are
448          * ZONE_DEVICE pages.
449          */
450         expected_count += is_device_private_page(page);
451         expected_count += is_device_public_page(page);
452
453         if (!mapping) {
454                 /* Anonymous page without mapping */
455                 if (page_count(page) != expected_count)
456                         return -EAGAIN;
457
458                 /* No turning back from here */
459                 newpage->index = page->index;
460                 newpage->mapping = page->mapping;
461                 if (PageSwapBacked(page))
462                         __SetPageSwapBacked(newpage);
463
464                 return MIGRATEPAGE_SUCCESS;
465         }
466
467         oldzone = page_zone(page);
468         newzone = page_zone(newpage);
469
470         spin_lock_irq(&mapping->tree_lock);
471
472         pslot = radix_tree_lookup_slot(&mapping->page_tree,
473                                         page_index(page));
474
475         expected_count += 1 + page_has_private(page);
476         if (page_count(page) != expected_count ||
477                 radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
478                 spin_unlock_irq(&mapping->tree_lock);
479                 return -EAGAIN;
480         }
481
482         if (!page_ref_freeze(page, expected_count)) {
483                 spin_unlock_irq(&mapping->tree_lock);
484                 return -EAGAIN;
485         }
486
487         /*
488          * In the async migration case of moving a page with buffers, lock the
489          * buffers using trylock before the mapping is moved. If the mapping
490          * was moved, we later failed to lock the buffers and could not move
491          * the mapping back due to an elevated page count, we would have to
492          * block waiting on other references to be dropped.
493          */
494         if (mode == MIGRATE_ASYNC && head &&
495                         !buffer_migrate_lock_buffers(head, mode)) {
496                 page_ref_unfreeze(page, expected_count);
497                 spin_unlock_irq(&mapping->tree_lock);
498                 return -EAGAIN;
499         }
500
501         /*
502          * Now we know that no one else is looking at the page:
503          * no turning back from here.
504          */
505         newpage->index = page->index;
506         newpage->mapping = page->mapping;
507         get_page(newpage);      /* add cache reference */
508         if (PageSwapBacked(page)) {
509                 __SetPageSwapBacked(newpage);
510                 if (PageSwapCache(page)) {
511                         SetPageSwapCache(newpage);
512                         set_page_private(newpage, page_private(page));
513                 }
514         } else {
515                 VM_BUG_ON_PAGE(PageSwapCache(page), page);
516         }
517
518         /* Move dirty while page refs frozen and newpage not yet exposed */
519         dirty = PageDirty(page);
520         if (dirty) {
521                 ClearPageDirty(page);
522                 SetPageDirty(newpage);
523         }
524
525         radix_tree_replace_slot(&mapping->page_tree, pslot, newpage);
526
527         /*
528          * Drop cache reference from old page by unfreezing
529          * to one less reference.
530          * We know this isn't the last reference.
531          */
532         page_ref_unfreeze(page, expected_count - 1);
533
534         spin_unlock(&mapping->tree_lock);
535         /* Leave irq disabled to prevent preemption while updating stats */
536
537         /*
538          * If moved to a different zone then also account
539          * the page for that zone. Other VM counters will be
540          * taken care of when we establish references to the
541          * new page and drop references to the old page.
542          *
543          * Note that anonymous pages are accounted for
544          * via NR_FILE_PAGES and NR_ANON_MAPPED if they
545          * are mapped to swap space.
546          */
547         if (newzone != oldzone) {
548                 __dec_node_state(oldzone->zone_pgdat, NR_FILE_PAGES);
549                 __inc_node_state(newzone->zone_pgdat, NR_FILE_PAGES);
550                 if (PageSwapBacked(page) && !PageSwapCache(page)) {
551                         __dec_node_state(oldzone->zone_pgdat, NR_SHMEM);
552                         __inc_node_state(newzone->zone_pgdat, NR_SHMEM);
553                 }
554                 if (dirty && mapping_cap_account_dirty(mapping)) {
555                         __dec_node_state(oldzone->zone_pgdat, NR_FILE_DIRTY);
556                         __dec_zone_state(oldzone, NR_ZONE_WRITE_PENDING);
557                         __inc_node_state(newzone->zone_pgdat, NR_FILE_DIRTY);
558                         __inc_zone_state(newzone, NR_ZONE_WRITE_PENDING);
559                 }
560         }
561         local_irq_enable();
562
563         return MIGRATEPAGE_SUCCESS;
564 }
565 EXPORT_SYMBOL(migrate_page_move_mapping);
566
567 /*
568  * The expected number of remaining references is the same as that
569  * of migrate_page_move_mapping().
570  */
571 int migrate_huge_page_move_mapping(struct address_space *mapping,
572                                    struct page *newpage, struct page *page)
573 {
574         int expected_count;
575         void **pslot;
576
577         spin_lock_irq(&mapping->tree_lock);
578
579         pslot = radix_tree_lookup_slot(&mapping->page_tree,
580                                         page_index(page));
581
582         expected_count = 2 + page_has_private(page);
583         if (page_count(page) != expected_count ||
584                 radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
585                 spin_unlock_irq(&mapping->tree_lock);
586                 return -EAGAIN;
587         }
588
589         if (!page_ref_freeze(page, expected_count)) {
590                 spin_unlock_irq(&mapping->tree_lock);
591                 return -EAGAIN;
592         }
593
594         newpage->index = page->index;
595         newpage->mapping = page->mapping;
596
597         get_page(newpage);
598
599         radix_tree_replace_slot(&mapping->page_tree, pslot, newpage);
600
601         page_ref_unfreeze(page, expected_count - 1);
602
603         spin_unlock_irq(&mapping->tree_lock);
604
605         return MIGRATEPAGE_SUCCESS;
606 }
607
608 /*
609  * Gigantic pages are so large that we do not guarantee that page++ pointer
610  * arithmetic will work across the entire page.  We need something more
611  * specialized.
612  */
613 static void __copy_gigantic_page(struct page *dst, struct page *src,
614                                 int nr_pages)
615 {
616         int i;
617         struct page *dst_base = dst;
618         struct page *src_base = src;
619
620         for (i = 0; i < nr_pages; ) {
621                 cond_resched();
622                 copy_highpage(dst, src);
623
624                 i++;
625                 dst = mem_map_next(dst, dst_base, i);
626                 src = mem_map_next(src, src_base, i);
627         }
628 }
629
630 static void copy_huge_page(struct page *dst, struct page *src)
631 {
632         int i;
633         int nr_pages;
634
635         if (PageHuge(src)) {
636                 /* hugetlbfs page */
637                 struct hstate *h = page_hstate(src);
638                 nr_pages = pages_per_huge_page(h);
639
640                 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
641                         __copy_gigantic_page(dst, src, nr_pages);
642                         return;
643                 }
644         } else {
645                 /* thp page */
646                 BUG_ON(!PageTransHuge(src));
647                 nr_pages = hpage_nr_pages(src);
648         }
649
650         for (i = 0; i < nr_pages; i++) {
651                 cond_resched();
652                 copy_highpage(dst + i, src + i);
653         }
654 }
655
656 /*
657  * Copy the page to its new location
658  */
659 void migrate_page_states(struct page *newpage, struct page *page)
660 {
661         int cpupid;
662
663         if (PageError(page))
664                 SetPageError(newpage);
665         if (PageReferenced(page))
666                 SetPageReferenced(newpage);
667         if (PageUptodate(page))
668                 SetPageUptodate(newpage);
669         if (TestClearPageActive(page)) {
670                 VM_BUG_ON_PAGE(PageUnevictable(page), page);
671                 SetPageActive(newpage);
672         } else if (TestClearPageUnevictable(page))
673                 SetPageUnevictable(newpage);
674         if (PageChecked(page))
675                 SetPageChecked(newpage);
676         if (PageMappedToDisk(page))
677                 SetPageMappedToDisk(newpage);
678
679         /* Move dirty on pages not done by migrate_page_move_mapping() */
680         if (PageDirty(page))
681                 SetPageDirty(newpage);
682
683         if (page_is_young(page))
684                 set_page_young(newpage);
685         if (page_is_idle(page))
686                 set_page_idle(newpage);
687
688         /*
689          * Copy NUMA information to the new page, to prevent over-eager
690          * future migrations of this same page.
691          */
692         cpupid = page_cpupid_xchg_last(page, -1);
693         page_cpupid_xchg_last(newpage, cpupid);
694
695         ksm_migrate_page(newpage, page);
696         /*
697          * Please do not reorder this without considering how mm/ksm.c's
698          * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
699          */
700         if (PageSwapCache(page))
701                 ClearPageSwapCache(page);
702         ClearPagePrivate(page);
703         set_page_private(page, 0);
704
705         /*
706          * If any waiters have accumulated on the new page then
707          * wake them up.
708          */
709         if (PageWriteback(newpage))
710                 end_page_writeback(newpage);
711
712         copy_page_owner(page, newpage);
713
714         mem_cgroup_migrate(page, newpage);
715 }
716 EXPORT_SYMBOL(migrate_page_states);
717
718 void migrate_page_copy(struct page *newpage, struct page *page)
719 {
720         if (PageHuge(page) || PageTransHuge(page))
721                 copy_huge_page(newpage, page);
722         else
723                 copy_highpage(newpage, page);
724
725         migrate_page_states(newpage, page);
726 }
727 EXPORT_SYMBOL(migrate_page_copy);
728
729 /************************************************************
730  *                    Migration functions
731  ***********************************************************/
732
733 /*
734  * Common logic to directly migrate a single LRU page suitable for
735  * pages that do not use PagePrivate/PagePrivate2.
736  *
737  * Pages are locked upon entry and exit.
738  */
739 int migrate_page(struct address_space *mapping,
740                 struct page *newpage, struct page *page,
741                 enum migrate_mode mode)
742 {
743         int rc;
744
745         BUG_ON(PageWriteback(page));    /* Writeback must be complete */
746
747         rc = migrate_page_move_mapping(mapping, newpage, page, NULL, mode, 0);
748
749         if (rc != MIGRATEPAGE_SUCCESS)
750                 return rc;
751
752         if (mode != MIGRATE_SYNC_NO_COPY)
753                 migrate_page_copy(newpage, page);
754         else
755                 migrate_page_states(newpage, page);
756         return MIGRATEPAGE_SUCCESS;
757 }
758 EXPORT_SYMBOL(migrate_page);
759
760 #ifdef CONFIG_BLOCK
761 /*
762  * Migration function for pages with buffers. This function can only be used
763  * if the underlying filesystem guarantees that no other references to "page"
764  * exist.
765  */
766 int buffer_migrate_page(struct address_space *mapping,
767                 struct page *newpage, struct page *page, enum migrate_mode mode)
768 {
769         struct buffer_head *bh, *head;
770         int rc;
771
772         if (!page_has_buffers(page))
773                 return migrate_page(mapping, newpage, page, mode);
774
775         head = page_buffers(page);
776
777         rc = migrate_page_move_mapping(mapping, newpage, page, head, mode, 0);
778
779         if (rc != MIGRATEPAGE_SUCCESS)
780                 return rc;
781
782         /*
783          * In the async case, migrate_page_move_mapping locked the buffers
784          * with an IRQ-safe spinlock held. In the sync case, the buffers
785          * need to be locked now
786          */
787         if (mode != MIGRATE_ASYNC)
788                 BUG_ON(!buffer_migrate_lock_buffers(head, mode));
789
790         ClearPagePrivate(page);
791         set_page_private(newpage, page_private(page));
792         set_page_private(page, 0);
793         put_page(page);
794         get_page(newpage);
795
796         bh = head;
797         do {
798                 set_bh_page(bh, newpage, bh_offset(bh));
799                 bh = bh->b_this_page;
800
801         } while (bh != head);
802
803         SetPagePrivate(newpage);
804
805         if (mode != MIGRATE_SYNC_NO_COPY)
806                 migrate_page_copy(newpage, page);
807         else
808                 migrate_page_states(newpage, page);
809
810         bh = head;
811         do {
812                 unlock_buffer(bh);
813                 put_bh(bh);
814                 bh = bh->b_this_page;
815
816         } while (bh != head);
817
818         return MIGRATEPAGE_SUCCESS;
819 }
820 EXPORT_SYMBOL(buffer_migrate_page);
821 #endif
822
823 /*
824  * Writeback a page to clean the dirty state
825  */
826 static int writeout(struct address_space *mapping, struct page *page)
827 {
828         struct writeback_control wbc = {
829                 .sync_mode = WB_SYNC_NONE,
830                 .nr_to_write = 1,
831                 .range_start = 0,
832                 .range_end = LLONG_MAX,
833                 .for_reclaim = 1
834         };
835         int rc;
836
837         if (!mapping->a_ops->writepage)
838                 /* No write method for the address space */
839                 return -EINVAL;
840
841         if (!clear_page_dirty_for_io(page))
842                 /* Someone else already triggered a write */
843                 return -EAGAIN;
844
845         /*
846          * A dirty page may imply that the underlying filesystem has
847          * the page on some queue. So the page must be clean for
848          * migration. Writeout may mean we loose the lock and the
849          * page state is no longer what we checked for earlier.
850          * At this point we know that the migration attempt cannot
851          * be successful.
852          */
853         remove_migration_ptes(page, page, false);
854
855         rc = mapping->a_ops->writepage(page, &wbc);
856
857         if (rc != AOP_WRITEPAGE_ACTIVATE)
858                 /* unlocked. Relock */
859                 lock_page(page);
860
861         return (rc < 0) ? -EIO : -EAGAIN;
862 }
863
864 /*
865  * Default handling if a filesystem does not provide a migration function.
866  */
867 static int fallback_migrate_page(struct address_space *mapping,
868         struct page *newpage, struct page *page, enum migrate_mode mode)
869 {
870         if (PageDirty(page)) {
871                 /* Only writeback pages in full synchronous migration */
872                 switch (mode) {
873                 case MIGRATE_SYNC:
874                 case MIGRATE_SYNC_NO_COPY:
875                         break;
876                 default:
877                         return -EBUSY;
878                 }
879                 return writeout(mapping, page);
880         }
881
882         /*
883          * Buffers may be managed in a filesystem specific way.
884          * We must have no buffers or drop them.
885          */
886         if (page_has_private(page) &&
887             !try_to_release_page(page, GFP_KERNEL))
888                 return -EAGAIN;
889
890         return migrate_page(mapping, newpage, page, mode);
891 }
892
893 /*
894  * Move a page to a newly allocated page
895  * The page is locked and all ptes have been successfully removed.
896  *
897  * The new page will have replaced the old page if this function
898  * is successful.
899  *
900  * Return value:
901  *   < 0 - error code
902  *  MIGRATEPAGE_SUCCESS - success
903  */
904 static int move_to_new_page(struct page *newpage, struct page *page,
905                                 enum migrate_mode mode)
906 {
907         struct address_space *mapping;
908         int rc = -EAGAIN;
909         bool is_lru = !__PageMovable(page);
910
911         VM_BUG_ON_PAGE(!PageLocked(page), page);
912         VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
913
914         mapping = page_mapping(page);
915
916         if (likely(is_lru)) {
917                 if (!mapping)
918                         rc = migrate_page(mapping, newpage, page, mode);
919                 else if (mapping->a_ops->migratepage)
920                         /*
921                          * Most pages have a mapping and most filesystems
922                          * provide a migratepage callback. Anonymous pages
923                          * are part of swap space which also has its own
924                          * migratepage callback. This is the most common path
925                          * for page migration.
926                          */
927                         rc = mapping->a_ops->migratepage(mapping, newpage,
928                                                         page, mode);
929                 else
930                         rc = fallback_migrate_page(mapping, newpage,
931                                                         page, mode);
932         } else {
933                 /*
934                  * In case of non-lru page, it could be released after
935                  * isolation step. In that case, we shouldn't try migration.
936                  */
937                 VM_BUG_ON_PAGE(!PageIsolated(page), page);
938                 if (!PageMovable(page)) {
939                         rc = MIGRATEPAGE_SUCCESS;
940                         __ClearPageIsolated(page);
941                         goto out;
942                 }
943
944                 rc = mapping->a_ops->migratepage(mapping, newpage,
945                                                 page, mode);
946                 WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS &&
947                         !PageIsolated(page));
948         }
949
950         /*
951          * When successful, old pagecache page->mapping must be cleared before
952          * page is freed; but stats require that PageAnon be left as PageAnon.
953          */
954         if (rc == MIGRATEPAGE_SUCCESS) {
955                 if (__PageMovable(page)) {
956                         VM_BUG_ON_PAGE(!PageIsolated(page), page);
957
958                         /*
959                          * We clear PG_movable under page_lock so any compactor
960                          * cannot try to migrate this page.
961                          */
962                         __ClearPageIsolated(page);
963                 }
964
965                 /*
966                  * Anonymous and movable page->mapping will be cleard by
967                  * free_pages_prepare so don't reset it here for keeping
968                  * the type to work PageAnon, for example.
969                  */
970                 if (!PageMappingFlags(page))
971                         page->mapping = NULL;
972         }
973 out:
974         return rc;
975 }
976
977 static int __unmap_and_move(struct page *page, struct page *newpage,
978                                 int force, enum migrate_mode mode)
979 {
980         int rc = -EAGAIN;
981         int page_was_mapped = 0;
982         struct anon_vma *anon_vma = NULL;
983         bool is_lru = !__PageMovable(page);
984
985         if (!trylock_page(page)) {
986                 if (!force || mode == MIGRATE_ASYNC)
987                         goto out;
988
989                 /*
990                  * It's not safe for direct compaction to call lock_page.
991                  * For example, during page readahead pages are added locked
992                  * to the LRU. Later, when the IO completes the pages are
993                  * marked uptodate and unlocked. However, the queueing
994                  * could be merging multiple pages for one bio (e.g.
995                  * mpage_readpages). If an allocation happens for the
996                  * second or third page, the process can end up locking
997                  * the same page twice and deadlocking. Rather than
998                  * trying to be clever about what pages can be locked,
999                  * avoid the use of lock_page for direct compaction
1000                  * altogether.
1001                  */
1002                 if (current->flags & PF_MEMALLOC)
1003                         goto out;
1004
1005                 lock_page(page);
1006         }
1007
1008         if (PageWriteback(page)) {
1009                 /*
1010                  * Only in the case of a full synchronous migration is it
1011                  * necessary to wait for PageWriteback. In the async case,
1012                  * the retry loop is too short and in the sync-light case,
1013                  * the overhead of stalling is too much
1014                  */
1015                 switch (mode) {
1016                 case MIGRATE_SYNC:
1017                 case MIGRATE_SYNC_NO_COPY:
1018                         break;
1019                 default:
1020                         rc = -EBUSY;
1021                         goto out_unlock;
1022                 }
1023                 if (!force)
1024                         goto out_unlock;
1025                 wait_on_page_writeback(page);
1026         }
1027
1028         /*
1029          * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
1030          * we cannot notice that anon_vma is freed while we migrates a page.
1031          * This get_anon_vma() delays freeing anon_vma pointer until the end
1032          * of migration. File cache pages are no problem because of page_lock()
1033          * File Caches may use write_page() or lock_page() in migration, then,
1034          * just care Anon page here.
1035          *
1036          * Only page_get_anon_vma() understands the subtleties of
1037          * getting a hold on an anon_vma from outside one of its mms.
1038          * But if we cannot get anon_vma, then we won't need it anyway,
1039          * because that implies that the anon page is no longer mapped
1040          * (and cannot be remapped so long as we hold the page lock).
1041          */
1042         if (PageAnon(page) && !PageKsm(page))
1043                 anon_vma = page_get_anon_vma(page);
1044
1045         /*
1046          * Block others from accessing the new page when we get around to
1047          * establishing additional references. We are usually the only one
1048          * holding a reference to newpage at this point. We used to have a BUG
1049          * here if trylock_page(newpage) fails, but would like to allow for
1050          * cases where there might be a race with the previous use of newpage.
1051          * This is much like races on refcount of oldpage: just don't BUG().
1052          */
1053         if (unlikely(!trylock_page(newpage)))
1054                 goto out_unlock;
1055
1056         if (unlikely(!is_lru)) {
1057                 rc = move_to_new_page(newpage, page, mode);
1058                 goto out_unlock_both;
1059         }
1060
1061         /*
1062          * Corner case handling:
1063          * 1. When a new swap-cache page is read into, it is added to the LRU
1064          * and treated as swapcache but it has no rmap yet.
1065          * Calling try_to_unmap() against a page->mapping==NULL page will
1066          * trigger a BUG.  So handle it here.
1067          * 2. An orphaned page (see truncate_complete_page) might have
1068          * fs-private metadata. The page can be picked up due to memory
1069          * offlining.  Everywhere else except page reclaim, the page is
1070          * invisible to the vm, so the page can not be migrated.  So try to
1071          * free the metadata, so the page can be freed.
1072          */
1073         if (!page->mapping) {
1074                 VM_BUG_ON_PAGE(PageAnon(page), page);
1075                 if (page_has_private(page)) {
1076                         try_to_free_buffers(page);
1077                         goto out_unlock_both;
1078                 }
1079         } else if (page_mapped(page)) {
1080                 /* Establish migration ptes */
1081                 VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma,
1082                                 page);
1083                 try_to_unmap(page,
1084                         TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1085                 page_was_mapped = 1;
1086         }
1087
1088         if (!page_mapped(page))
1089                 rc = move_to_new_page(newpage, page, mode);
1090
1091         if (page_was_mapped)
1092                 remove_migration_ptes(page,
1093                         rc == MIGRATEPAGE_SUCCESS ? newpage : page, false);
1094
1095 out_unlock_both:
1096         unlock_page(newpage);
1097 out_unlock:
1098         /* Drop an anon_vma reference if we took one */
1099         if (anon_vma)
1100                 put_anon_vma(anon_vma);
1101         unlock_page(page);
1102 out:
1103         /*
1104          * If migration is successful, decrease refcount of the newpage
1105          * which will not free the page because new page owner increased
1106          * refcounter. As well, if it is LRU page, add the page to LRU
1107          * list in here.
1108          */
1109         if (rc == MIGRATEPAGE_SUCCESS) {
1110                 if (unlikely(__PageMovable(newpage)))
1111                         put_page(newpage);
1112                 else
1113                         putback_lru_page(newpage);
1114         }
1115
1116         return rc;
1117 }
1118
1119 /*
1120  * gcc 4.7 and 4.8 on arm get an ICEs when inlining unmap_and_move().  Work
1121  * around it.
1122  */
1123 #if (GCC_VERSION >= 40700 && GCC_VERSION < 40900) && defined(CONFIG_ARM)
1124 #define ICE_noinline noinline
1125 #else
1126 #define ICE_noinline
1127 #endif
1128
1129 /*
1130  * Obtain the lock on page, remove all ptes and migrate the page
1131  * to the newly allocated page in newpage.
1132  */
1133 static ICE_noinline int unmap_and_move(new_page_t get_new_page,
1134                                    free_page_t put_new_page,
1135                                    unsigned long private, struct page *page,
1136                                    int force, enum migrate_mode mode,
1137                                    enum migrate_reason reason)
1138 {
1139         int rc = MIGRATEPAGE_SUCCESS;
1140         struct page *newpage;
1141
1142         newpage = get_new_page(page, private);
1143         if (!newpage)
1144                 return -ENOMEM;
1145
1146         if (page_count(page) == 1) {
1147                 /* page was freed from under us. So we are done. */
1148                 ClearPageActive(page);
1149                 ClearPageUnevictable(page);
1150                 if (unlikely(__PageMovable(page))) {
1151                         lock_page(page);
1152                         if (!PageMovable(page))
1153                                 __ClearPageIsolated(page);
1154                         unlock_page(page);
1155                 }
1156                 if (put_new_page)
1157                         put_new_page(newpage, private);
1158                 else
1159                         put_page(newpage);
1160                 goto out;
1161         }
1162
1163         if (unlikely(PageTransHuge(page) && !PageTransHuge(newpage))) {
1164                 lock_page(page);
1165                 rc = split_huge_page(page);
1166                 unlock_page(page);
1167                 if (rc)
1168                         goto out;
1169         }
1170
1171         rc = __unmap_and_move(page, newpage, force, mode);
1172         if (rc == MIGRATEPAGE_SUCCESS)
1173                 set_page_owner_migrate_reason(newpage, reason);
1174
1175 out:
1176         if (rc != -EAGAIN) {
1177                 /*
1178                  * A page that has been migrated has all references
1179                  * removed and will be freed. A page that has not been
1180                  * migrated will have kepts its references and be
1181                  * restored.
1182                  */
1183                 list_del(&page->lru);
1184
1185                 /*
1186                  * Compaction can migrate also non-LRU pages which are
1187                  * not accounted to NR_ISOLATED_*. They can be recognized
1188                  * as __PageMovable
1189                  */
1190                 if (likely(!__PageMovable(page)))
1191                         mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
1192                                         page_is_file_cache(page), -hpage_nr_pages(page));
1193         }
1194
1195         /*
1196          * If migration is successful, releases reference grabbed during
1197          * isolation. Otherwise, restore the page to right list unless
1198          * we want to retry.
1199          */
1200         if (rc == MIGRATEPAGE_SUCCESS) {
1201                 put_page(page);
1202                 if (reason == MR_MEMORY_FAILURE) {
1203                         /*
1204                          * Set PG_HWPoison on just freed page
1205                          * intentionally. Although it's rather weird,
1206                          * it's how HWPoison flag works at the moment.
1207                          */
1208                         if (!test_set_page_hwpoison(page))
1209                                 num_poisoned_pages_inc();
1210                 }
1211         } else {
1212                 if (rc != -EAGAIN) {
1213                         if (likely(!__PageMovable(page))) {
1214                                 putback_lru_page(page);
1215                                 goto put_new;
1216                         }
1217
1218                         lock_page(page);
1219                         if (PageMovable(page))
1220                                 putback_movable_page(page);
1221                         else
1222                                 __ClearPageIsolated(page);
1223                         unlock_page(page);
1224                         put_page(page);
1225                 }
1226 put_new:
1227                 if (put_new_page)
1228                         put_new_page(newpage, private);
1229                 else
1230                         put_page(newpage);
1231         }
1232
1233         return rc;
1234 }
1235
1236 /*
1237  * Counterpart of unmap_and_move_page() for hugepage migration.
1238  *
1239  * This function doesn't wait the completion of hugepage I/O
1240  * because there is no race between I/O and migration for hugepage.
1241  * Note that currently hugepage I/O occurs only in direct I/O
1242  * where no lock is held and PG_writeback is irrelevant,
1243  * and writeback status of all subpages are counted in the reference
1244  * count of the head page (i.e. if all subpages of a 2MB hugepage are
1245  * under direct I/O, the reference of the head page is 512 and a bit more.)
1246  * This means that when we try to migrate hugepage whose subpages are
1247  * doing direct I/O, some references remain after try_to_unmap() and
1248  * hugepage migration fails without data corruption.
1249  *
1250  * There is also no race when direct I/O is issued on the page under migration,
1251  * because then pte is replaced with migration swap entry and direct I/O code
1252  * will wait in the page fault for migration to complete.
1253  */
1254 static int unmap_and_move_huge_page(new_page_t get_new_page,
1255                                 free_page_t put_new_page, unsigned long private,
1256                                 struct page *hpage, int force,
1257                                 enum migrate_mode mode, int reason)
1258 {
1259         int rc = -EAGAIN;
1260         int page_was_mapped = 0;
1261         struct page *new_hpage;
1262         struct anon_vma *anon_vma = NULL;
1263
1264         /*
1265          * Movability of hugepages depends on architectures and hugepage size.
1266          * This check is necessary because some callers of hugepage migration
1267          * like soft offline and memory hotremove don't walk through page
1268          * tables or check whether the hugepage is pmd-based or not before
1269          * kicking migration.
1270          */
1271         if (!hugepage_migration_supported(page_hstate(hpage))) {
1272                 putback_active_hugepage(hpage);
1273                 return -ENOSYS;
1274         }
1275
1276         new_hpage = get_new_page(hpage, private);
1277         if (!new_hpage)
1278                 return -ENOMEM;
1279
1280         if (!trylock_page(hpage)) {
1281                 if (!force)
1282                         goto out;
1283                 switch (mode) {
1284                 case MIGRATE_SYNC:
1285                 case MIGRATE_SYNC_NO_COPY:
1286                         break;
1287                 default:
1288                         goto out;
1289                 }
1290                 lock_page(hpage);
1291         }
1292
1293         if (PageAnon(hpage))
1294                 anon_vma = page_get_anon_vma(hpage);
1295
1296         if (unlikely(!trylock_page(new_hpage)))
1297                 goto put_anon;
1298
1299         if (page_mapped(hpage)) {
1300                 try_to_unmap(hpage,
1301                         TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1302                 page_was_mapped = 1;
1303         }
1304
1305         if (!page_mapped(hpage))
1306                 rc = move_to_new_page(new_hpage, hpage, mode);
1307
1308         if (page_was_mapped)
1309                 remove_migration_ptes(hpage,
1310                         rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, false);
1311
1312         unlock_page(new_hpage);
1313
1314 put_anon:
1315         if (anon_vma)
1316                 put_anon_vma(anon_vma);
1317
1318         if (rc == MIGRATEPAGE_SUCCESS) {
1319                 move_hugetlb_state(hpage, new_hpage, reason);
1320                 put_new_page = NULL;
1321         }
1322
1323         unlock_page(hpage);
1324 out:
1325         if (rc != -EAGAIN)
1326                 putback_active_hugepage(hpage);
1327         if (reason == MR_MEMORY_FAILURE && !test_set_page_hwpoison(hpage))
1328                 num_poisoned_pages_inc();
1329
1330         /*
1331          * If migration was not successful and there's a freeing callback, use
1332          * it.  Otherwise, put_page() will drop the reference grabbed during
1333          * isolation.
1334          */
1335         if (put_new_page)
1336                 put_new_page(new_hpage, private);
1337         else
1338                 putback_active_hugepage(new_hpage);
1339
1340         return rc;
1341 }
1342
1343 /*
1344  * migrate_pages - migrate the pages specified in a list, to the free pages
1345  *                 supplied as the target for the page migration
1346  *
1347  * @from:               The list of pages to be migrated.
1348  * @get_new_page:       The function used to allocate free pages to be used
1349  *                      as the target of the page migration.
1350  * @put_new_page:       The function used to free target pages if migration
1351  *                      fails, or NULL if no special handling is necessary.
1352  * @private:            Private data to be passed on to get_new_page()
1353  * @mode:               The migration mode that specifies the constraints for
1354  *                      page migration, if any.
1355  * @reason:             The reason for page migration.
1356  *
1357  * The function returns after 10 attempts or if no pages are movable any more
1358  * because the list has become empty or no retryable pages exist any more.
1359  * The caller should call putback_movable_pages() to return pages to the LRU
1360  * or free list only if ret != 0.
1361  *
1362  * Returns the number of pages that were not migrated, or an error code.
1363  */
1364 int migrate_pages(struct list_head *from, new_page_t get_new_page,
1365                 free_page_t put_new_page, unsigned long private,
1366                 enum migrate_mode mode, int reason)
1367 {
1368         int retry = 1;
1369         int nr_failed = 0;
1370         int nr_succeeded = 0;
1371         int pass = 0;
1372         struct page *page;
1373         struct page *page2;
1374         int swapwrite = current->flags & PF_SWAPWRITE;
1375         int rc;
1376
1377         if (!swapwrite)
1378                 current->flags |= PF_SWAPWRITE;
1379
1380         for(pass = 0; pass < 10 && retry; pass++) {
1381                 retry = 0;
1382
1383                 list_for_each_entry_safe(page, page2, from, lru) {
1384                         cond_resched();
1385
1386                         if (PageHuge(page))
1387                                 rc = unmap_and_move_huge_page(get_new_page,
1388                                                 put_new_page, private, page,
1389                                                 pass > 2, mode, reason);
1390                         else
1391                                 rc = unmap_and_move(get_new_page, put_new_page,
1392                                                 private, page, pass > 2, mode,
1393                                                 reason);
1394
1395                         switch(rc) {
1396                         case -ENOMEM:
1397                                 nr_failed++;
1398                                 goto out;
1399                         case -EAGAIN:
1400                                 retry++;
1401                                 break;
1402                         case MIGRATEPAGE_SUCCESS:
1403                                 nr_succeeded++;
1404                                 break;
1405                         default:
1406                                 /*
1407                                  * Permanent failure (-EBUSY, -ENOSYS, etc.):
1408                                  * unlike -EAGAIN case, the failed page is
1409                                  * removed from migration page list and not
1410                                  * retried in the next outer loop.
1411                                  */
1412                                 nr_failed++;
1413                                 break;
1414                         }
1415                 }
1416         }
1417         nr_failed += retry;
1418         rc = nr_failed;
1419 out:
1420         if (nr_succeeded)
1421                 count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1422         if (nr_failed)
1423                 count_vm_events(PGMIGRATE_FAIL, nr_failed);
1424         trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason);
1425
1426         if (!swapwrite)
1427                 current->flags &= ~PF_SWAPWRITE;
1428
1429         return rc;
1430 }
1431
1432 #ifdef CONFIG_NUMA
1433
1434 static int store_status(int __user *status, int start, int value, int nr)
1435 {
1436         while (nr-- > 0) {
1437                 if (put_user(value, status + start))
1438                         return -EFAULT;
1439                 start++;
1440         }
1441
1442         return 0;
1443 }
1444
1445 static int do_move_pages_to_node(struct mm_struct *mm,
1446                 struct list_head *pagelist, int node)
1447 {
1448         int err;
1449
1450         if (list_empty(pagelist))
1451                 return 0;
1452
1453         err = migrate_pages(pagelist, alloc_new_node_page, NULL, node,
1454                         MIGRATE_SYNC, MR_SYSCALL);
1455         if (err)
1456                 putback_movable_pages(pagelist);
1457         return err;
1458 }
1459
1460 /*
1461  * Resolves the given address to a struct page, isolates it from the LRU and
1462  * puts it to the given pagelist.
1463  * Returns -errno if the page cannot be found/isolated or 0 when it has been
1464  * queued or the page doesn't need to be migrated because it is already on
1465  * the target node
1466  */
1467 static int add_page_for_migration(struct mm_struct *mm, unsigned long addr,
1468                 int node, struct list_head *pagelist, bool migrate_all)
1469 {
1470         struct vm_area_struct *vma;
1471         struct page *page;
1472         unsigned int follflags;
1473         int err;
1474
1475         down_read(&mm->mmap_sem);
1476         err = -EFAULT;
1477         vma = find_vma(mm, addr);
1478         if (!vma || addr < vma->vm_start || !vma_migratable(vma))
1479                 goto out;
1480
1481         /* FOLL_DUMP to ignore special (like zero) pages */
1482         follflags = FOLL_GET | FOLL_DUMP;
1483         if (!thp_migration_supported())
1484                 follflags |= FOLL_SPLIT;
1485         page = follow_page(vma, addr, follflags);
1486
1487         err = PTR_ERR(page);
1488         if (IS_ERR(page))
1489                 goto out;
1490
1491         err = -ENOENT;
1492         if (!page)
1493                 goto out;
1494
1495         err = 0;
1496         if (page_to_nid(page) == node)
1497                 goto out_putpage;
1498
1499         err = -EACCES;
1500         if (page_mapcount(page) > 1 && !migrate_all)
1501                 goto out_putpage;
1502
1503         if (PageHuge(page)) {
1504                 if (PageHead(page)) {
1505                         isolate_huge_page(page, pagelist);
1506                         err = 0;
1507                 }
1508         } else {
1509                 struct page *head;
1510
1511                 head = compound_head(page);
1512                 err = isolate_lru_page(head);
1513                 if (err)
1514                         goto out_putpage;
1515
1516                 err = 0;
1517                 list_add_tail(&head->lru, pagelist);
1518                 mod_node_page_state(page_pgdat(head),
1519                         NR_ISOLATED_ANON + page_is_file_cache(head),
1520                         hpage_nr_pages(head));
1521         }
1522 out_putpage:
1523         /*
1524          * Either remove the duplicate refcount from
1525          * isolate_lru_page() or drop the page ref if it was
1526          * not isolated.
1527          */
1528         put_page(page);
1529 out:
1530         up_read(&mm->mmap_sem);
1531         return err;
1532 }
1533
1534 /*
1535  * Migrate an array of page address onto an array of nodes and fill
1536  * the corresponding array of status.
1537  */
1538 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1539                          unsigned long nr_pages,
1540                          const void __user * __user *pages,
1541                          const int __user *nodes,
1542                          int __user *status, int flags)
1543 {
1544         int current_node = NUMA_NO_NODE;
1545         LIST_HEAD(pagelist);
1546         int start, i;
1547         int err = 0, err1;
1548
1549         migrate_prep();
1550
1551         for (i = start = 0; i < nr_pages; i++) {
1552                 const void __user *p;
1553                 unsigned long addr;
1554                 int node;
1555
1556                 err = -EFAULT;
1557                 if (get_user(p, pages + i))
1558                         goto out_flush;
1559                 if (get_user(node, nodes + i))
1560                         goto out_flush;
1561                 addr = (unsigned long)p;
1562
1563                 err = -ENODEV;
1564                 if (node < 0 || node >= MAX_NUMNODES)
1565                         goto out_flush;
1566                 if (!node_state(node, N_MEMORY))
1567                         goto out_flush;
1568
1569                 err = -EACCES;
1570                 if (!node_isset(node, task_nodes))
1571                         goto out_flush;
1572
1573                 if (current_node == NUMA_NO_NODE) {
1574                         current_node = node;
1575                         start = i;
1576                 } else if (node != current_node) {
1577                         err = do_move_pages_to_node(mm, &pagelist, current_node);
1578                         if (err)
1579                                 goto out;
1580                         err = store_status(status, start, current_node, i - start);
1581                         if (err)
1582                                 goto out;
1583                         start = i;
1584                         current_node = node;
1585                 }
1586
1587                 /*
1588                  * Errors in the page lookup or isolation are not fatal and we simply
1589                  * report them via status
1590                  */
1591                 err = add_page_for_migration(mm, addr, current_node,
1592                                 &pagelist, flags & MPOL_MF_MOVE_ALL);
1593                 if (!err)
1594                         continue;
1595
1596                 err = store_status(status, i, err, 1);
1597                 if (err)
1598                         goto out_flush;
1599
1600                 err = do_move_pages_to_node(mm, &pagelist, current_node);
1601                 if (err)
1602                         goto out;
1603                 if (i > start) {
1604                         err = store_status(status, start, current_node, i - start);
1605                         if (err)
1606                                 goto out;
1607                 }
1608                 current_node = NUMA_NO_NODE;
1609         }
1610 out_flush:
1611         /* Make sure we do not overwrite the existing error */
1612         err1 = do_move_pages_to_node(mm, &pagelist, current_node);
1613         if (!err1)
1614                 err1 = store_status(status, start, current_node, i - start);
1615         if (!err)
1616                 err = err1;
1617 out:
1618         return err;
1619 }
1620
1621 /*
1622  * Determine the nodes of an array of pages and store it in an array of status.
1623  */
1624 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1625                                 const void __user **pages, int *status)
1626 {
1627         unsigned long i;
1628
1629         down_read(&mm->mmap_sem);
1630
1631         for (i = 0; i < nr_pages; i++) {
1632                 unsigned long addr = (unsigned long)(*pages);
1633                 struct vm_area_struct *vma;
1634                 struct page *page;
1635                 int err = -EFAULT;
1636
1637                 vma = find_vma(mm, addr);
1638                 if (!vma || addr < vma->vm_start)
1639                         goto set_status;
1640
1641                 /* FOLL_DUMP to ignore special (like zero) pages */
1642                 page = follow_page(vma, addr, FOLL_DUMP);
1643
1644                 err = PTR_ERR(page);
1645                 if (IS_ERR(page))
1646                         goto set_status;
1647
1648                 err = page ? page_to_nid(page) : -ENOENT;
1649 set_status:
1650                 *status = err;
1651
1652                 pages++;
1653                 status++;
1654         }
1655
1656         up_read(&mm->mmap_sem);
1657 }
1658
1659 /*
1660  * Determine the nodes of a user array of pages and store it in
1661  * a user array of status.
1662  */
1663 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1664                          const void __user * __user *pages,
1665                          int __user *status)
1666 {
1667 #define DO_PAGES_STAT_CHUNK_NR 16
1668         const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1669         int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1670
1671         while (nr_pages) {
1672                 unsigned long chunk_nr;
1673
1674                 chunk_nr = nr_pages;
1675                 if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1676                         chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1677
1678                 if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1679                         break;
1680
1681                 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1682
1683                 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1684                         break;
1685
1686                 pages += chunk_nr;
1687                 status += chunk_nr;
1688                 nr_pages -= chunk_nr;
1689         }
1690         return nr_pages ? -EFAULT : 0;
1691 }
1692
1693 /*
1694  * Move a list of pages in the address space of the currently executing
1695  * process.
1696  */
1697 static int kernel_move_pages(pid_t pid, unsigned long nr_pages,
1698                              const void __user * __user *pages,
1699                              const int __user *nodes,
1700                              int __user *status, int flags)
1701 {
1702         struct task_struct *task;
1703         struct mm_struct *mm;
1704         int err;
1705         nodemask_t task_nodes;
1706
1707         /* Check flags */
1708         if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1709                 return -EINVAL;
1710
1711         if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1712                 return -EPERM;
1713
1714         /* Find the mm_struct */
1715         rcu_read_lock();
1716         task = pid ? find_task_by_vpid(pid) : current;
1717         if (!task) {
1718                 rcu_read_unlock();
1719                 return -ESRCH;
1720         }
1721         get_task_struct(task);
1722
1723         /*
1724          * Check if this process has the right to modify the specified
1725          * process. Use the regular "ptrace_may_access()" checks.
1726          */
1727         if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1728                 rcu_read_unlock();
1729                 err = -EPERM;
1730                 goto out;
1731         }
1732         rcu_read_unlock();
1733
1734         err = security_task_movememory(task);
1735         if (err)
1736                 goto out;
1737
1738         task_nodes = cpuset_mems_allowed(task);
1739         mm = get_task_mm(task);
1740         put_task_struct(task);
1741
1742         if (!mm)
1743                 return -EINVAL;
1744
1745         if (nodes)
1746                 err = do_pages_move(mm, task_nodes, nr_pages, pages,
1747                                     nodes, status, flags);
1748         else
1749                 err = do_pages_stat(mm, nr_pages, pages, status);
1750
1751         mmput(mm);
1752         return err;
1753
1754 out:
1755         put_task_struct(task);
1756         return err;
1757 }
1758
1759 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1760                 const void __user * __user *, pages,
1761                 const int __user *, nodes,
1762                 int __user *, status, int, flags)
1763 {
1764         return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1765 }
1766
1767 #ifdef CONFIG_COMPAT
1768 COMPAT_SYSCALL_DEFINE6(move_pages, pid_t, pid, compat_ulong_t, nr_pages,
1769                        compat_uptr_t __user *, pages32,
1770                        const int __user *, nodes,
1771                        int __user *, status,
1772                        int, flags)
1773 {
1774         const void __user * __user *pages;
1775         int i;
1776
1777         pages = compat_alloc_user_space(nr_pages * sizeof(void *));
1778         for (i = 0; i < nr_pages; i++) {
1779                 compat_uptr_t p;
1780
1781                 if (get_user(p, pages32 + i) ||
1782                         put_user(compat_ptr(p), pages + i))
1783                         return -EFAULT;
1784         }
1785         return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1786 }
1787 #endif /* CONFIG_COMPAT */
1788
1789 #ifdef CONFIG_NUMA_BALANCING
1790 /*
1791  * Returns true if this is a safe migration target node for misplaced NUMA
1792  * pages. Currently it only checks the watermarks which crude
1793  */
1794 static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
1795                                    unsigned long nr_migrate_pages)
1796 {
1797         int z;
1798
1799         for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1800                 struct zone *zone = pgdat->node_zones + z;
1801
1802                 if (!populated_zone(zone))
1803                         continue;
1804
1805                 /* Avoid waking kswapd by allocating pages_to_migrate pages. */
1806                 if (!zone_watermark_ok(zone, 0,
1807                                        high_wmark_pages(zone) +
1808                                        nr_migrate_pages,
1809                                        0, 0))
1810                         continue;
1811                 return true;
1812         }
1813         return false;
1814 }
1815
1816 static struct page *alloc_misplaced_dst_page(struct page *page,
1817                                            unsigned long data)
1818 {
1819         int nid = (int) data;
1820         struct page *newpage;
1821
1822         newpage = __alloc_pages_node(nid,
1823                                          (GFP_HIGHUSER_MOVABLE |
1824                                           __GFP_THISNODE | __GFP_NOMEMALLOC |
1825                                           __GFP_NORETRY | __GFP_NOWARN) &
1826                                          ~__GFP_RECLAIM, 0);
1827
1828         return newpage;
1829 }
1830
1831 /*
1832  * page migration rate limiting control.
1833  * Do not migrate more than @pages_to_migrate in a @migrate_interval_millisecs
1834  * window of time. Default here says do not migrate more than 1280M per second.
1835  */
1836 static unsigned int migrate_interval_millisecs __read_mostly = 100;
1837 static unsigned int ratelimit_pages __read_mostly = 128 << (20 - PAGE_SHIFT);
1838
1839 /* Returns true if the node is migrate rate-limited after the update */
1840 static bool numamigrate_update_ratelimit(pg_data_t *pgdat,
1841                                         unsigned long nr_pages)
1842 {
1843         /*
1844          * Rate-limit the amount of data that is being migrated to a node.
1845          * Optimal placement is no good if the memory bus is saturated and
1846          * all the time is being spent migrating!
1847          */
1848         if (time_after(jiffies, pgdat->numabalancing_migrate_next_window)) {
1849                 spin_lock(&pgdat->numabalancing_migrate_lock);
1850                 pgdat->numabalancing_migrate_nr_pages = 0;
1851                 pgdat->numabalancing_migrate_next_window = jiffies +
1852                         msecs_to_jiffies(migrate_interval_millisecs);
1853                 spin_unlock(&pgdat->numabalancing_migrate_lock);
1854         }
1855         if (pgdat->numabalancing_migrate_nr_pages > ratelimit_pages) {
1856                 trace_mm_numa_migrate_ratelimit(current, pgdat->node_id,
1857                                                                 nr_pages);
1858                 return true;
1859         }
1860
1861         /*
1862          * This is an unlocked non-atomic update so errors are possible.
1863          * The consequences are failing to migrate when we potentiall should
1864          * have which is not severe enough to warrant locking. If it is ever
1865          * a problem, it can be converted to a per-cpu counter.
1866          */
1867         pgdat->numabalancing_migrate_nr_pages += nr_pages;
1868         return false;
1869 }
1870
1871 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
1872 {
1873         int page_lru;
1874
1875         VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
1876
1877         /* Avoid migrating to a node that is nearly full */
1878         if (!migrate_balanced_pgdat(pgdat, 1UL << compound_order(page)))
1879                 return 0;
1880
1881         if (isolate_lru_page(page))
1882                 return 0;
1883
1884         /*
1885          * migrate_misplaced_transhuge_page() skips page migration's usual
1886          * check on page_count(), so we must do it here, now that the page
1887          * has been isolated: a GUP pin, or any other pin, prevents migration.
1888          * The expected page count is 3: 1 for page's mapcount and 1 for the
1889          * caller's pin and 1 for the reference taken by isolate_lru_page().
1890          */
1891         if (PageTransHuge(page) && page_count(page) != 3) {
1892                 putback_lru_page(page);
1893                 return 0;
1894         }
1895
1896         page_lru = page_is_file_cache(page);
1897         mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_lru,
1898                                 hpage_nr_pages(page));
1899
1900         /*
1901          * Isolating the page has taken another reference, so the
1902          * caller's reference can be safely dropped without the page
1903          * disappearing underneath us during migration.
1904          */
1905         put_page(page);
1906         return 1;
1907 }
1908
1909 bool pmd_trans_migrating(pmd_t pmd)
1910 {
1911         struct page *page = pmd_page(pmd);
1912         return PageLocked(page);
1913 }
1914
1915 /*
1916  * Attempt to migrate a misplaced page to the specified destination
1917  * node. Caller is expected to have an elevated reference count on
1918  * the page that will be dropped by this function before returning.
1919  */
1920 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
1921                            int node)
1922 {
1923         pg_data_t *pgdat = NODE_DATA(node);
1924         int isolated;
1925         int nr_remaining;
1926         LIST_HEAD(migratepages);
1927
1928         /*
1929          * Don't migrate file pages that are mapped in multiple processes
1930          * with execute permissions as they are probably shared libraries.
1931          */
1932         if (page_mapcount(page) != 1 && page_is_file_cache(page) &&
1933             (vma->vm_flags & VM_EXEC))
1934                 goto out;
1935
1936         /*
1937          * Also do not migrate dirty pages as not all filesystems can move
1938          * dirty pages in MIGRATE_ASYNC mode which is a waste of cycles.
1939          */
1940         if (page_is_file_cache(page) && PageDirty(page))
1941                 goto out;
1942
1943         /*
1944          * Rate-limit the amount of data that is being migrated to a node.
1945          * Optimal placement is no good if the memory bus is saturated and
1946          * all the time is being spent migrating!
1947          */
1948         if (numamigrate_update_ratelimit(pgdat, 1))
1949                 goto out;
1950
1951         isolated = numamigrate_isolate_page(pgdat, page);
1952         if (!isolated)
1953                 goto out;
1954
1955         list_add(&page->lru, &migratepages);
1956         nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
1957                                      NULL, node, MIGRATE_ASYNC,
1958                                      MR_NUMA_MISPLACED);
1959         if (nr_remaining) {
1960                 if (!list_empty(&migratepages)) {
1961                         list_del(&page->lru);
1962                         dec_node_page_state(page, NR_ISOLATED_ANON +
1963                                         page_is_file_cache(page));
1964                         putback_lru_page(page);
1965                 }
1966                 isolated = 0;
1967         } else
1968                 count_vm_numa_event(NUMA_PAGE_MIGRATE);
1969         BUG_ON(!list_empty(&migratepages));
1970         return isolated;
1971
1972 out:
1973         put_page(page);
1974         return 0;
1975 }
1976 #endif /* CONFIG_NUMA_BALANCING */
1977
1978 #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
1979 /*
1980  * Migrates a THP to a given target node. page must be locked and is unlocked
1981  * before returning.
1982  */
1983 int migrate_misplaced_transhuge_page(struct mm_struct *mm,
1984                                 struct vm_area_struct *vma,
1985                                 pmd_t *pmd, pmd_t entry,
1986                                 unsigned long address,
1987                                 struct page *page, int node)
1988 {
1989         spinlock_t *ptl;
1990         pg_data_t *pgdat = NODE_DATA(node);
1991         int isolated = 0;
1992         struct page *new_page = NULL;
1993         int page_lru = page_is_file_cache(page);
1994         unsigned long mmun_start = address & HPAGE_PMD_MASK;
1995         unsigned long mmun_end = mmun_start + HPAGE_PMD_SIZE;
1996
1997         /*
1998          * Rate-limit the amount of data that is being migrated to a node.
1999          * Optimal placement is no good if the memory bus is saturated and
2000          * all the time is being spent migrating!
2001          */
2002         if (numamigrate_update_ratelimit(pgdat, HPAGE_PMD_NR))
2003                 goto out_dropref;
2004
2005         new_page = alloc_pages_node(node,
2006                 (GFP_TRANSHUGE_LIGHT | __GFP_THISNODE),
2007                 HPAGE_PMD_ORDER);
2008         if (!new_page)
2009                 goto out_fail;
2010         prep_transhuge_page(new_page);
2011
2012         isolated = numamigrate_isolate_page(pgdat, page);
2013         if (!isolated) {
2014                 put_page(new_page);
2015                 goto out_fail;
2016         }
2017
2018         /* Prepare a page as a migration target */
2019         __SetPageLocked(new_page);
2020         if (PageSwapBacked(page))
2021                 __SetPageSwapBacked(new_page);
2022
2023         /* anon mapping, we can simply copy page->mapping to the new page: */
2024         new_page->mapping = page->mapping;
2025         new_page->index = page->index;
2026         migrate_page_copy(new_page, page);
2027         WARN_ON(PageLRU(new_page));
2028
2029         /* Recheck the target PMD */
2030         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2031         ptl = pmd_lock(mm, pmd);
2032         if (unlikely(!pmd_same(*pmd, entry) || !page_ref_freeze(page, 2))) {
2033                 spin_unlock(ptl);
2034                 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2035
2036                 /* Reverse changes made by migrate_page_copy() */
2037                 if (TestClearPageActive(new_page))
2038                         SetPageActive(page);
2039                 if (TestClearPageUnevictable(new_page))
2040                         SetPageUnevictable(page);
2041
2042                 unlock_page(new_page);
2043                 put_page(new_page);             /* Free it */
2044
2045                 /* Retake the callers reference and putback on LRU */
2046                 get_page(page);
2047                 putback_lru_page(page);
2048                 mod_node_page_state(page_pgdat(page),
2049                          NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
2050
2051                 goto out_unlock;
2052         }
2053
2054         entry = mk_huge_pmd(new_page, vma->vm_page_prot);
2055         entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
2056
2057         /*
2058          * Clear the old entry under pagetable lock and establish the new PTE.
2059          * Any parallel GUP will either observe the old page blocking on the
2060          * page lock, block on the page table lock or observe the new page.
2061          * The SetPageUptodate on the new page and page_add_new_anon_rmap
2062          * guarantee the copy is visible before the pagetable update.
2063          */
2064         flush_cache_range(vma, mmun_start, mmun_end);
2065         page_add_anon_rmap(new_page, vma, mmun_start, true);
2066         pmdp_huge_clear_flush_notify(vma, mmun_start, pmd);
2067         set_pmd_at(mm, mmun_start, pmd, entry);
2068         update_mmu_cache_pmd(vma, address, &entry);
2069
2070         page_ref_unfreeze(page, 2);
2071         mlock_migrate_page(new_page, page);
2072         page_remove_rmap(page, true);
2073         set_page_owner_migrate_reason(new_page, MR_NUMA_MISPLACED);
2074
2075         spin_unlock(ptl);
2076         /*
2077          * No need to double call mmu_notifier->invalidate_range() callback as
2078          * the above pmdp_huge_clear_flush_notify() did already call it.
2079          */
2080         mmu_notifier_invalidate_range_only_end(mm, mmun_start, mmun_end);
2081
2082         /* Take an "isolate" reference and put new page on the LRU. */
2083         get_page(new_page);
2084         putback_lru_page(new_page);
2085
2086         unlock_page(new_page);
2087         unlock_page(page);
2088         put_page(page);                 /* Drop the rmap reference */
2089         put_page(page);                 /* Drop the LRU isolation reference */
2090
2091         count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
2092         count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);
2093
2094         mod_node_page_state(page_pgdat(page),
2095                         NR_ISOLATED_ANON + page_lru,
2096                         -HPAGE_PMD_NR);
2097         return isolated;
2098
2099 out_fail:
2100         count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
2101 out_dropref:
2102         ptl = pmd_lock(mm, pmd);
2103         if (pmd_same(*pmd, entry)) {
2104                 entry = pmd_modify(entry, vma->vm_page_prot);
2105                 set_pmd_at(mm, mmun_start, pmd, entry);
2106                 update_mmu_cache_pmd(vma, address, &entry);
2107         }
2108         spin_unlock(ptl);
2109
2110 out_unlock:
2111         unlock_page(page);
2112         put_page(page);
2113         return 0;
2114 }
2115 #endif /* CONFIG_NUMA_BALANCING */
2116
2117 #endif /* CONFIG_NUMA */
2118
2119 #if defined(CONFIG_MIGRATE_VMA_HELPER)
2120 struct migrate_vma {
2121         struct vm_area_struct   *vma;
2122         unsigned long           *dst;
2123         unsigned long           *src;
2124         unsigned long           cpages;
2125         unsigned long           npages;
2126         unsigned long           start;
2127         unsigned long           end;
2128 };
2129
2130 static int migrate_vma_collect_hole(unsigned long start,
2131                                     unsigned long end,
2132                                     struct mm_walk *walk)
2133 {
2134         struct migrate_vma *migrate = walk->private;
2135         unsigned long addr;
2136
2137         for (addr = start & PAGE_MASK; addr < end; addr += PAGE_SIZE) {
2138                 migrate->src[migrate->npages] = MIGRATE_PFN_MIGRATE;
2139                 migrate->dst[migrate->npages] = 0;
2140                 migrate->npages++;
2141                 migrate->cpages++;
2142         }
2143
2144         return 0;
2145 }
2146
2147 static int migrate_vma_collect_skip(unsigned long start,
2148                                     unsigned long end,
2149                                     struct mm_walk *walk)
2150 {
2151         struct migrate_vma *migrate = walk->private;
2152         unsigned long addr;
2153
2154         for (addr = start & PAGE_MASK; addr < end; addr += PAGE_SIZE) {
2155                 migrate->dst[migrate->npages] = 0;
2156                 migrate->src[migrate->npages++] = 0;
2157         }
2158
2159         return 0;
2160 }
2161
2162 static int migrate_vma_collect_pmd(pmd_t *pmdp,
2163                                    unsigned long start,
2164                                    unsigned long end,
2165                                    struct mm_walk *walk)
2166 {
2167         struct migrate_vma *migrate = walk->private;
2168         struct vm_area_struct *vma = walk->vma;
2169         struct mm_struct *mm = vma->vm_mm;
2170         unsigned long addr = start, unmapped = 0;
2171         spinlock_t *ptl;
2172         pte_t *ptep;
2173
2174 again:
2175         if (pmd_none(*pmdp))
2176                 return migrate_vma_collect_hole(start, end, walk);
2177
2178         if (pmd_trans_huge(*pmdp)) {
2179                 struct page *page;
2180
2181                 ptl = pmd_lock(mm, pmdp);
2182                 if (unlikely(!pmd_trans_huge(*pmdp))) {
2183                         spin_unlock(ptl);
2184                         goto again;
2185                 }
2186
2187                 page = pmd_page(*pmdp);
2188                 if (is_huge_zero_page(page)) {
2189                         spin_unlock(ptl);
2190                         split_huge_pmd(vma, pmdp, addr);
2191                         if (pmd_trans_unstable(pmdp))
2192                                 return migrate_vma_collect_skip(start, end,
2193                                                                 walk);
2194                 } else {
2195                         int ret;
2196
2197                         get_page(page);
2198                         spin_unlock(ptl);
2199                         if (unlikely(!trylock_page(page)))
2200                                 return migrate_vma_collect_skip(start, end,
2201                                                                 walk);
2202                         ret = split_huge_page(page);
2203                         unlock_page(page);
2204                         put_page(page);
2205                         if (ret)
2206                                 return migrate_vma_collect_skip(start, end,
2207                                                                 walk);
2208                         if (pmd_none(*pmdp))
2209                                 return migrate_vma_collect_hole(start, end,
2210                                                                 walk);
2211                 }
2212         }
2213
2214         if (unlikely(pmd_bad(*pmdp)))
2215                 return migrate_vma_collect_skip(start, end, walk);
2216
2217         ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2218         arch_enter_lazy_mmu_mode();
2219
2220         for (; addr < end; addr += PAGE_SIZE, ptep++) {
2221                 unsigned long mpfn, pfn;
2222                 struct page *page;
2223                 swp_entry_t entry;
2224                 pte_t pte;
2225
2226                 pte = *ptep;
2227                 pfn = pte_pfn(pte);
2228
2229                 if (pte_none(pte)) {
2230                         mpfn = MIGRATE_PFN_MIGRATE;
2231                         migrate->cpages++;
2232                         pfn = 0;
2233                         goto next;
2234                 }
2235
2236                 if (!pte_present(pte)) {
2237                         mpfn = pfn = 0;
2238
2239                         /*
2240                          * Only care about unaddressable device page special
2241                          * page table entry. Other special swap entries are not
2242                          * migratable, and we ignore regular swapped page.
2243                          */
2244                         entry = pte_to_swp_entry(pte);
2245                         if (!is_device_private_entry(entry))
2246                                 goto next;
2247
2248                         page = device_private_entry_to_page(entry);
2249                         mpfn = migrate_pfn(page_to_pfn(page))|
2250                                 MIGRATE_PFN_DEVICE | MIGRATE_PFN_MIGRATE;
2251                         if (is_write_device_private_entry(entry))
2252                                 mpfn |= MIGRATE_PFN_WRITE;
2253                 } else {
2254                         if (is_zero_pfn(pfn)) {
2255                                 mpfn = MIGRATE_PFN_MIGRATE;
2256                                 migrate->cpages++;
2257                                 pfn = 0;
2258                                 goto next;
2259                         }
2260                         page = _vm_normal_page(migrate->vma, addr, pte, true);
2261                         mpfn = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE;
2262                         mpfn |= pte_write(pte) ? MIGRATE_PFN_WRITE : 0;
2263                 }
2264
2265                 /* FIXME support THP */
2266                 if (!page || !page->mapping || PageTransCompound(page)) {
2267                         mpfn = pfn = 0;
2268                         goto next;
2269                 }
2270                 pfn = page_to_pfn(page);
2271
2272                 /*
2273                  * By getting a reference on the page we pin it and that blocks
2274                  * any kind of migration. Side effect is that it "freezes" the
2275                  * pte.
2276                  *
2277                  * We drop this reference after isolating the page from the lru
2278                  * for non device page (device page are not on the lru and thus
2279                  * can't be dropped from it).
2280                  */
2281                 get_page(page);
2282                 migrate->cpages++;
2283
2284                 /*
2285                  * Optimize for the common case where page is only mapped once
2286                  * in one process. If we can lock the page, then we can safely
2287                  * set up a special migration page table entry now.
2288                  */
2289                 if (trylock_page(page)) {
2290                         pte_t swp_pte;
2291
2292                         mpfn |= MIGRATE_PFN_LOCKED;
2293                         ptep_get_and_clear(mm, addr, ptep);
2294
2295                         /* Setup special migration page table entry */
2296                         entry = make_migration_entry(page, mpfn &
2297                                                      MIGRATE_PFN_WRITE);
2298                         swp_pte = swp_entry_to_pte(entry);
2299                         if (pte_soft_dirty(pte))
2300                                 swp_pte = pte_swp_mksoft_dirty(swp_pte);
2301                         set_pte_at(mm, addr, ptep, swp_pte);
2302
2303                         /*
2304                          * This is like regular unmap: we remove the rmap and
2305                          * drop page refcount. Page won't be freed, as we took
2306                          * a reference just above.
2307                          */
2308                         page_remove_rmap(page, false);
2309                         put_page(page);
2310
2311                         if (pte_present(pte))
2312                                 unmapped++;
2313                 }
2314
2315 next:
2316                 migrate->dst[migrate->npages] = 0;
2317                 migrate->src[migrate->npages++] = mpfn;
2318         }
2319         arch_leave_lazy_mmu_mode();
2320         pte_unmap_unlock(ptep - 1, ptl);
2321
2322         /* Only flush the TLB if we actually modified any entries */
2323         if (unmapped)
2324                 flush_tlb_range(walk->vma, start, end);
2325
2326         return 0;
2327 }
2328
2329 /*
2330  * migrate_vma_collect() - collect pages over a range of virtual addresses
2331  * @migrate: migrate struct containing all migration information
2332  *
2333  * This will walk the CPU page table. For each virtual address backed by a
2334  * valid page, it updates the src array and takes a reference on the page, in
2335  * order to pin the page until we lock it and unmap it.
2336  */
2337 static void migrate_vma_collect(struct migrate_vma *migrate)
2338 {
2339         struct mm_walk mm_walk;
2340
2341         mm_walk.pmd_entry = migrate_vma_collect_pmd;
2342         mm_walk.pte_entry = NULL;
2343         mm_walk.pte_hole = migrate_vma_collect_hole;
2344         mm_walk.hugetlb_entry = NULL;
2345         mm_walk.test_walk = NULL;
2346         mm_walk.vma = migrate->vma;
2347         mm_walk.mm = migrate->vma->vm_mm;
2348         mm_walk.private = migrate;
2349
2350         mmu_notifier_invalidate_range_start(mm_walk.mm,
2351                                             migrate->start,
2352                                             migrate->end);
2353         walk_page_range(migrate->start, migrate->end, &mm_walk);
2354         mmu_notifier_invalidate_range_end(mm_walk.mm,
2355                                           migrate->start,
2356                                           migrate->end);
2357
2358         migrate->end = migrate->start + (migrate->npages << PAGE_SHIFT);
2359 }
2360
2361 /*
2362  * migrate_vma_check_page() - check if page is pinned or not
2363  * @page: struct page to check
2364  *
2365  * Pinned pages cannot be migrated. This is the same test as in
2366  * migrate_page_move_mapping(), except that here we allow migration of a
2367  * ZONE_DEVICE page.
2368  */
2369 static bool migrate_vma_check_page(struct page *page)
2370 {
2371         /*
2372          * One extra ref because caller holds an extra reference, either from
2373          * isolate_lru_page() for a regular page, or migrate_vma_collect() for
2374          * a device page.
2375          */
2376         int extra = 1;
2377
2378         /*
2379          * FIXME support THP (transparent huge page), it is bit more complex to
2380          * check them than regular pages, because they can be mapped with a pmd
2381          * or with a pte (split pte mapping).
2382          */
2383         if (PageCompound(page))
2384                 return false;
2385
2386         /* Page from ZONE_DEVICE have one extra reference */
2387         if (is_zone_device_page(page)) {
2388                 /*
2389                  * Private page can never be pin as they have no valid pte and
2390                  * GUP will fail for those. Yet if there is a pending migration
2391                  * a thread might try to wait on the pte migration entry and
2392                  * will bump the page reference count. Sadly there is no way to
2393                  * differentiate a regular pin from migration wait. Hence to
2394                  * avoid 2 racing thread trying to migrate back to CPU to enter
2395                  * infinite loop (one stoping migration because the other is
2396                  * waiting on pte migration entry). We always return true here.
2397                  *
2398                  * FIXME proper solution is to rework migration_entry_wait() so
2399                  * it does not need to take a reference on page.
2400                  */
2401                 if (is_device_private_page(page))
2402                         return true;
2403
2404                 /*
2405                  * Only allow device public page to be migrated and account for
2406                  * the extra reference count imply by ZONE_DEVICE pages.
2407                  */
2408                 if (!is_device_public_page(page))
2409                         return false;
2410                 extra++;
2411         }
2412
2413         /* For file back page */
2414         if (page_mapping(page))
2415                 extra += 1 + page_has_private(page);
2416
2417         if ((page_count(page) - extra) > page_mapcount(page))
2418                 return false;
2419
2420         return true;
2421 }
2422
2423 /*
2424  * migrate_vma_prepare() - lock pages and isolate them from the lru
2425  * @migrate: migrate struct containing all migration information
2426  *
2427  * This locks pages that have been collected by migrate_vma_collect(). Once each
2428  * page is locked it is isolated from the lru (for non-device pages). Finally,
2429  * the ref taken by migrate_vma_collect() is dropped, as locked pages cannot be
2430  * migrated by concurrent kernel threads.
2431  */
2432 static void migrate_vma_prepare(struct migrate_vma *migrate)
2433 {
2434         const unsigned long npages = migrate->npages;
2435         const unsigned long start = migrate->start;
2436         unsigned long addr, i, restore = 0;
2437         bool allow_drain = true;
2438
2439         lru_add_drain();
2440
2441         for (i = 0; (i < npages) && migrate->cpages; i++) {
2442                 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2443                 bool remap = true;
2444
2445                 if (!page)
2446                         continue;
2447
2448                 if (!(migrate->src[i] & MIGRATE_PFN_LOCKED)) {
2449                         /*
2450                          * Because we are migrating several pages there can be
2451                          * a deadlock between 2 concurrent migration where each
2452                          * are waiting on each other page lock.
2453                          *
2454                          * Make migrate_vma() a best effort thing and backoff
2455                          * for any page we can not lock right away.
2456                          */
2457                         if (!trylock_page(page)) {
2458                                 migrate->src[i] = 0;
2459                                 migrate->cpages--;
2460                                 put_page(page);
2461                                 continue;
2462                         }
2463                         remap = false;
2464                         migrate->src[i] |= MIGRATE_PFN_LOCKED;
2465                 }
2466
2467                 /* ZONE_DEVICE pages are not on LRU */
2468                 if (!is_zone_device_page(page)) {
2469                         if (!PageLRU(page) && allow_drain) {
2470                                 /* Drain CPU's pagevec */
2471                                 lru_add_drain_all();
2472                                 allow_drain = false;
2473                         }
2474
2475                         if (isolate_lru_page(page)) {
2476                                 if (remap) {
2477                                         migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2478                                         migrate->cpages--;
2479                                         restore++;
2480                                 } else {
2481                                         migrate->src[i] = 0;
2482                                         unlock_page(page);
2483                                         migrate->cpages--;
2484                                         put_page(page);
2485                                 }
2486                                 continue;
2487                         }
2488
2489                         /* Drop the reference we took in collect */
2490                         put_page(page);
2491                 }
2492
2493                 if (!migrate_vma_check_page(page)) {
2494                         if (remap) {
2495                                 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2496                                 migrate->cpages--;
2497                                 restore++;
2498
2499                                 if (!is_zone_device_page(page)) {
2500                                         get_page(page);
2501                                         putback_lru_page(page);
2502                                 }
2503                         } else {
2504                                 migrate->src[i] = 0;
2505                                 unlock_page(page);
2506                                 migrate->cpages--;
2507
2508                                 if (!is_zone_device_page(page))
2509                                         putback_lru_page(page);
2510                                 else
2511                                         put_page(page);
2512                         }
2513                 }
2514         }
2515
2516         for (i = 0, addr = start; i < npages && restore; i++, addr += PAGE_SIZE) {
2517                 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2518
2519                 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2520                         continue;
2521
2522                 remove_migration_pte(page, migrate->vma, addr, page);
2523
2524                 migrate->src[i] = 0;
2525                 unlock_page(page);
2526                 put_page(page);
2527                 restore--;
2528         }
2529 }
2530
2531 /*
2532  * migrate_vma_unmap() - replace page mapping with special migration pte entry
2533  * @migrate: migrate struct containing all migration information
2534  *
2535  * Replace page mapping (CPU page table pte) with a special migration pte entry
2536  * and check again if it has been pinned. Pinned pages are restored because we
2537  * cannot migrate them.
2538  *
2539  * This is the last step before we call the device driver callback to allocate
2540  * destination memory and copy contents of original page over to new page.
2541  */
2542 static void migrate_vma_unmap(struct migrate_vma *migrate)
2543 {
2544         int flags = TTU_MIGRATION | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
2545         const unsigned long npages = migrate->npages;
2546         const unsigned long start = migrate->start;
2547         unsigned long addr, i, restore = 0;
2548
2549         for (i = 0; i < npages; i++) {
2550                 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2551
2552                 if (!page || !(migrate->src[i] & MIGRATE_PFN_MIGRATE))
2553                         continue;
2554
2555                 if (page_mapped(page)) {
2556                         try_to_unmap(page, flags);
2557                         if (page_mapped(page))
2558                                 goto restore;
2559                 }
2560
2561                 if (migrate_vma_check_page(page))
2562                         continue;
2563
2564 restore:
2565                 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2566                 migrate->cpages--;
2567                 restore++;
2568         }
2569
2570         for (addr = start, i = 0; i < npages && restore; addr += PAGE_SIZE, i++) {
2571                 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2572
2573                 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2574                         continue;
2575
2576                 remove_migration_ptes(page, page, false);
2577
2578                 migrate->src[i] = 0;
2579                 unlock_page(page);
2580                 restore--;
2581
2582                 if (is_zone_device_page(page))
2583                         put_page(page);
2584                 else
2585                         putback_lru_page(page);
2586         }
2587 }
2588
2589 static void migrate_vma_insert_page(struct migrate_vma *migrate,
2590                                     unsigned long addr,
2591                                     struct page *page,
2592                                     unsigned long *src,
2593                                     unsigned long *dst)
2594 {
2595         struct vm_area_struct *vma = migrate->vma;
2596         struct mm_struct *mm = vma->vm_mm;
2597         struct mem_cgroup *memcg;
2598         bool flush = false;
2599         spinlock_t *ptl;
2600         pte_t entry;
2601         pgd_t *pgdp;
2602         p4d_t *p4dp;
2603         pud_t *pudp;
2604         pmd_t *pmdp;
2605         pte_t *ptep;
2606
2607         /* Only allow populating anonymous memory */
2608         if (!vma_is_anonymous(vma))
2609                 goto abort;
2610
2611         pgdp = pgd_offset(mm, addr);
2612         p4dp = p4d_alloc(mm, pgdp, addr);
2613         if (!p4dp)
2614                 goto abort;
2615         pudp = pud_alloc(mm, p4dp, addr);
2616         if (!pudp)
2617                 goto abort;
2618         pmdp = pmd_alloc(mm, pudp, addr);
2619         if (!pmdp)
2620                 goto abort;
2621
2622         if (pmd_trans_huge(*pmdp) || pmd_devmap(*pmdp))
2623                 goto abort;
2624
2625         /*
2626          * Use pte_alloc() instead of pte_alloc_map().  We can't run
2627          * pte_offset_map() on pmds where a huge pmd might be created
2628          * from a different thread.
2629          *
2630          * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
2631          * parallel threads are excluded by other means.
2632          *
2633          * Here we only have down_read(mmap_sem).
2634          */
2635         if (pte_alloc(mm, pmdp, addr))
2636                 goto abort;
2637
2638         /* See the comment in pte_alloc_one_map() */
2639         if (unlikely(pmd_trans_unstable(pmdp)))
2640                 goto abort;
2641
2642         if (unlikely(anon_vma_prepare(vma)))
2643                 goto abort;
2644         if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL, &memcg, false))
2645                 goto abort;
2646
2647         /*
2648          * The memory barrier inside __SetPageUptodate makes sure that
2649          * preceding stores to the page contents become visible before
2650          * the set_pte_at() write.
2651          */
2652         __SetPageUptodate(page);
2653
2654         if (is_zone_device_page(page)) {
2655                 if (is_device_private_page(page)) {
2656                         swp_entry_t swp_entry;
2657
2658                         swp_entry = make_device_private_entry(page, vma->vm_flags & VM_WRITE);
2659                         entry = swp_entry_to_pte(swp_entry);
2660                 } else if (is_device_public_page(page)) {
2661                         entry = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot)));
2662                         if (vma->vm_flags & VM_WRITE)
2663                                 entry = pte_mkwrite(pte_mkdirty(entry));
2664                         entry = pte_mkdevmap(entry);
2665                 }
2666         } else {
2667                 entry = mk_pte(page, vma->vm_page_prot);
2668                 if (vma->vm_flags & VM_WRITE)
2669                         entry = pte_mkwrite(pte_mkdirty(entry));
2670         }
2671
2672         ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2673
2674         if (pte_present(*ptep)) {
2675                 unsigned long pfn = pte_pfn(*ptep);
2676
2677                 if (!is_zero_pfn(pfn)) {
2678                         pte_unmap_unlock(ptep, ptl);
2679                         mem_cgroup_cancel_charge(page, memcg, false);
2680                         goto abort;
2681                 }
2682                 flush = true;
2683         } else if (!pte_none(*ptep)) {
2684                 pte_unmap_unlock(ptep, ptl);
2685                 mem_cgroup_cancel_charge(page, memcg, false);
2686                 goto abort;
2687         }
2688
2689         /*
2690          * Check for usefaultfd but do not deliver the fault. Instead,
2691          * just back off.
2692          */
2693         if (userfaultfd_missing(vma)) {
2694                 pte_unmap_unlock(ptep, ptl);
2695                 mem_cgroup_cancel_charge(page, memcg, false);
2696                 goto abort;
2697         }
2698
2699         inc_mm_counter(mm, MM_ANONPAGES);
2700         page_add_new_anon_rmap(page, vma, addr, false);
2701         mem_cgroup_commit_charge(page, memcg, false, false);
2702         if (!is_zone_device_page(page))
2703                 lru_cache_add_active_or_unevictable(page, vma);
2704         get_page(page);
2705
2706         if (flush) {
2707                 flush_cache_page(vma, addr, pte_pfn(*ptep));
2708                 ptep_clear_flush_notify(vma, addr, ptep);
2709                 set_pte_at_notify(mm, addr, ptep, entry);
2710                 update_mmu_cache(vma, addr, ptep);
2711         } else {
2712                 /* No need to invalidate - it was non-present before */
2713                 set_pte_at(mm, addr, ptep, entry);
2714                 update_mmu_cache(vma, addr, ptep);
2715         }
2716
2717         pte_unmap_unlock(ptep, ptl);
2718         *src = MIGRATE_PFN_MIGRATE;
2719         return;
2720
2721 abort:
2722         *src &= ~MIGRATE_PFN_MIGRATE;
2723 }
2724
2725 /*
2726  * migrate_vma_pages() - migrate meta-data from src page to dst page
2727  * @migrate: migrate struct containing all migration information
2728  *
2729  * This migrates struct page meta-data from source struct page to destination
2730  * struct page. This effectively finishes the migration from source page to the
2731  * destination page.
2732  */
2733 static void migrate_vma_pages(struct migrate_vma *migrate)
2734 {
2735         const unsigned long npages = migrate->npages;
2736         const unsigned long start = migrate->start;
2737         struct vm_area_struct *vma = migrate->vma;
2738         struct mm_struct *mm = vma->vm_mm;
2739         unsigned long addr, i, mmu_start;
2740         bool notified = false;
2741
2742         for (i = 0, addr = start; i < npages; addr += PAGE_SIZE, i++) {
2743                 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
2744                 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2745                 struct address_space *mapping;
2746                 int r;
2747
2748                 if (!newpage) {
2749                         migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2750                         continue;
2751                 }
2752
2753                 if (!page) {
2754                         if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE)) {
2755                                 continue;
2756                         }
2757                         if (!notified) {
2758                                 mmu_start = addr;
2759                                 notified = true;
2760                                 mmu_notifier_invalidate_range_start(mm,
2761                                                                 mmu_start,
2762                                                                 migrate->end);
2763                         }
2764                         migrate_vma_insert_page(migrate, addr, newpage,
2765                                                 &migrate->src[i],
2766                                                 &migrate->dst[i]);
2767                         continue;
2768                 }
2769
2770                 mapping = page_mapping(page);
2771
2772                 if (is_zone_device_page(newpage)) {
2773                         if (is_device_private_page(newpage)) {
2774                                 /*
2775                                  * For now only support private anonymous when
2776                                  * migrating to un-addressable device memory.
2777                                  */
2778                                 if (mapping) {
2779                                         migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2780                                         continue;
2781                                 }
2782                         } else if (!is_device_public_page(newpage)) {
2783                                 /*
2784                                  * Other types of ZONE_DEVICE page are not
2785                                  * supported.
2786                                  */
2787                                 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2788                                 continue;
2789                         }
2790                 }
2791
2792                 r = migrate_page(mapping, newpage, page, MIGRATE_SYNC_NO_COPY);
2793                 if (r != MIGRATEPAGE_SUCCESS)
2794                         migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2795         }
2796
2797         /*
2798          * No need to double call mmu_notifier->invalidate_range() callback as
2799          * the above ptep_clear_flush_notify() inside migrate_vma_insert_page()
2800          * did already call it.
2801          */
2802         if (notified)
2803                 mmu_notifier_invalidate_range_only_end(mm, mmu_start,
2804                                                        migrate->end);
2805 }
2806
2807 /*
2808  * migrate_vma_finalize() - restore CPU page table entry
2809  * @migrate: migrate struct containing all migration information
2810  *
2811  * This replaces the special migration pte entry with either a mapping to the
2812  * new page if migration was successful for that page, or to the original page
2813  * otherwise.
2814  *
2815  * This also unlocks the pages and puts them back on the lru, or drops the extra
2816  * refcount, for device pages.
2817  */
2818 static void migrate_vma_finalize(struct migrate_vma *migrate)
2819 {
2820         const unsigned long npages = migrate->npages;
2821         unsigned long i;
2822
2823         for (i = 0; i < npages; i++) {
2824                 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
2825                 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2826
2827                 if (!page) {
2828                         if (newpage) {
2829                                 unlock_page(newpage);
2830                                 put_page(newpage);
2831                         }
2832                         continue;
2833                 }
2834
2835                 if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE) || !newpage) {
2836                         if (newpage) {
2837                                 unlock_page(newpage);
2838                                 put_page(newpage);
2839                         }
2840                         newpage = page;
2841                 }
2842
2843                 remove_migration_ptes(page, newpage, false);
2844                 unlock_page(page);
2845                 migrate->cpages--;
2846
2847                 if (is_zone_device_page(page))
2848                         put_page(page);
2849                 else
2850                         putback_lru_page(page);
2851
2852                 if (newpage != page) {
2853                         unlock_page(newpage);
2854                         if (is_zone_device_page(newpage))
2855                                 put_page(newpage);
2856                         else
2857                                 putback_lru_page(newpage);
2858                 }
2859         }
2860 }
2861
2862 /*
2863  * migrate_vma() - migrate a range of memory inside vma
2864  *
2865  * @ops: migration callback for allocating destination memory and copying
2866  * @vma: virtual memory area containing the range to be migrated
2867  * @start: start address of the range to migrate (inclusive)
2868  * @end: end address of the range to migrate (exclusive)
2869  * @src: array of hmm_pfn_t containing source pfns
2870  * @dst: array of hmm_pfn_t containing destination pfns
2871  * @private: pointer passed back to each of the callback
2872  * Returns: 0 on success, error code otherwise
2873  *
2874  * This function tries to migrate a range of memory virtual address range, using
2875  * callbacks to allocate and copy memory from source to destination. First it
2876  * collects all the pages backing each virtual address in the range, saving this
2877  * inside the src array. Then it locks those pages and unmaps them. Once the pages
2878  * are locked and unmapped, it checks whether each page is pinned or not. Pages
2879  * that aren't pinned have the MIGRATE_PFN_MIGRATE flag set (by this function)
2880  * in the corresponding src array entry. It then restores any pages that are
2881  * pinned, by remapping and unlocking those pages.
2882  *
2883  * At this point it calls the alloc_and_copy() callback. For documentation on
2884  * what is expected from that callback, see struct migrate_vma_ops comments in
2885  * include/linux/migrate.h
2886  *
2887  * After the alloc_and_copy() callback, this function goes over each entry in
2888  * the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag
2889  * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set,
2890  * then the function tries to migrate struct page information from the source
2891  * struct page to the destination struct page. If it fails to migrate the struct
2892  * page information, then it clears the MIGRATE_PFN_MIGRATE flag in the src
2893  * array.
2894  *
2895  * At this point all successfully migrated pages have an entry in the src
2896  * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst
2897  * array entry with MIGRATE_PFN_VALID flag set.
2898  *
2899  * It then calls the finalize_and_map() callback. See comments for "struct
2900  * migrate_vma_ops", in include/linux/migrate.h for details about
2901  * finalize_and_map() behavior.
2902  *
2903  * After the finalize_and_map() callback, for successfully migrated pages, this
2904  * function updates the CPU page table to point to new pages, otherwise it
2905  * restores the CPU page table to point to the original source pages.
2906  *
2907  * Function returns 0 after the above steps, even if no pages were migrated
2908  * (The function only returns an error if any of the arguments are invalid.)
2909  *
2910  * Both src and dst array must be big enough for (end - start) >> PAGE_SHIFT
2911  * unsigned long entries.
2912  */
2913 int migrate_vma(const struct migrate_vma_ops *ops,
2914                 struct vm_area_struct *vma,
2915                 unsigned long start,
2916                 unsigned long end,
2917                 unsigned long *src,
2918                 unsigned long *dst,
2919                 void *private)
2920 {
2921         struct migrate_vma migrate;
2922
2923         /* Sanity check the arguments */
2924         start &= PAGE_MASK;
2925         end &= PAGE_MASK;
2926         if (!vma || is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_SPECIAL))
2927                 return -EINVAL;
2928         if (start < vma->vm_start || start >= vma->vm_end)
2929                 return -EINVAL;
2930         if (end <= vma->vm_start || end > vma->vm_end)
2931                 return -EINVAL;
2932         if (!ops || !src || !dst || start >= end)
2933                 return -EINVAL;
2934
2935         memset(src, 0, sizeof(*src) * ((end - start) >> PAGE_SHIFT));
2936         migrate.src = src;
2937         migrate.dst = dst;
2938         migrate.start = start;
2939         migrate.npages = 0;
2940         migrate.cpages = 0;
2941         migrate.end = end;
2942         migrate.vma = vma;
2943
2944         /* Collect, and try to unmap source pages */
2945         migrate_vma_collect(&migrate);
2946         if (!migrate.cpages)
2947                 return 0;
2948
2949         /* Lock and isolate page */
2950         migrate_vma_prepare(&migrate);
2951         if (!migrate.cpages)
2952                 return 0;
2953
2954         /* Unmap pages */
2955         migrate_vma_unmap(&migrate);
2956         if (!migrate.cpages)
2957                 return 0;
2958
2959         /*
2960          * At this point pages are locked and unmapped, and thus they have
2961          * stable content and can safely be copied to destination memory that
2962          * is allocated by the callback.
2963          *
2964          * Note that migration can fail in migrate_vma_struct_page() for each
2965          * individual page.
2966          */
2967         ops->alloc_and_copy(vma, src, dst, start, end, private);
2968
2969         /* This does the real migration of struct page */
2970         migrate_vma_pages(&migrate);
2971
2972         ops->finalize_and_map(vma, src, dst, start, end, private);
2973
2974         /* Unlock and remap pages */
2975         migrate_vma_finalize(&migrate);
2976
2977         return 0;
2978 }
2979 EXPORT_SYMBOL(migrate_vma);
2980 #endif /* defined(MIGRATE_VMA_HELPER) */