OSDN Git Service

mm: enforce min addr even if capable() in expand_downwards()
[android-x86/kernel.git] / mm / mmap.c
1 /*
2  * mm/mmap.c
3  *
4  * Written by obz.
5  *
6  * Address space accounting code        <alan@lxorguk.ukuu.org.uk>
7  */
8
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10
11 #include <linux/kernel.h>
12 #include <linux/slab.h>
13 #include <linux/backing-dev.h>
14 #include <linux/mm.h>
15 #include <linux/vmacache.h>
16 #include <linux/shm.h>
17 #include <linux/mman.h>
18 #include <linux/pagemap.h>
19 #include <linux/swap.h>
20 #include <linux/syscalls.h>
21 #include <linux/capability.h>
22 #include <linux/init.h>
23 #include <linux/file.h>
24 #include <linux/fs.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/hugetlb.h>
28 #include <linux/shmem_fs.h>
29 #include <linux/profile.h>
30 #include <linux/export.h>
31 #include <linux/mount.h>
32 #include <linux/mempolicy.h>
33 #include <linux/rmap.h>
34 #include <linux/mmu_notifier.h>
35 #include <linux/mmdebug.h>
36 #include <linux/perf_event.h>
37 #include <linux/audit.h>
38 #include <linux/khugepaged.h>
39 #include <linux/uprobes.h>
40 #include <linux/rbtree_augmented.h>
41 #include <linux/notifier.h>
42 #include <linux/memory.h>
43 #include <linux/printk.h>
44 #include <linux/userfaultfd_k.h>
45 #include <linux/moduleparam.h>
46 #include <linux/pkeys.h>
47
48 #include <asm/uaccess.h>
49 #include <asm/cacheflush.h>
50 #include <asm/tlb.h>
51 #include <asm/mmu_context.h>
52
53 #include "internal.h"
54
55 #ifndef arch_mmap_check
56 #define arch_mmap_check(addr, len, flags)       (0)
57 #endif
58
59 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
60 const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN;
61 const int mmap_rnd_bits_max = CONFIG_ARCH_MMAP_RND_BITS_MAX;
62 int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS;
63 #endif
64 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
65 const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN;
66 const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX;
67 int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS;
68 #endif
69
70 static bool ignore_rlimit_data;
71 core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644);
72
73 static void unmap_region(struct mm_struct *mm,
74                 struct vm_area_struct *vma, struct vm_area_struct *prev,
75                 unsigned long start, unsigned long end);
76
77 /* description of effects of mapping type and prot in current implementation.
78  * this is due to the limited x86 page protection hardware.  The expected
79  * behavior is in parens:
80  *
81  * map_type     prot
82  *              PROT_NONE       PROT_READ       PROT_WRITE      PROT_EXEC
83  * MAP_SHARED   r: (no) no      r: (yes) yes    r: (no) yes     r: (no) yes
84  *              w: (no) no      w: (no) no      w: (yes) yes    w: (no) no
85  *              x: (no) no      x: (no) yes     x: (no) yes     x: (yes) yes
86  *
87  * MAP_PRIVATE  r: (no) no      r: (yes) yes    r: (no) yes     r: (no) yes
88  *              w: (no) no      w: (no) no      w: (copy) copy  w: (no) no
89  *              x: (no) no      x: (no) yes     x: (no) yes     x: (yes) yes
90  *
91  * On arm64, PROT_EXEC has the following behaviour for both MAP_SHARED and
92  * MAP_PRIVATE:
93  *                                                              r: (no) no
94  *                                                              w: (no) no
95  *                                                              x: (yes) yes
96  */
97 pgprot_t protection_map[16] = {
98         __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
99         __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
100 };
101
102 pgprot_t vm_get_page_prot(unsigned long vm_flags)
103 {
104         return __pgprot(pgprot_val(protection_map[vm_flags &
105                                 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
106                         pgprot_val(arch_vm_get_page_prot(vm_flags)));
107 }
108 EXPORT_SYMBOL(vm_get_page_prot);
109
110 static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags)
111 {
112         return pgprot_modify(oldprot, vm_get_page_prot(vm_flags));
113 }
114
115 /* Update vma->vm_page_prot to reflect vma->vm_flags. */
116 void vma_set_page_prot(struct vm_area_struct *vma)
117 {
118         unsigned long vm_flags = vma->vm_flags;
119         pgprot_t vm_page_prot;
120
121         vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags);
122         if (vma_wants_writenotify(vma, vm_page_prot)) {
123                 vm_flags &= ~VM_SHARED;
124                 vm_page_prot = vm_pgprot_modify(vm_page_prot, vm_flags);
125         }
126         /* remove_protection_ptes reads vma->vm_page_prot without mmap_sem */
127         WRITE_ONCE(vma->vm_page_prot, vm_page_prot);
128 }
129
130 /*
131  * Requires inode->i_mapping->i_mmap_rwsem
132  */
133 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
134                 struct file *file, struct address_space *mapping)
135 {
136         if (vma->vm_flags & VM_DENYWRITE)
137                 atomic_inc(&file_inode(file)->i_writecount);
138         if (vma->vm_flags & VM_SHARED)
139                 mapping_unmap_writable(mapping);
140
141         flush_dcache_mmap_lock(mapping);
142         vma_interval_tree_remove(vma, &mapping->i_mmap);
143         flush_dcache_mmap_unlock(mapping);
144 }
145
146 /*
147  * Unlink a file-based vm structure from its interval tree, to hide
148  * vma from rmap and vmtruncate before freeing its page tables.
149  */
150 void unlink_file_vma(struct vm_area_struct *vma)
151 {
152         struct file *file = vma->vm_file;
153
154         if (file) {
155                 struct address_space *mapping = file->f_mapping;
156                 i_mmap_lock_write(mapping);
157                 __remove_shared_vm_struct(vma, file, mapping);
158                 i_mmap_unlock_write(mapping);
159         }
160 }
161
162 /*
163  * Close a vm structure and free it, returning the next.
164  */
165 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
166 {
167         struct vm_area_struct *next = vma->vm_next;
168
169         might_sleep();
170         if (vma->vm_ops && vma->vm_ops->close)
171                 vma->vm_ops->close(vma);
172         if (vma->vm_file)
173                 fput(vma->vm_file);
174         mpol_put(vma_policy(vma));
175         kmem_cache_free(vm_area_cachep, vma);
176         return next;
177 }
178
179 static int do_brk(unsigned long addr, unsigned long len);
180
181 SYSCALL_DEFINE1(brk, unsigned long, brk)
182 {
183         unsigned long retval;
184         unsigned long newbrk, oldbrk;
185         struct mm_struct *mm = current->mm;
186         struct vm_area_struct *next;
187         unsigned long min_brk;
188         bool populate;
189
190         if (down_write_killable(&mm->mmap_sem))
191                 return -EINTR;
192
193 #ifdef CONFIG_COMPAT_BRK
194         /*
195          * CONFIG_COMPAT_BRK can still be overridden by setting
196          * randomize_va_space to 2, which will still cause mm->start_brk
197          * to be arbitrarily shifted
198          */
199         if (current->brk_randomized)
200                 min_brk = mm->start_brk;
201         else
202                 min_brk = mm->end_data;
203 #else
204         min_brk = mm->start_brk;
205 #endif
206         if (brk < min_brk)
207                 goto out;
208
209         /*
210          * Check against rlimit here. If this check is done later after the test
211          * of oldbrk with newbrk then it can escape the test and let the data
212          * segment grow beyond its set limit the in case where the limit is
213          * not page aligned -Ram Gupta
214          */
215         if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,
216                               mm->end_data, mm->start_data))
217                 goto out;
218
219         newbrk = PAGE_ALIGN(brk);
220         oldbrk = PAGE_ALIGN(mm->brk);
221         if (oldbrk == newbrk)
222                 goto set_brk;
223
224         /* Always allow shrinking brk. */
225         if (brk <= mm->brk) {
226                 if (!do_munmap(mm, newbrk, oldbrk-newbrk))
227                         goto set_brk;
228                 goto out;
229         }
230
231         /* Check against existing mmap mappings. */
232         next = find_vma(mm, oldbrk);
233         if (next && newbrk + PAGE_SIZE > vm_start_gap(next))
234                 goto out;
235
236         /* Ok, looks good - let it rip. */
237         if (do_brk(oldbrk, newbrk-oldbrk) < 0)
238                 goto out;
239
240 set_brk:
241         mm->brk = brk;
242         populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0;
243         up_write(&mm->mmap_sem);
244         if (populate)
245                 mm_populate(oldbrk, newbrk - oldbrk);
246         return brk;
247
248 out:
249         retval = mm->brk;
250         up_write(&mm->mmap_sem);
251         return retval;
252 }
253
254 static long vma_compute_subtree_gap(struct vm_area_struct *vma)
255 {
256         unsigned long max, prev_end, subtree_gap;
257
258         /*
259          * Note: in the rare case of a VM_GROWSDOWN above a VM_GROWSUP, we
260          * allow two stack_guard_gaps between them here, and when choosing
261          * an unmapped area; whereas when expanding we only require one.
262          * That's a little inconsistent, but keeps the code here simpler.
263          */
264         max = vm_start_gap(vma);
265         if (vma->vm_prev) {
266                 prev_end = vm_end_gap(vma->vm_prev);
267                 if (max > prev_end)
268                         max -= prev_end;
269                 else
270                         max = 0;
271         }
272         if (vma->vm_rb.rb_left) {
273                 subtree_gap = rb_entry(vma->vm_rb.rb_left,
274                                 struct vm_area_struct, vm_rb)->rb_subtree_gap;
275                 if (subtree_gap > max)
276                         max = subtree_gap;
277         }
278         if (vma->vm_rb.rb_right) {
279                 subtree_gap = rb_entry(vma->vm_rb.rb_right,
280                                 struct vm_area_struct, vm_rb)->rb_subtree_gap;
281                 if (subtree_gap > max)
282                         max = subtree_gap;
283         }
284         return max;
285 }
286
287 #ifdef CONFIG_DEBUG_VM_RB
288 static int browse_rb(struct mm_struct *mm)
289 {
290         struct rb_root *root = &mm->mm_rb;
291         int i = 0, j, bug = 0;
292         struct rb_node *nd, *pn = NULL;
293         unsigned long prev = 0, pend = 0;
294
295         for (nd = rb_first(root); nd; nd = rb_next(nd)) {
296                 struct vm_area_struct *vma;
297                 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
298                 if (vma->vm_start < prev) {
299                         pr_emerg("vm_start %lx < prev %lx\n",
300                                   vma->vm_start, prev);
301                         bug = 1;
302                 }
303                 if (vma->vm_start < pend) {
304                         pr_emerg("vm_start %lx < pend %lx\n",
305                                   vma->vm_start, pend);
306                         bug = 1;
307                 }
308                 if (vma->vm_start > vma->vm_end) {
309                         pr_emerg("vm_start %lx > vm_end %lx\n",
310                                   vma->vm_start, vma->vm_end);
311                         bug = 1;
312                 }
313                 spin_lock(&mm->page_table_lock);
314                 if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) {
315                         pr_emerg("free gap %lx, correct %lx\n",
316                                vma->rb_subtree_gap,
317                                vma_compute_subtree_gap(vma));
318                         bug = 1;
319                 }
320                 spin_unlock(&mm->page_table_lock);
321                 i++;
322                 pn = nd;
323                 prev = vma->vm_start;
324                 pend = vma->vm_end;
325         }
326         j = 0;
327         for (nd = pn; nd; nd = rb_prev(nd))
328                 j++;
329         if (i != j) {
330                 pr_emerg("backwards %d, forwards %d\n", j, i);
331                 bug = 1;
332         }
333         return bug ? -1 : i;
334 }
335
336 static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore)
337 {
338         struct rb_node *nd;
339
340         for (nd = rb_first(root); nd; nd = rb_next(nd)) {
341                 struct vm_area_struct *vma;
342                 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
343                 VM_BUG_ON_VMA(vma != ignore &&
344                         vma->rb_subtree_gap != vma_compute_subtree_gap(vma),
345                         vma);
346         }
347 }
348
349 static void validate_mm(struct mm_struct *mm)
350 {
351         int bug = 0;
352         int i = 0;
353         unsigned long highest_address = 0;
354         struct vm_area_struct *vma = mm->mmap;
355
356         while (vma) {
357                 struct anon_vma *anon_vma = vma->anon_vma;
358                 struct anon_vma_chain *avc;
359
360                 if (anon_vma) {
361                         anon_vma_lock_read(anon_vma);
362                         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
363                                 anon_vma_interval_tree_verify(avc);
364                         anon_vma_unlock_read(anon_vma);
365                 }
366
367                 highest_address = vm_end_gap(vma);
368                 vma = vma->vm_next;
369                 i++;
370         }
371         if (i != mm->map_count) {
372                 pr_emerg("map_count %d vm_next %d\n", mm->map_count, i);
373                 bug = 1;
374         }
375         if (highest_address != mm->highest_vm_end) {
376                 pr_emerg("mm->highest_vm_end %lx, found %lx\n",
377                           mm->highest_vm_end, highest_address);
378                 bug = 1;
379         }
380         i = browse_rb(mm);
381         if (i != mm->map_count) {
382                 if (i != -1)
383                         pr_emerg("map_count %d rb %d\n", mm->map_count, i);
384                 bug = 1;
385         }
386         VM_BUG_ON_MM(bug, mm);
387 }
388 #else
389 #define validate_mm_rb(root, ignore) do { } while (0)
390 #define validate_mm(mm) do { } while (0)
391 #endif
392
393 RB_DECLARE_CALLBACKS(static, vma_gap_callbacks, struct vm_area_struct, vm_rb,
394                      unsigned long, rb_subtree_gap, vma_compute_subtree_gap)
395
396 /*
397  * Update augmented rbtree rb_subtree_gap values after vma->vm_start or
398  * vma->vm_prev->vm_end values changed, without modifying the vma's position
399  * in the rbtree.
400  */
401 static void vma_gap_update(struct vm_area_struct *vma)
402 {
403         /*
404          * As it turns out, RB_DECLARE_CALLBACKS() already created a callback
405          * function that does exacltly what we want.
406          */
407         vma_gap_callbacks_propagate(&vma->vm_rb, NULL);
408 }
409
410 static inline void vma_rb_insert(struct vm_area_struct *vma,
411                                  struct rb_root *root)
412 {
413         /* All rb_subtree_gap values must be consistent prior to insertion */
414         validate_mm_rb(root, NULL);
415
416         rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
417 }
418
419 static void __vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root)
420 {
421         /*
422          * Note rb_erase_augmented is a fairly large inline function,
423          * so make sure we instantiate it only once with our desired
424          * augmented rbtree callbacks.
425          */
426         rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
427 }
428
429 static __always_inline void vma_rb_erase_ignore(struct vm_area_struct *vma,
430                                                 struct rb_root *root,
431                                                 struct vm_area_struct *ignore)
432 {
433         /*
434          * All rb_subtree_gap values must be consistent prior to erase,
435          * with the possible exception of the "next" vma being erased if
436          * next->vm_start was reduced.
437          */
438         validate_mm_rb(root, ignore);
439
440         __vma_rb_erase(vma, root);
441 }
442
443 static __always_inline void vma_rb_erase(struct vm_area_struct *vma,
444                                          struct rb_root *root)
445 {
446         /*
447          * All rb_subtree_gap values must be consistent prior to erase,
448          * with the possible exception of the vma being erased.
449          */
450         validate_mm_rb(root, vma);
451
452         __vma_rb_erase(vma, root);
453 }
454
455 /*
456  * vma has some anon_vma assigned, and is already inserted on that
457  * anon_vma's interval trees.
458  *
459  * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
460  * vma must be removed from the anon_vma's interval trees using
461  * anon_vma_interval_tree_pre_update_vma().
462  *
463  * After the update, the vma will be reinserted using
464  * anon_vma_interval_tree_post_update_vma().
465  *
466  * The entire update must be protected by exclusive mmap_sem and by
467  * the root anon_vma's mutex.
468  */
469 static inline void
470 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
471 {
472         struct anon_vma_chain *avc;
473
474         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
475                 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
476 }
477
478 static inline void
479 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
480 {
481         struct anon_vma_chain *avc;
482
483         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
484                 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
485 }
486
487 static int find_vma_links(struct mm_struct *mm, unsigned long addr,
488                 unsigned long end, struct vm_area_struct **pprev,
489                 struct rb_node ***rb_link, struct rb_node **rb_parent)
490 {
491         struct rb_node **__rb_link, *__rb_parent, *rb_prev;
492
493         __rb_link = &mm->mm_rb.rb_node;
494         rb_prev = __rb_parent = NULL;
495
496         while (*__rb_link) {
497                 struct vm_area_struct *vma_tmp;
498
499                 __rb_parent = *__rb_link;
500                 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
501
502                 if (vma_tmp->vm_end > addr) {
503                         /* Fail if an existing vma overlaps the area */
504                         if (vma_tmp->vm_start < end)
505                                 return -ENOMEM;
506                         __rb_link = &__rb_parent->rb_left;
507                 } else {
508                         rb_prev = __rb_parent;
509                         __rb_link = &__rb_parent->rb_right;
510                 }
511         }
512
513         *pprev = NULL;
514         if (rb_prev)
515                 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
516         *rb_link = __rb_link;
517         *rb_parent = __rb_parent;
518         return 0;
519 }
520
521 static unsigned long count_vma_pages_range(struct mm_struct *mm,
522                 unsigned long addr, unsigned long end)
523 {
524         unsigned long nr_pages = 0;
525         struct vm_area_struct *vma;
526
527         /* Find first overlaping mapping */
528         vma = find_vma_intersection(mm, addr, end);
529         if (!vma)
530                 return 0;
531
532         nr_pages = (min(end, vma->vm_end) -
533                 max(addr, vma->vm_start)) >> PAGE_SHIFT;
534
535         /* Iterate over the rest of the overlaps */
536         for (vma = vma->vm_next; vma; vma = vma->vm_next) {
537                 unsigned long overlap_len;
538
539                 if (vma->vm_start > end)
540                         break;
541
542                 overlap_len = min(end, vma->vm_end) - vma->vm_start;
543                 nr_pages += overlap_len >> PAGE_SHIFT;
544         }
545
546         return nr_pages;
547 }
548
549 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
550                 struct rb_node **rb_link, struct rb_node *rb_parent)
551 {
552         /* Update tracking information for the gap following the new vma. */
553         if (vma->vm_next)
554                 vma_gap_update(vma->vm_next);
555         else
556                 mm->highest_vm_end = vm_end_gap(vma);
557
558         /*
559          * vma->vm_prev wasn't known when we followed the rbtree to find the
560          * correct insertion point for that vma. As a result, we could not
561          * update the vma vm_rb parents rb_subtree_gap values on the way down.
562          * So, we first insert the vma with a zero rb_subtree_gap value
563          * (to be consistent with what we did on the way down), and then
564          * immediately update the gap to the correct value. Finally we
565          * rebalance the rbtree after all augmented values have been set.
566          */
567         rb_link_node(&vma->vm_rb, rb_parent, rb_link);
568         vma->rb_subtree_gap = 0;
569         vma_gap_update(vma);
570         vma_rb_insert(vma, &mm->mm_rb);
571 }
572
573 static void __vma_link_file(struct vm_area_struct *vma)
574 {
575         struct file *file;
576
577         file = vma->vm_file;
578         if (file) {
579                 struct address_space *mapping = file->f_mapping;
580
581                 if (vma->vm_flags & VM_DENYWRITE)
582                         atomic_dec(&file_inode(file)->i_writecount);
583                 if (vma->vm_flags & VM_SHARED)
584                         atomic_inc(&mapping->i_mmap_writable);
585
586                 flush_dcache_mmap_lock(mapping);
587                 vma_interval_tree_insert(vma, &mapping->i_mmap);
588                 flush_dcache_mmap_unlock(mapping);
589         }
590 }
591
592 static void
593 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
594         struct vm_area_struct *prev, struct rb_node **rb_link,
595         struct rb_node *rb_parent)
596 {
597         __vma_link_list(mm, vma, prev, rb_parent);
598         __vma_link_rb(mm, vma, rb_link, rb_parent);
599 }
600
601 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
602                         struct vm_area_struct *prev, struct rb_node **rb_link,
603                         struct rb_node *rb_parent)
604 {
605         struct address_space *mapping = NULL;
606
607         if (vma->vm_file) {
608                 mapping = vma->vm_file->f_mapping;
609                 i_mmap_lock_write(mapping);
610         }
611
612         __vma_link(mm, vma, prev, rb_link, rb_parent);
613         __vma_link_file(vma);
614
615         if (mapping)
616                 i_mmap_unlock_write(mapping);
617
618         mm->map_count++;
619         validate_mm(mm);
620 }
621
622 /*
623  * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
624  * mm's list and rbtree.  It has already been inserted into the interval tree.
625  */
626 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
627 {
628         struct vm_area_struct *prev;
629         struct rb_node **rb_link, *rb_parent;
630
631         if (find_vma_links(mm, vma->vm_start, vma->vm_end,
632                            &prev, &rb_link, &rb_parent))
633                 BUG();
634         __vma_link(mm, vma, prev, rb_link, rb_parent);
635         mm->map_count++;
636 }
637
638 static __always_inline void __vma_unlink_common(struct mm_struct *mm,
639                                                 struct vm_area_struct *vma,
640                                                 struct vm_area_struct *prev,
641                                                 bool has_prev,
642                                                 struct vm_area_struct *ignore)
643 {
644         struct vm_area_struct *next;
645
646         vma_rb_erase_ignore(vma, &mm->mm_rb, ignore);
647         next = vma->vm_next;
648         if (has_prev)
649                 prev->vm_next = next;
650         else {
651                 prev = vma->vm_prev;
652                 if (prev)
653                         prev->vm_next = next;
654                 else
655                         mm->mmap = next;
656         }
657         if (next)
658                 next->vm_prev = prev;
659
660         /* Kill the cache */
661         vmacache_invalidate(mm);
662 }
663
664 static inline void __vma_unlink_prev(struct mm_struct *mm,
665                                      struct vm_area_struct *vma,
666                                      struct vm_area_struct *prev)
667 {
668         __vma_unlink_common(mm, vma, prev, true, vma);
669 }
670
671 /*
672  * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
673  * is already present in an i_mmap tree without adjusting the tree.
674  * The following helper function should be used when such adjustments
675  * are necessary.  The "insert" vma (if any) is to be inserted
676  * before we drop the necessary locks.
677  */
678 int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
679         unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
680         struct vm_area_struct *expand)
681 {
682         struct mm_struct *mm = vma->vm_mm;
683         struct vm_area_struct *next = vma->vm_next, *orig_vma = vma;
684         struct address_space *mapping = NULL;
685         struct rb_root *root = NULL;
686         struct anon_vma *anon_vma = NULL;
687         struct file *file = vma->vm_file;
688         bool start_changed = false, end_changed = false;
689         long adjust_next = 0;
690         int remove_next = 0;
691
692         if (next && !insert) {
693                 struct vm_area_struct *exporter = NULL, *importer = NULL;
694
695                 if (end >= next->vm_end) {
696                         /*
697                          * vma expands, overlapping all the next, and
698                          * perhaps the one after too (mprotect case 6).
699                          * The only other cases that gets here are
700                          * case 1, case 7 and case 8.
701                          */
702                         if (next == expand) {
703                                 /*
704                                  * The only case where we don't expand "vma"
705                                  * and we expand "next" instead is case 8.
706                                  */
707                                 VM_WARN_ON(end != next->vm_end);
708                                 /*
709                                  * remove_next == 3 means we're
710                                  * removing "vma" and that to do so we
711                                  * swapped "vma" and "next".
712                                  */
713                                 remove_next = 3;
714                                 VM_WARN_ON(file != next->vm_file);
715                                 swap(vma, next);
716                         } else {
717                                 VM_WARN_ON(expand != vma);
718                                 /*
719                                  * case 1, 6, 7, remove_next == 2 is case 6,
720                                  * remove_next == 1 is case 1 or 7.
721                                  */
722                                 remove_next = 1 + (end > next->vm_end);
723                                 VM_WARN_ON(remove_next == 2 &&
724                                            end != next->vm_next->vm_end);
725                                 VM_WARN_ON(remove_next == 1 &&
726                                            end != next->vm_end);
727                                 /* trim end to next, for case 6 first pass */
728                                 end = next->vm_end;
729                         }
730
731                         exporter = next;
732                         importer = vma;
733
734                         /*
735                          * If next doesn't have anon_vma, import from vma after
736                          * next, if the vma overlaps with it.
737                          */
738                         if (remove_next == 2 && !next->anon_vma)
739                                 exporter = next->vm_next;
740
741                 } else if (end > next->vm_start) {
742                         /*
743                          * vma expands, overlapping part of the next:
744                          * mprotect case 5 shifting the boundary up.
745                          */
746                         adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
747                         exporter = next;
748                         importer = vma;
749                         VM_WARN_ON(expand != importer);
750                 } else if (end < vma->vm_end) {
751                         /*
752                          * vma shrinks, and !insert tells it's not
753                          * split_vma inserting another: so it must be
754                          * mprotect case 4 shifting the boundary down.
755                          */
756                         adjust_next = -((vma->vm_end - end) >> PAGE_SHIFT);
757                         exporter = vma;
758                         importer = next;
759                         VM_WARN_ON(expand != importer);
760                 }
761
762                 /*
763                  * Easily overlooked: when mprotect shifts the boundary,
764                  * make sure the expanding vma has anon_vma set if the
765                  * shrinking vma had, to cover any anon pages imported.
766                  */
767                 if (exporter && exporter->anon_vma && !importer->anon_vma) {
768                         int error;
769
770                         importer->anon_vma = exporter->anon_vma;
771                         error = anon_vma_clone(importer, exporter);
772                         if (error)
773                                 return error;
774                 }
775         }
776 again:
777         vma_adjust_trans_huge(orig_vma, start, end, adjust_next);
778
779         if (file) {
780                 mapping = file->f_mapping;
781                 root = &mapping->i_mmap;
782                 uprobe_munmap(vma, vma->vm_start, vma->vm_end);
783
784                 if (adjust_next)
785                         uprobe_munmap(next, next->vm_start, next->vm_end);
786
787                 i_mmap_lock_write(mapping);
788                 if (insert) {
789                         /*
790                          * Put into interval tree now, so instantiated pages
791                          * are visible to arm/parisc __flush_dcache_page
792                          * throughout; but we cannot insert into address
793                          * space until vma start or end is updated.
794                          */
795                         __vma_link_file(insert);
796                 }
797         }
798
799         anon_vma = vma->anon_vma;
800         if (!anon_vma && adjust_next)
801                 anon_vma = next->anon_vma;
802         if (anon_vma) {
803                 VM_WARN_ON(adjust_next && next->anon_vma &&
804                            anon_vma != next->anon_vma);
805                 anon_vma_lock_write(anon_vma);
806                 anon_vma_interval_tree_pre_update_vma(vma);
807                 if (adjust_next)
808                         anon_vma_interval_tree_pre_update_vma(next);
809         }
810
811         if (root) {
812                 flush_dcache_mmap_lock(mapping);
813                 vma_interval_tree_remove(vma, root);
814                 if (adjust_next)
815                         vma_interval_tree_remove(next, root);
816         }
817
818         if (start != vma->vm_start) {
819                 vma->vm_start = start;
820                 start_changed = true;
821         }
822         if (end != vma->vm_end) {
823                 vma->vm_end = end;
824                 end_changed = true;
825         }
826         vma->vm_pgoff = pgoff;
827         if (adjust_next) {
828                 next->vm_start += adjust_next << PAGE_SHIFT;
829                 next->vm_pgoff += adjust_next;
830         }
831
832         if (root) {
833                 if (adjust_next)
834                         vma_interval_tree_insert(next, root);
835                 vma_interval_tree_insert(vma, root);
836                 flush_dcache_mmap_unlock(mapping);
837         }
838
839         if (remove_next) {
840                 /*
841                  * vma_merge has merged next into vma, and needs
842                  * us to remove next before dropping the locks.
843                  */
844                 if (remove_next != 3)
845                         __vma_unlink_prev(mm, next, vma);
846                 else
847                         /*
848                          * vma is not before next if they've been
849                          * swapped.
850                          *
851                          * pre-swap() next->vm_start was reduced so
852                          * tell validate_mm_rb to ignore pre-swap()
853                          * "next" (which is stored in post-swap()
854                          * "vma").
855                          */
856                         __vma_unlink_common(mm, next, NULL, false, vma);
857                 if (file)
858                         __remove_shared_vm_struct(next, file, mapping);
859         } else if (insert) {
860                 /*
861                  * split_vma has split insert from vma, and needs
862                  * us to insert it before dropping the locks
863                  * (it may either follow vma or precede it).
864                  */
865                 __insert_vm_struct(mm, insert);
866         } else {
867                 if (start_changed)
868                         vma_gap_update(vma);
869                 if (end_changed) {
870                         if (!next)
871                                 mm->highest_vm_end = vm_end_gap(vma);
872                         else if (!adjust_next)
873                                 vma_gap_update(next);
874                 }
875         }
876
877         if (anon_vma) {
878                 anon_vma_interval_tree_post_update_vma(vma);
879                 if (adjust_next)
880                         anon_vma_interval_tree_post_update_vma(next);
881                 anon_vma_unlock_write(anon_vma);
882         }
883         if (mapping)
884                 i_mmap_unlock_write(mapping);
885
886         if (root) {
887                 uprobe_mmap(vma);
888
889                 if (adjust_next)
890                         uprobe_mmap(next);
891         }
892
893         if (remove_next) {
894                 if (file) {
895                         uprobe_munmap(next, next->vm_start, next->vm_end);
896                         fput(file);
897                 }
898                 if (next->anon_vma)
899                         anon_vma_merge(vma, next);
900                 mm->map_count--;
901                 mpol_put(vma_policy(next));
902                 kmem_cache_free(vm_area_cachep, next);
903                 /*
904                  * In mprotect's case 6 (see comments on vma_merge),
905                  * we must remove another next too. It would clutter
906                  * up the code too much to do both in one go.
907                  */
908                 if (remove_next != 3) {
909                         /*
910                          * If "next" was removed and vma->vm_end was
911                          * expanded (up) over it, in turn
912                          * "next->vm_prev->vm_end" changed and the
913                          * "vma->vm_next" gap must be updated.
914                          */
915                         next = vma->vm_next;
916                 } else {
917                         /*
918                          * For the scope of the comment "next" and
919                          * "vma" considered pre-swap(): if "vma" was
920                          * removed, next->vm_start was expanded (down)
921                          * over it and the "next" gap must be updated.
922                          * Because of the swap() the post-swap() "vma"
923                          * actually points to pre-swap() "next"
924                          * (post-swap() "next" as opposed is now a
925                          * dangling pointer).
926                          */
927                         next = vma;
928                 }
929                 if (remove_next == 2) {
930                         remove_next = 1;
931                         end = next->vm_end;
932                         goto again;
933                 }
934                 else if (next)
935                         vma_gap_update(next);
936                 else {
937                         /*
938                          * If remove_next == 2 we obviously can't
939                          * reach this path.
940                          *
941                          * If remove_next == 3 we can't reach this
942                          * path because pre-swap() next is always not
943                          * NULL. pre-swap() "next" is not being
944                          * removed and its next->vm_end is not altered
945                          * (and furthermore "end" already matches
946                          * next->vm_end in remove_next == 3).
947                          *
948                          * We reach this only in the remove_next == 1
949                          * case if the "next" vma that was removed was
950                          * the highest vma of the mm. However in such
951                          * case next->vm_end == "end" and the extended
952                          * "vma" has vma->vm_end == next->vm_end so
953                          * mm->highest_vm_end doesn't need any update
954                          * in remove_next == 1 case.
955                          */
956                         VM_WARN_ON(mm->highest_vm_end != vm_end_gap(vma));
957                 }
958         }
959         if (insert && file)
960                 uprobe_mmap(insert);
961
962         validate_mm(mm);
963
964         return 0;
965 }
966
967 /*
968  * If the vma has a ->close operation then the driver probably needs to release
969  * per-vma resources, so we don't attempt to merge those.
970  */
971 static inline int is_mergeable_vma(struct vm_area_struct *vma,
972                                 struct file *file, unsigned long vm_flags,
973                                 struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
974 {
975         /*
976          * VM_SOFTDIRTY should not prevent from VMA merging, if we
977          * match the flags but dirty bit -- the caller should mark
978          * merged VMA as dirty. If dirty bit won't be excluded from
979          * comparison, we increase pressue on the memory system forcing
980          * the kernel to generate new VMAs when old one could be
981          * extended instead.
982          */
983         if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
984                 return 0;
985         if (vma->vm_file != file)
986                 return 0;
987         if (vma->vm_ops && vma->vm_ops->close)
988                 return 0;
989         if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx))
990                 return 0;
991         return 1;
992 }
993
994 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
995                                         struct anon_vma *anon_vma2,
996                                         struct vm_area_struct *vma)
997 {
998         /*
999          * The list_is_singular() test is to avoid merging VMA cloned from
1000          * parents. This can improve scalability caused by anon_vma lock.
1001          */
1002         if ((!anon_vma1 || !anon_vma2) && (!vma ||
1003                 list_is_singular(&vma->anon_vma_chain)))
1004                 return 1;
1005         return anon_vma1 == anon_vma2;
1006 }
1007
1008 /*
1009  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1010  * in front of (at a lower virtual address and file offset than) the vma.
1011  *
1012  * We cannot merge two vmas if they have differently assigned (non-NULL)
1013  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1014  *
1015  * We don't check here for the merged mmap wrapping around the end of pagecache
1016  * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
1017  * wrap, nor mmaps which cover the final page at index -1UL.
1018  */
1019 static int
1020 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
1021                      struct anon_vma *anon_vma, struct file *file,
1022                      pgoff_t vm_pgoff,
1023                      struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1024 {
1025         if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
1026             is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1027                 if (vma->vm_pgoff == vm_pgoff)
1028                         return 1;
1029         }
1030         return 0;
1031 }
1032
1033 /*
1034  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1035  * beyond (at a higher virtual address and file offset than) the vma.
1036  *
1037  * We cannot merge two vmas if they have differently assigned (non-NULL)
1038  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1039  */
1040 static int
1041 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
1042                     struct anon_vma *anon_vma, struct file *file,
1043                     pgoff_t vm_pgoff,
1044                     struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1045 {
1046         if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
1047             is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1048                 pgoff_t vm_pglen;
1049                 vm_pglen = vma_pages(vma);
1050                 if (vma->vm_pgoff + vm_pglen == vm_pgoff)
1051                         return 1;
1052         }
1053         return 0;
1054 }
1055
1056 /*
1057  * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
1058  * whether that can be merged with its predecessor or its successor.
1059  * Or both (it neatly fills a hole).
1060  *
1061  * In most cases - when called for mmap, brk or mremap - [addr,end) is
1062  * certain not to be mapped by the time vma_merge is called; but when
1063  * called for mprotect, it is certain to be already mapped (either at
1064  * an offset within prev, or at the start of next), and the flags of
1065  * this area are about to be changed to vm_flags - and the no-change
1066  * case has already been eliminated.
1067  *
1068  * The following mprotect cases have to be considered, where AAAA is
1069  * the area passed down from mprotect_fixup, never extending beyond one
1070  * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
1071  *
1072  *     AAAA             AAAA                AAAA          AAAA
1073  *    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPNNNNXXXX
1074  *    cannot merge    might become    might become    might become
1075  *                    PPNNNNNNNNNN    PPPPPPPPPPNN    PPPPPPPPPPPP 6 or
1076  *    mmap, brk or    case 4 below    case 5 below    PPPPPPPPXXXX 7 or
1077  *    mremap move:                                    PPPPXXXXXXXX 8
1078  *        AAAA
1079  *    PPPP    NNNN    PPPPPPPPPPPP    PPPPPPPPNNNN    PPPPNNNNNNNN
1080  *    might become    case 1 below    case 2 below    case 3 below
1081  *
1082  * It is important for case 8 that the the vma NNNN overlapping the
1083  * region AAAA is never going to extended over XXXX. Instead XXXX must
1084  * be extended in region AAAA and NNNN must be removed. This way in
1085  * all cases where vma_merge succeeds, the moment vma_adjust drops the
1086  * rmap_locks, the properties of the merged vma will be already
1087  * correct for the whole merged range. Some of those properties like
1088  * vm_page_prot/vm_flags may be accessed by rmap_walks and they must
1089  * be correct for the whole merged range immediately after the
1090  * rmap_locks are released. Otherwise if XXXX would be removed and
1091  * NNNN would be extended over the XXXX range, remove_migration_ptes
1092  * or other rmap walkers (if working on addresses beyond the "end"
1093  * parameter) may establish ptes with the wrong permissions of NNNN
1094  * instead of the right permissions of XXXX.
1095  */
1096 struct vm_area_struct *vma_merge(struct mm_struct *mm,
1097                         struct vm_area_struct *prev, unsigned long addr,
1098                         unsigned long end, unsigned long vm_flags,
1099                         struct anon_vma *anon_vma, struct file *file,
1100                         pgoff_t pgoff, struct mempolicy *policy,
1101                         struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1102 {
1103         pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
1104         struct vm_area_struct *area, *next;
1105         int err;
1106
1107         /*
1108          * We later require that vma->vm_flags == vm_flags,
1109          * so this tests vma->vm_flags & VM_SPECIAL, too.
1110          */
1111         if (vm_flags & VM_SPECIAL)
1112                 return NULL;
1113
1114         if (prev)
1115                 next = prev->vm_next;
1116         else
1117                 next = mm->mmap;
1118         area = next;
1119         if (area && area->vm_end == end)                /* cases 6, 7, 8 */
1120                 next = next->vm_next;
1121
1122         /* verify some invariant that must be enforced by the caller */
1123         VM_WARN_ON(prev && addr <= prev->vm_start);
1124         VM_WARN_ON(area && end > area->vm_end);
1125         VM_WARN_ON(addr >= end);
1126
1127         /*
1128          * Can it merge with the predecessor?
1129          */
1130         if (prev && prev->vm_end == addr &&
1131                         mpol_equal(vma_policy(prev), policy) &&
1132                         can_vma_merge_after(prev, vm_flags,
1133                                             anon_vma, file, pgoff,
1134                                             vm_userfaultfd_ctx)) {
1135                 /*
1136                  * OK, it can.  Can we now merge in the successor as well?
1137                  */
1138                 if (next && end == next->vm_start &&
1139                                 mpol_equal(policy, vma_policy(next)) &&
1140                                 can_vma_merge_before(next, vm_flags,
1141                                                      anon_vma, file,
1142                                                      pgoff+pglen,
1143                                                      vm_userfaultfd_ctx) &&
1144                                 is_mergeable_anon_vma(prev->anon_vma,
1145                                                       next->anon_vma, NULL)) {
1146                                                         /* cases 1, 6 */
1147                         err = __vma_adjust(prev, prev->vm_start,
1148                                          next->vm_end, prev->vm_pgoff, NULL,
1149                                          prev);
1150                 } else                                  /* cases 2, 5, 7 */
1151                         err = __vma_adjust(prev, prev->vm_start,
1152                                          end, prev->vm_pgoff, NULL, prev);
1153                 if (err)
1154                         return NULL;
1155                 khugepaged_enter_vma_merge(prev, vm_flags);
1156                 return prev;
1157         }
1158
1159         /*
1160          * Can this new request be merged in front of next?
1161          */
1162         if (next && end == next->vm_start &&
1163                         mpol_equal(policy, vma_policy(next)) &&
1164                         can_vma_merge_before(next, vm_flags,
1165                                              anon_vma, file, pgoff+pglen,
1166                                              vm_userfaultfd_ctx)) {
1167                 if (prev && addr < prev->vm_end)        /* case 4 */
1168                         err = __vma_adjust(prev, prev->vm_start,
1169                                          addr, prev->vm_pgoff, NULL, next);
1170                 else {                                  /* cases 3, 8 */
1171                         err = __vma_adjust(area, addr, next->vm_end,
1172                                          next->vm_pgoff - pglen, NULL, next);
1173                         /*
1174                          * In case 3 area is already equal to next and
1175                          * this is a noop, but in case 8 "area" has
1176                          * been removed and next was expanded over it.
1177                          */
1178                         area = next;
1179                 }
1180                 if (err)
1181                         return NULL;
1182                 khugepaged_enter_vma_merge(area, vm_flags);
1183                 return area;
1184         }
1185
1186         return NULL;
1187 }
1188
1189 /*
1190  * Rough compatbility check to quickly see if it's even worth looking
1191  * at sharing an anon_vma.
1192  *
1193  * They need to have the same vm_file, and the flags can only differ
1194  * in things that mprotect may change.
1195  *
1196  * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1197  * we can merge the two vma's. For example, we refuse to merge a vma if
1198  * there is a vm_ops->close() function, because that indicates that the
1199  * driver is doing some kind of reference counting. But that doesn't
1200  * really matter for the anon_vma sharing case.
1201  */
1202 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1203 {
1204         return a->vm_end == b->vm_start &&
1205                 mpol_equal(vma_policy(a), vma_policy(b)) &&
1206                 a->vm_file == b->vm_file &&
1207                 !((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC|VM_SOFTDIRTY)) &&
1208                 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1209 }
1210
1211 /*
1212  * Do some basic sanity checking to see if we can re-use the anon_vma
1213  * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1214  * the same as 'old', the other will be the new one that is trying
1215  * to share the anon_vma.
1216  *
1217  * NOTE! This runs with mm_sem held for reading, so it is possible that
1218  * the anon_vma of 'old' is concurrently in the process of being set up
1219  * by another page fault trying to merge _that_. But that's ok: if it
1220  * is being set up, that automatically means that it will be a singleton
1221  * acceptable for merging, so we can do all of this optimistically. But
1222  * we do that READ_ONCE() to make sure that we never re-load the pointer.
1223  *
1224  * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1225  * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1226  * is to return an anon_vma that is "complex" due to having gone through
1227  * a fork).
1228  *
1229  * We also make sure that the two vma's are compatible (adjacent,
1230  * and with the same memory policies). That's all stable, even with just
1231  * a read lock on the mm_sem.
1232  */
1233 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1234 {
1235         if (anon_vma_compatible(a, b)) {
1236                 struct anon_vma *anon_vma = READ_ONCE(old->anon_vma);
1237
1238                 if (anon_vma && list_is_singular(&old->anon_vma_chain))
1239                         return anon_vma;
1240         }
1241         return NULL;
1242 }
1243
1244 /*
1245  * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1246  * neighbouring vmas for a suitable anon_vma, before it goes off
1247  * to allocate a new anon_vma.  It checks because a repetitive
1248  * sequence of mprotects and faults may otherwise lead to distinct
1249  * anon_vmas being allocated, preventing vma merge in subsequent
1250  * mprotect.
1251  */
1252 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1253 {
1254         struct anon_vma *anon_vma;
1255         struct vm_area_struct *near;
1256
1257         near = vma->vm_next;
1258         if (!near)
1259                 goto try_prev;
1260
1261         anon_vma = reusable_anon_vma(near, vma, near);
1262         if (anon_vma)
1263                 return anon_vma;
1264 try_prev:
1265         near = vma->vm_prev;
1266         if (!near)
1267                 goto none;
1268
1269         anon_vma = reusable_anon_vma(near, near, vma);
1270         if (anon_vma)
1271                 return anon_vma;
1272 none:
1273         /*
1274          * There's no absolute need to look only at touching neighbours:
1275          * we could search further afield for "compatible" anon_vmas.
1276          * But it would probably just be a waste of time searching,
1277          * or lead to too many vmas hanging off the same anon_vma.
1278          * We're trying to allow mprotect remerging later on,
1279          * not trying to minimize memory used for anon_vmas.
1280          */
1281         return NULL;
1282 }
1283
1284 /*
1285  * If a hint addr is less than mmap_min_addr change hint to be as
1286  * low as possible but still greater than mmap_min_addr
1287  */
1288 static inline unsigned long round_hint_to_min(unsigned long hint)
1289 {
1290         hint &= PAGE_MASK;
1291         if (((void *)hint != NULL) &&
1292             (hint < mmap_min_addr))
1293                 return PAGE_ALIGN(mmap_min_addr);
1294         return hint;
1295 }
1296
1297 static inline int mlock_future_check(struct mm_struct *mm,
1298                                      unsigned long flags,
1299                                      unsigned long len)
1300 {
1301         unsigned long locked, lock_limit;
1302
1303         /*  mlock MCL_FUTURE? */
1304         if (flags & VM_LOCKED) {
1305                 locked = len >> PAGE_SHIFT;
1306                 locked += mm->locked_vm;
1307                 lock_limit = rlimit(RLIMIT_MEMLOCK);
1308                 lock_limit >>= PAGE_SHIFT;
1309                 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1310                         return -EAGAIN;
1311         }
1312         return 0;
1313 }
1314
1315 static inline u64 file_mmap_size_max(struct file *file, struct inode *inode)
1316 {
1317         if (S_ISREG(inode->i_mode))
1318                 return MAX_LFS_FILESIZE;
1319
1320         if (S_ISBLK(inode->i_mode))
1321                 return MAX_LFS_FILESIZE;
1322
1323         /* Special "we do even unsigned file positions" case */
1324         if (file->f_mode & FMODE_UNSIGNED_OFFSET)
1325                 return 0;
1326
1327         /* Yes, random drivers might want more. But I'm tired of buggy drivers */
1328         return ULONG_MAX;
1329 }
1330
1331 static inline bool file_mmap_ok(struct file *file, struct inode *inode,
1332                                 unsigned long pgoff, unsigned long len)
1333 {
1334         u64 maxsize = file_mmap_size_max(file, inode);
1335
1336         if (maxsize && len > maxsize)
1337                 return false;
1338         maxsize -= len;
1339         if (pgoff > maxsize >> PAGE_SHIFT)
1340                 return false;
1341         return true;
1342 }
1343
1344 /*
1345  * The caller must hold down_write(&current->mm->mmap_sem).
1346  */
1347 unsigned long do_mmap(struct file *file, unsigned long addr,
1348                         unsigned long len, unsigned long prot,
1349                         unsigned long flags, vm_flags_t vm_flags,
1350                         unsigned long pgoff, unsigned long *populate)
1351 {
1352         struct mm_struct *mm = current->mm;
1353         int pkey = 0;
1354
1355         *populate = 0;
1356
1357         if (!len)
1358                 return -EINVAL;
1359
1360         /*
1361          * Does the application expect PROT_READ to imply PROT_EXEC?
1362          *
1363          * (the exception is when the underlying filesystem is noexec
1364          *  mounted, in which case we dont add PROT_EXEC.)
1365          */
1366         if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1367                 if (!(file && path_noexec(&file->f_path)))
1368                         prot |= PROT_EXEC;
1369
1370         if (!(flags & MAP_FIXED))
1371                 addr = round_hint_to_min(addr);
1372
1373         /* Careful about overflows.. */
1374         len = PAGE_ALIGN(len);
1375         if (!len)
1376                 return -ENOMEM;
1377
1378         /* offset overflow? */
1379         if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1380                 return -EOVERFLOW;
1381
1382         /* Too many mappings? */
1383         if (mm->map_count > sysctl_max_map_count)
1384                 return -ENOMEM;
1385
1386         /* Obtain the address to map to. we verify (or select) it and ensure
1387          * that it represents a valid section of the address space.
1388          */
1389         addr = get_unmapped_area(file, addr, len, pgoff, flags);
1390         if (offset_in_page(addr))
1391                 return addr;
1392
1393         if (prot == PROT_EXEC) {
1394                 pkey = execute_only_pkey(mm);
1395                 if (pkey < 0)
1396                         pkey = 0;
1397         }
1398
1399         /* Do simple checking here so the lower-level routines won't have
1400          * to. we assume access permissions have been handled by the open
1401          * of the memory object, so we don't do any here.
1402          */
1403         vm_flags |= calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(flags) |
1404                         mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1405
1406         if (flags & MAP_LOCKED)
1407                 if (!can_do_mlock())
1408                         return -EPERM;
1409
1410         if (mlock_future_check(mm, vm_flags, len))
1411                 return -EAGAIN;
1412
1413         if (file) {
1414                 struct inode *inode = file_inode(file);
1415
1416                 if (!file_mmap_ok(file, inode, pgoff, len))
1417                         return -EOVERFLOW;
1418
1419                 switch (flags & MAP_TYPE) {
1420                 case MAP_SHARED:
1421                         if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
1422                                 return -EACCES;
1423
1424                         /*
1425                          * Make sure we don't allow writing to an append-only
1426                          * file..
1427                          */
1428                         if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1429                                 return -EACCES;
1430
1431                         /*
1432                          * Make sure there are no mandatory locks on the file.
1433                          */
1434                         if (locks_verify_locked(file))
1435                                 return -EAGAIN;
1436
1437                         vm_flags |= VM_SHARED | VM_MAYSHARE;
1438                         if (!(file->f_mode & FMODE_WRITE))
1439                                 vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1440
1441                         /* fall through */
1442                 case MAP_PRIVATE:
1443                         if (!(file->f_mode & FMODE_READ))
1444                                 return -EACCES;
1445                         if (path_noexec(&file->f_path)) {
1446                                 if (vm_flags & VM_EXEC)
1447                                         return -EPERM;
1448                                 vm_flags &= ~VM_MAYEXEC;
1449                         }
1450
1451                         if (!file->f_op->mmap)
1452                                 return -ENODEV;
1453                         if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1454                                 return -EINVAL;
1455                         break;
1456
1457                 default:
1458                         return -EINVAL;
1459                 }
1460         } else {
1461                 switch (flags & MAP_TYPE) {
1462                 case MAP_SHARED:
1463                         if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1464                                 return -EINVAL;
1465                         /*
1466                          * Ignore pgoff.
1467                          */
1468                         pgoff = 0;
1469                         vm_flags |= VM_SHARED | VM_MAYSHARE;
1470                         break;
1471                 case MAP_PRIVATE:
1472                         /*
1473                          * Set pgoff according to addr for anon_vma.
1474                          */
1475                         pgoff = addr >> PAGE_SHIFT;
1476                         break;
1477                 default:
1478                         return -EINVAL;
1479                 }
1480         }
1481
1482         /*
1483          * Set 'VM_NORESERVE' if we should not account for the
1484          * memory use of this mapping.
1485          */
1486         if (flags & MAP_NORESERVE) {
1487                 /* We honor MAP_NORESERVE if allowed to overcommit */
1488                 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1489                         vm_flags |= VM_NORESERVE;
1490
1491                 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1492                 if (file && is_file_hugepages(file))
1493                         vm_flags |= VM_NORESERVE;
1494         }
1495
1496         addr = mmap_region(file, addr, len, vm_flags, pgoff);
1497         if (!IS_ERR_VALUE(addr) &&
1498             ((vm_flags & VM_LOCKED) ||
1499              (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1500                 *populate = len;
1501         return addr;
1502 }
1503
1504 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1505                 unsigned long, prot, unsigned long, flags,
1506                 unsigned long, fd, unsigned long, pgoff)
1507 {
1508         struct file *file = NULL;
1509         unsigned long retval;
1510
1511         if (!(flags & MAP_ANONYMOUS)) {
1512                 audit_mmap_fd(fd, flags);
1513                 file = fget(fd);
1514                 if (!file)
1515                         return -EBADF;
1516                 if (is_file_hugepages(file))
1517                         len = ALIGN(len, huge_page_size(hstate_file(file)));
1518                 retval = -EINVAL;
1519                 if (unlikely(flags & MAP_HUGETLB && !is_file_hugepages(file)))
1520                         goto out_fput;
1521         } else if (flags & MAP_HUGETLB) {
1522                 struct user_struct *user = NULL;
1523                 struct hstate *hs;
1524
1525                 hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & SHM_HUGE_MASK);
1526                 if (!hs)
1527                         return -EINVAL;
1528
1529                 len = ALIGN(len, huge_page_size(hs));
1530                 /*
1531                  * VM_NORESERVE is used because the reservations will be
1532                  * taken when vm_ops->mmap() is called
1533                  * A dummy user value is used because we are not locking
1534                  * memory so no accounting is necessary
1535                  */
1536                 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1537                                 VM_NORESERVE,
1538                                 &user, HUGETLB_ANONHUGE_INODE,
1539                                 (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1540                 if (IS_ERR(file))
1541                         return PTR_ERR(file);
1542         }
1543
1544         flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1545
1546         retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1547 out_fput:
1548         if (file)
1549                 fput(file);
1550         return retval;
1551 }
1552
1553 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1554 struct mmap_arg_struct {
1555         unsigned long addr;
1556         unsigned long len;
1557         unsigned long prot;
1558         unsigned long flags;
1559         unsigned long fd;
1560         unsigned long offset;
1561 };
1562
1563 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1564 {
1565         struct mmap_arg_struct a;
1566
1567         if (copy_from_user(&a, arg, sizeof(a)))
1568                 return -EFAULT;
1569         if (offset_in_page(a.offset))
1570                 return -EINVAL;
1571
1572         return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1573                               a.offset >> PAGE_SHIFT);
1574 }
1575 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1576
1577 /*
1578  * Some shared mappigns will want the pages marked read-only
1579  * to track write events. If so, we'll downgrade vm_page_prot
1580  * to the private version (using protection_map[] without the
1581  * VM_SHARED bit).
1582  */
1583 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot)
1584 {
1585         vm_flags_t vm_flags = vma->vm_flags;
1586         const struct vm_operations_struct *vm_ops = vma->vm_ops;
1587
1588         /* If it was private or non-writable, the write bit is already clear */
1589         if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1590                 return 0;
1591
1592         /* The backer wishes to know when pages are first written to? */
1593         if (vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite))
1594                 return 1;
1595
1596         /* The open routine did something to the protections that pgprot_modify
1597          * won't preserve? */
1598         if (pgprot_val(vm_page_prot) !=
1599             pgprot_val(vm_pgprot_modify(vm_page_prot, vm_flags)))
1600                 return 0;
1601
1602         /* Do we need to track softdirty? */
1603         if (IS_ENABLED(CONFIG_MEM_SOFT_DIRTY) && !(vm_flags & VM_SOFTDIRTY))
1604                 return 1;
1605
1606         /* Specialty mapping? */
1607         if (vm_flags & VM_PFNMAP)
1608                 return 0;
1609
1610         /* Can the mapping track the dirty pages? */
1611         return vma->vm_file && vma->vm_file->f_mapping &&
1612                 mapping_cap_account_dirty(vma->vm_file->f_mapping);
1613 }
1614
1615 /*
1616  * We account for memory if it's a private writeable mapping,
1617  * not hugepages and VM_NORESERVE wasn't set.
1618  */
1619 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1620 {
1621         /*
1622          * hugetlb has its own accounting separate from the core VM
1623          * VM_HUGETLB may not be set yet so we cannot check for that flag.
1624          */
1625         if (file && is_file_hugepages(file))
1626                 return 0;
1627
1628         return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1629 }
1630
1631 unsigned long mmap_region(struct file *file, unsigned long addr,
1632                 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff)
1633 {
1634         struct mm_struct *mm = current->mm;
1635         struct vm_area_struct *vma, *prev;
1636         int error;
1637         struct rb_node **rb_link, *rb_parent;
1638         unsigned long charged = 0;
1639
1640         /* Check against address space limit. */
1641         if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) {
1642                 unsigned long nr_pages;
1643
1644                 /*
1645                  * MAP_FIXED may remove pages of mappings that intersects with
1646                  * requested mapping. Account for the pages it would unmap.
1647                  */
1648                 nr_pages = count_vma_pages_range(mm, addr, addr + len);
1649
1650                 if (!may_expand_vm(mm, vm_flags,
1651                                         (len >> PAGE_SHIFT) - nr_pages))
1652                         return -ENOMEM;
1653         }
1654
1655         /* Clear old maps */
1656         while (find_vma_links(mm, addr, addr + len, &prev, &rb_link,
1657                               &rb_parent)) {
1658                 if (do_munmap(mm, addr, len))
1659                         return -ENOMEM;
1660         }
1661
1662         /*
1663          * Private writable mapping: check memory availability
1664          */
1665         if (accountable_mapping(file, vm_flags)) {
1666                 charged = len >> PAGE_SHIFT;
1667                 if (security_vm_enough_memory_mm(mm, charged))
1668                         return -ENOMEM;
1669                 vm_flags |= VM_ACCOUNT;
1670         }
1671
1672         /*
1673          * Can we just expand an old mapping?
1674          */
1675         vma = vma_merge(mm, prev, addr, addr + len, vm_flags,
1676                         NULL, file, pgoff, NULL, NULL_VM_UFFD_CTX);
1677         if (vma)
1678                 goto out;
1679
1680         /*
1681          * Determine the object being mapped and call the appropriate
1682          * specific mapper. the address has already been validated, but
1683          * not unmapped, but the maps are removed from the list.
1684          */
1685         vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1686         if (!vma) {
1687                 error = -ENOMEM;
1688                 goto unacct_error;
1689         }
1690
1691         vma->vm_mm = mm;
1692         vma->vm_start = addr;
1693         vma->vm_end = addr + len;
1694         vma->vm_flags = vm_flags;
1695         vma->vm_page_prot = vm_get_page_prot(vm_flags);
1696         vma->vm_pgoff = pgoff;
1697         INIT_LIST_HEAD(&vma->anon_vma_chain);
1698
1699         if (file) {
1700                 if (vm_flags & VM_DENYWRITE) {
1701                         error = deny_write_access(file);
1702                         if (error)
1703                                 goto free_vma;
1704                 }
1705                 if (vm_flags & VM_SHARED) {
1706                         error = mapping_map_writable(file->f_mapping);
1707                         if (error)
1708                                 goto allow_write_and_free_vma;
1709                 }
1710
1711                 /* ->mmap() can change vma->vm_file, but must guarantee that
1712                  * vma_link() below can deny write-access if VM_DENYWRITE is set
1713                  * and map writably if VM_SHARED is set. This usually means the
1714                  * new file must not have been exposed to user-space, yet.
1715                  */
1716                 vma->vm_file = get_file(file);
1717                 error = file->f_op->mmap(file, vma);
1718                 if (error)
1719                         goto unmap_and_free_vma;
1720
1721                 /* Can addr have changed??
1722                  *
1723                  * Answer: Yes, several device drivers can do it in their
1724                  *         f_op->mmap method. -DaveM
1725                  * Bug: If addr is changed, prev, rb_link, rb_parent should
1726                  *      be updated for vma_link()
1727                  */
1728                 WARN_ON_ONCE(addr != vma->vm_start);
1729
1730                 addr = vma->vm_start;
1731                 vm_flags = vma->vm_flags;
1732         } else if (vm_flags & VM_SHARED) {
1733                 error = shmem_zero_setup(vma);
1734                 if (error)
1735                         goto free_vma;
1736         }
1737
1738         vma_link(mm, vma, prev, rb_link, rb_parent);
1739         /* Once vma denies write, undo our temporary denial count */
1740         if (file) {
1741                 if (vm_flags & VM_SHARED)
1742                         mapping_unmap_writable(file->f_mapping);
1743                 if (vm_flags & VM_DENYWRITE)
1744                         allow_write_access(file);
1745         }
1746         file = vma->vm_file;
1747 out:
1748         perf_event_mmap(vma);
1749
1750         vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT);
1751         if (vm_flags & VM_LOCKED) {
1752                 if (!((vm_flags & VM_SPECIAL) || is_vm_hugetlb_page(vma) ||
1753                                         vma == get_gate_vma(current->mm)))
1754                         mm->locked_vm += (len >> PAGE_SHIFT);
1755                 else
1756                         vma->vm_flags &= VM_LOCKED_CLEAR_MASK;
1757         }
1758
1759         if (file)
1760                 uprobe_mmap(vma);
1761
1762         /*
1763          * New (or expanded) vma always get soft dirty status.
1764          * Otherwise user-space soft-dirty page tracker won't
1765          * be able to distinguish situation when vma area unmapped,
1766          * then new mapped in-place (which must be aimed as
1767          * a completely new data area).
1768          */
1769         vma->vm_flags |= VM_SOFTDIRTY;
1770
1771         vma_set_page_prot(vma);
1772
1773         return addr;
1774
1775 unmap_and_free_vma:
1776         vma->vm_file = NULL;
1777         fput(file);
1778
1779         /* Undo any partial mapping done by a device driver. */
1780         unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1781         charged = 0;
1782         if (vm_flags & VM_SHARED)
1783                 mapping_unmap_writable(file->f_mapping);
1784 allow_write_and_free_vma:
1785         if (vm_flags & VM_DENYWRITE)
1786                 allow_write_access(file);
1787 free_vma:
1788         kmem_cache_free(vm_area_cachep, vma);
1789 unacct_error:
1790         if (charged)
1791                 vm_unacct_memory(charged);
1792         return error;
1793 }
1794
1795 unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1796 {
1797         /*
1798          * We implement the search by looking for an rbtree node that
1799          * immediately follows a suitable gap. That is,
1800          * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length;
1801          * - gap_end   = vma->vm_start        >= info->low_limit  + length;
1802          * - gap_end - gap_start >= length
1803          */
1804
1805         struct mm_struct *mm = current->mm;
1806         struct vm_area_struct *vma;
1807         unsigned long length, low_limit, high_limit, gap_start, gap_end;
1808
1809         /* Adjust search length to account for worst case alignment overhead */
1810         length = info->length + info->align_mask;
1811         if (length < info->length)
1812                 return -ENOMEM;
1813
1814         /* Adjust search limits by the desired length */
1815         if (info->high_limit < length)
1816                 return -ENOMEM;
1817         high_limit = info->high_limit - length;
1818
1819         if (info->low_limit > high_limit)
1820                 return -ENOMEM;
1821         low_limit = info->low_limit + length;
1822
1823         /* Check if rbtree root looks promising */
1824         if (RB_EMPTY_ROOT(&mm->mm_rb))
1825                 goto check_highest;
1826         vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1827         if (vma->rb_subtree_gap < length)
1828                 goto check_highest;
1829
1830         while (true) {
1831                 /* Visit left subtree if it looks promising */
1832                 gap_end = vm_start_gap(vma);
1833                 if (gap_end >= low_limit && vma->vm_rb.rb_left) {
1834                         struct vm_area_struct *left =
1835                                 rb_entry(vma->vm_rb.rb_left,
1836                                          struct vm_area_struct, vm_rb);
1837                         if (left->rb_subtree_gap >= length) {
1838                                 vma = left;
1839                                 continue;
1840                         }
1841                 }
1842
1843                 gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0;
1844 check_current:
1845                 /* Check if current node has a suitable gap */
1846                 if (gap_start > high_limit)
1847                         return -ENOMEM;
1848                 if (gap_end >= low_limit &&
1849                     gap_end > gap_start && gap_end - gap_start >= length)
1850                         goto found;
1851
1852                 /* Visit right subtree if it looks promising */
1853                 if (vma->vm_rb.rb_right) {
1854                         struct vm_area_struct *right =
1855                                 rb_entry(vma->vm_rb.rb_right,
1856                                          struct vm_area_struct, vm_rb);
1857                         if (right->rb_subtree_gap >= length) {
1858                                 vma = right;
1859                                 continue;
1860                         }
1861                 }
1862
1863                 /* Go back up the rbtree to find next candidate node */
1864                 while (true) {
1865                         struct rb_node *prev = &vma->vm_rb;
1866                         if (!rb_parent(prev))
1867                                 goto check_highest;
1868                         vma = rb_entry(rb_parent(prev),
1869                                        struct vm_area_struct, vm_rb);
1870                         if (prev == vma->vm_rb.rb_left) {
1871                                 gap_start = vm_end_gap(vma->vm_prev);
1872                                 gap_end = vm_start_gap(vma);
1873                                 goto check_current;
1874                         }
1875                 }
1876         }
1877
1878 check_highest:
1879         /* Check highest gap, which does not precede any rbtree node */
1880         gap_start = mm->highest_vm_end;
1881         gap_end = ULONG_MAX;  /* Only for VM_BUG_ON below */
1882         if (gap_start > high_limit)
1883                 return -ENOMEM;
1884
1885 found:
1886         /* We found a suitable gap. Clip it with the original low_limit. */
1887         if (gap_start < info->low_limit)
1888                 gap_start = info->low_limit;
1889
1890         /* Adjust gap address to the desired alignment */
1891         gap_start += (info->align_offset - gap_start) & info->align_mask;
1892
1893         VM_BUG_ON(gap_start + info->length > info->high_limit);
1894         VM_BUG_ON(gap_start + info->length > gap_end);
1895         return gap_start;
1896 }
1897
1898 unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
1899 {
1900         struct mm_struct *mm = current->mm;
1901         struct vm_area_struct *vma;
1902         unsigned long length, low_limit, high_limit, gap_start, gap_end;
1903
1904         /* Adjust search length to account for worst case alignment overhead */
1905         length = info->length + info->align_mask;
1906         if (length < info->length)
1907                 return -ENOMEM;
1908
1909         /*
1910          * Adjust search limits by the desired length.
1911          * See implementation comment at top of unmapped_area().
1912          */
1913         gap_end = info->high_limit;
1914         if (gap_end < length)
1915                 return -ENOMEM;
1916         high_limit = gap_end - length;
1917
1918         if (info->low_limit > high_limit)
1919                 return -ENOMEM;
1920         low_limit = info->low_limit + length;
1921
1922         /* Check highest gap, which does not precede any rbtree node */
1923         gap_start = mm->highest_vm_end;
1924         if (gap_start <= high_limit)
1925                 goto found_highest;
1926
1927         /* Check if rbtree root looks promising */
1928         if (RB_EMPTY_ROOT(&mm->mm_rb))
1929                 return -ENOMEM;
1930         vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1931         if (vma->rb_subtree_gap < length)
1932                 return -ENOMEM;
1933
1934         while (true) {
1935                 /* Visit right subtree if it looks promising */
1936                 gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0;
1937                 if (gap_start <= high_limit && vma->vm_rb.rb_right) {
1938                         struct vm_area_struct *right =
1939                                 rb_entry(vma->vm_rb.rb_right,
1940                                          struct vm_area_struct, vm_rb);
1941                         if (right->rb_subtree_gap >= length) {
1942                                 vma = right;
1943                                 continue;
1944                         }
1945                 }
1946
1947 check_current:
1948                 /* Check if current node has a suitable gap */
1949                 gap_end = vm_start_gap(vma);
1950                 if (gap_end < low_limit)
1951                         return -ENOMEM;
1952                 if (gap_start <= high_limit &&
1953                     gap_end > gap_start && gap_end - gap_start >= length)
1954                         goto found;
1955
1956                 /* Visit left subtree if it looks promising */
1957                 if (vma->vm_rb.rb_left) {
1958                         struct vm_area_struct *left =
1959                                 rb_entry(vma->vm_rb.rb_left,
1960                                          struct vm_area_struct, vm_rb);
1961                         if (left->rb_subtree_gap >= length) {
1962                                 vma = left;
1963                                 continue;
1964                         }
1965                 }
1966
1967                 /* Go back up the rbtree to find next candidate node */
1968                 while (true) {
1969                         struct rb_node *prev = &vma->vm_rb;
1970                         if (!rb_parent(prev))
1971                                 return -ENOMEM;
1972                         vma = rb_entry(rb_parent(prev),
1973                                        struct vm_area_struct, vm_rb);
1974                         if (prev == vma->vm_rb.rb_right) {
1975                                 gap_start = vma->vm_prev ?
1976                                         vm_end_gap(vma->vm_prev) : 0;
1977                                 goto check_current;
1978                         }
1979                 }
1980         }
1981
1982 found:
1983         /* We found a suitable gap. Clip it with the original high_limit. */
1984         if (gap_end > info->high_limit)
1985                 gap_end = info->high_limit;
1986
1987 found_highest:
1988         /* Compute highest gap address at the desired alignment */
1989         gap_end -= info->length;
1990         gap_end -= (gap_end - info->align_offset) & info->align_mask;
1991
1992         VM_BUG_ON(gap_end < info->low_limit);
1993         VM_BUG_ON(gap_end < gap_start);
1994         return gap_end;
1995 }
1996
1997 /* Get an address range which is currently unmapped.
1998  * For shmat() with addr=0.
1999  *
2000  * Ugly calling convention alert:
2001  * Return value with the low bits set means error value,
2002  * ie
2003  *      if (ret & ~PAGE_MASK)
2004  *              error = ret;
2005  *
2006  * This function "knows" that -ENOMEM has the bits set.
2007  */
2008 #ifndef HAVE_ARCH_UNMAPPED_AREA
2009 unsigned long
2010 arch_get_unmapped_area(struct file *filp, unsigned long addr,
2011                 unsigned long len, unsigned long pgoff, unsigned long flags)
2012 {
2013         struct mm_struct *mm = current->mm;
2014         struct vm_area_struct *vma, *prev;
2015         struct vm_unmapped_area_info info;
2016
2017         if (len > TASK_SIZE - mmap_min_addr)
2018                 return -ENOMEM;
2019
2020         if (flags & MAP_FIXED)
2021                 return addr;
2022
2023         if (addr) {
2024                 addr = PAGE_ALIGN(addr);
2025                 vma = find_vma_prev(mm, addr, &prev);
2026                 if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
2027                     (!vma || addr + len <= vm_start_gap(vma)) &&
2028                     (!prev || addr >= vm_end_gap(prev)))
2029                         return addr;
2030         }
2031
2032         info.flags = 0;
2033         info.length = len;
2034         info.low_limit = mm->mmap_base;
2035         info.high_limit = TASK_SIZE;
2036         info.align_mask = 0;
2037         return vm_unmapped_area(&info);
2038 }
2039 #endif
2040
2041 /*
2042  * This mmap-allocator allocates new areas top-down from below the
2043  * stack's low limit (the base):
2044  */
2045 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
2046 unsigned long
2047 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
2048                           const unsigned long len, const unsigned long pgoff,
2049                           const unsigned long flags)
2050 {
2051         struct vm_area_struct *vma, *prev;
2052         struct mm_struct *mm = current->mm;
2053         unsigned long addr = addr0;
2054         struct vm_unmapped_area_info info;
2055
2056         /* requested length too big for entire address space */
2057         if (len > TASK_SIZE - mmap_min_addr)
2058                 return -ENOMEM;
2059
2060         if (flags & MAP_FIXED)
2061                 return addr;
2062
2063         /* requesting a specific address */
2064         if (addr) {
2065                 addr = PAGE_ALIGN(addr);
2066                 vma = find_vma_prev(mm, addr, &prev);
2067                 if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
2068                                 (!vma || addr + len <= vm_start_gap(vma)) &&
2069                                 (!prev || addr >= vm_end_gap(prev)))
2070                         return addr;
2071         }
2072
2073         info.flags = VM_UNMAPPED_AREA_TOPDOWN;
2074         info.length = len;
2075         info.low_limit = max(PAGE_SIZE, mmap_min_addr);
2076         info.high_limit = mm->mmap_base;
2077         info.align_mask = 0;
2078         addr = vm_unmapped_area(&info);
2079
2080         /*
2081          * A failed mmap() very likely causes application failure,
2082          * so fall back to the bottom-up function here. This scenario
2083          * can happen with large stack limits and large mmap()
2084          * allocations.
2085          */
2086         if (offset_in_page(addr)) {
2087                 VM_BUG_ON(addr != -ENOMEM);
2088                 info.flags = 0;
2089                 info.low_limit = TASK_UNMAPPED_BASE;
2090                 info.high_limit = TASK_SIZE;
2091                 addr = vm_unmapped_area(&info);
2092         }
2093
2094         return addr;
2095 }
2096 #endif
2097
2098 unsigned long
2099 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
2100                 unsigned long pgoff, unsigned long flags)
2101 {
2102         unsigned long (*get_area)(struct file *, unsigned long,
2103                                   unsigned long, unsigned long, unsigned long);
2104
2105         unsigned long error = arch_mmap_check(addr, len, flags);
2106         if (error)
2107                 return error;
2108
2109         /* Careful about overflows.. */
2110         if (len > TASK_SIZE)
2111                 return -ENOMEM;
2112
2113         get_area = current->mm->get_unmapped_area;
2114         if (file) {
2115                 if (file->f_op->get_unmapped_area)
2116                         get_area = file->f_op->get_unmapped_area;
2117         } else if (flags & MAP_SHARED) {
2118                 /*
2119                  * mmap_region() will call shmem_zero_setup() to create a file,
2120                  * so use shmem's get_unmapped_area in case it can be huge.
2121                  * do_mmap_pgoff() will clear pgoff, so match alignment.
2122                  */
2123                 pgoff = 0;
2124                 get_area = shmem_get_unmapped_area;
2125         }
2126
2127         addr = get_area(file, addr, len, pgoff, flags);
2128         if (IS_ERR_VALUE(addr))
2129                 return addr;
2130
2131         if (addr > TASK_SIZE - len)
2132                 return -ENOMEM;
2133         if (offset_in_page(addr))
2134                 return -EINVAL;
2135
2136         error = security_mmap_addr(addr);
2137         return error ? error : addr;
2138 }
2139
2140 EXPORT_SYMBOL(get_unmapped_area);
2141
2142 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
2143 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
2144 {
2145         struct rb_node *rb_node;
2146         struct vm_area_struct *vma;
2147
2148         /* Check the cache first. */
2149         vma = vmacache_find(mm, addr);
2150         if (likely(vma))
2151                 return vma;
2152
2153         rb_node = mm->mm_rb.rb_node;
2154
2155         while (rb_node) {
2156                 struct vm_area_struct *tmp;
2157
2158                 tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2159
2160                 if (tmp->vm_end > addr) {
2161                         vma = tmp;
2162                         if (tmp->vm_start <= addr)
2163                                 break;
2164                         rb_node = rb_node->rb_left;
2165                 } else
2166                         rb_node = rb_node->rb_right;
2167         }
2168
2169         if (vma)
2170                 vmacache_update(addr, vma);
2171         return vma;
2172 }
2173
2174 EXPORT_SYMBOL(find_vma);
2175
2176 /*
2177  * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
2178  */
2179 struct vm_area_struct *
2180 find_vma_prev(struct mm_struct *mm, unsigned long addr,
2181                         struct vm_area_struct **pprev)
2182 {
2183         struct vm_area_struct *vma;
2184
2185         vma = find_vma(mm, addr);
2186         if (vma) {
2187                 *pprev = vma->vm_prev;
2188         } else {
2189                 struct rb_node *rb_node = mm->mm_rb.rb_node;
2190                 *pprev = NULL;
2191                 while (rb_node) {
2192                         *pprev = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2193                         rb_node = rb_node->rb_right;
2194                 }
2195         }
2196         return vma;
2197 }
2198
2199 /*
2200  * Verify that the stack growth is acceptable and
2201  * update accounting. This is shared with both the
2202  * grow-up and grow-down cases.
2203  */
2204 static int acct_stack_growth(struct vm_area_struct *vma,
2205                              unsigned long size, unsigned long grow)
2206 {
2207         struct mm_struct *mm = vma->vm_mm;
2208         struct rlimit *rlim = current->signal->rlim;
2209         unsigned long new_start;
2210
2211         /* address space limit tests */
2212         if (!may_expand_vm(mm, vma->vm_flags, grow))
2213                 return -ENOMEM;
2214
2215         /* Stack limit test */
2216         if (size > READ_ONCE(rlim[RLIMIT_STACK].rlim_cur))
2217                 return -ENOMEM;
2218
2219         /* mlock limit tests */
2220         if (vma->vm_flags & VM_LOCKED) {
2221                 unsigned long locked;
2222                 unsigned long limit;
2223                 locked = mm->locked_vm + grow;
2224                 limit = READ_ONCE(rlim[RLIMIT_MEMLOCK].rlim_cur);
2225                 limit >>= PAGE_SHIFT;
2226                 if (locked > limit && !capable(CAP_IPC_LOCK))
2227                         return -ENOMEM;
2228         }
2229
2230         /* Check to ensure the stack will not grow into a hugetlb-only region */
2231         new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
2232                         vma->vm_end - size;
2233         if (is_hugepage_only_range(vma->vm_mm, new_start, size))
2234                 return -EFAULT;
2235
2236         /*
2237          * Overcommit..  This must be the final test, as it will
2238          * update security statistics.
2239          */
2240         if (security_vm_enough_memory_mm(mm, grow))
2241                 return -ENOMEM;
2242
2243         return 0;
2244 }
2245
2246 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
2247 /*
2248  * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
2249  * vma is the last one with address > vma->vm_end.  Have to extend vma.
2250  */
2251 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
2252 {
2253         struct mm_struct *mm = vma->vm_mm;
2254         struct vm_area_struct *next;
2255         unsigned long gap_addr;
2256         int error = 0;
2257
2258         if (!(vma->vm_flags & VM_GROWSUP))
2259                 return -EFAULT;
2260
2261         /* Guard against exceeding limits of the address space. */
2262         address &= PAGE_MASK;
2263         if (address >= (TASK_SIZE & PAGE_MASK))
2264                 return -ENOMEM;
2265         address += PAGE_SIZE;
2266
2267         /* Enforce stack_guard_gap */
2268         gap_addr = address + stack_guard_gap;
2269
2270         /* Guard against overflow */
2271         if (gap_addr < address || gap_addr > TASK_SIZE)
2272                 gap_addr = TASK_SIZE;
2273
2274         next = vma->vm_next;
2275         if (next && next->vm_start < gap_addr &&
2276                         (next->vm_flags & (VM_WRITE|VM_READ|VM_EXEC))) {
2277                 if (!(next->vm_flags & VM_GROWSUP))
2278                         return -ENOMEM;
2279                 /* Check that both stack segments have the same anon_vma? */
2280         }
2281
2282         /* We must make sure the anon_vma is allocated. */
2283         if (unlikely(anon_vma_prepare(vma)))
2284                 return -ENOMEM;
2285
2286         /*
2287          * vma->vm_start/vm_end cannot change under us because the caller
2288          * is required to hold the mmap_sem in read mode.  We need the
2289          * anon_vma lock to serialize against concurrent expand_stacks.
2290          */
2291         anon_vma_lock_write(vma->anon_vma);
2292
2293         /* Somebody else might have raced and expanded it already */
2294         if (address > vma->vm_end) {
2295                 unsigned long size, grow;
2296
2297                 size = address - vma->vm_start;
2298                 grow = (address - vma->vm_end) >> PAGE_SHIFT;
2299
2300                 error = -ENOMEM;
2301                 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2302                         error = acct_stack_growth(vma, size, grow);
2303                         if (!error) {
2304                                 /*
2305                                  * vma_gap_update() doesn't support concurrent
2306                                  * updates, but we only hold a shared mmap_sem
2307                                  * lock here, so we need to protect against
2308                                  * concurrent vma expansions.
2309                                  * anon_vma_lock_write() doesn't help here, as
2310                                  * we don't guarantee that all growable vmas
2311                                  * in a mm share the same root anon vma.
2312                                  * So, we reuse mm->page_table_lock to guard
2313                                  * against concurrent vma expansions.
2314                                  */
2315                                 spin_lock(&mm->page_table_lock);
2316                                 if (vma->vm_flags & VM_LOCKED)
2317                                         mm->locked_vm += grow;
2318                                 vm_stat_account(mm, vma->vm_flags, grow);
2319                                 anon_vma_interval_tree_pre_update_vma(vma);
2320                                 vma->vm_end = address;
2321                                 anon_vma_interval_tree_post_update_vma(vma);
2322                                 if (vma->vm_next)
2323                                         vma_gap_update(vma->vm_next);
2324                                 else
2325                                         mm->highest_vm_end = vm_end_gap(vma);
2326                                 spin_unlock(&mm->page_table_lock);
2327
2328                                 perf_event_mmap(vma);
2329                         }
2330                 }
2331         }
2332         anon_vma_unlock_write(vma->anon_vma);
2333         khugepaged_enter_vma_merge(vma, vma->vm_flags);
2334         validate_mm(mm);
2335         return error;
2336 }
2337 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2338
2339 /*
2340  * vma is the first one with address < vma->vm_start.  Have to extend vma.
2341  */
2342 int expand_downwards(struct vm_area_struct *vma,
2343                                    unsigned long address)
2344 {
2345         struct mm_struct *mm = vma->vm_mm;
2346         struct vm_area_struct *prev;
2347         unsigned long gap_addr;
2348         int error = 0;
2349
2350         address &= PAGE_MASK;
2351         if (address < mmap_min_addr)
2352                 return -EPERM;
2353
2354         /* Enforce stack_guard_gap */
2355         gap_addr = address - stack_guard_gap;
2356         if (gap_addr > address)
2357                 return -ENOMEM;
2358         prev = vma->vm_prev;
2359         if (prev && prev->vm_end > gap_addr &&
2360                         (prev->vm_flags & (VM_WRITE|VM_READ|VM_EXEC))) {
2361                 if (!(prev->vm_flags & VM_GROWSDOWN))
2362                         return -ENOMEM;
2363                 /* Check that both stack segments have the same anon_vma? */
2364         }
2365
2366         /* We must make sure the anon_vma is allocated. */
2367         if (unlikely(anon_vma_prepare(vma)))
2368                 return -ENOMEM;
2369
2370         /*
2371          * vma->vm_start/vm_end cannot change under us because the caller
2372          * is required to hold the mmap_sem in read mode.  We need the
2373          * anon_vma lock to serialize against concurrent expand_stacks.
2374          */
2375         anon_vma_lock_write(vma->anon_vma);
2376
2377         /* Somebody else might have raced and expanded it already */
2378         if (address < vma->vm_start) {
2379                 unsigned long size, grow;
2380
2381                 size = vma->vm_end - address;
2382                 grow = (vma->vm_start - address) >> PAGE_SHIFT;
2383
2384                 error = -ENOMEM;
2385                 if (grow <= vma->vm_pgoff) {
2386                         error = acct_stack_growth(vma, size, grow);
2387                         if (!error) {
2388                                 /*
2389                                  * vma_gap_update() doesn't support concurrent
2390                                  * updates, but we only hold a shared mmap_sem
2391                                  * lock here, so we need to protect against
2392                                  * concurrent vma expansions.
2393                                  * anon_vma_lock_write() doesn't help here, as
2394                                  * we don't guarantee that all growable vmas
2395                                  * in a mm share the same root anon vma.
2396                                  * So, we reuse mm->page_table_lock to guard
2397                                  * against concurrent vma expansions.
2398                                  */
2399                                 spin_lock(&mm->page_table_lock);
2400                                 if (vma->vm_flags & VM_LOCKED)
2401                                         mm->locked_vm += grow;
2402                                 vm_stat_account(mm, vma->vm_flags, grow);
2403                                 anon_vma_interval_tree_pre_update_vma(vma);
2404                                 vma->vm_start = address;
2405                                 vma->vm_pgoff -= grow;
2406                                 anon_vma_interval_tree_post_update_vma(vma);
2407                                 vma_gap_update(vma);
2408                                 spin_unlock(&mm->page_table_lock);
2409
2410                                 perf_event_mmap(vma);
2411                         }
2412                 }
2413         }
2414         anon_vma_unlock_write(vma->anon_vma);
2415         khugepaged_enter_vma_merge(vma, vma->vm_flags);
2416         validate_mm(mm);
2417         return error;
2418 }
2419
2420 /* enforced gap between the expanding stack and other mappings. */
2421 unsigned long stack_guard_gap = 256UL<<PAGE_SHIFT;
2422
2423 static int __init cmdline_parse_stack_guard_gap(char *p)
2424 {
2425         unsigned long val;
2426         char *endptr;
2427
2428         val = simple_strtoul(p, &endptr, 10);
2429         if (!*endptr)
2430                 stack_guard_gap = val << PAGE_SHIFT;
2431
2432         return 0;
2433 }
2434 __setup("stack_guard_gap=", cmdline_parse_stack_guard_gap);
2435
2436 #ifdef CONFIG_STACK_GROWSUP
2437 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2438 {
2439         return expand_upwards(vma, address);
2440 }
2441
2442 struct vm_area_struct *
2443 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2444 {
2445         struct vm_area_struct *vma, *prev;
2446
2447         addr &= PAGE_MASK;
2448         vma = find_vma_prev(mm, addr, &prev);
2449         if (vma && (vma->vm_start <= addr))
2450                 return vma;
2451         if (!prev || expand_stack(prev, addr))
2452                 return NULL;
2453         if (prev->vm_flags & VM_LOCKED)
2454                 populate_vma_page_range(prev, addr, prev->vm_end, NULL);
2455         return prev;
2456 }
2457 #else
2458 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2459 {
2460         return expand_downwards(vma, address);
2461 }
2462
2463 struct vm_area_struct *
2464 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2465 {
2466         struct vm_area_struct *vma;
2467         unsigned long start;
2468
2469         addr &= PAGE_MASK;
2470         vma = find_vma(mm, addr);
2471         if (!vma)
2472                 return NULL;
2473         if (vma->vm_start <= addr)
2474                 return vma;
2475         if (!(vma->vm_flags & VM_GROWSDOWN))
2476                 return NULL;
2477         start = vma->vm_start;
2478         if (expand_stack(vma, addr))
2479                 return NULL;
2480         if (vma->vm_flags & VM_LOCKED)
2481                 populate_vma_page_range(vma, addr, start, NULL);
2482         return vma;
2483 }
2484 #endif
2485
2486 EXPORT_SYMBOL_GPL(find_extend_vma);
2487
2488 /*
2489  * Ok - we have the memory areas we should free on the vma list,
2490  * so release them, and do the vma updates.
2491  *
2492  * Called with the mm semaphore held.
2493  */
2494 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
2495 {
2496         unsigned long nr_accounted = 0;
2497
2498         /* Update high watermark before we lower total_vm */
2499         update_hiwater_vm(mm);
2500         do {
2501                 long nrpages = vma_pages(vma);
2502
2503                 if (vma->vm_flags & VM_ACCOUNT)
2504                         nr_accounted += nrpages;
2505                 vm_stat_account(mm, vma->vm_flags, -nrpages);
2506                 vma = remove_vma(vma);
2507         } while (vma);
2508         vm_unacct_memory(nr_accounted);
2509         validate_mm(mm);
2510 }
2511
2512 /*
2513  * Get rid of page table information in the indicated region.
2514  *
2515  * Called with the mm semaphore held.
2516  */
2517 static void unmap_region(struct mm_struct *mm,
2518                 struct vm_area_struct *vma, struct vm_area_struct *prev,
2519                 unsigned long start, unsigned long end)
2520 {
2521         struct vm_area_struct *next = prev ? prev->vm_next : mm->mmap;
2522         struct mmu_gather tlb;
2523
2524         lru_add_drain();
2525         tlb_gather_mmu(&tlb, mm, start, end);
2526         update_hiwater_rss(mm);
2527         unmap_vmas(&tlb, vma, start, end);
2528         free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2529                                  next ? next->vm_start : USER_PGTABLES_CEILING);
2530         tlb_finish_mmu(&tlb, start, end);
2531 }
2532
2533 /*
2534  * Create a list of vma's touched by the unmap, removing them from the mm's
2535  * vma list as we go..
2536  */
2537 static void
2538 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
2539         struct vm_area_struct *prev, unsigned long end)
2540 {
2541         struct vm_area_struct **insertion_point;
2542         struct vm_area_struct *tail_vma = NULL;
2543
2544         insertion_point = (prev ? &prev->vm_next : &mm->mmap);
2545         vma->vm_prev = NULL;
2546         do {
2547                 vma_rb_erase(vma, &mm->mm_rb);
2548                 mm->map_count--;
2549                 tail_vma = vma;
2550                 vma = vma->vm_next;
2551         } while (vma && vma->vm_start < end);
2552         *insertion_point = vma;
2553         if (vma) {
2554                 vma->vm_prev = prev;
2555                 vma_gap_update(vma);
2556         } else
2557                 mm->highest_vm_end = prev ? vm_end_gap(prev) : 0;
2558         tail_vma->vm_next = NULL;
2559
2560         /* Kill the cache */
2561         vmacache_invalidate(mm);
2562 }
2563
2564 /*
2565  * __split_vma() bypasses sysctl_max_map_count checking.  We use this on the
2566  * munmap path where it doesn't make sense to fail.
2567  */
2568 static int __split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2569               unsigned long addr, int new_below)
2570 {
2571         struct vm_area_struct *new;
2572         int err;
2573
2574         if (vma->vm_ops && vma->vm_ops->split) {
2575                 err = vma->vm_ops->split(vma, addr);
2576                 if (err)
2577                         return err;
2578         }
2579
2580         new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2581         if (!new)
2582                 return -ENOMEM;
2583
2584         /* most fields are the same, copy all, and then fixup */
2585         *new = *vma;
2586
2587         INIT_LIST_HEAD(&new->anon_vma_chain);
2588
2589         if (new_below)
2590                 new->vm_end = addr;
2591         else {
2592                 new->vm_start = addr;
2593                 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2594         }
2595
2596         err = vma_dup_policy(vma, new);
2597         if (err)
2598                 goto out_free_vma;
2599
2600         err = anon_vma_clone(new, vma);
2601         if (err)
2602                 goto out_free_mpol;
2603
2604         if (new->vm_file)
2605                 get_file(new->vm_file);
2606
2607         if (new->vm_ops && new->vm_ops->open)
2608                 new->vm_ops->open(new);
2609
2610         if (new_below)
2611                 err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2612                         ((addr - new->vm_start) >> PAGE_SHIFT), new);
2613         else
2614                 err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2615
2616         /* Success. */
2617         if (!err)
2618                 return 0;
2619
2620         /* Clean everything up if vma_adjust failed. */
2621         if (new->vm_ops && new->vm_ops->close)
2622                 new->vm_ops->close(new);
2623         if (new->vm_file)
2624                 fput(new->vm_file);
2625         unlink_anon_vmas(new);
2626  out_free_mpol:
2627         mpol_put(vma_policy(new));
2628  out_free_vma:
2629         kmem_cache_free(vm_area_cachep, new);
2630         return err;
2631 }
2632
2633 /*
2634  * Split a vma into two pieces at address 'addr', a new vma is allocated
2635  * either for the first part or the tail.
2636  */
2637 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2638               unsigned long addr, int new_below)
2639 {
2640         if (mm->map_count >= sysctl_max_map_count)
2641                 return -ENOMEM;
2642
2643         return __split_vma(mm, vma, addr, new_below);
2644 }
2645
2646 /* Munmap is split into 2 main parts -- this part which finds
2647  * what needs doing, and the areas themselves, which do the
2648  * work.  This now handles partial unmappings.
2649  * Jeremy Fitzhardinge <jeremy@goop.org>
2650  */
2651 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
2652 {
2653         unsigned long end;
2654         struct vm_area_struct *vma, *prev, *last;
2655
2656         if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start)
2657                 return -EINVAL;
2658
2659         len = PAGE_ALIGN(len);
2660         if (len == 0)
2661                 return -EINVAL;
2662
2663         /* Find the first overlapping VMA */
2664         vma = find_vma(mm, start);
2665         if (!vma)
2666                 return 0;
2667         prev = vma->vm_prev;
2668         /* we have  start < vma->vm_end  */
2669
2670         /* if it doesn't overlap, we have nothing.. */
2671         end = start + len;
2672         if (vma->vm_start >= end)
2673                 return 0;
2674
2675         /*
2676          * If we need to split any vma, do it now to save pain later.
2677          *
2678          * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2679          * unmapped vm_area_struct will remain in use: so lower split_vma
2680          * places tmp vma above, and higher split_vma places tmp vma below.
2681          */
2682         if (start > vma->vm_start) {
2683                 int error;
2684
2685                 /*
2686                  * Make sure that map_count on return from munmap() will
2687                  * not exceed its limit; but let map_count go just above
2688                  * its limit temporarily, to help free resources as expected.
2689                  */
2690                 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2691                         return -ENOMEM;
2692
2693                 error = __split_vma(mm, vma, start, 0);
2694                 if (error)
2695                         return error;
2696                 prev = vma;
2697         }
2698
2699         /* Does it split the last one? */
2700         last = find_vma(mm, end);
2701         if (last && end > last->vm_start) {
2702                 int error = __split_vma(mm, last, end, 1);
2703                 if (error)
2704                         return error;
2705         }
2706         vma = prev ? prev->vm_next : mm->mmap;
2707
2708         /*
2709          * unlock any mlock()ed ranges before detaching vmas
2710          */
2711         if (mm->locked_vm) {
2712                 struct vm_area_struct *tmp = vma;
2713                 while (tmp && tmp->vm_start < end) {
2714                         if (tmp->vm_flags & VM_LOCKED) {
2715                                 mm->locked_vm -= vma_pages(tmp);
2716                                 munlock_vma_pages_all(tmp);
2717                         }
2718                         tmp = tmp->vm_next;
2719                 }
2720         }
2721
2722         /*
2723          * Remove the vma's, and unmap the actual pages
2724          */
2725         detach_vmas_to_be_unmapped(mm, vma, prev, end);
2726         unmap_region(mm, vma, prev, start, end);
2727
2728         arch_unmap(mm, vma, start, end);
2729
2730         /* Fix up all other VM information */
2731         remove_vma_list(mm, vma);
2732
2733         return 0;
2734 }
2735
2736 int vm_munmap(unsigned long start, size_t len)
2737 {
2738         int ret;
2739         struct mm_struct *mm = current->mm;
2740
2741         if (down_write_killable(&mm->mmap_sem))
2742                 return -EINTR;
2743
2744         ret = do_munmap(mm, start, len);
2745         up_write(&mm->mmap_sem);
2746         return ret;
2747 }
2748 EXPORT_SYMBOL(vm_munmap);
2749
2750 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2751 {
2752         int ret;
2753         struct mm_struct *mm = current->mm;
2754
2755         profile_munmap(addr);
2756         if (down_write_killable(&mm->mmap_sem))
2757                 return -EINTR;
2758         ret = do_munmap(mm, addr, len);
2759         up_write(&mm->mmap_sem);
2760         return ret;
2761 }
2762
2763
2764 /*
2765  * Emulation of deprecated remap_file_pages() syscall.
2766  */
2767 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size,
2768                 unsigned long, prot, unsigned long, pgoff, unsigned long, flags)
2769 {
2770
2771         struct mm_struct *mm = current->mm;
2772         struct vm_area_struct *vma;
2773         unsigned long populate = 0;
2774         unsigned long ret = -EINVAL;
2775         struct file *file;
2776
2777         pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/vm/remap_file_pages.txt.\n",
2778                      current->comm, current->pid);
2779
2780         if (prot)
2781                 return ret;
2782         start = start & PAGE_MASK;
2783         size = size & PAGE_MASK;
2784
2785         if (start + size <= start)
2786                 return ret;
2787
2788         /* Does pgoff wrap? */
2789         if (pgoff + (size >> PAGE_SHIFT) < pgoff)
2790                 return ret;
2791
2792         if (down_write_killable(&mm->mmap_sem))
2793                 return -EINTR;
2794
2795         vma = find_vma(mm, start);
2796
2797         if (!vma || !(vma->vm_flags & VM_SHARED))
2798                 goto out;
2799
2800         if (start < vma->vm_start)
2801                 goto out;
2802
2803         if (start + size > vma->vm_end) {
2804                 struct vm_area_struct *next;
2805
2806                 for (next = vma->vm_next; next; next = next->vm_next) {
2807                         /* hole between vmas ? */
2808                         if (next->vm_start != next->vm_prev->vm_end)
2809                                 goto out;
2810
2811                         if (next->vm_file != vma->vm_file)
2812                                 goto out;
2813
2814                         if (next->vm_flags != vma->vm_flags)
2815                                 goto out;
2816
2817                         if (start + size <= next->vm_end)
2818                                 break;
2819                 }
2820
2821                 if (!next)
2822                         goto out;
2823         }
2824
2825         prot |= vma->vm_flags & VM_READ ? PROT_READ : 0;
2826         prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0;
2827         prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0;
2828
2829         flags &= MAP_NONBLOCK;
2830         flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE;
2831         if (vma->vm_flags & VM_LOCKED) {
2832                 struct vm_area_struct *tmp;
2833                 flags |= MAP_LOCKED;
2834
2835                 /* drop PG_Mlocked flag for over-mapped range */
2836                 for (tmp = vma; tmp->vm_start >= start + size;
2837                                 tmp = tmp->vm_next) {
2838                         /*
2839                          * Split pmd and munlock page on the border
2840                          * of the range.
2841                          */
2842                         vma_adjust_trans_huge(tmp, start, start + size, 0);
2843
2844                         munlock_vma_pages_range(tmp,
2845                                         max(tmp->vm_start, start),
2846                                         min(tmp->vm_end, start + size));
2847                 }
2848         }
2849
2850         file = get_file(vma->vm_file);
2851         ret = do_mmap_pgoff(vma->vm_file, start, size,
2852                         prot, flags, pgoff, &populate);
2853         fput(file);
2854 out:
2855         up_write(&mm->mmap_sem);
2856         if (populate)
2857                 mm_populate(ret, populate);
2858         if (!IS_ERR_VALUE(ret))
2859                 ret = 0;
2860         return ret;
2861 }
2862
2863 static inline void verify_mm_writelocked(struct mm_struct *mm)
2864 {
2865 #ifdef CONFIG_DEBUG_VM
2866         if (unlikely(down_read_trylock(&mm->mmap_sem))) {
2867                 WARN_ON(1);
2868                 up_read(&mm->mmap_sem);
2869         }
2870 #endif
2871 }
2872
2873 /*
2874  *  this is really a simplified "do_mmap".  it only handles
2875  *  anonymous maps.  eventually we may be able to do some
2876  *  brk-specific accounting here.
2877  */
2878 static int do_brk(unsigned long addr, unsigned long len)
2879 {
2880         struct mm_struct *mm = current->mm;
2881         struct vm_area_struct *vma, *prev;
2882         unsigned long flags;
2883         struct rb_node **rb_link, *rb_parent;
2884         pgoff_t pgoff = addr >> PAGE_SHIFT;
2885         int error;
2886
2887         flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2888
2889         error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
2890         if (offset_in_page(error))
2891                 return error;
2892
2893         error = mlock_future_check(mm, mm->def_flags, len);
2894         if (error)
2895                 return error;
2896
2897         /*
2898          * mm->mmap_sem is required to protect against another thread
2899          * changing the mappings in case we sleep.
2900          */
2901         verify_mm_writelocked(mm);
2902
2903         /*
2904          * Clear old maps.  this also does some error checking for us
2905          */
2906         while (find_vma_links(mm, addr, addr + len, &prev, &rb_link,
2907                               &rb_parent)) {
2908                 if (do_munmap(mm, addr, len))
2909                         return -ENOMEM;
2910         }
2911
2912         /* Check against address space limits *after* clearing old maps... */
2913         if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT))
2914                 return -ENOMEM;
2915
2916         if (mm->map_count > sysctl_max_map_count)
2917                 return -ENOMEM;
2918
2919         if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
2920                 return -ENOMEM;
2921
2922         /* Can we just expand an old private anonymous mapping? */
2923         vma = vma_merge(mm, prev, addr, addr + len, flags,
2924                         NULL, NULL, pgoff, NULL, NULL_VM_UFFD_CTX);
2925         if (vma)
2926                 goto out;
2927
2928         /*
2929          * create a vma struct for an anonymous mapping
2930          */
2931         vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2932         if (!vma) {
2933                 vm_unacct_memory(len >> PAGE_SHIFT);
2934                 return -ENOMEM;
2935         }
2936
2937         INIT_LIST_HEAD(&vma->anon_vma_chain);
2938         vma->vm_mm = mm;
2939         vma->vm_start = addr;
2940         vma->vm_end = addr + len;
2941         vma->vm_pgoff = pgoff;
2942         vma->vm_flags = flags;
2943         vma->vm_page_prot = vm_get_page_prot(flags);
2944         vma_link(mm, vma, prev, rb_link, rb_parent);
2945 out:
2946         perf_event_mmap(vma);
2947         mm->total_vm += len >> PAGE_SHIFT;
2948         mm->data_vm += len >> PAGE_SHIFT;
2949         if (flags & VM_LOCKED)
2950                 mm->locked_vm += (len >> PAGE_SHIFT);
2951         vma->vm_flags |= VM_SOFTDIRTY;
2952         return 0;
2953 }
2954
2955 int vm_brk(unsigned long addr, unsigned long request)
2956 {
2957         struct mm_struct *mm = current->mm;
2958         unsigned long len;
2959         int ret;
2960         bool populate;
2961
2962         len = PAGE_ALIGN(request);
2963         if (len < request)
2964                 return -ENOMEM;
2965         if (!len)
2966                 return 0;
2967
2968         if (down_write_killable(&mm->mmap_sem))
2969                 return -EINTR;
2970
2971         ret = do_brk(addr, len);
2972         populate = ((mm->def_flags & VM_LOCKED) != 0);
2973         up_write(&mm->mmap_sem);
2974         if (populate && !ret)
2975                 mm_populate(addr, len);
2976         return ret;
2977 }
2978 EXPORT_SYMBOL(vm_brk);
2979
2980 /* Release all mmaps. */
2981 void exit_mmap(struct mm_struct *mm)
2982 {
2983         struct mmu_gather tlb;
2984         struct vm_area_struct *vma;
2985         unsigned long nr_accounted = 0;
2986
2987         /* mm's last user has gone, and its about to be pulled down */
2988         mmu_notifier_release(mm);
2989
2990         if (mm->locked_vm) {
2991                 vma = mm->mmap;
2992                 while (vma) {
2993                         if (vma->vm_flags & VM_LOCKED)
2994                                 munlock_vma_pages_all(vma);
2995                         vma = vma->vm_next;
2996                 }
2997         }
2998
2999         arch_exit_mmap(mm);
3000
3001         vma = mm->mmap;
3002         if (!vma)       /* Can happen if dup_mmap() received an OOM */
3003                 return;
3004
3005         lru_add_drain();
3006         flush_cache_mm(mm);
3007         tlb_gather_mmu(&tlb, mm, 0, -1);
3008         /* update_hiwater_rss(mm) here? but nobody should be looking */
3009         /* Use -1 here to ensure all VMAs in the mm are unmapped */
3010         unmap_vmas(&tlb, vma, 0, -1);
3011
3012         free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING);
3013         tlb_finish_mmu(&tlb, 0, -1);
3014
3015         /*
3016          * Walk the list again, actually closing and freeing it,
3017          * with preemption enabled, without holding any MM locks.
3018          */
3019         while (vma) {
3020                 if (vma->vm_flags & VM_ACCOUNT)
3021                         nr_accounted += vma_pages(vma);
3022                 vma = remove_vma(vma);
3023         }
3024         vm_unacct_memory(nr_accounted);
3025 }
3026
3027 /* Insert vm structure into process list sorted by address
3028  * and into the inode's i_mmap tree.  If vm_file is non-NULL
3029  * then i_mmap_rwsem is taken here.
3030  */
3031 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
3032 {
3033         struct vm_area_struct *prev;
3034         struct rb_node **rb_link, *rb_parent;
3035
3036         if (find_vma_links(mm, vma->vm_start, vma->vm_end,
3037                            &prev, &rb_link, &rb_parent))
3038                 return -ENOMEM;
3039         if ((vma->vm_flags & VM_ACCOUNT) &&
3040              security_vm_enough_memory_mm(mm, vma_pages(vma)))
3041                 return -ENOMEM;
3042
3043         /*
3044          * The vm_pgoff of a purely anonymous vma should be irrelevant
3045          * until its first write fault, when page's anon_vma and index
3046          * are set.  But now set the vm_pgoff it will almost certainly
3047          * end up with (unless mremap moves it elsewhere before that
3048          * first wfault), so /proc/pid/maps tells a consistent story.
3049          *
3050          * By setting it to reflect the virtual start address of the
3051          * vma, merges and splits can happen in a seamless way, just
3052          * using the existing file pgoff checks and manipulations.
3053          * Similarly in do_mmap_pgoff and in do_brk.
3054          */
3055         if (vma_is_anonymous(vma)) {
3056                 BUG_ON(vma->anon_vma);
3057                 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
3058         }
3059
3060         vma_link(mm, vma, prev, rb_link, rb_parent);
3061         return 0;
3062 }
3063
3064 /*
3065  * Copy the vma structure to a new location in the same mm,
3066  * prior to moving page table entries, to effect an mremap move.
3067  */
3068 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
3069         unsigned long addr, unsigned long len, pgoff_t pgoff,
3070         bool *need_rmap_locks)
3071 {
3072         struct vm_area_struct *vma = *vmap;
3073         unsigned long vma_start = vma->vm_start;
3074         struct mm_struct *mm = vma->vm_mm;
3075         struct vm_area_struct *new_vma, *prev;
3076         struct rb_node **rb_link, *rb_parent;
3077         bool faulted_in_anon_vma = true;
3078
3079         /*
3080          * If anonymous vma has not yet been faulted, update new pgoff
3081          * to match new location, to increase its chance of merging.
3082          */
3083         if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) {
3084                 pgoff = addr >> PAGE_SHIFT;
3085                 faulted_in_anon_vma = false;
3086         }
3087
3088         if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent))
3089                 return NULL;    /* should never get here */
3090         new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
3091                             vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma),
3092                             vma->vm_userfaultfd_ctx);
3093         if (new_vma) {
3094                 /*
3095                  * Source vma may have been merged into new_vma
3096                  */
3097                 if (unlikely(vma_start >= new_vma->vm_start &&
3098                              vma_start < new_vma->vm_end)) {
3099                         /*
3100                          * The only way we can get a vma_merge with
3101                          * self during an mremap is if the vma hasn't
3102                          * been faulted in yet and we were allowed to
3103                          * reset the dst vma->vm_pgoff to the
3104                          * destination address of the mremap to allow
3105                          * the merge to happen. mremap must change the
3106                          * vm_pgoff linearity between src and dst vmas
3107                          * (in turn preventing a vma_merge) to be
3108                          * safe. It is only safe to keep the vm_pgoff
3109                          * linear if there are no pages mapped yet.
3110                          */
3111                         VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
3112                         *vmap = vma = new_vma;
3113                 }
3114                 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
3115         } else {
3116                 new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
3117                 if (!new_vma)
3118                         goto out;
3119                 *new_vma = *vma;
3120                 new_vma->vm_start = addr;
3121                 new_vma->vm_end = addr + len;
3122                 new_vma->vm_pgoff = pgoff;
3123                 if (vma_dup_policy(vma, new_vma))
3124                         goto out_free_vma;
3125                 INIT_LIST_HEAD(&new_vma->anon_vma_chain);
3126                 if (anon_vma_clone(new_vma, vma))
3127                         goto out_free_mempol;
3128                 if (new_vma->vm_file)
3129                         get_file(new_vma->vm_file);
3130                 if (new_vma->vm_ops && new_vma->vm_ops->open)
3131                         new_vma->vm_ops->open(new_vma);
3132                 vma_link(mm, new_vma, prev, rb_link, rb_parent);
3133                 *need_rmap_locks = false;
3134         }
3135         return new_vma;
3136
3137 out_free_mempol:
3138         mpol_put(vma_policy(new_vma));
3139 out_free_vma:
3140         kmem_cache_free(vm_area_cachep, new_vma);
3141 out:
3142         return NULL;
3143 }
3144
3145 /*
3146  * Return true if the calling process may expand its vm space by the passed
3147  * number of pages
3148  */
3149 bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages)
3150 {
3151         if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT)
3152                 return false;
3153
3154         if (is_data_mapping(flags) &&
3155             mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) {
3156                 /* Workaround for Valgrind */
3157                 if (rlimit(RLIMIT_DATA) == 0 &&
3158                     mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT)
3159                         return true;
3160                 if (!ignore_rlimit_data) {
3161                         pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits or use boot option ignore_rlimit_data.\n",
3162                                      current->comm, current->pid,
3163                                      (mm->data_vm + npages) << PAGE_SHIFT,
3164                                      rlimit(RLIMIT_DATA));
3165                         return false;
3166                 }
3167         }
3168
3169         return true;
3170 }
3171
3172 void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages)
3173 {
3174         mm->total_vm += npages;
3175
3176         if (is_exec_mapping(flags))
3177                 mm->exec_vm += npages;
3178         else if (is_stack_mapping(flags))
3179                 mm->stack_vm += npages;
3180         else if (is_data_mapping(flags))
3181                 mm->data_vm += npages;
3182 }
3183
3184 static int special_mapping_fault(struct vm_area_struct *vma,
3185                                  struct vm_fault *vmf);
3186
3187 /*
3188  * Having a close hook prevents vma merging regardless of flags.
3189  */
3190 static void special_mapping_close(struct vm_area_struct *vma)
3191 {
3192 }
3193
3194 static const char *special_mapping_name(struct vm_area_struct *vma)
3195 {
3196         return ((struct vm_special_mapping *)vma->vm_private_data)->name;
3197 }
3198
3199 static int special_mapping_mremap(struct vm_area_struct *new_vma)
3200 {
3201         struct vm_special_mapping *sm = new_vma->vm_private_data;
3202
3203         if (sm->mremap)
3204                 return sm->mremap(sm, new_vma);
3205         return 0;
3206 }
3207
3208 static const struct vm_operations_struct special_mapping_vmops = {
3209         .close = special_mapping_close,
3210         .fault = special_mapping_fault,
3211         .mremap = special_mapping_mremap,
3212         .name = special_mapping_name,
3213 };
3214
3215 static const struct vm_operations_struct legacy_special_mapping_vmops = {
3216         .close = special_mapping_close,
3217         .fault = special_mapping_fault,
3218 };
3219
3220 static int special_mapping_fault(struct vm_area_struct *vma,
3221                                 struct vm_fault *vmf)
3222 {
3223         pgoff_t pgoff;
3224         struct page **pages;
3225
3226         if (vma->vm_ops == &legacy_special_mapping_vmops) {
3227                 pages = vma->vm_private_data;
3228         } else {
3229                 struct vm_special_mapping *sm = vma->vm_private_data;
3230
3231                 if (sm->fault)
3232                         return sm->fault(sm, vma, vmf);
3233
3234                 pages = sm->pages;
3235         }
3236
3237         for (pgoff = vmf->pgoff; pgoff && *pages; ++pages)
3238                 pgoff--;
3239
3240         if (*pages) {
3241                 struct page *page = *pages;
3242                 get_page(page);
3243                 vmf->page = page;
3244                 return 0;
3245         }
3246
3247         return VM_FAULT_SIGBUS;
3248 }
3249
3250 static struct vm_area_struct *__install_special_mapping(
3251         struct mm_struct *mm,
3252         unsigned long addr, unsigned long len,
3253         unsigned long vm_flags, void *priv,
3254         const struct vm_operations_struct *ops)
3255 {
3256         int ret;
3257         struct vm_area_struct *vma;
3258
3259         vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
3260         if (unlikely(vma == NULL))
3261                 return ERR_PTR(-ENOMEM);
3262
3263         INIT_LIST_HEAD(&vma->anon_vma_chain);
3264         vma->vm_mm = mm;
3265         vma->vm_start = addr;
3266         vma->vm_end = addr + len;
3267
3268         vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY;
3269         vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3270
3271         vma->vm_ops = ops;
3272         vma->vm_private_data = priv;
3273
3274         ret = insert_vm_struct(mm, vma);
3275         if (ret)
3276                 goto out;
3277
3278         vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT);
3279
3280         perf_event_mmap(vma);
3281
3282         return vma;
3283
3284 out:
3285         kmem_cache_free(vm_area_cachep, vma);
3286         return ERR_PTR(ret);
3287 }
3288
3289 bool vma_is_special_mapping(const struct vm_area_struct *vma,
3290         const struct vm_special_mapping *sm)
3291 {
3292         return vma->vm_private_data == sm &&
3293                 (vma->vm_ops == &special_mapping_vmops ||
3294                  vma->vm_ops == &legacy_special_mapping_vmops);
3295 }
3296
3297 /*
3298  * Called with mm->mmap_sem held for writing.
3299  * Insert a new vma covering the given region, with the given flags.
3300  * Its pages are supplied by the given array of struct page *.
3301  * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3302  * The region past the last page supplied will always produce SIGBUS.
3303  * The array pointer and the pages it points to are assumed to stay alive
3304  * for as long as this mapping might exist.
3305  */
3306 struct vm_area_struct *_install_special_mapping(
3307         struct mm_struct *mm,
3308         unsigned long addr, unsigned long len,
3309         unsigned long vm_flags, const struct vm_special_mapping *spec)
3310 {
3311         return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec,
3312                                         &special_mapping_vmops);
3313 }
3314
3315 int install_special_mapping(struct mm_struct *mm,
3316                             unsigned long addr, unsigned long len,
3317                             unsigned long vm_flags, struct page **pages)
3318 {
3319         struct vm_area_struct *vma = __install_special_mapping(
3320                 mm, addr, len, vm_flags, (void *)pages,
3321                 &legacy_special_mapping_vmops);
3322
3323         return PTR_ERR_OR_ZERO(vma);
3324 }
3325
3326 static DEFINE_MUTEX(mm_all_locks_mutex);
3327
3328 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
3329 {
3330         if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
3331                 /*
3332                  * The LSB of head.next can't change from under us
3333                  * because we hold the mm_all_locks_mutex.
3334                  */
3335                 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_sem);
3336                 /*
3337                  * We can safely modify head.next after taking the
3338                  * anon_vma->root->rwsem. If some other vma in this mm shares
3339                  * the same anon_vma we won't take it again.
3340                  *
3341                  * No need of atomic instructions here, head.next
3342                  * can't change from under us thanks to the
3343                  * anon_vma->root->rwsem.
3344                  */
3345                 if (__test_and_set_bit(0, (unsigned long *)
3346                                        &anon_vma->root->rb_root.rb_node))
3347                         BUG();
3348         }
3349 }
3350
3351 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
3352 {
3353         if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3354                 /*
3355                  * AS_MM_ALL_LOCKS can't change from under us because
3356                  * we hold the mm_all_locks_mutex.
3357                  *
3358                  * Operations on ->flags have to be atomic because
3359                  * even if AS_MM_ALL_LOCKS is stable thanks to the
3360                  * mm_all_locks_mutex, there may be other cpus
3361                  * changing other bitflags in parallel to us.
3362                  */
3363                 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3364                         BUG();
3365                 down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_sem);
3366         }
3367 }
3368
3369 /*
3370  * This operation locks against the VM for all pte/vma/mm related
3371  * operations that could ever happen on a certain mm. This includes
3372  * vmtruncate, try_to_unmap, and all page faults.
3373  *
3374  * The caller must take the mmap_sem in write mode before calling
3375  * mm_take_all_locks(). The caller isn't allowed to release the
3376  * mmap_sem until mm_drop_all_locks() returns.
3377  *
3378  * mmap_sem in write mode is required in order to block all operations
3379  * that could modify pagetables and free pages without need of
3380  * altering the vma layout. It's also needed in write mode to avoid new
3381  * anon_vmas to be associated with existing vmas.
3382  *
3383  * A single task can't take more than one mm_take_all_locks() in a row
3384  * or it would deadlock.
3385  *
3386  * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3387  * mapping->flags avoid to take the same lock twice, if more than one
3388  * vma in this mm is backed by the same anon_vma or address_space.
3389  *
3390  * We take locks in following order, accordingly to comment at beginning
3391  * of mm/rmap.c:
3392  *   - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for
3393  *     hugetlb mapping);
3394  *   - all i_mmap_rwsem locks;
3395  *   - all anon_vma->rwseml
3396  *
3397  * We can take all locks within these types randomly because the VM code
3398  * doesn't nest them and we protected from parallel mm_take_all_locks() by
3399  * mm_all_locks_mutex.
3400  *
3401  * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3402  * that may have to take thousand of locks.
3403  *
3404  * mm_take_all_locks() can fail if it's interrupted by signals.
3405  */
3406 int mm_take_all_locks(struct mm_struct *mm)
3407 {
3408         struct vm_area_struct *vma;
3409         struct anon_vma_chain *avc;
3410
3411         BUG_ON(down_read_trylock(&mm->mmap_sem));
3412
3413         mutex_lock(&mm_all_locks_mutex);
3414
3415         for (vma = mm->mmap; vma; vma = vma->vm_next) {
3416                 if (signal_pending(current))
3417                         goto out_unlock;
3418                 if (vma->vm_file && vma->vm_file->f_mapping &&
3419                                 is_vm_hugetlb_page(vma))
3420                         vm_lock_mapping(mm, vma->vm_file->f_mapping);
3421         }
3422
3423         for (vma = mm->mmap; vma; vma = vma->vm_next) {
3424                 if (signal_pending(current))
3425                         goto out_unlock;
3426                 if (vma->vm_file && vma->vm_file->f_mapping &&
3427                                 !is_vm_hugetlb_page(vma))
3428                         vm_lock_mapping(mm, vma->vm_file->f_mapping);
3429         }
3430
3431         for (vma = mm->mmap; vma; vma = vma->vm_next) {
3432                 if (signal_pending(current))
3433                         goto out_unlock;
3434                 if (vma->anon_vma)
3435                         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3436                                 vm_lock_anon_vma(mm, avc->anon_vma);
3437         }
3438
3439         return 0;
3440
3441 out_unlock:
3442         mm_drop_all_locks(mm);
3443         return -EINTR;
3444 }
3445
3446 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3447 {
3448         if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
3449                 /*
3450                  * The LSB of head.next can't change to 0 from under
3451                  * us because we hold the mm_all_locks_mutex.
3452                  *
3453                  * We must however clear the bitflag before unlocking
3454                  * the vma so the users using the anon_vma->rb_root will
3455                  * never see our bitflag.
3456                  *
3457                  * No need of atomic instructions here, head.next
3458                  * can't change from under us until we release the
3459                  * anon_vma->root->rwsem.
3460                  */
3461                 if (!__test_and_clear_bit(0, (unsigned long *)
3462                                           &anon_vma->root->rb_root.rb_node))
3463                         BUG();
3464                 anon_vma_unlock_write(anon_vma);
3465         }
3466 }
3467
3468 static void vm_unlock_mapping(struct address_space *mapping)
3469 {
3470         if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3471                 /*
3472                  * AS_MM_ALL_LOCKS can't change to 0 from under us
3473                  * because we hold the mm_all_locks_mutex.
3474                  */
3475                 i_mmap_unlock_write(mapping);
3476                 if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3477                                         &mapping->flags))
3478                         BUG();
3479         }
3480 }
3481
3482 /*
3483  * The mmap_sem cannot be released by the caller until
3484  * mm_drop_all_locks() returns.
3485  */
3486 void mm_drop_all_locks(struct mm_struct *mm)
3487 {
3488         struct vm_area_struct *vma;
3489         struct anon_vma_chain *avc;
3490
3491         BUG_ON(down_read_trylock(&mm->mmap_sem));
3492         BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3493
3494         for (vma = mm->mmap; vma; vma = vma->vm_next) {
3495                 if (vma->anon_vma)
3496                         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3497                                 vm_unlock_anon_vma(avc->anon_vma);
3498                 if (vma->vm_file && vma->vm_file->f_mapping)
3499                         vm_unlock_mapping(vma->vm_file->f_mapping);
3500         }
3501
3502         mutex_unlock(&mm_all_locks_mutex);
3503 }
3504
3505 /*
3506  * initialise the VMA slab
3507  */
3508 void __init mmap_init(void)
3509 {
3510         int ret;
3511
3512         ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
3513         VM_BUG_ON(ret);
3514 }
3515
3516 /*
3517  * Initialise sysctl_user_reserve_kbytes.
3518  *
3519  * This is intended to prevent a user from starting a single memory hogging
3520  * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3521  * mode.
3522  *
3523  * The default value is min(3% of free memory, 128MB)
3524  * 128MB is enough to recover with sshd/login, bash, and top/kill.
3525  */
3526 static int init_user_reserve(void)
3527 {
3528         unsigned long free_kbytes;
3529
3530         free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3531
3532         sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3533         return 0;
3534 }
3535 subsys_initcall(init_user_reserve);
3536
3537 /*
3538  * Initialise sysctl_admin_reserve_kbytes.
3539  *
3540  * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3541  * to log in and kill a memory hogging process.
3542  *
3543  * Systems with more than 256MB will reserve 8MB, enough to recover
3544  * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3545  * only reserve 3% of free pages by default.
3546  */
3547 static int init_admin_reserve(void)
3548 {
3549         unsigned long free_kbytes;
3550
3551         free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3552
3553         sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3554         return 0;
3555 }
3556 subsys_initcall(init_admin_reserve);
3557
3558 /*
3559  * Reinititalise user and admin reserves if memory is added or removed.
3560  *
3561  * The default user reserve max is 128MB, and the default max for the
3562  * admin reserve is 8MB. These are usually, but not always, enough to
3563  * enable recovery from a memory hogging process using login/sshd, a shell,
3564  * and tools like top. It may make sense to increase or even disable the
3565  * reserve depending on the existence of swap or variations in the recovery
3566  * tools. So, the admin may have changed them.
3567  *
3568  * If memory is added and the reserves have been eliminated or increased above
3569  * the default max, then we'll trust the admin.
3570  *
3571  * If memory is removed and there isn't enough free memory, then we
3572  * need to reset the reserves.
3573  *
3574  * Otherwise keep the reserve set by the admin.
3575  */
3576 static int reserve_mem_notifier(struct notifier_block *nb,
3577                              unsigned long action, void *data)
3578 {
3579         unsigned long tmp, free_kbytes;
3580
3581         switch (action) {
3582         case MEM_ONLINE:
3583                 /* Default max is 128MB. Leave alone if modified by operator. */
3584                 tmp = sysctl_user_reserve_kbytes;
3585                 if (0 < tmp && tmp < (1UL << 17))
3586                         init_user_reserve();
3587
3588                 /* Default max is 8MB.  Leave alone if modified by operator. */
3589                 tmp = sysctl_admin_reserve_kbytes;
3590                 if (0 < tmp && tmp < (1UL << 13))
3591                         init_admin_reserve();
3592
3593                 break;
3594         case MEM_OFFLINE:
3595                 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3596
3597                 if (sysctl_user_reserve_kbytes > free_kbytes) {
3598                         init_user_reserve();
3599                         pr_info("vm.user_reserve_kbytes reset to %lu\n",
3600                                 sysctl_user_reserve_kbytes);
3601                 }
3602
3603                 if (sysctl_admin_reserve_kbytes > free_kbytes) {
3604                         init_admin_reserve();
3605                         pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3606                                 sysctl_admin_reserve_kbytes);
3607                 }
3608                 break;
3609         default:
3610                 break;
3611         }
3612         return NOTIFY_OK;
3613 }
3614
3615 static struct notifier_block reserve_mem_nb = {
3616         .notifier_call = reserve_mem_notifier,
3617 };
3618
3619 static int __meminit init_reserve_notifier(void)
3620 {
3621         if (register_hotmemory_notifier(&reserve_mem_nb))
3622                 pr_err("Failed registering memory add/remove notifier for admin reserve\n");
3623
3624         return 0;
3625 }
3626 subsys_initcall(init_reserve_notifier);