OSDN Git Service

mm: fix new crash in unmapped_area_topdown()
[sagit-ice-cold/kernel_xiaomi_msm8998.git] / mm / mmap.c
1 /*
2  * mm/mmap.c
3  *
4  * Written by obz.
5  *
6  * Address space accounting code        <alan@lxorguk.ukuu.org.uk>
7  */
8
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10
11 #include <linux/kernel.h>
12 #include <linux/slab.h>
13 #include <linux/backing-dev.h>
14 #include <linux/mm.h>
15 #include <linux/vmacache.h>
16 #include <linux/shm.h>
17 #include <linux/mman.h>
18 #include <linux/pagemap.h>
19 #include <linux/swap.h>
20 #include <linux/syscalls.h>
21 #include <linux/capability.h>
22 #include <linux/init.h>
23 #include <linux/file.h>
24 #include <linux/fs.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/hugetlb.h>
28 #include <linux/profile.h>
29 #include <linux/export.h>
30 #include <linux/mount.h>
31 #include <linux/mempolicy.h>
32 #include <linux/rmap.h>
33 #include <linux/mmu_notifier.h>
34 #include <linux/mmdebug.h>
35 #include <linux/perf_event.h>
36 #include <linux/audit.h>
37 #include <linux/khugepaged.h>
38 #include <linux/uprobes.h>
39 #include <linux/rbtree_augmented.h>
40 #include <linux/sched/sysctl.h>
41 #include <linux/notifier.h>
42 #include <linux/memory.h>
43 #include <linux/printk.h>
44 #include <linux/userfaultfd_k.h>
45
46 #include <asm/uaccess.h>
47 #include <asm/cacheflush.h>
48 #include <asm/tlb.h>
49 #include <asm/mmu_context.h>
50
51 #include "internal.h"
52
53 #ifndef arch_mmap_check
54 #define arch_mmap_check(addr, len, flags)       (0)
55 #endif
56
57 #ifndef arch_rebalance_pgtables
58 #define arch_rebalance_pgtables(addr, len)              (addr)
59 #endif
60
61 static void unmap_region(struct mm_struct *mm,
62                 struct vm_area_struct *vma, struct vm_area_struct *prev,
63                 unsigned long start, unsigned long end);
64
65 /* description of effects of mapping type and prot in current implementation.
66  * this is due to the limited x86 page protection hardware.  The expected
67  * behavior is in parens:
68  *
69  * map_type     prot
70  *              PROT_NONE       PROT_READ       PROT_WRITE      PROT_EXEC
71  * MAP_SHARED   r: (no) no      r: (yes) yes    r: (no) yes     r: (no) yes
72  *              w: (no) no      w: (no) no      w: (yes) yes    w: (no) no
73  *              x: (no) no      x: (no) yes     x: (no) yes     x: (yes) yes
74  *
75  * MAP_PRIVATE  r: (no) no      r: (yes) yes    r: (no) yes     r: (no) yes
76  *              w: (no) no      w: (no) no      w: (copy) copy  w: (no) no
77  *              x: (no) no      x: (no) yes     x: (no) yes     x: (yes) yes
78  *
79  */
80 pgprot_t protection_map[16] = {
81         __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
82         __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
83 };
84
85 pgprot_t vm_get_page_prot(unsigned long vm_flags)
86 {
87         return __pgprot(pgprot_val(protection_map[vm_flags &
88                                 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
89                         pgprot_val(arch_vm_get_page_prot(vm_flags)));
90 }
91 EXPORT_SYMBOL(vm_get_page_prot);
92
93 static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags)
94 {
95         return pgprot_modify(oldprot, vm_get_page_prot(vm_flags));
96 }
97
98 /* Update vma->vm_page_prot to reflect vma->vm_flags. */
99 void vma_set_page_prot(struct vm_area_struct *vma)
100 {
101         unsigned long vm_flags = vma->vm_flags;
102
103         vma->vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags);
104         if (vma_wants_writenotify(vma)) {
105                 vm_flags &= ~VM_SHARED;
106                 vma->vm_page_prot = vm_pgprot_modify(vma->vm_page_prot,
107                                                      vm_flags);
108         }
109 }
110
111
112 int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS;  /* heuristic overcommit */
113 int sysctl_overcommit_ratio __read_mostly = 50; /* default is 50% */
114 unsigned long sysctl_overcommit_kbytes __read_mostly;
115 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
116 unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */
117 unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */
118 /*
119  * Make sure vm_committed_as in one cacheline and not cacheline shared with
120  * other variables. It can be updated by several CPUs frequently.
121  */
122 struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp;
123
124 /*
125  * The global memory commitment made in the system can be a metric
126  * that can be used to drive ballooning decisions when Linux is hosted
127  * as a guest. On Hyper-V, the host implements a policy engine for dynamically
128  * balancing memory across competing virtual machines that are hosted.
129  * Several metrics drive this policy engine including the guest reported
130  * memory commitment.
131  */
132 unsigned long vm_memory_committed(void)
133 {
134         return percpu_counter_read_positive(&vm_committed_as);
135 }
136 EXPORT_SYMBOL_GPL(vm_memory_committed);
137
138 /*
139  * Check that a process has enough memory to allocate a new virtual
140  * mapping. 0 means there is enough memory for the allocation to
141  * succeed and -ENOMEM implies there is not.
142  *
143  * We currently support three overcommit policies, which are set via the
144  * vm.overcommit_memory sysctl.  See Documentation/vm/overcommit-accounting
145  *
146  * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
147  * Additional code 2002 Jul 20 by Robert Love.
148  *
149  * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
150  *
151  * Note this is a helper function intended to be used by LSMs which
152  * wish to use this logic.
153  */
154 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
155 {
156         long free, allowed, reserve;
157
158         VM_WARN_ONCE(percpu_counter_read(&vm_committed_as) <
159                         -(s64)vm_committed_as_batch * num_online_cpus(),
160                         "memory commitment underflow");
161
162         vm_acct_memory(pages);
163
164         /*
165          * Sometimes we want to use more memory than we have
166          */
167         if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
168                 return 0;
169
170         if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
171                 free = global_page_state(NR_FREE_PAGES);
172                 free += global_page_state(NR_FILE_PAGES);
173
174                 /*
175                  * shmem pages shouldn't be counted as free in this
176                  * case, they can't be purged, only swapped out, and
177                  * that won't affect the overall amount of available
178                  * memory in the system.
179                  */
180                 free -= global_page_state(NR_SHMEM);
181
182                 free += get_nr_swap_pages();
183
184                 /*
185                  * Any slabs which are created with the
186                  * SLAB_RECLAIM_ACCOUNT flag claim to have contents
187                  * which are reclaimable, under pressure.  The dentry
188                  * cache and most inode caches should fall into this
189                  */
190                 free += global_page_state(NR_SLAB_RECLAIMABLE);
191
192                 /*
193                  * Leave reserved pages. The pages are not for anonymous pages.
194                  */
195                 if (free <= totalreserve_pages)
196                         goto error;
197                 else
198                         free -= totalreserve_pages;
199
200                 /*
201                  * Reserve some for root
202                  */
203                 if (!cap_sys_admin)
204                         free -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
205
206                 if (free > pages)
207                         return 0;
208
209                 goto error;
210         }
211
212         allowed = vm_commit_limit();
213         /*
214          * Reserve some for root
215          */
216         if (!cap_sys_admin)
217                 allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
218
219         /*
220          * Don't let a single process grow so big a user can't recover
221          */
222         if (mm) {
223                 reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10);
224                 allowed -= min_t(long, mm->total_vm / 32, reserve);
225         }
226
227         if (percpu_counter_read_positive(&vm_committed_as) < allowed)
228                 return 0;
229 error:
230         vm_unacct_memory(pages);
231
232         return -ENOMEM;
233 }
234
235 /*
236  * Requires inode->i_mapping->i_mmap_rwsem
237  */
238 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
239                 struct file *file, struct address_space *mapping)
240 {
241         if (vma->vm_flags & VM_DENYWRITE)
242                 atomic_inc(&file_inode(file)->i_writecount);
243         if (vma->vm_flags & VM_SHARED)
244                 mapping_unmap_writable(mapping);
245
246         flush_dcache_mmap_lock(mapping);
247         vma_interval_tree_remove(vma, &mapping->i_mmap);
248         flush_dcache_mmap_unlock(mapping);
249 }
250
251 /*
252  * Unlink a file-based vm structure from its interval tree, to hide
253  * vma from rmap and vmtruncate before freeing its page tables.
254  */
255 void unlink_file_vma(struct vm_area_struct *vma)
256 {
257         struct file *file = vma->vm_file;
258
259         if (file) {
260                 struct address_space *mapping = file->f_mapping;
261                 i_mmap_lock_write(mapping);
262                 __remove_shared_vm_struct(vma, file, mapping);
263                 i_mmap_unlock_write(mapping);
264         }
265 }
266
267 /*
268  * Close a vm structure and free it, returning the next.
269  */
270 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
271 {
272         struct vm_area_struct *next = vma->vm_next;
273
274         might_sleep();
275         if (vma->vm_ops && vma->vm_ops->close)
276                 vma->vm_ops->close(vma);
277         if (vma->vm_file)
278                 fput(vma->vm_file);
279         mpol_put(vma_policy(vma));
280         kmem_cache_free(vm_area_cachep, vma);
281         return next;
282 }
283
284 static unsigned long do_brk(unsigned long addr, unsigned long len);
285
286 SYSCALL_DEFINE1(brk, unsigned long, brk)
287 {
288         unsigned long retval;
289         unsigned long newbrk, oldbrk;
290         struct mm_struct *mm = current->mm;
291         struct vm_area_struct *next;
292         unsigned long min_brk;
293         bool populate;
294
295         down_write(&mm->mmap_sem);
296
297 #ifdef CONFIG_COMPAT_BRK
298         /*
299          * CONFIG_COMPAT_BRK can still be overridden by setting
300          * randomize_va_space to 2, which will still cause mm->start_brk
301          * to be arbitrarily shifted
302          */
303         if (current->brk_randomized)
304                 min_brk = mm->start_brk;
305         else
306                 min_brk = mm->end_data;
307 #else
308         min_brk = mm->start_brk;
309 #endif
310         if (brk < min_brk)
311                 goto out;
312
313         /*
314          * Check against rlimit here. If this check is done later after the test
315          * of oldbrk with newbrk then it can escape the test and let the data
316          * segment grow beyond its set limit the in case where the limit is
317          * not page aligned -Ram Gupta
318          */
319         if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,
320                               mm->end_data, mm->start_data))
321                 goto out;
322
323         newbrk = PAGE_ALIGN(brk);
324         oldbrk = PAGE_ALIGN(mm->brk);
325         if (oldbrk == newbrk)
326                 goto set_brk;
327
328         /* Always allow shrinking brk. */
329         if (brk <= mm->brk) {
330                 if (!do_munmap(mm, newbrk, oldbrk-newbrk))
331                         goto set_brk;
332                 goto out;
333         }
334
335         /* Check against existing mmap mappings. */
336         next = find_vma(mm, oldbrk);
337         if (next && newbrk + PAGE_SIZE > vm_start_gap(next))
338                 goto out;
339
340         /* Ok, looks good - let it rip. */
341         if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk)
342                 goto out;
343
344 set_brk:
345         mm->brk = brk;
346         populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0;
347         up_write(&mm->mmap_sem);
348         if (populate)
349                 mm_populate(oldbrk, newbrk - oldbrk);
350         return brk;
351
352 out:
353         retval = mm->brk;
354         up_write(&mm->mmap_sem);
355         return retval;
356 }
357
358 static long vma_compute_subtree_gap(struct vm_area_struct *vma)
359 {
360         unsigned long max, prev_end, subtree_gap;
361
362         /*
363          * Note: in the rare case of a VM_GROWSDOWN above a VM_GROWSUP, we
364          * allow two stack_guard_gaps between them here, and when choosing
365          * an unmapped area; whereas when expanding we only require one.
366          * That's a little inconsistent, but keeps the code here simpler.
367          */
368         max = vm_start_gap(vma);
369         if (vma->vm_prev) {
370                 prev_end = vm_end_gap(vma->vm_prev);
371                 if (max > prev_end)
372                         max -= prev_end;
373                 else
374                         max = 0;
375         }
376         if (vma->vm_rb.rb_left) {
377                 subtree_gap = rb_entry(vma->vm_rb.rb_left,
378                                 struct vm_area_struct, vm_rb)->rb_subtree_gap;
379                 if (subtree_gap > max)
380                         max = subtree_gap;
381         }
382         if (vma->vm_rb.rb_right) {
383                 subtree_gap = rb_entry(vma->vm_rb.rb_right,
384                                 struct vm_area_struct, vm_rb)->rb_subtree_gap;
385                 if (subtree_gap > max)
386                         max = subtree_gap;
387         }
388         return max;
389 }
390
391 #ifdef CONFIG_DEBUG_VM_RB
392 static int browse_rb(struct rb_root *root)
393 {
394         int i = 0, j, bug = 0;
395         struct rb_node *nd, *pn = NULL;
396         unsigned long prev = 0, pend = 0;
397
398         for (nd = rb_first(root); nd; nd = rb_next(nd)) {
399                 struct vm_area_struct *vma;
400                 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
401                 if (vma->vm_start < prev) {
402                         pr_emerg("vm_start %lx < prev %lx\n",
403                                   vma->vm_start, prev);
404                         bug = 1;
405                 }
406                 if (vma->vm_start < pend) {
407                         pr_emerg("vm_start %lx < pend %lx\n",
408                                   vma->vm_start, pend);
409                         bug = 1;
410                 }
411                 if (vma->vm_start > vma->vm_end) {
412                         pr_emerg("vm_start %lx > vm_end %lx\n",
413                                   vma->vm_start, vma->vm_end);
414                         bug = 1;
415                 }
416                 if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) {
417                         pr_emerg("free gap %lx, correct %lx\n",
418                                vma->rb_subtree_gap,
419                                vma_compute_subtree_gap(vma));
420                         bug = 1;
421                 }
422                 i++;
423                 pn = nd;
424                 prev = vma->vm_start;
425                 pend = vma->vm_end;
426         }
427         j = 0;
428         for (nd = pn; nd; nd = rb_prev(nd))
429                 j++;
430         if (i != j) {
431                 pr_emerg("backwards %d, forwards %d\n", j, i);
432                 bug = 1;
433         }
434         return bug ? -1 : i;
435 }
436
437 static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore)
438 {
439         struct rb_node *nd;
440
441         for (nd = rb_first(root); nd; nd = rb_next(nd)) {
442                 struct vm_area_struct *vma;
443                 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
444                 VM_BUG_ON_VMA(vma != ignore &&
445                         vma->rb_subtree_gap != vma_compute_subtree_gap(vma),
446                         vma);
447         }
448 }
449
450 static void validate_mm(struct mm_struct *mm)
451 {
452         int bug = 0;
453         int i = 0;
454         unsigned long highest_address = 0;
455         struct vm_area_struct *vma = mm->mmap;
456
457         while (vma) {
458                 struct anon_vma *anon_vma = vma->anon_vma;
459                 struct anon_vma_chain *avc;
460
461                 if (anon_vma) {
462                         anon_vma_lock_read(anon_vma);
463                         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
464                                 anon_vma_interval_tree_verify(avc);
465                         anon_vma_unlock_read(anon_vma);
466                 }
467
468                 highest_address = vm_end_gap(vma);
469                 vma = vma->vm_next;
470                 i++;
471         }
472         if (i != mm->map_count) {
473                 pr_emerg("map_count %d vm_next %d\n", mm->map_count, i);
474                 bug = 1;
475         }
476         if (highest_address != mm->highest_vm_end) {
477                 pr_emerg("mm->highest_vm_end %lx, found %lx\n",
478                           mm->highest_vm_end, highest_address);
479                 bug = 1;
480         }
481         i = browse_rb(&mm->mm_rb);
482         if (i != mm->map_count) {
483                 if (i != -1)
484                         pr_emerg("map_count %d rb %d\n", mm->map_count, i);
485                 bug = 1;
486         }
487         VM_BUG_ON_MM(bug, mm);
488 }
489 #else
490 #define validate_mm_rb(root, ignore) do { } while (0)
491 #define validate_mm(mm) do { } while (0)
492 #endif
493
494 RB_DECLARE_CALLBACKS(static, vma_gap_callbacks, struct vm_area_struct, vm_rb,
495                      unsigned long, rb_subtree_gap, vma_compute_subtree_gap)
496
497 /*
498  * Update augmented rbtree rb_subtree_gap values after vma->vm_start or
499  * vma->vm_prev->vm_end values changed, without modifying the vma's position
500  * in the rbtree.
501  */
502 static void vma_gap_update(struct vm_area_struct *vma)
503 {
504         /*
505          * As it turns out, RB_DECLARE_CALLBACKS() already created a callback
506          * function that does exacltly what we want.
507          */
508         vma_gap_callbacks_propagate(&vma->vm_rb, NULL);
509 }
510
511 static inline void vma_rb_insert(struct vm_area_struct *vma,
512                                  struct rb_root *root)
513 {
514         /* All rb_subtree_gap values must be consistent prior to insertion */
515         validate_mm_rb(root, NULL);
516
517         rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
518 }
519
520 static void vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root)
521 {
522         /*
523          * All rb_subtree_gap values must be consistent prior to erase,
524          * with the possible exception of the vma being erased.
525          */
526         validate_mm_rb(root, vma);
527
528         /*
529          * Note rb_erase_augmented is a fairly large inline function,
530          * so make sure we instantiate it only once with our desired
531          * augmented rbtree callbacks.
532          */
533         rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
534 }
535
536 /*
537  * vma has some anon_vma assigned, and is already inserted on that
538  * anon_vma's interval trees.
539  *
540  * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
541  * vma must be removed from the anon_vma's interval trees using
542  * anon_vma_interval_tree_pre_update_vma().
543  *
544  * After the update, the vma will be reinserted using
545  * anon_vma_interval_tree_post_update_vma().
546  *
547  * The entire update must be protected by exclusive mmap_sem and by
548  * the root anon_vma's mutex.
549  */
550 static inline void
551 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
552 {
553         struct anon_vma_chain *avc;
554
555         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
556                 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
557 }
558
559 static inline void
560 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
561 {
562         struct anon_vma_chain *avc;
563
564         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
565                 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
566 }
567
568 static int find_vma_links(struct mm_struct *mm, unsigned long addr,
569                 unsigned long end, struct vm_area_struct **pprev,
570                 struct rb_node ***rb_link, struct rb_node **rb_parent)
571 {
572         struct rb_node **__rb_link, *__rb_parent, *rb_prev;
573
574         __rb_link = &mm->mm_rb.rb_node;
575         rb_prev = __rb_parent = NULL;
576
577         while (*__rb_link) {
578                 struct vm_area_struct *vma_tmp;
579
580                 __rb_parent = *__rb_link;
581                 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
582
583                 if (vma_tmp->vm_end > addr) {
584                         /* Fail if an existing vma overlaps the area */
585                         if (vma_tmp->vm_start < end)
586                                 return -ENOMEM;
587                         __rb_link = &__rb_parent->rb_left;
588                 } else {
589                         rb_prev = __rb_parent;
590                         __rb_link = &__rb_parent->rb_right;
591                 }
592         }
593
594         *pprev = NULL;
595         if (rb_prev)
596                 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
597         *rb_link = __rb_link;
598         *rb_parent = __rb_parent;
599         return 0;
600 }
601
602 static unsigned long count_vma_pages_range(struct mm_struct *mm,
603                 unsigned long addr, unsigned long end)
604 {
605         unsigned long nr_pages = 0;
606         struct vm_area_struct *vma;
607
608         /* Find first overlaping mapping */
609         vma = find_vma_intersection(mm, addr, end);
610         if (!vma)
611                 return 0;
612
613         nr_pages = (min(end, vma->vm_end) -
614                 max(addr, vma->vm_start)) >> PAGE_SHIFT;
615
616         /* Iterate over the rest of the overlaps */
617         for (vma = vma->vm_next; vma; vma = vma->vm_next) {
618                 unsigned long overlap_len;
619
620                 if (vma->vm_start > end)
621                         break;
622
623                 overlap_len = min(end, vma->vm_end) - vma->vm_start;
624                 nr_pages += overlap_len >> PAGE_SHIFT;
625         }
626
627         return nr_pages;
628 }
629
630 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
631                 struct rb_node **rb_link, struct rb_node *rb_parent)
632 {
633         /* Update tracking information for the gap following the new vma. */
634         if (vma->vm_next)
635                 vma_gap_update(vma->vm_next);
636         else
637                 mm->highest_vm_end = vm_end_gap(vma);
638
639         /*
640          * vma->vm_prev wasn't known when we followed the rbtree to find the
641          * correct insertion point for that vma. As a result, we could not
642          * update the vma vm_rb parents rb_subtree_gap values on the way down.
643          * So, we first insert the vma with a zero rb_subtree_gap value
644          * (to be consistent with what we did on the way down), and then
645          * immediately update the gap to the correct value. Finally we
646          * rebalance the rbtree after all augmented values have been set.
647          */
648         rb_link_node(&vma->vm_rb, rb_parent, rb_link);
649         vma->rb_subtree_gap = 0;
650         vma_gap_update(vma);
651         vma_rb_insert(vma, &mm->mm_rb);
652 }
653
654 static void __vma_link_file(struct vm_area_struct *vma)
655 {
656         struct file *file;
657
658         file = vma->vm_file;
659         if (file) {
660                 struct address_space *mapping = file->f_mapping;
661
662                 if (vma->vm_flags & VM_DENYWRITE)
663                         atomic_dec(&file_inode(file)->i_writecount);
664                 if (vma->vm_flags & VM_SHARED)
665                         atomic_inc(&mapping->i_mmap_writable);
666
667                 flush_dcache_mmap_lock(mapping);
668                 vma_interval_tree_insert(vma, &mapping->i_mmap);
669                 flush_dcache_mmap_unlock(mapping);
670         }
671 }
672
673 static void
674 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
675         struct vm_area_struct *prev, struct rb_node **rb_link,
676         struct rb_node *rb_parent)
677 {
678         __vma_link_list(mm, vma, prev, rb_parent);
679         __vma_link_rb(mm, vma, rb_link, rb_parent);
680 }
681
682 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
683                         struct vm_area_struct *prev, struct rb_node **rb_link,
684                         struct rb_node *rb_parent)
685 {
686         struct address_space *mapping = NULL;
687
688         if (vma->vm_file) {
689                 mapping = vma->vm_file->f_mapping;
690                 i_mmap_lock_write(mapping);
691         }
692
693         __vma_link(mm, vma, prev, rb_link, rb_parent);
694         __vma_link_file(vma);
695
696         if (mapping)
697                 i_mmap_unlock_write(mapping);
698
699         mm->map_count++;
700         validate_mm(mm);
701 }
702
703 /*
704  * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
705  * mm's list and rbtree.  It has already been inserted into the interval tree.
706  */
707 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
708 {
709         struct vm_area_struct *prev;
710         struct rb_node **rb_link, *rb_parent;
711
712         if (find_vma_links(mm, vma->vm_start, vma->vm_end,
713                            &prev, &rb_link, &rb_parent))
714                 BUG();
715         __vma_link(mm, vma, prev, rb_link, rb_parent);
716         mm->map_count++;
717 }
718
719 static inline void
720 __vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma,
721                 struct vm_area_struct *prev)
722 {
723         struct vm_area_struct *next;
724
725         vma_rb_erase(vma, &mm->mm_rb);
726         prev->vm_next = next = vma->vm_next;
727         if (next)
728                 next->vm_prev = prev;
729
730         /* Kill the cache */
731         vmacache_invalidate(mm);
732 }
733
734 /*
735  * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
736  * is already present in an i_mmap tree without adjusting the tree.
737  * The following helper function should be used when such adjustments
738  * are necessary.  The "insert" vma (if any) is to be inserted
739  * before we drop the necessary locks.
740  */
741 int vma_adjust(struct vm_area_struct *vma, unsigned long start,
742         unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
743 {
744         struct mm_struct *mm = vma->vm_mm;
745         struct vm_area_struct *next = vma->vm_next;
746         struct vm_area_struct *importer = NULL;
747         struct address_space *mapping = NULL;
748         struct rb_root *root = NULL;
749         struct anon_vma *anon_vma = NULL;
750         struct file *file = vma->vm_file;
751         bool start_changed = false, end_changed = false;
752         long adjust_next = 0;
753         int remove_next = 0;
754
755         if (next && !insert) {
756                 struct vm_area_struct *exporter = NULL;
757
758                 if (end >= next->vm_end) {
759                         /*
760                          * vma expands, overlapping all the next, and
761                          * perhaps the one after too (mprotect case 6).
762                          */
763 again:                  remove_next = 1 + (end > next->vm_end);
764                         end = next->vm_end;
765                         exporter = next;
766                         importer = vma;
767                 } else if (end > next->vm_start) {
768                         /*
769                          * vma expands, overlapping part of the next:
770                          * mprotect case 5 shifting the boundary up.
771                          */
772                         adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
773                         exporter = next;
774                         importer = vma;
775                 } else if (end < vma->vm_end) {
776                         /*
777                          * vma shrinks, and !insert tells it's not
778                          * split_vma inserting another: so it must be
779                          * mprotect case 4 shifting the boundary down.
780                          */
781                         adjust_next = -((vma->vm_end - end) >> PAGE_SHIFT);
782                         exporter = vma;
783                         importer = next;
784                 }
785
786                 /*
787                  * Easily overlooked: when mprotect shifts the boundary,
788                  * make sure the expanding vma has anon_vma set if the
789                  * shrinking vma had, to cover any anon pages imported.
790                  */
791                 if (exporter && exporter->anon_vma && !importer->anon_vma) {
792                         int error;
793
794                         importer->anon_vma = exporter->anon_vma;
795                         error = anon_vma_clone(importer, exporter);
796                         if (error)
797                                 return error;
798                 }
799         }
800
801         if (file) {
802                 mapping = file->f_mapping;
803                 root = &mapping->i_mmap;
804                 uprobe_munmap(vma, vma->vm_start, vma->vm_end);
805
806                 if (adjust_next)
807                         uprobe_munmap(next, next->vm_start, next->vm_end);
808
809                 i_mmap_lock_write(mapping);
810                 if (insert) {
811                         /*
812                          * Put into interval tree now, so instantiated pages
813                          * are visible to arm/parisc __flush_dcache_page
814                          * throughout; but we cannot insert into address
815                          * space until vma start or end is updated.
816                          */
817                         __vma_link_file(insert);
818                 }
819         }
820
821         vma_adjust_trans_huge(vma, start, end, adjust_next);
822
823         anon_vma = vma->anon_vma;
824         if (!anon_vma && adjust_next)
825                 anon_vma = next->anon_vma;
826         if (anon_vma) {
827                 VM_BUG_ON_VMA(adjust_next && next->anon_vma &&
828                           anon_vma != next->anon_vma, next);
829                 anon_vma_lock_write(anon_vma);
830                 anon_vma_interval_tree_pre_update_vma(vma);
831                 if (adjust_next)
832                         anon_vma_interval_tree_pre_update_vma(next);
833         }
834
835         if (root) {
836                 flush_dcache_mmap_lock(mapping);
837                 vma_interval_tree_remove(vma, root);
838                 if (adjust_next)
839                         vma_interval_tree_remove(next, root);
840         }
841
842         if (start != vma->vm_start) {
843                 vma->vm_start = start;
844                 start_changed = true;
845         }
846         if (end != vma->vm_end) {
847                 vma->vm_end = end;
848                 end_changed = true;
849         }
850         vma->vm_pgoff = pgoff;
851         if (adjust_next) {
852                 next->vm_start += adjust_next << PAGE_SHIFT;
853                 next->vm_pgoff += adjust_next;
854         }
855
856         if (root) {
857                 if (adjust_next)
858                         vma_interval_tree_insert(next, root);
859                 vma_interval_tree_insert(vma, root);
860                 flush_dcache_mmap_unlock(mapping);
861         }
862
863         if (remove_next) {
864                 /*
865                  * vma_merge has merged next into vma, and needs
866                  * us to remove next before dropping the locks.
867                  */
868                 __vma_unlink(mm, next, vma);
869                 if (file)
870                         __remove_shared_vm_struct(next, file, mapping);
871         } else if (insert) {
872                 /*
873                  * split_vma has split insert from vma, and needs
874                  * us to insert it before dropping the locks
875                  * (it may either follow vma or precede it).
876                  */
877                 __insert_vm_struct(mm, insert);
878         } else {
879                 if (start_changed)
880                         vma_gap_update(vma);
881                 if (end_changed) {
882                         if (!next)
883                                 mm->highest_vm_end = vm_end_gap(vma);
884                         else if (!adjust_next)
885                                 vma_gap_update(next);
886                 }
887         }
888
889         if (anon_vma) {
890                 anon_vma_interval_tree_post_update_vma(vma);
891                 if (adjust_next)
892                         anon_vma_interval_tree_post_update_vma(next);
893                 anon_vma_unlock_write(anon_vma);
894         }
895         if (mapping)
896                 i_mmap_unlock_write(mapping);
897
898         if (root) {
899                 uprobe_mmap(vma);
900
901                 if (adjust_next)
902                         uprobe_mmap(next);
903         }
904
905         if (remove_next) {
906                 if (file) {
907                         uprobe_munmap(next, next->vm_start, next->vm_end);
908                         fput(file);
909                 }
910                 if (next->anon_vma)
911                         anon_vma_merge(vma, next);
912                 mm->map_count--;
913                 mpol_put(vma_policy(next));
914                 kmem_cache_free(vm_area_cachep, next);
915                 /*
916                  * In mprotect's case 6 (see comments on vma_merge),
917                  * we must remove another next too. It would clutter
918                  * up the code too much to do both in one go.
919                  */
920                 next = vma->vm_next;
921                 if (remove_next == 2)
922                         goto again;
923                 else if (next)
924                         vma_gap_update(next);
925                 else
926                         VM_WARN_ON(mm->highest_vm_end != vm_end_gap(vma));
927         }
928         if (insert && file)
929                 uprobe_mmap(insert);
930
931         validate_mm(mm);
932
933         return 0;
934 }
935
936 /*
937  * If the vma has a ->close operation then the driver probably needs to release
938  * per-vma resources, so we don't attempt to merge those.
939  */
940 static inline int is_mergeable_vma(struct vm_area_struct *vma,
941                                 struct file *file, unsigned long vm_flags,
942                                 struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
943 {
944         /*
945          * VM_SOFTDIRTY should not prevent from VMA merging, if we
946          * match the flags but dirty bit -- the caller should mark
947          * merged VMA as dirty. If dirty bit won't be excluded from
948          * comparison, we increase pressue on the memory system forcing
949          * the kernel to generate new VMAs when old one could be
950          * extended instead.
951          */
952         if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
953                 return 0;
954         if (vma->vm_file != file)
955                 return 0;
956         if (vma->vm_ops && vma->vm_ops->close)
957                 return 0;
958         if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx))
959                 return 0;
960         return 1;
961 }
962
963 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
964                                         struct anon_vma *anon_vma2,
965                                         struct vm_area_struct *vma)
966 {
967         /*
968          * The list_is_singular() test is to avoid merging VMA cloned from
969          * parents. This can improve scalability caused by anon_vma lock.
970          */
971         if ((!anon_vma1 || !anon_vma2) && (!vma ||
972                 list_is_singular(&vma->anon_vma_chain)))
973                 return 1;
974         return anon_vma1 == anon_vma2;
975 }
976
977 /*
978  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
979  * in front of (at a lower virtual address and file offset than) the vma.
980  *
981  * We cannot merge two vmas if they have differently assigned (non-NULL)
982  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
983  *
984  * We don't check here for the merged mmap wrapping around the end of pagecache
985  * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
986  * wrap, nor mmaps which cover the final page at index -1UL.
987  */
988 static int
989 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
990                      struct anon_vma *anon_vma, struct file *file,
991                      pgoff_t vm_pgoff,
992                      struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
993 {
994         if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
995             is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
996                 if (vma->vm_pgoff == vm_pgoff)
997                         return 1;
998         }
999         return 0;
1000 }
1001
1002 /*
1003  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1004  * beyond (at a higher virtual address and file offset than) the vma.
1005  *
1006  * We cannot merge two vmas if they have differently assigned (non-NULL)
1007  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1008  */
1009 static int
1010 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
1011                     struct anon_vma *anon_vma, struct file *file,
1012                     pgoff_t vm_pgoff,
1013                     struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1014 {
1015         if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
1016             is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1017                 pgoff_t vm_pglen;
1018                 vm_pglen = vma_pages(vma);
1019                 if (vma->vm_pgoff + vm_pglen == vm_pgoff)
1020                         return 1;
1021         }
1022         return 0;
1023 }
1024
1025 /*
1026  * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
1027  * whether that can be merged with its predecessor or its successor.
1028  * Or both (it neatly fills a hole).
1029  *
1030  * In most cases - when called for mmap, brk or mremap - [addr,end) is
1031  * certain not to be mapped by the time vma_merge is called; but when
1032  * called for mprotect, it is certain to be already mapped (either at
1033  * an offset within prev, or at the start of next), and the flags of
1034  * this area are about to be changed to vm_flags - and the no-change
1035  * case has already been eliminated.
1036  *
1037  * The following mprotect cases have to be considered, where AAAA is
1038  * the area passed down from mprotect_fixup, never extending beyond one
1039  * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
1040  *
1041  *     AAAA             AAAA                AAAA          AAAA
1042  *    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPNNNNXXXX
1043  *    cannot merge    might become    might become    might become
1044  *                    PPNNNNNNNNNN    PPPPPPPPPPNN    PPPPPPPPPPPP 6 or
1045  *    mmap, brk or    case 4 below    case 5 below    PPPPPPPPXXXX 7 or
1046  *    mremap move:                                    PPPPNNNNNNNN 8
1047  *        AAAA
1048  *    PPPP    NNNN    PPPPPPPPPPPP    PPPPPPPPNNNN    PPPPNNNNNNNN
1049  *    might become    case 1 below    case 2 below    case 3 below
1050  *
1051  * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX:
1052  * mprotect_fixup updates vm_flags & vm_page_prot on successful return.
1053  */
1054 struct vm_area_struct *vma_merge(struct mm_struct *mm,
1055                         struct vm_area_struct *prev, unsigned long addr,
1056                         unsigned long end, unsigned long vm_flags,
1057                         struct anon_vma *anon_vma, struct file *file,
1058                         pgoff_t pgoff, struct mempolicy *policy,
1059                         struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1060 {
1061         pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
1062         struct vm_area_struct *area, *next;
1063         int err;
1064
1065         /*
1066          * We later require that vma->vm_flags == vm_flags,
1067          * so this tests vma->vm_flags & VM_SPECIAL, too.
1068          */
1069         if (vm_flags & VM_SPECIAL)
1070                 return NULL;
1071
1072         if (prev)
1073                 next = prev->vm_next;
1074         else
1075                 next = mm->mmap;
1076         area = next;
1077         if (next && next->vm_end == end)                /* cases 6, 7, 8 */
1078                 next = next->vm_next;
1079
1080         /*
1081          * Can it merge with the predecessor?
1082          */
1083         if (prev && prev->vm_end == addr &&
1084                         mpol_equal(vma_policy(prev), policy) &&
1085                         can_vma_merge_after(prev, vm_flags,
1086                                             anon_vma, file, pgoff,
1087                                             vm_userfaultfd_ctx)) {
1088                 /*
1089                  * OK, it can.  Can we now merge in the successor as well?
1090                  */
1091                 if (next && end == next->vm_start &&
1092                                 mpol_equal(policy, vma_policy(next)) &&
1093                                 can_vma_merge_before(next, vm_flags,
1094                                                      anon_vma, file,
1095                                                      pgoff+pglen,
1096                                                      vm_userfaultfd_ctx) &&
1097                                 is_mergeable_anon_vma(prev->anon_vma,
1098                                                       next->anon_vma, NULL)) {
1099                                                         /* cases 1, 6 */
1100                         err = vma_adjust(prev, prev->vm_start,
1101                                 next->vm_end, prev->vm_pgoff, NULL);
1102                 } else                                  /* cases 2, 5, 7 */
1103                         err = vma_adjust(prev, prev->vm_start,
1104                                 end, prev->vm_pgoff, NULL);
1105                 if (err)
1106                         return NULL;
1107                 khugepaged_enter_vma_merge(prev, vm_flags);
1108                 return prev;
1109         }
1110
1111         /*
1112          * Can this new request be merged in front of next?
1113          */
1114         if (next && end == next->vm_start &&
1115                         mpol_equal(policy, vma_policy(next)) &&
1116                         can_vma_merge_before(next, vm_flags,
1117                                              anon_vma, file, pgoff+pglen,
1118                                              vm_userfaultfd_ctx)) {
1119                 if (prev && addr < prev->vm_end)        /* case 4 */
1120                         err = vma_adjust(prev, prev->vm_start,
1121                                 addr, prev->vm_pgoff, NULL);
1122                 else                                    /* cases 3, 8 */
1123                         err = vma_adjust(area, addr, next->vm_end,
1124                                 next->vm_pgoff - pglen, NULL);
1125                 if (err)
1126                         return NULL;
1127                 khugepaged_enter_vma_merge(area, vm_flags);
1128                 return area;
1129         }
1130
1131         return NULL;
1132 }
1133
1134 /*
1135  * Rough compatbility check to quickly see if it's even worth looking
1136  * at sharing an anon_vma.
1137  *
1138  * They need to have the same vm_file, and the flags can only differ
1139  * in things that mprotect may change.
1140  *
1141  * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1142  * we can merge the two vma's. For example, we refuse to merge a vma if
1143  * there is a vm_ops->close() function, because that indicates that the
1144  * driver is doing some kind of reference counting. But that doesn't
1145  * really matter for the anon_vma sharing case.
1146  */
1147 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1148 {
1149         return a->vm_end == b->vm_start &&
1150                 mpol_equal(vma_policy(a), vma_policy(b)) &&
1151                 a->vm_file == b->vm_file &&
1152                 !((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC|VM_SOFTDIRTY)) &&
1153                 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1154 }
1155
1156 /*
1157  * Do some basic sanity checking to see if we can re-use the anon_vma
1158  * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1159  * the same as 'old', the other will be the new one that is trying
1160  * to share the anon_vma.
1161  *
1162  * NOTE! This runs with mm_sem held for reading, so it is possible that
1163  * the anon_vma of 'old' is concurrently in the process of being set up
1164  * by another page fault trying to merge _that_. But that's ok: if it
1165  * is being set up, that automatically means that it will be a singleton
1166  * acceptable for merging, so we can do all of this optimistically. But
1167  * we do that READ_ONCE() to make sure that we never re-load the pointer.
1168  *
1169  * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1170  * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1171  * is to return an anon_vma that is "complex" due to having gone through
1172  * a fork).
1173  *
1174  * We also make sure that the two vma's are compatible (adjacent,
1175  * and with the same memory policies). That's all stable, even with just
1176  * a read lock on the mm_sem.
1177  */
1178 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1179 {
1180         if (anon_vma_compatible(a, b)) {
1181                 struct anon_vma *anon_vma = READ_ONCE(old->anon_vma);
1182
1183                 if (anon_vma && list_is_singular(&old->anon_vma_chain))
1184                         return anon_vma;
1185         }
1186         return NULL;
1187 }
1188
1189 /*
1190  * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1191  * neighbouring vmas for a suitable anon_vma, before it goes off
1192  * to allocate a new anon_vma.  It checks because a repetitive
1193  * sequence of mprotects and faults may otherwise lead to distinct
1194  * anon_vmas being allocated, preventing vma merge in subsequent
1195  * mprotect.
1196  */
1197 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1198 {
1199         struct anon_vma *anon_vma;
1200         struct vm_area_struct *near;
1201
1202         near = vma->vm_next;
1203         if (!near)
1204                 goto try_prev;
1205
1206         anon_vma = reusable_anon_vma(near, vma, near);
1207         if (anon_vma)
1208                 return anon_vma;
1209 try_prev:
1210         near = vma->vm_prev;
1211         if (!near)
1212                 goto none;
1213
1214         anon_vma = reusable_anon_vma(near, near, vma);
1215         if (anon_vma)
1216                 return anon_vma;
1217 none:
1218         /*
1219          * There's no absolute need to look only at touching neighbours:
1220          * we could search further afield for "compatible" anon_vmas.
1221          * But it would probably just be a waste of time searching,
1222          * or lead to too many vmas hanging off the same anon_vma.
1223          * We're trying to allow mprotect remerging later on,
1224          * not trying to minimize memory used for anon_vmas.
1225          */
1226         return NULL;
1227 }
1228
1229 #ifdef CONFIG_PROC_FS
1230 void vm_stat_account(struct mm_struct *mm, unsigned long flags,
1231                                                 struct file *file, long pages)
1232 {
1233         const unsigned long stack_flags
1234                 = VM_STACK_FLAGS & (VM_GROWSUP|VM_GROWSDOWN);
1235
1236         mm->total_vm += pages;
1237
1238         if (file) {
1239                 mm->shared_vm += pages;
1240                 if ((flags & (VM_EXEC|VM_WRITE)) == VM_EXEC)
1241                         mm->exec_vm += pages;
1242         } else if (flags & stack_flags)
1243                 mm->stack_vm += pages;
1244 }
1245 #endif /* CONFIG_PROC_FS */
1246
1247 /*
1248  * If a hint addr is less than mmap_min_addr change hint to be as
1249  * low as possible but still greater than mmap_min_addr
1250  */
1251 static inline unsigned long round_hint_to_min(unsigned long hint)
1252 {
1253         hint &= PAGE_MASK;
1254         if (((void *)hint != NULL) &&
1255             (hint < mmap_min_addr))
1256                 return PAGE_ALIGN(mmap_min_addr);
1257         return hint;
1258 }
1259
1260 static inline int mlock_future_check(struct mm_struct *mm,
1261                                      unsigned long flags,
1262                                      unsigned long len)
1263 {
1264         unsigned long locked, lock_limit;
1265
1266         /*  mlock MCL_FUTURE? */
1267         if (flags & VM_LOCKED) {
1268                 locked = len >> PAGE_SHIFT;
1269                 locked += mm->locked_vm;
1270                 lock_limit = rlimit(RLIMIT_MEMLOCK);
1271                 lock_limit >>= PAGE_SHIFT;
1272                 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1273                         return -EAGAIN;
1274         }
1275         return 0;
1276 }
1277
1278 /*
1279  * The caller must hold down_write(&current->mm->mmap_sem).
1280  */
1281 unsigned long do_mmap(struct file *file, unsigned long addr,
1282                         unsigned long len, unsigned long prot,
1283                         unsigned long flags, vm_flags_t vm_flags,
1284                         unsigned long pgoff, unsigned long *populate)
1285 {
1286         struct mm_struct *mm = current->mm;
1287
1288         *populate = 0;
1289
1290         if (!len)
1291                 return -EINVAL;
1292
1293         /*
1294          * Does the application expect PROT_READ to imply PROT_EXEC?
1295          *
1296          * (the exception is when the underlying filesystem is noexec
1297          *  mounted, in which case we dont add PROT_EXEC.)
1298          */
1299         if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1300                 if (!(file && path_noexec(&file->f_path)))
1301                         prot |= PROT_EXEC;
1302
1303         if (!(flags & MAP_FIXED))
1304                 addr = round_hint_to_min(addr);
1305
1306         /* Careful about overflows.. */
1307         len = PAGE_ALIGN(len);
1308         if (!len)
1309                 return -ENOMEM;
1310
1311         /* offset overflow? */
1312         if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1313                 return -EOVERFLOW;
1314
1315         /* Too many mappings? */
1316         if (mm->map_count > sysctl_max_map_count)
1317                 return -ENOMEM;
1318
1319         /* Obtain the address to map to. we verify (or select) it and ensure
1320          * that it represents a valid section of the address space.
1321          */
1322         addr = get_unmapped_area(file, addr, len, pgoff, flags);
1323         if (offset_in_page(addr))
1324                 return addr;
1325
1326         /* Do simple checking here so the lower-level routines won't have
1327          * to. we assume access permissions have been handled by the open
1328          * of the memory object, so we don't do any here.
1329          */
1330         vm_flags |= calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags) |
1331                         mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1332
1333         if (flags & MAP_LOCKED)
1334                 if (!can_do_mlock())
1335                         return -EPERM;
1336
1337         if (mlock_future_check(mm, vm_flags, len))
1338                 return -EAGAIN;
1339
1340         if (file) {
1341                 struct inode *inode = file_inode(file);
1342
1343                 switch (flags & MAP_TYPE) {
1344                 case MAP_SHARED:
1345                         if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
1346                                 return -EACCES;
1347
1348                         /*
1349                          * Make sure we don't allow writing to an append-only
1350                          * file..
1351                          */
1352                         if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1353                                 return -EACCES;
1354
1355                         /*
1356                          * Make sure there are no mandatory locks on the file.
1357                          */
1358                         if (locks_verify_locked(file))
1359                                 return -EAGAIN;
1360
1361                         vm_flags |= VM_SHARED | VM_MAYSHARE;
1362                         if (!(file->f_mode & FMODE_WRITE))
1363                                 vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1364
1365                         /* fall through */
1366                 case MAP_PRIVATE:
1367                         if (!(file->f_mode & FMODE_READ))
1368                                 return -EACCES;
1369                         if (path_noexec(&file->f_path)) {
1370                                 if (vm_flags & VM_EXEC)
1371                                         return -EPERM;
1372                                 vm_flags &= ~VM_MAYEXEC;
1373                         }
1374
1375                         if (!file->f_op->mmap)
1376                                 return -ENODEV;
1377                         if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1378                                 return -EINVAL;
1379                         break;
1380
1381                 default:
1382                         return -EINVAL;
1383                 }
1384         } else {
1385                 switch (flags & MAP_TYPE) {
1386                 case MAP_SHARED:
1387                         if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1388                                 return -EINVAL;
1389                         /*
1390                          * Ignore pgoff.
1391                          */
1392                         pgoff = 0;
1393                         vm_flags |= VM_SHARED | VM_MAYSHARE;
1394                         break;
1395                 case MAP_PRIVATE:
1396                         /*
1397                          * Set pgoff according to addr for anon_vma.
1398                          */
1399                         pgoff = addr >> PAGE_SHIFT;
1400                         break;
1401                 default:
1402                         return -EINVAL;
1403                 }
1404         }
1405
1406         /*
1407          * Set 'VM_NORESERVE' if we should not account for the
1408          * memory use of this mapping.
1409          */
1410         if (flags & MAP_NORESERVE) {
1411                 /* We honor MAP_NORESERVE if allowed to overcommit */
1412                 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1413                         vm_flags |= VM_NORESERVE;
1414
1415                 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1416                 if (file && is_file_hugepages(file))
1417                         vm_flags |= VM_NORESERVE;
1418         }
1419
1420         addr = mmap_region(file, addr, len, vm_flags, pgoff);
1421         if (!IS_ERR_VALUE(addr) &&
1422             ((vm_flags & VM_LOCKED) ||
1423              (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1424                 *populate = len;
1425         return addr;
1426 }
1427
1428 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1429                 unsigned long, prot, unsigned long, flags,
1430                 unsigned long, fd, unsigned long, pgoff)
1431 {
1432         struct file *file = NULL;
1433         unsigned long retval;
1434
1435         if (!(flags & MAP_ANONYMOUS)) {
1436                 audit_mmap_fd(fd, flags);
1437                 file = fget(fd);
1438                 if (!file)
1439                         return -EBADF;
1440                 if (is_file_hugepages(file))
1441                         len = ALIGN(len, huge_page_size(hstate_file(file)));
1442                 retval = -EINVAL;
1443                 if (unlikely(flags & MAP_HUGETLB && !is_file_hugepages(file)))
1444                         goto out_fput;
1445         } else if (flags & MAP_HUGETLB) {
1446                 struct user_struct *user = NULL;
1447                 struct hstate *hs;
1448
1449                 hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & SHM_HUGE_MASK);
1450                 if (!hs)
1451                         return -EINVAL;
1452
1453                 len = ALIGN(len, huge_page_size(hs));
1454                 /*
1455                  * VM_NORESERVE is used because the reservations will be
1456                  * taken when vm_ops->mmap() is called
1457                  * A dummy user value is used because we are not locking
1458                  * memory so no accounting is necessary
1459                  */
1460                 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1461                                 VM_NORESERVE,
1462                                 &user, HUGETLB_ANONHUGE_INODE,
1463                                 (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1464                 if (IS_ERR(file))
1465                         return PTR_ERR(file);
1466         }
1467
1468         flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1469
1470         retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1471 out_fput:
1472         if (file)
1473                 fput(file);
1474         return retval;
1475 }
1476
1477 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1478 struct mmap_arg_struct {
1479         unsigned long addr;
1480         unsigned long len;
1481         unsigned long prot;
1482         unsigned long flags;
1483         unsigned long fd;
1484         unsigned long offset;
1485 };
1486
1487 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1488 {
1489         struct mmap_arg_struct a;
1490
1491         if (copy_from_user(&a, arg, sizeof(a)))
1492                 return -EFAULT;
1493         if (offset_in_page(a.offset))
1494                 return -EINVAL;
1495
1496         return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1497                               a.offset >> PAGE_SHIFT);
1498 }
1499 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1500
1501 /*
1502  * Some shared mappigns will want the pages marked read-only
1503  * to track write events. If so, we'll downgrade vm_page_prot
1504  * to the private version (using protection_map[] without the
1505  * VM_SHARED bit).
1506  */
1507 int vma_wants_writenotify(struct vm_area_struct *vma)
1508 {
1509         vm_flags_t vm_flags = vma->vm_flags;
1510         const struct vm_operations_struct *vm_ops = vma->vm_ops;
1511
1512         /* If it was private or non-writable, the write bit is already clear */
1513         if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1514                 return 0;
1515
1516         /* The backer wishes to know when pages are first written to? */
1517         if (vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite))
1518                 return 1;
1519
1520         /* The open routine did something to the protections that pgprot_modify
1521          * won't preserve? */
1522         if (pgprot_val(vma->vm_page_prot) !=
1523             pgprot_val(vm_pgprot_modify(vma->vm_page_prot, vm_flags)))
1524                 return 0;
1525
1526         /* Do we need to track softdirty? */
1527         if (IS_ENABLED(CONFIG_MEM_SOFT_DIRTY) && !(vm_flags & VM_SOFTDIRTY))
1528                 return 1;
1529
1530         /* Specialty mapping? */
1531         if (vm_flags & VM_PFNMAP)
1532                 return 0;
1533
1534         /* Can the mapping track the dirty pages? */
1535         return vma->vm_file && vma->vm_file->f_mapping &&
1536                 mapping_cap_account_dirty(vma->vm_file->f_mapping);
1537 }
1538
1539 /*
1540  * We account for memory if it's a private writeable mapping,
1541  * not hugepages and VM_NORESERVE wasn't set.
1542  */
1543 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1544 {
1545         /*
1546          * hugetlb has its own accounting separate from the core VM
1547          * VM_HUGETLB may not be set yet so we cannot check for that flag.
1548          */
1549         if (file && is_file_hugepages(file))
1550                 return 0;
1551
1552         return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1553 }
1554
1555 unsigned long mmap_region(struct file *file, unsigned long addr,
1556                 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff)
1557 {
1558         struct mm_struct *mm = current->mm;
1559         struct vm_area_struct *vma, *prev;
1560         int error;
1561         struct rb_node **rb_link, *rb_parent;
1562         unsigned long charged = 0;
1563
1564         /* Check against address space limit. */
1565         if (!may_expand_vm(mm, len >> PAGE_SHIFT)) {
1566                 unsigned long nr_pages;
1567
1568                 /*
1569                  * MAP_FIXED may remove pages of mappings that intersects with
1570                  * requested mapping. Account for the pages it would unmap.
1571                  */
1572                 if (!(vm_flags & MAP_FIXED))
1573                         return -ENOMEM;
1574
1575                 nr_pages = count_vma_pages_range(mm, addr, addr + len);
1576
1577                 if (!may_expand_vm(mm, (len >> PAGE_SHIFT) - nr_pages))
1578                         return -ENOMEM;
1579         }
1580
1581         /* Clear old maps */
1582         while (find_vma_links(mm, addr, addr + len, &prev, &rb_link,
1583                               &rb_parent)) {
1584                 if (do_munmap(mm, addr, len))
1585                         return -ENOMEM;
1586         }
1587
1588         /*
1589          * Private writable mapping: check memory availability
1590          */
1591         if (accountable_mapping(file, vm_flags)) {
1592                 charged = len >> PAGE_SHIFT;
1593                 if (security_vm_enough_memory_mm(mm, charged))
1594                         return -ENOMEM;
1595                 vm_flags |= VM_ACCOUNT;
1596         }
1597
1598         /*
1599          * Can we just expand an old mapping?
1600          */
1601         vma = vma_merge(mm, prev, addr, addr + len, vm_flags,
1602                         NULL, file, pgoff, NULL, NULL_VM_UFFD_CTX);
1603         if (vma)
1604                 goto out;
1605
1606         /*
1607          * Determine the object being mapped and call the appropriate
1608          * specific mapper. the address has already been validated, but
1609          * not unmapped, but the maps are removed from the list.
1610          */
1611         vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1612         if (!vma) {
1613                 error = -ENOMEM;
1614                 goto unacct_error;
1615         }
1616
1617         vma->vm_mm = mm;
1618         vma->vm_start = addr;
1619         vma->vm_end = addr + len;
1620         vma->vm_flags = vm_flags;
1621         vma->vm_page_prot = vm_get_page_prot(vm_flags);
1622         vma->vm_pgoff = pgoff;
1623         INIT_LIST_HEAD(&vma->anon_vma_chain);
1624
1625         if (file) {
1626                 if (vm_flags & VM_DENYWRITE) {
1627                         error = deny_write_access(file);
1628                         if (error)
1629                                 goto free_vma;
1630                 }
1631                 if (vm_flags & VM_SHARED) {
1632                         error = mapping_map_writable(file->f_mapping);
1633                         if (error)
1634                                 goto allow_write_and_free_vma;
1635                 }
1636
1637                 /* ->mmap() can change vma->vm_file, but must guarantee that
1638                  * vma_link() below can deny write-access if VM_DENYWRITE is set
1639                  * and map writably if VM_SHARED is set. This usually means the
1640                  * new file must not have been exposed to user-space, yet.
1641                  */
1642                 vma->vm_file = get_file(file);
1643                 error = file->f_op->mmap(file, vma);
1644                 if (error)
1645                         goto unmap_and_free_vma;
1646
1647                 /* Can addr have changed??
1648                  *
1649                  * Answer: Yes, several device drivers can do it in their
1650                  *         f_op->mmap method. -DaveM
1651                  * Bug: If addr is changed, prev, rb_link, rb_parent should
1652                  *      be updated for vma_link()
1653                  */
1654                 WARN_ON_ONCE(addr != vma->vm_start);
1655
1656                 addr = vma->vm_start;
1657                 vm_flags = vma->vm_flags;
1658         } else if (vm_flags & VM_SHARED) {
1659                 error = shmem_zero_setup(vma);
1660                 if (error)
1661                         goto free_vma;
1662         }
1663
1664         vma_link(mm, vma, prev, rb_link, rb_parent);
1665         /* Once vma denies write, undo our temporary denial count */
1666         if (file) {
1667                 if (vm_flags & VM_SHARED)
1668                         mapping_unmap_writable(file->f_mapping);
1669                 if (vm_flags & VM_DENYWRITE)
1670                         allow_write_access(file);
1671         }
1672         file = vma->vm_file;
1673 out:
1674         perf_event_mmap(vma);
1675
1676         vm_stat_account(mm, vm_flags, file, len >> PAGE_SHIFT);
1677         if (vm_flags & VM_LOCKED) {
1678                 if (!((vm_flags & VM_SPECIAL) || is_vm_hugetlb_page(vma) ||
1679                                         vma == get_gate_vma(current->mm)))
1680                         mm->locked_vm += (len >> PAGE_SHIFT);
1681                 else
1682                         vma->vm_flags &= VM_LOCKED_CLEAR_MASK;
1683         }
1684
1685         if (file)
1686                 uprobe_mmap(vma);
1687
1688         /*
1689          * New (or expanded) vma always get soft dirty status.
1690          * Otherwise user-space soft-dirty page tracker won't
1691          * be able to distinguish situation when vma area unmapped,
1692          * then new mapped in-place (which must be aimed as
1693          * a completely new data area).
1694          */
1695         vma->vm_flags |= VM_SOFTDIRTY;
1696
1697         vma_set_page_prot(vma);
1698
1699         return addr;
1700
1701 unmap_and_free_vma:
1702         vma->vm_file = NULL;
1703         fput(file);
1704
1705         /* Undo any partial mapping done by a device driver. */
1706         unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1707         charged = 0;
1708         if (vm_flags & VM_SHARED)
1709                 mapping_unmap_writable(file->f_mapping);
1710 allow_write_and_free_vma:
1711         if (vm_flags & VM_DENYWRITE)
1712                 allow_write_access(file);
1713 free_vma:
1714         kmem_cache_free(vm_area_cachep, vma);
1715 unacct_error:
1716         if (charged)
1717                 vm_unacct_memory(charged);
1718         return error;
1719 }
1720
1721 unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1722 {
1723         /*
1724          * We implement the search by looking for an rbtree node that
1725          * immediately follows a suitable gap. That is,
1726          * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length;
1727          * - gap_end   = vma->vm_start        >= info->low_limit  + length;
1728          * - gap_end - gap_start >= length
1729          */
1730
1731         struct mm_struct *mm = current->mm;
1732         struct vm_area_struct *vma;
1733         unsigned long length, low_limit, high_limit, gap_start, gap_end;
1734
1735         /* Adjust search length to account for worst case alignment overhead */
1736         length = info->length + info->align_mask;
1737         if (length < info->length)
1738                 return -ENOMEM;
1739
1740         /* Adjust search limits by the desired length */
1741         if (info->high_limit < length)
1742                 return -ENOMEM;
1743         high_limit = info->high_limit - length;
1744
1745         if (info->low_limit > high_limit)
1746                 return -ENOMEM;
1747         low_limit = info->low_limit + length;
1748
1749         /* Check if rbtree root looks promising */
1750         if (RB_EMPTY_ROOT(&mm->mm_rb))
1751                 goto check_highest;
1752         vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1753         if (vma->rb_subtree_gap < length)
1754                 goto check_highest;
1755
1756         while (true) {
1757                 /* Visit left subtree if it looks promising */
1758                 gap_end = vm_start_gap(vma);
1759                 if (gap_end >= low_limit && vma->vm_rb.rb_left) {
1760                         struct vm_area_struct *left =
1761                                 rb_entry(vma->vm_rb.rb_left,
1762                                          struct vm_area_struct, vm_rb);
1763                         if (left->rb_subtree_gap >= length) {
1764                                 vma = left;
1765                                 continue;
1766                         }
1767                 }
1768
1769                 gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0;
1770 check_current:
1771                 /* Check if current node has a suitable gap */
1772                 if (gap_start > high_limit)
1773                         return -ENOMEM;
1774                 if (gap_end >= low_limit &&
1775                     gap_end > gap_start && gap_end - gap_start >= length)
1776                         goto found;
1777
1778                 /* Visit right subtree if it looks promising */
1779                 if (vma->vm_rb.rb_right) {
1780                         struct vm_area_struct *right =
1781                                 rb_entry(vma->vm_rb.rb_right,
1782                                          struct vm_area_struct, vm_rb);
1783                         if (right->rb_subtree_gap >= length) {
1784                                 vma = right;
1785                                 continue;
1786                         }
1787                 }
1788
1789                 /* Go back up the rbtree to find next candidate node */
1790                 while (true) {
1791                         struct rb_node *prev = &vma->vm_rb;
1792                         if (!rb_parent(prev))
1793                                 goto check_highest;
1794                         vma = rb_entry(rb_parent(prev),
1795                                        struct vm_area_struct, vm_rb);
1796                         if (prev == vma->vm_rb.rb_left) {
1797                                 gap_start = vm_end_gap(vma->vm_prev);
1798                                 gap_end = vm_start_gap(vma);
1799                                 goto check_current;
1800                         }
1801                 }
1802         }
1803
1804 check_highest:
1805         /* Check highest gap, which does not precede any rbtree node */
1806         gap_start = mm->highest_vm_end;
1807         gap_end = ULONG_MAX;  /* Only for VM_BUG_ON below */
1808         if (gap_start > high_limit)
1809                 return -ENOMEM;
1810
1811 found:
1812         /* We found a suitable gap. Clip it with the original low_limit. */
1813         if (gap_start < info->low_limit)
1814                 gap_start = info->low_limit;
1815
1816         /* Adjust gap address to the desired alignment */
1817         gap_start += (info->align_offset - gap_start) & info->align_mask;
1818
1819         VM_BUG_ON(gap_start + info->length > info->high_limit);
1820         VM_BUG_ON(gap_start + info->length > gap_end);
1821         return gap_start;
1822 }
1823
1824 unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
1825 {
1826         struct mm_struct *mm = current->mm;
1827         struct vm_area_struct *vma;
1828         unsigned long length, low_limit, high_limit, gap_start, gap_end;
1829
1830         /* Adjust search length to account for worst case alignment overhead */
1831         length = info->length + info->align_mask;
1832         if (length < info->length)
1833                 return -ENOMEM;
1834
1835         /*
1836          * Adjust search limits by the desired length.
1837          * See implementation comment at top of unmapped_area().
1838          */
1839         gap_end = info->high_limit;
1840         if (gap_end < length)
1841                 return -ENOMEM;
1842         high_limit = gap_end - length;
1843
1844         if (info->low_limit > high_limit)
1845                 return -ENOMEM;
1846         low_limit = info->low_limit + length;
1847
1848         /* Check highest gap, which does not precede any rbtree node */
1849         gap_start = mm->highest_vm_end;
1850         if (gap_start <= high_limit)
1851                 goto found_highest;
1852
1853         /* Check if rbtree root looks promising */
1854         if (RB_EMPTY_ROOT(&mm->mm_rb))
1855                 return -ENOMEM;
1856         vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1857         if (vma->rb_subtree_gap < length)
1858                 return -ENOMEM;
1859
1860         while (true) {
1861                 /* Visit right subtree if it looks promising */
1862                 gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0;
1863                 if (gap_start <= high_limit && vma->vm_rb.rb_right) {
1864                         struct vm_area_struct *right =
1865                                 rb_entry(vma->vm_rb.rb_right,
1866                                          struct vm_area_struct, vm_rb);
1867                         if (right->rb_subtree_gap >= length) {
1868                                 vma = right;
1869                                 continue;
1870                         }
1871                 }
1872
1873 check_current:
1874                 /* Check if current node has a suitable gap */
1875                 gap_end = vm_start_gap(vma);
1876                 if (gap_end < low_limit)
1877                         return -ENOMEM;
1878                 if (gap_start <= high_limit &&
1879                     gap_end > gap_start && gap_end - gap_start >= length)
1880                         goto found;
1881
1882                 /* Visit left subtree if it looks promising */
1883                 if (vma->vm_rb.rb_left) {
1884                         struct vm_area_struct *left =
1885                                 rb_entry(vma->vm_rb.rb_left,
1886                                          struct vm_area_struct, vm_rb);
1887                         if (left->rb_subtree_gap >= length) {
1888                                 vma = left;
1889                                 continue;
1890                         }
1891                 }
1892
1893                 /* Go back up the rbtree to find next candidate node */
1894                 while (true) {
1895                         struct rb_node *prev = &vma->vm_rb;
1896                         if (!rb_parent(prev))
1897                                 return -ENOMEM;
1898                         vma = rb_entry(rb_parent(prev),
1899                                        struct vm_area_struct, vm_rb);
1900                         if (prev == vma->vm_rb.rb_right) {
1901                                 gap_start = vma->vm_prev ?
1902                                         vm_end_gap(vma->vm_prev) : 0;
1903                                 goto check_current;
1904                         }
1905                 }
1906         }
1907
1908 found:
1909         /* We found a suitable gap. Clip it with the original high_limit. */
1910         if (gap_end > info->high_limit)
1911                 gap_end = info->high_limit;
1912
1913 found_highest:
1914         /* Compute highest gap address at the desired alignment */
1915         gap_end -= info->length;
1916         gap_end -= (gap_end - info->align_offset) & info->align_mask;
1917
1918         VM_BUG_ON(gap_end < info->low_limit);
1919         VM_BUG_ON(gap_end < gap_start);
1920         return gap_end;
1921 }
1922
1923 /* Get an address range which is currently unmapped.
1924  * For shmat() with addr=0.
1925  *
1926  * Ugly calling convention alert:
1927  * Return value with the low bits set means error value,
1928  * ie
1929  *      if (ret & ~PAGE_MASK)
1930  *              error = ret;
1931  *
1932  * This function "knows" that -ENOMEM has the bits set.
1933  */
1934 #ifndef HAVE_ARCH_UNMAPPED_AREA
1935 unsigned long
1936 arch_get_unmapped_area(struct file *filp, unsigned long addr,
1937                 unsigned long len, unsigned long pgoff, unsigned long flags)
1938 {
1939         struct mm_struct *mm = current->mm;
1940         struct vm_area_struct *vma, *prev;
1941         struct vm_unmapped_area_info info;
1942
1943         if (len > TASK_SIZE - mmap_min_addr)
1944                 return -ENOMEM;
1945
1946         if (flags & MAP_FIXED)
1947                 return addr;
1948
1949         if (addr) {
1950                 addr = PAGE_ALIGN(addr);
1951                 vma = find_vma_prev(mm, addr, &prev);
1952                 if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
1953                     (!vma || addr + len <= vm_start_gap(vma)) &&
1954                     (!prev || addr >= vm_end_gap(prev)))
1955                         return addr;
1956         }
1957
1958         info.flags = 0;
1959         info.length = len;
1960         info.low_limit = mm->mmap_base;
1961         info.high_limit = TASK_SIZE;
1962         info.align_mask = 0;
1963         return vm_unmapped_area(&info);
1964 }
1965 #endif
1966
1967 /*
1968  * This mmap-allocator allocates new areas top-down from below the
1969  * stack's low limit (the base):
1970  */
1971 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1972 unsigned long
1973 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
1974                           const unsigned long len, const unsigned long pgoff,
1975                           const unsigned long flags)
1976 {
1977         struct vm_area_struct *vma, *prev;
1978         struct mm_struct *mm = current->mm;
1979         unsigned long addr = addr0;
1980         struct vm_unmapped_area_info info;
1981
1982         /* requested length too big for entire address space */
1983         if (len > TASK_SIZE - mmap_min_addr)
1984                 return -ENOMEM;
1985
1986         if (flags & MAP_FIXED)
1987                 return addr;
1988
1989         /* requesting a specific address */
1990         if (addr) {
1991                 addr = PAGE_ALIGN(addr);
1992                 vma = find_vma_prev(mm, addr, &prev);
1993                 if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
1994                                 (!vma || addr + len <= vm_start_gap(vma)) &&
1995                                 (!prev || addr >= vm_end_gap(prev)))
1996                         return addr;
1997         }
1998
1999         info.flags = VM_UNMAPPED_AREA_TOPDOWN;
2000         info.length = len;
2001         info.low_limit = max(PAGE_SIZE, mmap_min_addr);
2002         info.high_limit = mm->mmap_base;
2003         info.align_mask = 0;
2004         addr = vm_unmapped_area(&info);
2005
2006         /*
2007          * A failed mmap() very likely causes application failure,
2008          * so fall back to the bottom-up function here. This scenario
2009          * can happen with large stack limits and large mmap()
2010          * allocations.
2011          */
2012         if (offset_in_page(addr)) {
2013                 VM_BUG_ON(addr != -ENOMEM);
2014                 info.flags = 0;
2015                 info.low_limit = TASK_UNMAPPED_BASE;
2016                 info.high_limit = TASK_SIZE;
2017                 addr = vm_unmapped_area(&info);
2018         }
2019
2020         return addr;
2021 }
2022 #endif
2023
2024 unsigned long
2025 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
2026                 unsigned long pgoff, unsigned long flags)
2027 {
2028         unsigned long (*get_area)(struct file *, unsigned long,
2029                                   unsigned long, unsigned long, unsigned long);
2030
2031         unsigned long error = arch_mmap_check(addr, len, flags);
2032         if (error)
2033                 return error;
2034
2035         /* Careful about overflows.. */
2036         if (len > TASK_SIZE)
2037                 return -ENOMEM;
2038
2039         get_area = current->mm->get_unmapped_area;
2040         if (file && file->f_op->get_unmapped_area)
2041                 get_area = file->f_op->get_unmapped_area;
2042         addr = get_area(file, addr, len, pgoff, flags);
2043         if (IS_ERR_VALUE(addr))
2044                 return addr;
2045
2046         if (addr > TASK_SIZE - len)
2047                 return -ENOMEM;
2048         if (offset_in_page(addr))
2049                 return -EINVAL;
2050
2051         addr = arch_rebalance_pgtables(addr, len);
2052         error = security_mmap_addr(addr);
2053         return error ? error : addr;
2054 }
2055
2056 EXPORT_SYMBOL(get_unmapped_area);
2057
2058 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
2059 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
2060 {
2061         struct rb_node *rb_node;
2062         struct vm_area_struct *vma;
2063
2064         /* Check the cache first. */
2065         vma = vmacache_find(mm, addr);
2066         if (likely(vma))
2067                 return vma;
2068
2069         rb_node = mm->mm_rb.rb_node;
2070
2071         while (rb_node) {
2072                 struct vm_area_struct *tmp;
2073
2074                 tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2075
2076                 if (tmp->vm_end > addr) {
2077                         vma = tmp;
2078                         if (tmp->vm_start <= addr)
2079                                 break;
2080                         rb_node = rb_node->rb_left;
2081                 } else
2082                         rb_node = rb_node->rb_right;
2083         }
2084
2085         if (vma)
2086                 vmacache_update(addr, vma);
2087         return vma;
2088 }
2089
2090 EXPORT_SYMBOL(find_vma);
2091
2092 /*
2093  * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
2094  */
2095 struct vm_area_struct *
2096 find_vma_prev(struct mm_struct *mm, unsigned long addr,
2097                         struct vm_area_struct **pprev)
2098 {
2099         struct vm_area_struct *vma;
2100
2101         vma = find_vma(mm, addr);
2102         if (vma) {
2103                 *pprev = vma->vm_prev;
2104         } else {
2105                 struct rb_node *rb_node = mm->mm_rb.rb_node;
2106                 *pprev = NULL;
2107                 while (rb_node) {
2108                         *pprev = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2109                         rb_node = rb_node->rb_right;
2110                 }
2111         }
2112         return vma;
2113 }
2114
2115 /*
2116  * Verify that the stack growth is acceptable and
2117  * update accounting. This is shared with both the
2118  * grow-up and grow-down cases.
2119  */
2120 static int acct_stack_growth(struct vm_area_struct *vma,
2121                              unsigned long size, unsigned long grow)
2122 {
2123         struct mm_struct *mm = vma->vm_mm;
2124         struct rlimit *rlim = current->signal->rlim;
2125         unsigned long new_start;
2126
2127         /* address space limit tests */
2128         if (!may_expand_vm(mm, grow))
2129                 return -ENOMEM;
2130
2131         /* Stack limit test */
2132         if (size > READ_ONCE(rlim[RLIMIT_STACK].rlim_cur))
2133                 return -ENOMEM;
2134
2135         /* mlock limit tests */
2136         if (vma->vm_flags & VM_LOCKED) {
2137                 unsigned long locked;
2138                 unsigned long limit;
2139                 locked = mm->locked_vm + grow;
2140                 limit = READ_ONCE(rlim[RLIMIT_MEMLOCK].rlim_cur);
2141                 limit >>= PAGE_SHIFT;
2142                 if (locked > limit && !capable(CAP_IPC_LOCK))
2143                         return -ENOMEM;
2144         }
2145
2146         /* Check to ensure the stack will not grow into a hugetlb-only region */
2147         new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
2148                         vma->vm_end - size;
2149         if (is_hugepage_only_range(vma->vm_mm, new_start, size))
2150                 return -EFAULT;
2151
2152         /*
2153          * Overcommit..  This must be the final test, as it will
2154          * update security statistics.
2155          */
2156         if (security_vm_enough_memory_mm(mm, grow))
2157                 return -ENOMEM;
2158
2159         return 0;
2160 }
2161
2162 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
2163 /*
2164  * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
2165  * vma is the last one with address > vma->vm_end.  Have to extend vma.
2166  */
2167 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
2168 {
2169         struct mm_struct *mm = vma->vm_mm;
2170         struct vm_area_struct *next;
2171         unsigned long gap_addr;
2172         int error = 0;
2173
2174         if (!(vma->vm_flags & VM_GROWSUP))
2175                 return -EFAULT;
2176
2177         /* Guard against exceeding limits of the address space. */
2178         address &= PAGE_MASK;
2179         if (address >= TASK_SIZE)
2180                 return -ENOMEM;
2181         address += PAGE_SIZE;
2182
2183         /* Enforce stack_guard_gap */
2184         gap_addr = address + stack_guard_gap;
2185
2186         /* Guard against overflow */
2187         if (gap_addr < address || gap_addr > TASK_SIZE)
2188                 gap_addr = TASK_SIZE;
2189
2190         next = vma->vm_next;
2191         if (next && next->vm_start < gap_addr) {
2192                 if (!(next->vm_flags & VM_GROWSUP))
2193                         return -ENOMEM;
2194                 /* Check that both stack segments have the same anon_vma? */
2195         }
2196
2197         /* We must make sure the anon_vma is allocated. */
2198         if (unlikely(anon_vma_prepare(vma)))
2199                 return -ENOMEM;
2200
2201         /*
2202          * vma->vm_start/vm_end cannot change under us because the caller
2203          * is required to hold the mmap_sem in read mode.  We need the
2204          * anon_vma lock to serialize against concurrent expand_stacks.
2205          */
2206         anon_vma_lock_write(vma->anon_vma);
2207
2208         /* Somebody else might have raced and expanded it already */
2209         if (address > vma->vm_end) {
2210                 unsigned long size, grow;
2211
2212                 size = address - vma->vm_start;
2213                 grow = (address - vma->vm_end) >> PAGE_SHIFT;
2214
2215                 error = -ENOMEM;
2216                 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2217                         error = acct_stack_growth(vma, size, grow);
2218                         if (!error) {
2219                                 /*
2220                                  * vma_gap_update() doesn't support concurrent
2221                                  * updates, but we only hold a shared mmap_sem
2222                                  * lock here, so we need to protect against
2223                                  * concurrent vma expansions.
2224                                  * anon_vma_lock_write() doesn't help here, as
2225                                  * we don't guarantee that all growable vmas
2226                                  * in a mm share the same root anon vma.
2227                                  * So, we reuse mm->page_table_lock to guard
2228                                  * against concurrent vma expansions.
2229                                  */
2230                                 spin_lock(&mm->page_table_lock);
2231                                 if (vma->vm_flags & VM_LOCKED)
2232                                         mm->locked_vm += grow;
2233                                 vm_stat_account(mm, vma->vm_flags,
2234                                                 vma->vm_file, grow);
2235                                 anon_vma_interval_tree_pre_update_vma(vma);
2236                                 vma->vm_end = address;
2237                                 anon_vma_interval_tree_post_update_vma(vma);
2238                                 if (vma->vm_next)
2239                                         vma_gap_update(vma->vm_next);
2240                                 else
2241                                         mm->highest_vm_end = vm_end_gap(vma);
2242                                 spin_unlock(&mm->page_table_lock);
2243
2244                                 perf_event_mmap(vma);
2245                         }
2246                 }
2247         }
2248         anon_vma_unlock_write(vma->anon_vma);
2249         khugepaged_enter_vma_merge(vma, vma->vm_flags);
2250         validate_mm(mm);
2251         return error;
2252 }
2253 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2254
2255 /*
2256  * vma is the first one with address < vma->vm_start.  Have to extend vma.
2257  */
2258 int expand_downwards(struct vm_area_struct *vma,
2259                                    unsigned long address)
2260 {
2261         struct mm_struct *mm = vma->vm_mm;
2262         struct vm_area_struct *prev;
2263         unsigned long gap_addr;
2264         int error;
2265
2266         address &= PAGE_MASK;
2267         error = security_mmap_addr(address);
2268         if (error)
2269                 return error;
2270
2271         /* Enforce stack_guard_gap */
2272         gap_addr = address - stack_guard_gap;
2273         if (gap_addr > address)
2274                 return -ENOMEM;
2275         prev = vma->vm_prev;
2276         if (prev && prev->vm_end > gap_addr) {
2277                 if (!(prev->vm_flags & VM_GROWSDOWN))
2278                         return -ENOMEM;
2279                 /* Check that both stack segments have the same anon_vma? */
2280         }
2281
2282         /* We must make sure the anon_vma is allocated. */
2283         if (unlikely(anon_vma_prepare(vma)))
2284                 return -ENOMEM;
2285
2286         /*
2287          * vma->vm_start/vm_end cannot change under us because the caller
2288          * is required to hold the mmap_sem in read mode.  We need the
2289          * anon_vma lock to serialize against concurrent expand_stacks.
2290          */
2291         anon_vma_lock_write(vma->anon_vma);
2292
2293         /* Somebody else might have raced and expanded it already */
2294         if (address < vma->vm_start) {
2295                 unsigned long size, grow;
2296
2297                 size = vma->vm_end - address;
2298                 grow = (vma->vm_start - address) >> PAGE_SHIFT;
2299
2300                 error = -ENOMEM;
2301                 if (grow <= vma->vm_pgoff) {
2302                         error = acct_stack_growth(vma, size, grow);
2303                         if (!error) {
2304                                 /*
2305                                  * vma_gap_update() doesn't support concurrent
2306                                  * updates, but we only hold a shared mmap_sem
2307                                  * lock here, so we need to protect against
2308                                  * concurrent vma expansions.
2309                                  * anon_vma_lock_write() doesn't help here, as
2310                                  * we don't guarantee that all growable vmas
2311                                  * in a mm share the same root anon vma.
2312                                  * So, we reuse mm->page_table_lock to guard
2313                                  * against concurrent vma expansions.
2314                                  */
2315                                 spin_lock(&mm->page_table_lock);
2316                                 if (vma->vm_flags & VM_LOCKED)
2317                                         mm->locked_vm += grow;
2318                                 vm_stat_account(mm, vma->vm_flags,
2319                                                 vma->vm_file, grow);
2320                                 anon_vma_interval_tree_pre_update_vma(vma);
2321                                 vma->vm_start = address;
2322                                 vma->vm_pgoff -= grow;
2323                                 anon_vma_interval_tree_post_update_vma(vma);
2324                                 vma_gap_update(vma);
2325                                 spin_unlock(&mm->page_table_lock);
2326
2327                                 perf_event_mmap(vma);
2328                         }
2329                 }
2330         }
2331         anon_vma_unlock_write(vma->anon_vma);
2332         khugepaged_enter_vma_merge(vma, vma->vm_flags);
2333         validate_mm(mm);
2334         return error;
2335 }
2336
2337 /* enforced gap between the expanding stack and other mappings. */
2338 unsigned long stack_guard_gap = 256UL<<PAGE_SHIFT;
2339
2340 static int __init cmdline_parse_stack_guard_gap(char *p)
2341 {
2342         unsigned long val;
2343         char *endptr;
2344
2345         val = simple_strtoul(p, &endptr, 10);
2346         if (!*endptr)
2347                 stack_guard_gap = val << PAGE_SHIFT;
2348
2349         return 0;
2350 }
2351 __setup("stack_guard_gap=", cmdline_parse_stack_guard_gap);
2352
2353 #ifdef CONFIG_STACK_GROWSUP
2354 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2355 {
2356         return expand_upwards(vma, address);
2357 }
2358
2359 struct vm_area_struct *
2360 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2361 {
2362         struct vm_area_struct *vma, *prev;
2363
2364         addr &= PAGE_MASK;
2365         vma = find_vma_prev(mm, addr, &prev);
2366         if (vma && (vma->vm_start <= addr))
2367                 return vma;
2368         if (!prev || expand_stack(prev, addr))
2369                 return NULL;
2370         if (prev->vm_flags & VM_LOCKED)
2371                 populate_vma_page_range(prev, addr, prev->vm_end, NULL);
2372         return prev;
2373 }
2374 #else
2375 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2376 {
2377         return expand_downwards(vma, address);
2378 }
2379
2380 struct vm_area_struct *
2381 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2382 {
2383         struct vm_area_struct *vma;
2384         unsigned long start;
2385
2386         addr &= PAGE_MASK;
2387         vma = find_vma(mm, addr);
2388         if (!vma)
2389                 return NULL;
2390         if (vma->vm_start <= addr)
2391                 return vma;
2392         if (!(vma->vm_flags & VM_GROWSDOWN))
2393                 return NULL;
2394         start = vma->vm_start;
2395         if (expand_stack(vma, addr))
2396                 return NULL;
2397         if (vma->vm_flags & VM_LOCKED)
2398                 populate_vma_page_range(vma, addr, start, NULL);
2399         return vma;
2400 }
2401 #endif
2402
2403 EXPORT_SYMBOL_GPL(find_extend_vma);
2404
2405 /*
2406  * Ok - we have the memory areas we should free on the vma list,
2407  * so release them, and do the vma updates.
2408  *
2409  * Called with the mm semaphore held.
2410  */
2411 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
2412 {
2413         unsigned long nr_accounted = 0;
2414
2415         /* Update high watermark before we lower total_vm */
2416         update_hiwater_vm(mm);
2417         do {
2418                 long nrpages = vma_pages(vma);
2419
2420                 if (vma->vm_flags & VM_ACCOUNT)
2421                         nr_accounted += nrpages;
2422                 vm_stat_account(mm, vma->vm_flags, vma->vm_file, -nrpages);
2423                 vma = remove_vma(vma);
2424         } while (vma);
2425         vm_unacct_memory(nr_accounted);
2426         validate_mm(mm);
2427 }
2428
2429 /*
2430  * Get rid of page table information in the indicated region.
2431  *
2432  * Called with the mm semaphore held.
2433  */
2434 static void unmap_region(struct mm_struct *mm,
2435                 struct vm_area_struct *vma, struct vm_area_struct *prev,
2436                 unsigned long start, unsigned long end)
2437 {
2438         struct vm_area_struct *next = prev ? prev->vm_next : mm->mmap;
2439         struct mmu_gather tlb;
2440
2441         lru_add_drain();
2442         tlb_gather_mmu(&tlb, mm, start, end);
2443         update_hiwater_rss(mm);
2444         unmap_vmas(&tlb, vma, start, end);
2445         free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2446                                  next ? next->vm_start : USER_PGTABLES_CEILING);
2447         tlb_finish_mmu(&tlb, start, end);
2448 }
2449
2450 /*
2451  * Create a list of vma's touched by the unmap, removing them from the mm's
2452  * vma list as we go..
2453  */
2454 static void
2455 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
2456         struct vm_area_struct *prev, unsigned long end)
2457 {
2458         struct vm_area_struct **insertion_point;
2459         struct vm_area_struct *tail_vma = NULL;
2460
2461         insertion_point = (prev ? &prev->vm_next : &mm->mmap);
2462         vma->vm_prev = NULL;
2463         do {
2464                 vma_rb_erase(vma, &mm->mm_rb);
2465                 mm->map_count--;
2466                 tail_vma = vma;
2467                 vma = vma->vm_next;
2468         } while (vma && vma->vm_start < end);
2469         *insertion_point = vma;
2470         if (vma) {
2471                 vma->vm_prev = prev;
2472                 vma_gap_update(vma);
2473         } else
2474                 mm->highest_vm_end = prev ? vm_end_gap(prev) : 0;
2475         tail_vma->vm_next = NULL;
2476
2477         /* Kill the cache */
2478         vmacache_invalidate(mm);
2479 }
2480
2481 /*
2482  * __split_vma() bypasses sysctl_max_map_count checking.  We use this on the
2483  * munmap path where it doesn't make sense to fail.
2484  */
2485 static int __split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2486               unsigned long addr, int new_below)
2487 {
2488         struct vm_area_struct *new;
2489         int err;
2490
2491         if (is_vm_hugetlb_page(vma) && (addr &
2492                                         ~(huge_page_mask(hstate_vma(vma)))))
2493                 return -EINVAL;
2494
2495         new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2496         if (!new)
2497                 return -ENOMEM;
2498
2499         /* most fields are the same, copy all, and then fixup */
2500         *new = *vma;
2501
2502         INIT_LIST_HEAD(&new->anon_vma_chain);
2503
2504         if (new_below)
2505                 new->vm_end = addr;
2506         else {
2507                 new->vm_start = addr;
2508                 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2509         }
2510
2511         err = vma_dup_policy(vma, new);
2512         if (err)
2513                 goto out_free_vma;
2514
2515         err = anon_vma_clone(new, vma);
2516         if (err)
2517                 goto out_free_mpol;
2518
2519         if (new->vm_file)
2520                 get_file(new->vm_file);
2521
2522         if (new->vm_ops && new->vm_ops->open)
2523                 new->vm_ops->open(new);
2524
2525         if (new_below)
2526                 err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2527                         ((addr - new->vm_start) >> PAGE_SHIFT), new);
2528         else
2529                 err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2530
2531         /* Success. */
2532         if (!err)
2533                 return 0;
2534
2535         /* Clean everything up if vma_adjust failed. */
2536         if (new->vm_ops && new->vm_ops->close)
2537                 new->vm_ops->close(new);
2538         if (new->vm_file)
2539                 fput(new->vm_file);
2540         unlink_anon_vmas(new);
2541  out_free_mpol:
2542         mpol_put(vma_policy(new));
2543  out_free_vma:
2544         kmem_cache_free(vm_area_cachep, new);
2545         return err;
2546 }
2547
2548 /*
2549  * Split a vma into two pieces at address 'addr', a new vma is allocated
2550  * either for the first part or the tail.
2551  */
2552 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2553               unsigned long addr, int new_below)
2554 {
2555         if (mm->map_count >= sysctl_max_map_count)
2556                 return -ENOMEM;
2557
2558         return __split_vma(mm, vma, addr, new_below);
2559 }
2560
2561 /* Munmap is split into 2 main parts -- this part which finds
2562  * what needs doing, and the areas themselves, which do the
2563  * work.  This now handles partial unmappings.
2564  * Jeremy Fitzhardinge <jeremy@goop.org>
2565  */
2566 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
2567 {
2568         unsigned long end;
2569         struct vm_area_struct *vma, *prev, *last;
2570
2571         if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start)
2572                 return -EINVAL;
2573
2574         len = PAGE_ALIGN(len);
2575         if (len == 0)
2576                 return -EINVAL;
2577
2578         /* Find the first overlapping VMA */
2579         vma = find_vma(mm, start);
2580         if (!vma)
2581                 return 0;
2582         prev = vma->vm_prev;
2583         /* we have  start < vma->vm_end  */
2584
2585         /* if it doesn't overlap, we have nothing.. */
2586         end = start + len;
2587         if (vma->vm_start >= end)
2588                 return 0;
2589
2590         /*
2591          * If we need to split any vma, do it now to save pain later.
2592          *
2593          * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2594          * unmapped vm_area_struct will remain in use: so lower split_vma
2595          * places tmp vma above, and higher split_vma places tmp vma below.
2596          */
2597         if (start > vma->vm_start) {
2598                 int error;
2599
2600                 /*
2601                  * Make sure that map_count on return from munmap() will
2602                  * not exceed its limit; but let map_count go just above
2603                  * its limit temporarily, to help free resources as expected.
2604                  */
2605                 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2606                         return -ENOMEM;
2607
2608                 error = __split_vma(mm, vma, start, 0);
2609                 if (error)
2610                         return error;
2611                 prev = vma;
2612         }
2613
2614         /* Does it split the last one? */
2615         last = find_vma(mm, end);
2616         if (last && end > last->vm_start) {
2617                 int error = __split_vma(mm, last, end, 1);
2618                 if (error)
2619                         return error;
2620         }
2621         vma = prev ? prev->vm_next : mm->mmap;
2622
2623         /*
2624          * unlock any mlock()ed ranges before detaching vmas
2625          */
2626         if (mm->locked_vm) {
2627                 struct vm_area_struct *tmp = vma;
2628                 while (tmp && tmp->vm_start < end) {
2629                         if (tmp->vm_flags & VM_LOCKED) {
2630                                 mm->locked_vm -= vma_pages(tmp);
2631                                 munlock_vma_pages_all(tmp);
2632                         }
2633                         tmp = tmp->vm_next;
2634                 }
2635         }
2636
2637         /*
2638          * Remove the vma's, and unmap the actual pages
2639          */
2640         detach_vmas_to_be_unmapped(mm, vma, prev, end);
2641         unmap_region(mm, vma, prev, start, end);
2642
2643         arch_unmap(mm, vma, start, end);
2644
2645         /* Fix up all other VM information */
2646         remove_vma_list(mm, vma);
2647
2648         return 0;
2649 }
2650
2651 int vm_munmap(unsigned long start, size_t len)
2652 {
2653         int ret;
2654         struct mm_struct *mm = current->mm;
2655
2656         down_write(&mm->mmap_sem);
2657         ret = do_munmap(mm, start, len);
2658         up_write(&mm->mmap_sem);
2659         return ret;
2660 }
2661 EXPORT_SYMBOL(vm_munmap);
2662
2663 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2664 {
2665         profile_munmap(addr);
2666         return vm_munmap(addr, len);
2667 }
2668
2669
2670 /*
2671  * Emulation of deprecated remap_file_pages() syscall.
2672  */
2673 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size,
2674                 unsigned long, prot, unsigned long, pgoff, unsigned long, flags)
2675 {
2676
2677         struct mm_struct *mm = current->mm;
2678         struct vm_area_struct *vma;
2679         unsigned long populate = 0;
2680         unsigned long ret = -EINVAL;
2681         struct file *file;
2682
2683         pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. "
2684                         "See Documentation/vm/remap_file_pages.txt.\n",
2685                         current->comm, current->pid);
2686
2687         if (prot)
2688                 return ret;
2689         start = start & PAGE_MASK;
2690         size = size & PAGE_MASK;
2691
2692         if (start + size <= start)
2693                 return ret;
2694
2695         /* Does pgoff wrap? */
2696         if (pgoff + (size >> PAGE_SHIFT) < pgoff)
2697                 return ret;
2698
2699         down_write(&mm->mmap_sem);
2700         vma = find_vma(mm, start);
2701
2702         if (!vma || !(vma->vm_flags & VM_SHARED))
2703                 goto out;
2704
2705         if (start < vma->vm_start)
2706                 goto out;
2707
2708         if (start + size > vma->vm_end) {
2709                 struct vm_area_struct *next;
2710
2711                 for (next = vma->vm_next; next; next = next->vm_next) {
2712                         /* hole between vmas ? */
2713                         if (next->vm_start != next->vm_prev->vm_end)
2714                                 goto out;
2715
2716                         if (next->vm_file != vma->vm_file)
2717                                 goto out;
2718
2719                         if (next->vm_flags != vma->vm_flags)
2720                                 goto out;
2721
2722                         if (start + size <= next->vm_end)
2723                                 break;
2724                 }
2725
2726                 if (!next)
2727                         goto out;
2728         }
2729
2730         prot |= vma->vm_flags & VM_READ ? PROT_READ : 0;
2731         prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0;
2732         prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0;
2733
2734         flags &= MAP_NONBLOCK;
2735         flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE;
2736         if (vma->vm_flags & VM_LOCKED) {
2737                 struct vm_area_struct *tmp;
2738                 flags |= MAP_LOCKED;
2739
2740                 /* drop PG_Mlocked flag for over-mapped range */
2741                 for (tmp = vma; tmp->vm_start >= start + size;
2742                                 tmp = tmp->vm_next) {
2743                         munlock_vma_pages_range(tmp,
2744                                         max(tmp->vm_start, start),
2745                                         min(tmp->vm_end, start + size));
2746                 }
2747         }
2748
2749         file = get_file(vma->vm_file);
2750         ret = do_mmap_pgoff(vma->vm_file, start, size,
2751                         prot, flags, pgoff, &populate);
2752         fput(file);
2753 out:
2754         up_write(&mm->mmap_sem);
2755         if (populate)
2756                 mm_populate(ret, populate);
2757         if (!IS_ERR_VALUE(ret))
2758                 ret = 0;
2759         return ret;
2760 }
2761
2762 static inline void verify_mm_writelocked(struct mm_struct *mm)
2763 {
2764 #ifdef CONFIG_DEBUG_VM
2765         if (unlikely(down_read_trylock(&mm->mmap_sem))) {
2766                 WARN_ON(1);
2767                 up_read(&mm->mmap_sem);
2768         }
2769 #endif
2770 }
2771
2772 /*
2773  *  this is really a simplified "do_mmap".  it only handles
2774  *  anonymous maps.  eventually we may be able to do some
2775  *  brk-specific accounting here.
2776  */
2777 static unsigned long do_brk(unsigned long addr, unsigned long len)
2778 {
2779         struct mm_struct *mm = current->mm;
2780         struct vm_area_struct *vma, *prev;
2781         unsigned long flags;
2782         struct rb_node **rb_link, *rb_parent;
2783         pgoff_t pgoff = addr >> PAGE_SHIFT;
2784         int error;
2785
2786         len = PAGE_ALIGN(len);
2787         if (!len)
2788                 return addr;
2789
2790         flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2791
2792         error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
2793         if (offset_in_page(error))
2794                 return error;
2795
2796         error = mlock_future_check(mm, mm->def_flags, len);
2797         if (error)
2798                 return error;
2799
2800         /*
2801          * mm->mmap_sem is required to protect against another thread
2802          * changing the mappings in case we sleep.
2803          */
2804         verify_mm_writelocked(mm);
2805
2806         /*
2807          * Clear old maps.  this also does some error checking for us
2808          */
2809         while (find_vma_links(mm, addr, addr + len, &prev, &rb_link,
2810                               &rb_parent)) {
2811                 if (do_munmap(mm, addr, len))
2812                         return -ENOMEM;
2813         }
2814
2815         /* Check against address space limits *after* clearing old maps... */
2816         if (!may_expand_vm(mm, len >> PAGE_SHIFT))
2817                 return -ENOMEM;
2818
2819         if (mm->map_count > sysctl_max_map_count)
2820                 return -ENOMEM;
2821
2822         if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
2823                 return -ENOMEM;
2824
2825         /* Can we just expand an old private anonymous mapping? */
2826         vma = vma_merge(mm, prev, addr, addr + len, flags,
2827                         NULL, NULL, pgoff, NULL, NULL_VM_UFFD_CTX);
2828         if (vma)
2829                 goto out;
2830
2831         /*
2832          * create a vma struct for an anonymous mapping
2833          */
2834         vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2835         if (!vma) {
2836                 vm_unacct_memory(len >> PAGE_SHIFT);
2837                 return -ENOMEM;
2838         }
2839
2840         INIT_LIST_HEAD(&vma->anon_vma_chain);
2841         vma->vm_mm = mm;
2842         vma->vm_start = addr;
2843         vma->vm_end = addr + len;
2844         vma->vm_pgoff = pgoff;
2845         vma->vm_flags = flags;
2846         vma->vm_page_prot = vm_get_page_prot(flags);
2847         vma_link(mm, vma, prev, rb_link, rb_parent);
2848 out:
2849         perf_event_mmap(vma);
2850         mm->total_vm += len >> PAGE_SHIFT;
2851         if (flags & VM_LOCKED)
2852                 mm->locked_vm += (len >> PAGE_SHIFT);
2853         vma->vm_flags |= VM_SOFTDIRTY;
2854         return addr;
2855 }
2856
2857 unsigned long vm_brk(unsigned long addr, unsigned long len)
2858 {
2859         struct mm_struct *mm = current->mm;
2860         unsigned long ret;
2861         bool populate;
2862
2863         down_write(&mm->mmap_sem);
2864         ret = do_brk(addr, len);
2865         populate = ((mm->def_flags & VM_LOCKED) != 0);
2866         up_write(&mm->mmap_sem);
2867         if (populate)
2868                 mm_populate(addr, len);
2869         return ret;
2870 }
2871 EXPORT_SYMBOL(vm_brk);
2872
2873 /* Release all mmaps. */
2874 void exit_mmap(struct mm_struct *mm)
2875 {
2876         struct mmu_gather tlb;
2877         struct vm_area_struct *vma;
2878         unsigned long nr_accounted = 0;
2879
2880         /* mm's last user has gone, and its about to be pulled down */
2881         mmu_notifier_release(mm);
2882
2883         if (mm->locked_vm) {
2884                 vma = mm->mmap;
2885                 while (vma) {
2886                         if (vma->vm_flags & VM_LOCKED)
2887                                 munlock_vma_pages_all(vma);
2888                         vma = vma->vm_next;
2889                 }
2890         }
2891
2892         arch_exit_mmap(mm);
2893
2894         vma = mm->mmap;
2895         if (!vma)       /* Can happen if dup_mmap() received an OOM */
2896                 return;
2897
2898         lru_add_drain();
2899         flush_cache_mm(mm);
2900         tlb_gather_mmu(&tlb, mm, 0, -1);
2901         /* update_hiwater_rss(mm) here? but nobody should be looking */
2902         /* Use -1 here to ensure all VMAs in the mm are unmapped */
2903         unmap_vmas(&tlb, vma, 0, -1);
2904
2905         free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING);
2906         tlb_finish_mmu(&tlb, 0, -1);
2907
2908         /*
2909          * Walk the list again, actually closing and freeing it,
2910          * with preemption enabled, without holding any MM locks.
2911          */
2912         while (vma) {
2913                 if (vma->vm_flags & VM_ACCOUNT)
2914                         nr_accounted += vma_pages(vma);
2915                 vma = remove_vma(vma);
2916         }
2917         vm_unacct_memory(nr_accounted);
2918 }
2919
2920 /* Insert vm structure into process list sorted by address
2921  * and into the inode's i_mmap tree.  If vm_file is non-NULL
2922  * then i_mmap_rwsem is taken here.
2923  */
2924 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
2925 {
2926         struct vm_area_struct *prev;
2927         struct rb_node **rb_link, *rb_parent;
2928
2929         if (find_vma_links(mm, vma->vm_start, vma->vm_end,
2930                            &prev, &rb_link, &rb_parent))
2931                 return -ENOMEM;
2932         if ((vma->vm_flags & VM_ACCOUNT) &&
2933              security_vm_enough_memory_mm(mm, vma_pages(vma)))
2934                 return -ENOMEM;
2935
2936         /*
2937          * The vm_pgoff of a purely anonymous vma should be irrelevant
2938          * until its first write fault, when page's anon_vma and index
2939          * are set.  But now set the vm_pgoff it will almost certainly
2940          * end up with (unless mremap moves it elsewhere before that
2941          * first wfault), so /proc/pid/maps tells a consistent story.
2942          *
2943          * By setting it to reflect the virtual start address of the
2944          * vma, merges and splits can happen in a seamless way, just
2945          * using the existing file pgoff checks and manipulations.
2946          * Similarly in do_mmap_pgoff and in do_brk.
2947          */
2948         if (vma_is_anonymous(vma)) {
2949                 BUG_ON(vma->anon_vma);
2950                 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2951         }
2952
2953         vma_link(mm, vma, prev, rb_link, rb_parent);
2954         return 0;
2955 }
2956
2957 /*
2958  * Copy the vma structure to a new location in the same mm,
2959  * prior to moving page table entries, to effect an mremap move.
2960  */
2961 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
2962         unsigned long addr, unsigned long len, pgoff_t pgoff,
2963         bool *need_rmap_locks)
2964 {
2965         struct vm_area_struct *vma = *vmap;
2966         unsigned long vma_start = vma->vm_start;
2967         struct mm_struct *mm = vma->vm_mm;
2968         struct vm_area_struct *new_vma, *prev;
2969         struct rb_node **rb_link, *rb_parent;
2970         bool faulted_in_anon_vma = true;
2971
2972         /*
2973          * If anonymous vma has not yet been faulted, update new pgoff
2974          * to match new location, to increase its chance of merging.
2975          */
2976         if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) {
2977                 pgoff = addr >> PAGE_SHIFT;
2978                 faulted_in_anon_vma = false;
2979         }
2980
2981         if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent))
2982                 return NULL;    /* should never get here */
2983         new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
2984                             vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma),
2985                             vma->vm_userfaultfd_ctx);
2986         if (new_vma) {
2987                 /*
2988                  * Source vma may have been merged into new_vma
2989                  */
2990                 if (unlikely(vma_start >= new_vma->vm_start &&
2991                              vma_start < new_vma->vm_end)) {
2992                         /*
2993                          * The only way we can get a vma_merge with
2994                          * self during an mremap is if the vma hasn't
2995                          * been faulted in yet and we were allowed to
2996                          * reset the dst vma->vm_pgoff to the
2997                          * destination address of the mremap to allow
2998                          * the merge to happen. mremap must change the
2999                          * vm_pgoff linearity between src and dst vmas
3000                          * (in turn preventing a vma_merge) to be
3001                          * safe. It is only safe to keep the vm_pgoff
3002                          * linear if there are no pages mapped yet.
3003                          */
3004                         VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
3005                         *vmap = vma = new_vma;
3006                 }
3007                 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
3008         } else {
3009                 new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
3010                 if (!new_vma)
3011                         goto out;
3012                 *new_vma = *vma;
3013                 new_vma->vm_start = addr;
3014                 new_vma->vm_end = addr + len;
3015                 new_vma->vm_pgoff = pgoff;
3016                 if (vma_dup_policy(vma, new_vma))
3017                         goto out_free_vma;
3018                 INIT_LIST_HEAD(&new_vma->anon_vma_chain);
3019                 if (anon_vma_clone(new_vma, vma))
3020                         goto out_free_mempol;
3021                 if (new_vma->vm_file)
3022                         get_file(new_vma->vm_file);
3023                 if (new_vma->vm_ops && new_vma->vm_ops->open)
3024                         new_vma->vm_ops->open(new_vma);
3025                 vma_link(mm, new_vma, prev, rb_link, rb_parent);
3026                 *need_rmap_locks = false;
3027         }
3028         return new_vma;
3029
3030 out_free_mempol:
3031         mpol_put(vma_policy(new_vma));
3032 out_free_vma:
3033         kmem_cache_free(vm_area_cachep, new_vma);
3034 out:
3035         return NULL;
3036 }
3037
3038 /*
3039  * Return true if the calling process may expand its vm space by the passed
3040  * number of pages
3041  */
3042 int may_expand_vm(struct mm_struct *mm, unsigned long npages)
3043 {
3044         unsigned long cur = mm->total_vm;       /* pages */
3045         unsigned long lim;
3046
3047         lim = rlimit(RLIMIT_AS) >> PAGE_SHIFT;
3048
3049         if (cur + npages > lim)
3050                 return 0;
3051         return 1;
3052 }
3053
3054 static int special_mapping_fault(struct vm_area_struct *vma,
3055                                  struct vm_fault *vmf);
3056
3057 /*
3058  * Having a close hook prevents vma merging regardless of flags.
3059  */
3060 static void special_mapping_close(struct vm_area_struct *vma)
3061 {
3062 }
3063
3064 static const char *special_mapping_name(struct vm_area_struct *vma)
3065 {
3066         return ((struct vm_special_mapping *)vma->vm_private_data)->name;
3067 }
3068
3069 static const struct vm_operations_struct special_mapping_vmops = {
3070         .close = special_mapping_close,
3071         .fault = special_mapping_fault,
3072         .name = special_mapping_name,
3073 };
3074
3075 static const struct vm_operations_struct legacy_special_mapping_vmops = {
3076         .close = special_mapping_close,
3077         .fault = special_mapping_fault,
3078 };
3079
3080 static int special_mapping_fault(struct vm_area_struct *vma,
3081                                 struct vm_fault *vmf)
3082 {
3083         pgoff_t pgoff;
3084         struct page **pages;
3085
3086         if (vma->vm_ops == &legacy_special_mapping_vmops)
3087                 pages = vma->vm_private_data;
3088         else
3089                 pages = ((struct vm_special_mapping *)vma->vm_private_data)->
3090                         pages;
3091
3092         for (pgoff = vmf->pgoff; pgoff && *pages; ++pages)
3093                 pgoff--;
3094
3095         if (*pages) {
3096                 struct page *page = *pages;
3097                 get_page(page);
3098                 vmf->page = page;
3099                 return 0;
3100         }
3101
3102         return VM_FAULT_SIGBUS;
3103 }
3104
3105 static struct vm_area_struct *__install_special_mapping(
3106         struct mm_struct *mm,
3107         unsigned long addr, unsigned long len,
3108         unsigned long vm_flags, void *priv,
3109         const struct vm_operations_struct *ops)
3110 {
3111         int ret;
3112         struct vm_area_struct *vma;
3113
3114         vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
3115         if (unlikely(vma == NULL))
3116                 return ERR_PTR(-ENOMEM);
3117
3118         INIT_LIST_HEAD(&vma->anon_vma_chain);
3119         vma->vm_mm = mm;
3120         vma->vm_start = addr;
3121         vma->vm_end = addr + len;
3122
3123         vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY;
3124         vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3125
3126         vma->vm_ops = ops;
3127         vma->vm_private_data = priv;
3128
3129         ret = insert_vm_struct(mm, vma);
3130         if (ret)
3131                 goto out;
3132
3133         mm->total_vm += len >> PAGE_SHIFT;
3134
3135         perf_event_mmap(vma);
3136
3137         return vma;
3138
3139 out:
3140         kmem_cache_free(vm_area_cachep, vma);
3141         return ERR_PTR(ret);
3142 }
3143
3144 /*
3145  * Called with mm->mmap_sem held for writing.
3146  * Insert a new vma covering the given region, with the given flags.
3147  * Its pages are supplied by the given array of struct page *.
3148  * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3149  * The region past the last page supplied will always produce SIGBUS.
3150  * The array pointer and the pages it points to are assumed to stay alive
3151  * for as long as this mapping might exist.
3152  */
3153 struct vm_area_struct *_install_special_mapping(
3154         struct mm_struct *mm,
3155         unsigned long addr, unsigned long len,
3156         unsigned long vm_flags, const struct vm_special_mapping *spec)
3157 {
3158         return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec,
3159                                         &special_mapping_vmops);
3160 }
3161
3162 int install_special_mapping(struct mm_struct *mm,
3163                             unsigned long addr, unsigned long len,
3164                             unsigned long vm_flags, struct page **pages)
3165 {
3166         struct vm_area_struct *vma = __install_special_mapping(
3167                 mm, addr, len, vm_flags, (void *)pages,
3168                 &legacy_special_mapping_vmops);
3169
3170         return PTR_ERR_OR_ZERO(vma);
3171 }
3172
3173 static DEFINE_MUTEX(mm_all_locks_mutex);
3174
3175 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
3176 {
3177         if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
3178                 /*
3179                  * The LSB of head.next can't change from under us
3180                  * because we hold the mm_all_locks_mutex.
3181                  */
3182                 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_sem);
3183                 /*
3184                  * We can safely modify head.next after taking the
3185                  * anon_vma->root->rwsem. If some other vma in this mm shares
3186                  * the same anon_vma we won't take it again.
3187                  *
3188                  * No need of atomic instructions here, head.next
3189                  * can't change from under us thanks to the
3190                  * anon_vma->root->rwsem.
3191                  */
3192                 if (__test_and_set_bit(0, (unsigned long *)
3193                                        &anon_vma->root->rb_root.rb_node))
3194                         BUG();
3195         }
3196 }
3197
3198 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
3199 {
3200         if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3201                 /*
3202                  * AS_MM_ALL_LOCKS can't change from under us because
3203                  * we hold the mm_all_locks_mutex.
3204                  *
3205                  * Operations on ->flags have to be atomic because
3206                  * even if AS_MM_ALL_LOCKS is stable thanks to the
3207                  * mm_all_locks_mutex, there may be other cpus
3208                  * changing other bitflags in parallel to us.
3209                  */
3210                 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3211                         BUG();
3212                 down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_sem);
3213         }
3214 }
3215
3216 /*
3217  * This operation locks against the VM for all pte/vma/mm related
3218  * operations that could ever happen on a certain mm. This includes
3219  * vmtruncate, try_to_unmap, and all page faults.
3220  *
3221  * The caller must take the mmap_sem in write mode before calling
3222  * mm_take_all_locks(). The caller isn't allowed to release the
3223  * mmap_sem until mm_drop_all_locks() returns.
3224  *
3225  * mmap_sem in write mode is required in order to block all operations
3226  * that could modify pagetables and free pages without need of
3227  * altering the vma layout. It's also needed in write mode to avoid new
3228  * anon_vmas to be associated with existing vmas.
3229  *
3230  * A single task can't take more than one mm_take_all_locks() in a row
3231  * or it would deadlock.
3232  *
3233  * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3234  * mapping->flags avoid to take the same lock twice, if more than one
3235  * vma in this mm is backed by the same anon_vma or address_space.
3236  *
3237  * We can take all the locks in random order because the VM code
3238  * taking i_mmap_rwsem or anon_vma->rwsem outside the mmap_sem never
3239  * takes more than one of them in a row. Secondly we're protected
3240  * against a concurrent mm_take_all_locks() by the mm_all_locks_mutex.
3241  *
3242  * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3243  * that may have to take thousand of locks.
3244  *
3245  * mm_take_all_locks() can fail if it's interrupted by signals.
3246  */
3247 int mm_take_all_locks(struct mm_struct *mm)
3248 {
3249         struct vm_area_struct *vma;
3250         struct anon_vma_chain *avc;
3251
3252         BUG_ON(down_read_trylock(&mm->mmap_sem));
3253
3254         mutex_lock(&mm_all_locks_mutex);
3255
3256         for (vma = mm->mmap; vma; vma = vma->vm_next) {
3257                 if (signal_pending(current))
3258                         goto out_unlock;
3259                 if (vma->vm_file && vma->vm_file->f_mapping)
3260                         vm_lock_mapping(mm, vma->vm_file->f_mapping);
3261         }
3262
3263         for (vma = mm->mmap; vma; vma = vma->vm_next) {
3264                 if (signal_pending(current))
3265                         goto out_unlock;
3266                 if (vma->anon_vma)
3267                         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3268                                 vm_lock_anon_vma(mm, avc->anon_vma);
3269         }
3270
3271         return 0;
3272
3273 out_unlock:
3274         mm_drop_all_locks(mm);
3275         return -EINTR;
3276 }
3277
3278 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3279 {
3280         if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
3281                 /*
3282                  * The LSB of head.next can't change to 0 from under
3283                  * us because we hold the mm_all_locks_mutex.
3284                  *
3285                  * We must however clear the bitflag before unlocking
3286                  * the vma so the users using the anon_vma->rb_root will
3287                  * never see our bitflag.
3288                  *
3289                  * No need of atomic instructions here, head.next
3290                  * can't change from under us until we release the
3291                  * anon_vma->root->rwsem.
3292                  */
3293                 if (!__test_and_clear_bit(0, (unsigned long *)
3294                                           &anon_vma->root->rb_root.rb_node))
3295                         BUG();
3296                 anon_vma_unlock_write(anon_vma);
3297         }
3298 }
3299
3300 static void vm_unlock_mapping(struct address_space *mapping)
3301 {
3302         if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3303                 /*
3304                  * AS_MM_ALL_LOCKS can't change to 0 from under us
3305                  * because we hold the mm_all_locks_mutex.
3306                  */
3307                 i_mmap_unlock_write(mapping);
3308                 if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3309                                         &mapping->flags))
3310                         BUG();
3311         }
3312 }
3313
3314 /*
3315  * The mmap_sem cannot be released by the caller until
3316  * mm_drop_all_locks() returns.
3317  */
3318 void mm_drop_all_locks(struct mm_struct *mm)
3319 {
3320         struct vm_area_struct *vma;
3321         struct anon_vma_chain *avc;
3322
3323         BUG_ON(down_read_trylock(&mm->mmap_sem));
3324         BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3325
3326         for (vma = mm->mmap; vma; vma = vma->vm_next) {
3327                 if (vma->anon_vma)
3328                         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3329                                 vm_unlock_anon_vma(avc->anon_vma);
3330                 if (vma->vm_file && vma->vm_file->f_mapping)
3331                         vm_unlock_mapping(vma->vm_file->f_mapping);
3332         }
3333
3334         mutex_unlock(&mm_all_locks_mutex);
3335 }
3336
3337 /*
3338  * initialise the VMA slab
3339  */
3340 void __init mmap_init(void)
3341 {
3342         int ret;
3343
3344         ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
3345         VM_BUG_ON(ret);
3346 }
3347
3348 /*
3349  * Initialise sysctl_user_reserve_kbytes.
3350  *
3351  * This is intended to prevent a user from starting a single memory hogging
3352  * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3353  * mode.
3354  *
3355  * The default value is min(3% of free memory, 128MB)
3356  * 128MB is enough to recover with sshd/login, bash, and top/kill.
3357  */
3358 static int init_user_reserve(void)
3359 {
3360         unsigned long free_kbytes;
3361
3362         free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3363
3364         sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3365         return 0;
3366 }
3367 subsys_initcall(init_user_reserve);
3368
3369 /*
3370  * Initialise sysctl_admin_reserve_kbytes.
3371  *
3372  * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3373  * to log in and kill a memory hogging process.
3374  *
3375  * Systems with more than 256MB will reserve 8MB, enough to recover
3376  * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3377  * only reserve 3% of free pages by default.
3378  */
3379 static int init_admin_reserve(void)
3380 {
3381         unsigned long free_kbytes;
3382
3383         free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3384
3385         sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3386         return 0;
3387 }
3388 subsys_initcall(init_admin_reserve);
3389
3390 /*
3391  * Reinititalise user and admin reserves if memory is added or removed.
3392  *
3393  * The default user reserve max is 128MB, and the default max for the
3394  * admin reserve is 8MB. These are usually, but not always, enough to
3395  * enable recovery from a memory hogging process using login/sshd, a shell,
3396  * and tools like top. It may make sense to increase or even disable the
3397  * reserve depending on the existence of swap or variations in the recovery
3398  * tools. So, the admin may have changed them.
3399  *
3400  * If memory is added and the reserves have been eliminated or increased above
3401  * the default max, then we'll trust the admin.
3402  *
3403  * If memory is removed and there isn't enough free memory, then we
3404  * need to reset the reserves.
3405  *
3406  * Otherwise keep the reserve set by the admin.
3407  */
3408 static int reserve_mem_notifier(struct notifier_block *nb,
3409                              unsigned long action, void *data)
3410 {
3411         unsigned long tmp, free_kbytes;
3412
3413         switch (action) {
3414         case MEM_ONLINE:
3415                 /* Default max is 128MB. Leave alone if modified by operator. */
3416                 tmp = sysctl_user_reserve_kbytes;
3417                 if (0 < tmp && tmp < (1UL << 17))
3418                         init_user_reserve();
3419
3420                 /* Default max is 8MB.  Leave alone if modified by operator. */
3421                 tmp = sysctl_admin_reserve_kbytes;
3422                 if (0 < tmp && tmp < (1UL << 13))
3423                         init_admin_reserve();
3424
3425                 break;
3426         case MEM_OFFLINE:
3427                 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3428
3429                 if (sysctl_user_reserve_kbytes > free_kbytes) {
3430                         init_user_reserve();
3431                         pr_info("vm.user_reserve_kbytes reset to %lu\n",
3432                                 sysctl_user_reserve_kbytes);
3433                 }
3434
3435                 if (sysctl_admin_reserve_kbytes > free_kbytes) {
3436                         init_admin_reserve();
3437                         pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3438                                 sysctl_admin_reserve_kbytes);
3439                 }
3440                 break;
3441         default:
3442                 break;
3443         }
3444         return NOTIFY_OK;
3445 }
3446
3447 static struct notifier_block reserve_mem_nb = {
3448         .notifier_call = reserve_mem_notifier,
3449 };
3450
3451 static int __meminit init_reserve_notifier(void)
3452 {
3453         if (register_hotmemory_notifier(&reserve_mem_nb))
3454                 pr_err("Failed registering memory add/remove notifier for admin reserve\n");
3455
3456         return 0;
3457 }
3458 subsys_initcall(init_reserve_notifier);