OSDN Git Service

dt-bindings: display: mediatek: Fix examples on new bindings
[uclinux-h8/linux.git] / mm / page-writeback.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * mm/page-writeback.c
4  *
5  * Copyright (C) 2002, Linus Torvalds.
6  * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
7  *
8  * Contains functions related to writing back dirty pages at the
9  * address_space level.
10  *
11  * 10Apr2002    Andrew Morton
12  *              Initial version
13  */
14
15 #include <linux/kernel.h>
16 #include <linux/export.h>
17 #include <linux/spinlock.h>
18 #include <linux/fs.h>
19 #include <linux/mm.h>
20 #include <linux/swap.h>
21 #include <linux/slab.h>
22 #include <linux/pagemap.h>
23 #include <linux/writeback.h>
24 #include <linux/init.h>
25 #include <linux/backing-dev.h>
26 #include <linux/task_io_accounting_ops.h>
27 #include <linux/blkdev.h>
28 #include <linux/mpage.h>
29 #include <linux/rmap.h>
30 #include <linux/percpu.h>
31 #include <linux/smp.h>
32 #include <linux/sysctl.h>
33 #include <linux/cpu.h>
34 #include <linux/syscalls.h>
35 #include <linux/pagevec.h>
36 #include <linux/timer.h>
37 #include <linux/sched/rt.h>
38 #include <linux/sched/signal.h>
39 #include <linux/mm_inline.h>
40 #include <trace/events/writeback.h>
41
42 #include "internal.h"
43
44 /*
45  * Sleep at most 200ms at a time in balance_dirty_pages().
46  */
47 #define MAX_PAUSE               max(HZ/5, 1)
48
49 /*
50  * Try to keep balance_dirty_pages() call intervals higher than this many pages
51  * by raising pause time to max_pause when falls below it.
52  */
53 #define DIRTY_POLL_THRESH       (128 >> (PAGE_SHIFT - 10))
54
55 /*
56  * Estimate write bandwidth at 200ms intervals.
57  */
58 #define BANDWIDTH_INTERVAL      max(HZ/5, 1)
59
60 #define RATELIMIT_CALC_SHIFT    10
61
62 /*
63  * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
64  * will look to see if it needs to force writeback or throttling.
65  */
66 static long ratelimit_pages = 32;
67
68 /* The following parameters are exported via /proc/sys/vm */
69
70 /*
71  * Start background writeback (via writeback threads) at this percentage
72  */
73 int dirty_background_ratio = 10;
74
75 /*
76  * dirty_background_bytes starts at 0 (disabled) so that it is a function of
77  * dirty_background_ratio * the amount of dirtyable memory
78  */
79 unsigned long dirty_background_bytes;
80
81 /*
82  * free highmem will not be subtracted from the total free memory
83  * for calculating free ratios if vm_highmem_is_dirtyable is true
84  */
85 int vm_highmem_is_dirtyable;
86
87 /*
88  * The generator of dirty data starts writeback at this percentage
89  */
90 int vm_dirty_ratio = 20;
91
92 /*
93  * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
94  * vm_dirty_ratio * the amount of dirtyable memory
95  */
96 unsigned long vm_dirty_bytes;
97
98 /*
99  * The interval between `kupdate'-style writebacks
100  */
101 unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
102
103 EXPORT_SYMBOL_GPL(dirty_writeback_interval);
104
105 /*
106  * The longest time for which data is allowed to remain dirty
107  */
108 unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
109
110 /*
111  * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
112  * a full sync is triggered after this time elapses without any disk activity.
113  */
114 int laptop_mode;
115
116 EXPORT_SYMBOL(laptop_mode);
117
118 /* End of sysctl-exported parameters */
119
120 struct wb_domain global_wb_domain;
121
122 /* consolidated parameters for balance_dirty_pages() and its subroutines */
123 struct dirty_throttle_control {
124 #ifdef CONFIG_CGROUP_WRITEBACK
125         struct wb_domain        *dom;
126         struct dirty_throttle_control *gdtc;    /* only set in memcg dtc's */
127 #endif
128         struct bdi_writeback    *wb;
129         struct fprop_local_percpu *wb_completions;
130
131         unsigned long           avail;          /* dirtyable */
132         unsigned long           dirty;          /* file_dirty + write + nfs */
133         unsigned long           thresh;         /* dirty threshold */
134         unsigned long           bg_thresh;      /* dirty background threshold */
135
136         unsigned long           wb_dirty;       /* per-wb counterparts */
137         unsigned long           wb_thresh;
138         unsigned long           wb_bg_thresh;
139
140         unsigned long           pos_ratio;
141 };
142
143 /*
144  * Length of period for aging writeout fractions of bdis. This is an
145  * arbitrarily chosen number. The longer the period, the slower fractions will
146  * reflect changes in current writeout rate.
147  */
148 #define VM_COMPLETIONS_PERIOD_LEN (3*HZ)
149
150 #ifdef CONFIG_CGROUP_WRITEBACK
151
152 #define GDTC_INIT(__wb)         .wb = (__wb),                           \
153                                 .dom = &global_wb_domain,               \
154                                 .wb_completions = &(__wb)->completions
155
156 #define GDTC_INIT_NO_WB         .dom = &global_wb_domain
157
158 #define MDTC_INIT(__wb, __gdtc) .wb = (__wb),                           \
159                                 .dom = mem_cgroup_wb_domain(__wb),      \
160                                 .wb_completions = &(__wb)->memcg_completions, \
161                                 .gdtc = __gdtc
162
163 static bool mdtc_valid(struct dirty_throttle_control *dtc)
164 {
165         return dtc->dom;
166 }
167
168 static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc)
169 {
170         return dtc->dom;
171 }
172
173 static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc)
174 {
175         return mdtc->gdtc;
176 }
177
178 static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb)
179 {
180         return &wb->memcg_completions;
181 }
182
183 static void wb_min_max_ratio(struct bdi_writeback *wb,
184                              unsigned long *minp, unsigned long *maxp)
185 {
186         unsigned long this_bw = READ_ONCE(wb->avg_write_bandwidth);
187         unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
188         unsigned long long min = wb->bdi->min_ratio;
189         unsigned long long max = wb->bdi->max_ratio;
190
191         /*
192          * @wb may already be clean by the time control reaches here and
193          * the total may not include its bw.
194          */
195         if (this_bw < tot_bw) {
196                 if (min) {
197                         min *= this_bw;
198                         min = div64_ul(min, tot_bw);
199                 }
200                 if (max < 100) {
201                         max *= this_bw;
202                         max = div64_ul(max, tot_bw);
203                 }
204         }
205
206         *minp = min;
207         *maxp = max;
208 }
209
210 #else   /* CONFIG_CGROUP_WRITEBACK */
211
212 #define GDTC_INIT(__wb)         .wb = (__wb),                           \
213                                 .wb_completions = &(__wb)->completions
214 #define GDTC_INIT_NO_WB
215 #define MDTC_INIT(__wb, __gdtc)
216
217 static bool mdtc_valid(struct dirty_throttle_control *dtc)
218 {
219         return false;
220 }
221
222 static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc)
223 {
224         return &global_wb_domain;
225 }
226
227 static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc)
228 {
229         return NULL;
230 }
231
232 static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb)
233 {
234         return NULL;
235 }
236
237 static void wb_min_max_ratio(struct bdi_writeback *wb,
238                              unsigned long *minp, unsigned long *maxp)
239 {
240         *minp = wb->bdi->min_ratio;
241         *maxp = wb->bdi->max_ratio;
242 }
243
244 #endif  /* CONFIG_CGROUP_WRITEBACK */
245
246 /*
247  * In a memory zone, there is a certain amount of pages we consider
248  * available for the page cache, which is essentially the number of
249  * free and reclaimable pages, minus some zone reserves to protect
250  * lowmem and the ability to uphold the zone's watermarks without
251  * requiring writeback.
252  *
253  * This number of dirtyable pages is the base value of which the
254  * user-configurable dirty ratio is the effective number of pages that
255  * are allowed to be actually dirtied.  Per individual zone, or
256  * globally by using the sum of dirtyable pages over all zones.
257  *
258  * Because the user is allowed to specify the dirty limit globally as
259  * absolute number of bytes, calculating the per-zone dirty limit can
260  * require translating the configured limit into a percentage of
261  * global dirtyable memory first.
262  */
263
264 /**
265  * node_dirtyable_memory - number of dirtyable pages in a node
266  * @pgdat: the node
267  *
268  * Return: the node's number of pages potentially available for dirty
269  * page cache.  This is the base value for the per-node dirty limits.
270  */
271 static unsigned long node_dirtyable_memory(struct pglist_data *pgdat)
272 {
273         unsigned long nr_pages = 0;
274         int z;
275
276         for (z = 0; z < MAX_NR_ZONES; z++) {
277                 struct zone *zone = pgdat->node_zones + z;
278
279                 if (!populated_zone(zone))
280                         continue;
281
282                 nr_pages += zone_page_state(zone, NR_FREE_PAGES);
283         }
284
285         /*
286          * Pages reserved for the kernel should not be considered
287          * dirtyable, to prevent a situation where reclaim has to
288          * clean pages in order to balance the zones.
289          */
290         nr_pages -= min(nr_pages, pgdat->totalreserve_pages);
291
292         nr_pages += node_page_state(pgdat, NR_INACTIVE_FILE);
293         nr_pages += node_page_state(pgdat, NR_ACTIVE_FILE);
294
295         return nr_pages;
296 }
297
298 static unsigned long highmem_dirtyable_memory(unsigned long total)
299 {
300 #ifdef CONFIG_HIGHMEM
301         int node;
302         unsigned long x = 0;
303         int i;
304
305         for_each_node_state(node, N_HIGH_MEMORY) {
306                 for (i = ZONE_NORMAL + 1; i < MAX_NR_ZONES; i++) {
307                         struct zone *z;
308                         unsigned long nr_pages;
309
310                         if (!is_highmem_idx(i))
311                                 continue;
312
313                         z = &NODE_DATA(node)->node_zones[i];
314                         if (!populated_zone(z))
315                                 continue;
316
317                         nr_pages = zone_page_state(z, NR_FREE_PAGES);
318                         /* watch for underflows */
319                         nr_pages -= min(nr_pages, high_wmark_pages(z));
320                         nr_pages += zone_page_state(z, NR_ZONE_INACTIVE_FILE);
321                         nr_pages += zone_page_state(z, NR_ZONE_ACTIVE_FILE);
322                         x += nr_pages;
323                 }
324         }
325
326         /*
327          * Make sure that the number of highmem pages is never larger
328          * than the number of the total dirtyable memory. This can only
329          * occur in very strange VM situations but we want to make sure
330          * that this does not occur.
331          */
332         return min(x, total);
333 #else
334         return 0;
335 #endif
336 }
337
338 /**
339  * global_dirtyable_memory - number of globally dirtyable pages
340  *
341  * Return: the global number of pages potentially available for dirty
342  * page cache.  This is the base value for the global dirty limits.
343  */
344 static unsigned long global_dirtyable_memory(void)
345 {
346         unsigned long x;
347
348         x = global_zone_page_state(NR_FREE_PAGES);
349         /*
350          * Pages reserved for the kernel should not be considered
351          * dirtyable, to prevent a situation where reclaim has to
352          * clean pages in order to balance the zones.
353          */
354         x -= min(x, totalreserve_pages);
355
356         x += global_node_page_state(NR_INACTIVE_FILE);
357         x += global_node_page_state(NR_ACTIVE_FILE);
358
359         if (!vm_highmem_is_dirtyable)
360                 x -= highmem_dirtyable_memory(x);
361
362         return x + 1;   /* Ensure that we never return 0 */
363 }
364
365 /**
366  * domain_dirty_limits - calculate thresh and bg_thresh for a wb_domain
367  * @dtc: dirty_throttle_control of interest
368  *
369  * Calculate @dtc->thresh and ->bg_thresh considering
370  * vm_dirty_{bytes|ratio} and dirty_background_{bytes|ratio}.  The caller
371  * must ensure that @dtc->avail is set before calling this function.  The
372  * dirty limits will be lifted by 1/4 for real-time tasks.
373  */
374 static void domain_dirty_limits(struct dirty_throttle_control *dtc)
375 {
376         const unsigned long available_memory = dtc->avail;
377         struct dirty_throttle_control *gdtc = mdtc_gdtc(dtc);
378         unsigned long bytes = vm_dirty_bytes;
379         unsigned long bg_bytes = dirty_background_bytes;
380         /* convert ratios to per-PAGE_SIZE for higher precision */
381         unsigned long ratio = (vm_dirty_ratio * PAGE_SIZE) / 100;
382         unsigned long bg_ratio = (dirty_background_ratio * PAGE_SIZE) / 100;
383         unsigned long thresh;
384         unsigned long bg_thresh;
385         struct task_struct *tsk;
386
387         /* gdtc is !NULL iff @dtc is for memcg domain */
388         if (gdtc) {
389                 unsigned long global_avail = gdtc->avail;
390
391                 /*
392                  * The byte settings can't be applied directly to memcg
393                  * domains.  Convert them to ratios by scaling against
394                  * globally available memory.  As the ratios are in
395                  * per-PAGE_SIZE, they can be obtained by dividing bytes by
396                  * number of pages.
397                  */
398                 if (bytes)
399                         ratio = min(DIV_ROUND_UP(bytes, global_avail),
400                                     PAGE_SIZE);
401                 if (bg_bytes)
402                         bg_ratio = min(DIV_ROUND_UP(bg_bytes, global_avail),
403                                        PAGE_SIZE);
404                 bytes = bg_bytes = 0;
405         }
406
407         if (bytes)
408                 thresh = DIV_ROUND_UP(bytes, PAGE_SIZE);
409         else
410                 thresh = (ratio * available_memory) / PAGE_SIZE;
411
412         if (bg_bytes)
413                 bg_thresh = DIV_ROUND_UP(bg_bytes, PAGE_SIZE);
414         else
415                 bg_thresh = (bg_ratio * available_memory) / PAGE_SIZE;
416
417         if (bg_thresh >= thresh)
418                 bg_thresh = thresh / 2;
419         tsk = current;
420         if (rt_task(tsk)) {
421                 bg_thresh += bg_thresh / 4 + global_wb_domain.dirty_limit / 32;
422                 thresh += thresh / 4 + global_wb_domain.dirty_limit / 32;
423         }
424         dtc->thresh = thresh;
425         dtc->bg_thresh = bg_thresh;
426
427         /* we should eventually report the domain in the TP */
428         if (!gdtc)
429                 trace_global_dirty_state(bg_thresh, thresh);
430 }
431
432 /**
433  * global_dirty_limits - background-writeback and dirty-throttling thresholds
434  * @pbackground: out parameter for bg_thresh
435  * @pdirty: out parameter for thresh
436  *
437  * Calculate bg_thresh and thresh for global_wb_domain.  See
438  * domain_dirty_limits() for details.
439  */
440 void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty)
441 {
442         struct dirty_throttle_control gdtc = { GDTC_INIT_NO_WB };
443
444         gdtc.avail = global_dirtyable_memory();
445         domain_dirty_limits(&gdtc);
446
447         *pbackground = gdtc.bg_thresh;
448         *pdirty = gdtc.thresh;
449 }
450
451 /**
452  * node_dirty_limit - maximum number of dirty pages allowed in a node
453  * @pgdat: the node
454  *
455  * Return: the maximum number of dirty pages allowed in a node, based
456  * on the node's dirtyable memory.
457  */
458 static unsigned long node_dirty_limit(struct pglist_data *pgdat)
459 {
460         unsigned long node_memory = node_dirtyable_memory(pgdat);
461         struct task_struct *tsk = current;
462         unsigned long dirty;
463
464         if (vm_dirty_bytes)
465                 dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) *
466                         node_memory / global_dirtyable_memory();
467         else
468                 dirty = vm_dirty_ratio * node_memory / 100;
469
470         if (rt_task(tsk))
471                 dirty += dirty / 4;
472
473         return dirty;
474 }
475
476 /**
477  * node_dirty_ok - tells whether a node is within its dirty limits
478  * @pgdat: the node to check
479  *
480  * Return: %true when the dirty pages in @pgdat are within the node's
481  * dirty limit, %false if the limit is exceeded.
482  */
483 bool node_dirty_ok(struct pglist_data *pgdat)
484 {
485         unsigned long limit = node_dirty_limit(pgdat);
486         unsigned long nr_pages = 0;
487
488         nr_pages += node_page_state(pgdat, NR_FILE_DIRTY);
489         nr_pages += node_page_state(pgdat, NR_WRITEBACK);
490
491         return nr_pages <= limit;
492 }
493
494 int dirty_background_ratio_handler(struct ctl_table *table, int write,
495                 void *buffer, size_t *lenp, loff_t *ppos)
496 {
497         int ret;
498
499         ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
500         if (ret == 0 && write)
501                 dirty_background_bytes = 0;
502         return ret;
503 }
504
505 int dirty_background_bytes_handler(struct ctl_table *table, int write,
506                 void *buffer, size_t *lenp, loff_t *ppos)
507 {
508         int ret;
509
510         ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
511         if (ret == 0 && write)
512                 dirty_background_ratio = 0;
513         return ret;
514 }
515
516 int dirty_ratio_handler(struct ctl_table *table, int write, void *buffer,
517                 size_t *lenp, loff_t *ppos)
518 {
519         int old_ratio = vm_dirty_ratio;
520         int ret;
521
522         ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
523         if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
524                 writeback_set_ratelimit();
525                 vm_dirty_bytes = 0;
526         }
527         return ret;
528 }
529
530 int dirty_bytes_handler(struct ctl_table *table, int write,
531                 void *buffer, size_t *lenp, loff_t *ppos)
532 {
533         unsigned long old_bytes = vm_dirty_bytes;
534         int ret;
535
536         ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
537         if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
538                 writeback_set_ratelimit();
539                 vm_dirty_ratio = 0;
540         }
541         return ret;
542 }
543
544 static unsigned long wp_next_time(unsigned long cur_time)
545 {
546         cur_time += VM_COMPLETIONS_PERIOD_LEN;
547         /* 0 has a special meaning... */
548         if (!cur_time)
549                 return 1;
550         return cur_time;
551 }
552
553 static void wb_domain_writeout_add(struct wb_domain *dom,
554                                    struct fprop_local_percpu *completions,
555                                    unsigned int max_prop_frac, long nr)
556 {
557         __fprop_add_percpu_max(&dom->completions, completions,
558                                max_prop_frac, nr);
559         /* First event after period switching was turned off? */
560         if (unlikely(!dom->period_time)) {
561                 /*
562                  * We can race with other __bdi_writeout_inc calls here but
563                  * it does not cause any harm since the resulting time when
564                  * timer will fire and what is in writeout_period_time will be
565                  * roughly the same.
566                  */
567                 dom->period_time = wp_next_time(jiffies);
568                 mod_timer(&dom->period_timer, dom->period_time);
569         }
570 }
571
572 /*
573  * Increment @wb's writeout completion count and the global writeout
574  * completion count. Called from __folio_end_writeback().
575  */
576 static inline void __wb_writeout_add(struct bdi_writeback *wb, long nr)
577 {
578         struct wb_domain *cgdom;
579
580         wb_stat_mod(wb, WB_WRITTEN, nr);
581         wb_domain_writeout_add(&global_wb_domain, &wb->completions,
582                                wb->bdi->max_prop_frac, nr);
583
584         cgdom = mem_cgroup_wb_domain(wb);
585         if (cgdom)
586                 wb_domain_writeout_add(cgdom, wb_memcg_completions(wb),
587                                        wb->bdi->max_prop_frac, nr);
588 }
589
590 void wb_writeout_inc(struct bdi_writeback *wb)
591 {
592         unsigned long flags;
593
594         local_irq_save(flags);
595         __wb_writeout_add(wb, 1);
596         local_irq_restore(flags);
597 }
598 EXPORT_SYMBOL_GPL(wb_writeout_inc);
599
600 /*
601  * On idle system, we can be called long after we scheduled because we use
602  * deferred timers so count with missed periods.
603  */
604 static void writeout_period(struct timer_list *t)
605 {
606         struct wb_domain *dom = from_timer(dom, t, period_timer);
607         int miss_periods = (jiffies - dom->period_time) /
608                                                  VM_COMPLETIONS_PERIOD_LEN;
609
610         if (fprop_new_period(&dom->completions, miss_periods + 1)) {
611                 dom->period_time = wp_next_time(dom->period_time +
612                                 miss_periods * VM_COMPLETIONS_PERIOD_LEN);
613                 mod_timer(&dom->period_timer, dom->period_time);
614         } else {
615                 /*
616                  * Aging has zeroed all fractions. Stop wasting CPU on period
617                  * updates.
618                  */
619                 dom->period_time = 0;
620         }
621 }
622
623 int wb_domain_init(struct wb_domain *dom, gfp_t gfp)
624 {
625         memset(dom, 0, sizeof(*dom));
626
627         spin_lock_init(&dom->lock);
628
629         timer_setup(&dom->period_timer, writeout_period, TIMER_DEFERRABLE);
630
631         dom->dirty_limit_tstamp = jiffies;
632
633         return fprop_global_init(&dom->completions, gfp);
634 }
635
636 #ifdef CONFIG_CGROUP_WRITEBACK
637 void wb_domain_exit(struct wb_domain *dom)
638 {
639         del_timer_sync(&dom->period_timer);
640         fprop_global_destroy(&dom->completions);
641 }
642 #endif
643
644 /*
645  * bdi_min_ratio keeps the sum of the minimum dirty shares of all
646  * registered backing devices, which, for obvious reasons, can not
647  * exceed 100%.
648  */
649 static unsigned int bdi_min_ratio;
650
651 int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
652 {
653         int ret = 0;
654
655         spin_lock_bh(&bdi_lock);
656         if (min_ratio > bdi->max_ratio) {
657                 ret = -EINVAL;
658         } else {
659                 min_ratio -= bdi->min_ratio;
660                 if (bdi_min_ratio + min_ratio < 100) {
661                         bdi_min_ratio += min_ratio;
662                         bdi->min_ratio += min_ratio;
663                 } else {
664                         ret = -EINVAL;
665                 }
666         }
667         spin_unlock_bh(&bdi_lock);
668
669         return ret;
670 }
671
672 int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio)
673 {
674         int ret = 0;
675
676         if (max_ratio > 100)
677                 return -EINVAL;
678
679         spin_lock_bh(&bdi_lock);
680         if (bdi->min_ratio > max_ratio) {
681                 ret = -EINVAL;
682         } else {
683                 bdi->max_ratio = max_ratio;
684                 bdi->max_prop_frac = (FPROP_FRAC_BASE * max_ratio) / 100;
685         }
686         spin_unlock_bh(&bdi_lock);
687
688         return ret;
689 }
690 EXPORT_SYMBOL(bdi_set_max_ratio);
691
692 static unsigned long dirty_freerun_ceiling(unsigned long thresh,
693                                            unsigned long bg_thresh)
694 {
695         return (thresh + bg_thresh) / 2;
696 }
697
698 static unsigned long hard_dirty_limit(struct wb_domain *dom,
699                                       unsigned long thresh)
700 {
701         return max(thresh, dom->dirty_limit);
702 }
703
704 /*
705  * Memory which can be further allocated to a memcg domain is capped by
706  * system-wide clean memory excluding the amount being used in the domain.
707  */
708 static void mdtc_calc_avail(struct dirty_throttle_control *mdtc,
709                             unsigned long filepages, unsigned long headroom)
710 {
711         struct dirty_throttle_control *gdtc = mdtc_gdtc(mdtc);
712         unsigned long clean = filepages - min(filepages, mdtc->dirty);
713         unsigned long global_clean = gdtc->avail - min(gdtc->avail, gdtc->dirty);
714         unsigned long other_clean = global_clean - min(global_clean, clean);
715
716         mdtc->avail = filepages + min(headroom, other_clean);
717 }
718
719 /**
720  * __wb_calc_thresh - @wb's share of dirty throttling threshold
721  * @dtc: dirty_throttle_context of interest
722  *
723  * Note that balance_dirty_pages() will only seriously take it as a hard limit
724  * when sleeping max_pause per page is not enough to keep the dirty pages under
725  * control. For example, when the device is completely stalled due to some error
726  * conditions, or when there are 1000 dd tasks writing to a slow 10MB/s USB key.
727  * In the other normal situations, it acts more gently by throttling the tasks
728  * more (rather than completely block them) when the wb dirty pages go high.
729  *
730  * It allocates high/low dirty limits to fast/slow devices, in order to prevent
731  * - starving fast devices
732  * - piling up dirty pages (that will take long time to sync) on slow devices
733  *
734  * The wb's share of dirty limit will be adapting to its throughput and
735  * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set.
736  *
737  * Return: @wb's dirty limit in pages. The term "dirty" in the context of
738  * dirty balancing includes all PG_dirty and PG_writeback pages.
739  */
740 static unsigned long __wb_calc_thresh(struct dirty_throttle_control *dtc)
741 {
742         struct wb_domain *dom = dtc_dom(dtc);
743         unsigned long thresh = dtc->thresh;
744         u64 wb_thresh;
745         unsigned long numerator, denominator;
746         unsigned long wb_min_ratio, wb_max_ratio;
747
748         /*
749          * Calculate this BDI's share of the thresh ratio.
750          */
751         fprop_fraction_percpu(&dom->completions, dtc->wb_completions,
752                               &numerator, &denominator);
753
754         wb_thresh = (thresh * (100 - bdi_min_ratio)) / 100;
755         wb_thresh *= numerator;
756         wb_thresh = div64_ul(wb_thresh, denominator);
757
758         wb_min_max_ratio(dtc->wb, &wb_min_ratio, &wb_max_ratio);
759
760         wb_thresh += (thresh * wb_min_ratio) / 100;
761         if (wb_thresh > (thresh * wb_max_ratio) / 100)
762                 wb_thresh = thresh * wb_max_ratio / 100;
763
764         return wb_thresh;
765 }
766
767 unsigned long wb_calc_thresh(struct bdi_writeback *wb, unsigned long thresh)
768 {
769         struct dirty_throttle_control gdtc = { GDTC_INIT(wb),
770                                                .thresh = thresh };
771         return __wb_calc_thresh(&gdtc);
772 }
773
774 /*
775  *                           setpoint - dirty 3
776  *        f(dirty) := 1.0 + (----------------)
777  *                           limit - setpoint
778  *
779  * it's a 3rd order polynomial that subjects to
780  *
781  * (1) f(freerun)  = 2.0 => rampup dirty_ratelimit reasonably fast
782  * (2) f(setpoint) = 1.0 => the balance point
783  * (3) f(limit)    = 0   => the hard limit
784  * (4) df/dx      <= 0   => negative feedback control
785  * (5) the closer to setpoint, the smaller |df/dx| (and the reverse)
786  *     => fast response on large errors; small oscillation near setpoint
787  */
788 static long long pos_ratio_polynom(unsigned long setpoint,
789                                           unsigned long dirty,
790                                           unsigned long limit)
791 {
792         long long pos_ratio;
793         long x;
794
795         x = div64_s64(((s64)setpoint - (s64)dirty) << RATELIMIT_CALC_SHIFT,
796                       (limit - setpoint) | 1);
797         pos_ratio = x;
798         pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
799         pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
800         pos_ratio += 1 << RATELIMIT_CALC_SHIFT;
801
802         return clamp(pos_ratio, 0LL, 2LL << RATELIMIT_CALC_SHIFT);
803 }
804
805 /*
806  * Dirty position control.
807  *
808  * (o) global/bdi setpoints
809  *
810  * We want the dirty pages be balanced around the global/wb setpoints.
811  * When the number of dirty pages is higher/lower than the setpoint, the
812  * dirty position control ratio (and hence task dirty ratelimit) will be
813  * decreased/increased to bring the dirty pages back to the setpoint.
814  *
815  *     pos_ratio = 1 << RATELIMIT_CALC_SHIFT
816  *
817  *     if (dirty < setpoint) scale up   pos_ratio
818  *     if (dirty > setpoint) scale down pos_ratio
819  *
820  *     if (wb_dirty < wb_setpoint) scale up   pos_ratio
821  *     if (wb_dirty > wb_setpoint) scale down pos_ratio
822  *
823  *     task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT
824  *
825  * (o) global control line
826  *
827  *     ^ pos_ratio
828  *     |
829  *     |            |<===== global dirty control scope ======>|
830  * 2.0  * * * * * * *
831  *     |            .*
832  *     |            . *
833  *     |            .   *
834  *     |            .     *
835  *     |            .        *
836  *     |            .            *
837  * 1.0 ................................*
838  *     |            .                  .     *
839  *     |            .                  .          *
840  *     |            .                  .              *
841  *     |            .                  .                 *
842  *     |            .                  .                    *
843  *   0 +------------.------------------.----------------------*------------->
844  *           freerun^          setpoint^                 limit^   dirty pages
845  *
846  * (o) wb control line
847  *
848  *     ^ pos_ratio
849  *     |
850  *     |            *
851  *     |              *
852  *     |                *
853  *     |                  *
854  *     |                    * |<=========== span ============>|
855  * 1.0 .......................*
856  *     |                      . *
857  *     |                      .   *
858  *     |                      .     *
859  *     |                      .       *
860  *     |                      .         *
861  *     |                      .           *
862  *     |                      .             *
863  *     |                      .               *
864  *     |                      .                 *
865  *     |                      .                   *
866  *     |                      .                     *
867  * 1/4 ...............................................* * * * * * * * * * * *
868  *     |                      .                         .
869  *     |                      .                           .
870  *     |                      .                             .
871  *   0 +----------------------.-------------------------------.------------->
872  *                wb_setpoint^                    x_intercept^
873  *
874  * The wb control line won't drop below pos_ratio=1/4, so that wb_dirty can
875  * be smoothly throttled down to normal if it starts high in situations like
876  * - start writing to a slow SD card and a fast disk at the same time. The SD
877  *   card's wb_dirty may rush to many times higher than wb_setpoint.
878  * - the wb dirty thresh drops quickly due to change of JBOD workload
879  */
880 static void wb_position_ratio(struct dirty_throttle_control *dtc)
881 {
882         struct bdi_writeback *wb = dtc->wb;
883         unsigned long write_bw = READ_ONCE(wb->avg_write_bandwidth);
884         unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
885         unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh);
886         unsigned long wb_thresh = dtc->wb_thresh;
887         unsigned long x_intercept;
888         unsigned long setpoint;         /* dirty pages' target balance point */
889         unsigned long wb_setpoint;
890         unsigned long span;
891         long long pos_ratio;            /* for scaling up/down the rate limit */
892         long x;
893
894         dtc->pos_ratio = 0;
895
896         if (unlikely(dtc->dirty >= limit))
897                 return;
898
899         /*
900          * global setpoint
901          *
902          * See comment for pos_ratio_polynom().
903          */
904         setpoint = (freerun + limit) / 2;
905         pos_ratio = pos_ratio_polynom(setpoint, dtc->dirty, limit);
906
907         /*
908          * The strictlimit feature is a tool preventing mistrusted filesystems
909          * from growing a large number of dirty pages before throttling. For
910          * such filesystems balance_dirty_pages always checks wb counters
911          * against wb limits. Even if global "nr_dirty" is under "freerun".
912          * This is especially important for fuse which sets bdi->max_ratio to
913          * 1% by default. Without strictlimit feature, fuse writeback may
914          * consume arbitrary amount of RAM because it is accounted in
915          * NR_WRITEBACK_TEMP which is not involved in calculating "nr_dirty".
916          *
917          * Here, in wb_position_ratio(), we calculate pos_ratio based on
918          * two values: wb_dirty and wb_thresh. Let's consider an example:
919          * total amount of RAM is 16GB, bdi->max_ratio is equal to 1%, global
920          * limits are set by default to 10% and 20% (background and throttle).
921          * Then wb_thresh is 1% of 20% of 16GB. This amounts to ~8K pages.
922          * wb_calc_thresh(wb, bg_thresh) is about ~4K pages. wb_setpoint is
923          * about ~6K pages (as the average of background and throttle wb
924          * limits). The 3rd order polynomial will provide positive feedback if
925          * wb_dirty is under wb_setpoint and vice versa.
926          *
927          * Note, that we cannot use global counters in these calculations
928          * because we want to throttle process writing to a strictlimit wb
929          * much earlier than global "freerun" is reached (~23MB vs. ~2.3GB
930          * in the example above).
931          */
932         if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
933                 long long wb_pos_ratio;
934
935                 if (dtc->wb_dirty < 8) {
936                         dtc->pos_ratio = min_t(long long, pos_ratio * 2,
937                                            2 << RATELIMIT_CALC_SHIFT);
938                         return;
939                 }
940
941                 if (dtc->wb_dirty >= wb_thresh)
942                         return;
943
944                 wb_setpoint = dirty_freerun_ceiling(wb_thresh,
945                                                     dtc->wb_bg_thresh);
946
947                 if (wb_setpoint == 0 || wb_setpoint == wb_thresh)
948                         return;
949
950                 wb_pos_ratio = pos_ratio_polynom(wb_setpoint, dtc->wb_dirty,
951                                                  wb_thresh);
952
953                 /*
954                  * Typically, for strictlimit case, wb_setpoint << setpoint
955                  * and pos_ratio >> wb_pos_ratio. In the other words global
956                  * state ("dirty") is not limiting factor and we have to
957                  * make decision based on wb counters. But there is an
958                  * important case when global pos_ratio should get precedence:
959                  * global limits are exceeded (e.g. due to activities on other
960                  * wb's) while given strictlimit wb is below limit.
961                  *
962                  * "pos_ratio * wb_pos_ratio" would work for the case above,
963                  * but it would look too non-natural for the case of all
964                  * activity in the system coming from a single strictlimit wb
965                  * with bdi->max_ratio == 100%.
966                  *
967                  * Note that min() below somewhat changes the dynamics of the
968                  * control system. Normally, pos_ratio value can be well over 3
969                  * (when globally we are at freerun and wb is well below wb
970                  * setpoint). Now the maximum pos_ratio in the same situation
971                  * is 2. We might want to tweak this if we observe the control
972                  * system is too slow to adapt.
973                  */
974                 dtc->pos_ratio = min(pos_ratio, wb_pos_ratio);
975                 return;
976         }
977
978         /*
979          * We have computed basic pos_ratio above based on global situation. If
980          * the wb is over/under its share of dirty pages, we want to scale
981          * pos_ratio further down/up. That is done by the following mechanism.
982          */
983
984         /*
985          * wb setpoint
986          *
987          *        f(wb_dirty) := 1.0 + k * (wb_dirty - wb_setpoint)
988          *
989          *                        x_intercept - wb_dirty
990          *                     := --------------------------
991          *                        x_intercept - wb_setpoint
992          *
993          * The main wb control line is a linear function that subjects to
994          *
995          * (1) f(wb_setpoint) = 1.0
996          * (2) k = - 1 / (8 * write_bw)  (in single wb case)
997          *     or equally: x_intercept = wb_setpoint + 8 * write_bw
998          *
999          * For single wb case, the dirty pages are observed to fluctuate
1000          * regularly within range
1001          *        [wb_setpoint - write_bw/2, wb_setpoint + write_bw/2]
1002          * for various filesystems, where (2) can yield in a reasonable 12.5%
1003          * fluctuation range for pos_ratio.
1004          *
1005          * For JBOD case, wb_thresh (not wb_dirty!) could fluctuate up to its
1006          * own size, so move the slope over accordingly and choose a slope that
1007          * yields 100% pos_ratio fluctuation on suddenly doubled wb_thresh.
1008          */
1009         if (unlikely(wb_thresh > dtc->thresh))
1010                 wb_thresh = dtc->thresh;
1011         /*
1012          * It's very possible that wb_thresh is close to 0 not because the
1013          * device is slow, but that it has remained inactive for long time.
1014          * Honour such devices a reasonable good (hopefully IO efficient)
1015          * threshold, so that the occasional writes won't be blocked and active
1016          * writes can rampup the threshold quickly.
1017          */
1018         wb_thresh = max(wb_thresh, (limit - dtc->dirty) / 8);
1019         /*
1020          * scale global setpoint to wb's:
1021          *      wb_setpoint = setpoint * wb_thresh / thresh
1022          */
1023         x = div_u64((u64)wb_thresh << 16, dtc->thresh | 1);
1024         wb_setpoint = setpoint * (u64)x >> 16;
1025         /*
1026          * Use span=(8*write_bw) in single wb case as indicated by
1027          * (thresh - wb_thresh ~= 0) and transit to wb_thresh in JBOD case.
1028          *
1029          *        wb_thresh                    thresh - wb_thresh
1030          * span = --------- * (8 * write_bw) + ------------------ * wb_thresh
1031          *         thresh                           thresh
1032          */
1033         span = (dtc->thresh - wb_thresh + 8 * write_bw) * (u64)x >> 16;
1034         x_intercept = wb_setpoint + span;
1035
1036         if (dtc->wb_dirty < x_intercept - span / 4) {
1037                 pos_ratio = div64_u64(pos_ratio * (x_intercept - dtc->wb_dirty),
1038                                       (x_intercept - wb_setpoint) | 1);
1039         } else
1040                 pos_ratio /= 4;
1041
1042         /*
1043          * wb reserve area, safeguard against dirty pool underrun and disk idle
1044          * It may push the desired control point of global dirty pages higher
1045          * than setpoint.
1046          */
1047         x_intercept = wb_thresh / 2;
1048         if (dtc->wb_dirty < x_intercept) {
1049                 if (dtc->wb_dirty > x_intercept / 8)
1050                         pos_ratio = div_u64(pos_ratio * x_intercept,
1051                                             dtc->wb_dirty);
1052                 else
1053                         pos_ratio *= 8;
1054         }
1055
1056         dtc->pos_ratio = pos_ratio;
1057 }
1058
1059 static void wb_update_write_bandwidth(struct bdi_writeback *wb,
1060                                       unsigned long elapsed,
1061                                       unsigned long written)
1062 {
1063         const unsigned long period = roundup_pow_of_two(3 * HZ);
1064         unsigned long avg = wb->avg_write_bandwidth;
1065         unsigned long old = wb->write_bandwidth;
1066         u64 bw;
1067
1068         /*
1069          * bw = written * HZ / elapsed
1070          *
1071          *                   bw * elapsed + write_bandwidth * (period - elapsed)
1072          * write_bandwidth = ---------------------------------------------------
1073          *                                          period
1074          *
1075          * @written may have decreased due to folio_account_redirty().
1076          * Avoid underflowing @bw calculation.
1077          */
1078         bw = written - min(written, wb->written_stamp);
1079         bw *= HZ;
1080         if (unlikely(elapsed > period)) {
1081                 bw = div64_ul(bw, elapsed);
1082                 avg = bw;
1083                 goto out;
1084         }
1085         bw += (u64)wb->write_bandwidth * (period - elapsed);
1086         bw >>= ilog2(period);
1087
1088         /*
1089          * one more level of smoothing, for filtering out sudden spikes
1090          */
1091         if (avg > old && old >= (unsigned long)bw)
1092                 avg -= (avg - old) >> 3;
1093
1094         if (avg < old && old <= (unsigned long)bw)
1095                 avg += (old - avg) >> 3;
1096
1097 out:
1098         /* keep avg > 0 to guarantee that tot > 0 if there are dirty wbs */
1099         avg = max(avg, 1LU);
1100         if (wb_has_dirty_io(wb)) {
1101                 long delta = avg - wb->avg_write_bandwidth;
1102                 WARN_ON_ONCE(atomic_long_add_return(delta,
1103                                         &wb->bdi->tot_write_bandwidth) <= 0);
1104         }
1105         wb->write_bandwidth = bw;
1106         WRITE_ONCE(wb->avg_write_bandwidth, avg);
1107 }
1108
1109 static void update_dirty_limit(struct dirty_throttle_control *dtc)
1110 {
1111         struct wb_domain *dom = dtc_dom(dtc);
1112         unsigned long thresh = dtc->thresh;
1113         unsigned long limit = dom->dirty_limit;
1114
1115         /*
1116          * Follow up in one step.
1117          */
1118         if (limit < thresh) {
1119                 limit = thresh;
1120                 goto update;
1121         }
1122
1123         /*
1124          * Follow down slowly. Use the higher one as the target, because thresh
1125          * may drop below dirty. This is exactly the reason to introduce
1126          * dom->dirty_limit which is guaranteed to lie above the dirty pages.
1127          */
1128         thresh = max(thresh, dtc->dirty);
1129         if (limit > thresh) {
1130                 limit -= (limit - thresh) >> 5;
1131                 goto update;
1132         }
1133         return;
1134 update:
1135         dom->dirty_limit = limit;
1136 }
1137
1138 static void domain_update_dirty_limit(struct dirty_throttle_control *dtc,
1139                                       unsigned long now)
1140 {
1141         struct wb_domain *dom = dtc_dom(dtc);
1142
1143         /*
1144          * check locklessly first to optimize away locking for the most time
1145          */
1146         if (time_before(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL))
1147                 return;
1148
1149         spin_lock(&dom->lock);
1150         if (time_after_eq(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL)) {
1151                 update_dirty_limit(dtc);
1152                 dom->dirty_limit_tstamp = now;
1153         }
1154         spin_unlock(&dom->lock);
1155 }
1156
1157 /*
1158  * Maintain wb->dirty_ratelimit, the base dirty throttle rate.
1159  *
1160  * Normal wb tasks will be curbed at or below it in long term.
1161  * Obviously it should be around (write_bw / N) when there are N dd tasks.
1162  */
1163 static void wb_update_dirty_ratelimit(struct dirty_throttle_control *dtc,
1164                                       unsigned long dirtied,
1165                                       unsigned long elapsed)
1166 {
1167         struct bdi_writeback *wb = dtc->wb;
1168         unsigned long dirty = dtc->dirty;
1169         unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
1170         unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh);
1171         unsigned long setpoint = (freerun + limit) / 2;
1172         unsigned long write_bw = wb->avg_write_bandwidth;
1173         unsigned long dirty_ratelimit = wb->dirty_ratelimit;
1174         unsigned long dirty_rate;
1175         unsigned long task_ratelimit;
1176         unsigned long balanced_dirty_ratelimit;
1177         unsigned long step;
1178         unsigned long x;
1179         unsigned long shift;
1180
1181         /*
1182          * The dirty rate will match the writeout rate in long term, except
1183          * when dirty pages are truncated by userspace or re-dirtied by FS.
1184          */
1185         dirty_rate = (dirtied - wb->dirtied_stamp) * HZ / elapsed;
1186
1187         /*
1188          * task_ratelimit reflects each dd's dirty rate for the past 200ms.
1189          */
1190         task_ratelimit = (u64)dirty_ratelimit *
1191                                         dtc->pos_ratio >> RATELIMIT_CALC_SHIFT;
1192         task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */
1193
1194         /*
1195          * A linear estimation of the "balanced" throttle rate. The theory is,
1196          * if there are N dd tasks, each throttled at task_ratelimit, the wb's
1197          * dirty_rate will be measured to be (N * task_ratelimit). So the below
1198          * formula will yield the balanced rate limit (write_bw / N).
1199          *
1200          * Note that the expanded form is not a pure rate feedback:
1201          *      rate_(i+1) = rate_(i) * (write_bw / dirty_rate)              (1)
1202          * but also takes pos_ratio into account:
1203          *      rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio  (2)
1204          *
1205          * (1) is not realistic because pos_ratio also takes part in balancing
1206          * the dirty rate.  Consider the state
1207          *      pos_ratio = 0.5                                              (3)
1208          *      rate = 2 * (write_bw / N)                                    (4)
1209          * If (1) is used, it will stuck in that state! Because each dd will
1210          * be throttled at
1211          *      task_ratelimit = pos_ratio * rate = (write_bw / N)           (5)
1212          * yielding
1213          *      dirty_rate = N * task_ratelimit = write_bw                   (6)
1214          * put (6) into (1) we get
1215          *      rate_(i+1) = rate_(i)                                        (7)
1216          *
1217          * So we end up using (2) to always keep
1218          *      rate_(i+1) ~= (write_bw / N)                                 (8)
1219          * regardless of the value of pos_ratio. As long as (8) is satisfied,
1220          * pos_ratio is able to drive itself to 1.0, which is not only where
1221          * the dirty count meet the setpoint, but also where the slope of
1222          * pos_ratio is most flat and hence task_ratelimit is least fluctuated.
1223          */
1224         balanced_dirty_ratelimit = div_u64((u64)task_ratelimit * write_bw,
1225                                            dirty_rate | 1);
1226         /*
1227          * balanced_dirty_ratelimit ~= (write_bw / N) <= write_bw
1228          */
1229         if (unlikely(balanced_dirty_ratelimit > write_bw))
1230                 balanced_dirty_ratelimit = write_bw;
1231
1232         /*
1233          * We could safely do this and return immediately:
1234          *
1235          *      wb->dirty_ratelimit = balanced_dirty_ratelimit;
1236          *
1237          * However to get a more stable dirty_ratelimit, the below elaborated
1238          * code makes use of task_ratelimit to filter out singular points and
1239          * limit the step size.
1240          *
1241          * The below code essentially only uses the relative value of
1242          *
1243          *      task_ratelimit - dirty_ratelimit
1244          *      = (pos_ratio - 1) * dirty_ratelimit
1245          *
1246          * which reflects the direction and size of dirty position error.
1247          */
1248
1249         /*
1250          * dirty_ratelimit will follow balanced_dirty_ratelimit iff
1251          * task_ratelimit is on the same side of dirty_ratelimit, too.
1252          * For example, when
1253          * - dirty_ratelimit > balanced_dirty_ratelimit
1254          * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint)
1255          * lowering dirty_ratelimit will help meet both the position and rate
1256          * control targets. Otherwise, don't update dirty_ratelimit if it will
1257          * only help meet the rate target. After all, what the users ultimately
1258          * feel and care are stable dirty rate and small position error.
1259          *
1260          * |task_ratelimit - dirty_ratelimit| is used to limit the step size
1261          * and filter out the singular points of balanced_dirty_ratelimit. Which
1262          * keeps jumping around randomly and can even leap far away at times
1263          * due to the small 200ms estimation period of dirty_rate (we want to
1264          * keep that period small to reduce time lags).
1265          */
1266         step = 0;
1267
1268         /*
1269          * For strictlimit case, calculations above were based on wb counters
1270          * and limits (starting from pos_ratio = wb_position_ratio() and up to
1271          * balanced_dirty_ratelimit = task_ratelimit * write_bw / dirty_rate).
1272          * Hence, to calculate "step" properly, we have to use wb_dirty as
1273          * "dirty" and wb_setpoint as "setpoint".
1274          *
1275          * We rampup dirty_ratelimit forcibly if wb_dirty is low because
1276          * it's possible that wb_thresh is close to zero due to inactivity
1277          * of backing device.
1278          */
1279         if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
1280                 dirty = dtc->wb_dirty;
1281                 if (dtc->wb_dirty < 8)
1282                         setpoint = dtc->wb_dirty + 1;
1283                 else
1284                         setpoint = (dtc->wb_thresh + dtc->wb_bg_thresh) / 2;
1285         }
1286
1287         if (dirty < setpoint) {
1288                 x = min3(wb->balanced_dirty_ratelimit,
1289                          balanced_dirty_ratelimit, task_ratelimit);
1290                 if (dirty_ratelimit < x)
1291                         step = x - dirty_ratelimit;
1292         } else {
1293                 x = max3(wb->balanced_dirty_ratelimit,
1294                          balanced_dirty_ratelimit, task_ratelimit);
1295                 if (dirty_ratelimit > x)
1296                         step = dirty_ratelimit - x;
1297         }
1298
1299         /*
1300          * Don't pursue 100% rate matching. It's impossible since the balanced
1301          * rate itself is constantly fluctuating. So decrease the track speed
1302          * when it gets close to the target. Helps eliminate pointless tremors.
1303          */
1304         shift = dirty_ratelimit / (2 * step + 1);
1305         if (shift < BITS_PER_LONG)
1306                 step = DIV_ROUND_UP(step >> shift, 8);
1307         else
1308                 step = 0;
1309
1310         if (dirty_ratelimit < balanced_dirty_ratelimit)
1311                 dirty_ratelimit += step;
1312         else
1313                 dirty_ratelimit -= step;
1314
1315         WRITE_ONCE(wb->dirty_ratelimit, max(dirty_ratelimit, 1UL));
1316         wb->balanced_dirty_ratelimit = balanced_dirty_ratelimit;
1317
1318         trace_bdi_dirty_ratelimit(wb, dirty_rate, task_ratelimit);
1319 }
1320
1321 static void __wb_update_bandwidth(struct dirty_throttle_control *gdtc,
1322                                   struct dirty_throttle_control *mdtc,
1323                                   bool update_ratelimit)
1324 {
1325         struct bdi_writeback *wb = gdtc->wb;
1326         unsigned long now = jiffies;
1327         unsigned long elapsed;
1328         unsigned long dirtied;
1329         unsigned long written;
1330
1331         spin_lock(&wb->list_lock);
1332
1333         /*
1334          * Lockless checks for elapsed time are racy and delayed update after
1335          * IO completion doesn't do it at all (to make sure written pages are
1336          * accounted reasonably quickly). Make sure elapsed >= 1 to avoid
1337          * division errors.
1338          */
1339         elapsed = max(now - wb->bw_time_stamp, 1UL);
1340         dirtied = percpu_counter_read(&wb->stat[WB_DIRTIED]);
1341         written = percpu_counter_read(&wb->stat[WB_WRITTEN]);
1342
1343         if (update_ratelimit) {
1344                 domain_update_dirty_limit(gdtc, now);
1345                 wb_update_dirty_ratelimit(gdtc, dirtied, elapsed);
1346
1347                 /*
1348                  * @mdtc is always NULL if !CGROUP_WRITEBACK but the
1349                  * compiler has no way to figure that out.  Help it.
1350                  */
1351                 if (IS_ENABLED(CONFIG_CGROUP_WRITEBACK) && mdtc) {
1352                         domain_update_dirty_limit(mdtc, now);
1353                         wb_update_dirty_ratelimit(mdtc, dirtied, elapsed);
1354                 }
1355         }
1356         wb_update_write_bandwidth(wb, elapsed, written);
1357
1358         wb->dirtied_stamp = dirtied;
1359         wb->written_stamp = written;
1360         WRITE_ONCE(wb->bw_time_stamp, now);
1361         spin_unlock(&wb->list_lock);
1362 }
1363
1364 void wb_update_bandwidth(struct bdi_writeback *wb)
1365 {
1366         struct dirty_throttle_control gdtc = { GDTC_INIT(wb) };
1367
1368         __wb_update_bandwidth(&gdtc, NULL, false);
1369 }
1370
1371 /* Interval after which we consider wb idle and don't estimate bandwidth */
1372 #define WB_BANDWIDTH_IDLE_JIF (HZ)
1373
1374 static void wb_bandwidth_estimate_start(struct bdi_writeback *wb)
1375 {
1376         unsigned long now = jiffies;
1377         unsigned long elapsed = now - READ_ONCE(wb->bw_time_stamp);
1378
1379         if (elapsed > WB_BANDWIDTH_IDLE_JIF &&
1380             !atomic_read(&wb->writeback_inodes)) {
1381                 spin_lock(&wb->list_lock);
1382                 wb->dirtied_stamp = wb_stat(wb, WB_DIRTIED);
1383                 wb->written_stamp = wb_stat(wb, WB_WRITTEN);
1384                 WRITE_ONCE(wb->bw_time_stamp, now);
1385                 spin_unlock(&wb->list_lock);
1386         }
1387 }
1388
1389 /*
1390  * After a task dirtied this many pages, balance_dirty_pages_ratelimited()
1391  * will look to see if it needs to start dirty throttling.
1392  *
1393  * If dirty_poll_interval is too low, big NUMA machines will call the expensive
1394  * global_zone_page_state() too often. So scale it near-sqrt to the safety margin
1395  * (the number of pages we may dirty without exceeding the dirty limits).
1396  */
1397 static unsigned long dirty_poll_interval(unsigned long dirty,
1398                                          unsigned long thresh)
1399 {
1400         if (thresh > dirty)
1401                 return 1UL << (ilog2(thresh - dirty) >> 1);
1402
1403         return 1;
1404 }
1405
1406 static unsigned long wb_max_pause(struct bdi_writeback *wb,
1407                                   unsigned long wb_dirty)
1408 {
1409         unsigned long bw = READ_ONCE(wb->avg_write_bandwidth);
1410         unsigned long t;
1411
1412         /*
1413          * Limit pause time for small memory systems. If sleeping for too long
1414          * time, a small pool of dirty/writeback pages may go empty and disk go
1415          * idle.
1416          *
1417          * 8 serves as the safety ratio.
1418          */
1419         t = wb_dirty / (1 + bw / roundup_pow_of_two(1 + HZ / 8));
1420         t++;
1421
1422         return min_t(unsigned long, t, MAX_PAUSE);
1423 }
1424
1425 static long wb_min_pause(struct bdi_writeback *wb,
1426                          long max_pause,
1427                          unsigned long task_ratelimit,
1428                          unsigned long dirty_ratelimit,
1429                          int *nr_dirtied_pause)
1430 {
1431         long hi = ilog2(READ_ONCE(wb->avg_write_bandwidth));
1432         long lo = ilog2(READ_ONCE(wb->dirty_ratelimit));
1433         long t;         /* target pause */
1434         long pause;     /* estimated next pause */
1435         int pages;      /* target nr_dirtied_pause */
1436
1437         /* target for 10ms pause on 1-dd case */
1438         t = max(1, HZ / 100);
1439
1440         /*
1441          * Scale up pause time for concurrent dirtiers in order to reduce CPU
1442          * overheads.
1443          *
1444          * (N * 10ms) on 2^N concurrent tasks.
1445          */
1446         if (hi > lo)
1447                 t += (hi - lo) * (10 * HZ) / 1024;
1448
1449         /*
1450          * This is a bit convoluted. We try to base the next nr_dirtied_pause
1451          * on the much more stable dirty_ratelimit. However the next pause time
1452          * will be computed based on task_ratelimit and the two rate limits may
1453          * depart considerably at some time. Especially if task_ratelimit goes
1454          * below dirty_ratelimit/2 and the target pause is max_pause, the next
1455          * pause time will be max_pause*2 _trimmed down_ to max_pause.  As a
1456          * result task_ratelimit won't be executed faithfully, which could
1457          * eventually bring down dirty_ratelimit.
1458          *
1459          * We apply two rules to fix it up:
1460          * 1) try to estimate the next pause time and if necessary, use a lower
1461          *    nr_dirtied_pause so as not to exceed max_pause. When this happens,
1462          *    nr_dirtied_pause will be "dancing" with task_ratelimit.
1463          * 2) limit the target pause time to max_pause/2, so that the normal
1464          *    small fluctuations of task_ratelimit won't trigger rule (1) and
1465          *    nr_dirtied_pause will remain as stable as dirty_ratelimit.
1466          */
1467         t = min(t, 1 + max_pause / 2);
1468         pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1469
1470         /*
1471          * Tiny nr_dirtied_pause is found to hurt I/O performance in the test
1472          * case fio-mmap-randwrite-64k, which does 16*{sync read, async write}.
1473          * When the 16 consecutive reads are often interrupted by some dirty
1474          * throttling pause during the async writes, cfq will go into idles
1475          * (deadline is fine). So push nr_dirtied_pause as high as possible
1476          * until reaches DIRTY_POLL_THRESH=32 pages.
1477          */
1478         if (pages < DIRTY_POLL_THRESH) {
1479                 t = max_pause;
1480                 pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1481                 if (pages > DIRTY_POLL_THRESH) {
1482                         pages = DIRTY_POLL_THRESH;
1483                         t = HZ * DIRTY_POLL_THRESH / dirty_ratelimit;
1484                 }
1485         }
1486
1487         pause = HZ * pages / (task_ratelimit + 1);
1488         if (pause > max_pause) {
1489                 t = max_pause;
1490                 pages = task_ratelimit * t / roundup_pow_of_two(HZ);
1491         }
1492
1493         *nr_dirtied_pause = pages;
1494         /*
1495          * The minimal pause time will normally be half the target pause time.
1496          */
1497         return pages >= DIRTY_POLL_THRESH ? 1 + t / 2 : t;
1498 }
1499
1500 static inline void wb_dirty_limits(struct dirty_throttle_control *dtc)
1501 {
1502         struct bdi_writeback *wb = dtc->wb;
1503         unsigned long wb_reclaimable;
1504
1505         /*
1506          * wb_thresh is not treated as some limiting factor as
1507          * dirty_thresh, due to reasons
1508          * - in JBOD setup, wb_thresh can fluctuate a lot
1509          * - in a system with HDD and USB key, the USB key may somehow
1510          *   go into state (wb_dirty >> wb_thresh) either because
1511          *   wb_dirty starts high, or because wb_thresh drops low.
1512          *   In this case we don't want to hard throttle the USB key
1513          *   dirtiers for 100 seconds until wb_dirty drops under
1514          *   wb_thresh. Instead the auxiliary wb control line in
1515          *   wb_position_ratio() will let the dirtier task progress
1516          *   at some rate <= (write_bw / 2) for bringing down wb_dirty.
1517          */
1518         dtc->wb_thresh = __wb_calc_thresh(dtc);
1519         dtc->wb_bg_thresh = dtc->thresh ?
1520                 div_u64((u64)dtc->wb_thresh * dtc->bg_thresh, dtc->thresh) : 0;
1521
1522         /*
1523          * In order to avoid the stacked BDI deadlock we need
1524          * to ensure we accurately count the 'dirty' pages when
1525          * the threshold is low.
1526          *
1527          * Otherwise it would be possible to get thresh+n pages
1528          * reported dirty, even though there are thresh-m pages
1529          * actually dirty; with m+n sitting in the percpu
1530          * deltas.
1531          */
1532         if (dtc->wb_thresh < 2 * wb_stat_error()) {
1533                 wb_reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE);
1534                 dtc->wb_dirty = wb_reclaimable + wb_stat_sum(wb, WB_WRITEBACK);
1535         } else {
1536                 wb_reclaimable = wb_stat(wb, WB_RECLAIMABLE);
1537                 dtc->wb_dirty = wb_reclaimable + wb_stat(wb, WB_WRITEBACK);
1538         }
1539 }
1540
1541 /*
1542  * balance_dirty_pages() must be called by processes which are generating dirty
1543  * data.  It looks at the number of dirty pages in the machine and will force
1544  * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2.
1545  * If we're over `background_thresh' then the writeback threads are woken to
1546  * perform some writeout.
1547  */
1548 static void balance_dirty_pages(struct bdi_writeback *wb,
1549                                 unsigned long pages_dirtied)
1550 {
1551         struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) };
1552         struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) };
1553         struct dirty_throttle_control * const gdtc = &gdtc_stor;
1554         struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ?
1555                                                      &mdtc_stor : NULL;
1556         struct dirty_throttle_control *sdtc;
1557         unsigned long nr_reclaimable;   /* = file_dirty */
1558         long period;
1559         long pause;
1560         long max_pause;
1561         long min_pause;
1562         int nr_dirtied_pause;
1563         bool dirty_exceeded = false;
1564         unsigned long task_ratelimit;
1565         unsigned long dirty_ratelimit;
1566         struct backing_dev_info *bdi = wb->bdi;
1567         bool strictlimit = bdi->capabilities & BDI_CAP_STRICTLIMIT;
1568         unsigned long start_time = jiffies;
1569
1570         for (;;) {
1571                 unsigned long now = jiffies;
1572                 unsigned long dirty, thresh, bg_thresh;
1573                 unsigned long m_dirty = 0;      /* stop bogus uninit warnings */
1574                 unsigned long m_thresh = 0;
1575                 unsigned long m_bg_thresh = 0;
1576
1577                 nr_reclaimable = global_node_page_state(NR_FILE_DIRTY);
1578                 gdtc->avail = global_dirtyable_memory();
1579                 gdtc->dirty = nr_reclaimable + global_node_page_state(NR_WRITEBACK);
1580
1581                 domain_dirty_limits(gdtc);
1582
1583                 if (unlikely(strictlimit)) {
1584                         wb_dirty_limits(gdtc);
1585
1586                         dirty = gdtc->wb_dirty;
1587                         thresh = gdtc->wb_thresh;
1588                         bg_thresh = gdtc->wb_bg_thresh;
1589                 } else {
1590                         dirty = gdtc->dirty;
1591                         thresh = gdtc->thresh;
1592                         bg_thresh = gdtc->bg_thresh;
1593                 }
1594
1595                 if (mdtc) {
1596                         unsigned long filepages, headroom, writeback;
1597
1598                         /*
1599                          * If @wb belongs to !root memcg, repeat the same
1600                          * basic calculations for the memcg domain.
1601                          */
1602                         mem_cgroup_wb_stats(wb, &filepages, &headroom,
1603                                             &mdtc->dirty, &writeback);
1604                         mdtc->dirty += writeback;
1605                         mdtc_calc_avail(mdtc, filepages, headroom);
1606
1607                         domain_dirty_limits(mdtc);
1608
1609                         if (unlikely(strictlimit)) {
1610                                 wb_dirty_limits(mdtc);
1611                                 m_dirty = mdtc->wb_dirty;
1612                                 m_thresh = mdtc->wb_thresh;
1613                                 m_bg_thresh = mdtc->wb_bg_thresh;
1614                         } else {
1615                                 m_dirty = mdtc->dirty;
1616                                 m_thresh = mdtc->thresh;
1617                                 m_bg_thresh = mdtc->bg_thresh;
1618                         }
1619                 }
1620
1621                 /*
1622                  * Throttle it only when the background writeback cannot
1623                  * catch-up. This avoids (excessively) small writeouts
1624                  * when the wb limits are ramping up in case of !strictlimit.
1625                  *
1626                  * In strictlimit case make decision based on the wb counters
1627                  * and limits. Small writeouts when the wb limits are ramping
1628                  * up are the price we consciously pay for strictlimit-ing.
1629                  *
1630                  * If memcg domain is in effect, @dirty should be under
1631                  * both global and memcg freerun ceilings.
1632                  */
1633                 if (dirty <= dirty_freerun_ceiling(thresh, bg_thresh) &&
1634                     (!mdtc ||
1635                      m_dirty <= dirty_freerun_ceiling(m_thresh, m_bg_thresh))) {
1636                         unsigned long intv;
1637                         unsigned long m_intv;
1638
1639 free_running:
1640                         intv = dirty_poll_interval(dirty, thresh);
1641                         m_intv = ULONG_MAX;
1642
1643                         current->dirty_paused_when = now;
1644                         current->nr_dirtied = 0;
1645                         if (mdtc)
1646                                 m_intv = dirty_poll_interval(m_dirty, m_thresh);
1647                         current->nr_dirtied_pause = min(intv, m_intv);
1648                         break;
1649                 }
1650
1651                 if (unlikely(!writeback_in_progress(wb)))
1652                         wb_start_background_writeback(wb);
1653
1654                 mem_cgroup_flush_foreign(wb);
1655
1656                 /*
1657                  * Calculate global domain's pos_ratio and select the
1658                  * global dtc by default.
1659                  */
1660                 if (!strictlimit) {
1661                         wb_dirty_limits(gdtc);
1662
1663                         if ((current->flags & PF_LOCAL_THROTTLE) &&
1664                             gdtc->wb_dirty <
1665                             dirty_freerun_ceiling(gdtc->wb_thresh,
1666                                                   gdtc->wb_bg_thresh))
1667                                 /*
1668                                  * LOCAL_THROTTLE tasks must not be throttled
1669                                  * when below the per-wb freerun ceiling.
1670                                  */
1671                                 goto free_running;
1672                 }
1673
1674                 dirty_exceeded = (gdtc->wb_dirty > gdtc->wb_thresh) &&
1675                         ((gdtc->dirty > gdtc->thresh) || strictlimit);
1676
1677                 wb_position_ratio(gdtc);
1678                 sdtc = gdtc;
1679
1680                 if (mdtc) {
1681                         /*
1682                          * If memcg domain is in effect, calculate its
1683                          * pos_ratio.  @wb should satisfy constraints from
1684                          * both global and memcg domains.  Choose the one
1685                          * w/ lower pos_ratio.
1686                          */
1687                         if (!strictlimit) {
1688                                 wb_dirty_limits(mdtc);
1689
1690                                 if ((current->flags & PF_LOCAL_THROTTLE) &&
1691                                     mdtc->wb_dirty <
1692                                     dirty_freerun_ceiling(mdtc->wb_thresh,
1693                                                           mdtc->wb_bg_thresh))
1694                                         /*
1695                                          * LOCAL_THROTTLE tasks must not be
1696                                          * throttled when below the per-wb
1697                                          * freerun ceiling.
1698                                          */
1699                                         goto free_running;
1700                         }
1701                         dirty_exceeded |= (mdtc->wb_dirty > mdtc->wb_thresh) &&
1702                                 ((mdtc->dirty > mdtc->thresh) || strictlimit);
1703
1704                         wb_position_ratio(mdtc);
1705                         if (mdtc->pos_ratio < gdtc->pos_ratio)
1706                                 sdtc = mdtc;
1707                 }
1708
1709                 if (dirty_exceeded && !wb->dirty_exceeded)
1710                         wb->dirty_exceeded = 1;
1711
1712                 if (time_is_before_jiffies(READ_ONCE(wb->bw_time_stamp) +
1713                                            BANDWIDTH_INTERVAL))
1714                         __wb_update_bandwidth(gdtc, mdtc, true);
1715
1716                 /* throttle according to the chosen dtc */
1717                 dirty_ratelimit = READ_ONCE(wb->dirty_ratelimit);
1718                 task_ratelimit = ((u64)dirty_ratelimit * sdtc->pos_ratio) >>
1719                                                         RATELIMIT_CALC_SHIFT;
1720                 max_pause = wb_max_pause(wb, sdtc->wb_dirty);
1721                 min_pause = wb_min_pause(wb, max_pause,
1722                                          task_ratelimit, dirty_ratelimit,
1723                                          &nr_dirtied_pause);
1724
1725                 if (unlikely(task_ratelimit == 0)) {
1726                         period = max_pause;
1727                         pause = max_pause;
1728                         goto pause;
1729                 }
1730                 period = HZ * pages_dirtied / task_ratelimit;
1731                 pause = period;
1732                 if (current->dirty_paused_when)
1733                         pause -= now - current->dirty_paused_when;
1734                 /*
1735                  * For less than 1s think time (ext3/4 may block the dirtier
1736                  * for up to 800ms from time to time on 1-HDD; so does xfs,
1737                  * however at much less frequency), try to compensate it in
1738                  * future periods by updating the virtual time; otherwise just
1739                  * do a reset, as it may be a light dirtier.
1740                  */
1741                 if (pause < min_pause) {
1742                         trace_balance_dirty_pages(wb,
1743                                                   sdtc->thresh,
1744                                                   sdtc->bg_thresh,
1745                                                   sdtc->dirty,
1746                                                   sdtc->wb_thresh,
1747                                                   sdtc->wb_dirty,
1748                                                   dirty_ratelimit,
1749                                                   task_ratelimit,
1750                                                   pages_dirtied,
1751                                                   period,
1752                                                   min(pause, 0L),
1753                                                   start_time);
1754                         if (pause < -HZ) {
1755                                 current->dirty_paused_when = now;
1756                                 current->nr_dirtied = 0;
1757                         } else if (period) {
1758                                 current->dirty_paused_when += period;
1759                                 current->nr_dirtied = 0;
1760                         } else if (current->nr_dirtied_pause <= pages_dirtied)
1761                                 current->nr_dirtied_pause += pages_dirtied;
1762                         break;
1763                 }
1764                 if (unlikely(pause > max_pause)) {
1765                         /* for occasional dropped task_ratelimit */
1766                         now += min(pause - max_pause, max_pause);
1767                         pause = max_pause;
1768                 }
1769
1770 pause:
1771                 trace_balance_dirty_pages(wb,
1772                                           sdtc->thresh,
1773                                           sdtc->bg_thresh,
1774                                           sdtc->dirty,
1775                                           sdtc->wb_thresh,
1776                                           sdtc->wb_dirty,
1777                                           dirty_ratelimit,
1778                                           task_ratelimit,
1779                                           pages_dirtied,
1780                                           period,
1781                                           pause,
1782                                           start_time);
1783                 __set_current_state(TASK_KILLABLE);
1784                 wb->dirty_sleep = now;
1785                 io_schedule_timeout(pause);
1786
1787                 current->dirty_paused_when = now + pause;
1788                 current->nr_dirtied = 0;
1789                 current->nr_dirtied_pause = nr_dirtied_pause;
1790
1791                 /*
1792                  * This is typically equal to (dirty < thresh) and can also
1793                  * keep "1000+ dd on a slow USB stick" under control.
1794                  */
1795                 if (task_ratelimit)
1796                         break;
1797
1798                 /*
1799                  * In the case of an unresponsive NFS server and the NFS dirty
1800                  * pages exceeds dirty_thresh, give the other good wb's a pipe
1801                  * to go through, so that tasks on them still remain responsive.
1802                  *
1803                  * In theory 1 page is enough to keep the consumer-producer
1804                  * pipe going: the flusher cleans 1 page => the task dirties 1
1805                  * more page. However wb_dirty has accounting errors.  So use
1806                  * the larger and more IO friendly wb_stat_error.
1807                  */
1808                 if (sdtc->wb_dirty <= wb_stat_error())
1809                         break;
1810
1811                 if (fatal_signal_pending(current))
1812                         break;
1813         }
1814
1815         if (!dirty_exceeded && wb->dirty_exceeded)
1816                 wb->dirty_exceeded = 0;
1817
1818         if (writeback_in_progress(wb))
1819                 return;
1820
1821         /*
1822          * In laptop mode, we wait until hitting the higher threshold before
1823          * starting background writeout, and then write out all the way down
1824          * to the lower threshold.  So slow writers cause minimal disk activity.
1825          *
1826          * In normal mode, we start background writeout at the lower
1827          * background_thresh, to keep the amount of dirty memory low.
1828          */
1829         if (laptop_mode)
1830                 return;
1831
1832         if (nr_reclaimable > gdtc->bg_thresh)
1833                 wb_start_background_writeback(wb);
1834 }
1835
1836 static DEFINE_PER_CPU(int, bdp_ratelimits);
1837
1838 /*
1839  * Normal tasks are throttled by
1840  *      loop {
1841  *              dirty tsk->nr_dirtied_pause pages;
1842  *              take a snap in balance_dirty_pages();
1843  *      }
1844  * However there is a worst case. If every task exit immediately when dirtied
1845  * (tsk->nr_dirtied_pause - 1) pages, balance_dirty_pages() will never be
1846  * called to throttle the page dirties. The solution is to save the not yet
1847  * throttled page dirties in dirty_throttle_leaks on task exit and charge them
1848  * randomly into the running tasks. This works well for the above worst case,
1849  * as the new task will pick up and accumulate the old task's leaked dirty
1850  * count and eventually get throttled.
1851  */
1852 DEFINE_PER_CPU(int, dirty_throttle_leaks) = 0;
1853
1854 /**
1855  * balance_dirty_pages_ratelimited - balance dirty memory state
1856  * @mapping: address_space which was dirtied
1857  *
1858  * Processes which are dirtying memory should call in here once for each page
1859  * which was newly dirtied.  The function will periodically check the system's
1860  * dirty state and will initiate writeback if needed.
1861  *
1862  * Once we're over the dirty memory limit we decrease the ratelimiting
1863  * by a lot, to prevent individual processes from overshooting the limit
1864  * by (ratelimit_pages) each.
1865  */
1866 void balance_dirty_pages_ratelimited(struct address_space *mapping)
1867 {
1868         struct inode *inode = mapping->host;
1869         struct backing_dev_info *bdi = inode_to_bdi(inode);
1870         struct bdi_writeback *wb = NULL;
1871         int ratelimit;
1872         int *p;
1873
1874         if (!(bdi->capabilities & BDI_CAP_WRITEBACK))
1875                 return;
1876
1877         if (inode_cgwb_enabled(inode))
1878                 wb = wb_get_create_current(bdi, GFP_KERNEL);
1879         if (!wb)
1880                 wb = &bdi->wb;
1881
1882         ratelimit = current->nr_dirtied_pause;
1883         if (wb->dirty_exceeded)
1884                 ratelimit = min(ratelimit, 32 >> (PAGE_SHIFT - 10));
1885
1886         preempt_disable();
1887         /*
1888          * This prevents one CPU to accumulate too many dirtied pages without
1889          * calling into balance_dirty_pages(), which can happen when there are
1890          * 1000+ tasks, all of them start dirtying pages at exactly the same
1891          * time, hence all honoured too large initial task->nr_dirtied_pause.
1892          */
1893         p =  this_cpu_ptr(&bdp_ratelimits);
1894         if (unlikely(current->nr_dirtied >= ratelimit))
1895                 *p = 0;
1896         else if (unlikely(*p >= ratelimit_pages)) {
1897                 *p = 0;
1898                 ratelimit = 0;
1899         }
1900         /*
1901          * Pick up the dirtied pages by the exited tasks. This avoids lots of
1902          * short-lived tasks (eg. gcc invocations in a kernel build) escaping
1903          * the dirty throttling and livelock other long-run dirtiers.
1904          */
1905         p = this_cpu_ptr(&dirty_throttle_leaks);
1906         if (*p > 0 && current->nr_dirtied < ratelimit) {
1907                 unsigned long nr_pages_dirtied;
1908                 nr_pages_dirtied = min(*p, ratelimit - current->nr_dirtied);
1909                 *p -= nr_pages_dirtied;
1910                 current->nr_dirtied += nr_pages_dirtied;
1911         }
1912         preempt_enable();
1913
1914         if (unlikely(current->nr_dirtied >= ratelimit))
1915                 balance_dirty_pages(wb, current->nr_dirtied);
1916
1917         wb_put(wb);
1918 }
1919 EXPORT_SYMBOL(balance_dirty_pages_ratelimited);
1920
1921 /**
1922  * wb_over_bg_thresh - does @wb need to be written back?
1923  * @wb: bdi_writeback of interest
1924  *
1925  * Determines whether background writeback should keep writing @wb or it's
1926  * clean enough.
1927  *
1928  * Return: %true if writeback should continue.
1929  */
1930 bool wb_over_bg_thresh(struct bdi_writeback *wb)
1931 {
1932         struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) };
1933         struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) };
1934         struct dirty_throttle_control * const gdtc = &gdtc_stor;
1935         struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ?
1936                                                      &mdtc_stor : NULL;
1937         unsigned long reclaimable;
1938         unsigned long thresh;
1939
1940         /*
1941          * Similar to balance_dirty_pages() but ignores pages being written
1942          * as we're trying to decide whether to put more under writeback.
1943          */
1944         gdtc->avail = global_dirtyable_memory();
1945         gdtc->dirty = global_node_page_state(NR_FILE_DIRTY);
1946         domain_dirty_limits(gdtc);
1947
1948         if (gdtc->dirty > gdtc->bg_thresh)
1949                 return true;
1950
1951         thresh = wb_calc_thresh(gdtc->wb, gdtc->bg_thresh);
1952         if (thresh < 2 * wb_stat_error())
1953                 reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE);
1954         else
1955                 reclaimable = wb_stat(wb, WB_RECLAIMABLE);
1956
1957         if (reclaimable > thresh)
1958                 return true;
1959
1960         if (mdtc) {
1961                 unsigned long filepages, headroom, writeback;
1962
1963                 mem_cgroup_wb_stats(wb, &filepages, &headroom, &mdtc->dirty,
1964                                     &writeback);
1965                 mdtc_calc_avail(mdtc, filepages, headroom);
1966                 domain_dirty_limits(mdtc);      /* ditto, ignore writeback */
1967
1968                 if (mdtc->dirty > mdtc->bg_thresh)
1969                         return true;
1970
1971                 thresh = wb_calc_thresh(mdtc->wb, mdtc->bg_thresh);
1972                 if (thresh < 2 * wb_stat_error())
1973                         reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE);
1974                 else
1975                         reclaimable = wb_stat(wb, WB_RECLAIMABLE);
1976
1977                 if (reclaimable > thresh)
1978                         return true;
1979         }
1980
1981         return false;
1982 }
1983
1984 /*
1985  * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
1986  */
1987 int dirty_writeback_centisecs_handler(struct ctl_table *table, int write,
1988                 void *buffer, size_t *length, loff_t *ppos)
1989 {
1990         unsigned int old_interval = dirty_writeback_interval;
1991         int ret;
1992
1993         ret = proc_dointvec(table, write, buffer, length, ppos);
1994
1995         /*
1996          * Writing 0 to dirty_writeback_interval will disable periodic writeback
1997          * and a different non-zero value will wakeup the writeback threads.
1998          * wb_wakeup_delayed() would be more appropriate, but it's a pain to
1999          * iterate over all bdis and wbs.
2000          * The reason we do this is to make the change take effect immediately.
2001          */
2002         if (!ret && write && dirty_writeback_interval &&
2003                 dirty_writeback_interval != old_interval)
2004                 wakeup_flusher_threads(WB_REASON_PERIODIC);
2005
2006         return ret;
2007 }
2008
2009 void laptop_mode_timer_fn(struct timer_list *t)
2010 {
2011         struct backing_dev_info *backing_dev_info =
2012                 from_timer(backing_dev_info, t, laptop_mode_wb_timer);
2013
2014         wakeup_flusher_threads_bdi(backing_dev_info, WB_REASON_LAPTOP_TIMER);
2015 }
2016
2017 /*
2018  * We've spun up the disk and we're in laptop mode: schedule writeback
2019  * of all dirty data a few seconds from now.  If the flush is already scheduled
2020  * then push it back - the user is still using the disk.
2021  */
2022 void laptop_io_completion(struct backing_dev_info *info)
2023 {
2024         mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode);
2025 }
2026
2027 /*
2028  * We're in laptop mode and we've just synced. The sync's writes will have
2029  * caused another writeback to be scheduled by laptop_io_completion.
2030  * Nothing needs to be written back anymore, so we unschedule the writeback.
2031  */
2032 void laptop_sync_completion(void)
2033 {
2034         struct backing_dev_info *bdi;
2035
2036         rcu_read_lock();
2037
2038         list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
2039                 del_timer(&bdi->laptop_mode_wb_timer);
2040
2041         rcu_read_unlock();
2042 }
2043
2044 /*
2045  * If ratelimit_pages is too high then we can get into dirty-data overload
2046  * if a large number of processes all perform writes at the same time.
2047  *
2048  * Here we set ratelimit_pages to a level which ensures that when all CPUs are
2049  * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
2050  * thresholds.
2051  */
2052
2053 void writeback_set_ratelimit(void)
2054 {
2055         struct wb_domain *dom = &global_wb_domain;
2056         unsigned long background_thresh;
2057         unsigned long dirty_thresh;
2058
2059         global_dirty_limits(&background_thresh, &dirty_thresh);
2060         dom->dirty_limit = dirty_thresh;
2061         ratelimit_pages = dirty_thresh / (num_online_cpus() * 32);
2062         if (ratelimit_pages < 16)
2063                 ratelimit_pages = 16;
2064 }
2065
2066 static int page_writeback_cpu_online(unsigned int cpu)
2067 {
2068         writeback_set_ratelimit();
2069         return 0;
2070 }
2071
2072 /*
2073  * Called early on to tune the page writeback dirty limits.
2074  *
2075  * We used to scale dirty pages according to how total memory
2076  * related to pages that could be allocated for buffers.
2077  *
2078  * However, that was when we used "dirty_ratio" to scale with
2079  * all memory, and we don't do that any more. "dirty_ratio"
2080  * is now applied to total non-HIGHPAGE memory, and as such we can't
2081  * get into the old insane situation any more where we had
2082  * large amounts of dirty pages compared to a small amount of
2083  * non-HIGHMEM memory.
2084  *
2085  * But we might still want to scale the dirty_ratio by how
2086  * much memory the box has..
2087  */
2088 void __init page_writeback_init(void)
2089 {
2090         BUG_ON(wb_domain_init(&global_wb_domain, GFP_KERNEL));
2091
2092         cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "mm/writeback:online",
2093                           page_writeback_cpu_online, NULL);
2094         cpuhp_setup_state(CPUHP_MM_WRITEBACK_DEAD, "mm/writeback:dead", NULL,
2095                           page_writeback_cpu_online);
2096 }
2097
2098 /**
2099  * tag_pages_for_writeback - tag pages to be written by write_cache_pages
2100  * @mapping: address space structure to write
2101  * @start: starting page index
2102  * @end: ending page index (inclusive)
2103  *
2104  * This function scans the page range from @start to @end (inclusive) and tags
2105  * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is
2106  * that write_cache_pages (or whoever calls this function) will then use
2107  * TOWRITE tag to identify pages eligible for writeback.  This mechanism is
2108  * used to avoid livelocking of writeback by a process steadily creating new
2109  * dirty pages in the file (thus it is important for this function to be quick
2110  * so that it can tag pages faster than a dirtying process can create them).
2111  */
2112 void tag_pages_for_writeback(struct address_space *mapping,
2113                              pgoff_t start, pgoff_t end)
2114 {
2115         XA_STATE(xas, &mapping->i_pages, start);
2116         unsigned int tagged = 0;
2117         void *page;
2118
2119         xas_lock_irq(&xas);
2120         xas_for_each_marked(&xas, page, end, PAGECACHE_TAG_DIRTY) {
2121                 xas_set_mark(&xas, PAGECACHE_TAG_TOWRITE);
2122                 if (++tagged % XA_CHECK_SCHED)
2123                         continue;
2124
2125                 xas_pause(&xas);
2126                 xas_unlock_irq(&xas);
2127                 cond_resched();
2128                 xas_lock_irq(&xas);
2129         }
2130         xas_unlock_irq(&xas);
2131 }
2132 EXPORT_SYMBOL(tag_pages_for_writeback);
2133
2134 /**
2135  * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
2136  * @mapping: address space structure to write
2137  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2138  * @writepage: function called for each page
2139  * @data: data passed to writepage function
2140  *
2141  * If a page is already under I/O, write_cache_pages() skips it, even
2142  * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
2143  * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
2144  * and msync() need to guarantee that all the data which was dirty at the time
2145  * the call was made get new I/O started against them.  If wbc->sync_mode is
2146  * WB_SYNC_ALL then we were called for data integrity and we must wait for
2147  * existing IO to complete.
2148  *
2149  * To avoid livelocks (when other process dirties new pages), we first tag
2150  * pages which should be written back with TOWRITE tag and only then start
2151  * writing them. For data-integrity sync we have to be careful so that we do
2152  * not miss some pages (e.g., because some other process has cleared TOWRITE
2153  * tag we set). The rule we follow is that TOWRITE tag can be cleared only
2154  * by the process clearing the DIRTY tag (and submitting the page for IO).
2155  *
2156  * To avoid deadlocks between range_cyclic writeback and callers that hold
2157  * pages in PageWriteback to aggregate IO until write_cache_pages() returns,
2158  * we do not loop back to the start of the file. Doing so causes a page
2159  * lock/page writeback access order inversion - we should only ever lock
2160  * multiple pages in ascending page->index order, and looping back to the start
2161  * of the file violates that rule and causes deadlocks.
2162  *
2163  * Return: %0 on success, negative error code otherwise
2164  */
2165 int write_cache_pages(struct address_space *mapping,
2166                       struct writeback_control *wbc, writepage_t writepage,
2167                       void *data)
2168 {
2169         int ret = 0;
2170         int done = 0;
2171         int error;
2172         struct pagevec pvec;
2173         int nr_pages;
2174         pgoff_t index;
2175         pgoff_t end;            /* Inclusive */
2176         pgoff_t done_index;
2177         int range_whole = 0;
2178         xa_mark_t tag;
2179
2180         pagevec_init(&pvec);
2181         if (wbc->range_cyclic) {
2182                 index = mapping->writeback_index; /* prev offset */
2183                 end = -1;
2184         } else {
2185                 index = wbc->range_start >> PAGE_SHIFT;
2186                 end = wbc->range_end >> PAGE_SHIFT;
2187                 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2188                         range_whole = 1;
2189         }
2190         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) {
2191                 tag_pages_for_writeback(mapping, index, end);
2192                 tag = PAGECACHE_TAG_TOWRITE;
2193         } else {
2194                 tag = PAGECACHE_TAG_DIRTY;
2195         }
2196         done_index = index;
2197         while (!done && (index <= end)) {
2198                 int i;
2199
2200                 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
2201                                 tag);
2202                 if (nr_pages == 0)
2203                         break;
2204
2205                 for (i = 0; i < nr_pages; i++) {
2206                         struct page *page = pvec.pages[i];
2207
2208                         done_index = page->index;
2209
2210                         lock_page(page);
2211
2212                         /*
2213                          * Page truncated or invalidated. We can freely skip it
2214                          * then, even for data integrity operations: the page
2215                          * has disappeared concurrently, so there could be no
2216                          * real expectation of this data integrity operation
2217                          * even if there is now a new, dirty page at the same
2218                          * pagecache address.
2219                          */
2220                         if (unlikely(page->mapping != mapping)) {
2221 continue_unlock:
2222                                 unlock_page(page);
2223                                 continue;
2224                         }
2225
2226                         if (!PageDirty(page)) {
2227                                 /* someone wrote it for us */
2228                                 goto continue_unlock;
2229                         }
2230
2231                         if (PageWriteback(page)) {
2232                                 if (wbc->sync_mode != WB_SYNC_NONE)
2233                                         wait_on_page_writeback(page);
2234                                 else
2235                                         goto continue_unlock;
2236                         }
2237
2238                         BUG_ON(PageWriteback(page));
2239                         if (!clear_page_dirty_for_io(page))
2240                                 goto continue_unlock;
2241
2242                         trace_wbc_writepage(wbc, inode_to_bdi(mapping->host));
2243                         error = (*writepage)(page, wbc, data);
2244                         if (unlikely(error)) {
2245                                 /*
2246                                  * Handle errors according to the type of
2247                                  * writeback. There's no need to continue for
2248                                  * background writeback. Just push done_index
2249                                  * past this page so media errors won't choke
2250                                  * writeout for the entire file. For integrity
2251                                  * writeback, we must process the entire dirty
2252                                  * set regardless of errors because the fs may
2253                                  * still have state to clear for each page. In
2254                                  * that case we continue processing and return
2255                                  * the first error.
2256                                  */
2257                                 if (error == AOP_WRITEPAGE_ACTIVATE) {
2258                                         unlock_page(page);
2259                                         error = 0;
2260                                 } else if (wbc->sync_mode != WB_SYNC_ALL) {
2261                                         ret = error;
2262                                         done_index = page->index + 1;
2263                                         done = 1;
2264                                         break;
2265                                 }
2266                                 if (!ret)
2267                                         ret = error;
2268                         }
2269
2270                         /*
2271                          * We stop writing back only if we are not doing
2272                          * integrity sync. In case of integrity sync we have to
2273                          * keep going until we have written all the pages
2274                          * we tagged for writeback prior to entering this loop.
2275                          */
2276                         if (--wbc->nr_to_write <= 0 &&
2277                             wbc->sync_mode == WB_SYNC_NONE) {
2278                                 done = 1;
2279                                 break;
2280                         }
2281                 }
2282                 pagevec_release(&pvec);
2283                 cond_resched();
2284         }
2285
2286         /*
2287          * If we hit the last page and there is more work to be done: wrap
2288          * back the index back to the start of the file for the next
2289          * time we are called.
2290          */
2291         if (wbc->range_cyclic && !done)
2292                 done_index = 0;
2293         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2294                 mapping->writeback_index = done_index;
2295
2296         return ret;
2297 }
2298 EXPORT_SYMBOL(write_cache_pages);
2299
2300 /*
2301  * Function used by generic_writepages to call the real writepage
2302  * function and set the mapping flags on error
2303  */
2304 static int __writepage(struct page *page, struct writeback_control *wbc,
2305                        void *data)
2306 {
2307         struct address_space *mapping = data;
2308         int ret = mapping->a_ops->writepage(page, wbc);
2309         mapping_set_error(mapping, ret);
2310         return ret;
2311 }
2312
2313 /**
2314  * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
2315  * @mapping: address space structure to write
2316  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2317  *
2318  * This is a library function, which implements the writepages()
2319  * address_space_operation.
2320  *
2321  * Return: %0 on success, negative error code otherwise
2322  */
2323 int generic_writepages(struct address_space *mapping,
2324                        struct writeback_control *wbc)
2325 {
2326         struct blk_plug plug;
2327         int ret;
2328
2329         /* deal with chardevs and other special file */
2330         if (!mapping->a_ops->writepage)
2331                 return 0;
2332
2333         blk_start_plug(&plug);
2334         ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2335         blk_finish_plug(&plug);
2336         return ret;
2337 }
2338
2339 EXPORT_SYMBOL(generic_writepages);
2340
2341 int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
2342 {
2343         int ret;
2344         struct bdi_writeback *wb;
2345
2346         if (wbc->nr_to_write <= 0)
2347                 return 0;
2348         wb = inode_to_wb_wbc(mapping->host, wbc);
2349         wb_bandwidth_estimate_start(wb);
2350         while (1) {
2351                 if (mapping->a_ops->writepages)
2352                         ret = mapping->a_ops->writepages(mapping, wbc);
2353                 else
2354                         ret = generic_writepages(mapping, wbc);
2355                 if ((ret != -ENOMEM) || (wbc->sync_mode != WB_SYNC_ALL))
2356                         break;
2357
2358                 /*
2359                  * Lacking an allocation context or the locality or writeback
2360                  * state of any of the inode's pages, throttle based on
2361                  * writeback activity on the local node. It's as good a
2362                  * guess as any.
2363                  */
2364                 reclaim_throttle(NODE_DATA(numa_node_id()),
2365                         VMSCAN_THROTTLE_WRITEBACK);
2366         }
2367         /*
2368          * Usually few pages are written by now from those we've just submitted
2369          * but if there's constant writeback being submitted, this makes sure
2370          * writeback bandwidth is updated once in a while.
2371          */
2372         if (time_is_before_jiffies(READ_ONCE(wb->bw_time_stamp) +
2373                                    BANDWIDTH_INTERVAL))
2374                 wb_update_bandwidth(wb);
2375         return ret;
2376 }
2377
2378 /**
2379  * folio_write_one - write out a single folio and wait on I/O.
2380  * @folio: The folio to write.
2381  *
2382  * The folio must be locked by the caller and will be unlocked upon return.
2383  *
2384  * Note that the mapping's AS_EIO/AS_ENOSPC flags will be cleared when this
2385  * function returns.
2386  *
2387  * Return: %0 on success, negative error code otherwise
2388  */
2389 int folio_write_one(struct folio *folio)
2390 {
2391         struct address_space *mapping = folio->mapping;
2392         int ret = 0;
2393         struct writeback_control wbc = {
2394                 .sync_mode = WB_SYNC_ALL,
2395                 .nr_to_write = folio_nr_pages(folio),
2396         };
2397
2398         BUG_ON(!folio_test_locked(folio));
2399
2400         folio_wait_writeback(folio);
2401
2402         if (folio_clear_dirty_for_io(folio)) {
2403                 folio_get(folio);
2404                 ret = mapping->a_ops->writepage(&folio->page, &wbc);
2405                 if (ret == 0)
2406                         folio_wait_writeback(folio);
2407                 folio_put(folio);
2408         } else {
2409                 folio_unlock(folio);
2410         }
2411
2412         if (!ret)
2413                 ret = filemap_check_errors(mapping);
2414         return ret;
2415 }
2416 EXPORT_SYMBOL(folio_write_one);
2417
2418 /*
2419  * For address_spaces which do not use buffers nor write back.
2420  */
2421 bool noop_dirty_folio(struct address_space *mapping, struct folio *folio)
2422 {
2423         if (!folio_test_dirty(folio))
2424                 return !folio_test_set_dirty(folio);
2425         return false;
2426 }
2427 EXPORT_SYMBOL(noop_dirty_folio);
2428
2429 /*
2430  * Helper function for set_page_dirty family.
2431  *
2432  * Caller must hold lock_page_memcg().
2433  *
2434  * NOTE: This relies on being atomic wrt interrupts.
2435  */
2436 static void folio_account_dirtied(struct folio *folio,
2437                 struct address_space *mapping)
2438 {
2439         struct inode *inode = mapping->host;
2440
2441         trace_writeback_dirty_folio(folio, mapping);
2442
2443         if (mapping_can_writeback(mapping)) {
2444                 struct bdi_writeback *wb;
2445                 long nr = folio_nr_pages(folio);
2446
2447                 inode_attach_wb(inode, &folio->page);
2448                 wb = inode_to_wb(inode);
2449
2450                 __lruvec_stat_mod_folio(folio, NR_FILE_DIRTY, nr);
2451                 __zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, nr);
2452                 __node_stat_mod_folio(folio, NR_DIRTIED, nr);
2453                 wb_stat_mod(wb, WB_RECLAIMABLE, nr);
2454                 wb_stat_mod(wb, WB_DIRTIED, nr);
2455                 task_io_account_write(nr * PAGE_SIZE);
2456                 current->nr_dirtied += nr;
2457                 __this_cpu_add(bdp_ratelimits, nr);
2458
2459                 mem_cgroup_track_foreign_dirty(folio, wb);
2460         }
2461 }
2462
2463 /*
2464  * Helper function for deaccounting dirty page without writeback.
2465  *
2466  * Caller must hold lock_page_memcg().
2467  */
2468 void folio_account_cleaned(struct folio *folio, struct bdi_writeback *wb)
2469 {
2470         long nr = folio_nr_pages(folio);
2471
2472         lruvec_stat_mod_folio(folio, NR_FILE_DIRTY, -nr);
2473         zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, -nr);
2474         wb_stat_mod(wb, WB_RECLAIMABLE, -nr);
2475         task_io_account_cancelled_write(nr * PAGE_SIZE);
2476 }
2477
2478 /*
2479  * Mark the folio dirty, and set it dirty in the page cache, and mark
2480  * the inode dirty.
2481  *
2482  * If warn is true, then emit a warning if the folio is not uptodate and has
2483  * not been truncated.
2484  *
2485  * The caller must hold lock_page_memcg().  Most callers have the folio
2486  * locked.  A few have the folio blocked from truncation through other
2487  * means (eg zap_page_range() has it mapped and is holding the page table
2488  * lock).  This can also be called from mark_buffer_dirty(), which I
2489  * cannot prove is always protected against truncate.
2490  */
2491 void __folio_mark_dirty(struct folio *folio, struct address_space *mapping,
2492                              int warn)
2493 {
2494         unsigned long flags;
2495
2496         xa_lock_irqsave(&mapping->i_pages, flags);
2497         if (folio->mapping) {   /* Race with truncate? */
2498                 WARN_ON_ONCE(warn && !folio_test_uptodate(folio));
2499                 folio_account_dirtied(folio, mapping);
2500                 __xa_set_mark(&mapping->i_pages, folio_index(folio),
2501                                 PAGECACHE_TAG_DIRTY);
2502         }
2503         xa_unlock_irqrestore(&mapping->i_pages, flags);
2504 }
2505
2506 /**
2507  * filemap_dirty_folio - Mark a folio dirty for filesystems which do not use buffer_heads.
2508  * @mapping: Address space this folio belongs to.
2509  * @folio: Folio to be marked as dirty.
2510  *
2511  * Filesystems which do not use buffer heads should call this function
2512  * from their set_page_dirty address space operation.  It ignores the
2513  * contents of folio_get_private(), so if the filesystem marks individual
2514  * blocks as dirty, the filesystem should handle that itself.
2515  *
2516  * This is also sometimes used by filesystems which use buffer_heads when
2517  * a single buffer is being dirtied: we want to set the folio dirty in
2518  * that case, but not all the buffers.  This is a "bottom-up" dirtying,
2519  * whereas block_dirty_folio() is a "top-down" dirtying.
2520  *
2521  * The caller must ensure this doesn't race with truncation.  Most will
2522  * simply hold the folio lock, but e.g. zap_pte_range() calls with the
2523  * folio mapped and the pte lock held, which also locks out truncation.
2524  */
2525 bool filemap_dirty_folio(struct address_space *mapping, struct folio *folio)
2526 {
2527         folio_memcg_lock(folio);
2528         if (folio_test_set_dirty(folio)) {
2529                 folio_memcg_unlock(folio);
2530                 return false;
2531         }
2532
2533         __folio_mark_dirty(folio, mapping, !folio_test_private(folio));
2534         folio_memcg_unlock(folio);
2535
2536         if (mapping->host) {
2537                 /* !PageAnon && !swapper_space */
2538                 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
2539         }
2540         return true;
2541 }
2542 EXPORT_SYMBOL(filemap_dirty_folio);
2543
2544 /**
2545  * folio_account_redirty - Manually account for redirtying a page.
2546  * @folio: The folio which is being redirtied.
2547  *
2548  * Most filesystems should call folio_redirty_for_writepage() instead
2549  * of this fuction.  If your filesystem is doing writeback outside the
2550  * context of a writeback_control(), it can call this when redirtying
2551  * a folio, to de-account the dirty counters (NR_DIRTIED, WB_DIRTIED,
2552  * tsk->nr_dirtied), so that they match the written counters (NR_WRITTEN,
2553  * WB_WRITTEN) in long term. The mismatches will lead to systematic errors
2554  * in balanced_dirty_ratelimit and the dirty pages position control.
2555  */
2556 void folio_account_redirty(struct folio *folio)
2557 {
2558         struct address_space *mapping = folio->mapping;
2559
2560         if (mapping && mapping_can_writeback(mapping)) {
2561                 struct inode *inode = mapping->host;
2562                 struct bdi_writeback *wb;
2563                 struct wb_lock_cookie cookie = {};
2564                 long nr = folio_nr_pages(folio);
2565
2566                 wb = unlocked_inode_to_wb_begin(inode, &cookie);
2567                 current->nr_dirtied -= nr;
2568                 node_stat_mod_folio(folio, NR_DIRTIED, -nr);
2569                 wb_stat_mod(wb, WB_DIRTIED, -nr);
2570                 unlocked_inode_to_wb_end(inode, &cookie);
2571         }
2572 }
2573 EXPORT_SYMBOL(folio_account_redirty);
2574
2575 /**
2576  * folio_redirty_for_writepage - Decline to write a dirty folio.
2577  * @wbc: The writeback control.
2578  * @folio: The folio.
2579  *
2580  * When a writepage implementation decides that it doesn't want to write
2581  * @folio for some reason, it should call this function, unlock @folio and
2582  * return 0.
2583  *
2584  * Return: True if we redirtied the folio.  False if someone else dirtied
2585  * it first.
2586  */
2587 bool folio_redirty_for_writepage(struct writeback_control *wbc,
2588                 struct folio *folio)
2589 {
2590         bool ret;
2591         long nr = folio_nr_pages(folio);
2592
2593         wbc->pages_skipped += nr;
2594         ret = filemap_dirty_folio(folio->mapping, folio);
2595         folio_account_redirty(folio);
2596
2597         return ret;
2598 }
2599 EXPORT_SYMBOL(folio_redirty_for_writepage);
2600
2601 /**
2602  * folio_mark_dirty - Mark a folio as being modified.
2603  * @folio: The folio.
2604  *
2605  * For folios with a mapping this should be done with the folio lock held
2606  * for the benefit of asynchronous memory errors who prefer a consistent
2607  * dirty state. This rule can be broken in some special cases,
2608  * but should be better not to.
2609  *
2610  * Return: True if the folio was newly dirtied, false if it was already dirty.
2611  */
2612 bool folio_mark_dirty(struct folio *folio)
2613 {
2614         struct address_space *mapping = folio_mapping(folio);
2615
2616         if (likely(mapping)) {
2617                 /*
2618                  * readahead/lru_deactivate_page could remain
2619                  * PG_readahead/PG_reclaim due to race with folio_end_writeback
2620                  * About readahead, if the folio is written, the flags would be
2621                  * reset. So no problem.
2622                  * About lru_deactivate_page, if the folio is redirtied,
2623                  * the flag will be reset. So no problem. but if the
2624                  * folio is used by readahead it will confuse readahead
2625                  * and make it restart the size rampup process. But it's
2626                  * a trivial problem.
2627                  */
2628                 if (folio_test_reclaim(folio))
2629                         folio_clear_reclaim(folio);
2630                 return mapping->a_ops->dirty_folio(mapping, folio);
2631         }
2632
2633         return noop_dirty_folio(mapping, folio);
2634 }
2635 EXPORT_SYMBOL(folio_mark_dirty);
2636
2637 /*
2638  * set_page_dirty() is racy if the caller has no reference against
2639  * page->mapping->host, and if the page is unlocked.  This is because another
2640  * CPU could truncate the page off the mapping and then free the mapping.
2641  *
2642  * Usually, the page _is_ locked, or the caller is a user-space process which
2643  * holds a reference on the inode by having an open file.
2644  *
2645  * In other cases, the page should be locked before running set_page_dirty().
2646  */
2647 int set_page_dirty_lock(struct page *page)
2648 {
2649         int ret;
2650
2651         lock_page(page);
2652         ret = set_page_dirty(page);
2653         unlock_page(page);
2654         return ret;
2655 }
2656 EXPORT_SYMBOL(set_page_dirty_lock);
2657
2658 /*
2659  * This cancels just the dirty bit on the kernel page itself, it does NOT
2660  * actually remove dirty bits on any mmap's that may be around. It also
2661  * leaves the page tagged dirty, so any sync activity will still find it on
2662  * the dirty lists, and in particular, clear_page_dirty_for_io() will still
2663  * look at the dirty bits in the VM.
2664  *
2665  * Doing this should *normally* only ever be done when a page is truncated,
2666  * and is not actually mapped anywhere at all. However, fs/buffer.c does
2667  * this when it notices that somebody has cleaned out all the buffers on a
2668  * page without actually doing it through the VM. Can you say "ext3 is
2669  * horribly ugly"? Thought you could.
2670  */
2671 void __folio_cancel_dirty(struct folio *folio)
2672 {
2673         struct address_space *mapping = folio_mapping(folio);
2674
2675         if (mapping_can_writeback(mapping)) {
2676                 struct inode *inode = mapping->host;
2677                 struct bdi_writeback *wb;
2678                 struct wb_lock_cookie cookie = {};
2679
2680                 folio_memcg_lock(folio);
2681                 wb = unlocked_inode_to_wb_begin(inode, &cookie);
2682
2683                 if (folio_test_clear_dirty(folio))
2684                         folio_account_cleaned(folio, wb);
2685
2686                 unlocked_inode_to_wb_end(inode, &cookie);
2687                 folio_memcg_unlock(folio);
2688         } else {
2689                 folio_clear_dirty(folio);
2690         }
2691 }
2692 EXPORT_SYMBOL(__folio_cancel_dirty);
2693
2694 /*
2695  * Clear a folio's dirty flag, while caring for dirty memory accounting.
2696  * Returns true if the folio was previously dirty.
2697  *
2698  * This is for preparing to put the folio under writeout.  We leave
2699  * the folio tagged as dirty in the xarray so that a concurrent
2700  * write-for-sync can discover it via a PAGECACHE_TAG_DIRTY walk.
2701  * The ->writepage implementation will run either folio_start_writeback()
2702  * or folio_mark_dirty(), at which stage we bring the folio's dirty flag
2703  * and xarray dirty tag back into sync.
2704  *
2705  * This incoherency between the folio's dirty flag and xarray tag is
2706  * unfortunate, but it only exists while the folio is locked.
2707  */
2708 bool folio_clear_dirty_for_io(struct folio *folio)
2709 {
2710         struct address_space *mapping = folio_mapping(folio);
2711         bool ret = false;
2712
2713         VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
2714
2715         if (mapping && mapping_can_writeback(mapping)) {
2716                 struct inode *inode = mapping->host;
2717                 struct bdi_writeback *wb;
2718                 struct wb_lock_cookie cookie = {};
2719
2720                 /*
2721                  * Yes, Virginia, this is indeed insane.
2722                  *
2723                  * We use this sequence to make sure that
2724                  *  (a) we account for dirty stats properly
2725                  *  (b) we tell the low-level filesystem to
2726                  *      mark the whole folio dirty if it was
2727                  *      dirty in a pagetable. Only to then
2728                  *  (c) clean the folio again and return 1 to
2729                  *      cause the writeback.
2730                  *
2731                  * This way we avoid all nasty races with the
2732                  * dirty bit in multiple places and clearing
2733                  * them concurrently from different threads.
2734                  *
2735                  * Note! Normally the "folio_mark_dirty(folio)"
2736                  * has no effect on the actual dirty bit - since
2737                  * that will already usually be set. But we
2738                  * need the side effects, and it can help us
2739                  * avoid races.
2740                  *
2741                  * We basically use the folio "master dirty bit"
2742                  * as a serialization point for all the different
2743                  * threads doing their things.
2744                  */
2745                 if (folio_mkclean(folio))
2746                         folio_mark_dirty(folio);
2747                 /*
2748                  * We carefully synchronise fault handlers against
2749                  * installing a dirty pte and marking the folio dirty
2750                  * at this point.  We do this by having them hold the
2751                  * page lock while dirtying the folio, and folios are
2752                  * always locked coming in here, so we get the desired
2753                  * exclusion.
2754                  */
2755                 wb = unlocked_inode_to_wb_begin(inode, &cookie);
2756                 if (folio_test_clear_dirty(folio)) {
2757                         long nr = folio_nr_pages(folio);
2758                         lruvec_stat_mod_folio(folio, NR_FILE_DIRTY, -nr);
2759                         zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, -nr);
2760                         wb_stat_mod(wb, WB_RECLAIMABLE, -nr);
2761                         ret = true;
2762                 }
2763                 unlocked_inode_to_wb_end(inode, &cookie);
2764                 return ret;
2765         }
2766         return folio_test_clear_dirty(folio);
2767 }
2768 EXPORT_SYMBOL(folio_clear_dirty_for_io);
2769
2770 static void wb_inode_writeback_start(struct bdi_writeback *wb)
2771 {
2772         atomic_inc(&wb->writeback_inodes);
2773 }
2774
2775 static void wb_inode_writeback_end(struct bdi_writeback *wb)
2776 {
2777         atomic_dec(&wb->writeback_inodes);
2778         /*
2779          * Make sure estimate of writeback throughput gets updated after
2780          * writeback completed. We delay the update by BANDWIDTH_INTERVAL
2781          * (which is the interval other bandwidth updates use for batching) so
2782          * that if multiple inodes end writeback at a similar time, they get
2783          * batched into one bandwidth update.
2784          */
2785         queue_delayed_work(bdi_wq, &wb->bw_dwork, BANDWIDTH_INTERVAL);
2786 }
2787
2788 bool __folio_end_writeback(struct folio *folio)
2789 {
2790         long nr = folio_nr_pages(folio);
2791         struct address_space *mapping = folio_mapping(folio);
2792         bool ret;
2793
2794         folio_memcg_lock(folio);
2795         if (mapping && mapping_use_writeback_tags(mapping)) {
2796                 struct inode *inode = mapping->host;
2797                 struct backing_dev_info *bdi = inode_to_bdi(inode);
2798                 unsigned long flags;
2799
2800                 xa_lock_irqsave(&mapping->i_pages, flags);
2801                 ret = folio_test_clear_writeback(folio);
2802                 if (ret) {
2803                         __xa_clear_mark(&mapping->i_pages, folio_index(folio),
2804                                                 PAGECACHE_TAG_WRITEBACK);
2805                         if (bdi->capabilities & BDI_CAP_WRITEBACK_ACCT) {
2806                                 struct bdi_writeback *wb = inode_to_wb(inode);
2807
2808                                 wb_stat_mod(wb, WB_WRITEBACK, -nr);
2809                                 __wb_writeout_add(wb, nr);
2810                                 if (!mapping_tagged(mapping,
2811                                                     PAGECACHE_TAG_WRITEBACK))
2812                                         wb_inode_writeback_end(wb);
2813                         }
2814                 }
2815
2816                 if (mapping->host && !mapping_tagged(mapping,
2817                                                      PAGECACHE_TAG_WRITEBACK))
2818                         sb_clear_inode_writeback(mapping->host);
2819
2820                 xa_unlock_irqrestore(&mapping->i_pages, flags);
2821         } else {
2822                 ret = folio_test_clear_writeback(folio);
2823         }
2824         if (ret) {
2825                 lruvec_stat_mod_folio(folio, NR_WRITEBACK, -nr);
2826                 zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, -nr);
2827                 node_stat_mod_folio(folio, NR_WRITTEN, nr);
2828         }
2829         folio_memcg_unlock(folio);
2830         return ret;
2831 }
2832
2833 bool __folio_start_writeback(struct folio *folio, bool keep_write)
2834 {
2835         long nr = folio_nr_pages(folio);
2836         struct address_space *mapping = folio_mapping(folio);
2837         bool ret;
2838         int access_ret;
2839
2840         folio_memcg_lock(folio);
2841         if (mapping && mapping_use_writeback_tags(mapping)) {
2842                 XA_STATE(xas, &mapping->i_pages, folio_index(folio));
2843                 struct inode *inode = mapping->host;
2844                 struct backing_dev_info *bdi = inode_to_bdi(inode);
2845                 unsigned long flags;
2846
2847                 xas_lock_irqsave(&xas, flags);
2848                 xas_load(&xas);
2849                 ret = folio_test_set_writeback(folio);
2850                 if (!ret) {
2851                         bool on_wblist;
2852
2853                         on_wblist = mapping_tagged(mapping,
2854                                                    PAGECACHE_TAG_WRITEBACK);
2855
2856                         xas_set_mark(&xas, PAGECACHE_TAG_WRITEBACK);
2857                         if (bdi->capabilities & BDI_CAP_WRITEBACK_ACCT) {
2858                                 struct bdi_writeback *wb = inode_to_wb(inode);
2859
2860                                 wb_stat_mod(wb, WB_WRITEBACK, nr);
2861                                 if (!on_wblist)
2862                                         wb_inode_writeback_start(wb);
2863                         }
2864
2865                         /*
2866                          * We can come through here when swapping
2867                          * anonymous folios, so we don't necessarily
2868                          * have an inode to track for sync.
2869                          */
2870                         if (mapping->host && !on_wblist)
2871                                 sb_mark_inode_writeback(mapping->host);
2872                 }
2873                 if (!folio_test_dirty(folio))
2874                         xas_clear_mark(&xas, PAGECACHE_TAG_DIRTY);
2875                 if (!keep_write)
2876                         xas_clear_mark(&xas, PAGECACHE_TAG_TOWRITE);
2877                 xas_unlock_irqrestore(&xas, flags);
2878         } else {
2879                 ret = folio_test_set_writeback(folio);
2880         }
2881         if (!ret) {
2882                 lruvec_stat_mod_folio(folio, NR_WRITEBACK, nr);
2883                 zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, nr);
2884         }
2885         folio_memcg_unlock(folio);
2886         access_ret = arch_make_folio_accessible(folio);
2887         /*
2888          * If writeback has been triggered on a page that cannot be made
2889          * accessible, it is too late to recover here.
2890          */
2891         VM_BUG_ON_FOLIO(access_ret != 0, folio);
2892
2893         return ret;
2894 }
2895 EXPORT_SYMBOL(__folio_start_writeback);
2896
2897 /**
2898  * folio_wait_writeback - Wait for a folio to finish writeback.
2899  * @folio: The folio to wait for.
2900  *
2901  * If the folio is currently being written back to storage, wait for the
2902  * I/O to complete.
2903  *
2904  * Context: Sleeps.  Must be called in process context and with
2905  * no spinlocks held.  Caller should hold a reference on the folio.
2906  * If the folio is not locked, writeback may start again after writeback
2907  * has finished.
2908  */
2909 void folio_wait_writeback(struct folio *folio)
2910 {
2911         while (folio_test_writeback(folio)) {
2912                 trace_folio_wait_writeback(folio, folio_mapping(folio));
2913                 folio_wait_bit(folio, PG_writeback);
2914         }
2915 }
2916 EXPORT_SYMBOL_GPL(folio_wait_writeback);
2917
2918 /**
2919  * folio_wait_writeback_killable - Wait for a folio to finish writeback.
2920  * @folio: The folio to wait for.
2921  *
2922  * If the folio is currently being written back to storage, wait for the
2923  * I/O to complete or a fatal signal to arrive.
2924  *
2925  * Context: Sleeps.  Must be called in process context and with
2926  * no spinlocks held.  Caller should hold a reference on the folio.
2927  * If the folio is not locked, writeback may start again after writeback
2928  * has finished.
2929  * Return: 0 on success, -EINTR if we get a fatal signal while waiting.
2930  */
2931 int folio_wait_writeback_killable(struct folio *folio)
2932 {
2933         while (folio_test_writeback(folio)) {
2934                 trace_folio_wait_writeback(folio, folio_mapping(folio));
2935                 if (folio_wait_bit_killable(folio, PG_writeback))
2936                         return -EINTR;
2937         }
2938
2939         return 0;
2940 }
2941 EXPORT_SYMBOL_GPL(folio_wait_writeback_killable);
2942
2943 /**
2944  * folio_wait_stable() - wait for writeback to finish, if necessary.
2945  * @folio: The folio to wait on.
2946  *
2947  * This function determines if the given folio is related to a backing
2948  * device that requires folio contents to be held stable during writeback.
2949  * If so, then it will wait for any pending writeback to complete.
2950  *
2951  * Context: Sleeps.  Must be called in process context and with
2952  * no spinlocks held.  Caller should hold a reference on the folio.
2953  * If the folio is not locked, writeback may start again after writeback
2954  * has finished.
2955  */
2956 void folio_wait_stable(struct folio *folio)
2957 {
2958         if (folio_inode(folio)->i_sb->s_iflags & SB_I_STABLE_WRITES)
2959                 folio_wait_writeback(folio);
2960 }
2961 EXPORT_SYMBOL_GPL(folio_wait_stable);