OSDN Git Service

writeback: implement backing_dev_info->tot_write_bandwidth
[uclinux-h8/linux.git] / mm / page-writeback.c
1 /*
2  * mm/page-writeback.c
3  *
4  * Copyright (C) 2002, Linus Torvalds.
5  * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
6  *
7  * Contains functions related to writing back dirty pages at the
8  * address_space level.
9  *
10  * 10Apr2002    Andrew Morton
11  *              Initial version
12  */
13
14 #include <linux/kernel.h>
15 #include <linux/export.h>
16 #include <linux/spinlock.h>
17 #include <linux/fs.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/slab.h>
21 #include <linux/pagemap.h>
22 #include <linux/writeback.h>
23 #include <linux/init.h>
24 #include <linux/backing-dev.h>
25 #include <linux/task_io_accounting_ops.h>
26 #include <linux/blkdev.h>
27 #include <linux/mpage.h>
28 #include <linux/rmap.h>
29 #include <linux/percpu.h>
30 #include <linux/notifier.h>
31 #include <linux/smp.h>
32 #include <linux/sysctl.h>
33 #include <linux/cpu.h>
34 #include <linux/syscalls.h>
35 #include <linux/buffer_head.h> /* __set_page_dirty_buffers */
36 #include <linux/pagevec.h>
37 #include <linux/timer.h>
38 #include <linux/sched/rt.h>
39 #include <linux/mm_inline.h>
40 #include <trace/events/writeback.h>
41
42 #include "internal.h"
43
44 /*
45  * Sleep at most 200ms at a time in balance_dirty_pages().
46  */
47 #define MAX_PAUSE               max(HZ/5, 1)
48
49 /*
50  * Try to keep balance_dirty_pages() call intervals higher than this many pages
51  * by raising pause time to max_pause when falls below it.
52  */
53 #define DIRTY_POLL_THRESH       (128 >> (PAGE_SHIFT - 10))
54
55 /*
56  * Estimate write bandwidth at 200ms intervals.
57  */
58 #define BANDWIDTH_INTERVAL      max(HZ/5, 1)
59
60 #define RATELIMIT_CALC_SHIFT    10
61
62 /*
63  * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
64  * will look to see if it needs to force writeback or throttling.
65  */
66 static long ratelimit_pages = 32;
67
68 /* The following parameters are exported via /proc/sys/vm */
69
70 /*
71  * Start background writeback (via writeback threads) at this percentage
72  */
73 int dirty_background_ratio = 10;
74
75 /*
76  * dirty_background_bytes starts at 0 (disabled) so that it is a function of
77  * dirty_background_ratio * the amount of dirtyable memory
78  */
79 unsigned long dirty_background_bytes;
80
81 /*
82  * free highmem will not be subtracted from the total free memory
83  * for calculating free ratios if vm_highmem_is_dirtyable is true
84  */
85 int vm_highmem_is_dirtyable;
86
87 /*
88  * The generator of dirty data starts writeback at this percentage
89  */
90 int vm_dirty_ratio = 20;
91
92 /*
93  * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
94  * vm_dirty_ratio * the amount of dirtyable memory
95  */
96 unsigned long vm_dirty_bytes;
97
98 /*
99  * The interval between `kupdate'-style writebacks
100  */
101 unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
102
103 EXPORT_SYMBOL_GPL(dirty_writeback_interval);
104
105 /*
106  * The longest time for which data is allowed to remain dirty
107  */
108 unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
109
110 /*
111  * Flag that makes the machine dump writes/reads and block dirtyings.
112  */
113 int block_dump;
114
115 /*
116  * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
117  * a full sync is triggered after this time elapses without any disk activity.
118  */
119 int laptop_mode;
120
121 EXPORT_SYMBOL(laptop_mode);
122
123 /* End of sysctl-exported parameters */
124
125 unsigned long global_dirty_limit;
126
127 /*
128  * Scale the writeback cache size proportional to the relative writeout speeds.
129  *
130  * We do this by keeping a floating proportion between BDIs, based on page
131  * writeback completions [end_page_writeback()]. Those devices that write out
132  * pages fastest will get the larger share, while the slower will get a smaller
133  * share.
134  *
135  * We use page writeout completions because we are interested in getting rid of
136  * dirty pages. Having them written out is the primary goal.
137  *
138  * We introduce a concept of time, a period over which we measure these events,
139  * because demand can/will vary over time. The length of this period itself is
140  * measured in page writeback completions.
141  *
142  */
143 static struct fprop_global writeout_completions;
144
145 static void writeout_period(unsigned long t);
146 /* Timer for aging of writeout_completions */
147 static struct timer_list writeout_period_timer =
148                 TIMER_DEFERRED_INITIALIZER(writeout_period, 0, 0);
149 static unsigned long writeout_period_time = 0;
150
151 /*
152  * Length of period for aging writeout fractions of bdis. This is an
153  * arbitrarily chosen number. The longer the period, the slower fractions will
154  * reflect changes in current writeout rate.
155  */
156 #define VM_COMPLETIONS_PERIOD_LEN (3*HZ)
157
158 /*
159  * In a memory zone, there is a certain amount of pages we consider
160  * available for the page cache, which is essentially the number of
161  * free and reclaimable pages, minus some zone reserves to protect
162  * lowmem and the ability to uphold the zone's watermarks without
163  * requiring writeback.
164  *
165  * This number of dirtyable pages is the base value of which the
166  * user-configurable dirty ratio is the effictive number of pages that
167  * are allowed to be actually dirtied.  Per individual zone, or
168  * globally by using the sum of dirtyable pages over all zones.
169  *
170  * Because the user is allowed to specify the dirty limit globally as
171  * absolute number of bytes, calculating the per-zone dirty limit can
172  * require translating the configured limit into a percentage of
173  * global dirtyable memory first.
174  */
175
176 /**
177  * zone_dirtyable_memory - number of dirtyable pages in a zone
178  * @zone: the zone
179  *
180  * Returns the zone's number of pages potentially available for dirty
181  * page cache.  This is the base value for the per-zone dirty limits.
182  */
183 static unsigned long zone_dirtyable_memory(struct zone *zone)
184 {
185         unsigned long nr_pages;
186
187         nr_pages = zone_page_state(zone, NR_FREE_PAGES);
188         nr_pages -= min(nr_pages, zone->dirty_balance_reserve);
189
190         nr_pages += zone_page_state(zone, NR_INACTIVE_FILE);
191         nr_pages += zone_page_state(zone, NR_ACTIVE_FILE);
192
193         return nr_pages;
194 }
195
196 static unsigned long highmem_dirtyable_memory(unsigned long total)
197 {
198 #ifdef CONFIG_HIGHMEM
199         int node;
200         unsigned long x = 0;
201
202         for_each_node_state(node, N_HIGH_MEMORY) {
203                 struct zone *z = &NODE_DATA(node)->node_zones[ZONE_HIGHMEM];
204
205                 x += zone_dirtyable_memory(z);
206         }
207         /*
208          * Unreclaimable memory (kernel memory or anonymous memory
209          * without swap) can bring down the dirtyable pages below
210          * the zone's dirty balance reserve and the above calculation
211          * will underflow.  However we still want to add in nodes
212          * which are below threshold (negative values) to get a more
213          * accurate calculation but make sure that the total never
214          * underflows.
215          */
216         if ((long)x < 0)
217                 x = 0;
218
219         /*
220          * Make sure that the number of highmem pages is never larger
221          * than the number of the total dirtyable memory. This can only
222          * occur in very strange VM situations but we want to make sure
223          * that this does not occur.
224          */
225         return min(x, total);
226 #else
227         return 0;
228 #endif
229 }
230
231 /**
232  * global_dirtyable_memory - number of globally dirtyable pages
233  *
234  * Returns the global number of pages potentially available for dirty
235  * page cache.  This is the base value for the global dirty limits.
236  */
237 static unsigned long global_dirtyable_memory(void)
238 {
239         unsigned long x;
240
241         x = global_page_state(NR_FREE_PAGES);
242         x -= min(x, dirty_balance_reserve);
243
244         x += global_page_state(NR_INACTIVE_FILE);
245         x += global_page_state(NR_ACTIVE_FILE);
246
247         if (!vm_highmem_is_dirtyable)
248                 x -= highmem_dirtyable_memory(x);
249
250         return x + 1;   /* Ensure that we never return 0 */
251 }
252
253 /*
254  * global_dirty_limits - background-writeback and dirty-throttling thresholds
255  *
256  * Calculate the dirty thresholds based on sysctl parameters
257  * - vm.dirty_background_ratio  or  vm.dirty_background_bytes
258  * - vm.dirty_ratio             or  vm.dirty_bytes
259  * The dirty limits will be lifted by 1/4 for PF_LESS_THROTTLE (ie. nfsd) and
260  * real-time tasks.
261  */
262 void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty)
263 {
264         const unsigned long available_memory = global_dirtyable_memory();
265         unsigned long background;
266         unsigned long dirty;
267         struct task_struct *tsk;
268
269         if (vm_dirty_bytes)
270                 dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE);
271         else
272                 dirty = (vm_dirty_ratio * available_memory) / 100;
273
274         if (dirty_background_bytes)
275                 background = DIV_ROUND_UP(dirty_background_bytes, PAGE_SIZE);
276         else
277                 background = (dirty_background_ratio * available_memory) / 100;
278
279         if (background >= dirty)
280                 background = dirty / 2;
281         tsk = current;
282         if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
283                 background += background / 4;
284                 dirty += dirty / 4;
285         }
286         *pbackground = background;
287         *pdirty = dirty;
288         trace_global_dirty_state(background, dirty);
289 }
290
291 /**
292  * zone_dirty_limit - maximum number of dirty pages allowed in a zone
293  * @zone: the zone
294  *
295  * Returns the maximum number of dirty pages allowed in a zone, based
296  * on the zone's dirtyable memory.
297  */
298 static unsigned long zone_dirty_limit(struct zone *zone)
299 {
300         unsigned long zone_memory = zone_dirtyable_memory(zone);
301         struct task_struct *tsk = current;
302         unsigned long dirty;
303
304         if (vm_dirty_bytes)
305                 dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) *
306                         zone_memory / global_dirtyable_memory();
307         else
308                 dirty = vm_dirty_ratio * zone_memory / 100;
309
310         if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk))
311                 dirty += dirty / 4;
312
313         return dirty;
314 }
315
316 /**
317  * zone_dirty_ok - tells whether a zone is within its dirty limits
318  * @zone: the zone to check
319  *
320  * Returns %true when the dirty pages in @zone are within the zone's
321  * dirty limit, %false if the limit is exceeded.
322  */
323 bool zone_dirty_ok(struct zone *zone)
324 {
325         unsigned long limit = zone_dirty_limit(zone);
326
327         return zone_page_state(zone, NR_FILE_DIRTY) +
328                zone_page_state(zone, NR_UNSTABLE_NFS) +
329                zone_page_state(zone, NR_WRITEBACK) <= limit;
330 }
331
332 int dirty_background_ratio_handler(struct ctl_table *table, int write,
333                 void __user *buffer, size_t *lenp,
334                 loff_t *ppos)
335 {
336         int ret;
337
338         ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
339         if (ret == 0 && write)
340                 dirty_background_bytes = 0;
341         return ret;
342 }
343
344 int dirty_background_bytes_handler(struct ctl_table *table, int write,
345                 void __user *buffer, size_t *lenp,
346                 loff_t *ppos)
347 {
348         int ret;
349
350         ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
351         if (ret == 0 && write)
352                 dirty_background_ratio = 0;
353         return ret;
354 }
355
356 int dirty_ratio_handler(struct ctl_table *table, int write,
357                 void __user *buffer, size_t *lenp,
358                 loff_t *ppos)
359 {
360         int old_ratio = vm_dirty_ratio;
361         int ret;
362
363         ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
364         if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
365                 writeback_set_ratelimit();
366                 vm_dirty_bytes = 0;
367         }
368         return ret;
369 }
370
371 int dirty_bytes_handler(struct ctl_table *table, int write,
372                 void __user *buffer, size_t *lenp,
373                 loff_t *ppos)
374 {
375         unsigned long old_bytes = vm_dirty_bytes;
376         int ret;
377
378         ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
379         if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
380                 writeback_set_ratelimit();
381                 vm_dirty_ratio = 0;
382         }
383         return ret;
384 }
385
386 static unsigned long wp_next_time(unsigned long cur_time)
387 {
388         cur_time += VM_COMPLETIONS_PERIOD_LEN;
389         /* 0 has a special meaning... */
390         if (!cur_time)
391                 return 1;
392         return cur_time;
393 }
394
395 /*
396  * Increment the BDI's writeout completion count and the global writeout
397  * completion count. Called from test_clear_page_writeback().
398  */
399 static inline void __wb_writeout_inc(struct bdi_writeback *wb)
400 {
401         __inc_wb_stat(wb, WB_WRITTEN);
402         __fprop_inc_percpu_max(&writeout_completions, &wb->completions,
403                                wb->bdi->max_prop_frac);
404         /* First event after period switching was turned off? */
405         if (!unlikely(writeout_period_time)) {
406                 /*
407                  * We can race with other __bdi_writeout_inc calls here but
408                  * it does not cause any harm since the resulting time when
409                  * timer will fire and what is in writeout_period_time will be
410                  * roughly the same.
411                  */
412                 writeout_period_time = wp_next_time(jiffies);
413                 mod_timer(&writeout_period_timer, writeout_period_time);
414         }
415 }
416
417 void wb_writeout_inc(struct bdi_writeback *wb)
418 {
419         unsigned long flags;
420
421         local_irq_save(flags);
422         __wb_writeout_inc(wb);
423         local_irq_restore(flags);
424 }
425 EXPORT_SYMBOL_GPL(wb_writeout_inc);
426
427 /*
428  * Obtain an accurate fraction of the BDI's portion.
429  */
430 static void wb_writeout_fraction(struct bdi_writeback *wb,
431                                  long *numerator, long *denominator)
432 {
433         fprop_fraction_percpu(&writeout_completions, &wb->completions,
434                                 numerator, denominator);
435 }
436
437 /*
438  * On idle system, we can be called long after we scheduled because we use
439  * deferred timers so count with missed periods.
440  */
441 static void writeout_period(unsigned long t)
442 {
443         int miss_periods = (jiffies - writeout_period_time) /
444                                                  VM_COMPLETIONS_PERIOD_LEN;
445
446         if (fprop_new_period(&writeout_completions, miss_periods + 1)) {
447                 writeout_period_time = wp_next_time(writeout_period_time +
448                                 miss_periods * VM_COMPLETIONS_PERIOD_LEN);
449                 mod_timer(&writeout_period_timer, writeout_period_time);
450         } else {
451                 /*
452                  * Aging has zeroed all fractions. Stop wasting CPU on period
453                  * updates.
454                  */
455                 writeout_period_time = 0;
456         }
457 }
458
459 /*
460  * bdi_min_ratio keeps the sum of the minimum dirty shares of all
461  * registered backing devices, which, for obvious reasons, can not
462  * exceed 100%.
463  */
464 static unsigned int bdi_min_ratio;
465
466 int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
467 {
468         int ret = 0;
469
470         spin_lock_bh(&bdi_lock);
471         if (min_ratio > bdi->max_ratio) {
472                 ret = -EINVAL;
473         } else {
474                 min_ratio -= bdi->min_ratio;
475                 if (bdi_min_ratio + min_ratio < 100) {
476                         bdi_min_ratio += min_ratio;
477                         bdi->min_ratio += min_ratio;
478                 } else {
479                         ret = -EINVAL;
480                 }
481         }
482         spin_unlock_bh(&bdi_lock);
483
484         return ret;
485 }
486
487 int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio)
488 {
489         int ret = 0;
490
491         if (max_ratio > 100)
492                 return -EINVAL;
493
494         spin_lock_bh(&bdi_lock);
495         if (bdi->min_ratio > max_ratio) {
496                 ret = -EINVAL;
497         } else {
498                 bdi->max_ratio = max_ratio;
499                 bdi->max_prop_frac = (FPROP_FRAC_BASE * max_ratio) / 100;
500         }
501         spin_unlock_bh(&bdi_lock);
502
503         return ret;
504 }
505 EXPORT_SYMBOL(bdi_set_max_ratio);
506
507 static unsigned long dirty_freerun_ceiling(unsigned long thresh,
508                                            unsigned long bg_thresh)
509 {
510         return (thresh + bg_thresh) / 2;
511 }
512
513 static unsigned long hard_dirty_limit(unsigned long thresh)
514 {
515         return max(thresh, global_dirty_limit);
516 }
517
518 /**
519  * wb_dirty_limit - @wb's share of dirty throttling threshold
520  * @wb: bdi_writeback to query
521  * @dirty: global dirty limit in pages
522  *
523  * Returns @wb's dirty limit in pages. The term "dirty" in the context of
524  * dirty balancing includes all PG_dirty, PG_writeback and NFS unstable pages.
525  *
526  * Note that balance_dirty_pages() will only seriously take it as a hard limit
527  * when sleeping max_pause per page is not enough to keep the dirty pages under
528  * control. For example, when the device is completely stalled due to some error
529  * conditions, or when there are 1000 dd tasks writing to a slow 10MB/s USB key.
530  * In the other normal situations, it acts more gently by throttling the tasks
531  * more (rather than completely block them) when the wb dirty pages go high.
532  *
533  * It allocates high/low dirty limits to fast/slow devices, in order to prevent
534  * - starving fast devices
535  * - piling up dirty pages (that will take long time to sync) on slow devices
536  *
537  * The wb's share of dirty limit will be adapting to its throughput and
538  * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set.
539  */
540 unsigned long wb_dirty_limit(struct bdi_writeback *wb, unsigned long dirty)
541 {
542         struct backing_dev_info *bdi = wb->bdi;
543         u64 wb_dirty;
544         long numerator, denominator;
545
546         /*
547          * Calculate this BDI's share of the dirty ratio.
548          */
549         wb_writeout_fraction(wb, &numerator, &denominator);
550
551         wb_dirty = (dirty * (100 - bdi_min_ratio)) / 100;
552         wb_dirty *= numerator;
553         do_div(wb_dirty, denominator);
554
555         wb_dirty += (dirty * bdi->min_ratio) / 100;
556         if (wb_dirty > (dirty * bdi->max_ratio) / 100)
557                 wb_dirty = dirty * bdi->max_ratio / 100;
558
559         return wb_dirty;
560 }
561
562 /*
563  *                           setpoint - dirty 3
564  *        f(dirty) := 1.0 + (----------------)
565  *                           limit - setpoint
566  *
567  * it's a 3rd order polynomial that subjects to
568  *
569  * (1) f(freerun)  = 2.0 => rampup dirty_ratelimit reasonably fast
570  * (2) f(setpoint) = 1.0 => the balance point
571  * (3) f(limit)    = 0   => the hard limit
572  * (4) df/dx      <= 0   => negative feedback control
573  * (5) the closer to setpoint, the smaller |df/dx| (and the reverse)
574  *     => fast response on large errors; small oscillation near setpoint
575  */
576 static long long pos_ratio_polynom(unsigned long setpoint,
577                                           unsigned long dirty,
578                                           unsigned long limit)
579 {
580         long long pos_ratio;
581         long x;
582
583         x = div64_s64(((s64)setpoint - (s64)dirty) << RATELIMIT_CALC_SHIFT,
584                     limit - setpoint + 1);
585         pos_ratio = x;
586         pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
587         pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
588         pos_ratio += 1 << RATELIMIT_CALC_SHIFT;
589
590         return clamp(pos_ratio, 0LL, 2LL << RATELIMIT_CALC_SHIFT);
591 }
592
593 /*
594  * Dirty position control.
595  *
596  * (o) global/bdi setpoints
597  *
598  * We want the dirty pages be balanced around the global/wb setpoints.
599  * When the number of dirty pages is higher/lower than the setpoint, the
600  * dirty position control ratio (and hence task dirty ratelimit) will be
601  * decreased/increased to bring the dirty pages back to the setpoint.
602  *
603  *     pos_ratio = 1 << RATELIMIT_CALC_SHIFT
604  *
605  *     if (dirty < setpoint) scale up   pos_ratio
606  *     if (dirty > setpoint) scale down pos_ratio
607  *
608  *     if (wb_dirty < wb_setpoint) scale up   pos_ratio
609  *     if (wb_dirty > wb_setpoint) scale down pos_ratio
610  *
611  *     task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT
612  *
613  * (o) global control line
614  *
615  *     ^ pos_ratio
616  *     |
617  *     |            |<===== global dirty control scope ======>|
618  * 2.0 .............*
619  *     |            .*
620  *     |            . *
621  *     |            .   *
622  *     |            .     *
623  *     |            .        *
624  *     |            .            *
625  * 1.0 ................................*
626  *     |            .                  .     *
627  *     |            .                  .          *
628  *     |            .                  .              *
629  *     |            .                  .                 *
630  *     |            .                  .                    *
631  *   0 +------------.------------------.----------------------*------------->
632  *           freerun^          setpoint^                 limit^   dirty pages
633  *
634  * (o) wb control line
635  *
636  *     ^ pos_ratio
637  *     |
638  *     |            *
639  *     |              *
640  *     |                *
641  *     |                  *
642  *     |                    * |<=========== span ============>|
643  * 1.0 .......................*
644  *     |                      . *
645  *     |                      .   *
646  *     |                      .     *
647  *     |                      .       *
648  *     |                      .         *
649  *     |                      .           *
650  *     |                      .             *
651  *     |                      .               *
652  *     |                      .                 *
653  *     |                      .                   *
654  *     |                      .                     *
655  * 1/4 ...............................................* * * * * * * * * * * *
656  *     |                      .                         .
657  *     |                      .                           .
658  *     |                      .                             .
659  *   0 +----------------------.-------------------------------.------------->
660  *                wb_setpoint^                    x_intercept^
661  *
662  * The wb control line won't drop below pos_ratio=1/4, so that wb_dirty can
663  * be smoothly throttled down to normal if it starts high in situations like
664  * - start writing to a slow SD card and a fast disk at the same time. The SD
665  *   card's wb_dirty may rush to many times higher than wb_setpoint.
666  * - the wb dirty thresh drops quickly due to change of JBOD workload
667  */
668 static unsigned long wb_position_ratio(struct bdi_writeback *wb,
669                                        unsigned long thresh,
670                                        unsigned long bg_thresh,
671                                        unsigned long dirty,
672                                        unsigned long wb_thresh,
673                                        unsigned long wb_dirty)
674 {
675         unsigned long write_bw = wb->avg_write_bandwidth;
676         unsigned long freerun = dirty_freerun_ceiling(thresh, bg_thresh);
677         unsigned long limit = hard_dirty_limit(thresh);
678         unsigned long x_intercept;
679         unsigned long setpoint;         /* dirty pages' target balance point */
680         unsigned long wb_setpoint;
681         unsigned long span;
682         long long pos_ratio;            /* for scaling up/down the rate limit */
683         long x;
684
685         if (unlikely(dirty >= limit))
686                 return 0;
687
688         /*
689          * global setpoint
690          *
691          * See comment for pos_ratio_polynom().
692          */
693         setpoint = (freerun + limit) / 2;
694         pos_ratio = pos_ratio_polynom(setpoint, dirty, limit);
695
696         /*
697          * The strictlimit feature is a tool preventing mistrusted filesystems
698          * from growing a large number of dirty pages before throttling. For
699          * such filesystems balance_dirty_pages always checks wb counters
700          * against wb limits. Even if global "nr_dirty" is under "freerun".
701          * This is especially important for fuse which sets bdi->max_ratio to
702          * 1% by default. Without strictlimit feature, fuse writeback may
703          * consume arbitrary amount of RAM because it is accounted in
704          * NR_WRITEBACK_TEMP which is not involved in calculating "nr_dirty".
705          *
706          * Here, in wb_position_ratio(), we calculate pos_ratio based on
707          * two values: wb_dirty and wb_thresh. Let's consider an example:
708          * total amount of RAM is 16GB, bdi->max_ratio is equal to 1%, global
709          * limits are set by default to 10% and 20% (background and throttle).
710          * Then wb_thresh is 1% of 20% of 16GB. This amounts to ~8K pages.
711          * wb_dirty_limit(wb, bg_thresh) is about ~4K pages. wb_setpoint is
712          * about ~6K pages (as the average of background and throttle wb
713          * limits). The 3rd order polynomial will provide positive feedback if
714          * wb_dirty is under wb_setpoint and vice versa.
715          *
716          * Note, that we cannot use global counters in these calculations
717          * because we want to throttle process writing to a strictlimit wb
718          * much earlier than global "freerun" is reached (~23MB vs. ~2.3GB
719          * in the example above).
720          */
721         if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
722                 long long wb_pos_ratio;
723                 unsigned long wb_bg_thresh;
724
725                 if (wb_dirty < 8)
726                         return min_t(long long, pos_ratio * 2,
727                                      2 << RATELIMIT_CALC_SHIFT);
728
729                 if (wb_dirty >= wb_thresh)
730                         return 0;
731
732                 wb_bg_thresh = div_u64((u64)wb_thresh * bg_thresh, thresh);
733                 wb_setpoint = dirty_freerun_ceiling(wb_thresh, wb_bg_thresh);
734
735                 if (wb_setpoint == 0 || wb_setpoint == wb_thresh)
736                         return 0;
737
738                 wb_pos_ratio = pos_ratio_polynom(wb_setpoint, wb_dirty,
739                                                  wb_thresh);
740
741                 /*
742                  * Typically, for strictlimit case, wb_setpoint << setpoint
743                  * and pos_ratio >> wb_pos_ratio. In the other words global
744                  * state ("dirty") is not limiting factor and we have to
745                  * make decision based on wb counters. But there is an
746                  * important case when global pos_ratio should get precedence:
747                  * global limits are exceeded (e.g. due to activities on other
748                  * wb's) while given strictlimit wb is below limit.
749                  *
750                  * "pos_ratio * wb_pos_ratio" would work for the case above,
751                  * but it would look too non-natural for the case of all
752                  * activity in the system coming from a single strictlimit wb
753                  * with bdi->max_ratio == 100%.
754                  *
755                  * Note that min() below somewhat changes the dynamics of the
756                  * control system. Normally, pos_ratio value can be well over 3
757                  * (when globally we are at freerun and wb is well below wb
758                  * setpoint). Now the maximum pos_ratio in the same situation
759                  * is 2. We might want to tweak this if we observe the control
760                  * system is too slow to adapt.
761                  */
762                 return min(pos_ratio, wb_pos_ratio);
763         }
764
765         /*
766          * We have computed basic pos_ratio above based on global situation. If
767          * the wb is over/under its share of dirty pages, we want to scale
768          * pos_ratio further down/up. That is done by the following mechanism.
769          */
770
771         /*
772          * wb setpoint
773          *
774          *        f(wb_dirty) := 1.0 + k * (wb_dirty - wb_setpoint)
775          *
776          *                        x_intercept - wb_dirty
777          *                     := --------------------------
778          *                        x_intercept - wb_setpoint
779          *
780          * The main wb control line is a linear function that subjects to
781          *
782          * (1) f(wb_setpoint) = 1.0
783          * (2) k = - 1 / (8 * write_bw)  (in single wb case)
784          *     or equally: x_intercept = wb_setpoint + 8 * write_bw
785          *
786          * For single wb case, the dirty pages are observed to fluctuate
787          * regularly within range
788          *        [wb_setpoint - write_bw/2, wb_setpoint + write_bw/2]
789          * for various filesystems, where (2) can yield in a reasonable 12.5%
790          * fluctuation range for pos_ratio.
791          *
792          * For JBOD case, wb_thresh (not wb_dirty!) could fluctuate up to its
793          * own size, so move the slope over accordingly and choose a slope that
794          * yields 100% pos_ratio fluctuation on suddenly doubled wb_thresh.
795          */
796         if (unlikely(wb_thresh > thresh))
797                 wb_thresh = thresh;
798         /*
799          * It's very possible that wb_thresh is close to 0 not because the
800          * device is slow, but that it has remained inactive for long time.
801          * Honour such devices a reasonable good (hopefully IO efficient)
802          * threshold, so that the occasional writes won't be blocked and active
803          * writes can rampup the threshold quickly.
804          */
805         wb_thresh = max(wb_thresh, (limit - dirty) / 8);
806         /*
807          * scale global setpoint to wb's:
808          *      wb_setpoint = setpoint * wb_thresh / thresh
809          */
810         x = div_u64((u64)wb_thresh << 16, thresh + 1);
811         wb_setpoint = setpoint * (u64)x >> 16;
812         /*
813          * Use span=(8*write_bw) in single wb case as indicated by
814          * (thresh - wb_thresh ~= 0) and transit to wb_thresh in JBOD case.
815          *
816          *        wb_thresh                    thresh - wb_thresh
817          * span = --------- * (8 * write_bw) + ------------------ * wb_thresh
818          *         thresh                           thresh
819          */
820         span = (thresh - wb_thresh + 8 * write_bw) * (u64)x >> 16;
821         x_intercept = wb_setpoint + span;
822
823         if (wb_dirty < x_intercept - span / 4) {
824                 pos_ratio = div64_u64(pos_ratio * (x_intercept - wb_dirty),
825                                     x_intercept - wb_setpoint + 1);
826         } else
827                 pos_ratio /= 4;
828
829         /*
830          * wb reserve area, safeguard against dirty pool underrun and disk idle
831          * It may push the desired control point of global dirty pages higher
832          * than setpoint.
833          */
834         x_intercept = wb_thresh / 2;
835         if (wb_dirty < x_intercept) {
836                 if (wb_dirty > x_intercept / 8)
837                         pos_ratio = div_u64(pos_ratio * x_intercept, wb_dirty);
838                 else
839                         pos_ratio *= 8;
840         }
841
842         return pos_ratio;
843 }
844
845 static void wb_update_write_bandwidth(struct bdi_writeback *wb,
846                                       unsigned long elapsed,
847                                       unsigned long written)
848 {
849         const unsigned long period = roundup_pow_of_two(3 * HZ);
850         unsigned long avg = wb->avg_write_bandwidth;
851         unsigned long old = wb->write_bandwidth;
852         u64 bw;
853
854         /*
855          * bw = written * HZ / elapsed
856          *
857          *                   bw * elapsed + write_bandwidth * (period - elapsed)
858          * write_bandwidth = ---------------------------------------------------
859          *                                          period
860          *
861          * @written may have decreased due to account_page_redirty().
862          * Avoid underflowing @bw calculation.
863          */
864         bw = written - min(written, wb->written_stamp);
865         bw *= HZ;
866         if (unlikely(elapsed > period)) {
867                 do_div(bw, elapsed);
868                 avg = bw;
869                 goto out;
870         }
871         bw += (u64)wb->write_bandwidth * (period - elapsed);
872         bw >>= ilog2(period);
873
874         /*
875          * one more level of smoothing, for filtering out sudden spikes
876          */
877         if (avg > old && old >= (unsigned long)bw)
878                 avg -= (avg - old) >> 3;
879
880         if (avg < old && old <= (unsigned long)bw)
881                 avg += (old - avg) >> 3;
882
883 out:
884         if (wb_has_dirty_io(wb))
885                 atomic_long_add(avg - wb->avg_write_bandwidth,
886                                 &wb->bdi->tot_write_bandwidth);
887         wb->write_bandwidth = bw;
888         wb->avg_write_bandwidth = avg;
889 }
890
891 /*
892  * The global dirtyable memory and dirty threshold could be suddenly knocked
893  * down by a large amount (eg. on the startup of KVM in a swapless system).
894  * This may throw the system into deep dirty exceeded state and throttle
895  * heavy/light dirtiers alike. To retain good responsiveness, maintain
896  * global_dirty_limit for tracking slowly down to the knocked down dirty
897  * threshold.
898  */
899 static void update_dirty_limit(unsigned long thresh, unsigned long dirty)
900 {
901         unsigned long limit = global_dirty_limit;
902
903         /*
904          * Follow up in one step.
905          */
906         if (limit < thresh) {
907                 limit = thresh;
908                 goto update;
909         }
910
911         /*
912          * Follow down slowly. Use the higher one as the target, because thresh
913          * may drop below dirty. This is exactly the reason to introduce
914          * global_dirty_limit which is guaranteed to lie above the dirty pages.
915          */
916         thresh = max(thresh, dirty);
917         if (limit > thresh) {
918                 limit -= (limit - thresh) >> 5;
919                 goto update;
920         }
921         return;
922 update:
923         global_dirty_limit = limit;
924 }
925
926 static void global_update_bandwidth(unsigned long thresh,
927                                     unsigned long dirty,
928                                     unsigned long now)
929 {
930         static DEFINE_SPINLOCK(dirty_lock);
931         static unsigned long update_time = INITIAL_JIFFIES;
932
933         /*
934          * check locklessly first to optimize away locking for the most time
935          */
936         if (time_before(now, update_time + BANDWIDTH_INTERVAL))
937                 return;
938
939         spin_lock(&dirty_lock);
940         if (time_after_eq(now, update_time + BANDWIDTH_INTERVAL)) {
941                 update_dirty_limit(thresh, dirty);
942                 update_time = now;
943         }
944         spin_unlock(&dirty_lock);
945 }
946
947 /*
948  * Maintain wb->dirty_ratelimit, the base dirty throttle rate.
949  *
950  * Normal wb tasks will be curbed at or below it in long term.
951  * Obviously it should be around (write_bw / N) when there are N dd tasks.
952  */
953 static void wb_update_dirty_ratelimit(struct bdi_writeback *wb,
954                                       unsigned long thresh,
955                                       unsigned long bg_thresh,
956                                       unsigned long dirty,
957                                       unsigned long wb_thresh,
958                                       unsigned long wb_dirty,
959                                       unsigned long dirtied,
960                                       unsigned long elapsed)
961 {
962         unsigned long freerun = dirty_freerun_ceiling(thresh, bg_thresh);
963         unsigned long limit = hard_dirty_limit(thresh);
964         unsigned long setpoint = (freerun + limit) / 2;
965         unsigned long write_bw = wb->avg_write_bandwidth;
966         unsigned long dirty_ratelimit = wb->dirty_ratelimit;
967         unsigned long dirty_rate;
968         unsigned long task_ratelimit;
969         unsigned long balanced_dirty_ratelimit;
970         unsigned long pos_ratio;
971         unsigned long step;
972         unsigned long x;
973
974         /*
975          * The dirty rate will match the writeout rate in long term, except
976          * when dirty pages are truncated by userspace or re-dirtied by FS.
977          */
978         dirty_rate = (dirtied - wb->dirtied_stamp) * HZ / elapsed;
979
980         pos_ratio = wb_position_ratio(wb, thresh, bg_thresh, dirty,
981                                       wb_thresh, wb_dirty);
982         /*
983          * task_ratelimit reflects each dd's dirty rate for the past 200ms.
984          */
985         task_ratelimit = (u64)dirty_ratelimit *
986                                         pos_ratio >> RATELIMIT_CALC_SHIFT;
987         task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */
988
989         /*
990          * A linear estimation of the "balanced" throttle rate. The theory is,
991          * if there are N dd tasks, each throttled at task_ratelimit, the wb's
992          * dirty_rate will be measured to be (N * task_ratelimit). So the below
993          * formula will yield the balanced rate limit (write_bw / N).
994          *
995          * Note that the expanded form is not a pure rate feedback:
996          *      rate_(i+1) = rate_(i) * (write_bw / dirty_rate)              (1)
997          * but also takes pos_ratio into account:
998          *      rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio  (2)
999          *
1000          * (1) is not realistic because pos_ratio also takes part in balancing
1001          * the dirty rate.  Consider the state
1002          *      pos_ratio = 0.5                                              (3)
1003          *      rate = 2 * (write_bw / N)                                    (4)
1004          * If (1) is used, it will stuck in that state! Because each dd will
1005          * be throttled at
1006          *      task_ratelimit = pos_ratio * rate = (write_bw / N)           (5)
1007          * yielding
1008          *      dirty_rate = N * task_ratelimit = write_bw                   (6)
1009          * put (6) into (1) we get
1010          *      rate_(i+1) = rate_(i)                                        (7)
1011          *
1012          * So we end up using (2) to always keep
1013          *      rate_(i+1) ~= (write_bw / N)                                 (8)
1014          * regardless of the value of pos_ratio. As long as (8) is satisfied,
1015          * pos_ratio is able to drive itself to 1.0, which is not only where
1016          * the dirty count meet the setpoint, but also where the slope of
1017          * pos_ratio is most flat and hence task_ratelimit is least fluctuated.
1018          */
1019         balanced_dirty_ratelimit = div_u64((u64)task_ratelimit * write_bw,
1020                                            dirty_rate | 1);
1021         /*
1022          * balanced_dirty_ratelimit ~= (write_bw / N) <= write_bw
1023          */
1024         if (unlikely(balanced_dirty_ratelimit > write_bw))
1025                 balanced_dirty_ratelimit = write_bw;
1026
1027         /*
1028          * We could safely do this and return immediately:
1029          *
1030          *      wb->dirty_ratelimit = balanced_dirty_ratelimit;
1031          *
1032          * However to get a more stable dirty_ratelimit, the below elaborated
1033          * code makes use of task_ratelimit to filter out singular points and
1034          * limit the step size.
1035          *
1036          * The below code essentially only uses the relative value of
1037          *
1038          *      task_ratelimit - dirty_ratelimit
1039          *      = (pos_ratio - 1) * dirty_ratelimit
1040          *
1041          * which reflects the direction and size of dirty position error.
1042          */
1043
1044         /*
1045          * dirty_ratelimit will follow balanced_dirty_ratelimit iff
1046          * task_ratelimit is on the same side of dirty_ratelimit, too.
1047          * For example, when
1048          * - dirty_ratelimit > balanced_dirty_ratelimit
1049          * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint)
1050          * lowering dirty_ratelimit will help meet both the position and rate
1051          * control targets. Otherwise, don't update dirty_ratelimit if it will
1052          * only help meet the rate target. After all, what the users ultimately
1053          * feel and care are stable dirty rate and small position error.
1054          *
1055          * |task_ratelimit - dirty_ratelimit| is used to limit the step size
1056          * and filter out the singular points of balanced_dirty_ratelimit. Which
1057          * keeps jumping around randomly and can even leap far away at times
1058          * due to the small 200ms estimation period of dirty_rate (we want to
1059          * keep that period small to reduce time lags).
1060          */
1061         step = 0;
1062
1063         /*
1064          * For strictlimit case, calculations above were based on wb counters
1065          * and limits (starting from pos_ratio = wb_position_ratio() and up to
1066          * balanced_dirty_ratelimit = task_ratelimit * write_bw / dirty_rate).
1067          * Hence, to calculate "step" properly, we have to use wb_dirty as
1068          * "dirty" and wb_setpoint as "setpoint".
1069          *
1070          * We rampup dirty_ratelimit forcibly if wb_dirty is low because
1071          * it's possible that wb_thresh is close to zero due to inactivity
1072          * of backing device (see the implementation of wb_dirty_limit()).
1073          */
1074         if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
1075                 dirty = wb_dirty;
1076                 if (wb_dirty < 8)
1077                         setpoint = wb_dirty + 1;
1078                 else
1079                         setpoint = (wb_thresh +
1080                                     wb_dirty_limit(wb, bg_thresh)) / 2;
1081         }
1082
1083         if (dirty < setpoint) {
1084                 x = min3(wb->balanced_dirty_ratelimit,
1085                          balanced_dirty_ratelimit, task_ratelimit);
1086                 if (dirty_ratelimit < x)
1087                         step = x - dirty_ratelimit;
1088         } else {
1089                 x = max3(wb->balanced_dirty_ratelimit,
1090                          balanced_dirty_ratelimit, task_ratelimit);
1091                 if (dirty_ratelimit > x)
1092                         step = dirty_ratelimit - x;
1093         }
1094
1095         /*
1096          * Don't pursue 100% rate matching. It's impossible since the balanced
1097          * rate itself is constantly fluctuating. So decrease the track speed
1098          * when it gets close to the target. Helps eliminate pointless tremors.
1099          */
1100         step >>= dirty_ratelimit / (2 * step + 1);
1101         /*
1102          * Limit the tracking speed to avoid overshooting.
1103          */
1104         step = (step + 7) / 8;
1105
1106         if (dirty_ratelimit < balanced_dirty_ratelimit)
1107                 dirty_ratelimit += step;
1108         else
1109                 dirty_ratelimit -= step;
1110
1111         wb->dirty_ratelimit = max(dirty_ratelimit, 1UL);
1112         wb->balanced_dirty_ratelimit = balanced_dirty_ratelimit;
1113
1114         trace_bdi_dirty_ratelimit(wb->bdi, dirty_rate, task_ratelimit);
1115 }
1116
1117 void __wb_update_bandwidth(struct bdi_writeback *wb,
1118                            unsigned long thresh,
1119                            unsigned long bg_thresh,
1120                            unsigned long dirty,
1121                            unsigned long wb_thresh,
1122                            unsigned long wb_dirty,
1123                            unsigned long start_time)
1124 {
1125         unsigned long now = jiffies;
1126         unsigned long elapsed = now - wb->bw_time_stamp;
1127         unsigned long dirtied;
1128         unsigned long written;
1129
1130         /*
1131          * rate-limit, only update once every 200ms.
1132          */
1133         if (elapsed < BANDWIDTH_INTERVAL)
1134                 return;
1135
1136         dirtied = percpu_counter_read(&wb->stat[WB_DIRTIED]);
1137         written = percpu_counter_read(&wb->stat[WB_WRITTEN]);
1138
1139         /*
1140          * Skip quiet periods when disk bandwidth is under-utilized.
1141          * (at least 1s idle time between two flusher runs)
1142          */
1143         if (elapsed > HZ && time_before(wb->bw_time_stamp, start_time))
1144                 goto snapshot;
1145
1146         if (thresh) {
1147                 global_update_bandwidth(thresh, dirty, now);
1148                 wb_update_dirty_ratelimit(wb, thresh, bg_thresh, dirty,
1149                                           wb_thresh, wb_dirty,
1150                                           dirtied, elapsed);
1151         }
1152         wb_update_write_bandwidth(wb, elapsed, written);
1153
1154 snapshot:
1155         wb->dirtied_stamp = dirtied;
1156         wb->written_stamp = written;
1157         wb->bw_time_stamp = now;
1158 }
1159
1160 static void wb_update_bandwidth(struct bdi_writeback *wb,
1161                                 unsigned long thresh,
1162                                 unsigned long bg_thresh,
1163                                 unsigned long dirty,
1164                                 unsigned long wb_thresh,
1165                                 unsigned long wb_dirty,
1166                                 unsigned long start_time)
1167 {
1168         if (time_is_after_eq_jiffies(wb->bw_time_stamp + BANDWIDTH_INTERVAL))
1169                 return;
1170         spin_lock(&wb->list_lock);
1171         __wb_update_bandwidth(wb, thresh, bg_thresh, dirty,
1172                               wb_thresh, wb_dirty, start_time);
1173         spin_unlock(&wb->list_lock);
1174 }
1175
1176 /*
1177  * After a task dirtied this many pages, balance_dirty_pages_ratelimited()
1178  * will look to see if it needs to start dirty throttling.
1179  *
1180  * If dirty_poll_interval is too low, big NUMA machines will call the expensive
1181  * global_page_state() too often. So scale it near-sqrt to the safety margin
1182  * (the number of pages we may dirty without exceeding the dirty limits).
1183  */
1184 static unsigned long dirty_poll_interval(unsigned long dirty,
1185                                          unsigned long thresh)
1186 {
1187         if (thresh > dirty)
1188                 return 1UL << (ilog2(thresh - dirty) >> 1);
1189
1190         return 1;
1191 }
1192
1193 static unsigned long wb_max_pause(struct bdi_writeback *wb,
1194                                   unsigned long wb_dirty)
1195 {
1196         unsigned long bw = wb->avg_write_bandwidth;
1197         unsigned long t;
1198
1199         /*
1200          * Limit pause time for small memory systems. If sleeping for too long
1201          * time, a small pool of dirty/writeback pages may go empty and disk go
1202          * idle.
1203          *
1204          * 8 serves as the safety ratio.
1205          */
1206         t = wb_dirty / (1 + bw / roundup_pow_of_two(1 + HZ / 8));
1207         t++;
1208
1209         return min_t(unsigned long, t, MAX_PAUSE);
1210 }
1211
1212 static long wb_min_pause(struct bdi_writeback *wb,
1213                          long max_pause,
1214                          unsigned long task_ratelimit,
1215                          unsigned long dirty_ratelimit,
1216                          int *nr_dirtied_pause)
1217 {
1218         long hi = ilog2(wb->avg_write_bandwidth);
1219         long lo = ilog2(wb->dirty_ratelimit);
1220         long t;         /* target pause */
1221         long pause;     /* estimated next pause */
1222         int pages;      /* target nr_dirtied_pause */
1223
1224         /* target for 10ms pause on 1-dd case */
1225         t = max(1, HZ / 100);
1226
1227         /*
1228          * Scale up pause time for concurrent dirtiers in order to reduce CPU
1229          * overheads.
1230          *
1231          * (N * 10ms) on 2^N concurrent tasks.
1232          */
1233         if (hi > lo)
1234                 t += (hi - lo) * (10 * HZ) / 1024;
1235
1236         /*
1237          * This is a bit convoluted. We try to base the next nr_dirtied_pause
1238          * on the much more stable dirty_ratelimit. However the next pause time
1239          * will be computed based on task_ratelimit and the two rate limits may
1240          * depart considerably at some time. Especially if task_ratelimit goes
1241          * below dirty_ratelimit/2 and the target pause is max_pause, the next
1242          * pause time will be max_pause*2 _trimmed down_ to max_pause.  As a
1243          * result task_ratelimit won't be executed faithfully, which could
1244          * eventually bring down dirty_ratelimit.
1245          *
1246          * We apply two rules to fix it up:
1247          * 1) try to estimate the next pause time and if necessary, use a lower
1248          *    nr_dirtied_pause so as not to exceed max_pause. When this happens,
1249          *    nr_dirtied_pause will be "dancing" with task_ratelimit.
1250          * 2) limit the target pause time to max_pause/2, so that the normal
1251          *    small fluctuations of task_ratelimit won't trigger rule (1) and
1252          *    nr_dirtied_pause will remain as stable as dirty_ratelimit.
1253          */
1254         t = min(t, 1 + max_pause / 2);
1255         pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1256
1257         /*
1258          * Tiny nr_dirtied_pause is found to hurt I/O performance in the test
1259          * case fio-mmap-randwrite-64k, which does 16*{sync read, async write}.
1260          * When the 16 consecutive reads are often interrupted by some dirty
1261          * throttling pause during the async writes, cfq will go into idles
1262          * (deadline is fine). So push nr_dirtied_pause as high as possible
1263          * until reaches DIRTY_POLL_THRESH=32 pages.
1264          */
1265         if (pages < DIRTY_POLL_THRESH) {
1266                 t = max_pause;
1267                 pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1268                 if (pages > DIRTY_POLL_THRESH) {
1269                         pages = DIRTY_POLL_THRESH;
1270                         t = HZ * DIRTY_POLL_THRESH / dirty_ratelimit;
1271                 }
1272         }
1273
1274         pause = HZ * pages / (task_ratelimit + 1);
1275         if (pause > max_pause) {
1276                 t = max_pause;
1277                 pages = task_ratelimit * t / roundup_pow_of_two(HZ);
1278         }
1279
1280         *nr_dirtied_pause = pages;
1281         /*
1282          * The minimal pause time will normally be half the target pause time.
1283          */
1284         return pages >= DIRTY_POLL_THRESH ? 1 + t / 2 : t;
1285 }
1286
1287 static inline void wb_dirty_limits(struct bdi_writeback *wb,
1288                                    unsigned long dirty_thresh,
1289                                    unsigned long background_thresh,
1290                                    unsigned long *wb_dirty,
1291                                    unsigned long *wb_thresh,
1292                                    unsigned long *wb_bg_thresh)
1293 {
1294         unsigned long wb_reclaimable;
1295
1296         /*
1297          * wb_thresh is not treated as some limiting factor as
1298          * dirty_thresh, due to reasons
1299          * - in JBOD setup, wb_thresh can fluctuate a lot
1300          * - in a system with HDD and USB key, the USB key may somehow
1301          *   go into state (wb_dirty >> wb_thresh) either because
1302          *   wb_dirty starts high, or because wb_thresh drops low.
1303          *   In this case we don't want to hard throttle the USB key
1304          *   dirtiers for 100 seconds until wb_dirty drops under
1305          *   wb_thresh. Instead the auxiliary wb control line in
1306          *   wb_position_ratio() will let the dirtier task progress
1307          *   at some rate <= (write_bw / 2) for bringing down wb_dirty.
1308          */
1309         *wb_thresh = wb_dirty_limit(wb, dirty_thresh);
1310
1311         if (wb_bg_thresh)
1312                 *wb_bg_thresh = dirty_thresh ? div_u64((u64)*wb_thresh *
1313                                                        background_thresh,
1314                                                        dirty_thresh) : 0;
1315
1316         /*
1317          * In order to avoid the stacked BDI deadlock we need
1318          * to ensure we accurately count the 'dirty' pages when
1319          * the threshold is low.
1320          *
1321          * Otherwise it would be possible to get thresh+n pages
1322          * reported dirty, even though there are thresh-m pages
1323          * actually dirty; with m+n sitting in the percpu
1324          * deltas.
1325          */
1326         if (*wb_thresh < 2 * wb_stat_error(wb)) {
1327                 wb_reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE);
1328                 *wb_dirty = wb_reclaimable + wb_stat_sum(wb, WB_WRITEBACK);
1329         } else {
1330                 wb_reclaimable = wb_stat(wb, WB_RECLAIMABLE);
1331                 *wb_dirty = wb_reclaimable + wb_stat(wb, WB_WRITEBACK);
1332         }
1333 }
1334
1335 /*
1336  * balance_dirty_pages() must be called by processes which are generating dirty
1337  * data.  It looks at the number of dirty pages in the machine and will force
1338  * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2.
1339  * If we're over `background_thresh' then the writeback threads are woken to
1340  * perform some writeout.
1341  */
1342 static void balance_dirty_pages(struct address_space *mapping,
1343                                 struct bdi_writeback *wb,
1344                                 unsigned long pages_dirtied)
1345 {
1346         unsigned long nr_reclaimable;   /* = file_dirty + unstable_nfs */
1347         unsigned long nr_dirty;  /* = file_dirty + writeback + unstable_nfs */
1348         unsigned long background_thresh;
1349         unsigned long dirty_thresh;
1350         long period;
1351         long pause;
1352         long max_pause;
1353         long min_pause;
1354         int nr_dirtied_pause;
1355         bool dirty_exceeded = false;
1356         unsigned long task_ratelimit;
1357         unsigned long dirty_ratelimit;
1358         unsigned long pos_ratio;
1359         struct backing_dev_info *bdi = wb->bdi;
1360         bool strictlimit = bdi->capabilities & BDI_CAP_STRICTLIMIT;
1361         unsigned long start_time = jiffies;
1362
1363         for (;;) {
1364                 unsigned long now = jiffies;
1365                 unsigned long uninitialized_var(wb_thresh);
1366                 unsigned long thresh;
1367                 unsigned long uninitialized_var(wb_dirty);
1368                 unsigned long dirty;
1369                 unsigned long bg_thresh;
1370
1371                 /*
1372                  * Unstable writes are a feature of certain networked
1373                  * filesystems (i.e. NFS) in which data may have been
1374                  * written to the server's write cache, but has not yet
1375                  * been flushed to permanent storage.
1376                  */
1377                 nr_reclaimable = global_page_state(NR_FILE_DIRTY) +
1378                                         global_page_state(NR_UNSTABLE_NFS);
1379                 nr_dirty = nr_reclaimable + global_page_state(NR_WRITEBACK);
1380
1381                 global_dirty_limits(&background_thresh, &dirty_thresh);
1382
1383                 if (unlikely(strictlimit)) {
1384                         wb_dirty_limits(wb, dirty_thresh, background_thresh,
1385                                         &wb_dirty, &wb_thresh, &bg_thresh);
1386
1387                         dirty = wb_dirty;
1388                         thresh = wb_thresh;
1389                 } else {
1390                         dirty = nr_dirty;
1391                         thresh = dirty_thresh;
1392                         bg_thresh = background_thresh;
1393                 }
1394
1395                 /*
1396                  * Throttle it only when the background writeback cannot
1397                  * catch-up. This avoids (excessively) small writeouts
1398                  * when the wb limits are ramping up in case of !strictlimit.
1399                  *
1400                  * In strictlimit case make decision based on the wb counters
1401                  * and limits. Small writeouts when the wb limits are ramping
1402                  * up are the price we consciously pay for strictlimit-ing.
1403                  */
1404                 if (dirty <= dirty_freerun_ceiling(thresh, bg_thresh)) {
1405                         current->dirty_paused_when = now;
1406                         current->nr_dirtied = 0;
1407                         current->nr_dirtied_pause =
1408                                 dirty_poll_interval(dirty, thresh);
1409                         break;
1410                 }
1411
1412                 if (unlikely(!writeback_in_progress(bdi)))
1413                         bdi_start_background_writeback(bdi);
1414
1415                 if (!strictlimit)
1416                         wb_dirty_limits(wb, dirty_thresh, background_thresh,
1417                                         &wb_dirty, &wb_thresh, NULL);
1418
1419                 dirty_exceeded = (wb_dirty > wb_thresh) &&
1420                                  ((nr_dirty > dirty_thresh) || strictlimit);
1421                 if (dirty_exceeded && !wb->dirty_exceeded)
1422                         wb->dirty_exceeded = 1;
1423
1424                 wb_update_bandwidth(wb, dirty_thresh, background_thresh,
1425                                     nr_dirty, wb_thresh, wb_dirty, start_time);
1426
1427                 dirty_ratelimit = wb->dirty_ratelimit;
1428                 pos_ratio = wb_position_ratio(wb, dirty_thresh,
1429                                               background_thresh, nr_dirty,
1430                                               wb_thresh, wb_dirty);
1431                 task_ratelimit = ((u64)dirty_ratelimit * pos_ratio) >>
1432                                                         RATELIMIT_CALC_SHIFT;
1433                 max_pause = wb_max_pause(wb, wb_dirty);
1434                 min_pause = wb_min_pause(wb, max_pause,
1435                                          task_ratelimit, dirty_ratelimit,
1436                                          &nr_dirtied_pause);
1437
1438                 if (unlikely(task_ratelimit == 0)) {
1439                         period = max_pause;
1440                         pause = max_pause;
1441                         goto pause;
1442                 }
1443                 period = HZ * pages_dirtied / task_ratelimit;
1444                 pause = period;
1445                 if (current->dirty_paused_when)
1446                         pause -= now - current->dirty_paused_when;
1447                 /*
1448                  * For less than 1s think time (ext3/4 may block the dirtier
1449                  * for up to 800ms from time to time on 1-HDD; so does xfs,
1450                  * however at much less frequency), try to compensate it in
1451                  * future periods by updating the virtual time; otherwise just
1452                  * do a reset, as it may be a light dirtier.
1453                  */
1454                 if (pause < min_pause) {
1455                         trace_balance_dirty_pages(bdi,
1456                                                   dirty_thresh,
1457                                                   background_thresh,
1458                                                   nr_dirty,
1459                                                   wb_thresh,
1460                                                   wb_dirty,
1461                                                   dirty_ratelimit,
1462                                                   task_ratelimit,
1463                                                   pages_dirtied,
1464                                                   period,
1465                                                   min(pause, 0L),
1466                                                   start_time);
1467                         if (pause < -HZ) {
1468                                 current->dirty_paused_when = now;
1469                                 current->nr_dirtied = 0;
1470                         } else if (period) {
1471                                 current->dirty_paused_when += period;
1472                                 current->nr_dirtied = 0;
1473                         } else if (current->nr_dirtied_pause <= pages_dirtied)
1474                                 current->nr_dirtied_pause += pages_dirtied;
1475                         break;
1476                 }
1477                 if (unlikely(pause > max_pause)) {
1478                         /* for occasional dropped task_ratelimit */
1479                         now += min(pause - max_pause, max_pause);
1480                         pause = max_pause;
1481                 }
1482
1483 pause:
1484                 trace_balance_dirty_pages(bdi,
1485                                           dirty_thresh,
1486                                           background_thresh,
1487                                           nr_dirty,
1488                                           wb_thresh,
1489                                           wb_dirty,
1490                                           dirty_ratelimit,
1491                                           task_ratelimit,
1492                                           pages_dirtied,
1493                                           period,
1494                                           pause,
1495                                           start_time);
1496                 __set_current_state(TASK_KILLABLE);
1497                 io_schedule_timeout(pause);
1498
1499                 current->dirty_paused_when = now + pause;
1500                 current->nr_dirtied = 0;
1501                 current->nr_dirtied_pause = nr_dirtied_pause;
1502
1503                 /*
1504                  * This is typically equal to (nr_dirty < dirty_thresh) and can
1505                  * also keep "1000+ dd on a slow USB stick" under control.
1506                  */
1507                 if (task_ratelimit)
1508                         break;
1509
1510                 /*
1511                  * In the case of an unresponding NFS server and the NFS dirty
1512                  * pages exceeds dirty_thresh, give the other good wb's a pipe
1513                  * to go through, so that tasks on them still remain responsive.
1514                  *
1515                  * In theory 1 page is enough to keep the comsumer-producer
1516                  * pipe going: the flusher cleans 1 page => the task dirties 1
1517                  * more page. However wb_dirty has accounting errors.  So use
1518                  * the larger and more IO friendly wb_stat_error.
1519                  */
1520                 if (wb_dirty <= wb_stat_error(wb))
1521                         break;
1522
1523                 if (fatal_signal_pending(current))
1524                         break;
1525         }
1526
1527         if (!dirty_exceeded && wb->dirty_exceeded)
1528                 wb->dirty_exceeded = 0;
1529
1530         if (writeback_in_progress(bdi))
1531                 return;
1532
1533         /*
1534          * In laptop mode, we wait until hitting the higher threshold before
1535          * starting background writeout, and then write out all the way down
1536          * to the lower threshold.  So slow writers cause minimal disk activity.
1537          *
1538          * In normal mode, we start background writeout at the lower
1539          * background_thresh, to keep the amount of dirty memory low.
1540          */
1541         if (laptop_mode)
1542                 return;
1543
1544         if (nr_reclaimable > background_thresh)
1545                 bdi_start_background_writeback(bdi);
1546 }
1547
1548 static DEFINE_PER_CPU(int, bdp_ratelimits);
1549
1550 /*
1551  * Normal tasks are throttled by
1552  *      loop {
1553  *              dirty tsk->nr_dirtied_pause pages;
1554  *              take a snap in balance_dirty_pages();
1555  *      }
1556  * However there is a worst case. If every task exit immediately when dirtied
1557  * (tsk->nr_dirtied_pause - 1) pages, balance_dirty_pages() will never be
1558  * called to throttle the page dirties. The solution is to save the not yet
1559  * throttled page dirties in dirty_throttle_leaks on task exit and charge them
1560  * randomly into the running tasks. This works well for the above worst case,
1561  * as the new task will pick up and accumulate the old task's leaked dirty
1562  * count and eventually get throttled.
1563  */
1564 DEFINE_PER_CPU(int, dirty_throttle_leaks) = 0;
1565
1566 /**
1567  * balance_dirty_pages_ratelimited - balance dirty memory state
1568  * @mapping: address_space which was dirtied
1569  *
1570  * Processes which are dirtying memory should call in here once for each page
1571  * which was newly dirtied.  The function will periodically check the system's
1572  * dirty state and will initiate writeback if needed.
1573  *
1574  * On really big machines, get_writeback_state is expensive, so try to avoid
1575  * calling it too often (ratelimiting).  But once we're over the dirty memory
1576  * limit we decrease the ratelimiting by a lot, to prevent individual processes
1577  * from overshooting the limit by (ratelimit_pages) each.
1578  */
1579 void balance_dirty_pages_ratelimited(struct address_space *mapping)
1580 {
1581         struct inode *inode = mapping->host;
1582         struct backing_dev_info *bdi = inode_to_bdi(inode);
1583         struct bdi_writeback *wb = NULL;
1584         int ratelimit;
1585         int *p;
1586
1587         if (!bdi_cap_account_dirty(bdi))
1588                 return;
1589
1590         if (inode_cgwb_enabled(inode))
1591                 wb = wb_get_create_current(bdi, GFP_KERNEL);
1592         if (!wb)
1593                 wb = &bdi->wb;
1594
1595         ratelimit = current->nr_dirtied_pause;
1596         if (wb->dirty_exceeded)
1597                 ratelimit = min(ratelimit, 32 >> (PAGE_SHIFT - 10));
1598
1599         preempt_disable();
1600         /*
1601          * This prevents one CPU to accumulate too many dirtied pages without
1602          * calling into balance_dirty_pages(), which can happen when there are
1603          * 1000+ tasks, all of them start dirtying pages at exactly the same
1604          * time, hence all honoured too large initial task->nr_dirtied_pause.
1605          */
1606         p =  this_cpu_ptr(&bdp_ratelimits);
1607         if (unlikely(current->nr_dirtied >= ratelimit))
1608                 *p = 0;
1609         else if (unlikely(*p >= ratelimit_pages)) {
1610                 *p = 0;
1611                 ratelimit = 0;
1612         }
1613         /*
1614          * Pick up the dirtied pages by the exited tasks. This avoids lots of
1615          * short-lived tasks (eg. gcc invocations in a kernel build) escaping
1616          * the dirty throttling and livelock other long-run dirtiers.
1617          */
1618         p = this_cpu_ptr(&dirty_throttle_leaks);
1619         if (*p > 0 && current->nr_dirtied < ratelimit) {
1620                 unsigned long nr_pages_dirtied;
1621                 nr_pages_dirtied = min(*p, ratelimit - current->nr_dirtied);
1622                 *p -= nr_pages_dirtied;
1623                 current->nr_dirtied += nr_pages_dirtied;
1624         }
1625         preempt_enable();
1626
1627         if (unlikely(current->nr_dirtied >= ratelimit))
1628                 balance_dirty_pages(mapping, wb, current->nr_dirtied);
1629
1630         wb_put(wb);
1631 }
1632 EXPORT_SYMBOL(balance_dirty_pages_ratelimited);
1633
1634 void throttle_vm_writeout(gfp_t gfp_mask)
1635 {
1636         unsigned long background_thresh;
1637         unsigned long dirty_thresh;
1638
1639         for ( ; ; ) {
1640                 global_dirty_limits(&background_thresh, &dirty_thresh);
1641                 dirty_thresh = hard_dirty_limit(dirty_thresh);
1642
1643                 /*
1644                  * Boost the allowable dirty threshold a bit for page
1645                  * allocators so they don't get DoS'ed by heavy writers
1646                  */
1647                 dirty_thresh += dirty_thresh / 10;      /* wheeee... */
1648
1649                 if (global_page_state(NR_UNSTABLE_NFS) +
1650                         global_page_state(NR_WRITEBACK) <= dirty_thresh)
1651                                 break;
1652                 congestion_wait(BLK_RW_ASYNC, HZ/10);
1653
1654                 /*
1655                  * The caller might hold locks which can prevent IO completion
1656                  * or progress in the filesystem.  So we cannot just sit here
1657                  * waiting for IO to complete.
1658                  */
1659                 if ((gfp_mask & (__GFP_FS|__GFP_IO)) != (__GFP_FS|__GFP_IO))
1660                         break;
1661         }
1662 }
1663
1664 /*
1665  * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
1666  */
1667 int dirty_writeback_centisecs_handler(struct ctl_table *table, int write,
1668         void __user *buffer, size_t *length, loff_t *ppos)
1669 {
1670         proc_dointvec(table, write, buffer, length, ppos);
1671         return 0;
1672 }
1673
1674 #ifdef CONFIG_BLOCK
1675 void laptop_mode_timer_fn(unsigned long data)
1676 {
1677         struct request_queue *q = (struct request_queue *)data;
1678         int nr_pages = global_page_state(NR_FILE_DIRTY) +
1679                 global_page_state(NR_UNSTABLE_NFS);
1680
1681         /*
1682          * We want to write everything out, not just down to the dirty
1683          * threshold
1684          */
1685         if (bdi_has_dirty_io(&q->backing_dev_info))
1686                 bdi_start_writeback(&q->backing_dev_info, nr_pages,
1687                                         WB_REASON_LAPTOP_TIMER);
1688 }
1689
1690 /*
1691  * We've spun up the disk and we're in laptop mode: schedule writeback
1692  * of all dirty data a few seconds from now.  If the flush is already scheduled
1693  * then push it back - the user is still using the disk.
1694  */
1695 void laptop_io_completion(struct backing_dev_info *info)
1696 {
1697         mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode);
1698 }
1699
1700 /*
1701  * We're in laptop mode and we've just synced. The sync's writes will have
1702  * caused another writeback to be scheduled by laptop_io_completion.
1703  * Nothing needs to be written back anymore, so we unschedule the writeback.
1704  */
1705 void laptop_sync_completion(void)
1706 {
1707         struct backing_dev_info *bdi;
1708
1709         rcu_read_lock();
1710
1711         list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
1712                 del_timer(&bdi->laptop_mode_wb_timer);
1713
1714         rcu_read_unlock();
1715 }
1716 #endif
1717
1718 /*
1719  * If ratelimit_pages is too high then we can get into dirty-data overload
1720  * if a large number of processes all perform writes at the same time.
1721  * If it is too low then SMP machines will call the (expensive)
1722  * get_writeback_state too often.
1723  *
1724  * Here we set ratelimit_pages to a level which ensures that when all CPUs are
1725  * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
1726  * thresholds.
1727  */
1728
1729 void writeback_set_ratelimit(void)
1730 {
1731         unsigned long background_thresh;
1732         unsigned long dirty_thresh;
1733         global_dirty_limits(&background_thresh, &dirty_thresh);
1734         global_dirty_limit = dirty_thresh;
1735         ratelimit_pages = dirty_thresh / (num_online_cpus() * 32);
1736         if (ratelimit_pages < 16)
1737                 ratelimit_pages = 16;
1738 }
1739
1740 static int
1741 ratelimit_handler(struct notifier_block *self, unsigned long action,
1742                   void *hcpu)
1743 {
1744
1745         switch (action & ~CPU_TASKS_FROZEN) {
1746         case CPU_ONLINE:
1747         case CPU_DEAD:
1748                 writeback_set_ratelimit();
1749                 return NOTIFY_OK;
1750         default:
1751                 return NOTIFY_DONE;
1752         }
1753 }
1754
1755 static struct notifier_block ratelimit_nb = {
1756         .notifier_call  = ratelimit_handler,
1757         .next           = NULL,
1758 };
1759
1760 /*
1761  * Called early on to tune the page writeback dirty limits.
1762  *
1763  * We used to scale dirty pages according to how total memory
1764  * related to pages that could be allocated for buffers (by
1765  * comparing nr_free_buffer_pages() to vm_total_pages.
1766  *
1767  * However, that was when we used "dirty_ratio" to scale with
1768  * all memory, and we don't do that any more. "dirty_ratio"
1769  * is now applied to total non-HIGHPAGE memory (by subtracting
1770  * totalhigh_pages from vm_total_pages), and as such we can't
1771  * get into the old insane situation any more where we had
1772  * large amounts of dirty pages compared to a small amount of
1773  * non-HIGHMEM memory.
1774  *
1775  * But we might still want to scale the dirty_ratio by how
1776  * much memory the box has..
1777  */
1778 void __init page_writeback_init(void)
1779 {
1780         writeback_set_ratelimit();
1781         register_cpu_notifier(&ratelimit_nb);
1782
1783         fprop_global_init(&writeout_completions, GFP_KERNEL);
1784 }
1785
1786 /**
1787  * tag_pages_for_writeback - tag pages to be written by write_cache_pages
1788  * @mapping: address space structure to write
1789  * @start: starting page index
1790  * @end: ending page index (inclusive)
1791  *
1792  * This function scans the page range from @start to @end (inclusive) and tags
1793  * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is
1794  * that write_cache_pages (or whoever calls this function) will then use
1795  * TOWRITE tag to identify pages eligible for writeback.  This mechanism is
1796  * used to avoid livelocking of writeback by a process steadily creating new
1797  * dirty pages in the file (thus it is important for this function to be quick
1798  * so that it can tag pages faster than a dirtying process can create them).
1799  */
1800 /*
1801  * We tag pages in batches of WRITEBACK_TAG_BATCH to reduce tree_lock latency.
1802  */
1803 void tag_pages_for_writeback(struct address_space *mapping,
1804                              pgoff_t start, pgoff_t end)
1805 {
1806 #define WRITEBACK_TAG_BATCH 4096
1807         unsigned long tagged;
1808
1809         do {
1810                 spin_lock_irq(&mapping->tree_lock);
1811                 tagged = radix_tree_range_tag_if_tagged(&mapping->page_tree,
1812                                 &start, end, WRITEBACK_TAG_BATCH,
1813                                 PAGECACHE_TAG_DIRTY, PAGECACHE_TAG_TOWRITE);
1814                 spin_unlock_irq(&mapping->tree_lock);
1815                 WARN_ON_ONCE(tagged > WRITEBACK_TAG_BATCH);
1816                 cond_resched();
1817                 /* We check 'start' to handle wrapping when end == ~0UL */
1818         } while (tagged >= WRITEBACK_TAG_BATCH && start);
1819 }
1820 EXPORT_SYMBOL(tag_pages_for_writeback);
1821
1822 /**
1823  * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
1824  * @mapping: address space structure to write
1825  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
1826  * @writepage: function called for each page
1827  * @data: data passed to writepage function
1828  *
1829  * If a page is already under I/O, write_cache_pages() skips it, even
1830  * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
1831  * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
1832  * and msync() need to guarantee that all the data which was dirty at the time
1833  * the call was made get new I/O started against them.  If wbc->sync_mode is
1834  * WB_SYNC_ALL then we were called for data integrity and we must wait for
1835  * existing IO to complete.
1836  *
1837  * To avoid livelocks (when other process dirties new pages), we first tag
1838  * pages which should be written back with TOWRITE tag and only then start
1839  * writing them. For data-integrity sync we have to be careful so that we do
1840  * not miss some pages (e.g., because some other process has cleared TOWRITE
1841  * tag we set). The rule we follow is that TOWRITE tag can be cleared only
1842  * by the process clearing the DIRTY tag (and submitting the page for IO).
1843  */
1844 int write_cache_pages(struct address_space *mapping,
1845                       struct writeback_control *wbc, writepage_t writepage,
1846                       void *data)
1847 {
1848         int ret = 0;
1849         int done = 0;
1850         struct pagevec pvec;
1851         int nr_pages;
1852         pgoff_t uninitialized_var(writeback_index);
1853         pgoff_t index;
1854         pgoff_t end;            /* Inclusive */
1855         pgoff_t done_index;
1856         int cycled;
1857         int range_whole = 0;
1858         int tag;
1859
1860         pagevec_init(&pvec, 0);
1861         if (wbc->range_cyclic) {
1862                 writeback_index = mapping->writeback_index; /* prev offset */
1863                 index = writeback_index;
1864                 if (index == 0)
1865                         cycled = 1;
1866                 else
1867                         cycled = 0;
1868                 end = -1;
1869         } else {
1870                 index = wbc->range_start >> PAGE_CACHE_SHIFT;
1871                 end = wbc->range_end >> PAGE_CACHE_SHIFT;
1872                 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
1873                         range_whole = 1;
1874                 cycled = 1; /* ignore range_cyclic tests */
1875         }
1876         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
1877                 tag = PAGECACHE_TAG_TOWRITE;
1878         else
1879                 tag = PAGECACHE_TAG_DIRTY;
1880 retry:
1881         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
1882                 tag_pages_for_writeback(mapping, index, end);
1883         done_index = index;
1884         while (!done && (index <= end)) {
1885                 int i;
1886
1887                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
1888                               min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1889                 if (nr_pages == 0)
1890                         break;
1891
1892                 for (i = 0; i < nr_pages; i++) {
1893                         struct page *page = pvec.pages[i];
1894
1895                         /*
1896                          * At this point, the page may be truncated or
1897                          * invalidated (changing page->mapping to NULL), or
1898                          * even swizzled back from swapper_space to tmpfs file
1899                          * mapping. However, page->index will not change
1900                          * because we have a reference on the page.
1901                          */
1902                         if (page->index > end) {
1903                                 /*
1904                                  * can't be range_cyclic (1st pass) because
1905                                  * end == -1 in that case.
1906                                  */
1907                                 done = 1;
1908                                 break;
1909                         }
1910
1911                         done_index = page->index;
1912
1913                         lock_page(page);
1914
1915                         /*
1916                          * Page truncated or invalidated. We can freely skip it
1917                          * then, even for data integrity operations: the page
1918                          * has disappeared concurrently, so there could be no
1919                          * real expectation of this data interity operation
1920                          * even if there is now a new, dirty page at the same
1921                          * pagecache address.
1922                          */
1923                         if (unlikely(page->mapping != mapping)) {
1924 continue_unlock:
1925                                 unlock_page(page);
1926                                 continue;
1927                         }
1928
1929                         if (!PageDirty(page)) {
1930                                 /* someone wrote it for us */
1931                                 goto continue_unlock;
1932                         }
1933
1934                         if (PageWriteback(page)) {
1935                                 if (wbc->sync_mode != WB_SYNC_NONE)
1936                                         wait_on_page_writeback(page);
1937                                 else
1938                                         goto continue_unlock;
1939                         }
1940
1941                         BUG_ON(PageWriteback(page));
1942                         if (!clear_page_dirty_for_io(page))
1943                                 goto continue_unlock;
1944
1945                         trace_wbc_writepage(wbc, inode_to_bdi(mapping->host));
1946                         ret = (*writepage)(page, wbc, data);
1947                         if (unlikely(ret)) {
1948                                 if (ret == AOP_WRITEPAGE_ACTIVATE) {
1949                                         unlock_page(page);
1950                                         ret = 0;
1951                                 } else {
1952                                         /*
1953                                          * done_index is set past this page,
1954                                          * so media errors will not choke
1955                                          * background writeout for the entire
1956                                          * file. This has consequences for
1957                                          * range_cyclic semantics (ie. it may
1958                                          * not be suitable for data integrity
1959                                          * writeout).
1960                                          */
1961                                         done_index = page->index + 1;
1962                                         done = 1;
1963                                         break;
1964                                 }
1965                         }
1966
1967                         /*
1968                          * We stop writing back only if we are not doing
1969                          * integrity sync. In case of integrity sync we have to
1970                          * keep going until we have written all the pages
1971                          * we tagged for writeback prior to entering this loop.
1972                          */
1973                         if (--wbc->nr_to_write <= 0 &&
1974                             wbc->sync_mode == WB_SYNC_NONE) {
1975                                 done = 1;
1976                                 break;
1977                         }
1978                 }
1979                 pagevec_release(&pvec);
1980                 cond_resched();
1981         }
1982         if (!cycled && !done) {
1983                 /*
1984                  * range_cyclic:
1985                  * We hit the last page and there is more work to be done: wrap
1986                  * back to the start of the file
1987                  */
1988                 cycled = 1;
1989                 index = 0;
1990                 end = writeback_index - 1;
1991                 goto retry;
1992         }
1993         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
1994                 mapping->writeback_index = done_index;
1995
1996         return ret;
1997 }
1998 EXPORT_SYMBOL(write_cache_pages);
1999
2000 /*
2001  * Function used by generic_writepages to call the real writepage
2002  * function and set the mapping flags on error
2003  */
2004 static int __writepage(struct page *page, struct writeback_control *wbc,
2005                        void *data)
2006 {
2007         struct address_space *mapping = data;
2008         int ret = mapping->a_ops->writepage(page, wbc);
2009         mapping_set_error(mapping, ret);
2010         return ret;
2011 }
2012
2013 /**
2014  * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
2015  * @mapping: address space structure to write
2016  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2017  *
2018  * This is a library function, which implements the writepages()
2019  * address_space_operation.
2020  */
2021 int generic_writepages(struct address_space *mapping,
2022                        struct writeback_control *wbc)
2023 {
2024         struct blk_plug plug;
2025         int ret;
2026
2027         /* deal with chardevs and other special file */
2028         if (!mapping->a_ops->writepage)
2029                 return 0;
2030
2031         blk_start_plug(&plug);
2032         ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2033         blk_finish_plug(&plug);
2034         return ret;
2035 }
2036
2037 EXPORT_SYMBOL(generic_writepages);
2038
2039 int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
2040 {
2041         int ret;
2042
2043         if (wbc->nr_to_write <= 0)
2044                 return 0;
2045         if (mapping->a_ops->writepages)
2046                 ret = mapping->a_ops->writepages(mapping, wbc);
2047         else
2048                 ret = generic_writepages(mapping, wbc);
2049         return ret;
2050 }
2051
2052 /**
2053  * write_one_page - write out a single page and optionally wait on I/O
2054  * @page: the page to write
2055  * @wait: if true, wait on writeout
2056  *
2057  * The page must be locked by the caller and will be unlocked upon return.
2058  *
2059  * write_one_page() returns a negative error code if I/O failed.
2060  */
2061 int write_one_page(struct page *page, int wait)
2062 {
2063         struct address_space *mapping = page->mapping;
2064         int ret = 0;
2065         struct writeback_control wbc = {
2066                 .sync_mode = WB_SYNC_ALL,
2067                 .nr_to_write = 1,
2068         };
2069
2070         BUG_ON(!PageLocked(page));
2071
2072         if (wait)
2073                 wait_on_page_writeback(page);
2074
2075         if (clear_page_dirty_for_io(page)) {
2076                 page_cache_get(page);
2077                 ret = mapping->a_ops->writepage(page, &wbc);
2078                 if (ret == 0 && wait) {
2079                         wait_on_page_writeback(page);
2080                         if (PageError(page))
2081                                 ret = -EIO;
2082                 }
2083                 page_cache_release(page);
2084         } else {
2085                 unlock_page(page);
2086         }
2087         return ret;
2088 }
2089 EXPORT_SYMBOL(write_one_page);
2090
2091 /*
2092  * For address_spaces which do not use buffers nor write back.
2093  */
2094 int __set_page_dirty_no_writeback(struct page *page)
2095 {
2096         if (!PageDirty(page))
2097                 return !TestSetPageDirty(page);
2098         return 0;
2099 }
2100
2101 /*
2102  * Helper function for set_page_dirty family.
2103  *
2104  * Caller must hold mem_cgroup_begin_page_stat().
2105  *
2106  * NOTE: This relies on being atomic wrt interrupts.
2107  */
2108 void account_page_dirtied(struct page *page, struct address_space *mapping,
2109                           struct mem_cgroup *memcg)
2110 {
2111         struct inode *inode = mapping->host;
2112
2113         trace_writeback_dirty_page(page, mapping);
2114
2115         if (mapping_cap_account_dirty(mapping)) {
2116                 struct bdi_writeback *wb;
2117
2118                 inode_attach_wb(inode, page);
2119                 wb = inode_to_wb(inode);
2120
2121                 mem_cgroup_inc_page_stat(memcg, MEM_CGROUP_STAT_DIRTY);
2122                 __inc_zone_page_state(page, NR_FILE_DIRTY);
2123                 __inc_zone_page_state(page, NR_DIRTIED);
2124                 __inc_wb_stat(wb, WB_RECLAIMABLE);
2125                 __inc_wb_stat(wb, WB_DIRTIED);
2126                 task_io_account_write(PAGE_CACHE_SIZE);
2127                 current->nr_dirtied++;
2128                 this_cpu_inc(bdp_ratelimits);
2129         }
2130 }
2131 EXPORT_SYMBOL(account_page_dirtied);
2132
2133 /*
2134  * Helper function for deaccounting dirty page without writeback.
2135  *
2136  * Caller must hold mem_cgroup_begin_page_stat().
2137  */
2138 void account_page_cleaned(struct page *page, struct address_space *mapping,
2139                           struct mem_cgroup *memcg)
2140 {
2141         if (mapping_cap_account_dirty(mapping)) {
2142                 mem_cgroup_dec_page_stat(memcg, MEM_CGROUP_STAT_DIRTY);
2143                 dec_zone_page_state(page, NR_FILE_DIRTY);
2144                 dec_wb_stat(inode_to_wb(mapping->host), WB_RECLAIMABLE);
2145                 task_io_account_cancelled_write(PAGE_CACHE_SIZE);
2146         }
2147 }
2148
2149 /*
2150  * For address_spaces which do not use buffers.  Just tag the page as dirty in
2151  * its radix tree.
2152  *
2153  * This is also used when a single buffer is being dirtied: we want to set the
2154  * page dirty in that case, but not all the buffers.  This is a "bottom-up"
2155  * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
2156  *
2157  * The caller must ensure this doesn't race with truncation.  Most will simply
2158  * hold the page lock, but e.g. zap_pte_range() calls with the page mapped and
2159  * the pte lock held, which also locks out truncation.
2160  */
2161 int __set_page_dirty_nobuffers(struct page *page)
2162 {
2163         struct mem_cgroup *memcg;
2164
2165         memcg = mem_cgroup_begin_page_stat(page);
2166         if (!TestSetPageDirty(page)) {
2167                 struct address_space *mapping = page_mapping(page);
2168                 unsigned long flags;
2169
2170                 if (!mapping) {
2171                         mem_cgroup_end_page_stat(memcg);
2172                         return 1;
2173                 }
2174
2175                 spin_lock_irqsave(&mapping->tree_lock, flags);
2176                 BUG_ON(page_mapping(page) != mapping);
2177                 WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page));
2178                 account_page_dirtied(page, mapping, memcg);
2179                 radix_tree_tag_set(&mapping->page_tree, page_index(page),
2180                                    PAGECACHE_TAG_DIRTY);
2181                 spin_unlock_irqrestore(&mapping->tree_lock, flags);
2182                 mem_cgroup_end_page_stat(memcg);
2183
2184                 if (mapping->host) {
2185                         /* !PageAnon && !swapper_space */
2186                         __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
2187                 }
2188                 return 1;
2189         }
2190         mem_cgroup_end_page_stat(memcg);
2191         return 0;
2192 }
2193 EXPORT_SYMBOL(__set_page_dirty_nobuffers);
2194
2195 /*
2196  * Call this whenever redirtying a page, to de-account the dirty counters
2197  * (NR_DIRTIED, BDI_DIRTIED, tsk->nr_dirtied), so that they match the written
2198  * counters (NR_WRITTEN, BDI_WRITTEN) in long term. The mismatches will lead to
2199  * systematic errors in balanced_dirty_ratelimit and the dirty pages position
2200  * control.
2201  */
2202 void account_page_redirty(struct page *page)
2203 {
2204         struct address_space *mapping = page->mapping;
2205
2206         if (mapping && mapping_cap_account_dirty(mapping)) {
2207                 struct bdi_writeback *wb = inode_to_wb(mapping->host);
2208
2209                 current->nr_dirtied--;
2210                 dec_zone_page_state(page, NR_DIRTIED);
2211                 dec_wb_stat(wb, WB_DIRTIED);
2212         }
2213 }
2214 EXPORT_SYMBOL(account_page_redirty);
2215
2216 /*
2217  * When a writepage implementation decides that it doesn't want to write this
2218  * page for some reason, it should redirty the locked page via
2219  * redirty_page_for_writepage() and it should then unlock the page and return 0
2220  */
2221 int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
2222 {
2223         int ret;
2224
2225         wbc->pages_skipped++;
2226         ret = __set_page_dirty_nobuffers(page);
2227         account_page_redirty(page);
2228         return ret;
2229 }
2230 EXPORT_SYMBOL(redirty_page_for_writepage);
2231
2232 /*
2233  * Dirty a page.
2234  *
2235  * For pages with a mapping this should be done under the page lock
2236  * for the benefit of asynchronous memory errors who prefer a consistent
2237  * dirty state. This rule can be broken in some special cases,
2238  * but should be better not to.
2239  *
2240  * If the mapping doesn't provide a set_page_dirty a_op, then
2241  * just fall through and assume that it wants buffer_heads.
2242  */
2243 int set_page_dirty(struct page *page)
2244 {
2245         struct address_space *mapping = page_mapping(page);
2246
2247         if (likely(mapping)) {
2248                 int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
2249                 /*
2250                  * readahead/lru_deactivate_page could remain
2251                  * PG_readahead/PG_reclaim due to race with end_page_writeback
2252                  * About readahead, if the page is written, the flags would be
2253                  * reset. So no problem.
2254                  * About lru_deactivate_page, if the page is redirty, the flag
2255                  * will be reset. So no problem. but if the page is used by readahead
2256                  * it will confuse readahead and make it restart the size rampup
2257                  * process. But it's a trivial problem.
2258                  */
2259                 if (PageReclaim(page))
2260                         ClearPageReclaim(page);
2261 #ifdef CONFIG_BLOCK
2262                 if (!spd)
2263                         spd = __set_page_dirty_buffers;
2264 #endif
2265                 return (*spd)(page);
2266         }
2267         if (!PageDirty(page)) {
2268                 if (!TestSetPageDirty(page))
2269                         return 1;
2270         }
2271         return 0;
2272 }
2273 EXPORT_SYMBOL(set_page_dirty);
2274
2275 /*
2276  * set_page_dirty() is racy if the caller has no reference against
2277  * page->mapping->host, and if the page is unlocked.  This is because another
2278  * CPU could truncate the page off the mapping and then free the mapping.
2279  *
2280  * Usually, the page _is_ locked, or the caller is a user-space process which
2281  * holds a reference on the inode by having an open file.
2282  *
2283  * In other cases, the page should be locked before running set_page_dirty().
2284  */
2285 int set_page_dirty_lock(struct page *page)
2286 {
2287         int ret;
2288
2289         lock_page(page);
2290         ret = set_page_dirty(page);
2291         unlock_page(page);
2292         return ret;
2293 }
2294 EXPORT_SYMBOL(set_page_dirty_lock);
2295
2296 /*
2297  * This cancels just the dirty bit on the kernel page itself, it does NOT
2298  * actually remove dirty bits on any mmap's that may be around. It also
2299  * leaves the page tagged dirty, so any sync activity will still find it on
2300  * the dirty lists, and in particular, clear_page_dirty_for_io() will still
2301  * look at the dirty bits in the VM.
2302  *
2303  * Doing this should *normally* only ever be done when a page is truncated,
2304  * and is not actually mapped anywhere at all. However, fs/buffer.c does
2305  * this when it notices that somebody has cleaned out all the buffers on a
2306  * page without actually doing it through the VM. Can you say "ext3 is
2307  * horribly ugly"? Thought you could.
2308  */
2309 void cancel_dirty_page(struct page *page)
2310 {
2311         struct address_space *mapping = page_mapping(page);
2312
2313         if (mapping_cap_account_dirty(mapping)) {
2314                 struct mem_cgroup *memcg;
2315
2316                 memcg = mem_cgroup_begin_page_stat(page);
2317
2318                 if (TestClearPageDirty(page))
2319                         account_page_cleaned(page, mapping, memcg);
2320
2321                 mem_cgroup_end_page_stat(memcg);
2322         } else {
2323                 ClearPageDirty(page);
2324         }
2325 }
2326 EXPORT_SYMBOL(cancel_dirty_page);
2327
2328 /*
2329  * Clear a page's dirty flag, while caring for dirty memory accounting.
2330  * Returns true if the page was previously dirty.
2331  *
2332  * This is for preparing to put the page under writeout.  We leave the page
2333  * tagged as dirty in the radix tree so that a concurrent write-for-sync
2334  * can discover it via a PAGECACHE_TAG_DIRTY walk.  The ->writepage
2335  * implementation will run either set_page_writeback() or set_page_dirty(),
2336  * at which stage we bring the page's dirty flag and radix-tree dirty tag
2337  * back into sync.
2338  *
2339  * This incoherency between the page's dirty flag and radix-tree tag is
2340  * unfortunate, but it only exists while the page is locked.
2341  */
2342 int clear_page_dirty_for_io(struct page *page)
2343 {
2344         struct address_space *mapping = page_mapping(page);
2345         struct mem_cgroup *memcg;
2346         int ret = 0;
2347
2348         BUG_ON(!PageLocked(page));
2349
2350         if (mapping && mapping_cap_account_dirty(mapping)) {
2351                 /*
2352                  * Yes, Virginia, this is indeed insane.
2353                  *
2354                  * We use this sequence to make sure that
2355                  *  (a) we account for dirty stats properly
2356                  *  (b) we tell the low-level filesystem to
2357                  *      mark the whole page dirty if it was
2358                  *      dirty in a pagetable. Only to then
2359                  *  (c) clean the page again and return 1 to
2360                  *      cause the writeback.
2361                  *
2362                  * This way we avoid all nasty races with the
2363                  * dirty bit in multiple places and clearing
2364                  * them concurrently from different threads.
2365                  *
2366                  * Note! Normally the "set_page_dirty(page)"
2367                  * has no effect on the actual dirty bit - since
2368                  * that will already usually be set. But we
2369                  * need the side effects, and it can help us
2370                  * avoid races.
2371                  *
2372                  * We basically use the page "master dirty bit"
2373                  * as a serialization point for all the different
2374                  * threads doing their things.
2375                  */
2376                 if (page_mkclean(page))
2377                         set_page_dirty(page);
2378                 /*
2379                  * We carefully synchronise fault handlers against
2380                  * installing a dirty pte and marking the page dirty
2381                  * at this point.  We do this by having them hold the
2382                  * page lock while dirtying the page, and pages are
2383                  * always locked coming in here, so we get the desired
2384                  * exclusion.
2385                  */
2386                 memcg = mem_cgroup_begin_page_stat(page);
2387                 if (TestClearPageDirty(page)) {
2388                         mem_cgroup_dec_page_stat(memcg, MEM_CGROUP_STAT_DIRTY);
2389                         dec_zone_page_state(page, NR_FILE_DIRTY);
2390                         dec_wb_stat(inode_to_wb(mapping->host), WB_RECLAIMABLE);
2391                         ret = 1;
2392                 }
2393                 mem_cgroup_end_page_stat(memcg);
2394                 return ret;
2395         }
2396         return TestClearPageDirty(page);
2397 }
2398 EXPORT_SYMBOL(clear_page_dirty_for_io);
2399
2400 int test_clear_page_writeback(struct page *page)
2401 {
2402         struct address_space *mapping = page_mapping(page);
2403         struct mem_cgroup *memcg;
2404         int ret;
2405
2406         memcg = mem_cgroup_begin_page_stat(page);
2407         if (mapping) {
2408                 struct inode *inode = mapping->host;
2409                 struct backing_dev_info *bdi = inode_to_bdi(inode);
2410                 unsigned long flags;
2411
2412                 spin_lock_irqsave(&mapping->tree_lock, flags);
2413                 ret = TestClearPageWriteback(page);
2414                 if (ret) {
2415                         radix_tree_tag_clear(&mapping->page_tree,
2416                                                 page_index(page),
2417                                                 PAGECACHE_TAG_WRITEBACK);
2418                         if (bdi_cap_account_writeback(bdi)) {
2419                                 struct bdi_writeback *wb = inode_to_wb(inode);
2420
2421                                 __dec_wb_stat(wb, WB_WRITEBACK);
2422                                 __wb_writeout_inc(wb);
2423                         }
2424                 }
2425                 spin_unlock_irqrestore(&mapping->tree_lock, flags);
2426         } else {
2427                 ret = TestClearPageWriteback(page);
2428         }
2429         if (ret) {
2430                 mem_cgroup_dec_page_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
2431                 dec_zone_page_state(page, NR_WRITEBACK);
2432                 inc_zone_page_state(page, NR_WRITTEN);
2433         }
2434         mem_cgroup_end_page_stat(memcg);
2435         return ret;
2436 }
2437
2438 int __test_set_page_writeback(struct page *page, bool keep_write)
2439 {
2440         struct address_space *mapping = page_mapping(page);
2441         struct mem_cgroup *memcg;
2442         int ret;
2443
2444         memcg = mem_cgroup_begin_page_stat(page);
2445         if (mapping) {
2446                 struct inode *inode = mapping->host;
2447                 struct backing_dev_info *bdi = inode_to_bdi(inode);
2448                 unsigned long flags;
2449
2450                 spin_lock_irqsave(&mapping->tree_lock, flags);
2451                 ret = TestSetPageWriteback(page);
2452                 if (!ret) {
2453                         radix_tree_tag_set(&mapping->page_tree,
2454                                                 page_index(page),
2455                                                 PAGECACHE_TAG_WRITEBACK);
2456                         if (bdi_cap_account_writeback(bdi))
2457                                 __inc_wb_stat(inode_to_wb(inode), WB_WRITEBACK);
2458                 }
2459                 if (!PageDirty(page))
2460                         radix_tree_tag_clear(&mapping->page_tree,
2461                                                 page_index(page),
2462                                                 PAGECACHE_TAG_DIRTY);
2463                 if (!keep_write)
2464                         radix_tree_tag_clear(&mapping->page_tree,
2465                                                 page_index(page),
2466                                                 PAGECACHE_TAG_TOWRITE);
2467                 spin_unlock_irqrestore(&mapping->tree_lock, flags);
2468         } else {
2469                 ret = TestSetPageWriteback(page);
2470         }
2471         if (!ret) {
2472                 mem_cgroup_inc_page_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
2473                 inc_zone_page_state(page, NR_WRITEBACK);
2474         }
2475         mem_cgroup_end_page_stat(memcg);
2476         return ret;
2477
2478 }
2479 EXPORT_SYMBOL(__test_set_page_writeback);
2480
2481 /*
2482  * Return true if any of the pages in the mapping are marked with the
2483  * passed tag.
2484  */
2485 int mapping_tagged(struct address_space *mapping, int tag)
2486 {
2487         return radix_tree_tagged(&mapping->page_tree, tag);
2488 }
2489 EXPORT_SYMBOL(mapping_tagged);
2490
2491 /**
2492  * wait_for_stable_page() - wait for writeback to finish, if necessary.
2493  * @page:       The page to wait on.
2494  *
2495  * This function determines if the given page is related to a backing device
2496  * that requires page contents to be held stable during writeback.  If so, then
2497  * it will wait for any pending writeback to complete.
2498  */
2499 void wait_for_stable_page(struct page *page)
2500 {
2501         if (bdi_cap_stable_pages_required(inode_to_bdi(page->mapping->host)))
2502                 wait_on_page_writeback(page);
2503 }
2504 EXPORT_SYMBOL_GPL(wait_for_stable_page);