OSDN Git Service

mm/khugepaged: collapse_shmem() remember to clear holes
[android-x86/kernel.git] / mm / shmem.c
1 /*
2  * Resizable virtual memory filesystem for Linux.
3  *
4  * Copyright (C) 2000 Linus Torvalds.
5  *               2000 Transmeta Corp.
6  *               2000-2001 Christoph Rohland
7  *               2000-2001 SAP AG
8  *               2002 Red Hat Inc.
9  * Copyright (C) 2002-2011 Hugh Dickins.
10  * Copyright (C) 2011 Google Inc.
11  * Copyright (C) 2002-2005 VERITAS Software Corporation.
12  * Copyright (C) 2004 Andi Kleen, SuSE Labs
13  *
14  * Extended attribute support for tmpfs:
15  * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16  * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17  *
18  * tiny-shmem:
19  * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20  *
21  * This file is released under the GPL.
22  */
23
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/mm.h>
32 #include <linux/export.h>
33 #include <linux/swap.h>
34 #include <linux/uio.h>
35 #include <linux/khugepaged.h>
36
37 static struct vfsmount *shm_mnt;
38
39 #ifdef CONFIG_SHMEM
40 /*
41  * This virtual memory filesystem is heavily based on the ramfs. It
42  * extends ramfs by the ability to use swap and honor resource limits
43  * which makes it a completely usable filesystem.
44  */
45
46 #include <linux/xattr.h>
47 #include <linux/exportfs.h>
48 #include <linux/posix_acl.h>
49 #include <linux/posix_acl_xattr.h>
50 #include <linux/mman.h>
51 #include <linux/string.h>
52 #include <linux/slab.h>
53 #include <linux/backing-dev.h>
54 #include <linux/shmem_fs.h>
55 #include <linux/writeback.h>
56 #include <linux/blkdev.h>
57 #include <linux/pagevec.h>
58 #include <linux/percpu_counter.h>
59 #include <linux/falloc.h>
60 #include <linux/splice.h>
61 #include <linux/security.h>
62 #include <linux/swapops.h>
63 #include <linux/mempolicy.h>
64 #include <linux/namei.h>
65 #include <linux/ctype.h>
66 #include <linux/migrate.h>
67 #include <linux/highmem.h>
68 #include <linux/seq_file.h>
69 #include <linux/magic.h>
70 #include <linux/syscalls.h>
71 #include <linux/fcntl.h>
72 #include <uapi/linux/memfd.h>
73
74 #include <asm/uaccess.h>
75 #include <asm/pgtable.h>
76
77 #include "internal.h"
78
79 #define BLOCKS_PER_PAGE  (PAGE_SIZE/512)
80 #define VM_ACCT(size)    (PAGE_ALIGN(size) >> PAGE_SHIFT)
81
82 /* Pretend that each entry is of this size in directory's i_size */
83 #define BOGO_DIRENT_SIZE 20
84
85 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
86 #define SHORT_SYMLINK_LEN 128
87
88 /*
89  * shmem_fallocate communicates with shmem_fault or shmem_writepage via
90  * inode->i_private (with i_mutex making sure that it has only one user at
91  * a time): we would prefer not to enlarge the shmem inode just for that.
92  */
93 struct shmem_falloc {
94         wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
95         pgoff_t start;          /* start of range currently being fallocated */
96         pgoff_t next;           /* the next page offset to be fallocated */
97         pgoff_t nr_falloced;    /* how many new pages have been fallocated */
98         pgoff_t nr_unswapped;   /* how often writepage refused to swap out */
99 };
100
101 #ifdef CONFIG_TMPFS
102 static unsigned long shmem_default_max_blocks(void)
103 {
104         return totalram_pages / 2;
105 }
106
107 static unsigned long shmem_default_max_inodes(void)
108 {
109         return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
110 }
111 #endif
112
113 static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
114 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
115                                 struct shmem_inode_info *info, pgoff_t index);
116 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
117                 struct page **pagep, enum sgp_type sgp,
118                 gfp_t gfp, struct mm_struct *fault_mm, int *fault_type);
119
120 int shmem_getpage(struct inode *inode, pgoff_t index,
121                 struct page **pagep, enum sgp_type sgp)
122 {
123         return shmem_getpage_gfp(inode, index, pagep, sgp,
124                 mapping_gfp_mask(inode->i_mapping), NULL, NULL);
125 }
126
127 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
128 {
129         return sb->s_fs_info;
130 }
131
132 /*
133  * shmem_file_setup pre-accounts the whole fixed size of a VM object,
134  * for shared memory and for shared anonymous (/dev/zero) mappings
135  * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
136  * consistent with the pre-accounting of private mappings ...
137  */
138 static inline int shmem_acct_size(unsigned long flags, loff_t size)
139 {
140         return (flags & VM_NORESERVE) ?
141                 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
142 }
143
144 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
145 {
146         if (!(flags & VM_NORESERVE))
147                 vm_unacct_memory(VM_ACCT(size));
148 }
149
150 static inline int shmem_reacct_size(unsigned long flags,
151                 loff_t oldsize, loff_t newsize)
152 {
153         if (!(flags & VM_NORESERVE)) {
154                 if (VM_ACCT(newsize) > VM_ACCT(oldsize))
155                         return security_vm_enough_memory_mm(current->mm,
156                                         VM_ACCT(newsize) - VM_ACCT(oldsize));
157                 else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
158                         vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
159         }
160         return 0;
161 }
162
163 /*
164  * ... whereas tmpfs objects are accounted incrementally as
165  * pages are allocated, in order to allow large sparse files.
166  * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
167  * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
168  */
169 static inline int shmem_acct_block(unsigned long flags, long pages)
170 {
171         if (!(flags & VM_NORESERVE))
172                 return 0;
173
174         return security_vm_enough_memory_mm(current->mm,
175                         pages * VM_ACCT(PAGE_SIZE));
176 }
177
178 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
179 {
180         if (flags & VM_NORESERVE)
181                 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
182 }
183
184 static inline bool shmem_inode_acct_block(struct inode *inode, long pages)
185 {
186         struct shmem_inode_info *info = SHMEM_I(inode);
187         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
188
189         if (shmem_acct_block(info->flags, pages))
190                 return false;
191
192         if (sbinfo->max_blocks) {
193                 if (percpu_counter_compare(&sbinfo->used_blocks,
194                                            sbinfo->max_blocks - pages) > 0)
195                         goto unacct;
196                 percpu_counter_add(&sbinfo->used_blocks, pages);
197         }
198
199         return true;
200
201 unacct:
202         shmem_unacct_blocks(info->flags, pages);
203         return false;
204 }
205
206 static inline void shmem_inode_unacct_blocks(struct inode *inode, long pages)
207 {
208         struct shmem_inode_info *info = SHMEM_I(inode);
209         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
210
211         if (sbinfo->max_blocks)
212                 percpu_counter_sub(&sbinfo->used_blocks, pages);
213         shmem_unacct_blocks(info->flags, pages);
214 }
215
216 static const struct super_operations shmem_ops;
217 static const struct address_space_operations shmem_aops;
218 static const struct file_operations shmem_file_operations;
219 static const struct inode_operations shmem_inode_operations;
220 static const struct inode_operations shmem_dir_inode_operations;
221 static const struct inode_operations shmem_special_inode_operations;
222 static const struct vm_operations_struct shmem_vm_ops;
223 static struct file_system_type shmem_fs_type;
224
225 static LIST_HEAD(shmem_swaplist);
226 static DEFINE_MUTEX(shmem_swaplist_mutex);
227
228 static int shmem_reserve_inode(struct super_block *sb)
229 {
230         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
231         if (sbinfo->max_inodes) {
232                 spin_lock(&sbinfo->stat_lock);
233                 if (!sbinfo->free_inodes) {
234                         spin_unlock(&sbinfo->stat_lock);
235                         return -ENOSPC;
236                 }
237                 sbinfo->free_inodes--;
238                 spin_unlock(&sbinfo->stat_lock);
239         }
240         return 0;
241 }
242
243 static void shmem_free_inode(struct super_block *sb)
244 {
245         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
246         if (sbinfo->max_inodes) {
247                 spin_lock(&sbinfo->stat_lock);
248                 sbinfo->free_inodes++;
249                 spin_unlock(&sbinfo->stat_lock);
250         }
251 }
252
253 /**
254  * shmem_recalc_inode - recalculate the block usage of an inode
255  * @inode: inode to recalc
256  *
257  * We have to calculate the free blocks since the mm can drop
258  * undirtied hole pages behind our back.
259  *
260  * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
261  * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
262  *
263  * It has to be called with the spinlock held.
264  */
265 static void shmem_recalc_inode(struct inode *inode)
266 {
267         struct shmem_inode_info *info = SHMEM_I(inode);
268         long freed;
269
270         freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
271         if (freed > 0) {
272                 info->alloced -= freed;
273                 inode->i_blocks -= freed * BLOCKS_PER_PAGE;
274                 shmem_inode_unacct_blocks(inode, freed);
275         }
276 }
277
278 bool shmem_charge(struct inode *inode, long pages)
279 {
280         struct shmem_inode_info *info = SHMEM_I(inode);
281         unsigned long flags;
282
283         if (!shmem_inode_acct_block(inode, pages))
284                 return false;
285
286         /* nrpages adjustment first, then shmem_recalc_inode() when balanced */
287         inode->i_mapping->nrpages += pages;
288
289         spin_lock_irqsave(&info->lock, flags);
290         info->alloced += pages;
291         inode->i_blocks += pages * BLOCKS_PER_PAGE;
292         shmem_recalc_inode(inode);
293         spin_unlock_irqrestore(&info->lock, flags);
294
295         return true;
296 }
297
298 void shmem_uncharge(struct inode *inode, long pages)
299 {
300         struct shmem_inode_info *info = SHMEM_I(inode);
301         unsigned long flags;
302
303         /* nrpages adjustment done by __delete_from_page_cache() or caller */
304
305         spin_lock_irqsave(&info->lock, flags);
306         info->alloced -= pages;
307         inode->i_blocks -= pages * BLOCKS_PER_PAGE;
308         shmem_recalc_inode(inode);
309         spin_unlock_irqrestore(&info->lock, flags);
310
311         shmem_inode_unacct_blocks(inode, pages);
312 }
313
314 /*
315  * Replace item expected in radix tree by a new item, while holding tree lock.
316  */
317 static int shmem_radix_tree_replace(struct address_space *mapping,
318                         pgoff_t index, void *expected, void *replacement)
319 {
320         void **pslot;
321         void *item;
322
323         VM_BUG_ON(!expected);
324         VM_BUG_ON(!replacement);
325         pslot = radix_tree_lookup_slot(&mapping->page_tree, index);
326         if (!pslot)
327                 return -ENOENT;
328         item = radix_tree_deref_slot_protected(pslot, &mapping->tree_lock);
329         if (item != expected)
330                 return -ENOENT;
331         radix_tree_replace_slot(pslot, replacement);
332         return 0;
333 }
334
335 /*
336  * Sometimes, before we decide whether to proceed or to fail, we must check
337  * that an entry was not already brought back from swap by a racing thread.
338  *
339  * Checking page is not enough: by the time a SwapCache page is locked, it
340  * might be reused, and again be SwapCache, using the same swap as before.
341  */
342 static bool shmem_confirm_swap(struct address_space *mapping,
343                                pgoff_t index, swp_entry_t swap)
344 {
345         void *item;
346
347         rcu_read_lock();
348         item = radix_tree_lookup(&mapping->page_tree, index);
349         rcu_read_unlock();
350         return item == swp_to_radix_entry(swap);
351 }
352
353 /*
354  * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
355  *
356  * SHMEM_HUGE_NEVER:
357  *      disables huge pages for the mount;
358  * SHMEM_HUGE_ALWAYS:
359  *      enables huge pages for the mount;
360  * SHMEM_HUGE_WITHIN_SIZE:
361  *      only allocate huge pages if the page will be fully within i_size,
362  *      also respect fadvise()/madvise() hints;
363  * SHMEM_HUGE_ADVISE:
364  *      only allocate huge pages if requested with fadvise()/madvise();
365  */
366
367 #define SHMEM_HUGE_NEVER        0
368 #define SHMEM_HUGE_ALWAYS       1
369 #define SHMEM_HUGE_WITHIN_SIZE  2
370 #define SHMEM_HUGE_ADVISE       3
371
372 /*
373  * Special values.
374  * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
375  *
376  * SHMEM_HUGE_DENY:
377  *      disables huge on shm_mnt and all mounts, for emergency use;
378  * SHMEM_HUGE_FORCE:
379  *      enables huge on shm_mnt and all mounts, w/o needing option, for testing;
380  *
381  */
382 #define SHMEM_HUGE_DENY         (-1)
383 #define SHMEM_HUGE_FORCE        (-2)
384
385 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
386 /* ifdef here to avoid bloating shmem.o when not necessary */
387
388 int shmem_huge __read_mostly;
389
390 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
391 static int shmem_parse_huge(const char *str)
392 {
393         if (!strcmp(str, "never"))
394                 return SHMEM_HUGE_NEVER;
395         if (!strcmp(str, "always"))
396                 return SHMEM_HUGE_ALWAYS;
397         if (!strcmp(str, "within_size"))
398                 return SHMEM_HUGE_WITHIN_SIZE;
399         if (!strcmp(str, "advise"))
400                 return SHMEM_HUGE_ADVISE;
401         if (!strcmp(str, "deny"))
402                 return SHMEM_HUGE_DENY;
403         if (!strcmp(str, "force"))
404                 return SHMEM_HUGE_FORCE;
405         return -EINVAL;
406 }
407
408 static const char *shmem_format_huge(int huge)
409 {
410         switch (huge) {
411         case SHMEM_HUGE_NEVER:
412                 return "never";
413         case SHMEM_HUGE_ALWAYS:
414                 return "always";
415         case SHMEM_HUGE_WITHIN_SIZE:
416                 return "within_size";
417         case SHMEM_HUGE_ADVISE:
418                 return "advise";
419         case SHMEM_HUGE_DENY:
420                 return "deny";
421         case SHMEM_HUGE_FORCE:
422                 return "force";
423         default:
424                 VM_BUG_ON(1);
425                 return "bad_val";
426         }
427 }
428 #endif
429
430 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
431                 struct shrink_control *sc, unsigned long nr_to_split)
432 {
433         LIST_HEAD(list), *pos, *next;
434         LIST_HEAD(to_remove);
435         struct inode *inode;
436         struct shmem_inode_info *info;
437         struct page *page;
438         unsigned long batch = sc ? sc->nr_to_scan : 128;
439         int removed = 0, split = 0;
440
441         if (list_empty(&sbinfo->shrinklist))
442                 return SHRINK_STOP;
443
444         spin_lock(&sbinfo->shrinklist_lock);
445         list_for_each_safe(pos, next, &sbinfo->shrinklist) {
446                 info = list_entry(pos, struct shmem_inode_info, shrinklist);
447
448                 /* pin the inode */
449                 inode = igrab(&info->vfs_inode);
450
451                 /* inode is about to be evicted */
452                 if (!inode) {
453                         list_del_init(&info->shrinklist);
454                         removed++;
455                         goto next;
456                 }
457
458                 /* Check if there's anything to gain */
459                 if (round_up(inode->i_size, PAGE_SIZE) ==
460                                 round_up(inode->i_size, HPAGE_PMD_SIZE)) {
461                         list_move(&info->shrinklist, &to_remove);
462                         removed++;
463                         goto next;
464                 }
465
466                 list_move(&info->shrinklist, &list);
467 next:
468                 if (!--batch)
469                         break;
470         }
471         spin_unlock(&sbinfo->shrinklist_lock);
472
473         list_for_each_safe(pos, next, &to_remove) {
474                 info = list_entry(pos, struct shmem_inode_info, shrinklist);
475                 inode = &info->vfs_inode;
476                 list_del_init(&info->shrinklist);
477                 iput(inode);
478         }
479
480         list_for_each_safe(pos, next, &list) {
481                 int ret;
482
483                 info = list_entry(pos, struct shmem_inode_info, shrinklist);
484                 inode = &info->vfs_inode;
485
486                 if (nr_to_split && split >= nr_to_split)
487                         goto leave;
488
489                 page = find_get_page(inode->i_mapping,
490                                 (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT);
491                 if (!page)
492                         goto drop;
493
494                 /* No huge page at the end of the file: nothing to split */
495                 if (!PageTransHuge(page)) {
496                         put_page(page);
497                         goto drop;
498                 }
499
500                 /*
501                  * Leave the inode on the list if we failed to lock
502                  * the page at this time.
503                  *
504                  * Waiting for the lock may lead to deadlock in the
505                  * reclaim path.
506                  */
507                 if (!trylock_page(page)) {
508                         put_page(page);
509                         goto leave;
510                 }
511
512                 ret = split_huge_page(page);
513                 unlock_page(page);
514                 put_page(page);
515
516                 /* If split failed leave the inode on the list */
517                 if (ret)
518                         goto leave;
519
520                 split++;
521 drop:
522                 list_del_init(&info->shrinklist);
523                 removed++;
524 leave:
525                 iput(inode);
526         }
527
528         spin_lock(&sbinfo->shrinklist_lock);
529         list_splice_tail(&list, &sbinfo->shrinklist);
530         sbinfo->shrinklist_len -= removed;
531         spin_unlock(&sbinfo->shrinklist_lock);
532
533         return split;
534 }
535
536 static long shmem_unused_huge_scan(struct super_block *sb,
537                 struct shrink_control *sc)
538 {
539         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
540
541         if (!READ_ONCE(sbinfo->shrinklist_len))
542                 return SHRINK_STOP;
543
544         return shmem_unused_huge_shrink(sbinfo, sc, 0);
545 }
546
547 static long shmem_unused_huge_count(struct super_block *sb,
548                 struct shrink_control *sc)
549 {
550         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
551         return READ_ONCE(sbinfo->shrinklist_len);
552 }
553 #else /* !CONFIG_TRANSPARENT_HUGE_PAGECACHE */
554
555 #define shmem_huge SHMEM_HUGE_DENY
556
557 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
558                 struct shrink_control *sc, unsigned long nr_to_split)
559 {
560         return 0;
561 }
562 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */
563
564 /*
565  * Like add_to_page_cache_locked, but error if expected item has gone.
566  */
567 static int shmem_add_to_page_cache(struct page *page,
568                                    struct address_space *mapping,
569                                    pgoff_t index, void *expected)
570 {
571         int error, nr = hpage_nr_pages(page);
572
573         VM_BUG_ON_PAGE(PageTail(page), page);
574         VM_BUG_ON_PAGE(index != round_down(index, nr), page);
575         VM_BUG_ON_PAGE(!PageLocked(page), page);
576         VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
577         VM_BUG_ON(expected && PageTransHuge(page));
578
579         page_ref_add(page, nr);
580         page->mapping = mapping;
581         page->index = index;
582
583         spin_lock_irq(&mapping->tree_lock);
584         if (PageTransHuge(page)) {
585                 void __rcu **results;
586                 pgoff_t idx;
587                 int i;
588
589                 error = 0;
590                 if (radix_tree_gang_lookup_slot(&mapping->page_tree,
591                                         &results, &idx, index, 1) &&
592                                 idx < index + HPAGE_PMD_NR) {
593                         error = -EEXIST;
594                 }
595
596                 if (!error) {
597                         for (i = 0; i < HPAGE_PMD_NR; i++) {
598                                 error = radix_tree_insert(&mapping->page_tree,
599                                                 index + i, page + i);
600                                 VM_BUG_ON(error);
601                         }
602                         count_vm_event(THP_FILE_ALLOC);
603                 }
604         } else if (!expected) {
605                 error = radix_tree_insert(&mapping->page_tree, index, page);
606         } else {
607                 error = shmem_radix_tree_replace(mapping, index, expected,
608                                                                  page);
609         }
610
611         if (!error) {
612                 mapping->nrpages += nr;
613                 if (PageTransHuge(page))
614                         __inc_node_page_state(page, NR_SHMEM_THPS);
615                 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, nr);
616                 __mod_node_page_state(page_pgdat(page), NR_SHMEM, nr);
617                 spin_unlock_irq(&mapping->tree_lock);
618         } else {
619                 page->mapping = NULL;
620                 spin_unlock_irq(&mapping->tree_lock);
621                 page_ref_sub(page, nr);
622         }
623         return error;
624 }
625
626 /*
627  * Like delete_from_page_cache, but substitutes swap for page.
628  */
629 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
630 {
631         struct address_space *mapping = page->mapping;
632         int error;
633
634         VM_BUG_ON_PAGE(PageCompound(page), page);
635
636         spin_lock_irq(&mapping->tree_lock);
637         error = shmem_radix_tree_replace(mapping, page->index, page, radswap);
638         page->mapping = NULL;
639         mapping->nrpages--;
640         __dec_node_page_state(page, NR_FILE_PAGES);
641         __dec_node_page_state(page, NR_SHMEM);
642         spin_unlock_irq(&mapping->tree_lock);
643         put_page(page);
644         BUG_ON(error);
645 }
646
647 /*
648  * Remove swap entry from radix tree, free the swap and its page cache.
649  */
650 static int shmem_free_swap(struct address_space *mapping,
651                            pgoff_t index, void *radswap)
652 {
653         void *old;
654
655         spin_lock_irq(&mapping->tree_lock);
656         old = radix_tree_delete_item(&mapping->page_tree, index, radswap);
657         spin_unlock_irq(&mapping->tree_lock);
658         if (old != radswap)
659                 return -ENOENT;
660         free_swap_and_cache(radix_to_swp_entry(radswap));
661         return 0;
662 }
663
664 /*
665  * Determine (in bytes) how many of the shmem object's pages mapped by the
666  * given offsets are swapped out.
667  *
668  * This is safe to call without i_mutex or mapping->tree_lock thanks to RCU,
669  * as long as the inode doesn't go away and racy results are not a problem.
670  */
671 unsigned long shmem_partial_swap_usage(struct address_space *mapping,
672                                                 pgoff_t start, pgoff_t end)
673 {
674         struct radix_tree_iter iter;
675         void **slot;
676         struct page *page;
677         unsigned long swapped = 0;
678
679         rcu_read_lock();
680
681         radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
682                 if (iter.index >= end)
683                         break;
684
685                 page = radix_tree_deref_slot(slot);
686
687                 if (radix_tree_deref_retry(page)) {
688                         slot = radix_tree_iter_retry(&iter);
689                         continue;
690                 }
691
692                 if (radix_tree_exceptional_entry(page))
693                         swapped++;
694
695                 if (need_resched()) {
696                         cond_resched_rcu();
697                         slot = radix_tree_iter_next(&iter);
698                 }
699         }
700
701         rcu_read_unlock();
702
703         return swapped << PAGE_SHIFT;
704 }
705
706 /*
707  * Determine (in bytes) how many of the shmem object's pages mapped by the
708  * given vma is swapped out.
709  *
710  * This is safe to call without i_mutex or mapping->tree_lock thanks to RCU,
711  * as long as the inode doesn't go away and racy results are not a problem.
712  */
713 unsigned long shmem_swap_usage(struct vm_area_struct *vma)
714 {
715         struct inode *inode = file_inode(vma->vm_file);
716         struct shmem_inode_info *info = SHMEM_I(inode);
717         struct address_space *mapping = inode->i_mapping;
718         unsigned long swapped;
719
720         /* Be careful as we don't hold info->lock */
721         swapped = READ_ONCE(info->swapped);
722
723         /*
724          * The easier cases are when the shmem object has nothing in swap, or
725          * the vma maps it whole. Then we can simply use the stats that we
726          * already track.
727          */
728         if (!swapped)
729                 return 0;
730
731         if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
732                 return swapped << PAGE_SHIFT;
733
734         /* Here comes the more involved part */
735         return shmem_partial_swap_usage(mapping,
736                         linear_page_index(vma, vma->vm_start),
737                         linear_page_index(vma, vma->vm_end));
738 }
739
740 /*
741  * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
742  */
743 void shmem_unlock_mapping(struct address_space *mapping)
744 {
745         struct pagevec pvec;
746         pgoff_t indices[PAGEVEC_SIZE];
747         pgoff_t index = 0;
748
749         pagevec_init(&pvec, 0);
750         /*
751          * Minor point, but we might as well stop if someone else SHM_LOCKs it.
752          */
753         while (!mapping_unevictable(mapping)) {
754                 /*
755                  * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
756                  * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
757                  */
758                 pvec.nr = find_get_entries(mapping, index,
759                                            PAGEVEC_SIZE, pvec.pages, indices);
760                 if (!pvec.nr)
761                         break;
762                 index = indices[pvec.nr - 1] + 1;
763                 pagevec_remove_exceptionals(&pvec);
764                 check_move_unevictable_pages(pvec.pages, pvec.nr);
765                 pagevec_release(&pvec);
766                 cond_resched();
767         }
768 }
769
770 /*
771  * Remove range of pages and swap entries from radix tree, and free them.
772  * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
773  */
774 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
775                                                                  bool unfalloc)
776 {
777         struct address_space *mapping = inode->i_mapping;
778         struct shmem_inode_info *info = SHMEM_I(inode);
779         pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
780         pgoff_t end = (lend + 1) >> PAGE_SHIFT;
781         unsigned int partial_start = lstart & (PAGE_SIZE - 1);
782         unsigned int partial_end = (lend + 1) & (PAGE_SIZE - 1);
783         struct pagevec pvec;
784         pgoff_t indices[PAGEVEC_SIZE];
785         long nr_swaps_freed = 0;
786         pgoff_t index;
787         int i;
788
789         if (lend == -1)
790                 end = -1;       /* unsigned, so actually very big */
791
792         pagevec_init(&pvec, 0);
793         index = start;
794         while (index < end) {
795                 pvec.nr = find_get_entries(mapping, index,
796                         min(end - index, (pgoff_t)PAGEVEC_SIZE),
797                         pvec.pages, indices);
798                 if (!pvec.nr)
799                         break;
800                 for (i = 0; i < pagevec_count(&pvec); i++) {
801                         struct page *page = pvec.pages[i];
802
803                         index = indices[i];
804                         if (index >= end)
805                                 break;
806
807                         if (radix_tree_exceptional_entry(page)) {
808                                 if (unfalloc)
809                                         continue;
810                                 nr_swaps_freed += !shmem_free_swap(mapping,
811                                                                 index, page);
812                                 continue;
813                         }
814
815                         VM_BUG_ON_PAGE(page_to_pgoff(page) != index, page);
816
817                         if (!trylock_page(page))
818                                 continue;
819
820                         if (PageTransTail(page)) {
821                                 /* Middle of THP: zero out the page */
822                                 clear_highpage(page);
823                                 unlock_page(page);
824                                 continue;
825                         } else if (PageTransHuge(page)) {
826                                 if (index == round_down(end, HPAGE_PMD_NR)) {
827                                         /*
828                                          * Range ends in the middle of THP:
829                                          * zero out the page
830                                          */
831                                         clear_highpage(page);
832                                         unlock_page(page);
833                                         continue;
834                                 }
835                                 index += HPAGE_PMD_NR - 1;
836                                 i += HPAGE_PMD_NR - 1;
837                         }
838
839                         if (!unfalloc || !PageUptodate(page)) {
840                                 VM_BUG_ON_PAGE(PageTail(page), page);
841                                 if (page_mapping(page) == mapping) {
842                                         VM_BUG_ON_PAGE(PageWriteback(page), page);
843                                         truncate_inode_page(mapping, page);
844                                 }
845                         }
846                         unlock_page(page);
847                 }
848                 pagevec_remove_exceptionals(&pvec);
849                 pagevec_release(&pvec);
850                 cond_resched();
851                 index++;
852         }
853
854         if (partial_start) {
855                 struct page *page = NULL;
856                 shmem_getpage(inode, start - 1, &page, SGP_READ);
857                 if (page) {
858                         unsigned int top = PAGE_SIZE;
859                         if (start > end) {
860                                 top = partial_end;
861                                 partial_end = 0;
862                         }
863                         zero_user_segment(page, partial_start, top);
864                         set_page_dirty(page);
865                         unlock_page(page);
866                         put_page(page);
867                 }
868         }
869         if (partial_end) {
870                 struct page *page = NULL;
871                 shmem_getpage(inode, end, &page, SGP_READ);
872                 if (page) {
873                         zero_user_segment(page, 0, partial_end);
874                         set_page_dirty(page);
875                         unlock_page(page);
876                         put_page(page);
877                 }
878         }
879         if (start >= end)
880                 return;
881
882         index = start;
883         while (index < end) {
884                 cond_resched();
885
886                 pvec.nr = find_get_entries(mapping, index,
887                                 min(end - index, (pgoff_t)PAGEVEC_SIZE),
888                                 pvec.pages, indices);
889                 if (!pvec.nr) {
890                         /* If all gone or hole-punch or unfalloc, we're done */
891                         if (index == start || end != -1)
892                                 break;
893                         /* But if truncating, restart to make sure all gone */
894                         index = start;
895                         continue;
896                 }
897                 for (i = 0; i < pagevec_count(&pvec); i++) {
898                         struct page *page = pvec.pages[i];
899
900                         index = indices[i];
901                         if (index >= end)
902                                 break;
903
904                         if (radix_tree_exceptional_entry(page)) {
905                                 if (unfalloc)
906                                         continue;
907                                 if (shmem_free_swap(mapping, index, page)) {
908                                         /* Swap was replaced by page: retry */
909                                         index--;
910                                         break;
911                                 }
912                                 nr_swaps_freed++;
913                                 continue;
914                         }
915
916                         lock_page(page);
917
918                         if (PageTransTail(page)) {
919                                 /* Middle of THP: zero out the page */
920                                 clear_highpage(page);
921                                 unlock_page(page);
922                                 /*
923                                  * Partial thp truncate due 'start' in middle
924                                  * of THP: don't need to look on these pages
925                                  * again on !pvec.nr restart.
926                                  */
927                                 if (index != round_down(end, HPAGE_PMD_NR))
928                                         start++;
929                                 continue;
930                         } else if (PageTransHuge(page)) {
931                                 if (index == round_down(end, HPAGE_PMD_NR)) {
932                                         /*
933                                          * Range ends in the middle of THP:
934                                          * zero out the page
935                                          */
936                                         clear_highpage(page);
937                                         unlock_page(page);
938                                         continue;
939                                 }
940                                 index += HPAGE_PMD_NR - 1;
941                                 i += HPAGE_PMD_NR - 1;
942                         }
943
944                         if (!unfalloc || !PageUptodate(page)) {
945                                 VM_BUG_ON_PAGE(PageTail(page), page);
946                                 if (page_mapping(page) == mapping) {
947                                         VM_BUG_ON_PAGE(PageWriteback(page), page);
948                                         truncate_inode_page(mapping, page);
949                                 } else {
950                                         /* Page was replaced by swap: retry */
951                                         unlock_page(page);
952                                         index--;
953                                         break;
954                                 }
955                         }
956                         unlock_page(page);
957                 }
958                 pagevec_remove_exceptionals(&pvec);
959                 pagevec_release(&pvec);
960                 index++;
961         }
962
963         spin_lock_irq(&info->lock);
964         info->swapped -= nr_swaps_freed;
965         shmem_recalc_inode(inode);
966         spin_unlock_irq(&info->lock);
967 }
968
969 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
970 {
971         shmem_undo_range(inode, lstart, lend, false);
972         inode->i_ctime = inode->i_mtime = current_time(inode);
973 }
974 EXPORT_SYMBOL_GPL(shmem_truncate_range);
975
976 static int shmem_getattr(struct vfsmount *mnt, struct dentry *dentry,
977                          struct kstat *stat)
978 {
979         struct inode *inode = dentry->d_inode;
980         struct shmem_inode_info *info = SHMEM_I(inode);
981
982         if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
983                 spin_lock_irq(&info->lock);
984                 shmem_recalc_inode(inode);
985                 spin_unlock_irq(&info->lock);
986         }
987         generic_fillattr(inode, stat);
988         return 0;
989 }
990
991 static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
992 {
993         struct inode *inode = d_inode(dentry);
994         struct shmem_inode_info *info = SHMEM_I(inode);
995         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
996         int error;
997
998         error = setattr_prepare(dentry, attr);
999         if (error)
1000                 return error;
1001
1002         if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
1003                 loff_t oldsize = inode->i_size;
1004                 loff_t newsize = attr->ia_size;
1005
1006                 /* protected by i_mutex */
1007                 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
1008                     (newsize > oldsize && (info->seals & F_SEAL_GROW)))
1009                         return -EPERM;
1010
1011                 if (newsize != oldsize) {
1012                         error = shmem_reacct_size(SHMEM_I(inode)->flags,
1013                                         oldsize, newsize);
1014                         if (error)
1015                                 return error;
1016                         i_size_write(inode, newsize);
1017                         inode->i_ctime = inode->i_mtime = current_time(inode);
1018                 }
1019                 if (newsize <= oldsize) {
1020                         loff_t holebegin = round_up(newsize, PAGE_SIZE);
1021                         if (oldsize > holebegin)
1022                                 unmap_mapping_range(inode->i_mapping,
1023                                                         holebegin, 0, 1);
1024                         if (info->alloced)
1025                                 shmem_truncate_range(inode,
1026                                                         newsize, (loff_t)-1);
1027                         /* unmap again to remove racily COWed private pages */
1028                         if (oldsize > holebegin)
1029                                 unmap_mapping_range(inode->i_mapping,
1030                                                         holebegin, 0, 1);
1031
1032                         /*
1033                          * Part of the huge page can be beyond i_size: subject
1034                          * to shrink under memory pressure.
1035                          */
1036                         if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
1037                                 spin_lock(&sbinfo->shrinklist_lock);
1038                                 /*
1039                                  * _careful to defend against unlocked access to
1040                                  * ->shrink_list in shmem_unused_huge_shrink()
1041                                  */
1042                                 if (list_empty_careful(&info->shrinklist)) {
1043                                         list_add_tail(&info->shrinklist,
1044                                                         &sbinfo->shrinklist);
1045                                         sbinfo->shrinklist_len++;
1046                                 }
1047                                 spin_unlock(&sbinfo->shrinklist_lock);
1048                         }
1049                 }
1050         }
1051
1052         setattr_copy(inode, attr);
1053         if (attr->ia_valid & ATTR_MODE)
1054                 error = posix_acl_chmod(inode, inode->i_mode);
1055         return error;
1056 }
1057
1058 static void shmem_evict_inode(struct inode *inode)
1059 {
1060         struct shmem_inode_info *info = SHMEM_I(inode);
1061         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1062
1063         if (inode->i_mapping->a_ops == &shmem_aops) {
1064                 shmem_unacct_size(info->flags, inode->i_size);
1065                 inode->i_size = 0;
1066                 shmem_truncate_range(inode, 0, (loff_t)-1);
1067                 if (!list_empty(&info->shrinklist)) {
1068                         spin_lock(&sbinfo->shrinklist_lock);
1069                         if (!list_empty(&info->shrinklist)) {
1070                                 list_del_init(&info->shrinklist);
1071                                 sbinfo->shrinklist_len--;
1072                         }
1073                         spin_unlock(&sbinfo->shrinklist_lock);
1074                 }
1075                 if (!list_empty(&info->swaplist)) {
1076                         mutex_lock(&shmem_swaplist_mutex);
1077                         list_del_init(&info->swaplist);
1078                         mutex_unlock(&shmem_swaplist_mutex);
1079                 }
1080         }
1081
1082         simple_xattrs_free(&info->xattrs);
1083         WARN_ON(inode->i_blocks);
1084         shmem_free_inode(inode->i_sb);
1085         clear_inode(inode);
1086 }
1087
1088 /*
1089  * If swap found in inode, free it and move page from swapcache to filecache.
1090  */
1091 static int shmem_unuse_inode(struct shmem_inode_info *info,
1092                              swp_entry_t swap, struct page **pagep)
1093 {
1094         struct address_space *mapping = info->vfs_inode.i_mapping;
1095         void *radswap;
1096         pgoff_t index;
1097         gfp_t gfp;
1098         int error = 0;
1099
1100         radswap = swp_to_radix_entry(swap);
1101         index = radix_tree_locate_item(&mapping->page_tree, radswap);
1102         if (index == -1)
1103                 return -EAGAIN; /* tell shmem_unuse we found nothing */
1104
1105         /*
1106          * Move _head_ to start search for next from here.
1107          * But be careful: shmem_evict_inode checks list_empty without taking
1108          * mutex, and there's an instant in list_move_tail when info->swaplist
1109          * would appear empty, if it were the only one on shmem_swaplist.
1110          */
1111         if (shmem_swaplist.next != &info->swaplist)
1112                 list_move_tail(&shmem_swaplist, &info->swaplist);
1113
1114         gfp = mapping_gfp_mask(mapping);
1115         if (shmem_should_replace_page(*pagep, gfp)) {
1116                 mutex_unlock(&shmem_swaplist_mutex);
1117                 error = shmem_replace_page(pagep, gfp, info, index);
1118                 mutex_lock(&shmem_swaplist_mutex);
1119                 /*
1120                  * We needed to drop mutex to make that restrictive page
1121                  * allocation, but the inode might have been freed while we
1122                  * dropped it: although a racing shmem_evict_inode() cannot
1123                  * complete without emptying the radix_tree, our page lock
1124                  * on this swapcache page is not enough to prevent that -
1125                  * free_swap_and_cache() of our swap entry will only
1126                  * trylock_page(), removing swap from radix_tree whatever.
1127                  *
1128                  * We must not proceed to shmem_add_to_page_cache() if the
1129                  * inode has been freed, but of course we cannot rely on
1130                  * inode or mapping or info to check that.  However, we can
1131                  * safely check if our swap entry is still in use (and here
1132                  * it can't have got reused for another page): if it's still
1133                  * in use, then the inode cannot have been freed yet, and we
1134                  * can safely proceed (if it's no longer in use, that tells
1135                  * nothing about the inode, but we don't need to unuse swap).
1136                  */
1137                 if (!page_swapcount(*pagep))
1138                         error = -ENOENT;
1139         }
1140
1141         /*
1142          * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
1143          * but also to hold up shmem_evict_inode(): so inode cannot be freed
1144          * beneath us (pagelock doesn't help until the page is in pagecache).
1145          */
1146         if (!error)
1147                 error = shmem_add_to_page_cache(*pagep, mapping, index,
1148                                                 radswap);
1149         if (error != -ENOMEM) {
1150                 /*
1151                  * Truncation and eviction use free_swap_and_cache(), which
1152                  * only does trylock page: if we raced, best clean up here.
1153                  */
1154                 delete_from_swap_cache(*pagep);
1155                 set_page_dirty(*pagep);
1156                 if (!error) {
1157                         spin_lock_irq(&info->lock);
1158                         info->swapped--;
1159                         spin_unlock_irq(&info->lock);
1160                         swap_free(swap);
1161                 }
1162         }
1163         return error;
1164 }
1165
1166 /*
1167  * Search through swapped inodes to find and replace swap by page.
1168  */
1169 int shmem_unuse(swp_entry_t swap, struct page *page)
1170 {
1171         struct list_head *this, *next;
1172         struct shmem_inode_info *info;
1173         struct mem_cgroup *memcg;
1174         int error = 0;
1175
1176         /*
1177          * There's a faint possibility that swap page was replaced before
1178          * caller locked it: caller will come back later with the right page.
1179          */
1180         if (unlikely(!PageSwapCache(page) || page_private(page) != swap.val))
1181                 goto out;
1182
1183         /*
1184          * Charge page using GFP_KERNEL while we can wait, before taking
1185          * the shmem_swaplist_mutex which might hold up shmem_writepage().
1186          * Charged back to the user (not to caller) when swap account is used.
1187          */
1188         error = mem_cgroup_try_charge(page, current->mm, GFP_KERNEL, &memcg,
1189                         false);
1190         if (error)
1191                 goto out;
1192         /* No radix_tree_preload: swap entry keeps a place for page in tree */
1193         error = -EAGAIN;
1194
1195         mutex_lock(&shmem_swaplist_mutex);
1196         list_for_each_safe(this, next, &shmem_swaplist) {
1197                 info = list_entry(this, struct shmem_inode_info, swaplist);
1198                 if (info->swapped)
1199                         error = shmem_unuse_inode(info, swap, &page);
1200                 else
1201                         list_del_init(&info->swaplist);
1202                 cond_resched();
1203                 if (error != -EAGAIN)
1204                         break;
1205                 /* found nothing in this: move on to search the next */
1206         }
1207         mutex_unlock(&shmem_swaplist_mutex);
1208
1209         if (error) {
1210                 if (error != -ENOMEM)
1211                         error = 0;
1212                 mem_cgroup_cancel_charge(page, memcg, false);
1213         } else
1214                 mem_cgroup_commit_charge(page, memcg, true, false);
1215 out:
1216         unlock_page(page);
1217         put_page(page);
1218         return error;
1219 }
1220
1221 /*
1222  * Move the page from the page cache to the swap cache.
1223  */
1224 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1225 {
1226         struct shmem_inode_info *info;
1227         struct address_space *mapping;
1228         struct inode *inode;
1229         swp_entry_t swap;
1230         pgoff_t index;
1231
1232         VM_BUG_ON_PAGE(PageCompound(page), page);
1233         BUG_ON(!PageLocked(page));
1234         mapping = page->mapping;
1235         index = page->index;
1236         inode = mapping->host;
1237         info = SHMEM_I(inode);
1238         if (info->flags & VM_LOCKED)
1239                 goto redirty;
1240         if (!total_swap_pages)
1241                 goto redirty;
1242
1243         /*
1244          * Our capabilities prevent regular writeback or sync from ever calling
1245          * shmem_writepage; but a stacking filesystem might use ->writepage of
1246          * its underlying filesystem, in which case tmpfs should write out to
1247          * swap only in response to memory pressure, and not for the writeback
1248          * threads or sync.
1249          */
1250         if (!wbc->for_reclaim) {
1251                 WARN_ON_ONCE(1);        /* Still happens? Tell us about it! */
1252                 goto redirty;
1253         }
1254
1255         /*
1256          * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1257          * value into swapfile.c, the only way we can correctly account for a
1258          * fallocated page arriving here is now to initialize it and write it.
1259          *
1260          * That's okay for a page already fallocated earlier, but if we have
1261          * not yet completed the fallocation, then (a) we want to keep track
1262          * of this page in case we have to undo it, and (b) it may not be a
1263          * good idea to continue anyway, once we're pushing into swap.  So
1264          * reactivate the page, and let shmem_fallocate() quit when too many.
1265          */
1266         if (!PageUptodate(page)) {
1267                 if (inode->i_private) {
1268                         struct shmem_falloc *shmem_falloc;
1269                         spin_lock(&inode->i_lock);
1270                         shmem_falloc = inode->i_private;
1271                         if (shmem_falloc &&
1272                             !shmem_falloc->waitq &&
1273                             index >= shmem_falloc->start &&
1274                             index < shmem_falloc->next)
1275                                 shmem_falloc->nr_unswapped++;
1276                         else
1277                                 shmem_falloc = NULL;
1278                         spin_unlock(&inode->i_lock);
1279                         if (shmem_falloc)
1280                                 goto redirty;
1281                 }
1282                 clear_highpage(page);
1283                 flush_dcache_page(page);
1284                 SetPageUptodate(page);
1285         }
1286
1287         swap = get_swap_page();
1288         if (!swap.val)
1289                 goto redirty;
1290
1291         if (mem_cgroup_try_charge_swap(page, swap))
1292                 goto free_swap;
1293
1294         /*
1295          * Add inode to shmem_unuse()'s list of swapped-out inodes,
1296          * if it's not already there.  Do it now before the page is
1297          * moved to swap cache, when its pagelock no longer protects
1298          * the inode from eviction.  But don't unlock the mutex until
1299          * we've incremented swapped, because shmem_unuse_inode() will
1300          * prune a !swapped inode from the swaplist under this mutex.
1301          */
1302         mutex_lock(&shmem_swaplist_mutex);
1303         if (list_empty(&info->swaplist))
1304                 list_add_tail(&info->swaplist, &shmem_swaplist);
1305
1306         if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
1307                 spin_lock_irq(&info->lock);
1308                 shmem_recalc_inode(inode);
1309                 info->swapped++;
1310                 spin_unlock_irq(&info->lock);
1311
1312                 swap_shmem_alloc(swap);
1313                 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
1314
1315                 mutex_unlock(&shmem_swaplist_mutex);
1316                 BUG_ON(page_mapped(page));
1317                 swap_writepage(page, wbc);
1318                 return 0;
1319         }
1320
1321         mutex_unlock(&shmem_swaplist_mutex);
1322 free_swap:
1323         swapcache_free(swap);
1324 redirty:
1325         set_page_dirty(page);
1326         if (wbc->for_reclaim)
1327                 return AOP_WRITEPAGE_ACTIVATE;  /* Return with page locked */
1328         unlock_page(page);
1329         return 0;
1330 }
1331
1332 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
1333 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1334 {
1335         char buffer[64];
1336
1337         if (!mpol || mpol->mode == MPOL_DEFAULT)
1338                 return;         /* show nothing */
1339
1340         mpol_to_str(buffer, sizeof(buffer), mpol);
1341
1342         seq_printf(seq, ",mpol=%s", buffer);
1343 }
1344
1345 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1346 {
1347         struct mempolicy *mpol = NULL;
1348         if (sbinfo->mpol) {
1349                 spin_lock(&sbinfo->stat_lock);  /* prevent replace/use races */
1350                 mpol = sbinfo->mpol;
1351                 mpol_get(mpol);
1352                 spin_unlock(&sbinfo->stat_lock);
1353         }
1354         return mpol;
1355 }
1356 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1357 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1358 {
1359 }
1360 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1361 {
1362         return NULL;
1363 }
1364 #endif /* CONFIG_NUMA && CONFIG_TMPFS */
1365 #ifndef CONFIG_NUMA
1366 #define vm_policy vm_private_data
1367 #endif
1368
1369 static void shmem_pseudo_vma_init(struct vm_area_struct *vma,
1370                 struct shmem_inode_info *info, pgoff_t index)
1371 {
1372         /* Create a pseudo vma that just contains the policy */
1373         vma->vm_start = 0;
1374         /* Bias interleave by inode number to distribute better across nodes */
1375         vma->vm_pgoff = index + info->vfs_inode.i_ino;
1376         vma->vm_ops = NULL;
1377         vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1378 }
1379
1380 static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma)
1381 {
1382         /* Drop reference taken by mpol_shared_policy_lookup() */
1383         mpol_cond_put(vma->vm_policy);
1384 }
1385
1386 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1387                         struct shmem_inode_info *info, pgoff_t index)
1388 {
1389         struct vm_area_struct pvma;
1390         struct page *page;
1391
1392         shmem_pseudo_vma_init(&pvma, info, index);
1393         page = swapin_readahead(swap, gfp, &pvma, 0);
1394         shmem_pseudo_vma_destroy(&pvma);
1395
1396         return page;
1397 }
1398
1399 static struct page *shmem_alloc_hugepage(gfp_t gfp,
1400                 struct shmem_inode_info *info, pgoff_t index)
1401 {
1402         struct vm_area_struct pvma;
1403         struct inode *inode = &info->vfs_inode;
1404         struct address_space *mapping = inode->i_mapping;
1405         pgoff_t idx, hindex;
1406         void __rcu **results;
1407         struct page *page;
1408
1409         if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
1410                 return NULL;
1411
1412         hindex = round_down(index, HPAGE_PMD_NR);
1413         rcu_read_lock();
1414         if (radix_tree_gang_lookup_slot(&mapping->page_tree, &results, &idx,
1415                                 hindex, 1) && idx < hindex + HPAGE_PMD_NR) {
1416                 rcu_read_unlock();
1417                 return NULL;
1418         }
1419         rcu_read_unlock();
1420
1421         shmem_pseudo_vma_init(&pvma, info, hindex);
1422         page = alloc_pages_vma(gfp | __GFP_COMP | __GFP_NORETRY | __GFP_NOWARN,
1423                         HPAGE_PMD_ORDER, &pvma, 0, numa_node_id(), true);
1424         shmem_pseudo_vma_destroy(&pvma);
1425         if (page)
1426                 prep_transhuge_page(page);
1427         return page;
1428 }
1429
1430 static struct page *shmem_alloc_page(gfp_t gfp,
1431                         struct shmem_inode_info *info, pgoff_t index)
1432 {
1433         struct vm_area_struct pvma;
1434         struct page *page;
1435
1436         shmem_pseudo_vma_init(&pvma, info, index);
1437         page = alloc_page_vma(gfp, &pvma, 0);
1438         shmem_pseudo_vma_destroy(&pvma);
1439
1440         return page;
1441 }
1442
1443 static struct page *shmem_alloc_and_acct_page(gfp_t gfp,
1444                 struct inode *inode,
1445                 pgoff_t index, bool huge)
1446 {
1447         struct shmem_inode_info *info = SHMEM_I(inode);
1448         struct page *page;
1449         int nr;
1450         int err = -ENOSPC;
1451
1452         if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
1453                 huge = false;
1454         nr = huge ? HPAGE_PMD_NR : 1;
1455
1456         if (!shmem_inode_acct_block(inode, nr))
1457                 goto failed;
1458
1459         if (huge)
1460                 page = shmem_alloc_hugepage(gfp, info, index);
1461         else
1462                 page = shmem_alloc_page(gfp, info, index);
1463         if (page) {
1464                 __SetPageLocked(page);
1465                 __SetPageSwapBacked(page);
1466                 return page;
1467         }
1468
1469         err = -ENOMEM;
1470         shmem_inode_unacct_blocks(inode, nr);
1471 failed:
1472         return ERR_PTR(err);
1473 }
1474
1475 /*
1476  * When a page is moved from swapcache to shmem filecache (either by the
1477  * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1478  * shmem_unuse_inode()), it may have been read in earlier from swap, in
1479  * ignorance of the mapping it belongs to.  If that mapping has special
1480  * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1481  * we may need to copy to a suitable page before moving to filecache.
1482  *
1483  * In a future release, this may well be extended to respect cpuset and
1484  * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1485  * but for now it is a simple matter of zone.
1486  */
1487 static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
1488 {
1489         return page_zonenum(page) > gfp_zone(gfp);
1490 }
1491
1492 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1493                                 struct shmem_inode_info *info, pgoff_t index)
1494 {
1495         struct page *oldpage, *newpage;
1496         struct address_space *swap_mapping;
1497         pgoff_t swap_index;
1498         int error;
1499
1500         oldpage = *pagep;
1501         swap_index = page_private(oldpage);
1502         swap_mapping = page_mapping(oldpage);
1503
1504         /*
1505          * We have arrived here because our zones are constrained, so don't
1506          * limit chance of success by further cpuset and node constraints.
1507          */
1508         gfp &= ~GFP_CONSTRAINT_MASK;
1509         newpage = shmem_alloc_page(gfp, info, index);
1510         if (!newpage)
1511                 return -ENOMEM;
1512
1513         get_page(newpage);
1514         copy_highpage(newpage, oldpage);
1515         flush_dcache_page(newpage);
1516
1517         __SetPageLocked(newpage);
1518         __SetPageSwapBacked(newpage);
1519         SetPageUptodate(newpage);
1520         set_page_private(newpage, swap_index);
1521         SetPageSwapCache(newpage);
1522
1523         /*
1524          * Our caller will very soon move newpage out of swapcache, but it's
1525          * a nice clean interface for us to replace oldpage by newpage there.
1526          */
1527         spin_lock_irq(&swap_mapping->tree_lock);
1528         error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage,
1529                                                                    newpage);
1530         if (!error) {
1531                 __inc_node_page_state(newpage, NR_FILE_PAGES);
1532                 __dec_node_page_state(oldpage, NR_FILE_PAGES);
1533         }
1534         spin_unlock_irq(&swap_mapping->tree_lock);
1535
1536         if (unlikely(error)) {
1537                 /*
1538                  * Is this possible?  I think not, now that our callers check
1539                  * both PageSwapCache and page_private after getting page lock;
1540                  * but be defensive.  Reverse old to newpage for clear and free.
1541                  */
1542                 oldpage = newpage;
1543         } else {
1544                 mem_cgroup_migrate(oldpage, newpage);
1545                 lru_cache_add_anon(newpage);
1546                 *pagep = newpage;
1547         }
1548
1549         ClearPageSwapCache(oldpage);
1550         set_page_private(oldpage, 0);
1551
1552         unlock_page(oldpage);
1553         put_page(oldpage);
1554         put_page(oldpage);
1555         return error;
1556 }
1557
1558 /*
1559  * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1560  *
1561  * If we allocate a new one we do not mark it dirty. That's up to the
1562  * vm. If we swap it in we mark it dirty since we also free the swap
1563  * entry since a page cannot live in both the swap and page cache.
1564  *
1565  * fault_mm and fault_type are only supplied by shmem_fault:
1566  * otherwise they are NULL.
1567  */
1568 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1569         struct page **pagep, enum sgp_type sgp, gfp_t gfp,
1570         struct mm_struct *fault_mm, int *fault_type)
1571 {
1572         struct address_space *mapping = inode->i_mapping;
1573         struct shmem_inode_info *info = SHMEM_I(inode);
1574         struct shmem_sb_info *sbinfo;
1575         struct mm_struct *charge_mm;
1576         struct mem_cgroup *memcg;
1577         struct page *page;
1578         swp_entry_t swap;
1579         enum sgp_type sgp_huge = sgp;
1580         pgoff_t hindex = index;
1581         int error;
1582         int once = 0;
1583         int alloced = 0;
1584
1585         if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1586                 return -EFBIG;
1587         if (sgp == SGP_NOHUGE || sgp == SGP_HUGE)
1588                 sgp = SGP_CACHE;
1589 repeat:
1590         swap.val = 0;
1591         page = find_lock_entry(mapping, index);
1592         if (radix_tree_exceptional_entry(page)) {
1593                 swap = radix_to_swp_entry(page);
1594                 page = NULL;
1595         }
1596
1597         if (sgp <= SGP_CACHE &&
1598             ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1599                 error = -EINVAL;
1600                 goto unlock;
1601         }
1602
1603         if (page && sgp == SGP_WRITE)
1604                 mark_page_accessed(page);
1605
1606         /* fallocated page? */
1607         if (page && !PageUptodate(page)) {
1608                 if (sgp != SGP_READ)
1609                         goto clear;
1610                 unlock_page(page);
1611                 put_page(page);
1612                 page = NULL;
1613         }
1614         if (page || (sgp == SGP_READ && !swap.val)) {
1615                 *pagep = page;
1616                 return 0;
1617         }
1618
1619         /*
1620          * Fast cache lookup did not find it:
1621          * bring it back from swap or allocate.
1622          */
1623         sbinfo = SHMEM_SB(inode->i_sb);
1624         charge_mm = fault_mm ? : current->mm;
1625
1626         if (swap.val) {
1627                 /* Look it up and read it in.. */
1628                 page = lookup_swap_cache(swap);
1629                 if (!page) {
1630                         /* Or update major stats only when swapin succeeds?? */
1631                         if (fault_type) {
1632                                 *fault_type |= VM_FAULT_MAJOR;
1633                                 count_vm_event(PGMAJFAULT);
1634                                 mem_cgroup_count_vm_event(fault_mm, PGMAJFAULT);
1635                         }
1636                         /* Here we actually start the io */
1637                         page = shmem_swapin(swap, gfp, info, index);
1638                         if (!page) {
1639                                 error = -ENOMEM;
1640                                 goto failed;
1641                         }
1642                 }
1643
1644                 /* We have to do this with page locked to prevent races */
1645                 lock_page(page);
1646                 if (!PageSwapCache(page) || page_private(page) != swap.val ||
1647                     !shmem_confirm_swap(mapping, index, swap)) {
1648                         error = -EEXIST;        /* try again */
1649                         goto unlock;
1650                 }
1651                 if (!PageUptodate(page)) {
1652                         error = -EIO;
1653                         goto failed;
1654                 }
1655                 wait_on_page_writeback(page);
1656
1657                 if (shmem_should_replace_page(page, gfp)) {
1658                         error = shmem_replace_page(&page, gfp, info, index);
1659                         if (error)
1660                                 goto failed;
1661                 }
1662
1663                 error = mem_cgroup_try_charge(page, charge_mm, gfp, &memcg,
1664                                 false);
1665                 if (!error) {
1666                         error = shmem_add_to_page_cache(page, mapping, index,
1667                                                 swp_to_radix_entry(swap));
1668                         /*
1669                          * We already confirmed swap under page lock, and make
1670                          * no memory allocation here, so usually no possibility
1671                          * of error; but free_swap_and_cache() only trylocks a
1672                          * page, so it is just possible that the entry has been
1673                          * truncated or holepunched since swap was confirmed.
1674                          * shmem_undo_range() will have done some of the
1675                          * unaccounting, now delete_from_swap_cache() will do
1676                          * the rest.
1677                          * Reset swap.val? No, leave it so "failed" goes back to
1678                          * "repeat": reading a hole and writing should succeed.
1679                          */
1680                         if (error) {
1681                                 mem_cgroup_cancel_charge(page, memcg, false);
1682                                 delete_from_swap_cache(page);
1683                         }
1684                 }
1685                 if (error)
1686                         goto failed;
1687
1688                 mem_cgroup_commit_charge(page, memcg, true, false);
1689
1690                 spin_lock_irq(&info->lock);
1691                 info->swapped--;
1692                 shmem_recalc_inode(inode);
1693                 spin_unlock_irq(&info->lock);
1694
1695                 if (sgp == SGP_WRITE)
1696                         mark_page_accessed(page);
1697
1698                 delete_from_swap_cache(page);
1699                 set_page_dirty(page);
1700                 swap_free(swap);
1701
1702         } else {
1703                 /* shmem_symlink() */
1704                 if (mapping->a_ops != &shmem_aops)
1705                         goto alloc_nohuge;
1706                 if (shmem_huge == SHMEM_HUGE_DENY || sgp_huge == SGP_NOHUGE)
1707                         goto alloc_nohuge;
1708                 if (shmem_huge == SHMEM_HUGE_FORCE)
1709                         goto alloc_huge;
1710                 switch (sbinfo->huge) {
1711                         loff_t i_size;
1712                         pgoff_t off;
1713                 case SHMEM_HUGE_NEVER:
1714                         goto alloc_nohuge;
1715                 case SHMEM_HUGE_WITHIN_SIZE:
1716                         off = round_up(index, HPAGE_PMD_NR);
1717                         i_size = round_up(i_size_read(inode), PAGE_SIZE);
1718                         if (i_size >= HPAGE_PMD_SIZE &&
1719                                         i_size >> PAGE_SHIFT >= off)
1720                                 goto alloc_huge;
1721                         /* fallthrough */
1722                 case SHMEM_HUGE_ADVISE:
1723                         if (sgp_huge == SGP_HUGE)
1724                                 goto alloc_huge;
1725                         /* TODO: implement fadvise() hints */
1726                         goto alloc_nohuge;
1727                 }
1728
1729 alloc_huge:
1730                 page = shmem_alloc_and_acct_page(gfp, inode, index, true);
1731                 if (IS_ERR(page)) {
1732 alloc_nohuge:           page = shmem_alloc_and_acct_page(gfp, inode,
1733                                         index, false);
1734                 }
1735                 if (IS_ERR(page)) {
1736                         int retry = 5;
1737                         error = PTR_ERR(page);
1738                         page = NULL;
1739                         if (error != -ENOSPC)
1740                                 goto failed;
1741                         /*
1742                          * Try to reclaim some spece by splitting a huge page
1743                          * beyond i_size on the filesystem.
1744                          */
1745                         while (retry--) {
1746                                 int ret;
1747                                 ret = shmem_unused_huge_shrink(sbinfo, NULL, 1);
1748                                 if (ret == SHRINK_STOP)
1749                                         break;
1750                                 if (ret)
1751                                         goto alloc_nohuge;
1752                         }
1753                         goto failed;
1754                 }
1755
1756                 if (PageTransHuge(page))
1757                         hindex = round_down(index, HPAGE_PMD_NR);
1758                 else
1759                         hindex = index;
1760
1761                 if (sgp == SGP_WRITE)
1762                         __SetPageReferenced(page);
1763
1764                 error = mem_cgroup_try_charge(page, charge_mm, gfp, &memcg,
1765                                 PageTransHuge(page));
1766                 if (error)
1767                         goto unacct;
1768                 error = radix_tree_maybe_preload_order(gfp & GFP_RECLAIM_MASK,
1769                                 compound_order(page));
1770                 if (!error) {
1771                         error = shmem_add_to_page_cache(page, mapping, hindex,
1772                                                         NULL);
1773                         radix_tree_preload_end();
1774                 }
1775                 if (error) {
1776                         mem_cgroup_cancel_charge(page, memcg,
1777                                         PageTransHuge(page));
1778                         goto unacct;
1779                 }
1780                 mem_cgroup_commit_charge(page, memcg, false,
1781                                 PageTransHuge(page));
1782                 lru_cache_add_anon(page);
1783
1784                 spin_lock_irq(&info->lock);
1785                 info->alloced += 1 << compound_order(page);
1786                 inode->i_blocks += BLOCKS_PER_PAGE << compound_order(page);
1787                 shmem_recalc_inode(inode);
1788                 spin_unlock_irq(&info->lock);
1789                 alloced = true;
1790
1791                 if (PageTransHuge(page) &&
1792                                 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
1793                                 hindex + HPAGE_PMD_NR - 1) {
1794                         /*
1795                          * Part of the huge page is beyond i_size: subject
1796                          * to shrink under memory pressure.
1797                          */
1798                         spin_lock(&sbinfo->shrinklist_lock);
1799                         /*
1800                          * _careful to defend against unlocked access to
1801                          * ->shrink_list in shmem_unused_huge_shrink()
1802                          */
1803                         if (list_empty_careful(&info->shrinklist)) {
1804                                 list_add_tail(&info->shrinklist,
1805                                                 &sbinfo->shrinklist);
1806                                 sbinfo->shrinklist_len++;
1807                         }
1808                         spin_unlock(&sbinfo->shrinklist_lock);
1809                 }
1810
1811                 /*
1812                  * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1813                  */
1814                 if (sgp == SGP_FALLOC)
1815                         sgp = SGP_WRITE;
1816 clear:
1817                 /*
1818                  * Let SGP_WRITE caller clear ends if write does not fill page;
1819                  * but SGP_FALLOC on a page fallocated earlier must initialize
1820                  * it now, lest undo on failure cancel our earlier guarantee.
1821                  */
1822                 if (sgp != SGP_WRITE && !PageUptodate(page)) {
1823                         struct page *head = compound_head(page);
1824                         int i;
1825
1826                         for (i = 0; i < (1 << compound_order(head)); i++) {
1827                                 clear_highpage(head + i);
1828                                 flush_dcache_page(head + i);
1829                         }
1830                         SetPageUptodate(head);
1831                 }
1832         }
1833
1834         /* Perhaps the file has been truncated since we checked */
1835         if (sgp <= SGP_CACHE &&
1836             ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1837                 if (alloced) {
1838                         ClearPageDirty(page);
1839                         delete_from_page_cache(page);
1840                         spin_lock_irq(&info->lock);
1841                         shmem_recalc_inode(inode);
1842                         spin_unlock_irq(&info->lock);
1843                 }
1844                 error = -EINVAL;
1845                 goto unlock;
1846         }
1847         *pagep = page + index - hindex;
1848         return 0;
1849
1850         /*
1851          * Error recovery.
1852          */
1853 unacct:
1854         shmem_inode_unacct_blocks(inode, 1 << compound_order(page));
1855
1856         if (PageTransHuge(page)) {
1857                 unlock_page(page);
1858                 put_page(page);
1859                 goto alloc_nohuge;
1860         }
1861 failed:
1862         if (swap.val && !shmem_confirm_swap(mapping, index, swap))
1863                 error = -EEXIST;
1864 unlock:
1865         if (page) {
1866                 unlock_page(page);
1867                 put_page(page);
1868         }
1869         if (error == -ENOSPC && !once++) {
1870                 spin_lock_irq(&info->lock);
1871                 shmem_recalc_inode(inode);
1872                 spin_unlock_irq(&info->lock);
1873                 goto repeat;
1874         }
1875         if (error == -EEXIST)   /* from above or from radix_tree_insert */
1876                 goto repeat;
1877         return error;
1878 }
1879
1880 /*
1881  * This is like autoremove_wake_function, but it removes the wait queue
1882  * entry unconditionally - even if something else had already woken the
1883  * target.
1884  */
1885 static int synchronous_wake_function(wait_queue_t *wait, unsigned mode, int sync, void *key)
1886 {
1887         int ret = default_wake_function(wait, mode, sync, key);
1888         list_del_init(&wait->task_list);
1889         return ret;
1890 }
1891
1892 static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1893 {
1894         struct inode *inode = file_inode(vma->vm_file);
1895         gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
1896         enum sgp_type sgp;
1897         int error;
1898         int ret = VM_FAULT_LOCKED;
1899
1900         /*
1901          * Trinity finds that probing a hole which tmpfs is punching can
1902          * prevent the hole-punch from ever completing: which in turn
1903          * locks writers out with its hold on i_mutex.  So refrain from
1904          * faulting pages into the hole while it's being punched.  Although
1905          * shmem_undo_range() does remove the additions, it may be unable to
1906          * keep up, as each new page needs its own unmap_mapping_range() call,
1907          * and the i_mmap tree grows ever slower to scan if new vmas are added.
1908          *
1909          * It does not matter if we sometimes reach this check just before the
1910          * hole-punch begins, so that one fault then races with the punch:
1911          * we just need to make racing faults a rare case.
1912          *
1913          * The implementation below would be much simpler if we just used a
1914          * standard mutex or completion: but we cannot take i_mutex in fault,
1915          * and bloating every shmem inode for this unlikely case would be sad.
1916          */
1917         if (unlikely(inode->i_private)) {
1918                 struct shmem_falloc *shmem_falloc;
1919
1920                 spin_lock(&inode->i_lock);
1921                 shmem_falloc = inode->i_private;
1922                 if (shmem_falloc &&
1923                     shmem_falloc->waitq &&
1924                     vmf->pgoff >= shmem_falloc->start &&
1925                     vmf->pgoff < shmem_falloc->next) {
1926                         wait_queue_head_t *shmem_falloc_waitq;
1927                         DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
1928
1929                         ret = VM_FAULT_NOPAGE;
1930                         if ((vmf->flags & FAULT_FLAG_ALLOW_RETRY) &&
1931                            !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT)) {
1932                                 /* It's polite to up mmap_sem if we can */
1933                                 up_read(&vma->vm_mm->mmap_sem);
1934                                 ret = VM_FAULT_RETRY;
1935                         }
1936
1937                         shmem_falloc_waitq = shmem_falloc->waitq;
1938                         prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
1939                                         TASK_UNINTERRUPTIBLE);
1940                         spin_unlock(&inode->i_lock);
1941                         schedule();
1942
1943                         /*
1944                          * shmem_falloc_waitq points into the shmem_fallocate()
1945                          * stack of the hole-punching task: shmem_falloc_waitq
1946                          * is usually invalid by the time we reach here, but
1947                          * finish_wait() does not dereference it in that case;
1948                          * though i_lock needed lest racing with wake_up_all().
1949                          */
1950                         spin_lock(&inode->i_lock);
1951                         finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
1952                         spin_unlock(&inode->i_lock);
1953                         return ret;
1954                 }
1955                 spin_unlock(&inode->i_lock);
1956         }
1957
1958         sgp = SGP_CACHE;
1959         if (vma->vm_flags & VM_HUGEPAGE)
1960                 sgp = SGP_HUGE;
1961         else if (vma->vm_flags & VM_NOHUGEPAGE)
1962                 sgp = SGP_NOHUGE;
1963
1964         error = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, sgp,
1965                                   gfp, vma->vm_mm, &ret);
1966         if (error)
1967                 return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
1968         return ret;
1969 }
1970
1971 unsigned long shmem_get_unmapped_area(struct file *file,
1972                                       unsigned long uaddr, unsigned long len,
1973                                       unsigned long pgoff, unsigned long flags)
1974 {
1975         unsigned long (*get_area)(struct file *,
1976                 unsigned long, unsigned long, unsigned long, unsigned long);
1977         unsigned long addr;
1978         unsigned long offset;
1979         unsigned long inflated_len;
1980         unsigned long inflated_addr;
1981         unsigned long inflated_offset;
1982
1983         if (len > TASK_SIZE)
1984                 return -ENOMEM;
1985
1986         get_area = current->mm->get_unmapped_area;
1987         addr = get_area(file, uaddr, len, pgoff, flags);
1988
1989         if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
1990                 return addr;
1991         if (IS_ERR_VALUE(addr))
1992                 return addr;
1993         if (addr & ~PAGE_MASK)
1994                 return addr;
1995         if (addr > TASK_SIZE - len)
1996                 return addr;
1997
1998         if (shmem_huge == SHMEM_HUGE_DENY)
1999                 return addr;
2000         if (len < HPAGE_PMD_SIZE)
2001                 return addr;
2002         if (flags & MAP_FIXED)
2003                 return addr;
2004         /*
2005          * Our priority is to support MAP_SHARED mapped hugely;
2006          * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2007          * But if caller specified an address hint, respect that as before.
2008          */
2009         if (uaddr)
2010                 return addr;
2011
2012         if (shmem_huge != SHMEM_HUGE_FORCE) {
2013                 struct super_block *sb;
2014
2015                 if (file) {
2016                         VM_BUG_ON(file->f_op != &shmem_file_operations);
2017                         sb = file_inode(file)->i_sb;
2018                 } else {
2019                         /*
2020                          * Called directly from mm/mmap.c, or drivers/char/mem.c
2021                          * for "/dev/zero", to create a shared anonymous object.
2022                          */
2023                         if (IS_ERR(shm_mnt))
2024                                 return addr;
2025                         sb = shm_mnt->mnt_sb;
2026                 }
2027                 if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER)
2028                         return addr;
2029         }
2030
2031         offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
2032         if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
2033                 return addr;
2034         if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
2035                 return addr;
2036
2037         inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
2038         if (inflated_len > TASK_SIZE)
2039                 return addr;
2040         if (inflated_len < len)
2041                 return addr;
2042
2043         inflated_addr = get_area(NULL, 0, inflated_len, 0, flags);
2044         if (IS_ERR_VALUE(inflated_addr))
2045                 return addr;
2046         if (inflated_addr & ~PAGE_MASK)
2047                 return addr;
2048
2049         inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2050         inflated_addr += offset - inflated_offset;
2051         if (inflated_offset > offset)
2052                 inflated_addr += HPAGE_PMD_SIZE;
2053
2054         if (inflated_addr > TASK_SIZE - len)
2055                 return addr;
2056         return inflated_addr;
2057 }
2058
2059 #ifdef CONFIG_NUMA
2060 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
2061 {
2062         struct inode *inode = file_inode(vma->vm_file);
2063         return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
2064 }
2065
2066 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2067                                           unsigned long addr)
2068 {
2069         struct inode *inode = file_inode(vma->vm_file);
2070         pgoff_t index;
2071
2072         index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2073         return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
2074 }
2075 #endif
2076
2077 int shmem_lock(struct file *file, int lock, struct user_struct *user)
2078 {
2079         struct inode *inode = file_inode(file);
2080         struct shmem_inode_info *info = SHMEM_I(inode);
2081         int retval = -ENOMEM;
2082
2083         spin_lock_irq(&info->lock);
2084         if (lock && !(info->flags & VM_LOCKED)) {
2085                 if (!user_shm_lock(inode->i_size, user))
2086                         goto out_nomem;
2087                 info->flags |= VM_LOCKED;
2088                 mapping_set_unevictable(file->f_mapping);
2089         }
2090         if (!lock && (info->flags & VM_LOCKED) && user) {
2091                 user_shm_unlock(inode->i_size, user);
2092                 info->flags &= ~VM_LOCKED;
2093                 mapping_clear_unevictable(file->f_mapping);
2094         }
2095         retval = 0;
2096
2097 out_nomem:
2098         spin_unlock_irq(&info->lock);
2099         return retval;
2100 }
2101
2102 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
2103 {
2104         file_accessed(file);
2105         vma->vm_ops = &shmem_vm_ops;
2106         if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
2107                         ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
2108                         (vma->vm_end & HPAGE_PMD_MASK)) {
2109                 khugepaged_enter(vma, vma->vm_flags);
2110         }
2111         return 0;
2112 }
2113
2114 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
2115                                      umode_t mode, dev_t dev, unsigned long flags)
2116 {
2117         struct inode *inode;
2118         struct shmem_inode_info *info;
2119         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2120
2121         if (shmem_reserve_inode(sb))
2122                 return NULL;
2123
2124         inode = new_inode(sb);
2125         if (inode) {
2126                 inode->i_ino = get_next_ino();
2127                 inode_init_owner(inode, dir, mode);
2128                 inode->i_blocks = 0;
2129                 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
2130                 inode->i_generation = get_seconds();
2131                 info = SHMEM_I(inode);
2132                 memset(info, 0, (char *)inode - (char *)info);
2133                 spin_lock_init(&info->lock);
2134                 info->seals = F_SEAL_SEAL;
2135                 info->flags = flags & VM_NORESERVE;
2136                 INIT_LIST_HEAD(&info->shrinklist);
2137                 INIT_LIST_HEAD(&info->swaplist);
2138                 simple_xattrs_init(&info->xattrs);
2139                 cache_no_acl(inode);
2140
2141                 switch (mode & S_IFMT) {
2142                 default:
2143                         inode->i_op = &shmem_special_inode_operations;
2144                         init_special_inode(inode, mode, dev);
2145                         break;
2146                 case S_IFREG:
2147                         inode->i_mapping->a_ops = &shmem_aops;
2148                         inode->i_op = &shmem_inode_operations;
2149                         inode->i_fop = &shmem_file_operations;
2150                         mpol_shared_policy_init(&info->policy,
2151                                                  shmem_get_sbmpol(sbinfo));
2152                         break;
2153                 case S_IFDIR:
2154                         inc_nlink(inode);
2155                         /* Some things misbehave if size == 0 on a directory */
2156                         inode->i_size = 2 * BOGO_DIRENT_SIZE;
2157                         inode->i_op = &shmem_dir_inode_operations;
2158                         inode->i_fop = &simple_dir_operations;
2159                         break;
2160                 case S_IFLNK:
2161                         /*
2162                          * Must not load anything in the rbtree,
2163                          * mpol_free_shared_policy will not be called.
2164                          */
2165                         mpol_shared_policy_init(&info->policy, NULL);
2166                         break;
2167                 }
2168
2169                 lockdep_annotate_inode_mutex_key(inode);
2170         } else
2171                 shmem_free_inode(sb);
2172         return inode;
2173 }
2174
2175 bool shmem_mapping(struct address_space *mapping)
2176 {
2177         if (!mapping->host)
2178                 return false;
2179
2180         return mapping->host->i_sb->s_op == &shmem_ops;
2181 }
2182
2183 #ifdef CONFIG_TMPFS
2184 static const struct inode_operations shmem_symlink_inode_operations;
2185 static const struct inode_operations shmem_short_symlink_operations;
2186
2187 #ifdef CONFIG_TMPFS_XATTR
2188 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2189 #else
2190 #define shmem_initxattrs NULL
2191 #endif
2192
2193 static int
2194 shmem_write_begin(struct file *file, struct address_space *mapping,
2195                         loff_t pos, unsigned len, unsigned flags,
2196                         struct page **pagep, void **fsdata)
2197 {
2198         struct inode *inode = mapping->host;
2199         struct shmem_inode_info *info = SHMEM_I(inode);
2200         pgoff_t index = pos >> PAGE_SHIFT;
2201
2202         /* i_mutex is held by caller */
2203         if (unlikely(info->seals)) {
2204                 if (info->seals & F_SEAL_WRITE)
2205                         return -EPERM;
2206                 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2207                         return -EPERM;
2208         }
2209
2210         return shmem_getpage(inode, index, pagep, SGP_WRITE);
2211 }
2212
2213 static int
2214 shmem_write_end(struct file *file, struct address_space *mapping,
2215                         loff_t pos, unsigned len, unsigned copied,
2216                         struct page *page, void *fsdata)
2217 {
2218         struct inode *inode = mapping->host;
2219
2220         if (pos + copied > inode->i_size)
2221                 i_size_write(inode, pos + copied);
2222
2223         if (!PageUptodate(page)) {
2224                 struct page *head = compound_head(page);
2225                 if (PageTransCompound(page)) {
2226                         int i;
2227
2228                         for (i = 0; i < HPAGE_PMD_NR; i++) {
2229                                 if (head + i == page)
2230                                         continue;
2231                                 clear_highpage(head + i);
2232                                 flush_dcache_page(head + i);
2233                         }
2234                 }
2235                 if (copied < PAGE_SIZE) {
2236                         unsigned from = pos & (PAGE_SIZE - 1);
2237                         zero_user_segments(page, 0, from,
2238                                         from + copied, PAGE_SIZE);
2239                 }
2240                 SetPageUptodate(head);
2241         }
2242         set_page_dirty(page);
2243         unlock_page(page);
2244         put_page(page);
2245
2246         return copied;
2247 }
2248
2249 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
2250 {
2251         struct file *file = iocb->ki_filp;
2252         struct inode *inode = file_inode(file);
2253         struct address_space *mapping = inode->i_mapping;
2254         pgoff_t index;
2255         unsigned long offset;
2256         enum sgp_type sgp = SGP_READ;
2257         int error = 0;
2258         ssize_t retval = 0;
2259         loff_t *ppos = &iocb->ki_pos;
2260
2261         /*
2262          * Might this read be for a stacking filesystem?  Then when reading
2263          * holes of a sparse file, we actually need to allocate those pages,
2264          * and even mark them dirty, so it cannot exceed the max_blocks limit.
2265          */
2266         if (!iter_is_iovec(to))
2267                 sgp = SGP_CACHE;
2268
2269         index = *ppos >> PAGE_SHIFT;
2270         offset = *ppos & ~PAGE_MASK;
2271
2272         for (;;) {
2273                 struct page *page = NULL;
2274                 pgoff_t end_index;
2275                 unsigned long nr, ret;
2276                 loff_t i_size = i_size_read(inode);
2277
2278                 end_index = i_size >> PAGE_SHIFT;
2279                 if (index > end_index)
2280                         break;
2281                 if (index == end_index) {
2282                         nr = i_size & ~PAGE_MASK;
2283                         if (nr <= offset)
2284                                 break;
2285                 }
2286
2287                 error = shmem_getpage(inode, index, &page, sgp);
2288                 if (error) {
2289                         if (error == -EINVAL)
2290                                 error = 0;
2291                         break;
2292                 }
2293                 if (page) {
2294                         if (sgp == SGP_CACHE)
2295                                 set_page_dirty(page);
2296                         unlock_page(page);
2297                 }
2298
2299                 /*
2300                  * We must evaluate after, since reads (unlike writes)
2301                  * are called without i_mutex protection against truncate
2302                  */
2303                 nr = PAGE_SIZE;
2304                 i_size = i_size_read(inode);
2305                 end_index = i_size >> PAGE_SHIFT;
2306                 if (index == end_index) {
2307                         nr = i_size & ~PAGE_MASK;
2308                         if (nr <= offset) {
2309                                 if (page)
2310                                         put_page(page);
2311                                 break;
2312                         }
2313                 }
2314                 nr -= offset;
2315
2316                 if (page) {
2317                         /*
2318                          * If users can be writing to this page using arbitrary
2319                          * virtual addresses, take care about potential aliasing
2320                          * before reading the page on the kernel side.
2321                          */
2322                         if (mapping_writably_mapped(mapping))
2323                                 flush_dcache_page(page);
2324                         /*
2325                          * Mark the page accessed if we read the beginning.
2326                          */
2327                         if (!offset)
2328                                 mark_page_accessed(page);
2329                 } else {
2330                         page = ZERO_PAGE(0);
2331                         get_page(page);
2332                 }
2333
2334                 /*
2335                  * Ok, we have the page, and it's up-to-date, so
2336                  * now we can copy it to user space...
2337                  */
2338                 ret = copy_page_to_iter(page, offset, nr, to);
2339                 retval += ret;
2340                 offset += ret;
2341                 index += offset >> PAGE_SHIFT;
2342                 offset &= ~PAGE_MASK;
2343
2344                 put_page(page);
2345                 if (!iov_iter_count(to))
2346                         break;
2347                 if (ret < nr) {
2348                         error = -EFAULT;
2349                         break;
2350                 }
2351                 cond_resched();
2352         }
2353
2354         *ppos = ((loff_t) index << PAGE_SHIFT) + offset;
2355         file_accessed(file);
2356         return retval ? retval : error;
2357 }
2358
2359 /*
2360  * llseek SEEK_DATA or SEEK_HOLE through the radix_tree.
2361  */
2362 static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
2363                                     pgoff_t index, pgoff_t end, int whence)
2364 {
2365         struct page *page;
2366         struct pagevec pvec;
2367         pgoff_t indices[PAGEVEC_SIZE];
2368         bool done = false;
2369         int i;
2370
2371         pagevec_init(&pvec, 0);
2372         pvec.nr = 1;            /* start small: we may be there already */
2373         while (!done) {
2374                 pvec.nr = find_get_entries(mapping, index,
2375                                         pvec.nr, pvec.pages, indices);
2376                 if (!pvec.nr) {
2377                         if (whence == SEEK_DATA)
2378                                 index = end;
2379                         break;
2380                 }
2381                 for (i = 0; i < pvec.nr; i++, index++) {
2382                         if (index < indices[i]) {
2383                                 if (whence == SEEK_HOLE) {
2384                                         done = true;
2385                                         break;
2386                                 }
2387                                 index = indices[i];
2388                         }
2389                         page = pvec.pages[i];
2390                         if (page && !radix_tree_exceptional_entry(page)) {
2391                                 if (!PageUptodate(page))
2392                                         page = NULL;
2393                         }
2394                         if (index >= end ||
2395                             (page && whence == SEEK_DATA) ||
2396                             (!page && whence == SEEK_HOLE)) {
2397                                 done = true;
2398                                 break;
2399                         }
2400                 }
2401                 pagevec_remove_exceptionals(&pvec);
2402                 pagevec_release(&pvec);
2403                 pvec.nr = PAGEVEC_SIZE;
2404                 cond_resched();
2405         }
2406         return index;
2407 }
2408
2409 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
2410 {
2411         struct address_space *mapping = file->f_mapping;
2412         struct inode *inode = mapping->host;
2413         pgoff_t start, end;
2414         loff_t new_offset;
2415
2416         if (whence != SEEK_DATA && whence != SEEK_HOLE)
2417                 return generic_file_llseek_size(file, offset, whence,
2418                                         MAX_LFS_FILESIZE, i_size_read(inode));
2419         inode_lock(inode);
2420         /* We're holding i_mutex so we can access i_size directly */
2421
2422         if (offset < 0 || offset >= inode->i_size)
2423                 offset = -ENXIO;
2424         else {
2425                 start = offset >> PAGE_SHIFT;
2426                 end = (inode->i_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
2427                 new_offset = shmem_seek_hole_data(mapping, start, end, whence);
2428                 new_offset <<= PAGE_SHIFT;
2429                 if (new_offset > offset) {
2430                         if (new_offset < inode->i_size)
2431                                 offset = new_offset;
2432                         else if (whence == SEEK_DATA)
2433                                 offset = -ENXIO;
2434                         else
2435                                 offset = inode->i_size;
2436                 }
2437         }
2438
2439         if (offset >= 0)
2440                 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
2441         inode_unlock(inode);
2442         return offset;
2443 }
2444
2445 /*
2446  * We need a tag: a new tag would expand every radix_tree_node by 8 bytes,
2447  * so reuse a tag which we firmly believe is never set or cleared on shmem.
2448  */
2449 #define SHMEM_TAG_PINNED        PAGECACHE_TAG_TOWRITE
2450 #define LAST_SCAN               4       /* about 150ms max */
2451
2452 static void shmem_tag_pins(struct address_space *mapping)
2453 {
2454         struct radix_tree_iter iter;
2455         void **slot;
2456         pgoff_t start;
2457         struct page *page;
2458
2459         lru_add_drain();
2460         start = 0;
2461         rcu_read_lock();
2462
2463         radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
2464                 page = radix_tree_deref_slot(slot);
2465                 if (!page || radix_tree_exception(page)) {
2466                         if (radix_tree_deref_retry(page)) {
2467                                 slot = radix_tree_iter_retry(&iter);
2468                                 continue;
2469                         }
2470                 } else if (page_count(page) - page_mapcount(page) > 1) {
2471                         spin_lock_irq(&mapping->tree_lock);
2472                         radix_tree_tag_set(&mapping->page_tree, iter.index,
2473                                            SHMEM_TAG_PINNED);
2474                         spin_unlock_irq(&mapping->tree_lock);
2475                 }
2476
2477                 if (need_resched()) {
2478                         cond_resched_rcu();
2479                         slot = radix_tree_iter_next(&iter);
2480                 }
2481         }
2482         rcu_read_unlock();
2483 }
2484
2485 /*
2486  * Setting SEAL_WRITE requires us to verify there's no pending writer. However,
2487  * via get_user_pages(), drivers might have some pending I/O without any active
2488  * user-space mappings (eg., direct-IO, AIO). Therefore, we look at all pages
2489  * and see whether it has an elevated ref-count. If so, we tag them and wait for
2490  * them to be dropped.
2491  * The caller must guarantee that no new user will acquire writable references
2492  * to those pages to avoid races.
2493  */
2494 static int shmem_wait_for_pins(struct address_space *mapping)
2495 {
2496         struct radix_tree_iter iter;
2497         void **slot;
2498         pgoff_t start;
2499         struct page *page;
2500         int error, scan;
2501
2502         shmem_tag_pins(mapping);
2503
2504         error = 0;
2505         for (scan = 0; scan <= LAST_SCAN; scan++) {
2506                 if (!radix_tree_tagged(&mapping->page_tree, SHMEM_TAG_PINNED))
2507                         break;
2508
2509                 if (!scan)
2510                         lru_add_drain_all();
2511                 else if (schedule_timeout_killable((HZ << scan) / 200))
2512                         scan = LAST_SCAN;
2513
2514                 start = 0;
2515                 rcu_read_lock();
2516                 radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter,
2517                                            start, SHMEM_TAG_PINNED) {
2518
2519                         page = radix_tree_deref_slot(slot);
2520                         if (radix_tree_exception(page)) {
2521                                 if (radix_tree_deref_retry(page)) {
2522                                         slot = radix_tree_iter_retry(&iter);
2523                                         continue;
2524                                 }
2525
2526                                 page = NULL;
2527                         }
2528
2529                         if (page &&
2530                             page_count(page) - page_mapcount(page) != 1) {
2531                                 if (scan < LAST_SCAN)
2532                                         goto continue_resched;
2533
2534                                 /*
2535                                  * On the last scan, we clean up all those tags
2536                                  * we inserted; but make a note that we still
2537                                  * found pages pinned.
2538                                  */
2539                                 error = -EBUSY;
2540                         }
2541
2542                         spin_lock_irq(&mapping->tree_lock);
2543                         radix_tree_tag_clear(&mapping->page_tree,
2544                                              iter.index, SHMEM_TAG_PINNED);
2545                         spin_unlock_irq(&mapping->tree_lock);
2546 continue_resched:
2547                         if (need_resched()) {
2548                                 cond_resched_rcu();
2549                                 slot = radix_tree_iter_next(&iter);
2550                         }
2551                 }
2552                 rcu_read_unlock();
2553         }
2554
2555         return error;
2556 }
2557
2558 #define F_ALL_SEALS (F_SEAL_SEAL | \
2559                      F_SEAL_SHRINK | \
2560                      F_SEAL_GROW | \
2561                      F_SEAL_WRITE)
2562
2563 int shmem_add_seals(struct file *file, unsigned int seals)
2564 {
2565         struct inode *inode = file_inode(file);
2566         struct shmem_inode_info *info = SHMEM_I(inode);
2567         int error;
2568
2569         /*
2570          * SEALING
2571          * Sealing allows multiple parties to share a shmem-file but restrict
2572          * access to a specific subset of file operations. Seals can only be
2573          * added, but never removed. This way, mutually untrusted parties can
2574          * share common memory regions with a well-defined policy. A malicious
2575          * peer can thus never perform unwanted operations on a shared object.
2576          *
2577          * Seals are only supported on special shmem-files and always affect
2578          * the whole underlying inode. Once a seal is set, it may prevent some
2579          * kinds of access to the file. Currently, the following seals are
2580          * defined:
2581          *   SEAL_SEAL: Prevent further seals from being set on this file
2582          *   SEAL_SHRINK: Prevent the file from shrinking
2583          *   SEAL_GROW: Prevent the file from growing
2584          *   SEAL_WRITE: Prevent write access to the file
2585          *
2586          * As we don't require any trust relationship between two parties, we
2587          * must prevent seals from being removed. Therefore, sealing a file
2588          * only adds a given set of seals to the file, it never touches
2589          * existing seals. Furthermore, the "setting seals"-operation can be
2590          * sealed itself, which basically prevents any further seal from being
2591          * added.
2592          *
2593          * Semantics of sealing are only defined on volatile files. Only
2594          * anonymous shmem files support sealing. More importantly, seals are
2595          * never written to disk. Therefore, there's no plan to support it on
2596          * other file types.
2597          */
2598
2599         if (file->f_op != &shmem_file_operations)
2600                 return -EINVAL;
2601         if (!(file->f_mode & FMODE_WRITE))
2602                 return -EPERM;
2603         if (seals & ~(unsigned int)F_ALL_SEALS)
2604                 return -EINVAL;
2605
2606         inode_lock(inode);
2607
2608         if (info->seals & F_SEAL_SEAL) {
2609                 error = -EPERM;
2610                 goto unlock;
2611         }
2612
2613         if ((seals & F_SEAL_WRITE) && !(info->seals & F_SEAL_WRITE)) {
2614                 error = mapping_deny_writable(file->f_mapping);
2615                 if (error)
2616                         goto unlock;
2617
2618                 error = shmem_wait_for_pins(file->f_mapping);
2619                 if (error) {
2620                         mapping_allow_writable(file->f_mapping);
2621                         goto unlock;
2622                 }
2623         }
2624
2625         info->seals |= seals;
2626         error = 0;
2627
2628 unlock:
2629         inode_unlock(inode);
2630         return error;
2631 }
2632 EXPORT_SYMBOL_GPL(shmem_add_seals);
2633
2634 int shmem_get_seals(struct file *file)
2635 {
2636         if (file->f_op != &shmem_file_operations)
2637                 return -EINVAL;
2638
2639         return SHMEM_I(file_inode(file))->seals;
2640 }
2641 EXPORT_SYMBOL_GPL(shmem_get_seals);
2642
2643 long shmem_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
2644 {
2645         long error;
2646
2647         switch (cmd) {
2648         case F_ADD_SEALS:
2649                 /* disallow upper 32bit */
2650                 if (arg > UINT_MAX)
2651                         return -EINVAL;
2652
2653                 error = shmem_add_seals(file, arg);
2654                 break;
2655         case F_GET_SEALS:
2656                 error = shmem_get_seals(file);
2657                 break;
2658         default:
2659                 error = -EINVAL;
2660                 break;
2661         }
2662
2663         return error;
2664 }
2665
2666 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2667                                                          loff_t len)
2668 {
2669         struct inode *inode = file_inode(file);
2670         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2671         struct shmem_inode_info *info = SHMEM_I(inode);
2672         struct shmem_falloc shmem_falloc;
2673         pgoff_t start, index, end;
2674         int error;
2675
2676         if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2677                 return -EOPNOTSUPP;
2678
2679         inode_lock(inode);
2680
2681         if (mode & FALLOC_FL_PUNCH_HOLE) {
2682                 struct address_space *mapping = file->f_mapping;
2683                 loff_t unmap_start = round_up(offset, PAGE_SIZE);
2684                 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
2685                 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
2686
2687                 /* protected by i_mutex */
2688                 if (info->seals & F_SEAL_WRITE) {
2689                         error = -EPERM;
2690                         goto out;
2691                 }
2692
2693                 shmem_falloc.waitq = &shmem_falloc_waitq;
2694                 shmem_falloc.start = unmap_start >> PAGE_SHIFT;
2695                 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2696                 spin_lock(&inode->i_lock);
2697                 inode->i_private = &shmem_falloc;
2698                 spin_unlock(&inode->i_lock);
2699
2700                 if ((u64)unmap_end > (u64)unmap_start)
2701                         unmap_mapping_range(mapping, unmap_start,
2702                                             1 + unmap_end - unmap_start, 0);
2703                 shmem_truncate_range(inode, offset, offset + len - 1);
2704                 /* No need to unmap again: hole-punching leaves COWed pages */
2705
2706                 spin_lock(&inode->i_lock);
2707                 inode->i_private = NULL;
2708                 wake_up_all(&shmem_falloc_waitq);
2709                 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.task_list));
2710                 spin_unlock(&inode->i_lock);
2711                 error = 0;
2712                 goto out;
2713         }
2714
2715         /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2716         error = inode_newsize_ok(inode, offset + len);
2717         if (error)
2718                 goto out;
2719
2720         if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2721                 error = -EPERM;
2722                 goto out;
2723         }
2724
2725         start = offset >> PAGE_SHIFT;
2726         end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
2727         /* Try to avoid a swapstorm if len is impossible to satisfy */
2728         if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2729                 error = -ENOSPC;
2730                 goto out;
2731         }
2732
2733         shmem_falloc.waitq = NULL;
2734         shmem_falloc.start = start;
2735         shmem_falloc.next  = start;
2736         shmem_falloc.nr_falloced = 0;
2737         shmem_falloc.nr_unswapped = 0;
2738         spin_lock(&inode->i_lock);
2739         inode->i_private = &shmem_falloc;
2740         spin_unlock(&inode->i_lock);
2741
2742         for (index = start; index < end; index++) {
2743                 struct page *page;
2744
2745                 /*
2746                  * Good, the fallocate(2) manpage permits EINTR: we may have
2747                  * been interrupted because we are using up too much memory.
2748                  */
2749                 if (signal_pending(current))
2750                         error = -EINTR;
2751                 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2752                         error = -ENOMEM;
2753                 else
2754                         error = shmem_getpage(inode, index, &page, SGP_FALLOC);
2755                 if (error) {
2756                         /* Remove the !PageUptodate pages we added */
2757                         if (index > start) {
2758                                 shmem_undo_range(inode,
2759                                     (loff_t)start << PAGE_SHIFT,
2760                                     ((loff_t)index << PAGE_SHIFT) - 1, true);
2761                         }
2762                         goto undone;
2763                 }
2764
2765                 /*
2766                  * Inform shmem_writepage() how far we have reached.
2767                  * No need for lock or barrier: we have the page lock.
2768                  */
2769                 shmem_falloc.next++;
2770                 if (!PageUptodate(page))
2771                         shmem_falloc.nr_falloced++;
2772
2773                 /*
2774                  * If !PageUptodate, leave it that way so that freeable pages
2775                  * can be recognized if we need to rollback on error later.
2776                  * But set_page_dirty so that memory pressure will swap rather
2777                  * than free the pages we are allocating (and SGP_CACHE pages
2778                  * might still be clean: we now need to mark those dirty too).
2779                  */
2780                 set_page_dirty(page);
2781                 unlock_page(page);
2782                 put_page(page);
2783                 cond_resched();
2784         }
2785
2786         if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2787                 i_size_write(inode, offset + len);
2788         inode->i_ctime = current_time(inode);
2789 undone:
2790         spin_lock(&inode->i_lock);
2791         inode->i_private = NULL;
2792         spin_unlock(&inode->i_lock);
2793 out:
2794         inode_unlock(inode);
2795         return error;
2796 }
2797
2798 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
2799 {
2800         struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
2801
2802         buf->f_type = TMPFS_MAGIC;
2803         buf->f_bsize = PAGE_SIZE;
2804         buf->f_namelen = NAME_MAX;
2805         if (sbinfo->max_blocks) {
2806                 buf->f_blocks = sbinfo->max_blocks;
2807                 buf->f_bavail =
2808                 buf->f_bfree  = sbinfo->max_blocks -
2809                                 percpu_counter_sum(&sbinfo->used_blocks);
2810         }
2811         if (sbinfo->max_inodes) {
2812                 buf->f_files = sbinfo->max_inodes;
2813                 buf->f_ffree = sbinfo->free_inodes;
2814         }
2815         /* else leave those fields 0 like simple_statfs */
2816         return 0;
2817 }
2818
2819 /*
2820  * File creation. Allocate an inode, and we're done..
2821  */
2822 static int
2823 shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2824 {
2825         struct inode *inode;
2826         int error = -ENOSPC;
2827
2828         inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
2829         if (inode) {
2830                 error = simple_acl_create(dir, inode);
2831                 if (error)
2832                         goto out_iput;
2833                 error = security_inode_init_security(inode, dir,
2834                                                      &dentry->d_name,
2835                                                      shmem_initxattrs, NULL);
2836                 if (error && error != -EOPNOTSUPP)
2837                         goto out_iput;
2838
2839                 error = 0;
2840                 dir->i_size += BOGO_DIRENT_SIZE;
2841                 dir->i_ctime = dir->i_mtime = current_time(dir);
2842                 d_instantiate(dentry, inode);
2843                 dget(dentry); /* Extra count - pin the dentry in core */
2844         }
2845         return error;
2846 out_iput:
2847         iput(inode);
2848         return error;
2849 }
2850
2851 static int
2852 shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
2853 {
2854         struct inode *inode;
2855         int error = -ENOSPC;
2856
2857         inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2858         if (inode) {
2859                 error = security_inode_init_security(inode, dir,
2860                                                      NULL,
2861                                                      shmem_initxattrs, NULL);
2862                 if (error && error != -EOPNOTSUPP)
2863                         goto out_iput;
2864                 error = simple_acl_create(dir, inode);
2865                 if (error)
2866                         goto out_iput;
2867                 d_tmpfile(dentry, inode);
2868         }
2869         return error;
2870 out_iput:
2871         iput(inode);
2872         return error;
2873 }
2874
2875 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
2876 {
2877         int error;
2878
2879         if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
2880                 return error;
2881         inc_nlink(dir);
2882         return 0;
2883 }
2884
2885 static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2886                 bool excl)
2887 {
2888         return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
2889 }
2890
2891 /*
2892  * Link a file..
2893  */
2894 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2895 {
2896         struct inode *inode = d_inode(old_dentry);
2897         int ret;
2898
2899         /*
2900          * No ordinary (disk based) filesystem counts links as inodes;
2901          * but each new link needs a new dentry, pinning lowmem, and
2902          * tmpfs dentries cannot be pruned until they are unlinked.
2903          */
2904         ret = shmem_reserve_inode(inode->i_sb);
2905         if (ret)
2906                 goto out;
2907
2908         dir->i_size += BOGO_DIRENT_SIZE;
2909         inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
2910         inc_nlink(inode);
2911         ihold(inode);   /* New dentry reference */
2912         dget(dentry);           /* Extra pinning count for the created dentry */
2913         d_instantiate(dentry, inode);
2914 out:
2915         return ret;
2916 }
2917
2918 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2919 {
2920         struct inode *inode = d_inode(dentry);
2921
2922         if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2923                 shmem_free_inode(inode->i_sb);
2924
2925         dir->i_size -= BOGO_DIRENT_SIZE;
2926         inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
2927         drop_nlink(inode);
2928         dput(dentry);   /* Undo the count from "create" - this does all the work */
2929         return 0;
2930 }
2931
2932 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
2933 {
2934         if (!simple_empty(dentry))
2935                 return -ENOTEMPTY;
2936
2937         drop_nlink(d_inode(dentry));
2938         drop_nlink(dir);
2939         return shmem_unlink(dir, dentry);
2940 }
2941
2942 static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
2943 {
2944         bool old_is_dir = d_is_dir(old_dentry);
2945         bool new_is_dir = d_is_dir(new_dentry);
2946
2947         if (old_dir != new_dir && old_is_dir != new_is_dir) {
2948                 if (old_is_dir) {
2949                         drop_nlink(old_dir);
2950                         inc_nlink(new_dir);
2951                 } else {
2952                         drop_nlink(new_dir);
2953                         inc_nlink(old_dir);
2954                 }
2955         }
2956         old_dir->i_ctime = old_dir->i_mtime =
2957         new_dir->i_ctime = new_dir->i_mtime =
2958         d_inode(old_dentry)->i_ctime =
2959         d_inode(new_dentry)->i_ctime = current_time(old_dir);
2960
2961         return 0;
2962 }
2963
2964 static int shmem_whiteout(struct inode *old_dir, struct dentry *old_dentry)
2965 {
2966         struct dentry *whiteout;
2967         int error;
2968
2969         whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
2970         if (!whiteout)
2971                 return -ENOMEM;
2972
2973         error = shmem_mknod(old_dir, whiteout,
2974                             S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
2975         dput(whiteout);
2976         if (error)
2977                 return error;
2978
2979         /*
2980          * Cheat and hash the whiteout while the old dentry is still in
2981          * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
2982          *
2983          * d_lookup() will consistently find one of them at this point,
2984          * not sure which one, but that isn't even important.
2985          */
2986         d_rehash(whiteout);
2987         return 0;
2988 }
2989
2990 /*
2991  * The VFS layer already does all the dentry stuff for rename,
2992  * we just have to decrement the usage count for the target if
2993  * it exists so that the VFS layer correctly free's it when it
2994  * gets overwritten.
2995  */
2996 static int shmem_rename2(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags)
2997 {
2998         struct inode *inode = d_inode(old_dentry);
2999         int they_are_dirs = S_ISDIR(inode->i_mode);
3000
3001         if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
3002                 return -EINVAL;
3003
3004         if (flags & RENAME_EXCHANGE)
3005                 return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry);
3006
3007         if (!simple_empty(new_dentry))
3008                 return -ENOTEMPTY;
3009
3010         if (flags & RENAME_WHITEOUT) {
3011                 int error;
3012
3013                 error = shmem_whiteout(old_dir, old_dentry);
3014                 if (error)
3015                         return error;
3016         }
3017
3018         if (d_really_is_positive(new_dentry)) {
3019                 (void) shmem_unlink(new_dir, new_dentry);
3020                 if (they_are_dirs) {
3021                         drop_nlink(d_inode(new_dentry));
3022                         drop_nlink(old_dir);
3023                 }
3024         } else if (they_are_dirs) {
3025                 drop_nlink(old_dir);
3026                 inc_nlink(new_dir);
3027         }
3028
3029         old_dir->i_size -= BOGO_DIRENT_SIZE;
3030         new_dir->i_size += BOGO_DIRENT_SIZE;
3031         old_dir->i_ctime = old_dir->i_mtime =
3032         new_dir->i_ctime = new_dir->i_mtime =
3033         inode->i_ctime = current_time(old_dir);
3034         return 0;
3035 }
3036
3037 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
3038 {
3039         int error;
3040         int len;
3041         struct inode *inode;
3042         struct page *page;
3043         struct shmem_inode_info *info;
3044
3045         len = strlen(symname) + 1;
3046         if (len > PAGE_SIZE)
3047                 return -ENAMETOOLONG;
3048
3049         inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
3050         if (!inode)
3051                 return -ENOSPC;
3052
3053         error = security_inode_init_security(inode, dir, &dentry->d_name,
3054                                              shmem_initxattrs, NULL);
3055         if (error) {
3056                 if (error != -EOPNOTSUPP) {
3057                         iput(inode);
3058                         return error;
3059                 }
3060                 error = 0;
3061         }
3062
3063         info = SHMEM_I(inode);
3064         inode->i_size = len-1;
3065         if (len <= SHORT_SYMLINK_LEN) {
3066                 inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3067                 if (!inode->i_link) {
3068                         iput(inode);
3069                         return -ENOMEM;
3070                 }
3071                 inode->i_op = &shmem_short_symlink_operations;
3072         } else {
3073                 inode_nohighmem(inode);
3074                 error = shmem_getpage(inode, 0, &page, SGP_WRITE);
3075                 if (error) {
3076                         iput(inode);
3077                         return error;
3078                 }
3079                 inode->i_mapping->a_ops = &shmem_aops;
3080                 inode->i_op = &shmem_symlink_inode_operations;
3081                 memcpy(page_address(page), symname, len);
3082                 SetPageUptodate(page);
3083                 set_page_dirty(page);
3084                 unlock_page(page);
3085                 put_page(page);
3086         }
3087         dir->i_size += BOGO_DIRENT_SIZE;
3088         dir->i_ctime = dir->i_mtime = current_time(dir);
3089         d_instantiate(dentry, inode);
3090         dget(dentry);
3091         return 0;
3092 }
3093
3094 static void shmem_put_link(void *arg)
3095 {
3096         mark_page_accessed(arg);
3097         put_page(arg);
3098 }
3099
3100 static const char *shmem_get_link(struct dentry *dentry,
3101                                   struct inode *inode,
3102                                   struct delayed_call *done)
3103 {
3104         struct page *page = NULL;
3105         int error;
3106         if (!dentry) {
3107                 page = find_get_page(inode->i_mapping, 0);
3108                 if (!page)
3109                         return ERR_PTR(-ECHILD);
3110                 if (!PageUptodate(page)) {
3111                         put_page(page);
3112                         return ERR_PTR(-ECHILD);
3113                 }
3114         } else {
3115                 error = shmem_getpage(inode, 0, &page, SGP_READ);
3116                 if (error)
3117                         return ERR_PTR(error);
3118                 unlock_page(page);
3119         }
3120         set_delayed_call(done, shmem_put_link, page);
3121         return page_address(page);
3122 }
3123
3124 #ifdef CONFIG_TMPFS_XATTR
3125 /*
3126  * Superblocks without xattr inode operations may get some security.* xattr
3127  * support from the LSM "for free". As soon as we have any other xattrs
3128  * like ACLs, we also need to implement the security.* handlers at
3129  * filesystem level, though.
3130  */
3131
3132 /*
3133  * Callback for security_inode_init_security() for acquiring xattrs.
3134  */
3135 static int shmem_initxattrs(struct inode *inode,
3136                             const struct xattr *xattr_array,
3137                             void *fs_info)
3138 {
3139         struct shmem_inode_info *info = SHMEM_I(inode);
3140         const struct xattr *xattr;
3141         struct simple_xattr *new_xattr;
3142         size_t len;
3143
3144         for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3145                 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
3146                 if (!new_xattr)
3147                         return -ENOMEM;
3148
3149                 len = strlen(xattr->name) + 1;
3150                 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3151                                           GFP_KERNEL);
3152                 if (!new_xattr->name) {
3153                         kfree(new_xattr);
3154                         return -ENOMEM;
3155                 }
3156
3157                 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3158                        XATTR_SECURITY_PREFIX_LEN);
3159                 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3160                        xattr->name, len);
3161
3162                 simple_xattr_list_add(&info->xattrs, new_xattr);
3163         }
3164
3165         return 0;
3166 }
3167
3168 static int shmem_xattr_handler_get(const struct xattr_handler *handler,
3169                                    struct dentry *unused, struct inode *inode,
3170                                    const char *name, void *buffer, size_t size)
3171 {
3172         struct shmem_inode_info *info = SHMEM_I(inode);
3173
3174         name = xattr_full_name(handler, name);
3175         return simple_xattr_get(&info->xattrs, name, buffer, size);
3176 }
3177
3178 static int shmem_xattr_handler_set(const struct xattr_handler *handler,
3179                                    struct dentry *unused, struct inode *inode,
3180                                    const char *name, const void *value,
3181                                    size_t size, int flags)
3182 {
3183         struct shmem_inode_info *info = SHMEM_I(inode);
3184
3185         name = xattr_full_name(handler, name);
3186         return simple_xattr_set(&info->xattrs, name, value, size, flags);
3187 }
3188
3189 static const struct xattr_handler shmem_security_xattr_handler = {
3190         .prefix = XATTR_SECURITY_PREFIX,
3191         .get = shmem_xattr_handler_get,
3192         .set = shmem_xattr_handler_set,
3193 };
3194
3195 static const struct xattr_handler shmem_trusted_xattr_handler = {
3196         .prefix = XATTR_TRUSTED_PREFIX,
3197         .get = shmem_xattr_handler_get,
3198         .set = shmem_xattr_handler_set,
3199 };
3200
3201 static const struct xattr_handler *shmem_xattr_handlers[] = {
3202 #ifdef CONFIG_TMPFS_POSIX_ACL
3203         &posix_acl_access_xattr_handler,
3204         &posix_acl_default_xattr_handler,
3205 #endif
3206         &shmem_security_xattr_handler,
3207         &shmem_trusted_xattr_handler,
3208         NULL
3209 };
3210
3211 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3212 {
3213         struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3214         return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
3215 }
3216 #endif /* CONFIG_TMPFS_XATTR */
3217
3218 static const struct inode_operations shmem_short_symlink_operations = {
3219         .readlink       = generic_readlink,
3220         .get_link       = simple_get_link,
3221 #ifdef CONFIG_TMPFS_XATTR
3222         .listxattr      = shmem_listxattr,
3223 #endif
3224 };
3225
3226 static const struct inode_operations shmem_symlink_inode_operations = {
3227         .readlink       = generic_readlink,
3228         .get_link       = shmem_get_link,
3229 #ifdef CONFIG_TMPFS_XATTR
3230         .listxattr      = shmem_listxattr,
3231 #endif
3232 };
3233
3234 static struct dentry *shmem_get_parent(struct dentry *child)
3235 {
3236         return ERR_PTR(-ESTALE);
3237 }
3238
3239 static int shmem_match(struct inode *ino, void *vfh)
3240 {
3241         __u32 *fh = vfh;
3242         __u64 inum = fh[2];
3243         inum = (inum << 32) | fh[1];
3244         return ino->i_ino == inum && fh[0] == ino->i_generation;
3245 }
3246
3247 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3248                 struct fid *fid, int fh_len, int fh_type)
3249 {
3250         struct inode *inode;
3251         struct dentry *dentry = NULL;
3252         u64 inum;
3253
3254         if (fh_len < 3)
3255                 return NULL;
3256
3257         inum = fid->raw[2];
3258         inum = (inum << 32) | fid->raw[1];
3259
3260         inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
3261                         shmem_match, fid->raw);
3262         if (inode) {
3263                 dentry = d_find_alias(inode);
3264                 iput(inode);
3265         }
3266
3267         return dentry;
3268 }
3269
3270 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3271                                 struct inode *parent)
3272 {
3273         if (*len < 3) {
3274                 *len = 3;
3275                 return FILEID_INVALID;
3276         }
3277
3278         if (inode_unhashed(inode)) {
3279                 /* Unfortunately insert_inode_hash is not idempotent,
3280                  * so as we hash inodes here rather than at creation
3281                  * time, we need a lock to ensure we only try
3282                  * to do it once
3283                  */
3284                 static DEFINE_SPINLOCK(lock);
3285                 spin_lock(&lock);
3286                 if (inode_unhashed(inode))
3287                         __insert_inode_hash(inode,
3288                                             inode->i_ino + inode->i_generation);
3289                 spin_unlock(&lock);
3290         }
3291
3292         fh[0] = inode->i_generation;
3293         fh[1] = inode->i_ino;
3294         fh[2] = ((__u64)inode->i_ino) >> 32;
3295
3296         *len = 3;
3297         return 1;
3298 }
3299
3300 static const struct export_operations shmem_export_ops = {
3301         .get_parent     = shmem_get_parent,
3302         .encode_fh      = shmem_encode_fh,
3303         .fh_to_dentry   = shmem_fh_to_dentry,
3304 };
3305
3306 static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
3307                                bool remount)
3308 {
3309         char *this_char, *value, *rest;
3310         struct mempolicy *mpol = NULL;
3311         uid_t uid;
3312         gid_t gid;
3313
3314         while (options != NULL) {
3315                 this_char = options;
3316                 for (;;) {
3317                         /*
3318                          * NUL-terminate this option: unfortunately,
3319                          * mount options form a comma-separated list,
3320                          * but mpol's nodelist may also contain commas.
3321                          */
3322                         options = strchr(options, ',');
3323                         if (options == NULL)
3324                                 break;
3325                         options++;
3326                         if (!isdigit(*options)) {
3327                                 options[-1] = '\0';
3328                                 break;
3329                         }
3330                 }
3331                 if (!*this_char)
3332                         continue;
3333                 if ((value = strchr(this_char,'=')) != NULL) {
3334                         *value++ = 0;
3335                 } else {
3336                         pr_err("tmpfs: No value for mount option '%s'\n",
3337                                this_char);
3338                         goto error;
3339                 }
3340
3341                 if (!strcmp(this_char,"size")) {
3342                         unsigned long long size;
3343                         size = memparse(value,&rest);
3344                         if (*rest == '%') {
3345                                 size <<= PAGE_SHIFT;
3346                                 size *= totalram_pages;
3347                                 do_div(size, 100);
3348                                 rest++;
3349                         }
3350                         if (*rest)
3351                                 goto bad_val;
3352                         sbinfo->max_blocks =
3353                                 DIV_ROUND_UP(size, PAGE_SIZE);
3354                 } else if (!strcmp(this_char,"nr_blocks")) {
3355                         sbinfo->max_blocks = memparse(value, &rest);
3356                         if (*rest)
3357                                 goto bad_val;
3358                 } else if (!strcmp(this_char,"nr_inodes")) {
3359                         sbinfo->max_inodes = memparse(value, &rest);
3360                         if (*rest)
3361                                 goto bad_val;
3362                 } else if (!strcmp(this_char,"mode")) {
3363                         if (remount)
3364                                 continue;
3365                         sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
3366                         if (*rest)
3367                                 goto bad_val;
3368                 } else if (!strcmp(this_char,"uid")) {
3369                         if (remount)
3370                                 continue;
3371                         uid = simple_strtoul(value, &rest, 0);
3372                         if (*rest)
3373                                 goto bad_val;
3374                         sbinfo->uid = make_kuid(current_user_ns(), uid);
3375                         if (!uid_valid(sbinfo->uid))
3376                                 goto bad_val;
3377                 } else if (!strcmp(this_char,"gid")) {
3378                         if (remount)
3379                                 continue;
3380                         gid = simple_strtoul(value, &rest, 0);
3381                         if (*rest)
3382                                 goto bad_val;
3383                         sbinfo->gid = make_kgid(current_user_ns(), gid);
3384                         if (!gid_valid(sbinfo->gid))
3385                                 goto bad_val;
3386 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3387                 } else if (!strcmp(this_char, "huge")) {
3388                         int huge;
3389                         huge = shmem_parse_huge(value);
3390                         if (huge < 0)
3391                                 goto bad_val;
3392                         if (!has_transparent_hugepage() &&
3393                                         huge != SHMEM_HUGE_NEVER)
3394                                 goto bad_val;
3395                         sbinfo->huge = huge;
3396 #endif
3397 #ifdef CONFIG_NUMA
3398                 } else if (!strcmp(this_char,"mpol")) {
3399                         mpol_put(mpol);
3400                         mpol = NULL;
3401                         if (mpol_parse_str(value, &mpol))
3402                                 goto bad_val;
3403 #endif
3404                 } else {
3405                         pr_err("tmpfs: Bad mount option %s\n", this_char);
3406                         goto error;
3407                 }
3408         }
3409         sbinfo->mpol = mpol;
3410         return 0;
3411
3412 bad_val:
3413         pr_err("tmpfs: Bad value '%s' for mount option '%s'\n",
3414                value, this_char);
3415 error:
3416         mpol_put(mpol);
3417         return 1;
3418
3419 }
3420
3421 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
3422 {
3423         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3424         struct shmem_sb_info config = *sbinfo;
3425         unsigned long inodes;
3426         int error = -EINVAL;
3427
3428         config.mpol = NULL;
3429         if (shmem_parse_options(data, &config, true))
3430                 return error;
3431
3432         spin_lock(&sbinfo->stat_lock);
3433         inodes = sbinfo->max_inodes - sbinfo->free_inodes;
3434         if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
3435                 goto out;
3436         if (config.max_inodes < inodes)
3437                 goto out;
3438         /*
3439          * Those tests disallow limited->unlimited while any are in use;
3440          * but we must separately disallow unlimited->limited, because
3441          * in that case we have no record of how much is already in use.
3442          */
3443         if (config.max_blocks && !sbinfo->max_blocks)
3444                 goto out;
3445         if (config.max_inodes && !sbinfo->max_inodes)
3446                 goto out;
3447
3448         error = 0;
3449         sbinfo->huge = config.huge;
3450         sbinfo->max_blocks  = config.max_blocks;
3451         sbinfo->max_inodes  = config.max_inodes;
3452         sbinfo->free_inodes = config.max_inodes - inodes;
3453
3454         /*
3455          * Preserve previous mempolicy unless mpol remount option was specified.
3456          */
3457         if (config.mpol) {
3458                 mpol_put(sbinfo->mpol);
3459                 sbinfo->mpol = config.mpol;     /* transfers initial ref */
3460         }
3461 out:
3462         spin_unlock(&sbinfo->stat_lock);
3463         return error;
3464 }
3465
3466 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
3467 {
3468         struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
3469
3470         if (sbinfo->max_blocks != shmem_default_max_blocks())
3471                 seq_printf(seq, ",size=%luk",
3472                         sbinfo->max_blocks << (PAGE_SHIFT - 10));
3473         if (sbinfo->max_inodes != shmem_default_max_inodes())
3474                 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
3475         if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
3476                 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
3477         if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
3478                 seq_printf(seq, ",uid=%u",
3479                                 from_kuid_munged(&init_user_ns, sbinfo->uid));
3480         if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
3481                 seq_printf(seq, ",gid=%u",
3482                                 from_kgid_munged(&init_user_ns, sbinfo->gid));
3483 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3484         /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3485         if (sbinfo->huge)
3486                 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
3487 #endif
3488         shmem_show_mpol(seq, sbinfo->mpol);
3489         return 0;
3490 }
3491
3492 #define MFD_NAME_PREFIX "memfd:"
3493 #define MFD_NAME_PREFIX_LEN (sizeof(MFD_NAME_PREFIX) - 1)
3494 #define MFD_NAME_MAX_LEN (NAME_MAX - MFD_NAME_PREFIX_LEN)
3495
3496 #define MFD_ALL_FLAGS (MFD_CLOEXEC | MFD_ALLOW_SEALING)
3497
3498 SYSCALL_DEFINE2(memfd_create,
3499                 const char __user *, uname,
3500                 unsigned int, flags)
3501 {
3502         struct shmem_inode_info *info;
3503         struct file *file;
3504         int fd, error;
3505         char *name;
3506         long len;
3507
3508         if (flags & ~(unsigned int)MFD_ALL_FLAGS)
3509                 return -EINVAL;
3510
3511         /* length includes terminating zero */
3512         len = strnlen_user(uname, MFD_NAME_MAX_LEN + 1);
3513         if (len <= 0)
3514                 return -EFAULT;
3515         if (len > MFD_NAME_MAX_LEN + 1)
3516                 return -EINVAL;
3517
3518         name = kmalloc(len + MFD_NAME_PREFIX_LEN, GFP_TEMPORARY);
3519         if (!name)
3520                 return -ENOMEM;
3521
3522         strcpy(name, MFD_NAME_PREFIX);
3523         if (copy_from_user(&name[MFD_NAME_PREFIX_LEN], uname, len)) {
3524                 error = -EFAULT;
3525                 goto err_name;
3526         }
3527
3528         /* terminating-zero may have changed after strnlen_user() returned */
3529         if (name[len + MFD_NAME_PREFIX_LEN - 1]) {
3530                 error = -EFAULT;
3531                 goto err_name;
3532         }
3533
3534         fd = get_unused_fd_flags((flags & MFD_CLOEXEC) ? O_CLOEXEC : 0);
3535         if (fd < 0) {
3536                 error = fd;
3537                 goto err_name;
3538         }
3539
3540         file = shmem_file_setup(name, 0, VM_NORESERVE);
3541         if (IS_ERR(file)) {
3542                 error = PTR_ERR(file);
3543                 goto err_fd;
3544         }
3545         info = SHMEM_I(file_inode(file));
3546         file->f_mode |= FMODE_LSEEK | FMODE_PREAD | FMODE_PWRITE;
3547         file->f_flags |= O_RDWR | O_LARGEFILE;
3548         if (flags & MFD_ALLOW_SEALING)
3549                 info->seals &= ~F_SEAL_SEAL;
3550
3551         fd_install(fd, file);
3552         kfree(name);
3553         return fd;
3554
3555 err_fd:
3556         put_unused_fd(fd);
3557 err_name:
3558         kfree(name);
3559         return error;
3560 }
3561
3562 #endif /* CONFIG_TMPFS */
3563
3564 static void shmem_put_super(struct super_block *sb)
3565 {
3566         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3567
3568         percpu_counter_destroy(&sbinfo->used_blocks);
3569         mpol_put(sbinfo->mpol);
3570         kfree(sbinfo);
3571         sb->s_fs_info = NULL;
3572 }
3573
3574 int shmem_fill_super(struct super_block *sb, void *data, int silent)
3575 {
3576         struct inode *inode;
3577         struct shmem_sb_info *sbinfo;
3578         int err = -ENOMEM;
3579
3580         /* Round up to L1_CACHE_BYTES to resist false sharing */
3581         sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
3582                                 L1_CACHE_BYTES), GFP_KERNEL);
3583         if (!sbinfo)
3584                 return -ENOMEM;
3585
3586         sbinfo->mode = S_IRWXUGO | S_ISVTX;
3587         sbinfo->uid = current_fsuid();
3588         sbinfo->gid = current_fsgid();
3589         sb->s_fs_info = sbinfo;
3590
3591 #ifdef CONFIG_TMPFS
3592         /*
3593          * Per default we only allow half of the physical ram per
3594          * tmpfs instance, limiting inodes to one per page of lowmem;
3595          * but the internal instance is left unlimited.
3596          */
3597         if (!(sb->s_flags & MS_KERNMOUNT)) {
3598                 sbinfo->max_blocks = shmem_default_max_blocks();
3599                 sbinfo->max_inodes = shmem_default_max_inodes();
3600                 if (shmem_parse_options(data, sbinfo, false)) {
3601                         err = -EINVAL;
3602                         goto failed;
3603                 }
3604         } else {
3605                 sb->s_flags |= MS_NOUSER;
3606         }
3607         sb->s_export_op = &shmem_export_ops;
3608         sb->s_flags |= MS_NOSEC;
3609 #else
3610         sb->s_flags |= MS_NOUSER;
3611 #endif
3612
3613         spin_lock_init(&sbinfo->stat_lock);
3614         if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
3615                 goto failed;
3616         sbinfo->free_inodes = sbinfo->max_inodes;
3617         spin_lock_init(&sbinfo->shrinklist_lock);
3618         INIT_LIST_HEAD(&sbinfo->shrinklist);
3619
3620         sb->s_maxbytes = MAX_LFS_FILESIZE;
3621         sb->s_blocksize = PAGE_SIZE;
3622         sb->s_blocksize_bits = PAGE_SHIFT;
3623         sb->s_magic = TMPFS_MAGIC;
3624         sb->s_op = &shmem_ops;
3625         sb->s_time_gran = 1;
3626 #ifdef CONFIG_TMPFS_XATTR
3627         sb->s_xattr = shmem_xattr_handlers;
3628 #endif
3629 #ifdef CONFIG_TMPFS_POSIX_ACL
3630         sb->s_flags |= MS_POSIXACL;
3631 #endif
3632
3633         inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
3634         if (!inode)
3635                 goto failed;
3636         inode->i_uid = sbinfo->uid;
3637         inode->i_gid = sbinfo->gid;
3638         sb->s_root = d_make_root(inode);
3639         if (!sb->s_root)
3640                 goto failed;
3641         return 0;
3642
3643 failed:
3644         shmem_put_super(sb);
3645         return err;
3646 }
3647
3648 static struct kmem_cache *shmem_inode_cachep;
3649
3650 static struct inode *shmem_alloc_inode(struct super_block *sb)
3651 {
3652         struct shmem_inode_info *info;
3653         info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
3654         if (!info)
3655                 return NULL;
3656         return &info->vfs_inode;
3657 }
3658
3659 static void shmem_destroy_callback(struct rcu_head *head)
3660 {
3661         struct inode *inode = container_of(head, struct inode, i_rcu);
3662         if (S_ISLNK(inode->i_mode))
3663                 kfree(inode->i_link);
3664         kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3665 }
3666
3667 static void shmem_destroy_inode(struct inode *inode)
3668 {
3669         if (S_ISREG(inode->i_mode))
3670                 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
3671         call_rcu(&inode->i_rcu, shmem_destroy_callback);
3672 }
3673
3674 static void shmem_init_inode(void *foo)
3675 {
3676         struct shmem_inode_info *info = foo;
3677         inode_init_once(&info->vfs_inode);
3678 }
3679
3680 static int shmem_init_inodecache(void)
3681 {
3682         shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3683                                 sizeof(struct shmem_inode_info),
3684                                 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
3685         return 0;
3686 }
3687
3688 static void shmem_destroy_inodecache(void)
3689 {
3690         kmem_cache_destroy(shmem_inode_cachep);
3691 }
3692
3693 static const struct address_space_operations shmem_aops = {
3694         .writepage      = shmem_writepage,
3695         .set_page_dirty = __set_page_dirty_no_writeback,
3696 #ifdef CONFIG_TMPFS
3697         .write_begin    = shmem_write_begin,
3698         .write_end      = shmem_write_end,
3699 #endif
3700 #ifdef CONFIG_MIGRATION
3701         .migratepage    = migrate_page,
3702 #endif
3703         .error_remove_page = generic_error_remove_page,
3704 };
3705
3706 static const struct file_operations shmem_file_operations = {
3707         .mmap           = shmem_mmap,
3708         .get_unmapped_area = shmem_get_unmapped_area,
3709 #ifdef CONFIG_TMPFS
3710         .llseek         = shmem_file_llseek,
3711         .read_iter      = shmem_file_read_iter,
3712         .write_iter     = generic_file_write_iter,
3713         .fsync          = noop_fsync,
3714         .splice_read    = generic_file_splice_read,
3715         .splice_write   = iter_file_splice_write,
3716         .fallocate      = shmem_fallocate,
3717 #endif
3718 };
3719
3720 static const struct inode_operations shmem_inode_operations = {
3721         .getattr        = shmem_getattr,
3722         .setattr        = shmem_setattr,
3723 #ifdef CONFIG_TMPFS_XATTR
3724         .listxattr      = shmem_listxattr,
3725         .set_acl        = simple_set_acl,
3726 #endif
3727 };
3728
3729 static const struct inode_operations shmem_dir_inode_operations = {
3730 #ifdef CONFIG_TMPFS
3731         .create         = shmem_create,
3732         .lookup         = simple_lookup,
3733         .link           = shmem_link,
3734         .unlink         = shmem_unlink,
3735         .symlink        = shmem_symlink,
3736         .mkdir          = shmem_mkdir,
3737         .rmdir          = shmem_rmdir,
3738         .mknod          = shmem_mknod,
3739         .rename         = shmem_rename2,
3740         .tmpfile        = shmem_tmpfile,
3741 #endif
3742 #ifdef CONFIG_TMPFS_XATTR
3743         .listxattr      = shmem_listxattr,
3744 #endif
3745 #ifdef CONFIG_TMPFS_POSIX_ACL
3746         .setattr        = shmem_setattr,
3747         .set_acl        = simple_set_acl,
3748 #endif
3749 };
3750
3751 static const struct inode_operations shmem_special_inode_operations = {
3752 #ifdef CONFIG_TMPFS_XATTR
3753         .listxattr      = shmem_listxattr,
3754 #endif
3755 #ifdef CONFIG_TMPFS_POSIX_ACL
3756         .setattr        = shmem_setattr,
3757         .set_acl        = simple_set_acl,
3758 #endif
3759 };
3760
3761 static const struct super_operations shmem_ops = {
3762         .alloc_inode    = shmem_alloc_inode,
3763         .destroy_inode  = shmem_destroy_inode,
3764 #ifdef CONFIG_TMPFS
3765         .statfs         = shmem_statfs,
3766         .remount_fs     = shmem_remount_fs,
3767         .show_options   = shmem_show_options,
3768 #endif
3769         .evict_inode    = shmem_evict_inode,
3770         .drop_inode     = generic_delete_inode,
3771         .put_super      = shmem_put_super,
3772 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3773         .nr_cached_objects      = shmem_unused_huge_count,
3774         .free_cached_objects    = shmem_unused_huge_scan,
3775 #endif
3776 };
3777
3778 static const struct vm_operations_struct shmem_vm_ops = {
3779         .fault          = shmem_fault,
3780         .map_pages      = filemap_map_pages,
3781 #ifdef CONFIG_NUMA
3782         .set_policy     = shmem_set_policy,
3783         .get_policy     = shmem_get_policy,
3784 #endif
3785 };
3786
3787 static struct dentry *shmem_mount(struct file_system_type *fs_type,
3788         int flags, const char *dev_name, void *data)
3789 {
3790         return mount_nodev(fs_type, flags, data, shmem_fill_super);
3791 }
3792
3793 static struct file_system_type shmem_fs_type = {
3794         .owner          = THIS_MODULE,
3795         .name           = "tmpfs",
3796         .mount          = shmem_mount,
3797         .kill_sb        = kill_litter_super,
3798         .fs_flags       = FS_USERNS_MOUNT,
3799 };
3800
3801 int __init shmem_init(void)
3802 {
3803         int error;
3804
3805         /* If rootfs called this, don't re-init */
3806         if (shmem_inode_cachep)
3807                 return 0;
3808
3809         error = shmem_init_inodecache();
3810         if (error)
3811                 goto out3;
3812
3813         error = register_filesystem(&shmem_fs_type);
3814         if (error) {
3815                 pr_err("Could not register tmpfs\n");
3816                 goto out2;
3817         }
3818
3819         shm_mnt = kern_mount(&shmem_fs_type);
3820         if (IS_ERR(shm_mnt)) {
3821                 error = PTR_ERR(shm_mnt);
3822                 pr_err("Could not kern_mount tmpfs\n");
3823                 goto out1;
3824         }
3825
3826 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3827         if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
3828                 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3829         else
3830                 shmem_huge = 0; /* just in case it was patched */
3831 #endif
3832         return 0;
3833
3834 out1:
3835         unregister_filesystem(&shmem_fs_type);
3836 out2:
3837         shmem_destroy_inodecache();
3838 out3:
3839         shm_mnt = ERR_PTR(error);
3840         return error;
3841 }
3842
3843 #if defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE) && defined(CONFIG_SYSFS)
3844 static ssize_t shmem_enabled_show(struct kobject *kobj,
3845                 struct kobj_attribute *attr, char *buf)
3846 {
3847         int values[] = {
3848                 SHMEM_HUGE_ALWAYS,
3849                 SHMEM_HUGE_WITHIN_SIZE,
3850                 SHMEM_HUGE_ADVISE,
3851                 SHMEM_HUGE_NEVER,
3852                 SHMEM_HUGE_DENY,
3853                 SHMEM_HUGE_FORCE,
3854         };
3855         int i, count;
3856
3857         for (i = 0, count = 0; i < ARRAY_SIZE(values); i++) {
3858                 const char *fmt = shmem_huge == values[i] ? "[%s] " : "%s ";
3859
3860                 count += sprintf(buf + count, fmt,
3861                                 shmem_format_huge(values[i]));
3862         }
3863         buf[count - 1] = '\n';
3864         return count;
3865 }
3866
3867 static ssize_t shmem_enabled_store(struct kobject *kobj,
3868                 struct kobj_attribute *attr, const char *buf, size_t count)
3869 {
3870         char tmp[16];
3871         int huge;
3872
3873         if (count + 1 > sizeof(tmp))
3874                 return -EINVAL;
3875         memcpy(tmp, buf, count);
3876         tmp[count] = '\0';
3877         if (count && tmp[count - 1] == '\n')
3878                 tmp[count - 1] = '\0';
3879
3880         huge = shmem_parse_huge(tmp);
3881         if (huge == -EINVAL)
3882                 return -EINVAL;
3883         if (!has_transparent_hugepage() &&
3884                         huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
3885                 return -EINVAL;
3886
3887         shmem_huge = huge;
3888         if (shmem_huge > SHMEM_HUGE_DENY)
3889                 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3890         return count;
3891 }
3892
3893 struct kobj_attribute shmem_enabled_attr =
3894         __ATTR(shmem_enabled, 0644, shmem_enabled_show, shmem_enabled_store);
3895 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE && CONFIG_SYSFS */
3896
3897 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3898 bool shmem_huge_enabled(struct vm_area_struct *vma)
3899 {
3900         struct inode *inode = file_inode(vma->vm_file);
3901         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
3902         loff_t i_size;
3903         pgoff_t off;
3904
3905         if (shmem_huge == SHMEM_HUGE_FORCE)
3906                 return true;
3907         if (shmem_huge == SHMEM_HUGE_DENY)
3908                 return false;
3909         switch (sbinfo->huge) {
3910                 case SHMEM_HUGE_NEVER:
3911                         return false;
3912                 case SHMEM_HUGE_ALWAYS:
3913                         return true;
3914                 case SHMEM_HUGE_WITHIN_SIZE:
3915                         off = round_up(vma->vm_pgoff, HPAGE_PMD_NR);
3916                         i_size = round_up(i_size_read(inode), PAGE_SIZE);
3917                         if (i_size >= HPAGE_PMD_SIZE &&
3918                                         i_size >> PAGE_SHIFT >= off)
3919                                 return true;
3920                 case SHMEM_HUGE_ADVISE:
3921                         /* TODO: implement fadvise() hints */
3922                         return (vma->vm_flags & VM_HUGEPAGE);
3923                 default:
3924                         VM_BUG_ON(1);
3925                         return false;
3926         }
3927 }
3928 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */
3929
3930 #else /* !CONFIG_SHMEM */
3931
3932 /*
3933  * tiny-shmem: simple shmemfs and tmpfs using ramfs code
3934  *
3935  * This is intended for small system where the benefits of the full
3936  * shmem code (swap-backed and resource-limited) are outweighed by
3937  * their complexity. On systems without swap this code should be
3938  * effectively equivalent, but much lighter weight.
3939  */
3940
3941 static struct file_system_type shmem_fs_type = {
3942         .name           = "tmpfs",
3943         .mount          = ramfs_mount,
3944         .kill_sb        = kill_litter_super,
3945         .fs_flags       = FS_USERNS_MOUNT,
3946 };
3947
3948 int __init shmem_init(void)
3949 {
3950         BUG_ON(register_filesystem(&shmem_fs_type) != 0);
3951
3952         shm_mnt = kern_mount(&shmem_fs_type);
3953         BUG_ON(IS_ERR(shm_mnt));
3954
3955         return 0;
3956 }
3957
3958 int shmem_unuse(swp_entry_t swap, struct page *page)
3959 {
3960         return 0;
3961 }
3962
3963 int shmem_lock(struct file *file, int lock, struct user_struct *user)
3964 {
3965         return 0;
3966 }
3967
3968 void shmem_unlock_mapping(struct address_space *mapping)
3969 {
3970 }
3971
3972 #ifdef CONFIG_MMU
3973 unsigned long shmem_get_unmapped_area(struct file *file,
3974                                       unsigned long addr, unsigned long len,
3975                                       unsigned long pgoff, unsigned long flags)
3976 {
3977         return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
3978 }
3979 #endif
3980
3981 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
3982 {
3983         truncate_inode_pages_range(inode->i_mapping, lstart, lend);
3984 }
3985 EXPORT_SYMBOL_GPL(shmem_truncate_range);
3986
3987 #define shmem_vm_ops                            generic_file_vm_ops
3988 #define shmem_file_operations                   ramfs_file_operations
3989 #define shmem_get_inode(sb, dir, mode, dev, flags)      ramfs_get_inode(sb, dir, mode, dev)
3990 #define shmem_acct_size(flags, size)            0
3991 #define shmem_unacct_size(flags, size)          do {} while (0)
3992
3993 #endif /* CONFIG_SHMEM */
3994
3995 /* common code */
3996
3997 static const struct dentry_operations anon_ops = {
3998         .d_dname = simple_dname
3999 };
4000
4001 static struct file *__shmem_file_setup(const char *name, loff_t size,
4002                                        unsigned long flags, unsigned int i_flags)
4003 {
4004         struct file *res;
4005         struct inode *inode;
4006         struct path path;
4007         struct super_block *sb;
4008         struct qstr this;
4009
4010         if (IS_ERR(shm_mnt))
4011                 return ERR_CAST(shm_mnt);
4012
4013         if (size < 0 || size > MAX_LFS_FILESIZE)
4014                 return ERR_PTR(-EINVAL);
4015
4016         if (shmem_acct_size(flags, size))
4017                 return ERR_PTR(-ENOMEM);
4018
4019         res = ERR_PTR(-ENOMEM);
4020         this.name = name;
4021         this.len = strlen(name);
4022         this.hash = 0; /* will go */
4023         sb = shm_mnt->mnt_sb;
4024         path.mnt = mntget(shm_mnt);
4025         path.dentry = d_alloc_pseudo(sb, &this);
4026         if (!path.dentry)
4027                 goto put_memory;
4028         d_set_d_op(path.dentry, &anon_ops);
4029
4030         res = ERR_PTR(-ENOSPC);
4031         inode = shmem_get_inode(sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
4032         if (!inode)
4033                 goto put_memory;
4034
4035         inode->i_flags |= i_flags;
4036         d_instantiate(path.dentry, inode);
4037         inode->i_size = size;
4038         clear_nlink(inode);     /* It is unlinked */
4039         res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
4040         if (IS_ERR(res))
4041                 goto put_path;
4042
4043         res = alloc_file(&path, FMODE_WRITE | FMODE_READ,
4044                   &shmem_file_operations);
4045         if (IS_ERR(res))
4046                 goto put_path;
4047
4048         return res;
4049
4050 put_memory:
4051         shmem_unacct_size(flags, size);
4052 put_path:
4053         path_put(&path);
4054         return res;
4055 }
4056
4057 /**
4058  * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
4059  *      kernel internal.  There will be NO LSM permission checks against the
4060  *      underlying inode.  So users of this interface must do LSM checks at a
4061  *      higher layer.  The users are the big_key and shm implementations.  LSM
4062  *      checks are provided at the key or shm level rather than the inode.
4063  * @name: name for dentry (to be seen in /proc/<pid>/maps
4064  * @size: size to be set for the file
4065  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4066  */
4067 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
4068 {
4069         return __shmem_file_setup(name, size, flags, S_PRIVATE);
4070 }
4071
4072 /**
4073  * shmem_file_setup - get an unlinked file living in tmpfs
4074  * @name: name for dentry (to be seen in /proc/<pid>/maps
4075  * @size: size to be set for the file
4076  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4077  */
4078 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
4079 {
4080         return __shmem_file_setup(name, size, flags, 0);
4081 }
4082 EXPORT_SYMBOL_GPL(shmem_file_setup);
4083
4084 /**
4085  * shmem_zero_setup - setup a shared anonymous mapping
4086  * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
4087  */
4088 int shmem_zero_setup(struct vm_area_struct *vma)
4089 {
4090         struct file *file;
4091         loff_t size = vma->vm_end - vma->vm_start;
4092
4093         /*
4094          * Cloning a new file under mmap_sem leads to a lock ordering conflict
4095          * between XFS directory reading and selinux: since this file is only
4096          * accessible to the user through its mapping, use S_PRIVATE flag to
4097          * bypass file security, in the same way as shmem_kernel_file_setup().
4098          */
4099         file = __shmem_file_setup("dev/zero", size, vma->vm_flags, S_PRIVATE);
4100         if (IS_ERR(file))
4101                 return PTR_ERR(file);
4102
4103         if (vma->vm_file)
4104                 fput(vma->vm_file);
4105         vma->vm_file = file;
4106         vma->vm_ops = &shmem_vm_ops;
4107
4108         if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
4109                         ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
4110                         (vma->vm_end & HPAGE_PMD_MASK)) {
4111                 khugepaged_enter(vma, vma->vm_flags);
4112         }
4113
4114         return 0;
4115 }
4116
4117 /**
4118  * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
4119  * @mapping:    the page's address_space
4120  * @index:      the page index
4121  * @gfp:        the page allocator flags to use if allocating
4122  *
4123  * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4124  * with any new page allocations done using the specified allocation flags.
4125  * But read_cache_page_gfp() uses the ->readpage() method: which does not
4126  * suit tmpfs, since it may have pages in swapcache, and needs to find those
4127  * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4128  *
4129  * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4130  * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
4131  */
4132 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4133                                          pgoff_t index, gfp_t gfp)
4134 {
4135 #ifdef CONFIG_SHMEM
4136         struct inode *inode = mapping->host;
4137         struct page *page;
4138         int error;
4139
4140         BUG_ON(mapping->a_ops != &shmem_aops);
4141         error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE,
4142                                   gfp, NULL, NULL);
4143         if (error)
4144                 page = ERR_PTR(error);
4145         else
4146                 unlock_page(page);
4147         return page;
4148 #else
4149         /*
4150          * The tiny !SHMEM case uses ramfs without swap
4151          */
4152         return read_cache_page_gfp(mapping, index, gfp);
4153 #endif
4154 }
4155 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);