OSDN Git Service

btrfs: fix error handling in btrfs_del_csums
[android-x86/kernel.git] / mm / shmem.c
1 /*
2  * Resizable virtual memory filesystem for Linux.
3  *
4  * Copyright (C) 2000 Linus Torvalds.
5  *               2000 Transmeta Corp.
6  *               2000-2001 Christoph Rohland
7  *               2000-2001 SAP AG
8  *               2002 Red Hat Inc.
9  * Copyright (C) 2002-2011 Hugh Dickins.
10  * Copyright (C) 2011 Google Inc.
11  * Copyright (C) 2002-2005 VERITAS Software Corporation.
12  * Copyright (C) 2004 Andi Kleen, SuSE Labs
13  *
14  * Extended attribute support for tmpfs:
15  * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16  * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17  *
18  * tiny-shmem:
19  * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20  *
21  * This file is released under the GPL.
22  */
23
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/mm.h>
32 #include <linux/random.h>
33 #include <linux/sched/signal.h>
34 #include <linux/export.h>
35 #include <linux/swap.h>
36 #include <linux/uio.h>
37 #include <linux/khugepaged.h>
38 #include <linux/hugetlb.h>
39
40 #include <asm/tlbflush.h> /* for arch/microblaze update_mmu_cache() */
41
42 static struct vfsmount *shm_mnt;
43
44 #ifdef CONFIG_SHMEM
45 /*
46  * This virtual memory filesystem is heavily based on the ramfs. It
47  * extends ramfs by the ability to use swap and honor resource limits
48  * which makes it a completely usable filesystem.
49  */
50
51 #include <linux/xattr.h>
52 #include <linux/exportfs.h>
53 #include <linux/posix_acl.h>
54 #include <linux/posix_acl_xattr.h>
55 #include <linux/mman.h>
56 #include <linux/string.h>
57 #include <linux/slab.h>
58 #include <linux/backing-dev.h>
59 #include <linux/shmem_fs.h>
60 #include <linux/writeback.h>
61 #include <linux/blkdev.h>
62 #include <linux/pagevec.h>
63 #include <linux/percpu_counter.h>
64 #include <linux/falloc.h>
65 #include <linux/splice.h>
66 #include <linux/security.h>
67 #include <linux/swapops.h>
68 #include <linux/mempolicy.h>
69 #include <linux/namei.h>
70 #include <linux/ctype.h>
71 #include <linux/migrate.h>
72 #include <linux/highmem.h>
73 #include <linux/seq_file.h>
74 #include <linux/magic.h>
75 #include <linux/syscalls.h>
76 #include <linux/fcntl.h>
77 #include <uapi/linux/memfd.h>
78 #include <linux/userfaultfd_k.h>
79 #include <linux/rmap.h>
80 #include <linux/uuid.h>
81
82 #include <linux/uaccess.h>
83 #include <asm/pgtable.h>
84
85 #include "internal.h"
86
87 #define BLOCKS_PER_PAGE  (PAGE_SIZE/512)
88 #define VM_ACCT(size)    (PAGE_ALIGN(size) >> PAGE_SHIFT)
89
90 /* Pretend that each entry is of this size in directory's i_size */
91 #define BOGO_DIRENT_SIZE 20
92
93 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
94 #define SHORT_SYMLINK_LEN 128
95
96 /*
97  * shmem_fallocate communicates with shmem_fault or shmem_writepage via
98  * inode->i_private (with i_mutex making sure that it has only one user at
99  * a time): we would prefer not to enlarge the shmem inode just for that.
100  */
101 struct shmem_falloc {
102         wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
103         pgoff_t start;          /* start of range currently being fallocated */
104         pgoff_t next;           /* the next page offset to be fallocated */
105         pgoff_t nr_falloced;    /* how many new pages have been fallocated */
106         pgoff_t nr_unswapped;   /* how often writepage refused to swap out */
107 };
108
109 #ifdef CONFIG_TMPFS
110 static unsigned long shmem_default_max_blocks(void)
111 {
112         return totalram_pages / 2;
113 }
114
115 static unsigned long shmem_default_max_inodes(void)
116 {
117         return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
118 }
119 #endif
120
121 static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
122 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
123                                 struct shmem_inode_info *info, pgoff_t index);
124 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
125                 struct page **pagep, enum sgp_type sgp,
126                 gfp_t gfp, struct vm_area_struct *vma,
127                 struct vm_fault *vmf, vm_fault_t *fault_type);
128
129 int shmem_getpage(struct inode *inode, pgoff_t index,
130                 struct page **pagep, enum sgp_type sgp)
131 {
132         return shmem_getpage_gfp(inode, index, pagep, sgp,
133                 mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL);
134 }
135
136 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
137 {
138         return sb->s_fs_info;
139 }
140
141 /*
142  * shmem_file_setup pre-accounts the whole fixed size of a VM object,
143  * for shared memory and for shared anonymous (/dev/zero) mappings
144  * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
145  * consistent with the pre-accounting of private mappings ...
146  */
147 static inline int shmem_acct_size(unsigned long flags, loff_t size)
148 {
149         return (flags & VM_NORESERVE) ?
150                 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
151 }
152
153 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
154 {
155         if (!(flags & VM_NORESERVE))
156                 vm_unacct_memory(VM_ACCT(size));
157 }
158
159 static inline int shmem_reacct_size(unsigned long flags,
160                 loff_t oldsize, loff_t newsize)
161 {
162         if (!(flags & VM_NORESERVE)) {
163                 if (VM_ACCT(newsize) > VM_ACCT(oldsize))
164                         return security_vm_enough_memory_mm(current->mm,
165                                         VM_ACCT(newsize) - VM_ACCT(oldsize));
166                 else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
167                         vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
168         }
169         return 0;
170 }
171
172 /*
173  * ... whereas tmpfs objects are accounted incrementally as
174  * pages are allocated, in order to allow large sparse files.
175  * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
176  * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
177  */
178 static inline int shmem_acct_block(unsigned long flags, long pages)
179 {
180         if (!(flags & VM_NORESERVE))
181                 return 0;
182
183         return security_vm_enough_memory_mm(current->mm,
184                         pages * VM_ACCT(PAGE_SIZE));
185 }
186
187 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
188 {
189         if (flags & VM_NORESERVE)
190                 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
191 }
192
193 static inline bool shmem_inode_acct_block(struct inode *inode, long pages)
194 {
195         struct shmem_inode_info *info = SHMEM_I(inode);
196         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
197
198         if (shmem_acct_block(info->flags, pages))
199                 return false;
200
201         if (sbinfo->max_blocks) {
202                 if (percpu_counter_compare(&sbinfo->used_blocks,
203                                            sbinfo->max_blocks - pages) > 0)
204                         goto unacct;
205                 percpu_counter_add(&sbinfo->used_blocks, pages);
206         }
207
208         return true;
209
210 unacct:
211         shmem_unacct_blocks(info->flags, pages);
212         return false;
213 }
214
215 static inline void shmem_inode_unacct_blocks(struct inode *inode, long pages)
216 {
217         struct shmem_inode_info *info = SHMEM_I(inode);
218         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
219
220         if (sbinfo->max_blocks)
221                 percpu_counter_sub(&sbinfo->used_blocks, pages);
222         shmem_unacct_blocks(info->flags, pages);
223 }
224
225 static const struct super_operations shmem_ops;
226 static const struct address_space_operations shmem_aops;
227 static const struct file_operations shmem_file_operations;
228 static const struct inode_operations shmem_inode_operations;
229 static const struct inode_operations shmem_dir_inode_operations;
230 static const struct inode_operations shmem_special_inode_operations;
231 static const struct vm_operations_struct shmem_vm_ops;
232 static struct file_system_type shmem_fs_type;
233
234 bool vma_is_shmem(struct vm_area_struct *vma)
235 {
236         return vma->vm_ops == &shmem_vm_ops;
237 }
238
239 static LIST_HEAD(shmem_swaplist);
240 static DEFINE_MUTEX(shmem_swaplist_mutex);
241
242 static int shmem_reserve_inode(struct super_block *sb)
243 {
244         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
245         if (sbinfo->max_inodes) {
246                 spin_lock(&sbinfo->stat_lock);
247                 if (!sbinfo->free_inodes) {
248                         spin_unlock(&sbinfo->stat_lock);
249                         return -ENOSPC;
250                 }
251                 sbinfo->free_inodes--;
252                 spin_unlock(&sbinfo->stat_lock);
253         }
254         return 0;
255 }
256
257 static void shmem_free_inode(struct super_block *sb)
258 {
259         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
260         if (sbinfo->max_inodes) {
261                 spin_lock(&sbinfo->stat_lock);
262                 sbinfo->free_inodes++;
263                 spin_unlock(&sbinfo->stat_lock);
264         }
265 }
266
267 /**
268  * shmem_recalc_inode - recalculate the block usage of an inode
269  * @inode: inode to recalc
270  *
271  * We have to calculate the free blocks since the mm can drop
272  * undirtied hole pages behind our back.
273  *
274  * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
275  * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
276  *
277  * It has to be called with the spinlock held.
278  */
279 static void shmem_recalc_inode(struct inode *inode)
280 {
281         struct shmem_inode_info *info = SHMEM_I(inode);
282         long freed;
283
284         freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
285         if (freed > 0) {
286                 info->alloced -= freed;
287                 inode->i_blocks -= freed * BLOCKS_PER_PAGE;
288                 shmem_inode_unacct_blocks(inode, freed);
289         }
290 }
291
292 bool shmem_charge(struct inode *inode, long pages)
293 {
294         struct shmem_inode_info *info = SHMEM_I(inode);
295         unsigned long flags;
296
297         if (!shmem_inode_acct_block(inode, pages))
298                 return false;
299
300         /* nrpages adjustment first, then shmem_recalc_inode() when balanced */
301         inode->i_mapping->nrpages += pages;
302
303         spin_lock_irqsave(&info->lock, flags);
304         info->alloced += pages;
305         inode->i_blocks += pages * BLOCKS_PER_PAGE;
306         shmem_recalc_inode(inode);
307         spin_unlock_irqrestore(&info->lock, flags);
308
309         return true;
310 }
311
312 void shmem_uncharge(struct inode *inode, long pages)
313 {
314         struct shmem_inode_info *info = SHMEM_I(inode);
315         unsigned long flags;
316
317         /* nrpages adjustment done by __delete_from_page_cache() or caller */
318
319         spin_lock_irqsave(&info->lock, flags);
320         info->alloced -= pages;
321         inode->i_blocks -= pages * BLOCKS_PER_PAGE;
322         shmem_recalc_inode(inode);
323         spin_unlock_irqrestore(&info->lock, flags);
324
325         shmem_inode_unacct_blocks(inode, pages);
326 }
327
328 /*
329  * Replace item expected in radix tree by a new item, while holding tree lock.
330  */
331 static int shmem_radix_tree_replace(struct address_space *mapping,
332                         pgoff_t index, void *expected, void *replacement)
333 {
334         struct radix_tree_node *node;
335         void __rcu **pslot;
336         void *item;
337
338         VM_BUG_ON(!expected);
339         VM_BUG_ON(!replacement);
340         item = __radix_tree_lookup(&mapping->i_pages, index, &node, &pslot);
341         if (!item)
342                 return -ENOENT;
343         if (item != expected)
344                 return -ENOENT;
345         __radix_tree_replace(&mapping->i_pages, node, pslot,
346                              replacement, NULL);
347         return 0;
348 }
349
350 /*
351  * Sometimes, before we decide whether to proceed or to fail, we must check
352  * that an entry was not already brought back from swap by a racing thread.
353  *
354  * Checking page is not enough: by the time a SwapCache page is locked, it
355  * might be reused, and again be SwapCache, using the same swap as before.
356  */
357 static bool shmem_confirm_swap(struct address_space *mapping,
358                                pgoff_t index, swp_entry_t swap)
359 {
360         void *item;
361
362         rcu_read_lock();
363         item = radix_tree_lookup(&mapping->i_pages, index);
364         rcu_read_unlock();
365         return item == swp_to_radix_entry(swap);
366 }
367
368 /*
369  * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
370  *
371  * SHMEM_HUGE_NEVER:
372  *      disables huge pages for the mount;
373  * SHMEM_HUGE_ALWAYS:
374  *      enables huge pages for the mount;
375  * SHMEM_HUGE_WITHIN_SIZE:
376  *      only allocate huge pages if the page will be fully within i_size,
377  *      also respect fadvise()/madvise() hints;
378  * SHMEM_HUGE_ADVISE:
379  *      only allocate huge pages if requested with fadvise()/madvise();
380  */
381
382 #define SHMEM_HUGE_NEVER        0
383 #define SHMEM_HUGE_ALWAYS       1
384 #define SHMEM_HUGE_WITHIN_SIZE  2
385 #define SHMEM_HUGE_ADVISE       3
386
387 /*
388  * Special values.
389  * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
390  *
391  * SHMEM_HUGE_DENY:
392  *      disables huge on shm_mnt and all mounts, for emergency use;
393  * SHMEM_HUGE_FORCE:
394  *      enables huge on shm_mnt and all mounts, w/o needing option, for testing;
395  *
396  */
397 #define SHMEM_HUGE_DENY         (-1)
398 #define SHMEM_HUGE_FORCE        (-2)
399
400 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
401 /* ifdef here to avoid bloating shmem.o when not necessary */
402
403 static int shmem_huge __read_mostly;
404
405 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
406 static int shmem_parse_huge(const char *str)
407 {
408         if (!strcmp(str, "never"))
409                 return SHMEM_HUGE_NEVER;
410         if (!strcmp(str, "always"))
411                 return SHMEM_HUGE_ALWAYS;
412         if (!strcmp(str, "within_size"))
413                 return SHMEM_HUGE_WITHIN_SIZE;
414         if (!strcmp(str, "advise"))
415                 return SHMEM_HUGE_ADVISE;
416         if (!strcmp(str, "deny"))
417                 return SHMEM_HUGE_DENY;
418         if (!strcmp(str, "force"))
419                 return SHMEM_HUGE_FORCE;
420         return -EINVAL;
421 }
422
423 static const char *shmem_format_huge(int huge)
424 {
425         switch (huge) {
426         case SHMEM_HUGE_NEVER:
427                 return "never";
428         case SHMEM_HUGE_ALWAYS:
429                 return "always";
430         case SHMEM_HUGE_WITHIN_SIZE:
431                 return "within_size";
432         case SHMEM_HUGE_ADVISE:
433                 return "advise";
434         case SHMEM_HUGE_DENY:
435                 return "deny";
436         case SHMEM_HUGE_FORCE:
437                 return "force";
438         default:
439                 VM_BUG_ON(1);
440                 return "bad_val";
441         }
442 }
443 #endif
444
445 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
446                 struct shrink_control *sc, unsigned long nr_to_split)
447 {
448         LIST_HEAD(list), *pos, *next;
449         LIST_HEAD(to_remove);
450         struct inode *inode;
451         struct shmem_inode_info *info;
452         struct page *page;
453         unsigned long batch = sc ? sc->nr_to_scan : 128;
454         int removed = 0, split = 0;
455
456         if (list_empty(&sbinfo->shrinklist))
457                 return SHRINK_STOP;
458
459         spin_lock(&sbinfo->shrinklist_lock);
460         list_for_each_safe(pos, next, &sbinfo->shrinklist) {
461                 info = list_entry(pos, struct shmem_inode_info, shrinklist);
462
463                 /* pin the inode */
464                 inode = igrab(&info->vfs_inode);
465
466                 /* inode is about to be evicted */
467                 if (!inode) {
468                         list_del_init(&info->shrinklist);
469                         removed++;
470                         goto next;
471                 }
472
473                 /* Check if there's anything to gain */
474                 if (round_up(inode->i_size, PAGE_SIZE) ==
475                                 round_up(inode->i_size, HPAGE_PMD_SIZE)) {
476                         list_move(&info->shrinklist, &to_remove);
477                         removed++;
478                         goto next;
479                 }
480
481                 list_move(&info->shrinklist, &list);
482 next:
483                 if (!--batch)
484                         break;
485         }
486         spin_unlock(&sbinfo->shrinklist_lock);
487
488         list_for_each_safe(pos, next, &to_remove) {
489                 info = list_entry(pos, struct shmem_inode_info, shrinklist);
490                 inode = &info->vfs_inode;
491                 list_del_init(&info->shrinklist);
492                 iput(inode);
493         }
494
495         list_for_each_safe(pos, next, &list) {
496                 int ret;
497
498                 info = list_entry(pos, struct shmem_inode_info, shrinklist);
499                 inode = &info->vfs_inode;
500
501                 if (nr_to_split && split >= nr_to_split)
502                         goto leave;
503
504                 page = find_get_page(inode->i_mapping,
505                                 (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT);
506                 if (!page)
507                         goto drop;
508
509                 /* No huge page at the end of the file: nothing to split */
510                 if (!PageTransHuge(page)) {
511                         put_page(page);
512                         goto drop;
513                 }
514
515                 /*
516                  * Leave the inode on the list if we failed to lock
517                  * the page at this time.
518                  *
519                  * Waiting for the lock may lead to deadlock in the
520                  * reclaim path.
521                  */
522                 if (!trylock_page(page)) {
523                         put_page(page);
524                         goto leave;
525                 }
526
527                 ret = split_huge_page(page);
528                 unlock_page(page);
529                 put_page(page);
530
531                 /* If split failed leave the inode on the list */
532                 if (ret)
533                         goto leave;
534
535                 split++;
536 drop:
537                 list_del_init(&info->shrinklist);
538                 removed++;
539 leave:
540                 iput(inode);
541         }
542
543         spin_lock(&sbinfo->shrinklist_lock);
544         list_splice_tail(&list, &sbinfo->shrinklist);
545         sbinfo->shrinklist_len -= removed;
546         spin_unlock(&sbinfo->shrinklist_lock);
547
548         return split;
549 }
550
551 static long shmem_unused_huge_scan(struct super_block *sb,
552                 struct shrink_control *sc)
553 {
554         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
555
556         if (!READ_ONCE(sbinfo->shrinklist_len))
557                 return SHRINK_STOP;
558
559         return shmem_unused_huge_shrink(sbinfo, sc, 0);
560 }
561
562 static long shmem_unused_huge_count(struct super_block *sb,
563                 struct shrink_control *sc)
564 {
565         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
566         return READ_ONCE(sbinfo->shrinklist_len);
567 }
568 #else /* !CONFIG_TRANSPARENT_HUGE_PAGECACHE */
569
570 #define shmem_huge SHMEM_HUGE_DENY
571
572 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
573                 struct shrink_control *sc, unsigned long nr_to_split)
574 {
575         return 0;
576 }
577 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */
578
579 static inline bool is_huge_enabled(struct shmem_sb_info *sbinfo)
580 {
581         if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
582             (shmem_huge == SHMEM_HUGE_FORCE || sbinfo->huge) &&
583             shmem_huge != SHMEM_HUGE_DENY)
584                 return true;
585         return false;
586 }
587
588 /*
589  * Like add_to_page_cache_locked, but error if expected item has gone.
590  */
591 static int shmem_add_to_page_cache(struct page *page,
592                                    struct address_space *mapping,
593                                    pgoff_t index, void *expected)
594 {
595         int error, nr = hpage_nr_pages(page);
596
597         VM_BUG_ON_PAGE(PageTail(page), page);
598         VM_BUG_ON_PAGE(index != round_down(index, nr), page);
599         VM_BUG_ON_PAGE(!PageLocked(page), page);
600         VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
601         VM_BUG_ON(expected && PageTransHuge(page));
602
603         page_ref_add(page, nr);
604         page->mapping = mapping;
605         page->index = index;
606
607         xa_lock_irq(&mapping->i_pages);
608         if (PageTransHuge(page)) {
609                 void __rcu **results;
610                 pgoff_t idx;
611                 int i;
612
613                 error = 0;
614                 if (radix_tree_gang_lookup_slot(&mapping->i_pages,
615                                         &results, &idx, index, 1) &&
616                                 idx < index + HPAGE_PMD_NR) {
617                         error = -EEXIST;
618                 }
619
620                 if (!error) {
621                         for (i = 0; i < HPAGE_PMD_NR; i++) {
622                                 error = radix_tree_insert(&mapping->i_pages,
623                                                 index + i, page + i);
624                                 VM_BUG_ON(error);
625                         }
626                         count_vm_event(THP_FILE_ALLOC);
627                 }
628         } else if (!expected) {
629                 error = radix_tree_insert(&mapping->i_pages, index, page);
630         } else {
631                 error = shmem_radix_tree_replace(mapping, index, expected,
632                                                                  page);
633         }
634
635         if (!error) {
636                 mapping->nrpages += nr;
637                 if (PageTransHuge(page))
638                         __inc_node_page_state(page, NR_SHMEM_THPS);
639                 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, nr);
640                 __mod_node_page_state(page_pgdat(page), NR_SHMEM, nr);
641                 xa_unlock_irq(&mapping->i_pages);
642         } else {
643                 page->mapping = NULL;
644                 xa_unlock_irq(&mapping->i_pages);
645                 page_ref_sub(page, nr);
646         }
647         return error;
648 }
649
650 /*
651  * Like delete_from_page_cache, but substitutes swap for page.
652  */
653 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
654 {
655         struct address_space *mapping = page->mapping;
656         int error;
657
658         VM_BUG_ON_PAGE(PageCompound(page), page);
659
660         xa_lock_irq(&mapping->i_pages);
661         error = shmem_radix_tree_replace(mapping, page->index, page, radswap);
662         page->mapping = NULL;
663         mapping->nrpages--;
664         __dec_node_page_state(page, NR_FILE_PAGES);
665         __dec_node_page_state(page, NR_SHMEM);
666         xa_unlock_irq(&mapping->i_pages);
667         put_page(page);
668         BUG_ON(error);
669 }
670
671 /*
672  * Remove swap entry from radix tree, free the swap and its page cache.
673  */
674 static int shmem_free_swap(struct address_space *mapping,
675                            pgoff_t index, void *radswap)
676 {
677         void *old;
678
679         xa_lock_irq(&mapping->i_pages);
680         old = radix_tree_delete_item(&mapping->i_pages, index, radswap);
681         xa_unlock_irq(&mapping->i_pages);
682         if (old != radswap)
683                 return -ENOENT;
684         free_swap_and_cache(radix_to_swp_entry(radswap));
685         return 0;
686 }
687
688 /*
689  * Determine (in bytes) how many of the shmem object's pages mapped by the
690  * given offsets are swapped out.
691  *
692  * This is safe to call without i_mutex or the i_pages lock thanks to RCU,
693  * as long as the inode doesn't go away and racy results are not a problem.
694  */
695 unsigned long shmem_partial_swap_usage(struct address_space *mapping,
696                                                 pgoff_t start, pgoff_t end)
697 {
698         struct radix_tree_iter iter;
699         void __rcu **slot;
700         struct page *page;
701         unsigned long swapped = 0;
702
703         rcu_read_lock();
704
705         radix_tree_for_each_slot(slot, &mapping->i_pages, &iter, start) {
706                 if (iter.index >= end)
707                         break;
708
709                 page = radix_tree_deref_slot(slot);
710
711                 if (radix_tree_deref_retry(page)) {
712                         slot = radix_tree_iter_retry(&iter);
713                         continue;
714                 }
715
716                 if (radix_tree_exceptional_entry(page))
717                         swapped++;
718
719                 if (need_resched()) {
720                         slot = radix_tree_iter_resume(slot, &iter);
721                         cond_resched_rcu();
722                 }
723         }
724
725         rcu_read_unlock();
726
727         return swapped << PAGE_SHIFT;
728 }
729
730 /*
731  * Determine (in bytes) how many of the shmem object's pages mapped by the
732  * given vma is swapped out.
733  *
734  * This is safe to call without i_mutex or the i_pages lock thanks to RCU,
735  * as long as the inode doesn't go away and racy results are not a problem.
736  */
737 unsigned long shmem_swap_usage(struct vm_area_struct *vma)
738 {
739         struct inode *inode = file_inode(vma->vm_file);
740         struct shmem_inode_info *info = SHMEM_I(inode);
741         struct address_space *mapping = inode->i_mapping;
742         unsigned long swapped;
743
744         /* Be careful as we don't hold info->lock */
745         swapped = READ_ONCE(info->swapped);
746
747         /*
748          * The easier cases are when the shmem object has nothing in swap, or
749          * the vma maps it whole. Then we can simply use the stats that we
750          * already track.
751          */
752         if (!swapped)
753                 return 0;
754
755         if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
756                 return swapped << PAGE_SHIFT;
757
758         /* Here comes the more involved part */
759         return shmem_partial_swap_usage(mapping,
760                         linear_page_index(vma, vma->vm_start),
761                         linear_page_index(vma, vma->vm_end));
762 }
763
764 /*
765  * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
766  */
767 void shmem_unlock_mapping(struct address_space *mapping)
768 {
769         struct pagevec pvec;
770         pgoff_t indices[PAGEVEC_SIZE];
771         pgoff_t index = 0;
772
773         pagevec_init(&pvec);
774         /*
775          * Minor point, but we might as well stop if someone else SHM_LOCKs it.
776          */
777         while (!mapping_unevictable(mapping)) {
778                 /*
779                  * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
780                  * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
781                  */
782                 pvec.nr = find_get_entries(mapping, index,
783                                            PAGEVEC_SIZE, pvec.pages, indices);
784                 if (!pvec.nr)
785                         break;
786                 index = indices[pvec.nr - 1] + 1;
787                 pagevec_remove_exceptionals(&pvec);
788                 check_move_unevictable_pages(pvec.pages, pvec.nr);
789                 pagevec_release(&pvec);
790                 cond_resched();
791         }
792 }
793
794 /*
795  * Remove range of pages and swap entries from radix tree, and free them.
796  * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
797  */
798 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
799                                                                  bool unfalloc)
800 {
801         struct address_space *mapping = inode->i_mapping;
802         struct shmem_inode_info *info = SHMEM_I(inode);
803         pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
804         pgoff_t end = (lend + 1) >> PAGE_SHIFT;
805         unsigned int partial_start = lstart & (PAGE_SIZE - 1);
806         unsigned int partial_end = (lend + 1) & (PAGE_SIZE - 1);
807         struct pagevec pvec;
808         pgoff_t indices[PAGEVEC_SIZE];
809         long nr_swaps_freed = 0;
810         pgoff_t index;
811         int i;
812
813         if (lend == -1)
814                 end = -1;       /* unsigned, so actually very big */
815
816         pagevec_init(&pvec);
817         index = start;
818         while (index < end) {
819                 pvec.nr = find_get_entries(mapping, index,
820                         min(end - index, (pgoff_t)PAGEVEC_SIZE),
821                         pvec.pages, indices);
822                 if (!pvec.nr)
823                         break;
824                 for (i = 0; i < pagevec_count(&pvec); i++) {
825                         struct page *page = pvec.pages[i];
826
827                         index = indices[i];
828                         if (index >= end)
829                                 break;
830
831                         if (radix_tree_exceptional_entry(page)) {
832                                 if (unfalloc)
833                                         continue;
834                                 nr_swaps_freed += !shmem_free_swap(mapping,
835                                                                 index, page);
836                                 continue;
837                         }
838
839                         VM_BUG_ON_PAGE(page_to_pgoff(page) != index, page);
840
841                         if (!trylock_page(page))
842                                 continue;
843
844                         if (PageTransTail(page)) {
845                                 /* Middle of THP: zero out the page */
846                                 clear_highpage(page);
847                                 unlock_page(page);
848                                 continue;
849                         } else if (PageTransHuge(page)) {
850                                 if (index == round_down(end, HPAGE_PMD_NR)) {
851                                         /*
852                                          * Range ends in the middle of THP:
853                                          * zero out the page
854                                          */
855                                         clear_highpage(page);
856                                         unlock_page(page);
857                                         continue;
858                                 }
859                                 index += HPAGE_PMD_NR - 1;
860                                 i += HPAGE_PMD_NR - 1;
861                         }
862
863                         if (!unfalloc || !PageUptodate(page)) {
864                                 VM_BUG_ON_PAGE(PageTail(page), page);
865                                 if (page_mapping(page) == mapping) {
866                                         VM_BUG_ON_PAGE(PageWriteback(page), page);
867                                         truncate_inode_page(mapping, page);
868                                 }
869                         }
870                         unlock_page(page);
871                 }
872                 pagevec_remove_exceptionals(&pvec);
873                 pagevec_release(&pvec);
874                 cond_resched();
875                 index++;
876         }
877
878         if (partial_start) {
879                 struct page *page = NULL;
880                 shmem_getpage(inode, start - 1, &page, SGP_READ);
881                 if (page) {
882                         unsigned int top = PAGE_SIZE;
883                         if (start > end) {
884                                 top = partial_end;
885                                 partial_end = 0;
886                         }
887                         zero_user_segment(page, partial_start, top);
888                         set_page_dirty(page);
889                         unlock_page(page);
890                         put_page(page);
891                 }
892         }
893         if (partial_end) {
894                 struct page *page = NULL;
895                 shmem_getpage(inode, end, &page, SGP_READ);
896                 if (page) {
897                         zero_user_segment(page, 0, partial_end);
898                         set_page_dirty(page);
899                         unlock_page(page);
900                         put_page(page);
901                 }
902         }
903         if (start >= end)
904                 return;
905
906         index = start;
907         while (index < end) {
908                 cond_resched();
909
910                 pvec.nr = find_get_entries(mapping, index,
911                                 min(end - index, (pgoff_t)PAGEVEC_SIZE),
912                                 pvec.pages, indices);
913                 if (!pvec.nr) {
914                         /* If all gone or hole-punch or unfalloc, we're done */
915                         if (index == start || end != -1)
916                                 break;
917                         /* But if truncating, restart to make sure all gone */
918                         index = start;
919                         continue;
920                 }
921                 for (i = 0; i < pagevec_count(&pvec); i++) {
922                         struct page *page = pvec.pages[i];
923
924                         index = indices[i];
925                         if (index >= end)
926                                 break;
927
928                         if (radix_tree_exceptional_entry(page)) {
929                                 if (unfalloc)
930                                         continue;
931                                 if (shmem_free_swap(mapping, index, page)) {
932                                         /* Swap was replaced by page: retry */
933                                         index--;
934                                         break;
935                                 }
936                                 nr_swaps_freed++;
937                                 continue;
938                         }
939
940                         lock_page(page);
941
942                         if (PageTransTail(page)) {
943                                 /* Middle of THP: zero out the page */
944                                 clear_highpage(page);
945                                 unlock_page(page);
946                                 /*
947                                  * Partial thp truncate due 'start' in middle
948                                  * of THP: don't need to look on these pages
949                                  * again on !pvec.nr restart.
950                                  */
951                                 if (index != round_down(end, HPAGE_PMD_NR))
952                                         start++;
953                                 continue;
954                         } else if (PageTransHuge(page)) {
955                                 if (index == round_down(end, HPAGE_PMD_NR)) {
956                                         /*
957                                          * Range ends in the middle of THP:
958                                          * zero out the page
959                                          */
960                                         clear_highpage(page);
961                                         unlock_page(page);
962                                         continue;
963                                 }
964                                 index += HPAGE_PMD_NR - 1;
965                                 i += HPAGE_PMD_NR - 1;
966                         }
967
968                         if (!unfalloc || !PageUptodate(page)) {
969                                 VM_BUG_ON_PAGE(PageTail(page), page);
970                                 if (page_mapping(page) == mapping) {
971                                         VM_BUG_ON_PAGE(PageWriteback(page), page);
972                                         truncate_inode_page(mapping, page);
973                                 } else {
974                                         /* Page was replaced by swap: retry */
975                                         unlock_page(page);
976                                         index--;
977                                         break;
978                                 }
979                         }
980                         unlock_page(page);
981                 }
982                 pagevec_remove_exceptionals(&pvec);
983                 pagevec_release(&pvec);
984                 index++;
985         }
986
987         spin_lock_irq(&info->lock);
988         info->swapped -= nr_swaps_freed;
989         shmem_recalc_inode(inode);
990         spin_unlock_irq(&info->lock);
991 }
992
993 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
994 {
995         shmem_undo_range(inode, lstart, lend, false);
996         inode->i_ctime = inode->i_mtime = current_time(inode);
997 }
998 EXPORT_SYMBOL_GPL(shmem_truncate_range);
999
1000 static int shmem_getattr(const struct path *path, struct kstat *stat,
1001                          u32 request_mask, unsigned int query_flags)
1002 {
1003         struct inode *inode = path->dentry->d_inode;
1004         struct shmem_inode_info *info = SHMEM_I(inode);
1005         struct shmem_sb_info *sb_info = SHMEM_SB(inode->i_sb);
1006
1007         if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
1008                 spin_lock_irq(&info->lock);
1009                 shmem_recalc_inode(inode);
1010                 spin_unlock_irq(&info->lock);
1011         }
1012         generic_fillattr(inode, stat);
1013
1014         if (is_huge_enabled(sb_info))
1015                 stat->blksize = HPAGE_PMD_SIZE;
1016
1017         return 0;
1018 }
1019
1020 static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
1021 {
1022         struct inode *inode = d_inode(dentry);
1023         struct shmem_inode_info *info = SHMEM_I(inode);
1024         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1025         int error;
1026
1027         error = setattr_prepare(dentry, attr);
1028         if (error)
1029                 return error;
1030
1031         if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
1032                 loff_t oldsize = inode->i_size;
1033                 loff_t newsize = attr->ia_size;
1034
1035                 /* protected by i_mutex */
1036                 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
1037                     (newsize > oldsize && (info->seals & F_SEAL_GROW)))
1038                         return -EPERM;
1039
1040                 if (newsize != oldsize) {
1041                         error = shmem_reacct_size(SHMEM_I(inode)->flags,
1042                                         oldsize, newsize);
1043                         if (error)
1044                                 return error;
1045                         i_size_write(inode, newsize);
1046                         inode->i_ctime = inode->i_mtime = current_time(inode);
1047                 }
1048                 if (newsize <= oldsize) {
1049                         loff_t holebegin = round_up(newsize, PAGE_SIZE);
1050                         if (oldsize > holebegin)
1051                                 unmap_mapping_range(inode->i_mapping,
1052                                                         holebegin, 0, 1);
1053                         if (info->alloced)
1054                                 shmem_truncate_range(inode,
1055                                                         newsize, (loff_t)-1);
1056                         /* unmap again to remove racily COWed private pages */
1057                         if (oldsize > holebegin)
1058                                 unmap_mapping_range(inode->i_mapping,
1059                                                         holebegin, 0, 1);
1060
1061                         /*
1062                          * Part of the huge page can be beyond i_size: subject
1063                          * to shrink under memory pressure.
1064                          */
1065                         if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
1066                                 spin_lock(&sbinfo->shrinklist_lock);
1067                                 /*
1068                                  * _careful to defend against unlocked access to
1069                                  * ->shrink_list in shmem_unused_huge_shrink()
1070                                  */
1071                                 if (list_empty_careful(&info->shrinklist)) {
1072                                         list_add_tail(&info->shrinklist,
1073                                                         &sbinfo->shrinklist);
1074                                         sbinfo->shrinklist_len++;
1075                                 }
1076                                 spin_unlock(&sbinfo->shrinklist_lock);
1077                         }
1078                 }
1079         }
1080
1081         setattr_copy(inode, attr);
1082         if (attr->ia_valid & ATTR_MODE)
1083                 error = posix_acl_chmod(inode, inode->i_mode);
1084         return error;
1085 }
1086
1087 static void shmem_evict_inode(struct inode *inode)
1088 {
1089         struct shmem_inode_info *info = SHMEM_I(inode);
1090         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1091
1092         if (inode->i_mapping->a_ops == &shmem_aops) {
1093                 shmem_unacct_size(info->flags, inode->i_size);
1094                 inode->i_size = 0;
1095                 shmem_truncate_range(inode, 0, (loff_t)-1);
1096                 if (!list_empty(&info->shrinklist)) {
1097                         spin_lock(&sbinfo->shrinklist_lock);
1098                         if (!list_empty(&info->shrinklist)) {
1099                                 list_del_init(&info->shrinklist);
1100                                 sbinfo->shrinklist_len--;
1101                         }
1102                         spin_unlock(&sbinfo->shrinklist_lock);
1103                 }
1104                 if (!list_empty(&info->swaplist)) {
1105                         mutex_lock(&shmem_swaplist_mutex);
1106                         list_del_init(&info->swaplist);
1107                         mutex_unlock(&shmem_swaplist_mutex);
1108                 }
1109         }
1110
1111         simple_xattrs_free(&info->xattrs);
1112         WARN_ON(inode->i_blocks);
1113         shmem_free_inode(inode->i_sb);
1114         clear_inode(inode);
1115 }
1116
1117 static unsigned long find_swap_entry(struct radix_tree_root *root, void *item)
1118 {
1119         struct radix_tree_iter iter;
1120         void __rcu **slot;
1121         unsigned long found = -1;
1122         unsigned int checked = 0;
1123
1124         rcu_read_lock();
1125         radix_tree_for_each_slot(slot, root, &iter, 0) {
1126                 void *entry = radix_tree_deref_slot(slot);
1127
1128                 if (radix_tree_deref_retry(entry)) {
1129                         slot = radix_tree_iter_retry(&iter);
1130                         continue;
1131                 }
1132                 if (entry == item) {
1133                         found = iter.index;
1134                         break;
1135                 }
1136                 checked++;
1137                 if ((checked % 4096) != 0)
1138                         continue;
1139                 slot = radix_tree_iter_resume(slot, &iter);
1140                 cond_resched_rcu();
1141         }
1142
1143         rcu_read_unlock();
1144         return found;
1145 }
1146
1147 /*
1148  * If swap found in inode, free it and move page from swapcache to filecache.
1149  */
1150 static int shmem_unuse_inode(struct shmem_inode_info *info,
1151                              swp_entry_t swap, struct page **pagep)
1152 {
1153         struct address_space *mapping = info->vfs_inode.i_mapping;
1154         void *radswap;
1155         pgoff_t index;
1156         gfp_t gfp;
1157         int error = 0;
1158
1159         radswap = swp_to_radix_entry(swap);
1160         index = find_swap_entry(&mapping->i_pages, radswap);
1161         if (index == -1)
1162                 return -EAGAIN; /* tell shmem_unuse we found nothing */
1163
1164         /*
1165          * Move _head_ to start search for next from here.
1166          * But be careful: shmem_evict_inode checks list_empty without taking
1167          * mutex, and there's an instant in list_move_tail when info->swaplist
1168          * would appear empty, if it were the only one on shmem_swaplist.
1169          */
1170         if (shmem_swaplist.next != &info->swaplist)
1171                 list_move_tail(&shmem_swaplist, &info->swaplist);
1172
1173         gfp = mapping_gfp_mask(mapping);
1174         if (shmem_should_replace_page(*pagep, gfp)) {
1175                 mutex_unlock(&shmem_swaplist_mutex);
1176                 error = shmem_replace_page(pagep, gfp, info, index);
1177                 mutex_lock(&shmem_swaplist_mutex);
1178                 /*
1179                  * We needed to drop mutex to make that restrictive page
1180                  * allocation, but the inode might have been freed while we
1181                  * dropped it: although a racing shmem_evict_inode() cannot
1182                  * complete without emptying the radix_tree, our page lock
1183                  * on this swapcache page is not enough to prevent that -
1184                  * free_swap_and_cache() of our swap entry will only
1185                  * trylock_page(), removing swap from radix_tree whatever.
1186                  *
1187                  * We must not proceed to shmem_add_to_page_cache() if the
1188                  * inode has been freed, but of course we cannot rely on
1189                  * inode or mapping or info to check that.  However, we can
1190                  * safely check if our swap entry is still in use (and here
1191                  * it can't have got reused for another page): if it's still
1192                  * in use, then the inode cannot have been freed yet, and we
1193                  * can safely proceed (if it's no longer in use, that tells
1194                  * nothing about the inode, but we don't need to unuse swap).
1195                  */
1196                 if (!page_swapcount(*pagep))
1197                         error = -ENOENT;
1198         }
1199
1200         /*
1201          * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
1202          * but also to hold up shmem_evict_inode(): so inode cannot be freed
1203          * beneath us (pagelock doesn't help until the page is in pagecache).
1204          */
1205         if (!error)
1206                 error = shmem_add_to_page_cache(*pagep, mapping, index,
1207                                                 radswap);
1208         if (error != -ENOMEM) {
1209                 /*
1210                  * Truncation and eviction use free_swap_and_cache(), which
1211                  * only does trylock page: if we raced, best clean up here.
1212                  */
1213                 delete_from_swap_cache(*pagep);
1214                 set_page_dirty(*pagep);
1215                 if (!error) {
1216                         spin_lock_irq(&info->lock);
1217                         info->swapped--;
1218                         spin_unlock_irq(&info->lock);
1219                         swap_free(swap);
1220                 }
1221         }
1222         return error;
1223 }
1224
1225 /*
1226  * Search through swapped inodes to find and replace swap by page.
1227  */
1228 int shmem_unuse(swp_entry_t swap, struct page *page)
1229 {
1230         struct list_head *this, *next;
1231         struct shmem_inode_info *info;
1232         struct mem_cgroup *memcg;
1233         int error = 0;
1234
1235         /*
1236          * There's a faint possibility that swap page was replaced before
1237          * caller locked it: caller will come back later with the right page.
1238          */
1239         if (unlikely(!PageSwapCache(page) || page_private(page) != swap.val))
1240                 goto out;
1241
1242         /*
1243          * Charge page using GFP_KERNEL while we can wait, before taking
1244          * the shmem_swaplist_mutex which might hold up shmem_writepage().
1245          * Charged back to the user (not to caller) when swap account is used.
1246          */
1247         error = mem_cgroup_try_charge_delay(page, current->mm, GFP_KERNEL,
1248                                             &memcg, false);
1249         if (error)
1250                 goto out;
1251         /* No radix_tree_preload: swap entry keeps a place for page in tree */
1252         error = -EAGAIN;
1253
1254         mutex_lock(&shmem_swaplist_mutex);
1255         list_for_each_safe(this, next, &shmem_swaplist) {
1256                 info = list_entry(this, struct shmem_inode_info, swaplist);
1257                 if (info->swapped)
1258                         error = shmem_unuse_inode(info, swap, &page);
1259                 else
1260                         list_del_init(&info->swaplist);
1261                 cond_resched();
1262                 if (error != -EAGAIN)
1263                         break;
1264                 /* found nothing in this: move on to search the next */
1265         }
1266         mutex_unlock(&shmem_swaplist_mutex);
1267
1268         if (error) {
1269                 if (error != -ENOMEM)
1270                         error = 0;
1271                 mem_cgroup_cancel_charge(page, memcg, false);
1272         } else
1273                 mem_cgroup_commit_charge(page, memcg, true, false);
1274 out:
1275         unlock_page(page);
1276         put_page(page);
1277         return error;
1278 }
1279
1280 /*
1281  * Move the page from the page cache to the swap cache.
1282  */
1283 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1284 {
1285         struct shmem_inode_info *info;
1286         struct address_space *mapping;
1287         struct inode *inode;
1288         swp_entry_t swap;
1289         pgoff_t index;
1290
1291         VM_BUG_ON_PAGE(PageCompound(page), page);
1292         BUG_ON(!PageLocked(page));
1293         mapping = page->mapping;
1294         index = page->index;
1295         inode = mapping->host;
1296         info = SHMEM_I(inode);
1297         if (info->flags & VM_LOCKED)
1298                 goto redirty;
1299         if (!total_swap_pages)
1300                 goto redirty;
1301
1302         /*
1303          * Our capabilities prevent regular writeback or sync from ever calling
1304          * shmem_writepage; but a stacking filesystem might use ->writepage of
1305          * its underlying filesystem, in which case tmpfs should write out to
1306          * swap only in response to memory pressure, and not for the writeback
1307          * threads or sync.
1308          */
1309         if (!wbc->for_reclaim) {
1310                 WARN_ON_ONCE(1);        /* Still happens? Tell us about it! */
1311                 goto redirty;
1312         }
1313
1314         /*
1315          * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1316          * value into swapfile.c, the only way we can correctly account for a
1317          * fallocated page arriving here is now to initialize it and write it.
1318          *
1319          * That's okay for a page already fallocated earlier, but if we have
1320          * not yet completed the fallocation, then (a) we want to keep track
1321          * of this page in case we have to undo it, and (b) it may not be a
1322          * good idea to continue anyway, once we're pushing into swap.  So
1323          * reactivate the page, and let shmem_fallocate() quit when too many.
1324          */
1325         if (!PageUptodate(page)) {
1326                 if (inode->i_private) {
1327                         struct shmem_falloc *shmem_falloc;
1328                         spin_lock(&inode->i_lock);
1329                         shmem_falloc = inode->i_private;
1330                         if (shmem_falloc &&
1331                             !shmem_falloc->waitq &&
1332                             index >= shmem_falloc->start &&
1333                             index < shmem_falloc->next)
1334                                 shmem_falloc->nr_unswapped++;
1335                         else
1336                                 shmem_falloc = NULL;
1337                         spin_unlock(&inode->i_lock);
1338                         if (shmem_falloc)
1339                                 goto redirty;
1340                 }
1341                 clear_highpage(page);
1342                 flush_dcache_page(page);
1343                 SetPageUptodate(page);
1344         }
1345
1346         swap = get_swap_page(page);
1347         if (!swap.val)
1348                 goto redirty;
1349
1350         /*
1351          * Add inode to shmem_unuse()'s list of swapped-out inodes,
1352          * if it's not already there.  Do it now before the page is
1353          * moved to swap cache, when its pagelock no longer protects
1354          * the inode from eviction.  But don't unlock the mutex until
1355          * we've incremented swapped, because shmem_unuse_inode() will
1356          * prune a !swapped inode from the swaplist under this mutex.
1357          */
1358         mutex_lock(&shmem_swaplist_mutex);
1359         if (list_empty(&info->swaplist))
1360                 list_add_tail(&info->swaplist, &shmem_swaplist);
1361
1362         if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
1363                 spin_lock_irq(&info->lock);
1364                 shmem_recalc_inode(inode);
1365                 info->swapped++;
1366                 spin_unlock_irq(&info->lock);
1367
1368                 swap_shmem_alloc(swap);
1369                 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
1370
1371                 mutex_unlock(&shmem_swaplist_mutex);
1372                 BUG_ON(page_mapped(page));
1373                 swap_writepage(page, wbc);
1374                 return 0;
1375         }
1376
1377         mutex_unlock(&shmem_swaplist_mutex);
1378         put_swap_page(page, swap);
1379 redirty:
1380         set_page_dirty(page);
1381         if (wbc->for_reclaim)
1382                 return AOP_WRITEPAGE_ACTIVATE;  /* Return with page locked */
1383         unlock_page(page);
1384         return 0;
1385 }
1386
1387 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
1388 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1389 {
1390         char buffer[64];
1391
1392         if (!mpol || mpol->mode == MPOL_DEFAULT)
1393                 return;         /* show nothing */
1394
1395         mpol_to_str(buffer, sizeof(buffer), mpol);
1396
1397         seq_printf(seq, ",mpol=%s", buffer);
1398 }
1399
1400 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1401 {
1402         struct mempolicy *mpol = NULL;
1403         if (sbinfo->mpol) {
1404                 spin_lock(&sbinfo->stat_lock);  /* prevent replace/use races */
1405                 mpol = sbinfo->mpol;
1406                 mpol_get(mpol);
1407                 spin_unlock(&sbinfo->stat_lock);
1408         }
1409         return mpol;
1410 }
1411 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1412 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1413 {
1414 }
1415 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1416 {
1417         return NULL;
1418 }
1419 #endif /* CONFIG_NUMA && CONFIG_TMPFS */
1420 #ifndef CONFIG_NUMA
1421 #define vm_policy vm_private_data
1422 #endif
1423
1424 static void shmem_pseudo_vma_init(struct vm_area_struct *vma,
1425                 struct shmem_inode_info *info, pgoff_t index)
1426 {
1427         /* Create a pseudo vma that just contains the policy */
1428         vma_init(vma, NULL);
1429         /* Bias interleave by inode number to distribute better across nodes */
1430         vma->vm_pgoff = index + info->vfs_inode.i_ino;
1431         vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1432 }
1433
1434 static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma)
1435 {
1436         /* Drop reference taken by mpol_shared_policy_lookup() */
1437         mpol_cond_put(vma->vm_policy);
1438 }
1439
1440 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1441                         struct shmem_inode_info *info, pgoff_t index)
1442 {
1443         struct vm_area_struct pvma;
1444         struct page *page;
1445         struct vm_fault vmf;
1446
1447         shmem_pseudo_vma_init(&pvma, info, index);
1448         vmf.vma = &pvma;
1449         vmf.address = 0;
1450         page = swap_cluster_readahead(swap, gfp, &vmf);
1451         shmem_pseudo_vma_destroy(&pvma);
1452
1453         return page;
1454 }
1455
1456 static struct page *shmem_alloc_hugepage(gfp_t gfp,
1457                 struct shmem_inode_info *info, pgoff_t index)
1458 {
1459         struct vm_area_struct pvma;
1460         struct inode *inode = &info->vfs_inode;
1461         struct address_space *mapping = inode->i_mapping;
1462         pgoff_t idx, hindex;
1463         void __rcu **results;
1464         struct page *page;
1465
1466         if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
1467                 return NULL;
1468
1469         hindex = round_down(index, HPAGE_PMD_NR);
1470         rcu_read_lock();
1471         if (radix_tree_gang_lookup_slot(&mapping->i_pages, &results, &idx,
1472                                 hindex, 1) && idx < hindex + HPAGE_PMD_NR) {
1473                 rcu_read_unlock();
1474                 return NULL;
1475         }
1476         rcu_read_unlock();
1477
1478         shmem_pseudo_vma_init(&pvma, info, hindex);
1479         page = alloc_pages_vma(gfp | __GFP_COMP | __GFP_NORETRY | __GFP_NOWARN,
1480                         HPAGE_PMD_ORDER, &pvma, 0, numa_node_id(), true);
1481         shmem_pseudo_vma_destroy(&pvma);
1482         if (page)
1483                 prep_transhuge_page(page);
1484         return page;
1485 }
1486
1487 static struct page *shmem_alloc_page(gfp_t gfp,
1488                         struct shmem_inode_info *info, pgoff_t index)
1489 {
1490         struct vm_area_struct pvma;
1491         struct page *page;
1492
1493         shmem_pseudo_vma_init(&pvma, info, index);
1494         page = alloc_page_vma(gfp, &pvma, 0);
1495         shmem_pseudo_vma_destroy(&pvma);
1496
1497         return page;
1498 }
1499
1500 static struct page *shmem_alloc_and_acct_page(gfp_t gfp,
1501                 struct inode *inode,
1502                 pgoff_t index, bool huge)
1503 {
1504         struct shmem_inode_info *info = SHMEM_I(inode);
1505         struct page *page;
1506         int nr;
1507         int err = -ENOSPC;
1508
1509         if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
1510                 huge = false;
1511         nr = huge ? HPAGE_PMD_NR : 1;
1512
1513         if (!shmem_inode_acct_block(inode, nr))
1514                 goto failed;
1515
1516         if (huge)
1517                 page = shmem_alloc_hugepage(gfp, info, index);
1518         else
1519                 page = shmem_alloc_page(gfp, info, index);
1520         if (page) {
1521                 __SetPageLocked(page);
1522                 __SetPageSwapBacked(page);
1523                 return page;
1524         }
1525
1526         err = -ENOMEM;
1527         shmem_inode_unacct_blocks(inode, nr);
1528 failed:
1529         return ERR_PTR(err);
1530 }
1531
1532 /*
1533  * When a page is moved from swapcache to shmem filecache (either by the
1534  * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1535  * shmem_unuse_inode()), it may have been read in earlier from swap, in
1536  * ignorance of the mapping it belongs to.  If that mapping has special
1537  * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1538  * we may need to copy to a suitable page before moving to filecache.
1539  *
1540  * In a future release, this may well be extended to respect cpuset and
1541  * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1542  * but for now it is a simple matter of zone.
1543  */
1544 static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
1545 {
1546         return page_zonenum(page) > gfp_zone(gfp);
1547 }
1548
1549 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1550                                 struct shmem_inode_info *info, pgoff_t index)
1551 {
1552         struct page *oldpage, *newpage;
1553         struct address_space *swap_mapping;
1554         swp_entry_t entry;
1555         pgoff_t swap_index;
1556         int error;
1557
1558         oldpage = *pagep;
1559         entry.val = page_private(oldpage);
1560         swap_index = swp_offset(entry);
1561         swap_mapping = page_mapping(oldpage);
1562
1563         /*
1564          * We have arrived here because our zones are constrained, so don't
1565          * limit chance of success by further cpuset and node constraints.
1566          */
1567         gfp &= ~GFP_CONSTRAINT_MASK;
1568         newpage = shmem_alloc_page(gfp, info, index);
1569         if (!newpage)
1570                 return -ENOMEM;
1571
1572         get_page(newpage);
1573         copy_highpage(newpage, oldpage);
1574         flush_dcache_page(newpage);
1575
1576         __SetPageLocked(newpage);
1577         __SetPageSwapBacked(newpage);
1578         SetPageUptodate(newpage);
1579         set_page_private(newpage, entry.val);
1580         SetPageSwapCache(newpage);
1581
1582         /*
1583          * Our caller will very soon move newpage out of swapcache, but it's
1584          * a nice clean interface for us to replace oldpage by newpage there.
1585          */
1586         xa_lock_irq(&swap_mapping->i_pages);
1587         error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage,
1588                                                                    newpage);
1589         if (!error) {
1590                 __inc_node_page_state(newpage, NR_FILE_PAGES);
1591                 __dec_node_page_state(oldpage, NR_FILE_PAGES);
1592         }
1593         xa_unlock_irq(&swap_mapping->i_pages);
1594
1595         if (unlikely(error)) {
1596                 /*
1597                  * Is this possible?  I think not, now that our callers check
1598                  * both PageSwapCache and page_private after getting page lock;
1599                  * but be defensive.  Reverse old to newpage for clear and free.
1600                  */
1601                 oldpage = newpage;
1602         } else {
1603                 mem_cgroup_migrate(oldpage, newpage);
1604                 lru_cache_add_anon(newpage);
1605                 *pagep = newpage;
1606         }
1607
1608         ClearPageSwapCache(oldpage);
1609         set_page_private(oldpage, 0);
1610
1611         unlock_page(oldpage);
1612         put_page(oldpage);
1613         put_page(oldpage);
1614         return error;
1615 }
1616
1617 /*
1618  * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1619  *
1620  * If we allocate a new one we do not mark it dirty. That's up to the
1621  * vm. If we swap it in we mark it dirty since we also free the swap
1622  * entry since a page cannot live in both the swap and page cache.
1623  *
1624  * fault_mm and fault_type are only supplied by shmem_fault:
1625  * otherwise they are NULL.
1626  */
1627 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1628         struct page **pagep, enum sgp_type sgp, gfp_t gfp,
1629         struct vm_area_struct *vma, struct vm_fault *vmf,
1630                         vm_fault_t *fault_type)
1631 {
1632         struct address_space *mapping = inode->i_mapping;
1633         struct shmem_inode_info *info = SHMEM_I(inode);
1634         struct shmem_sb_info *sbinfo;
1635         struct mm_struct *charge_mm;
1636         struct mem_cgroup *memcg;
1637         struct page *page;
1638         swp_entry_t swap;
1639         enum sgp_type sgp_huge = sgp;
1640         pgoff_t hindex = index;
1641         int error;
1642         int once = 0;
1643         int alloced = 0;
1644
1645         if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1646                 return -EFBIG;
1647         if (sgp == SGP_NOHUGE || sgp == SGP_HUGE)
1648                 sgp = SGP_CACHE;
1649 repeat:
1650         swap.val = 0;
1651         page = find_lock_entry(mapping, index);
1652         if (radix_tree_exceptional_entry(page)) {
1653                 swap = radix_to_swp_entry(page);
1654                 page = NULL;
1655         }
1656
1657         if (sgp <= SGP_CACHE &&
1658             ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1659                 error = -EINVAL;
1660                 goto unlock;
1661         }
1662
1663         if (page && sgp == SGP_WRITE)
1664                 mark_page_accessed(page);
1665
1666         /* fallocated page? */
1667         if (page && !PageUptodate(page)) {
1668                 if (sgp != SGP_READ)
1669                         goto clear;
1670                 unlock_page(page);
1671                 put_page(page);
1672                 page = NULL;
1673         }
1674         if (page || (sgp == SGP_READ && !swap.val)) {
1675                 *pagep = page;
1676                 return 0;
1677         }
1678
1679         /*
1680          * Fast cache lookup did not find it:
1681          * bring it back from swap or allocate.
1682          */
1683         sbinfo = SHMEM_SB(inode->i_sb);
1684         charge_mm = vma ? vma->vm_mm : current->mm;
1685
1686         if (swap.val) {
1687                 /* Look it up and read it in.. */
1688                 page = lookup_swap_cache(swap, NULL, 0);
1689                 if (!page) {
1690                         /* Or update major stats only when swapin succeeds?? */
1691                         if (fault_type) {
1692                                 *fault_type |= VM_FAULT_MAJOR;
1693                                 count_vm_event(PGMAJFAULT);
1694                                 count_memcg_event_mm(charge_mm, PGMAJFAULT);
1695                         }
1696                         /* Here we actually start the io */
1697                         page = shmem_swapin(swap, gfp, info, index);
1698                         if (!page) {
1699                                 error = -ENOMEM;
1700                                 goto failed;
1701                         }
1702                 }
1703
1704                 /* We have to do this with page locked to prevent races */
1705                 lock_page(page);
1706                 if (!PageSwapCache(page) || page_private(page) != swap.val ||
1707                     !shmem_confirm_swap(mapping, index, swap)) {
1708                         error = -EEXIST;        /* try again */
1709                         goto unlock;
1710                 }
1711                 if (!PageUptodate(page)) {
1712                         error = -EIO;
1713                         goto failed;
1714                 }
1715                 wait_on_page_writeback(page);
1716
1717                 if (shmem_should_replace_page(page, gfp)) {
1718                         error = shmem_replace_page(&page, gfp, info, index);
1719                         if (error)
1720                                 goto failed;
1721                 }
1722
1723                 error = mem_cgroup_try_charge_delay(page, charge_mm, gfp, &memcg,
1724                                 false);
1725                 if (!error) {
1726                         error = shmem_add_to_page_cache(page, mapping, index,
1727                                                 swp_to_radix_entry(swap));
1728                         /*
1729                          * We already confirmed swap under page lock, and make
1730                          * no memory allocation here, so usually no possibility
1731                          * of error; but free_swap_and_cache() only trylocks a
1732                          * page, so it is just possible that the entry has been
1733                          * truncated or holepunched since swap was confirmed.
1734                          * shmem_undo_range() will have done some of the
1735                          * unaccounting, now delete_from_swap_cache() will do
1736                          * the rest.
1737                          * Reset swap.val? No, leave it so "failed" goes back to
1738                          * "repeat": reading a hole and writing should succeed.
1739                          */
1740                         if (error) {
1741                                 mem_cgroup_cancel_charge(page, memcg, false);
1742                                 delete_from_swap_cache(page);
1743                         }
1744                 }
1745                 if (error)
1746                         goto failed;
1747
1748                 mem_cgroup_commit_charge(page, memcg, true, false);
1749
1750                 spin_lock_irq(&info->lock);
1751                 info->swapped--;
1752                 shmem_recalc_inode(inode);
1753                 spin_unlock_irq(&info->lock);
1754
1755                 if (sgp == SGP_WRITE)
1756                         mark_page_accessed(page);
1757
1758                 delete_from_swap_cache(page);
1759                 set_page_dirty(page);
1760                 swap_free(swap);
1761
1762         } else {
1763                 if (vma && userfaultfd_missing(vma)) {
1764                         *fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
1765                         return 0;
1766                 }
1767
1768                 /* shmem_symlink() */
1769                 if (mapping->a_ops != &shmem_aops)
1770                         goto alloc_nohuge;
1771                 if (shmem_huge == SHMEM_HUGE_DENY || sgp_huge == SGP_NOHUGE)
1772                         goto alloc_nohuge;
1773                 if (shmem_huge == SHMEM_HUGE_FORCE)
1774                         goto alloc_huge;
1775                 switch (sbinfo->huge) {
1776                         loff_t i_size;
1777                         pgoff_t off;
1778                 case SHMEM_HUGE_NEVER:
1779                         goto alloc_nohuge;
1780                 case SHMEM_HUGE_WITHIN_SIZE:
1781                         off = round_up(index, HPAGE_PMD_NR);
1782                         i_size = round_up(i_size_read(inode), PAGE_SIZE);
1783                         if (i_size >= HPAGE_PMD_SIZE &&
1784                                         i_size >> PAGE_SHIFT >= off)
1785                                 goto alloc_huge;
1786                         /* fallthrough */
1787                 case SHMEM_HUGE_ADVISE:
1788                         if (sgp_huge == SGP_HUGE)
1789                                 goto alloc_huge;
1790                         /* TODO: implement fadvise() hints */
1791                         goto alloc_nohuge;
1792                 }
1793
1794 alloc_huge:
1795                 page = shmem_alloc_and_acct_page(gfp, inode, index, true);
1796                 if (IS_ERR(page)) {
1797 alloc_nohuge:           page = shmem_alloc_and_acct_page(gfp, inode,
1798                                         index, false);
1799                 }
1800                 if (IS_ERR(page)) {
1801                         int retry = 5;
1802                         error = PTR_ERR(page);
1803                         page = NULL;
1804                         if (error != -ENOSPC)
1805                                 goto failed;
1806                         /*
1807                          * Try to reclaim some spece by splitting a huge page
1808                          * beyond i_size on the filesystem.
1809                          */
1810                         while (retry--) {
1811                                 int ret;
1812                                 ret = shmem_unused_huge_shrink(sbinfo, NULL, 1);
1813                                 if (ret == SHRINK_STOP)
1814                                         break;
1815                                 if (ret)
1816                                         goto alloc_nohuge;
1817                         }
1818                         goto failed;
1819                 }
1820
1821                 if (PageTransHuge(page))
1822                         hindex = round_down(index, HPAGE_PMD_NR);
1823                 else
1824                         hindex = index;
1825
1826                 if (sgp == SGP_WRITE)
1827                         __SetPageReferenced(page);
1828
1829                 error = mem_cgroup_try_charge_delay(page, charge_mm, gfp, &memcg,
1830                                 PageTransHuge(page));
1831                 if (error)
1832                         goto unacct;
1833                 error = radix_tree_maybe_preload_order(gfp & GFP_RECLAIM_MASK,
1834                                 compound_order(page));
1835                 if (!error) {
1836                         error = shmem_add_to_page_cache(page, mapping, hindex,
1837                                                         NULL);
1838                         radix_tree_preload_end();
1839                 }
1840                 if (error) {
1841                         mem_cgroup_cancel_charge(page, memcg,
1842                                         PageTransHuge(page));
1843                         goto unacct;
1844                 }
1845                 mem_cgroup_commit_charge(page, memcg, false,
1846                                 PageTransHuge(page));
1847                 lru_cache_add_anon(page);
1848
1849                 spin_lock_irq(&info->lock);
1850                 info->alloced += 1 << compound_order(page);
1851                 inode->i_blocks += BLOCKS_PER_PAGE << compound_order(page);
1852                 shmem_recalc_inode(inode);
1853                 spin_unlock_irq(&info->lock);
1854                 alloced = true;
1855
1856                 if (PageTransHuge(page) &&
1857                                 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
1858                                 hindex + HPAGE_PMD_NR - 1) {
1859                         /*
1860                          * Part of the huge page is beyond i_size: subject
1861                          * to shrink under memory pressure.
1862                          */
1863                         spin_lock(&sbinfo->shrinklist_lock);
1864                         /*
1865                          * _careful to defend against unlocked access to
1866                          * ->shrink_list in shmem_unused_huge_shrink()
1867                          */
1868                         if (list_empty_careful(&info->shrinklist)) {
1869                                 list_add_tail(&info->shrinklist,
1870                                                 &sbinfo->shrinklist);
1871                                 sbinfo->shrinklist_len++;
1872                         }
1873                         spin_unlock(&sbinfo->shrinklist_lock);
1874                 }
1875
1876                 /*
1877                  * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1878                  */
1879                 if (sgp == SGP_FALLOC)
1880                         sgp = SGP_WRITE;
1881 clear:
1882                 /*
1883                  * Let SGP_WRITE caller clear ends if write does not fill page;
1884                  * but SGP_FALLOC on a page fallocated earlier must initialize
1885                  * it now, lest undo on failure cancel our earlier guarantee.
1886                  */
1887                 if (sgp != SGP_WRITE && !PageUptodate(page)) {
1888                         struct page *head = compound_head(page);
1889                         int i;
1890
1891                         for (i = 0; i < (1 << compound_order(head)); i++) {
1892                                 clear_highpage(head + i);
1893                                 flush_dcache_page(head + i);
1894                         }
1895                         SetPageUptodate(head);
1896                 }
1897         }
1898
1899         /* Perhaps the file has been truncated since we checked */
1900         if (sgp <= SGP_CACHE &&
1901             ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1902                 if (alloced) {
1903                         ClearPageDirty(page);
1904                         delete_from_page_cache(page);
1905                         spin_lock_irq(&info->lock);
1906                         shmem_recalc_inode(inode);
1907                         spin_unlock_irq(&info->lock);
1908                 }
1909                 error = -EINVAL;
1910                 goto unlock;
1911         }
1912         *pagep = page + index - hindex;
1913         return 0;
1914
1915         /*
1916          * Error recovery.
1917          */
1918 unacct:
1919         shmem_inode_unacct_blocks(inode, 1 << compound_order(page));
1920
1921         if (PageTransHuge(page)) {
1922                 unlock_page(page);
1923                 put_page(page);
1924                 goto alloc_nohuge;
1925         }
1926 failed:
1927         if (swap.val && !shmem_confirm_swap(mapping, index, swap))
1928                 error = -EEXIST;
1929 unlock:
1930         if (page) {
1931                 unlock_page(page);
1932                 put_page(page);
1933         }
1934         if (error == -ENOSPC && !once++) {
1935                 spin_lock_irq(&info->lock);
1936                 shmem_recalc_inode(inode);
1937                 spin_unlock_irq(&info->lock);
1938                 goto repeat;
1939         }
1940         if (error == -EEXIST)   /* from above or from radix_tree_insert */
1941                 goto repeat;
1942         return error;
1943 }
1944
1945 /*
1946  * This is like autoremove_wake_function, but it removes the wait queue
1947  * entry unconditionally - even if something else had already woken the
1948  * target.
1949  */
1950 static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
1951 {
1952         int ret = default_wake_function(wait, mode, sync, key);
1953         list_del_init(&wait->entry);
1954         return ret;
1955 }
1956
1957 static vm_fault_t shmem_fault(struct vm_fault *vmf)
1958 {
1959         struct vm_area_struct *vma = vmf->vma;
1960         struct inode *inode = file_inode(vma->vm_file);
1961         gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
1962         enum sgp_type sgp;
1963         int err;
1964         vm_fault_t ret = VM_FAULT_LOCKED;
1965
1966         /*
1967          * Trinity finds that probing a hole which tmpfs is punching can
1968          * prevent the hole-punch from ever completing: which in turn
1969          * locks writers out with its hold on i_mutex.  So refrain from
1970          * faulting pages into the hole while it's being punched.  Although
1971          * shmem_undo_range() does remove the additions, it may be unable to
1972          * keep up, as each new page needs its own unmap_mapping_range() call,
1973          * and the i_mmap tree grows ever slower to scan if new vmas are added.
1974          *
1975          * It does not matter if we sometimes reach this check just before the
1976          * hole-punch begins, so that one fault then races with the punch:
1977          * we just need to make racing faults a rare case.
1978          *
1979          * The implementation below would be much simpler if we just used a
1980          * standard mutex or completion: but we cannot take i_mutex in fault,
1981          * and bloating every shmem inode for this unlikely case would be sad.
1982          */
1983         if (unlikely(inode->i_private)) {
1984                 struct shmem_falloc *shmem_falloc;
1985
1986                 spin_lock(&inode->i_lock);
1987                 shmem_falloc = inode->i_private;
1988                 if (shmem_falloc &&
1989                     shmem_falloc->waitq &&
1990                     vmf->pgoff >= shmem_falloc->start &&
1991                     vmf->pgoff < shmem_falloc->next) {
1992                         wait_queue_head_t *shmem_falloc_waitq;
1993                         DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
1994
1995                         ret = VM_FAULT_NOPAGE;
1996                         if ((vmf->flags & FAULT_FLAG_ALLOW_RETRY) &&
1997                            !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT)) {
1998                                 /* It's polite to up mmap_sem if we can */
1999                                 up_read(&vma->vm_mm->mmap_sem);
2000                                 ret = VM_FAULT_RETRY;
2001                         }
2002
2003                         shmem_falloc_waitq = shmem_falloc->waitq;
2004                         prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
2005                                         TASK_UNINTERRUPTIBLE);
2006                         spin_unlock(&inode->i_lock);
2007                         schedule();
2008
2009                         /*
2010                          * shmem_falloc_waitq points into the shmem_fallocate()
2011                          * stack of the hole-punching task: shmem_falloc_waitq
2012                          * is usually invalid by the time we reach here, but
2013                          * finish_wait() does not dereference it in that case;
2014                          * though i_lock needed lest racing with wake_up_all().
2015                          */
2016                         spin_lock(&inode->i_lock);
2017                         finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
2018                         spin_unlock(&inode->i_lock);
2019                         return ret;
2020                 }
2021                 spin_unlock(&inode->i_lock);
2022         }
2023
2024         sgp = SGP_CACHE;
2025
2026         if ((vma->vm_flags & VM_NOHUGEPAGE) ||
2027             test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
2028                 sgp = SGP_NOHUGE;
2029         else if (vma->vm_flags & VM_HUGEPAGE)
2030                 sgp = SGP_HUGE;
2031
2032         err = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, sgp,
2033                                   gfp, vma, vmf, &ret);
2034         if (err)
2035                 return vmf_error(err);
2036         return ret;
2037 }
2038
2039 unsigned long shmem_get_unmapped_area(struct file *file,
2040                                       unsigned long uaddr, unsigned long len,
2041                                       unsigned long pgoff, unsigned long flags)
2042 {
2043         unsigned long (*get_area)(struct file *,
2044                 unsigned long, unsigned long, unsigned long, unsigned long);
2045         unsigned long addr;
2046         unsigned long offset;
2047         unsigned long inflated_len;
2048         unsigned long inflated_addr;
2049         unsigned long inflated_offset;
2050
2051         if (len > TASK_SIZE)
2052                 return -ENOMEM;
2053
2054         get_area = current->mm->get_unmapped_area;
2055         addr = get_area(file, uaddr, len, pgoff, flags);
2056
2057         if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
2058                 return addr;
2059         if (IS_ERR_VALUE(addr))
2060                 return addr;
2061         if (addr & ~PAGE_MASK)
2062                 return addr;
2063         if (addr > TASK_SIZE - len)
2064                 return addr;
2065
2066         if (shmem_huge == SHMEM_HUGE_DENY)
2067                 return addr;
2068         if (len < HPAGE_PMD_SIZE)
2069                 return addr;
2070         if (flags & MAP_FIXED)
2071                 return addr;
2072         /*
2073          * Our priority is to support MAP_SHARED mapped hugely;
2074          * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2075          * But if caller specified an address hint and we allocated area there
2076          * successfully, respect that as before.
2077          */
2078         if (uaddr == addr)
2079                 return addr;
2080
2081         if (shmem_huge != SHMEM_HUGE_FORCE) {
2082                 struct super_block *sb;
2083
2084                 if (file) {
2085                         VM_BUG_ON(file->f_op != &shmem_file_operations);
2086                         sb = file_inode(file)->i_sb;
2087                 } else {
2088                         /*
2089                          * Called directly from mm/mmap.c, or drivers/char/mem.c
2090                          * for "/dev/zero", to create a shared anonymous object.
2091                          */
2092                         if (IS_ERR(shm_mnt))
2093                                 return addr;
2094                         sb = shm_mnt->mnt_sb;
2095                 }
2096                 if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER)
2097                         return addr;
2098         }
2099
2100         offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
2101         if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
2102                 return addr;
2103         if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
2104                 return addr;
2105
2106         inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
2107         if (inflated_len > TASK_SIZE)
2108                 return addr;
2109         if (inflated_len < len)
2110                 return addr;
2111
2112         inflated_addr = get_area(NULL, uaddr, inflated_len, 0, flags);
2113         if (IS_ERR_VALUE(inflated_addr))
2114                 return addr;
2115         if (inflated_addr & ~PAGE_MASK)
2116                 return addr;
2117
2118         inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2119         inflated_addr += offset - inflated_offset;
2120         if (inflated_offset > offset)
2121                 inflated_addr += HPAGE_PMD_SIZE;
2122
2123         if (inflated_addr > TASK_SIZE - len)
2124                 return addr;
2125         return inflated_addr;
2126 }
2127
2128 #ifdef CONFIG_NUMA
2129 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
2130 {
2131         struct inode *inode = file_inode(vma->vm_file);
2132         return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
2133 }
2134
2135 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2136                                           unsigned long addr)
2137 {
2138         struct inode *inode = file_inode(vma->vm_file);
2139         pgoff_t index;
2140
2141         index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2142         return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
2143 }
2144 #endif
2145
2146 int shmem_lock(struct file *file, int lock, struct user_struct *user)
2147 {
2148         struct inode *inode = file_inode(file);
2149         struct shmem_inode_info *info = SHMEM_I(inode);
2150         int retval = -ENOMEM;
2151
2152         /*
2153          * What serializes the accesses to info->flags?
2154          * ipc_lock_object() when called from shmctl_do_lock(),
2155          * no serialization needed when called from shm_destroy().
2156          */
2157         if (lock && !(info->flags & VM_LOCKED)) {
2158                 if (!user_shm_lock(inode->i_size, user))
2159                         goto out_nomem;
2160                 info->flags |= VM_LOCKED;
2161                 mapping_set_unevictable(file->f_mapping);
2162         }
2163         if (!lock && (info->flags & VM_LOCKED) && user) {
2164                 user_shm_unlock(inode->i_size, user);
2165                 info->flags &= ~VM_LOCKED;
2166                 mapping_clear_unevictable(file->f_mapping);
2167         }
2168         retval = 0;
2169
2170 out_nomem:
2171         return retval;
2172 }
2173
2174 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
2175 {
2176         file_accessed(file);
2177         vma->vm_ops = &shmem_vm_ops;
2178         if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
2179                         ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
2180                         (vma->vm_end & HPAGE_PMD_MASK)) {
2181                 khugepaged_enter(vma, vma->vm_flags);
2182         }
2183         return 0;
2184 }
2185
2186 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
2187                                      umode_t mode, dev_t dev, unsigned long flags)
2188 {
2189         struct inode *inode;
2190         struct shmem_inode_info *info;
2191         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2192
2193         if (shmem_reserve_inode(sb))
2194                 return NULL;
2195
2196         inode = new_inode(sb);
2197         if (inode) {
2198                 inode->i_ino = get_next_ino();
2199                 inode_init_owner(inode, dir, mode);
2200                 inode->i_blocks = 0;
2201                 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
2202                 inode->i_generation = prandom_u32();
2203                 info = SHMEM_I(inode);
2204                 memset(info, 0, (char *)inode - (char *)info);
2205                 spin_lock_init(&info->lock);
2206                 info->seals = F_SEAL_SEAL;
2207                 info->flags = flags & VM_NORESERVE;
2208                 INIT_LIST_HEAD(&info->shrinklist);
2209                 INIT_LIST_HEAD(&info->swaplist);
2210                 simple_xattrs_init(&info->xattrs);
2211                 cache_no_acl(inode);
2212
2213                 switch (mode & S_IFMT) {
2214                 default:
2215                         inode->i_op = &shmem_special_inode_operations;
2216                         init_special_inode(inode, mode, dev);
2217                         break;
2218                 case S_IFREG:
2219                         inode->i_mapping->a_ops = &shmem_aops;
2220                         inode->i_op = &shmem_inode_operations;
2221                         inode->i_fop = &shmem_file_operations;
2222                         mpol_shared_policy_init(&info->policy,
2223                                                  shmem_get_sbmpol(sbinfo));
2224                         break;
2225                 case S_IFDIR:
2226                         inc_nlink(inode);
2227                         /* Some things misbehave if size == 0 on a directory */
2228                         inode->i_size = 2 * BOGO_DIRENT_SIZE;
2229                         inode->i_op = &shmem_dir_inode_operations;
2230                         inode->i_fop = &simple_dir_operations;
2231                         break;
2232                 case S_IFLNK:
2233                         /*
2234                          * Must not load anything in the rbtree,
2235                          * mpol_free_shared_policy will not be called.
2236                          */
2237                         mpol_shared_policy_init(&info->policy, NULL);
2238                         break;
2239                 }
2240
2241                 lockdep_annotate_inode_mutex_key(inode);
2242         } else
2243                 shmem_free_inode(sb);
2244         return inode;
2245 }
2246
2247 bool shmem_mapping(struct address_space *mapping)
2248 {
2249         return mapping->a_ops == &shmem_aops;
2250 }
2251
2252 static int shmem_mfill_atomic_pte(struct mm_struct *dst_mm,
2253                                   pmd_t *dst_pmd,
2254                                   struct vm_area_struct *dst_vma,
2255                                   unsigned long dst_addr,
2256                                   unsigned long src_addr,
2257                                   bool zeropage,
2258                                   struct page **pagep)
2259 {
2260         struct inode *inode = file_inode(dst_vma->vm_file);
2261         struct shmem_inode_info *info = SHMEM_I(inode);
2262         struct address_space *mapping = inode->i_mapping;
2263         gfp_t gfp = mapping_gfp_mask(mapping);
2264         pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
2265         struct mem_cgroup *memcg;
2266         spinlock_t *ptl;
2267         void *page_kaddr;
2268         struct page *page;
2269         pte_t _dst_pte, *dst_pte;
2270         int ret;
2271         pgoff_t offset, max_off;
2272
2273         ret = -ENOMEM;
2274         if (!shmem_inode_acct_block(inode, 1)) {
2275                 /*
2276                  * We may have got a page, returned -ENOENT triggering a retry,
2277                  * and now we find ourselves with -ENOMEM. Release the page, to
2278                  * avoid a BUG_ON in our caller.
2279                  */
2280                 if (unlikely(*pagep)) {
2281                         put_page(*pagep);
2282                         *pagep = NULL;
2283                 }
2284                 goto out;
2285         }
2286
2287         if (!*pagep) {
2288                 page = shmem_alloc_page(gfp, info, pgoff);
2289                 if (!page)
2290                         goto out_unacct_blocks;
2291
2292                 if (!zeropage) {        /* mcopy_atomic */
2293                         page_kaddr = kmap_atomic(page);
2294                         ret = copy_from_user(page_kaddr,
2295                                              (const void __user *)src_addr,
2296                                              PAGE_SIZE);
2297                         kunmap_atomic(page_kaddr);
2298
2299                         /* fallback to copy_from_user outside mmap_sem */
2300                         if (unlikely(ret)) {
2301                                 *pagep = page;
2302                                 shmem_inode_unacct_blocks(inode, 1);
2303                                 /* don't free the page */
2304                                 return -ENOENT;
2305                         }
2306                 } else {                /* mfill_zeropage_atomic */
2307                         clear_highpage(page);
2308                 }
2309         } else {
2310                 page = *pagep;
2311                 *pagep = NULL;
2312         }
2313
2314         VM_BUG_ON(PageLocked(page) || PageSwapBacked(page));
2315         __SetPageLocked(page);
2316         __SetPageSwapBacked(page);
2317         __SetPageUptodate(page);
2318
2319         ret = -EFAULT;
2320         offset = linear_page_index(dst_vma, dst_addr);
2321         max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2322         if (unlikely(offset >= max_off))
2323                 goto out_release;
2324
2325         ret = mem_cgroup_try_charge_delay(page, dst_mm, gfp, &memcg, false);
2326         if (ret)
2327                 goto out_release;
2328
2329         ret = radix_tree_maybe_preload(gfp & GFP_RECLAIM_MASK);
2330         if (!ret) {
2331                 ret = shmem_add_to_page_cache(page, mapping, pgoff, NULL);
2332                 radix_tree_preload_end();
2333         }
2334         if (ret)
2335                 goto out_release_uncharge;
2336
2337         mem_cgroup_commit_charge(page, memcg, false, false);
2338
2339         _dst_pte = mk_pte(page, dst_vma->vm_page_prot);
2340         if (dst_vma->vm_flags & VM_WRITE)
2341                 _dst_pte = pte_mkwrite(pte_mkdirty(_dst_pte));
2342         else {
2343                 /*
2344                  * We don't set the pte dirty if the vma has no
2345                  * VM_WRITE permission, so mark the page dirty or it
2346                  * could be freed from under us. We could do it
2347                  * unconditionally before unlock_page(), but doing it
2348                  * only if VM_WRITE is not set is faster.
2349                  */
2350                 set_page_dirty(page);
2351         }
2352
2353         dst_pte = pte_offset_map_lock(dst_mm, dst_pmd, dst_addr, &ptl);
2354
2355         ret = -EFAULT;
2356         max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2357         if (unlikely(offset >= max_off))
2358                 goto out_release_uncharge_unlock;
2359
2360         ret = -EEXIST;
2361         if (!pte_none(*dst_pte))
2362                 goto out_release_uncharge_unlock;
2363
2364         lru_cache_add_anon(page);
2365
2366         spin_lock_irq(&info->lock);
2367         info->alloced++;
2368         inode->i_blocks += BLOCKS_PER_PAGE;
2369         shmem_recalc_inode(inode);
2370         spin_unlock_irq(&info->lock);
2371
2372         inc_mm_counter(dst_mm, mm_counter_file(page));
2373         page_add_file_rmap(page, false);
2374         set_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
2375
2376         /* No need to invalidate - it was non-present before */
2377         update_mmu_cache(dst_vma, dst_addr, dst_pte);
2378         pte_unmap_unlock(dst_pte, ptl);
2379         unlock_page(page);
2380         ret = 0;
2381 out:
2382         return ret;
2383 out_release_uncharge_unlock:
2384         pte_unmap_unlock(dst_pte, ptl);
2385         ClearPageDirty(page);
2386         delete_from_page_cache(page);
2387 out_release_uncharge:
2388         mem_cgroup_cancel_charge(page, memcg, false);
2389 out_release:
2390         unlock_page(page);
2391         put_page(page);
2392 out_unacct_blocks:
2393         shmem_inode_unacct_blocks(inode, 1);
2394         goto out;
2395 }
2396
2397 int shmem_mcopy_atomic_pte(struct mm_struct *dst_mm,
2398                            pmd_t *dst_pmd,
2399                            struct vm_area_struct *dst_vma,
2400                            unsigned long dst_addr,
2401                            unsigned long src_addr,
2402                            struct page **pagep)
2403 {
2404         return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma,
2405                                       dst_addr, src_addr, false, pagep);
2406 }
2407
2408 int shmem_mfill_zeropage_pte(struct mm_struct *dst_mm,
2409                              pmd_t *dst_pmd,
2410                              struct vm_area_struct *dst_vma,
2411                              unsigned long dst_addr)
2412 {
2413         struct page *page = NULL;
2414
2415         return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma,
2416                                       dst_addr, 0, true, &page);
2417 }
2418
2419 #ifdef CONFIG_TMPFS
2420 static const struct inode_operations shmem_symlink_inode_operations;
2421 static const struct inode_operations shmem_short_symlink_operations;
2422
2423 #ifdef CONFIG_TMPFS_XATTR
2424 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2425 #else
2426 #define shmem_initxattrs NULL
2427 #endif
2428
2429 static int
2430 shmem_write_begin(struct file *file, struct address_space *mapping,
2431                         loff_t pos, unsigned len, unsigned flags,
2432                         struct page **pagep, void **fsdata)
2433 {
2434         struct inode *inode = mapping->host;
2435         struct shmem_inode_info *info = SHMEM_I(inode);
2436         pgoff_t index = pos >> PAGE_SHIFT;
2437
2438         /* i_mutex is held by caller */
2439         if (unlikely(info->seals & (F_SEAL_WRITE | F_SEAL_GROW))) {
2440                 if (info->seals & F_SEAL_WRITE)
2441                         return -EPERM;
2442                 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2443                         return -EPERM;
2444         }
2445
2446         return shmem_getpage(inode, index, pagep, SGP_WRITE);
2447 }
2448
2449 static int
2450 shmem_write_end(struct file *file, struct address_space *mapping,
2451                         loff_t pos, unsigned len, unsigned copied,
2452                         struct page *page, void *fsdata)
2453 {
2454         struct inode *inode = mapping->host;
2455
2456         if (pos + copied > inode->i_size)
2457                 i_size_write(inode, pos + copied);
2458
2459         if (!PageUptodate(page)) {
2460                 struct page *head = compound_head(page);
2461                 if (PageTransCompound(page)) {
2462                         int i;
2463
2464                         for (i = 0; i < HPAGE_PMD_NR; i++) {
2465                                 if (head + i == page)
2466                                         continue;
2467                                 clear_highpage(head + i);
2468                                 flush_dcache_page(head + i);
2469                         }
2470                 }
2471                 if (copied < PAGE_SIZE) {
2472                         unsigned from = pos & (PAGE_SIZE - 1);
2473                         zero_user_segments(page, 0, from,
2474                                         from + copied, PAGE_SIZE);
2475                 }
2476                 SetPageUptodate(head);
2477         }
2478         set_page_dirty(page);
2479         unlock_page(page);
2480         put_page(page);
2481
2482         return copied;
2483 }
2484
2485 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
2486 {
2487         struct file *file = iocb->ki_filp;
2488         struct inode *inode = file_inode(file);
2489         struct address_space *mapping = inode->i_mapping;
2490         pgoff_t index;
2491         unsigned long offset;
2492         enum sgp_type sgp = SGP_READ;
2493         int error = 0;
2494         ssize_t retval = 0;
2495         loff_t *ppos = &iocb->ki_pos;
2496
2497         /*
2498          * Might this read be for a stacking filesystem?  Then when reading
2499          * holes of a sparse file, we actually need to allocate those pages,
2500          * and even mark them dirty, so it cannot exceed the max_blocks limit.
2501          */
2502         if (!iter_is_iovec(to))
2503                 sgp = SGP_CACHE;
2504
2505         index = *ppos >> PAGE_SHIFT;
2506         offset = *ppos & ~PAGE_MASK;
2507
2508         for (;;) {
2509                 struct page *page = NULL;
2510                 pgoff_t end_index;
2511                 unsigned long nr, ret;
2512                 loff_t i_size = i_size_read(inode);
2513
2514                 end_index = i_size >> PAGE_SHIFT;
2515                 if (index > end_index)
2516                         break;
2517                 if (index == end_index) {
2518                         nr = i_size & ~PAGE_MASK;
2519                         if (nr <= offset)
2520                                 break;
2521                 }
2522
2523                 error = shmem_getpage(inode, index, &page, sgp);
2524                 if (error) {
2525                         if (error == -EINVAL)
2526                                 error = 0;
2527                         break;
2528                 }
2529                 if (page) {
2530                         if (sgp == SGP_CACHE)
2531                                 set_page_dirty(page);
2532                         unlock_page(page);
2533                 }
2534
2535                 /*
2536                  * We must evaluate after, since reads (unlike writes)
2537                  * are called without i_mutex protection against truncate
2538                  */
2539                 nr = PAGE_SIZE;
2540                 i_size = i_size_read(inode);
2541                 end_index = i_size >> PAGE_SHIFT;
2542                 if (index == end_index) {
2543                         nr = i_size & ~PAGE_MASK;
2544                         if (nr <= offset) {
2545                                 if (page)
2546                                         put_page(page);
2547                                 break;
2548                         }
2549                 }
2550                 nr -= offset;
2551
2552                 if (page) {
2553                         /*
2554                          * If users can be writing to this page using arbitrary
2555                          * virtual addresses, take care about potential aliasing
2556                          * before reading the page on the kernel side.
2557                          */
2558                         if (mapping_writably_mapped(mapping))
2559                                 flush_dcache_page(page);
2560                         /*
2561                          * Mark the page accessed if we read the beginning.
2562                          */
2563                         if (!offset)
2564                                 mark_page_accessed(page);
2565                 } else {
2566                         page = ZERO_PAGE(0);
2567                         get_page(page);
2568                 }
2569
2570                 /*
2571                  * Ok, we have the page, and it's up-to-date, so
2572                  * now we can copy it to user space...
2573                  */
2574                 ret = copy_page_to_iter(page, offset, nr, to);
2575                 retval += ret;
2576                 offset += ret;
2577                 index += offset >> PAGE_SHIFT;
2578                 offset &= ~PAGE_MASK;
2579
2580                 put_page(page);
2581                 if (!iov_iter_count(to))
2582                         break;
2583                 if (ret < nr) {
2584                         error = -EFAULT;
2585                         break;
2586                 }
2587                 cond_resched();
2588         }
2589
2590         *ppos = ((loff_t) index << PAGE_SHIFT) + offset;
2591         file_accessed(file);
2592         return retval ? retval : error;
2593 }
2594
2595 /*
2596  * llseek SEEK_DATA or SEEK_HOLE through the radix_tree.
2597  */
2598 static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
2599                                     pgoff_t index, pgoff_t end, int whence)
2600 {
2601         struct page *page;
2602         struct pagevec pvec;
2603         pgoff_t indices[PAGEVEC_SIZE];
2604         bool done = false;
2605         int i;
2606
2607         pagevec_init(&pvec);
2608         pvec.nr = 1;            /* start small: we may be there already */
2609         while (!done) {
2610                 pvec.nr = find_get_entries(mapping, index,
2611                                         pvec.nr, pvec.pages, indices);
2612                 if (!pvec.nr) {
2613                         if (whence == SEEK_DATA)
2614                                 index = end;
2615                         break;
2616                 }
2617                 for (i = 0; i < pvec.nr; i++, index++) {
2618                         if (index < indices[i]) {
2619                                 if (whence == SEEK_HOLE) {
2620                                         done = true;
2621                                         break;
2622                                 }
2623                                 index = indices[i];
2624                         }
2625                         page = pvec.pages[i];
2626                         if (page && !radix_tree_exceptional_entry(page)) {
2627                                 if (!PageUptodate(page))
2628                                         page = NULL;
2629                         }
2630                         if (index >= end ||
2631                             (page && whence == SEEK_DATA) ||
2632                             (!page && whence == SEEK_HOLE)) {
2633                                 done = true;
2634                                 break;
2635                         }
2636                 }
2637                 pagevec_remove_exceptionals(&pvec);
2638                 pagevec_release(&pvec);
2639                 pvec.nr = PAGEVEC_SIZE;
2640                 cond_resched();
2641         }
2642         return index;
2643 }
2644
2645 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
2646 {
2647         struct address_space *mapping = file->f_mapping;
2648         struct inode *inode = mapping->host;
2649         pgoff_t start, end;
2650         loff_t new_offset;
2651
2652         if (whence != SEEK_DATA && whence != SEEK_HOLE)
2653                 return generic_file_llseek_size(file, offset, whence,
2654                                         MAX_LFS_FILESIZE, i_size_read(inode));
2655         inode_lock(inode);
2656         /* We're holding i_mutex so we can access i_size directly */
2657
2658         if (offset < 0 || offset >= inode->i_size)
2659                 offset = -ENXIO;
2660         else {
2661                 start = offset >> PAGE_SHIFT;
2662                 end = (inode->i_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
2663                 new_offset = shmem_seek_hole_data(mapping, start, end, whence);
2664                 new_offset <<= PAGE_SHIFT;
2665                 if (new_offset > offset) {
2666                         if (new_offset < inode->i_size)
2667                                 offset = new_offset;
2668                         else if (whence == SEEK_DATA)
2669                                 offset = -ENXIO;
2670                         else
2671                                 offset = inode->i_size;
2672                 }
2673         }
2674
2675         if (offset >= 0)
2676                 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
2677         inode_unlock(inode);
2678         return offset;
2679 }
2680
2681 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2682                                                          loff_t len)
2683 {
2684         struct inode *inode = file_inode(file);
2685         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2686         struct shmem_inode_info *info = SHMEM_I(inode);
2687         struct shmem_falloc shmem_falloc;
2688         pgoff_t start, index, end;
2689         int error;
2690
2691         if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2692                 return -EOPNOTSUPP;
2693
2694         inode_lock(inode);
2695
2696         if (mode & FALLOC_FL_PUNCH_HOLE) {
2697                 struct address_space *mapping = file->f_mapping;
2698                 loff_t unmap_start = round_up(offset, PAGE_SIZE);
2699                 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
2700                 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
2701
2702                 /* protected by i_mutex */
2703                 if (info->seals & F_SEAL_WRITE) {
2704                         error = -EPERM;
2705                         goto out;
2706                 }
2707
2708                 shmem_falloc.waitq = &shmem_falloc_waitq;
2709                 shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT;
2710                 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2711                 spin_lock(&inode->i_lock);
2712                 inode->i_private = &shmem_falloc;
2713                 spin_unlock(&inode->i_lock);
2714
2715                 if ((u64)unmap_end > (u64)unmap_start)
2716                         unmap_mapping_range(mapping, unmap_start,
2717                                             1 + unmap_end - unmap_start, 0);
2718                 shmem_truncate_range(inode, offset, offset + len - 1);
2719                 /* No need to unmap again: hole-punching leaves COWed pages */
2720
2721                 spin_lock(&inode->i_lock);
2722                 inode->i_private = NULL;
2723                 wake_up_all(&shmem_falloc_waitq);
2724                 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
2725                 spin_unlock(&inode->i_lock);
2726                 error = 0;
2727                 goto out;
2728         }
2729
2730         /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2731         error = inode_newsize_ok(inode, offset + len);
2732         if (error)
2733                 goto out;
2734
2735         if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2736                 error = -EPERM;
2737                 goto out;
2738         }
2739
2740         start = offset >> PAGE_SHIFT;
2741         end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
2742         /* Try to avoid a swapstorm if len is impossible to satisfy */
2743         if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2744                 error = -ENOSPC;
2745                 goto out;
2746         }
2747
2748         shmem_falloc.waitq = NULL;
2749         shmem_falloc.start = start;
2750         shmem_falloc.next  = start;
2751         shmem_falloc.nr_falloced = 0;
2752         shmem_falloc.nr_unswapped = 0;
2753         spin_lock(&inode->i_lock);
2754         inode->i_private = &shmem_falloc;
2755         spin_unlock(&inode->i_lock);
2756
2757         for (index = start; index < end; index++) {
2758                 struct page *page;
2759
2760                 /*
2761                  * Good, the fallocate(2) manpage permits EINTR: we may have
2762                  * been interrupted because we are using up too much memory.
2763                  */
2764                 if (signal_pending(current))
2765                         error = -EINTR;
2766                 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2767                         error = -ENOMEM;
2768                 else
2769                         error = shmem_getpage(inode, index, &page, SGP_FALLOC);
2770                 if (error) {
2771                         /* Remove the !PageUptodate pages we added */
2772                         if (index > start) {
2773                                 shmem_undo_range(inode,
2774                                     (loff_t)start << PAGE_SHIFT,
2775                                     ((loff_t)index << PAGE_SHIFT) - 1, true);
2776                         }
2777                         goto undone;
2778                 }
2779
2780                 /*
2781                  * Inform shmem_writepage() how far we have reached.
2782                  * No need for lock or barrier: we have the page lock.
2783                  */
2784                 shmem_falloc.next++;
2785                 if (!PageUptodate(page))
2786                         shmem_falloc.nr_falloced++;
2787
2788                 /*
2789                  * If !PageUptodate, leave it that way so that freeable pages
2790                  * can be recognized if we need to rollback on error later.
2791                  * But set_page_dirty so that memory pressure will swap rather
2792                  * than free the pages we are allocating (and SGP_CACHE pages
2793                  * might still be clean: we now need to mark those dirty too).
2794                  */
2795                 set_page_dirty(page);
2796                 unlock_page(page);
2797                 put_page(page);
2798                 cond_resched();
2799         }
2800
2801         if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2802                 i_size_write(inode, offset + len);
2803         inode->i_ctime = current_time(inode);
2804 undone:
2805         spin_lock(&inode->i_lock);
2806         inode->i_private = NULL;
2807         spin_unlock(&inode->i_lock);
2808 out:
2809         inode_unlock(inode);
2810         return error;
2811 }
2812
2813 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
2814 {
2815         struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
2816
2817         buf->f_type = TMPFS_MAGIC;
2818         buf->f_bsize = PAGE_SIZE;
2819         buf->f_namelen = NAME_MAX;
2820         if (sbinfo->max_blocks) {
2821                 buf->f_blocks = sbinfo->max_blocks;
2822                 buf->f_bavail =
2823                 buf->f_bfree  = sbinfo->max_blocks -
2824                                 percpu_counter_sum(&sbinfo->used_blocks);
2825         }
2826         if (sbinfo->max_inodes) {
2827                 buf->f_files = sbinfo->max_inodes;
2828                 buf->f_ffree = sbinfo->free_inodes;
2829         }
2830         /* else leave those fields 0 like simple_statfs */
2831         return 0;
2832 }
2833
2834 /*
2835  * File creation. Allocate an inode, and we're done..
2836  */
2837 static int
2838 shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2839 {
2840         struct inode *inode;
2841         int error = -ENOSPC;
2842
2843         inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
2844         if (inode) {
2845                 error = simple_acl_create(dir, inode);
2846                 if (error)
2847                         goto out_iput;
2848                 error = security_inode_init_security(inode, dir,
2849                                                      &dentry->d_name,
2850                                                      shmem_initxattrs, NULL);
2851                 if (error && error != -EOPNOTSUPP)
2852                         goto out_iput;
2853
2854                 error = 0;
2855                 dir->i_size += BOGO_DIRENT_SIZE;
2856                 dir->i_ctime = dir->i_mtime = current_time(dir);
2857                 d_instantiate(dentry, inode);
2858                 dget(dentry); /* Extra count - pin the dentry in core */
2859         }
2860         return error;
2861 out_iput:
2862         iput(inode);
2863         return error;
2864 }
2865
2866 static int
2867 shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
2868 {
2869         struct inode *inode;
2870         int error = -ENOSPC;
2871
2872         inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2873         if (inode) {
2874                 error = security_inode_init_security(inode, dir,
2875                                                      NULL,
2876                                                      shmem_initxattrs, NULL);
2877                 if (error && error != -EOPNOTSUPP)
2878                         goto out_iput;
2879                 error = simple_acl_create(dir, inode);
2880                 if (error)
2881                         goto out_iput;
2882                 d_tmpfile(dentry, inode);
2883         }
2884         return error;
2885 out_iput:
2886         iput(inode);
2887         return error;
2888 }
2889
2890 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
2891 {
2892         int error;
2893
2894         if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
2895                 return error;
2896         inc_nlink(dir);
2897         return 0;
2898 }
2899
2900 static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2901                 bool excl)
2902 {
2903         return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
2904 }
2905
2906 /*
2907  * Link a file..
2908  */
2909 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2910 {
2911         struct inode *inode = d_inode(old_dentry);
2912         int ret = 0;
2913
2914         /*
2915          * No ordinary (disk based) filesystem counts links as inodes;
2916          * but each new link needs a new dentry, pinning lowmem, and
2917          * tmpfs dentries cannot be pruned until they are unlinked.
2918          * But if an O_TMPFILE file is linked into the tmpfs, the
2919          * first link must skip that, to get the accounting right.
2920          */
2921         if (inode->i_nlink) {
2922                 ret = shmem_reserve_inode(inode->i_sb);
2923                 if (ret)
2924                         goto out;
2925         }
2926
2927         dir->i_size += BOGO_DIRENT_SIZE;
2928         inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
2929         inc_nlink(inode);
2930         ihold(inode);   /* New dentry reference */
2931         dget(dentry);           /* Extra pinning count for the created dentry */
2932         d_instantiate(dentry, inode);
2933 out:
2934         return ret;
2935 }
2936
2937 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2938 {
2939         struct inode *inode = d_inode(dentry);
2940
2941         if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2942                 shmem_free_inode(inode->i_sb);
2943
2944         dir->i_size -= BOGO_DIRENT_SIZE;
2945         inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
2946         drop_nlink(inode);
2947         dput(dentry);   /* Undo the count from "create" - this does all the work */
2948         return 0;
2949 }
2950
2951 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
2952 {
2953         if (!simple_empty(dentry))
2954                 return -ENOTEMPTY;
2955
2956         drop_nlink(d_inode(dentry));
2957         drop_nlink(dir);
2958         return shmem_unlink(dir, dentry);
2959 }
2960
2961 static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
2962 {
2963         bool old_is_dir = d_is_dir(old_dentry);
2964         bool new_is_dir = d_is_dir(new_dentry);
2965
2966         if (old_dir != new_dir && old_is_dir != new_is_dir) {
2967                 if (old_is_dir) {
2968                         drop_nlink(old_dir);
2969                         inc_nlink(new_dir);
2970                 } else {
2971                         drop_nlink(new_dir);
2972                         inc_nlink(old_dir);
2973                 }
2974         }
2975         old_dir->i_ctime = old_dir->i_mtime =
2976         new_dir->i_ctime = new_dir->i_mtime =
2977         d_inode(old_dentry)->i_ctime =
2978         d_inode(new_dentry)->i_ctime = current_time(old_dir);
2979
2980         return 0;
2981 }
2982
2983 static int shmem_whiteout(struct inode *old_dir, struct dentry *old_dentry)
2984 {
2985         struct dentry *whiteout;
2986         int error;
2987
2988         whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
2989         if (!whiteout)
2990                 return -ENOMEM;
2991
2992         error = shmem_mknod(old_dir, whiteout,
2993                             S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
2994         dput(whiteout);
2995         if (error)
2996                 return error;
2997
2998         /*
2999          * Cheat and hash the whiteout while the old dentry is still in
3000          * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
3001          *
3002          * d_lookup() will consistently find one of them at this point,
3003          * not sure which one, but that isn't even important.
3004          */
3005         d_rehash(whiteout);
3006         return 0;
3007 }
3008
3009 /*
3010  * The VFS layer already does all the dentry stuff for rename,
3011  * we just have to decrement the usage count for the target if
3012  * it exists so that the VFS layer correctly free's it when it
3013  * gets overwritten.
3014  */
3015 static int shmem_rename2(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags)
3016 {
3017         struct inode *inode = d_inode(old_dentry);
3018         int they_are_dirs = S_ISDIR(inode->i_mode);
3019
3020         if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
3021                 return -EINVAL;
3022
3023         if (flags & RENAME_EXCHANGE)
3024                 return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry);
3025
3026         if (!simple_empty(new_dentry))
3027                 return -ENOTEMPTY;
3028
3029         if (flags & RENAME_WHITEOUT) {
3030                 int error;
3031
3032                 error = shmem_whiteout(old_dir, old_dentry);
3033                 if (error)
3034                         return error;
3035         }
3036
3037         if (d_really_is_positive(new_dentry)) {
3038                 (void) shmem_unlink(new_dir, new_dentry);
3039                 if (they_are_dirs) {
3040                         drop_nlink(d_inode(new_dentry));
3041                         drop_nlink(old_dir);
3042                 }
3043         } else if (they_are_dirs) {
3044                 drop_nlink(old_dir);
3045                 inc_nlink(new_dir);
3046         }
3047
3048         old_dir->i_size -= BOGO_DIRENT_SIZE;
3049         new_dir->i_size += BOGO_DIRENT_SIZE;
3050         old_dir->i_ctime = old_dir->i_mtime =
3051         new_dir->i_ctime = new_dir->i_mtime =
3052         inode->i_ctime = current_time(old_dir);
3053         return 0;
3054 }
3055
3056 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
3057 {
3058         int error;
3059         int len;
3060         struct inode *inode;
3061         struct page *page;
3062
3063         len = strlen(symname) + 1;
3064         if (len > PAGE_SIZE)
3065                 return -ENAMETOOLONG;
3066
3067         inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK | 0777, 0,
3068                                 VM_NORESERVE);
3069         if (!inode)
3070                 return -ENOSPC;
3071
3072         error = security_inode_init_security(inode, dir, &dentry->d_name,
3073                                              shmem_initxattrs, NULL);
3074         if (error) {
3075                 if (error != -EOPNOTSUPP) {
3076                         iput(inode);
3077                         return error;
3078                 }
3079                 error = 0;
3080         }
3081
3082         inode->i_size = len-1;
3083         if (len <= SHORT_SYMLINK_LEN) {
3084                 inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3085                 if (!inode->i_link) {
3086                         iput(inode);
3087                         return -ENOMEM;
3088                 }
3089                 inode->i_op = &shmem_short_symlink_operations;
3090         } else {
3091                 inode_nohighmem(inode);
3092                 error = shmem_getpage(inode, 0, &page, SGP_WRITE);
3093                 if (error) {
3094                         iput(inode);
3095                         return error;
3096                 }
3097                 inode->i_mapping->a_ops = &shmem_aops;
3098                 inode->i_op = &shmem_symlink_inode_operations;
3099                 memcpy(page_address(page), symname, len);
3100                 SetPageUptodate(page);
3101                 set_page_dirty(page);
3102                 unlock_page(page);
3103                 put_page(page);
3104         }
3105         dir->i_size += BOGO_DIRENT_SIZE;
3106         dir->i_ctime = dir->i_mtime = current_time(dir);
3107         d_instantiate(dentry, inode);
3108         dget(dentry);
3109         return 0;
3110 }
3111
3112 static void shmem_put_link(void *arg)
3113 {
3114         mark_page_accessed(arg);
3115         put_page(arg);
3116 }
3117
3118 static const char *shmem_get_link(struct dentry *dentry,
3119                                   struct inode *inode,
3120                                   struct delayed_call *done)
3121 {
3122         struct page *page = NULL;
3123         int error;
3124         if (!dentry) {
3125                 page = find_get_page(inode->i_mapping, 0);
3126                 if (!page)
3127                         return ERR_PTR(-ECHILD);
3128                 if (!PageUptodate(page)) {
3129                         put_page(page);
3130                         return ERR_PTR(-ECHILD);
3131                 }
3132         } else {
3133                 error = shmem_getpage(inode, 0, &page, SGP_READ);
3134                 if (error)
3135                         return ERR_PTR(error);
3136                 unlock_page(page);
3137         }
3138         set_delayed_call(done, shmem_put_link, page);
3139         return page_address(page);
3140 }
3141
3142 #ifdef CONFIG_TMPFS_XATTR
3143 /*
3144  * Superblocks without xattr inode operations may get some security.* xattr
3145  * support from the LSM "for free". As soon as we have any other xattrs
3146  * like ACLs, we also need to implement the security.* handlers at
3147  * filesystem level, though.
3148  */
3149
3150 /*
3151  * Callback for security_inode_init_security() for acquiring xattrs.
3152  */
3153 static int shmem_initxattrs(struct inode *inode,
3154                             const struct xattr *xattr_array,
3155                             void *fs_info)
3156 {
3157         struct shmem_inode_info *info = SHMEM_I(inode);
3158         const struct xattr *xattr;
3159         struct simple_xattr *new_xattr;
3160         size_t len;
3161
3162         for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3163                 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
3164                 if (!new_xattr)
3165                         return -ENOMEM;
3166
3167                 len = strlen(xattr->name) + 1;
3168                 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3169                                           GFP_KERNEL);
3170                 if (!new_xattr->name) {
3171                         kfree(new_xattr);
3172                         return -ENOMEM;
3173                 }
3174
3175                 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3176                        XATTR_SECURITY_PREFIX_LEN);
3177                 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3178                        xattr->name, len);
3179
3180                 simple_xattr_list_add(&info->xattrs, new_xattr);
3181         }
3182
3183         return 0;
3184 }
3185
3186 static int shmem_xattr_handler_get(const struct xattr_handler *handler,
3187                                    struct dentry *unused, struct inode *inode,
3188                                    const char *name, void *buffer, size_t size)
3189 {
3190         struct shmem_inode_info *info = SHMEM_I(inode);
3191
3192         name = xattr_full_name(handler, name);
3193         return simple_xattr_get(&info->xattrs, name, buffer, size);
3194 }
3195
3196 static int shmem_xattr_handler_set(const struct xattr_handler *handler,
3197                                    struct dentry *unused, struct inode *inode,
3198                                    const char *name, const void *value,
3199                                    size_t size, int flags)
3200 {
3201         struct shmem_inode_info *info = SHMEM_I(inode);
3202
3203         name = xattr_full_name(handler, name);
3204         return simple_xattr_set(&info->xattrs, name, value, size, flags);
3205 }
3206
3207 static const struct xattr_handler shmem_security_xattr_handler = {
3208         .prefix = XATTR_SECURITY_PREFIX,
3209         .get = shmem_xattr_handler_get,
3210         .set = shmem_xattr_handler_set,
3211 };
3212
3213 static const struct xattr_handler shmem_trusted_xattr_handler = {
3214         .prefix = XATTR_TRUSTED_PREFIX,
3215         .get = shmem_xattr_handler_get,
3216         .set = shmem_xattr_handler_set,
3217 };
3218
3219 static const struct xattr_handler *shmem_xattr_handlers[] = {
3220 #ifdef CONFIG_TMPFS_POSIX_ACL
3221         &posix_acl_access_xattr_handler,
3222         &posix_acl_default_xattr_handler,
3223 #endif
3224         &shmem_security_xattr_handler,
3225         &shmem_trusted_xattr_handler,
3226         NULL
3227 };
3228
3229 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3230 {
3231         struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3232         return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
3233 }
3234 #endif /* CONFIG_TMPFS_XATTR */
3235
3236 static const struct inode_operations shmem_short_symlink_operations = {
3237         .get_link       = simple_get_link,
3238 #ifdef CONFIG_TMPFS_XATTR
3239         .listxattr      = shmem_listxattr,
3240 #endif
3241 };
3242
3243 static const struct inode_operations shmem_symlink_inode_operations = {
3244         .get_link       = shmem_get_link,
3245 #ifdef CONFIG_TMPFS_XATTR
3246         .listxattr      = shmem_listxattr,
3247 #endif
3248 };
3249
3250 static struct dentry *shmem_get_parent(struct dentry *child)
3251 {
3252         return ERR_PTR(-ESTALE);
3253 }
3254
3255 static int shmem_match(struct inode *ino, void *vfh)
3256 {
3257         __u32 *fh = vfh;
3258         __u64 inum = fh[2];
3259         inum = (inum << 32) | fh[1];
3260         return ino->i_ino == inum && fh[0] == ino->i_generation;
3261 }
3262
3263 /* Find any alias of inode, but prefer a hashed alias */
3264 static struct dentry *shmem_find_alias(struct inode *inode)
3265 {
3266         struct dentry *alias = d_find_alias(inode);
3267
3268         return alias ?: d_find_any_alias(inode);
3269 }
3270
3271
3272 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3273                 struct fid *fid, int fh_len, int fh_type)
3274 {
3275         struct inode *inode;
3276         struct dentry *dentry = NULL;
3277         u64 inum;
3278
3279         if (fh_len < 3)
3280                 return NULL;
3281
3282         inum = fid->raw[2];
3283         inum = (inum << 32) | fid->raw[1];
3284
3285         inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
3286                         shmem_match, fid->raw);
3287         if (inode) {
3288                 dentry = shmem_find_alias(inode);
3289                 iput(inode);
3290         }
3291
3292         return dentry;
3293 }
3294
3295 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3296                                 struct inode *parent)
3297 {
3298         if (*len < 3) {
3299                 *len = 3;
3300                 return FILEID_INVALID;
3301         }
3302
3303         if (inode_unhashed(inode)) {
3304                 /* Unfortunately insert_inode_hash is not idempotent,
3305                  * so as we hash inodes here rather than at creation
3306                  * time, we need a lock to ensure we only try
3307                  * to do it once
3308                  */
3309                 static DEFINE_SPINLOCK(lock);
3310                 spin_lock(&lock);
3311                 if (inode_unhashed(inode))
3312                         __insert_inode_hash(inode,
3313                                             inode->i_ino + inode->i_generation);
3314                 spin_unlock(&lock);
3315         }
3316
3317         fh[0] = inode->i_generation;
3318         fh[1] = inode->i_ino;
3319         fh[2] = ((__u64)inode->i_ino) >> 32;
3320
3321         *len = 3;
3322         return 1;
3323 }
3324
3325 static const struct export_operations shmem_export_ops = {
3326         .get_parent     = shmem_get_parent,
3327         .encode_fh      = shmem_encode_fh,
3328         .fh_to_dentry   = shmem_fh_to_dentry,
3329 };
3330
3331 static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
3332                                bool remount)
3333 {
3334         char *this_char, *value, *rest;
3335         struct mempolicy *mpol = NULL;
3336         uid_t uid;
3337         gid_t gid;
3338
3339         while (options != NULL) {
3340                 this_char = options;
3341                 for (;;) {
3342                         /*
3343                          * NUL-terminate this option: unfortunately,
3344                          * mount options form a comma-separated list,
3345                          * but mpol's nodelist may also contain commas.
3346                          */
3347                         options = strchr(options, ',');
3348                         if (options == NULL)
3349                                 break;
3350                         options++;
3351                         if (!isdigit(*options)) {
3352                                 options[-1] = '\0';
3353                                 break;
3354                         }
3355                 }
3356                 if (!*this_char)
3357                         continue;
3358                 if ((value = strchr(this_char,'=')) != NULL) {
3359                         *value++ = 0;
3360                 } else {
3361                         pr_err("tmpfs: No value for mount option '%s'\n",
3362                                this_char);
3363                         goto error;
3364                 }
3365
3366                 if (!strcmp(this_char,"size")) {
3367                         unsigned long long size;
3368                         size = memparse(value,&rest);
3369                         if (*rest == '%') {
3370                                 size <<= PAGE_SHIFT;
3371                                 size *= totalram_pages;
3372                                 do_div(size, 100);
3373                                 rest++;
3374                         }
3375                         if (*rest)
3376                                 goto bad_val;
3377                         sbinfo->max_blocks =
3378                                 DIV_ROUND_UP(size, PAGE_SIZE);
3379                 } else if (!strcmp(this_char,"nr_blocks")) {
3380                         sbinfo->max_blocks = memparse(value, &rest);
3381                         if (*rest)
3382                                 goto bad_val;
3383                 } else if (!strcmp(this_char,"nr_inodes")) {
3384                         sbinfo->max_inodes = memparse(value, &rest);
3385                         if (*rest)
3386                                 goto bad_val;
3387                 } else if (!strcmp(this_char,"mode")) {
3388                         if (remount)
3389                                 continue;
3390                         sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
3391                         if (*rest)
3392                                 goto bad_val;
3393                 } else if (!strcmp(this_char,"uid")) {
3394                         if (remount)
3395                                 continue;
3396                         uid = simple_strtoul(value, &rest, 0);
3397                         if (*rest)
3398                                 goto bad_val;
3399                         sbinfo->uid = make_kuid(current_user_ns(), uid);
3400                         if (!uid_valid(sbinfo->uid))
3401                                 goto bad_val;
3402                 } else if (!strcmp(this_char,"gid")) {
3403                         if (remount)
3404                                 continue;
3405                         gid = simple_strtoul(value, &rest, 0);
3406                         if (*rest)
3407                                 goto bad_val;
3408                         sbinfo->gid = make_kgid(current_user_ns(), gid);
3409                         if (!gid_valid(sbinfo->gid))
3410                                 goto bad_val;
3411 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3412                 } else if (!strcmp(this_char, "huge")) {
3413                         int huge;
3414                         huge = shmem_parse_huge(value);
3415                         if (huge < 0)
3416                                 goto bad_val;
3417                         if (!has_transparent_hugepage() &&
3418                                         huge != SHMEM_HUGE_NEVER)
3419                                 goto bad_val;
3420                         sbinfo->huge = huge;
3421 #endif
3422 #ifdef CONFIG_NUMA
3423                 } else if (!strcmp(this_char,"mpol")) {
3424                         mpol_put(mpol);
3425                         mpol = NULL;
3426                         if (mpol_parse_str(value, &mpol))
3427                                 goto bad_val;
3428 #endif
3429                 } else {
3430                         pr_err("tmpfs: Bad mount option %s\n", this_char);
3431                         goto error;
3432                 }
3433         }
3434         sbinfo->mpol = mpol;
3435         return 0;
3436
3437 bad_val:
3438         pr_err("tmpfs: Bad value '%s' for mount option '%s'\n",
3439                value, this_char);
3440 error:
3441         mpol_put(mpol);
3442         return 1;
3443
3444 }
3445
3446 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
3447 {
3448         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3449         struct shmem_sb_info config = *sbinfo;
3450         unsigned long inodes;
3451         int error = -EINVAL;
3452
3453         config.mpol = NULL;
3454         if (shmem_parse_options(data, &config, true))
3455                 return error;
3456
3457         spin_lock(&sbinfo->stat_lock);
3458         inodes = sbinfo->max_inodes - sbinfo->free_inodes;
3459         if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
3460                 goto out;
3461         if (config.max_inodes < inodes)
3462                 goto out;
3463         /*
3464          * Those tests disallow limited->unlimited while any are in use;
3465          * but we must separately disallow unlimited->limited, because
3466          * in that case we have no record of how much is already in use.
3467          */
3468         if (config.max_blocks && !sbinfo->max_blocks)
3469                 goto out;
3470         if (config.max_inodes && !sbinfo->max_inodes)
3471                 goto out;
3472
3473         error = 0;
3474         sbinfo->huge = config.huge;
3475         sbinfo->max_blocks  = config.max_blocks;
3476         sbinfo->max_inodes  = config.max_inodes;
3477         sbinfo->free_inodes = config.max_inodes - inodes;
3478
3479         /*
3480          * Preserve previous mempolicy unless mpol remount option was specified.
3481          */
3482         if (config.mpol) {
3483                 mpol_put(sbinfo->mpol);
3484                 sbinfo->mpol = config.mpol;     /* transfers initial ref */
3485         }
3486 out:
3487         spin_unlock(&sbinfo->stat_lock);
3488         return error;
3489 }
3490
3491 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
3492 {
3493         struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
3494
3495         if (sbinfo->max_blocks != shmem_default_max_blocks())
3496                 seq_printf(seq, ",size=%luk",
3497                         sbinfo->max_blocks << (PAGE_SHIFT - 10));
3498         if (sbinfo->max_inodes != shmem_default_max_inodes())
3499                 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
3500         if (sbinfo->mode != (0777 | S_ISVTX))
3501                 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
3502         if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
3503                 seq_printf(seq, ",uid=%u",
3504                                 from_kuid_munged(&init_user_ns, sbinfo->uid));
3505         if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
3506                 seq_printf(seq, ",gid=%u",
3507                                 from_kgid_munged(&init_user_ns, sbinfo->gid));
3508 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3509         /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3510         if (sbinfo->huge)
3511                 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
3512 #endif
3513         shmem_show_mpol(seq, sbinfo->mpol);
3514         return 0;
3515 }
3516
3517 #endif /* CONFIG_TMPFS */
3518
3519 static void shmem_put_super(struct super_block *sb)
3520 {
3521         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3522
3523         percpu_counter_destroy(&sbinfo->used_blocks);
3524         mpol_put(sbinfo->mpol);
3525         kfree(sbinfo);
3526         sb->s_fs_info = NULL;
3527 }
3528
3529 int shmem_fill_super(struct super_block *sb, void *data, int silent)
3530 {
3531         struct inode *inode;
3532         struct shmem_sb_info *sbinfo;
3533         int err = -ENOMEM;
3534
3535         /* Round up to L1_CACHE_BYTES to resist false sharing */
3536         sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
3537                                 L1_CACHE_BYTES), GFP_KERNEL);
3538         if (!sbinfo)
3539                 return -ENOMEM;
3540
3541         sbinfo->mode = 0777 | S_ISVTX;
3542         sbinfo->uid = current_fsuid();
3543         sbinfo->gid = current_fsgid();
3544         sb->s_fs_info = sbinfo;
3545
3546 #ifdef CONFIG_TMPFS
3547         /*
3548          * Per default we only allow half of the physical ram per
3549          * tmpfs instance, limiting inodes to one per page of lowmem;
3550          * but the internal instance is left unlimited.
3551          */
3552         if (!(sb->s_flags & SB_KERNMOUNT)) {
3553                 sbinfo->max_blocks = shmem_default_max_blocks();
3554                 sbinfo->max_inodes = shmem_default_max_inodes();
3555                 if (shmem_parse_options(data, sbinfo, false)) {
3556                         err = -EINVAL;
3557                         goto failed;
3558                 }
3559         } else {
3560                 sb->s_flags |= SB_NOUSER;
3561         }
3562         sb->s_export_op = &shmem_export_ops;
3563         sb->s_flags |= SB_NOSEC;
3564 #else
3565         sb->s_flags |= SB_NOUSER;
3566 #endif
3567
3568         spin_lock_init(&sbinfo->stat_lock);
3569         if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
3570                 goto failed;
3571         sbinfo->free_inodes = sbinfo->max_inodes;
3572         spin_lock_init(&sbinfo->shrinklist_lock);
3573         INIT_LIST_HEAD(&sbinfo->shrinklist);
3574
3575         sb->s_maxbytes = MAX_LFS_FILESIZE;
3576         sb->s_blocksize = PAGE_SIZE;
3577         sb->s_blocksize_bits = PAGE_SHIFT;
3578         sb->s_magic = TMPFS_MAGIC;
3579         sb->s_op = &shmem_ops;
3580         sb->s_time_gran = 1;
3581 #ifdef CONFIG_TMPFS_XATTR
3582         sb->s_xattr = shmem_xattr_handlers;
3583 #endif
3584 #ifdef CONFIG_TMPFS_POSIX_ACL
3585         sb->s_flags |= SB_POSIXACL;
3586 #endif
3587         uuid_gen(&sb->s_uuid);
3588
3589         inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
3590         if (!inode)
3591                 goto failed;
3592         inode->i_uid = sbinfo->uid;
3593         inode->i_gid = sbinfo->gid;
3594         sb->s_root = d_make_root(inode);
3595         if (!sb->s_root)
3596                 goto failed;
3597         return 0;
3598
3599 failed:
3600         shmem_put_super(sb);
3601         return err;
3602 }
3603
3604 static struct kmem_cache *shmem_inode_cachep;
3605
3606 static struct inode *shmem_alloc_inode(struct super_block *sb)
3607 {
3608         struct shmem_inode_info *info;
3609         info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
3610         if (!info)
3611                 return NULL;
3612         return &info->vfs_inode;
3613 }
3614
3615 static void shmem_destroy_callback(struct rcu_head *head)
3616 {
3617         struct inode *inode = container_of(head, struct inode, i_rcu);
3618         if (S_ISLNK(inode->i_mode))
3619                 kfree(inode->i_link);
3620         kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3621 }
3622
3623 static void shmem_destroy_inode(struct inode *inode)
3624 {
3625         if (S_ISREG(inode->i_mode))
3626                 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
3627         call_rcu(&inode->i_rcu, shmem_destroy_callback);
3628 }
3629
3630 static void shmem_init_inode(void *foo)
3631 {
3632         struct shmem_inode_info *info = foo;
3633         inode_init_once(&info->vfs_inode);
3634 }
3635
3636 static void shmem_init_inodecache(void)
3637 {
3638         shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3639                                 sizeof(struct shmem_inode_info),
3640                                 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
3641 }
3642
3643 static void shmem_destroy_inodecache(void)
3644 {
3645         kmem_cache_destroy(shmem_inode_cachep);
3646 }
3647
3648 static const struct address_space_operations shmem_aops = {
3649         .writepage      = shmem_writepage,
3650         .set_page_dirty = __set_page_dirty_no_writeback,
3651 #ifdef CONFIG_TMPFS
3652         .write_begin    = shmem_write_begin,
3653         .write_end      = shmem_write_end,
3654 #endif
3655 #ifdef CONFIG_MIGRATION
3656         .migratepage    = migrate_page,
3657 #endif
3658         .error_remove_page = generic_error_remove_page,
3659 };
3660
3661 static const struct file_operations shmem_file_operations = {
3662         .mmap           = shmem_mmap,
3663         .get_unmapped_area = shmem_get_unmapped_area,
3664 #ifdef CONFIG_TMPFS
3665         .llseek         = shmem_file_llseek,
3666         .read_iter      = shmem_file_read_iter,
3667         .write_iter     = generic_file_write_iter,
3668         .fsync          = noop_fsync,
3669         .splice_read    = generic_file_splice_read,
3670         .splice_write   = iter_file_splice_write,
3671         .fallocate      = shmem_fallocate,
3672 #endif
3673 };
3674
3675 static const struct inode_operations shmem_inode_operations = {
3676         .getattr        = shmem_getattr,
3677         .setattr        = shmem_setattr,
3678 #ifdef CONFIG_TMPFS_XATTR
3679         .listxattr      = shmem_listxattr,
3680         .set_acl        = simple_set_acl,
3681 #endif
3682 };
3683
3684 static const struct inode_operations shmem_dir_inode_operations = {
3685 #ifdef CONFIG_TMPFS
3686         .create         = shmem_create,
3687         .lookup         = simple_lookup,
3688         .link           = shmem_link,
3689         .unlink         = shmem_unlink,
3690         .symlink        = shmem_symlink,
3691         .mkdir          = shmem_mkdir,
3692         .rmdir          = shmem_rmdir,
3693         .mknod          = shmem_mknod,
3694         .rename         = shmem_rename2,
3695         .tmpfile        = shmem_tmpfile,
3696 #endif
3697 #ifdef CONFIG_TMPFS_XATTR
3698         .listxattr      = shmem_listxattr,
3699 #endif
3700 #ifdef CONFIG_TMPFS_POSIX_ACL
3701         .setattr        = shmem_setattr,
3702         .set_acl        = simple_set_acl,
3703 #endif
3704 };
3705
3706 static const struct inode_operations shmem_special_inode_operations = {
3707 #ifdef CONFIG_TMPFS_XATTR
3708         .listxattr      = shmem_listxattr,
3709 #endif
3710 #ifdef CONFIG_TMPFS_POSIX_ACL
3711         .setattr        = shmem_setattr,
3712         .set_acl        = simple_set_acl,
3713 #endif
3714 };
3715
3716 static const struct super_operations shmem_ops = {
3717         .alloc_inode    = shmem_alloc_inode,
3718         .destroy_inode  = shmem_destroy_inode,
3719 #ifdef CONFIG_TMPFS
3720         .statfs         = shmem_statfs,
3721         .remount_fs     = shmem_remount_fs,
3722         .show_options   = shmem_show_options,
3723 #endif
3724         .evict_inode    = shmem_evict_inode,
3725         .drop_inode     = generic_delete_inode,
3726         .put_super      = shmem_put_super,
3727 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3728         .nr_cached_objects      = shmem_unused_huge_count,
3729         .free_cached_objects    = shmem_unused_huge_scan,
3730 #endif
3731 };
3732
3733 static const struct vm_operations_struct shmem_vm_ops = {
3734         .fault          = shmem_fault,
3735         .map_pages      = filemap_map_pages,
3736 #ifdef CONFIG_NUMA
3737         .set_policy     = shmem_set_policy,
3738         .get_policy     = shmem_get_policy,
3739 #endif
3740 };
3741
3742 static struct dentry *shmem_mount(struct file_system_type *fs_type,
3743         int flags, const char *dev_name, void *data)
3744 {
3745         return mount_nodev(fs_type, flags, data, shmem_fill_super);
3746 }
3747
3748 static struct file_system_type shmem_fs_type = {
3749         .owner          = THIS_MODULE,
3750         .name           = "tmpfs",
3751         .mount          = shmem_mount,
3752         .kill_sb        = kill_litter_super,
3753         .fs_flags       = FS_USERNS_MOUNT,
3754 };
3755
3756 int __init shmem_init(void)
3757 {
3758         int error;
3759
3760         /* If rootfs called this, don't re-init */
3761         if (shmem_inode_cachep)
3762                 return 0;
3763
3764         shmem_init_inodecache();
3765
3766         error = register_filesystem(&shmem_fs_type);
3767         if (error) {
3768                 pr_err("Could not register tmpfs\n");
3769                 goto out2;
3770         }
3771
3772         shm_mnt = kern_mount(&shmem_fs_type);
3773         if (IS_ERR(shm_mnt)) {
3774                 error = PTR_ERR(shm_mnt);
3775                 pr_err("Could not kern_mount tmpfs\n");
3776                 goto out1;
3777         }
3778
3779 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3780         if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
3781                 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3782         else
3783                 shmem_huge = 0; /* just in case it was patched */
3784 #endif
3785         return 0;
3786
3787 out1:
3788         unregister_filesystem(&shmem_fs_type);
3789 out2:
3790         shmem_destroy_inodecache();
3791         shm_mnt = ERR_PTR(error);
3792         return error;
3793 }
3794
3795 #if defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE) && defined(CONFIG_SYSFS)
3796 static ssize_t shmem_enabled_show(struct kobject *kobj,
3797                 struct kobj_attribute *attr, char *buf)
3798 {
3799         int values[] = {
3800                 SHMEM_HUGE_ALWAYS,
3801                 SHMEM_HUGE_WITHIN_SIZE,
3802                 SHMEM_HUGE_ADVISE,
3803                 SHMEM_HUGE_NEVER,
3804                 SHMEM_HUGE_DENY,
3805                 SHMEM_HUGE_FORCE,
3806         };
3807         int i, count;
3808
3809         for (i = 0, count = 0; i < ARRAY_SIZE(values); i++) {
3810                 const char *fmt = shmem_huge == values[i] ? "[%s] " : "%s ";
3811
3812                 count += sprintf(buf + count, fmt,
3813                                 shmem_format_huge(values[i]));
3814         }
3815         buf[count - 1] = '\n';
3816         return count;
3817 }
3818
3819 static ssize_t shmem_enabled_store(struct kobject *kobj,
3820                 struct kobj_attribute *attr, const char *buf, size_t count)
3821 {
3822         char tmp[16];
3823         int huge;
3824
3825         if (count + 1 > sizeof(tmp))
3826                 return -EINVAL;
3827         memcpy(tmp, buf, count);
3828         tmp[count] = '\0';
3829         if (count && tmp[count - 1] == '\n')
3830                 tmp[count - 1] = '\0';
3831
3832         huge = shmem_parse_huge(tmp);
3833         if (huge == -EINVAL)
3834                 return -EINVAL;
3835         if (!has_transparent_hugepage() &&
3836                         huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
3837                 return -EINVAL;
3838
3839         shmem_huge = huge;
3840         if (shmem_huge > SHMEM_HUGE_DENY)
3841                 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3842         return count;
3843 }
3844
3845 struct kobj_attribute shmem_enabled_attr =
3846         __ATTR(shmem_enabled, 0644, shmem_enabled_show, shmem_enabled_store);
3847 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE && CONFIG_SYSFS */
3848
3849 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3850 bool shmem_huge_enabled(struct vm_area_struct *vma)
3851 {
3852         struct inode *inode = file_inode(vma->vm_file);
3853         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
3854         loff_t i_size;
3855         pgoff_t off;
3856
3857         if (shmem_huge == SHMEM_HUGE_FORCE)
3858                 return true;
3859         if (shmem_huge == SHMEM_HUGE_DENY)
3860                 return false;
3861         switch (sbinfo->huge) {
3862                 case SHMEM_HUGE_NEVER:
3863                         return false;
3864                 case SHMEM_HUGE_ALWAYS:
3865                         return true;
3866                 case SHMEM_HUGE_WITHIN_SIZE:
3867                         off = round_up(vma->vm_pgoff, HPAGE_PMD_NR);
3868                         i_size = round_up(i_size_read(inode), PAGE_SIZE);
3869                         if (i_size >= HPAGE_PMD_SIZE &&
3870                                         i_size >> PAGE_SHIFT >= off)
3871                                 return true;
3872                         /* fall through */
3873                 case SHMEM_HUGE_ADVISE:
3874                         /* TODO: implement fadvise() hints */
3875                         return (vma->vm_flags & VM_HUGEPAGE);
3876                 default:
3877                         VM_BUG_ON(1);
3878                         return false;
3879         }
3880 }
3881 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */
3882
3883 #else /* !CONFIG_SHMEM */
3884
3885 /*
3886  * tiny-shmem: simple shmemfs and tmpfs using ramfs code
3887  *
3888  * This is intended for small system where the benefits of the full
3889  * shmem code (swap-backed and resource-limited) are outweighed by
3890  * their complexity. On systems without swap this code should be
3891  * effectively equivalent, but much lighter weight.
3892  */
3893
3894 static struct file_system_type shmem_fs_type = {
3895         .name           = "tmpfs",
3896         .mount          = ramfs_mount,
3897         .kill_sb        = kill_litter_super,
3898         .fs_flags       = FS_USERNS_MOUNT,
3899 };
3900
3901 int __init shmem_init(void)
3902 {
3903         BUG_ON(register_filesystem(&shmem_fs_type) != 0);
3904
3905         shm_mnt = kern_mount(&shmem_fs_type);
3906         BUG_ON(IS_ERR(shm_mnt));
3907
3908         return 0;
3909 }
3910
3911 int shmem_unuse(swp_entry_t swap, struct page *page)
3912 {
3913         return 0;
3914 }
3915
3916 int shmem_lock(struct file *file, int lock, struct user_struct *user)
3917 {
3918         return 0;
3919 }
3920
3921 void shmem_unlock_mapping(struct address_space *mapping)
3922 {
3923 }
3924
3925 #ifdef CONFIG_MMU
3926 unsigned long shmem_get_unmapped_area(struct file *file,
3927                                       unsigned long addr, unsigned long len,
3928                                       unsigned long pgoff, unsigned long flags)
3929 {
3930         return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
3931 }
3932 #endif
3933
3934 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
3935 {
3936         truncate_inode_pages_range(inode->i_mapping, lstart, lend);
3937 }
3938 EXPORT_SYMBOL_GPL(shmem_truncate_range);
3939
3940 #define shmem_vm_ops                            generic_file_vm_ops
3941 #define shmem_file_operations                   ramfs_file_operations
3942 #define shmem_get_inode(sb, dir, mode, dev, flags)      ramfs_get_inode(sb, dir, mode, dev)
3943 #define shmem_acct_size(flags, size)            0
3944 #define shmem_unacct_size(flags, size)          do {} while (0)
3945
3946 #endif /* CONFIG_SHMEM */
3947
3948 /* common code */
3949
3950 static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, loff_t size,
3951                                        unsigned long flags, unsigned int i_flags)
3952 {
3953         struct inode *inode;
3954         struct file *res;
3955
3956         if (IS_ERR(mnt))
3957                 return ERR_CAST(mnt);
3958
3959         if (size < 0 || size > MAX_LFS_FILESIZE)
3960                 return ERR_PTR(-EINVAL);
3961
3962         if (shmem_acct_size(flags, size))
3963                 return ERR_PTR(-ENOMEM);
3964
3965         inode = shmem_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0,
3966                                 flags);
3967         if (unlikely(!inode)) {
3968                 shmem_unacct_size(flags, size);
3969                 return ERR_PTR(-ENOSPC);
3970         }
3971         inode->i_flags |= i_flags;
3972         inode->i_size = size;
3973         clear_nlink(inode);     /* It is unlinked */
3974         res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
3975         if (!IS_ERR(res))
3976                 res = alloc_file_pseudo(inode, mnt, name, O_RDWR,
3977                                 &shmem_file_operations);
3978         if (IS_ERR(res))
3979                 iput(inode);
3980         return res;
3981 }
3982
3983 /**
3984  * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
3985  *      kernel internal.  There will be NO LSM permission checks against the
3986  *      underlying inode.  So users of this interface must do LSM checks at a
3987  *      higher layer.  The users are the big_key and shm implementations.  LSM
3988  *      checks are provided at the key or shm level rather than the inode.
3989  * @name: name for dentry (to be seen in /proc/<pid>/maps
3990  * @size: size to be set for the file
3991  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
3992  */
3993 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
3994 {
3995         return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE);
3996 }
3997
3998 /**
3999  * shmem_file_setup - get an unlinked file living in tmpfs
4000  * @name: name for dentry (to be seen in /proc/<pid>/maps
4001  * @size: size to be set for the file
4002  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4003  */
4004 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
4005 {
4006         return __shmem_file_setup(shm_mnt, name, size, flags, 0);
4007 }
4008 EXPORT_SYMBOL_GPL(shmem_file_setup);
4009
4010 /**
4011  * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs
4012  * @mnt: the tmpfs mount where the file will be created
4013  * @name: name for dentry (to be seen in /proc/<pid>/maps
4014  * @size: size to be set for the file
4015  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4016  */
4017 struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name,
4018                                        loff_t size, unsigned long flags)
4019 {
4020         return __shmem_file_setup(mnt, name, size, flags, 0);
4021 }
4022 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt);
4023
4024 /**
4025  * shmem_zero_setup - setup a shared anonymous mapping
4026  * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
4027  */
4028 int shmem_zero_setup(struct vm_area_struct *vma)
4029 {
4030         struct file *file;
4031         loff_t size = vma->vm_end - vma->vm_start;
4032
4033         /*
4034          * Cloning a new file under mmap_sem leads to a lock ordering conflict
4035          * between XFS directory reading and selinux: since this file is only
4036          * accessible to the user through its mapping, use S_PRIVATE flag to
4037          * bypass file security, in the same way as shmem_kernel_file_setup().
4038          */
4039         file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags);
4040         if (IS_ERR(file))
4041                 return PTR_ERR(file);
4042
4043         if (vma->vm_file)
4044                 fput(vma->vm_file);
4045         vma->vm_file = file;
4046         vma->vm_ops = &shmem_vm_ops;
4047
4048         if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
4049                         ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
4050                         (vma->vm_end & HPAGE_PMD_MASK)) {
4051                 khugepaged_enter(vma, vma->vm_flags);
4052         }
4053
4054         return 0;
4055 }
4056
4057 /**
4058  * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
4059  * @mapping:    the page's address_space
4060  * @index:      the page index
4061  * @gfp:        the page allocator flags to use if allocating
4062  *
4063  * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4064  * with any new page allocations done using the specified allocation flags.
4065  * But read_cache_page_gfp() uses the ->readpage() method: which does not
4066  * suit tmpfs, since it may have pages in swapcache, and needs to find those
4067  * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4068  *
4069  * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4070  * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
4071  */
4072 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4073                                          pgoff_t index, gfp_t gfp)
4074 {
4075 #ifdef CONFIG_SHMEM
4076         struct inode *inode = mapping->host;
4077         struct page *page;
4078         int error;
4079
4080         BUG_ON(mapping->a_ops != &shmem_aops);
4081         error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE,
4082                                   gfp, NULL, NULL, NULL);
4083         if (error)
4084                 page = ERR_PTR(error);
4085         else
4086                 unlock_page(page);
4087         return page;
4088 #else
4089         /*
4090          * The tiny !SHMEM case uses ramfs without swap
4091          */
4092         return read_cache_page_gfp(mapping, index, gfp);
4093 #endif
4094 }
4095 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);