OSDN Git Service

sched/fair: Make sure to update tg contrib for blocked load
[android-x86/kernel.git] / mm / swapfile.c
1 /*
2  *  linux/mm/swapfile.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *  Swap reorganised 29.12.95, Stephen Tweedie
6  */
7
8 #include <linux/mm.h>
9 #include <linux/sched/mm.h>
10 #include <linux/sched/task.h>
11 #include <linux/hugetlb.h>
12 #include <linux/mman.h>
13 #include <linux/slab.h>
14 #include <linux/kernel_stat.h>
15 #include <linux/swap.h>
16 #include <linux/vmalloc.h>
17 #include <linux/pagemap.h>
18 #include <linux/namei.h>
19 #include <linux/shmem_fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/random.h>
22 #include <linux/writeback.h>
23 #include <linux/proc_fs.h>
24 #include <linux/seq_file.h>
25 #include <linux/init.h>
26 #include <linux/ksm.h>
27 #include <linux/rmap.h>
28 #include <linux/security.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mutex.h>
31 #include <linux/capability.h>
32 #include <linux/syscalls.h>
33 #include <linux/memcontrol.h>
34 #include <linux/poll.h>
35 #include <linux/oom.h>
36 #include <linux/frontswap.h>
37 #include <linux/swapfile.h>
38 #include <linux/export.h>
39 #include <linux/swap_slots.h>
40 #include <linux/sort.h>
41
42 #include <asm/pgtable.h>
43 #include <asm/tlbflush.h>
44 #include <linux/swapops.h>
45 #include <linux/swap_cgroup.h>
46
47 static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
48                                  unsigned char);
49 static void free_swap_count_continuations(struct swap_info_struct *);
50 static sector_t map_swap_entry(swp_entry_t, struct block_device**);
51
52 DEFINE_SPINLOCK(swap_lock);
53 static unsigned int nr_swapfiles;
54 atomic_long_t nr_swap_pages;
55 /*
56  * Some modules use swappable objects and may try to swap them out under
57  * memory pressure (via the shrinker). Before doing so, they may wish to
58  * check to see if any swap space is available.
59  */
60 EXPORT_SYMBOL_GPL(nr_swap_pages);
61 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
62 long total_swap_pages;
63 static int least_priority = -1;
64
65 static const char Bad_file[] = "Bad swap file entry ";
66 static const char Unused_file[] = "Unused swap file entry ";
67 static const char Bad_offset[] = "Bad swap offset entry ";
68 static const char Unused_offset[] = "Unused swap offset entry ";
69
70 /*
71  * all active swap_info_structs
72  * protected with swap_lock, and ordered by priority.
73  */
74 PLIST_HEAD(swap_active_head);
75
76 /*
77  * all available (active, not full) swap_info_structs
78  * protected with swap_avail_lock, ordered by priority.
79  * This is used by get_swap_page() instead of swap_active_head
80  * because swap_active_head includes all swap_info_structs,
81  * but get_swap_page() doesn't need to look at full ones.
82  * This uses its own lock instead of swap_lock because when a
83  * swap_info_struct changes between not-full/full, it needs to
84  * add/remove itself to/from this list, but the swap_info_struct->lock
85  * is held and the locking order requires swap_lock to be taken
86  * before any swap_info_struct->lock.
87  */
88 static struct plist_head *swap_avail_heads;
89 static DEFINE_SPINLOCK(swap_avail_lock);
90
91 struct swap_info_struct *swap_info[MAX_SWAPFILES];
92
93 static DEFINE_MUTEX(swapon_mutex);
94
95 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
96 /* Activity counter to indicate that a swapon or swapoff has occurred */
97 static atomic_t proc_poll_event = ATOMIC_INIT(0);
98
99 atomic_t nr_rotate_swap = ATOMIC_INIT(0);
100
101 static struct swap_info_struct *swap_type_to_swap_info(int type)
102 {
103         if (type >= READ_ONCE(nr_swapfiles))
104                 return NULL;
105
106         smp_rmb();      /* Pairs with smp_wmb in alloc_swap_info. */
107         return READ_ONCE(swap_info[type]);
108 }
109
110 static inline unsigned char swap_count(unsigned char ent)
111 {
112         return ent & ~SWAP_HAS_CACHE;   /* may include COUNT_CONTINUED flag */
113 }
114
115 /* returns 1 if swap entry is freed */
116 static int
117 __try_to_reclaim_swap(struct swap_info_struct *si, unsigned long offset)
118 {
119         swp_entry_t entry = swp_entry(si->type, offset);
120         struct page *page;
121         int ret = 0;
122
123         page = find_get_page(swap_address_space(entry), swp_offset(entry));
124         if (!page)
125                 return 0;
126         /*
127          * This function is called from scan_swap_map() and it's called
128          * by vmscan.c at reclaiming pages. So, we hold a lock on a page, here.
129          * We have to use trylock for avoiding deadlock. This is a special
130          * case and you should use try_to_free_swap() with explicit lock_page()
131          * in usual operations.
132          */
133         if (trylock_page(page)) {
134                 ret = try_to_free_swap(page);
135                 unlock_page(page);
136         }
137         put_page(page);
138         return ret;
139 }
140
141 /*
142  * swapon tell device that all the old swap contents can be discarded,
143  * to allow the swap device to optimize its wear-levelling.
144  */
145 static int discard_swap(struct swap_info_struct *si)
146 {
147         struct swap_extent *se;
148         sector_t start_block;
149         sector_t nr_blocks;
150         int err = 0;
151
152         /* Do not discard the swap header page! */
153         se = &si->first_swap_extent;
154         start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
155         nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
156         if (nr_blocks) {
157                 err = blkdev_issue_discard(si->bdev, start_block,
158                                 nr_blocks, GFP_KERNEL, 0);
159                 if (err)
160                         return err;
161                 cond_resched();
162         }
163
164         list_for_each_entry(se, &si->first_swap_extent.list, list) {
165                 start_block = se->start_block << (PAGE_SHIFT - 9);
166                 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
167
168                 err = blkdev_issue_discard(si->bdev, start_block,
169                                 nr_blocks, GFP_KERNEL, 0);
170                 if (err)
171                         break;
172
173                 cond_resched();
174         }
175         return err;             /* That will often be -EOPNOTSUPP */
176 }
177
178 /*
179  * swap allocation tell device that a cluster of swap can now be discarded,
180  * to allow the swap device to optimize its wear-levelling.
181  */
182 static void discard_swap_cluster(struct swap_info_struct *si,
183                                  pgoff_t start_page, pgoff_t nr_pages)
184 {
185         struct swap_extent *se = si->curr_swap_extent;
186         int found_extent = 0;
187
188         while (nr_pages) {
189                 if (se->start_page <= start_page &&
190                     start_page < se->start_page + se->nr_pages) {
191                         pgoff_t offset = start_page - se->start_page;
192                         sector_t start_block = se->start_block + offset;
193                         sector_t nr_blocks = se->nr_pages - offset;
194
195                         if (nr_blocks > nr_pages)
196                                 nr_blocks = nr_pages;
197                         start_page += nr_blocks;
198                         nr_pages -= nr_blocks;
199
200                         if (!found_extent++)
201                                 si->curr_swap_extent = se;
202
203                         start_block <<= PAGE_SHIFT - 9;
204                         nr_blocks <<= PAGE_SHIFT - 9;
205                         if (blkdev_issue_discard(si->bdev, start_block,
206                                     nr_blocks, GFP_NOIO, 0))
207                                 break;
208                 }
209
210                 se = list_next_entry(se, list);
211         }
212 }
213
214 #ifdef CONFIG_THP_SWAP
215 #define SWAPFILE_CLUSTER        HPAGE_PMD_NR
216
217 #define swap_entry_size(size)   (size)
218 #else
219 #define SWAPFILE_CLUSTER        256
220
221 /*
222  * Define swap_entry_size() as constant to let compiler to optimize
223  * out some code if !CONFIG_THP_SWAP
224  */
225 #define swap_entry_size(size)   1
226 #endif
227 #define LATENCY_LIMIT           256
228
229 static inline void cluster_set_flag(struct swap_cluster_info *info,
230         unsigned int flag)
231 {
232         info->flags = flag;
233 }
234
235 static inline unsigned int cluster_count(struct swap_cluster_info *info)
236 {
237         return info->data;
238 }
239
240 static inline void cluster_set_count(struct swap_cluster_info *info,
241                                      unsigned int c)
242 {
243         info->data = c;
244 }
245
246 static inline void cluster_set_count_flag(struct swap_cluster_info *info,
247                                          unsigned int c, unsigned int f)
248 {
249         info->flags = f;
250         info->data = c;
251 }
252
253 static inline unsigned int cluster_next(struct swap_cluster_info *info)
254 {
255         return info->data;
256 }
257
258 static inline void cluster_set_next(struct swap_cluster_info *info,
259                                     unsigned int n)
260 {
261         info->data = n;
262 }
263
264 static inline void cluster_set_next_flag(struct swap_cluster_info *info,
265                                          unsigned int n, unsigned int f)
266 {
267         info->flags = f;
268         info->data = n;
269 }
270
271 static inline bool cluster_is_free(struct swap_cluster_info *info)
272 {
273         return info->flags & CLUSTER_FLAG_FREE;
274 }
275
276 static inline bool cluster_is_null(struct swap_cluster_info *info)
277 {
278         return info->flags & CLUSTER_FLAG_NEXT_NULL;
279 }
280
281 static inline void cluster_set_null(struct swap_cluster_info *info)
282 {
283         info->flags = CLUSTER_FLAG_NEXT_NULL;
284         info->data = 0;
285 }
286
287 static inline bool cluster_is_huge(struct swap_cluster_info *info)
288 {
289         if (IS_ENABLED(CONFIG_THP_SWAP))
290                 return info->flags & CLUSTER_FLAG_HUGE;
291         return false;
292 }
293
294 static inline void cluster_clear_huge(struct swap_cluster_info *info)
295 {
296         info->flags &= ~CLUSTER_FLAG_HUGE;
297 }
298
299 static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si,
300                                                      unsigned long offset)
301 {
302         struct swap_cluster_info *ci;
303
304         ci = si->cluster_info;
305         if (ci) {
306                 ci += offset / SWAPFILE_CLUSTER;
307                 spin_lock(&ci->lock);
308         }
309         return ci;
310 }
311
312 static inline void unlock_cluster(struct swap_cluster_info *ci)
313 {
314         if (ci)
315                 spin_unlock(&ci->lock);
316 }
317
318 /*
319  * Determine the locking method in use for this device.  Return
320  * swap_cluster_info if SSD-style cluster-based locking is in place.
321  */
322 static inline struct swap_cluster_info *lock_cluster_or_swap_info(
323                 struct swap_info_struct *si, unsigned long offset)
324 {
325         struct swap_cluster_info *ci;
326
327         /* Try to use fine-grained SSD-style locking if available: */
328         ci = lock_cluster(si, offset);
329         /* Otherwise, fall back to traditional, coarse locking: */
330         if (!ci)
331                 spin_lock(&si->lock);
332
333         return ci;
334 }
335
336 static inline void unlock_cluster_or_swap_info(struct swap_info_struct *si,
337                                                struct swap_cluster_info *ci)
338 {
339         if (ci)
340                 unlock_cluster(ci);
341         else
342                 spin_unlock(&si->lock);
343 }
344
345 static inline bool cluster_list_empty(struct swap_cluster_list *list)
346 {
347         return cluster_is_null(&list->head);
348 }
349
350 static inline unsigned int cluster_list_first(struct swap_cluster_list *list)
351 {
352         return cluster_next(&list->head);
353 }
354
355 static void cluster_list_init(struct swap_cluster_list *list)
356 {
357         cluster_set_null(&list->head);
358         cluster_set_null(&list->tail);
359 }
360
361 static void cluster_list_add_tail(struct swap_cluster_list *list,
362                                   struct swap_cluster_info *ci,
363                                   unsigned int idx)
364 {
365         if (cluster_list_empty(list)) {
366                 cluster_set_next_flag(&list->head, idx, 0);
367                 cluster_set_next_flag(&list->tail, idx, 0);
368         } else {
369                 struct swap_cluster_info *ci_tail;
370                 unsigned int tail = cluster_next(&list->tail);
371
372                 /*
373                  * Nested cluster lock, but both cluster locks are
374                  * only acquired when we held swap_info_struct->lock
375                  */
376                 ci_tail = ci + tail;
377                 spin_lock_nested(&ci_tail->lock, SINGLE_DEPTH_NESTING);
378                 cluster_set_next(ci_tail, idx);
379                 spin_unlock(&ci_tail->lock);
380                 cluster_set_next_flag(&list->tail, idx, 0);
381         }
382 }
383
384 static unsigned int cluster_list_del_first(struct swap_cluster_list *list,
385                                            struct swap_cluster_info *ci)
386 {
387         unsigned int idx;
388
389         idx = cluster_next(&list->head);
390         if (cluster_next(&list->tail) == idx) {
391                 cluster_set_null(&list->head);
392                 cluster_set_null(&list->tail);
393         } else
394                 cluster_set_next_flag(&list->head,
395                                       cluster_next(&ci[idx]), 0);
396
397         return idx;
398 }
399
400 /* Add a cluster to discard list and schedule it to do discard */
401 static void swap_cluster_schedule_discard(struct swap_info_struct *si,
402                 unsigned int idx)
403 {
404         /*
405          * If scan_swap_map() can't find a free cluster, it will check
406          * si->swap_map directly. To make sure the discarding cluster isn't
407          * taken by scan_swap_map(), mark the swap entries bad (occupied). It
408          * will be cleared after discard
409          */
410         memset(si->swap_map + idx * SWAPFILE_CLUSTER,
411                         SWAP_MAP_BAD, SWAPFILE_CLUSTER);
412
413         cluster_list_add_tail(&si->discard_clusters, si->cluster_info, idx);
414
415         schedule_work(&si->discard_work);
416 }
417
418 static void __free_cluster(struct swap_info_struct *si, unsigned long idx)
419 {
420         struct swap_cluster_info *ci = si->cluster_info;
421
422         cluster_set_flag(ci + idx, CLUSTER_FLAG_FREE);
423         cluster_list_add_tail(&si->free_clusters, ci, idx);
424 }
425
426 /*
427  * Doing discard actually. After a cluster discard is finished, the cluster
428  * will be added to free cluster list. caller should hold si->lock.
429 */
430 static void swap_do_scheduled_discard(struct swap_info_struct *si)
431 {
432         struct swap_cluster_info *info, *ci;
433         unsigned int idx;
434
435         info = si->cluster_info;
436
437         while (!cluster_list_empty(&si->discard_clusters)) {
438                 idx = cluster_list_del_first(&si->discard_clusters, info);
439                 spin_unlock(&si->lock);
440
441                 discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
442                                 SWAPFILE_CLUSTER);
443
444                 spin_lock(&si->lock);
445                 ci = lock_cluster(si, idx * SWAPFILE_CLUSTER);
446                 __free_cluster(si, idx);
447                 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
448                                 0, SWAPFILE_CLUSTER);
449                 unlock_cluster(ci);
450         }
451 }
452
453 static void swap_discard_work(struct work_struct *work)
454 {
455         struct swap_info_struct *si;
456
457         si = container_of(work, struct swap_info_struct, discard_work);
458
459         spin_lock(&si->lock);
460         swap_do_scheduled_discard(si);
461         spin_unlock(&si->lock);
462 }
463
464 static void alloc_cluster(struct swap_info_struct *si, unsigned long idx)
465 {
466         struct swap_cluster_info *ci = si->cluster_info;
467
468         VM_BUG_ON(cluster_list_first(&si->free_clusters) != idx);
469         cluster_list_del_first(&si->free_clusters, ci);
470         cluster_set_count_flag(ci + idx, 0, 0);
471 }
472
473 static void free_cluster(struct swap_info_struct *si, unsigned long idx)
474 {
475         struct swap_cluster_info *ci = si->cluster_info + idx;
476
477         VM_BUG_ON(cluster_count(ci) != 0);
478         /*
479          * If the swap is discardable, prepare discard the cluster
480          * instead of free it immediately. The cluster will be freed
481          * after discard.
482          */
483         if ((si->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
484             (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
485                 swap_cluster_schedule_discard(si, idx);
486                 return;
487         }
488
489         __free_cluster(si, idx);
490 }
491
492 /*
493  * The cluster corresponding to page_nr will be used. The cluster will be
494  * removed from free cluster list and its usage counter will be increased.
495  */
496 static void inc_cluster_info_page(struct swap_info_struct *p,
497         struct swap_cluster_info *cluster_info, unsigned long page_nr)
498 {
499         unsigned long idx = page_nr / SWAPFILE_CLUSTER;
500
501         if (!cluster_info)
502                 return;
503         if (cluster_is_free(&cluster_info[idx]))
504                 alloc_cluster(p, idx);
505
506         VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER);
507         cluster_set_count(&cluster_info[idx],
508                 cluster_count(&cluster_info[idx]) + 1);
509 }
510
511 /*
512  * The cluster corresponding to page_nr decreases one usage. If the usage
513  * counter becomes 0, which means no page in the cluster is in using, we can
514  * optionally discard the cluster and add it to free cluster list.
515  */
516 static void dec_cluster_info_page(struct swap_info_struct *p,
517         struct swap_cluster_info *cluster_info, unsigned long page_nr)
518 {
519         unsigned long idx = page_nr / SWAPFILE_CLUSTER;
520
521         if (!cluster_info)
522                 return;
523
524         VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0);
525         cluster_set_count(&cluster_info[idx],
526                 cluster_count(&cluster_info[idx]) - 1);
527
528         if (cluster_count(&cluster_info[idx]) == 0)
529                 free_cluster(p, idx);
530 }
531
532 /*
533  * It's possible scan_swap_map() uses a free cluster in the middle of free
534  * cluster list. Avoiding such abuse to avoid list corruption.
535  */
536 static bool
537 scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si,
538         unsigned long offset)
539 {
540         struct percpu_cluster *percpu_cluster;
541         bool conflict;
542
543         offset /= SWAPFILE_CLUSTER;
544         conflict = !cluster_list_empty(&si->free_clusters) &&
545                 offset != cluster_list_first(&si->free_clusters) &&
546                 cluster_is_free(&si->cluster_info[offset]);
547
548         if (!conflict)
549                 return false;
550
551         percpu_cluster = this_cpu_ptr(si->percpu_cluster);
552         cluster_set_null(&percpu_cluster->index);
553         return true;
554 }
555
556 /*
557  * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
558  * might involve allocating a new cluster for current CPU too.
559  */
560 static bool scan_swap_map_try_ssd_cluster(struct swap_info_struct *si,
561         unsigned long *offset, unsigned long *scan_base)
562 {
563         struct percpu_cluster *cluster;
564         struct swap_cluster_info *ci;
565         bool found_free;
566         unsigned long tmp, max;
567
568 new_cluster:
569         cluster = this_cpu_ptr(si->percpu_cluster);
570         if (cluster_is_null(&cluster->index)) {
571                 if (!cluster_list_empty(&si->free_clusters)) {
572                         cluster->index = si->free_clusters.head;
573                         cluster->next = cluster_next(&cluster->index) *
574                                         SWAPFILE_CLUSTER;
575                 } else if (!cluster_list_empty(&si->discard_clusters)) {
576                         /*
577                          * we don't have free cluster but have some clusters in
578                          * discarding, do discard now and reclaim them
579                          */
580                         swap_do_scheduled_discard(si);
581                         *scan_base = *offset = si->cluster_next;
582                         goto new_cluster;
583                 } else
584                         return false;
585         }
586
587         found_free = false;
588
589         /*
590          * Other CPUs can use our cluster if they can't find a free cluster,
591          * check if there is still free entry in the cluster
592          */
593         tmp = cluster->next;
594         max = min_t(unsigned long, si->max,
595                     (cluster_next(&cluster->index) + 1) * SWAPFILE_CLUSTER);
596         if (tmp >= max) {
597                 cluster_set_null(&cluster->index);
598                 goto new_cluster;
599         }
600         ci = lock_cluster(si, tmp);
601         while (tmp < max) {
602                 if (!si->swap_map[tmp]) {
603                         found_free = true;
604                         break;
605                 }
606                 tmp++;
607         }
608         unlock_cluster(ci);
609         if (!found_free) {
610                 cluster_set_null(&cluster->index);
611                 goto new_cluster;
612         }
613         cluster->next = tmp + 1;
614         *offset = tmp;
615         *scan_base = tmp;
616         return found_free;
617 }
618
619 static void __del_from_avail_list(struct swap_info_struct *p)
620 {
621         int nid;
622
623         for_each_node(nid)
624                 plist_del(&p->avail_lists[nid], &swap_avail_heads[nid]);
625 }
626
627 static void del_from_avail_list(struct swap_info_struct *p)
628 {
629         spin_lock(&swap_avail_lock);
630         __del_from_avail_list(p);
631         spin_unlock(&swap_avail_lock);
632 }
633
634 static void swap_range_alloc(struct swap_info_struct *si, unsigned long offset,
635                              unsigned int nr_entries)
636 {
637         unsigned int end = offset + nr_entries - 1;
638
639         if (offset == si->lowest_bit)
640                 si->lowest_bit += nr_entries;
641         if (end == si->highest_bit)
642                 si->highest_bit -= nr_entries;
643         si->inuse_pages += nr_entries;
644         if (si->inuse_pages == si->pages) {
645                 si->lowest_bit = si->max;
646                 si->highest_bit = 0;
647                 del_from_avail_list(si);
648         }
649 }
650
651 static void add_to_avail_list(struct swap_info_struct *p)
652 {
653         int nid;
654
655         spin_lock(&swap_avail_lock);
656         for_each_node(nid) {
657                 WARN_ON(!plist_node_empty(&p->avail_lists[nid]));
658                 plist_add(&p->avail_lists[nid], &swap_avail_heads[nid]);
659         }
660         spin_unlock(&swap_avail_lock);
661 }
662
663 static void swap_range_free(struct swap_info_struct *si, unsigned long offset,
664                             unsigned int nr_entries)
665 {
666         unsigned long end = offset + nr_entries - 1;
667         void (*swap_slot_free_notify)(struct block_device *, unsigned long);
668
669         if (offset < si->lowest_bit)
670                 si->lowest_bit = offset;
671         if (end > si->highest_bit) {
672                 bool was_full = !si->highest_bit;
673
674                 si->highest_bit = end;
675                 if (was_full && (si->flags & SWP_WRITEOK))
676                         add_to_avail_list(si);
677         }
678         atomic_long_add(nr_entries, &nr_swap_pages);
679         si->inuse_pages -= nr_entries;
680         if (si->flags & SWP_BLKDEV)
681                 swap_slot_free_notify =
682                         si->bdev->bd_disk->fops->swap_slot_free_notify;
683         else
684                 swap_slot_free_notify = NULL;
685         while (offset <= end) {
686                 frontswap_invalidate_page(si->type, offset);
687                 if (swap_slot_free_notify)
688                         swap_slot_free_notify(si->bdev, offset);
689                 offset++;
690         }
691 }
692
693 static int scan_swap_map_slots(struct swap_info_struct *si,
694                                unsigned char usage, int nr,
695                                swp_entry_t slots[])
696 {
697         struct swap_cluster_info *ci;
698         unsigned long offset;
699         unsigned long scan_base;
700         unsigned long last_in_cluster = 0;
701         int latency_ration = LATENCY_LIMIT;
702         int n_ret = 0;
703
704         if (nr > SWAP_BATCH)
705                 nr = SWAP_BATCH;
706
707         /*
708          * We try to cluster swap pages by allocating them sequentially
709          * in swap.  Once we've allocated SWAPFILE_CLUSTER pages this
710          * way, however, we resort to first-free allocation, starting
711          * a new cluster.  This prevents us from scattering swap pages
712          * all over the entire swap partition, so that we reduce
713          * overall disk seek times between swap pages.  -- sct
714          * But we do now try to find an empty cluster.  -Andrea
715          * And we let swap pages go all over an SSD partition.  Hugh
716          */
717
718         si->flags += SWP_SCANNING;
719         scan_base = offset = si->cluster_next;
720
721         /* SSD algorithm */
722         if (si->cluster_info) {
723                 if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
724                         goto checks;
725                 else
726                         goto scan;
727         }
728
729         if (unlikely(!si->cluster_nr--)) {
730                 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
731                         si->cluster_nr = SWAPFILE_CLUSTER - 1;
732                         goto checks;
733                 }
734
735                 spin_unlock(&si->lock);
736
737                 /*
738                  * If seek is expensive, start searching for new cluster from
739                  * start of partition, to minimize the span of allocated swap.
740                  * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info
741                  * case, just handled by scan_swap_map_try_ssd_cluster() above.
742                  */
743                 scan_base = offset = si->lowest_bit;
744                 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
745
746                 /* Locate the first empty (unaligned) cluster */
747                 for (; last_in_cluster <= si->highest_bit; offset++) {
748                         if (si->swap_map[offset])
749                                 last_in_cluster = offset + SWAPFILE_CLUSTER;
750                         else if (offset == last_in_cluster) {
751                                 spin_lock(&si->lock);
752                                 offset -= SWAPFILE_CLUSTER - 1;
753                                 si->cluster_next = offset;
754                                 si->cluster_nr = SWAPFILE_CLUSTER - 1;
755                                 goto checks;
756                         }
757                         if (unlikely(--latency_ration < 0)) {
758                                 cond_resched();
759                                 latency_ration = LATENCY_LIMIT;
760                         }
761                 }
762
763                 offset = scan_base;
764                 spin_lock(&si->lock);
765                 si->cluster_nr = SWAPFILE_CLUSTER - 1;
766         }
767
768 checks:
769         if (si->cluster_info) {
770                 while (scan_swap_map_ssd_cluster_conflict(si, offset)) {
771                 /* take a break if we already got some slots */
772                         if (n_ret)
773                                 goto done;
774                         if (!scan_swap_map_try_ssd_cluster(si, &offset,
775                                                         &scan_base))
776                                 goto scan;
777                 }
778         }
779         if (!(si->flags & SWP_WRITEOK))
780                 goto no_page;
781         if (!si->highest_bit)
782                 goto no_page;
783         if (offset > si->highest_bit)
784                 scan_base = offset = si->lowest_bit;
785
786         ci = lock_cluster(si, offset);
787         /* reuse swap entry of cache-only swap if not busy. */
788         if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
789                 int swap_was_freed;
790                 unlock_cluster(ci);
791                 spin_unlock(&si->lock);
792                 swap_was_freed = __try_to_reclaim_swap(si, offset);
793                 spin_lock(&si->lock);
794                 /* entry was freed successfully, try to use this again */
795                 if (swap_was_freed)
796                         goto checks;
797                 goto scan; /* check next one */
798         }
799
800         if (si->swap_map[offset]) {
801                 unlock_cluster(ci);
802                 if (!n_ret)
803                         goto scan;
804                 else
805                         goto done;
806         }
807         si->swap_map[offset] = usage;
808         inc_cluster_info_page(si, si->cluster_info, offset);
809         unlock_cluster(ci);
810
811         swap_range_alloc(si, offset, 1);
812         si->cluster_next = offset + 1;
813         slots[n_ret++] = swp_entry(si->type, offset);
814
815         /* got enough slots or reach max slots? */
816         if ((n_ret == nr) || (offset >= si->highest_bit))
817                 goto done;
818
819         /* search for next available slot */
820
821         /* time to take a break? */
822         if (unlikely(--latency_ration < 0)) {
823                 if (n_ret)
824                         goto done;
825                 spin_unlock(&si->lock);
826                 cond_resched();
827                 spin_lock(&si->lock);
828                 latency_ration = LATENCY_LIMIT;
829         }
830
831         /* try to get more slots in cluster */
832         if (si->cluster_info) {
833                 if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
834                         goto checks;
835                 else
836                         goto done;
837         }
838         /* non-ssd case */
839         ++offset;
840
841         /* non-ssd case, still more slots in cluster? */
842         if (si->cluster_nr && !si->swap_map[offset]) {
843                 --si->cluster_nr;
844                 goto checks;
845         }
846
847 done:
848         si->flags -= SWP_SCANNING;
849         return n_ret;
850
851 scan:
852         spin_unlock(&si->lock);
853         while (++offset <= si->highest_bit) {
854                 if (!si->swap_map[offset]) {
855                         spin_lock(&si->lock);
856                         goto checks;
857                 }
858                 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
859                         spin_lock(&si->lock);
860                         goto checks;
861                 }
862                 if (unlikely(--latency_ration < 0)) {
863                         cond_resched();
864                         latency_ration = LATENCY_LIMIT;
865                 }
866         }
867         offset = si->lowest_bit;
868         while (offset < scan_base) {
869                 if (!si->swap_map[offset]) {
870                         spin_lock(&si->lock);
871                         goto checks;
872                 }
873                 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
874                         spin_lock(&si->lock);
875                         goto checks;
876                 }
877                 if (unlikely(--latency_ration < 0)) {
878                         cond_resched();
879                         latency_ration = LATENCY_LIMIT;
880                 }
881                 offset++;
882         }
883         spin_lock(&si->lock);
884
885 no_page:
886         si->flags -= SWP_SCANNING;
887         return n_ret;
888 }
889
890 static int swap_alloc_cluster(struct swap_info_struct *si, swp_entry_t *slot)
891 {
892         unsigned long idx;
893         struct swap_cluster_info *ci;
894         unsigned long offset, i;
895         unsigned char *map;
896
897         /*
898          * Should not even be attempting cluster allocations when huge
899          * page swap is disabled.  Warn and fail the allocation.
900          */
901         if (!IS_ENABLED(CONFIG_THP_SWAP)) {
902                 VM_WARN_ON_ONCE(1);
903                 return 0;
904         }
905
906         if (cluster_list_empty(&si->free_clusters))
907                 return 0;
908
909         idx = cluster_list_first(&si->free_clusters);
910         offset = idx * SWAPFILE_CLUSTER;
911         ci = lock_cluster(si, offset);
912         alloc_cluster(si, idx);
913         cluster_set_count_flag(ci, SWAPFILE_CLUSTER, CLUSTER_FLAG_HUGE);
914
915         map = si->swap_map + offset;
916         for (i = 0; i < SWAPFILE_CLUSTER; i++)
917                 map[i] = SWAP_HAS_CACHE;
918         unlock_cluster(ci);
919         swap_range_alloc(si, offset, SWAPFILE_CLUSTER);
920         *slot = swp_entry(si->type, offset);
921
922         return 1;
923 }
924
925 static void swap_free_cluster(struct swap_info_struct *si, unsigned long idx)
926 {
927         unsigned long offset = idx * SWAPFILE_CLUSTER;
928         struct swap_cluster_info *ci;
929
930         ci = lock_cluster(si, offset);
931         cluster_set_count_flag(ci, 0, 0);
932         free_cluster(si, idx);
933         unlock_cluster(ci);
934         swap_range_free(si, offset, SWAPFILE_CLUSTER);
935 }
936
937 static unsigned long scan_swap_map(struct swap_info_struct *si,
938                                    unsigned char usage)
939 {
940         swp_entry_t entry;
941         int n_ret;
942
943         n_ret = scan_swap_map_slots(si, usage, 1, &entry);
944
945         if (n_ret)
946                 return swp_offset(entry);
947         else
948                 return 0;
949
950 }
951
952 int get_swap_pages(int n_goal, swp_entry_t swp_entries[], int entry_size)
953 {
954         unsigned long size = swap_entry_size(entry_size);
955         struct swap_info_struct *si, *next;
956         long avail_pgs;
957         int n_ret = 0;
958         int node;
959
960         /* Only single cluster request supported */
961         WARN_ON_ONCE(n_goal > 1 && size == SWAPFILE_CLUSTER);
962
963         avail_pgs = atomic_long_read(&nr_swap_pages) / size;
964         if (avail_pgs <= 0)
965                 goto noswap;
966
967         if (n_goal > SWAP_BATCH)
968                 n_goal = SWAP_BATCH;
969
970         if (n_goal > avail_pgs)
971                 n_goal = avail_pgs;
972
973         atomic_long_sub(n_goal * size, &nr_swap_pages);
974
975         spin_lock(&swap_avail_lock);
976
977 start_over:
978         node = numa_node_id();
979         plist_for_each_entry_safe(si, next, &swap_avail_heads[node], avail_lists[node]) {
980                 /* requeue si to after same-priority siblings */
981                 plist_requeue(&si->avail_lists[node], &swap_avail_heads[node]);
982                 spin_unlock(&swap_avail_lock);
983                 spin_lock(&si->lock);
984                 if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) {
985                         spin_lock(&swap_avail_lock);
986                         if (plist_node_empty(&si->avail_lists[node])) {
987                                 spin_unlock(&si->lock);
988                                 goto nextsi;
989                         }
990                         WARN(!si->highest_bit,
991                              "swap_info %d in list but !highest_bit\n",
992                              si->type);
993                         WARN(!(si->flags & SWP_WRITEOK),
994                              "swap_info %d in list but !SWP_WRITEOK\n",
995                              si->type);
996                         __del_from_avail_list(si);
997                         spin_unlock(&si->lock);
998                         goto nextsi;
999                 }
1000                 if (size == SWAPFILE_CLUSTER) {
1001                         if (si->flags & SWP_BLKDEV)
1002                                 n_ret = swap_alloc_cluster(si, swp_entries);
1003                 } else
1004                         n_ret = scan_swap_map_slots(si, SWAP_HAS_CACHE,
1005                                                     n_goal, swp_entries);
1006                 spin_unlock(&si->lock);
1007                 if (n_ret || size == SWAPFILE_CLUSTER)
1008                         goto check_out;
1009                 pr_debug("scan_swap_map of si %d failed to find offset\n",
1010                         si->type);
1011
1012                 spin_lock(&swap_avail_lock);
1013 nextsi:
1014                 /*
1015                  * if we got here, it's likely that si was almost full before,
1016                  * and since scan_swap_map() can drop the si->lock, multiple
1017                  * callers probably all tried to get a page from the same si
1018                  * and it filled up before we could get one; or, the si filled
1019                  * up between us dropping swap_avail_lock and taking si->lock.
1020                  * Since we dropped the swap_avail_lock, the swap_avail_head
1021                  * list may have been modified; so if next is still in the
1022                  * swap_avail_head list then try it, otherwise start over
1023                  * if we have not gotten any slots.
1024                  */
1025                 if (plist_node_empty(&next->avail_lists[node]))
1026                         goto start_over;
1027         }
1028
1029         spin_unlock(&swap_avail_lock);
1030
1031 check_out:
1032         if (n_ret < n_goal)
1033                 atomic_long_add((long)(n_goal - n_ret) * size,
1034                                 &nr_swap_pages);
1035 noswap:
1036         return n_ret;
1037 }
1038
1039 /* The only caller of this function is now suspend routine */
1040 swp_entry_t get_swap_page_of_type(int type)
1041 {
1042         struct swap_info_struct *si = swap_type_to_swap_info(type);
1043         pgoff_t offset;
1044
1045         if (!si)
1046                 goto fail;
1047
1048         spin_lock(&si->lock);
1049         if (si->flags & SWP_WRITEOK) {
1050                 atomic_long_dec(&nr_swap_pages);
1051                 /* This is called for allocating swap entry, not cache */
1052                 offset = scan_swap_map(si, 1);
1053                 if (offset) {
1054                         spin_unlock(&si->lock);
1055                         return swp_entry(type, offset);
1056                 }
1057                 atomic_long_inc(&nr_swap_pages);
1058         }
1059         spin_unlock(&si->lock);
1060 fail:
1061         return (swp_entry_t) {0};
1062 }
1063
1064 static struct swap_info_struct *__swap_info_get(swp_entry_t entry)
1065 {
1066         struct swap_info_struct *p;
1067         unsigned long offset, type;
1068
1069         if (!entry.val)
1070                 goto out;
1071         type = swp_type(entry);
1072         p = swap_type_to_swap_info(type);
1073         if (!p)
1074                 goto bad_nofile;
1075         if (!(p->flags & SWP_USED))
1076                 goto bad_device;
1077         offset = swp_offset(entry);
1078         if (offset >= p->max)
1079                 goto bad_offset;
1080         return p;
1081
1082 bad_offset:
1083         pr_err("swap_info_get: %s%08lx\n", Bad_offset, entry.val);
1084         goto out;
1085 bad_device:
1086         pr_err("swap_info_get: %s%08lx\n", Unused_file, entry.val);
1087         goto out;
1088 bad_nofile:
1089         pr_err("swap_info_get: %s%08lx\n", Bad_file, entry.val);
1090 out:
1091         return NULL;
1092 }
1093
1094 static struct swap_info_struct *_swap_info_get(swp_entry_t entry)
1095 {
1096         struct swap_info_struct *p;
1097
1098         p = __swap_info_get(entry);
1099         if (!p)
1100                 goto out;
1101         if (!p->swap_map[swp_offset(entry)])
1102                 goto bad_free;
1103         return p;
1104
1105 bad_free:
1106         pr_err("swap_info_get: %s%08lx\n", Unused_offset, entry.val);
1107         goto out;
1108 out:
1109         return NULL;
1110 }
1111
1112 static struct swap_info_struct *swap_info_get(swp_entry_t entry)
1113 {
1114         struct swap_info_struct *p;
1115
1116         p = _swap_info_get(entry);
1117         if (p)
1118                 spin_lock(&p->lock);
1119         return p;
1120 }
1121
1122 static struct swap_info_struct *swap_info_get_cont(swp_entry_t entry,
1123                                         struct swap_info_struct *q)
1124 {
1125         struct swap_info_struct *p;
1126
1127         p = _swap_info_get(entry);
1128
1129         if (p != q) {
1130                 if (q != NULL)
1131                         spin_unlock(&q->lock);
1132                 if (p != NULL)
1133                         spin_lock(&p->lock);
1134         }
1135         return p;
1136 }
1137
1138 static unsigned char __swap_entry_free_locked(struct swap_info_struct *p,
1139                                               unsigned long offset,
1140                                               unsigned char usage)
1141 {
1142         unsigned char count;
1143         unsigned char has_cache;
1144
1145         count = p->swap_map[offset];
1146
1147         has_cache = count & SWAP_HAS_CACHE;
1148         count &= ~SWAP_HAS_CACHE;
1149
1150         if (usage == SWAP_HAS_CACHE) {
1151                 VM_BUG_ON(!has_cache);
1152                 has_cache = 0;
1153         } else if (count == SWAP_MAP_SHMEM) {
1154                 /*
1155                  * Or we could insist on shmem.c using a special
1156                  * swap_shmem_free() and free_shmem_swap_and_cache()...
1157                  */
1158                 count = 0;
1159         } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
1160                 if (count == COUNT_CONTINUED) {
1161                         if (swap_count_continued(p, offset, count))
1162                                 count = SWAP_MAP_MAX | COUNT_CONTINUED;
1163                         else
1164                                 count = SWAP_MAP_MAX;
1165                 } else
1166                         count--;
1167         }
1168
1169         usage = count | has_cache;
1170         p->swap_map[offset] = usage ? : SWAP_HAS_CACHE;
1171
1172         return usage;
1173 }
1174
1175 static unsigned char __swap_entry_free(struct swap_info_struct *p,
1176                                        swp_entry_t entry, unsigned char usage)
1177 {
1178         struct swap_cluster_info *ci;
1179         unsigned long offset = swp_offset(entry);
1180
1181         ci = lock_cluster_or_swap_info(p, offset);
1182         usage = __swap_entry_free_locked(p, offset, usage);
1183         unlock_cluster_or_swap_info(p, ci);
1184
1185         return usage;
1186 }
1187
1188 static void swap_entry_free(struct swap_info_struct *p, swp_entry_t entry)
1189 {
1190         struct swap_cluster_info *ci;
1191         unsigned long offset = swp_offset(entry);
1192         unsigned char count;
1193
1194         ci = lock_cluster(p, offset);
1195         count = p->swap_map[offset];
1196         VM_BUG_ON(count != SWAP_HAS_CACHE);
1197         p->swap_map[offset] = 0;
1198         dec_cluster_info_page(p, p->cluster_info, offset);
1199         unlock_cluster(ci);
1200
1201         mem_cgroup_uncharge_swap(entry, 1);
1202         swap_range_free(p, offset, 1);
1203 }
1204
1205 /*
1206  * Caller has made sure that the swap device corresponding to entry
1207  * is still around or has not been recycled.
1208  */
1209 void swap_free(swp_entry_t entry)
1210 {
1211         struct swap_info_struct *p;
1212
1213         p = _swap_info_get(entry);
1214         if (p) {
1215                 if (!__swap_entry_free(p, entry, 1))
1216                         free_swap_slot(entry);
1217         }
1218 }
1219
1220 /*
1221  * Called after dropping swapcache to decrease refcnt to swap entries.
1222  */
1223 void put_swap_page(struct page *page, swp_entry_t entry)
1224 {
1225         unsigned long offset = swp_offset(entry);
1226         unsigned long idx = offset / SWAPFILE_CLUSTER;
1227         struct swap_cluster_info *ci;
1228         struct swap_info_struct *si;
1229         unsigned char *map;
1230         unsigned int i, free_entries = 0;
1231         unsigned char val;
1232         int size = swap_entry_size(hpage_nr_pages(page));
1233
1234         si = _swap_info_get(entry);
1235         if (!si)
1236                 return;
1237
1238         ci = lock_cluster_or_swap_info(si, offset);
1239         if (size == SWAPFILE_CLUSTER) {
1240                 VM_BUG_ON(!cluster_is_huge(ci));
1241                 map = si->swap_map + offset;
1242                 for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1243                         val = map[i];
1244                         VM_BUG_ON(!(val & SWAP_HAS_CACHE));
1245                         if (val == SWAP_HAS_CACHE)
1246                                 free_entries++;
1247                 }
1248                 cluster_clear_huge(ci);
1249                 if (free_entries == SWAPFILE_CLUSTER) {
1250                         unlock_cluster_or_swap_info(si, ci);
1251                         spin_lock(&si->lock);
1252                         ci = lock_cluster(si, offset);
1253                         memset(map, 0, SWAPFILE_CLUSTER);
1254                         unlock_cluster(ci);
1255                         mem_cgroup_uncharge_swap(entry, SWAPFILE_CLUSTER);
1256                         swap_free_cluster(si, idx);
1257                         spin_unlock(&si->lock);
1258                         return;
1259                 }
1260         }
1261         for (i = 0; i < size; i++, entry.val++) {
1262                 if (!__swap_entry_free_locked(si, offset + i, SWAP_HAS_CACHE)) {
1263                         unlock_cluster_or_swap_info(si, ci);
1264                         free_swap_slot(entry);
1265                         if (i == size - 1)
1266                                 return;
1267                         lock_cluster_or_swap_info(si, offset);
1268                 }
1269         }
1270         unlock_cluster_or_swap_info(si, ci);
1271 }
1272
1273 #ifdef CONFIG_THP_SWAP
1274 int split_swap_cluster(swp_entry_t entry)
1275 {
1276         struct swap_info_struct *si;
1277         struct swap_cluster_info *ci;
1278         unsigned long offset = swp_offset(entry);
1279
1280         si = _swap_info_get(entry);
1281         if (!si)
1282                 return -EBUSY;
1283         ci = lock_cluster(si, offset);
1284         cluster_clear_huge(ci);
1285         unlock_cluster(ci);
1286         return 0;
1287 }
1288 #endif
1289
1290 static int swp_entry_cmp(const void *ent1, const void *ent2)
1291 {
1292         const swp_entry_t *e1 = ent1, *e2 = ent2;
1293
1294         return (int)swp_type(*e1) - (int)swp_type(*e2);
1295 }
1296
1297 void swapcache_free_entries(swp_entry_t *entries, int n)
1298 {
1299         struct swap_info_struct *p, *prev;
1300         int i;
1301
1302         if (n <= 0)
1303                 return;
1304
1305         prev = NULL;
1306         p = NULL;
1307
1308         /*
1309          * Sort swap entries by swap device, so each lock is only taken once.
1310          * nr_swapfiles isn't absolutely correct, but the overhead of sort() is
1311          * so low that it isn't necessary to optimize further.
1312          */
1313         if (nr_swapfiles > 1)
1314                 sort(entries, n, sizeof(entries[0]), swp_entry_cmp, NULL);
1315         for (i = 0; i < n; ++i) {
1316                 p = swap_info_get_cont(entries[i], prev);
1317                 if (p)
1318                         swap_entry_free(p, entries[i]);
1319                 prev = p;
1320         }
1321         if (p)
1322                 spin_unlock(&p->lock);
1323 }
1324
1325 /*
1326  * How many references to page are currently swapped out?
1327  * This does not give an exact answer when swap count is continued,
1328  * but does include the high COUNT_CONTINUED flag to allow for that.
1329  */
1330 int page_swapcount(struct page *page)
1331 {
1332         int count = 0;
1333         struct swap_info_struct *p;
1334         struct swap_cluster_info *ci;
1335         swp_entry_t entry;
1336         unsigned long offset;
1337
1338         entry.val = page_private(page);
1339         p = _swap_info_get(entry);
1340         if (p) {
1341                 offset = swp_offset(entry);
1342                 ci = lock_cluster_or_swap_info(p, offset);
1343                 count = swap_count(p->swap_map[offset]);
1344                 unlock_cluster_or_swap_info(p, ci);
1345         }
1346         return count;
1347 }
1348
1349 int __swap_count(struct swap_info_struct *si, swp_entry_t entry)
1350 {
1351         pgoff_t offset = swp_offset(entry);
1352
1353         return swap_count(si->swap_map[offset]);
1354 }
1355
1356 static int swap_swapcount(struct swap_info_struct *si, swp_entry_t entry)
1357 {
1358         int count = 0;
1359         pgoff_t offset = swp_offset(entry);
1360         struct swap_cluster_info *ci;
1361
1362         ci = lock_cluster_or_swap_info(si, offset);
1363         count = swap_count(si->swap_map[offset]);
1364         unlock_cluster_or_swap_info(si, ci);
1365         return count;
1366 }
1367
1368 /*
1369  * How many references to @entry are currently swapped out?
1370  * This does not give an exact answer when swap count is continued,
1371  * but does include the high COUNT_CONTINUED flag to allow for that.
1372  */
1373 int __swp_swapcount(swp_entry_t entry)
1374 {
1375         int count = 0;
1376         struct swap_info_struct *si;
1377
1378         si = __swap_info_get(entry);
1379         if (si)
1380                 count = swap_swapcount(si, entry);
1381         return count;
1382 }
1383
1384 /*
1385  * How many references to @entry are currently swapped out?
1386  * This considers COUNT_CONTINUED so it returns exact answer.
1387  */
1388 int swp_swapcount(swp_entry_t entry)
1389 {
1390         int count, tmp_count, n;
1391         struct swap_info_struct *p;
1392         struct swap_cluster_info *ci;
1393         struct page *page;
1394         pgoff_t offset;
1395         unsigned char *map;
1396
1397         p = _swap_info_get(entry);
1398         if (!p)
1399                 return 0;
1400
1401         offset = swp_offset(entry);
1402
1403         ci = lock_cluster_or_swap_info(p, offset);
1404
1405         count = swap_count(p->swap_map[offset]);
1406         if (!(count & COUNT_CONTINUED))
1407                 goto out;
1408
1409         count &= ~COUNT_CONTINUED;
1410         n = SWAP_MAP_MAX + 1;
1411
1412         page = vmalloc_to_page(p->swap_map + offset);
1413         offset &= ~PAGE_MASK;
1414         VM_BUG_ON(page_private(page) != SWP_CONTINUED);
1415
1416         do {
1417                 page = list_next_entry(page, lru);
1418                 map = kmap_atomic(page);
1419                 tmp_count = map[offset];
1420                 kunmap_atomic(map);
1421
1422                 count += (tmp_count & ~COUNT_CONTINUED) * n;
1423                 n *= (SWAP_CONT_MAX + 1);
1424         } while (tmp_count & COUNT_CONTINUED);
1425 out:
1426         unlock_cluster_or_swap_info(p, ci);
1427         return count;
1428 }
1429
1430 static bool swap_page_trans_huge_swapped(struct swap_info_struct *si,
1431                                          swp_entry_t entry)
1432 {
1433         struct swap_cluster_info *ci;
1434         unsigned char *map = si->swap_map;
1435         unsigned long roffset = swp_offset(entry);
1436         unsigned long offset = round_down(roffset, SWAPFILE_CLUSTER);
1437         int i;
1438         bool ret = false;
1439
1440         ci = lock_cluster_or_swap_info(si, offset);
1441         if (!ci || !cluster_is_huge(ci)) {
1442                 if (swap_count(map[roffset]))
1443                         ret = true;
1444                 goto unlock_out;
1445         }
1446         for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1447                 if (swap_count(map[offset + i])) {
1448                         ret = true;
1449                         break;
1450                 }
1451         }
1452 unlock_out:
1453         unlock_cluster_or_swap_info(si, ci);
1454         return ret;
1455 }
1456
1457 static bool page_swapped(struct page *page)
1458 {
1459         swp_entry_t entry;
1460         struct swap_info_struct *si;
1461
1462         if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!PageTransCompound(page)))
1463                 return page_swapcount(page) != 0;
1464
1465         page = compound_head(page);
1466         entry.val = page_private(page);
1467         si = _swap_info_get(entry);
1468         if (si)
1469                 return swap_page_trans_huge_swapped(si, entry);
1470         return false;
1471 }
1472
1473 static int page_trans_huge_map_swapcount(struct page *page, int *total_mapcount,
1474                                          int *total_swapcount)
1475 {
1476         int i, map_swapcount, _total_mapcount, _total_swapcount;
1477         unsigned long offset = 0;
1478         struct swap_info_struct *si;
1479         struct swap_cluster_info *ci = NULL;
1480         unsigned char *map = NULL;
1481         int mapcount, swapcount = 0;
1482
1483         /* hugetlbfs shouldn't call it */
1484         VM_BUG_ON_PAGE(PageHuge(page), page);
1485
1486         if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!PageTransCompound(page))) {
1487                 mapcount = page_trans_huge_mapcount(page, total_mapcount);
1488                 if (PageSwapCache(page))
1489                         swapcount = page_swapcount(page);
1490                 if (total_swapcount)
1491                         *total_swapcount = swapcount;
1492                 return mapcount + swapcount;
1493         }
1494
1495         page = compound_head(page);
1496
1497         _total_mapcount = _total_swapcount = map_swapcount = 0;
1498         if (PageSwapCache(page)) {
1499                 swp_entry_t entry;
1500
1501                 entry.val = page_private(page);
1502                 si = _swap_info_get(entry);
1503                 if (si) {
1504                         map = si->swap_map;
1505                         offset = swp_offset(entry);
1506                 }
1507         }
1508         if (map)
1509                 ci = lock_cluster(si, offset);
1510         for (i = 0; i < HPAGE_PMD_NR; i++) {
1511                 mapcount = atomic_read(&page[i]._mapcount) + 1;
1512                 _total_mapcount += mapcount;
1513                 if (map) {
1514                         swapcount = swap_count(map[offset + i]);
1515                         _total_swapcount += swapcount;
1516                 }
1517                 map_swapcount = max(map_swapcount, mapcount + swapcount);
1518         }
1519         unlock_cluster(ci);
1520         if (PageDoubleMap(page)) {
1521                 map_swapcount -= 1;
1522                 _total_mapcount -= HPAGE_PMD_NR;
1523         }
1524         mapcount = compound_mapcount(page);
1525         map_swapcount += mapcount;
1526         _total_mapcount += mapcount;
1527         if (total_mapcount)
1528                 *total_mapcount = _total_mapcount;
1529         if (total_swapcount)
1530                 *total_swapcount = _total_swapcount;
1531
1532         return map_swapcount;
1533 }
1534
1535 /*
1536  * We can write to an anon page without COW if there are no other references
1537  * to it.  And as a side-effect, free up its swap: because the old content
1538  * on disk will never be read, and seeking back there to write new content
1539  * later would only waste time away from clustering.
1540  *
1541  * NOTE: total_map_swapcount should not be relied upon by the caller if
1542  * reuse_swap_page() returns false, but it may be always overwritten
1543  * (see the other implementation for CONFIG_SWAP=n).
1544  */
1545 bool reuse_swap_page(struct page *page, int *total_map_swapcount)
1546 {
1547         int count, total_mapcount, total_swapcount;
1548
1549         VM_BUG_ON_PAGE(!PageLocked(page), page);
1550         if (unlikely(PageKsm(page)))
1551                 return false;
1552         count = page_trans_huge_map_swapcount(page, &total_mapcount,
1553                                               &total_swapcount);
1554         if (total_map_swapcount)
1555                 *total_map_swapcount = total_mapcount + total_swapcount;
1556         if (count == 1 && PageSwapCache(page) &&
1557             (likely(!PageTransCompound(page)) ||
1558              /* The remaining swap count will be freed soon */
1559              total_swapcount == page_swapcount(page))) {
1560                 if (!PageWriteback(page)) {
1561                         page = compound_head(page);
1562                         delete_from_swap_cache(page);
1563                         SetPageDirty(page);
1564                 } else {
1565                         swp_entry_t entry;
1566                         struct swap_info_struct *p;
1567
1568                         entry.val = page_private(page);
1569                         p = swap_info_get(entry);
1570                         if (p->flags & SWP_STABLE_WRITES) {
1571                                 spin_unlock(&p->lock);
1572                                 return false;
1573                         }
1574                         spin_unlock(&p->lock);
1575                 }
1576         }
1577
1578         return count <= 1;
1579 }
1580
1581 /*
1582  * If swap is getting full, or if there are no more mappings of this page,
1583  * then try_to_free_swap is called to free its swap space.
1584  */
1585 int try_to_free_swap(struct page *page)
1586 {
1587         VM_BUG_ON_PAGE(!PageLocked(page), page);
1588
1589         if (!PageSwapCache(page))
1590                 return 0;
1591         if (PageWriteback(page))
1592                 return 0;
1593         if (page_swapped(page))
1594                 return 0;
1595
1596         /*
1597          * Once hibernation has begun to create its image of memory,
1598          * there's a danger that one of the calls to try_to_free_swap()
1599          * - most probably a call from __try_to_reclaim_swap() while
1600          * hibernation is allocating its own swap pages for the image,
1601          * but conceivably even a call from memory reclaim - will free
1602          * the swap from a page which has already been recorded in the
1603          * image as a clean swapcache page, and then reuse its swap for
1604          * another page of the image.  On waking from hibernation, the
1605          * original page might be freed under memory pressure, then
1606          * later read back in from swap, now with the wrong data.
1607          *
1608          * Hibernation suspends storage while it is writing the image
1609          * to disk so check that here.
1610          */
1611         if (pm_suspended_storage())
1612                 return 0;
1613
1614         page = compound_head(page);
1615         delete_from_swap_cache(page);
1616         SetPageDirty(page);
1617         return 1;
1618 }
1619
1620 /*
1621  * Free the swap entry like above, but also try to
1622  * free the page cache entry if it is the last user.
1623  */
1624 int free_swap_and_cache(swp_entry_t entry)
1625 {
1626         struct swap_info_struct *p;
1627         struct page *page = NULL;
1628         unsigned char count;
1629
1630         if (non_swap_entry(entry))
1631                 return 1;
1632
1633         p = _swap_info_get(entry);
1634         if (p) {
1635                 count = __swap_entry_free(p, entry, 1);
1636                 if (count == SWAP_HAS_CACHE &&
1637                     !swap_page_trans_huge_swapped(p, entry)) {
1638                         page = find_get_page(swap_address_space(entry),
1639                                              swp_offset(entry));
1640                         if (page && !trylock_page(page)) {
1641                                 put_page(page);
1642                                 page = NULL;
1643                         }
1644                 } else if (!count)
1645                         free_swap_slot(entry);
1646         }
1647         if (page) {
1648                 /*
1649                  * Not mapped elsewhere, or swap space full? Free it!
1650                  * Also recheck PageSwapCache now page is locked (above).
1651                  */
1652                 if (PageSwapCache(page) && !PageWriteback(page) &&
1653                     (!page_mapped(page) || mem_cgroup_swap_full(page)) &&
1654                     !swap_page_trans_huge_swapped(p, entry)) {
1655                         page = compound_head(page);
1656                         delete_from_swap_cache(page);
1657                         SetPageDirty(page);
1658                 }
1659                 unlock_page(page);
1660                 put_page(page);
1661         }
1662         return p != NULL;
1663 }
1664
1665 #ifdef CONFIG_HIBERNATION
1666 /*
1667  * Find the swap type that corresponds to given device (if any).
1668  *
1669  * @offset - number of the PAGE_SIZE-sized block of the device, starting
1670  * from 0, in which the swap header is expected to be located.
1671  *
1672  * This is needed for the suspend to disk (aka swsusp).
1673  */
1674 int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
1675 {
1676         struct block_device *bdev = NULL;
1677         int type;
1678
1679         if (device)
1680                 bdev = bdget(device);
1681
1682         spin_lock(&swap_lock);
1683         for (type = 0; type < nr_swapfiles; type++) {
1684                 struct swap_info_struct *sis = swap_info[type];
1685
1686                 if (!(sis->flags & SWP_WRITEOK))
1687                         continue;
1688
1689                 if (!bdev) {
1690                         if (bdev_p)
1691                                 *bdev_p = bdgrab(sis->bdev);
1692
1693                         spin_unlock(&swap_lock);
1694                         return type;
1695                 }
1696                 if (bdev == sis->bdev) {
1697                         struct swap_extent *se = &sis->first_swap_extent;
1698
1699                         if (se->start_block == offset) {
1700                                 if (bdev_p)
1701                                         *bdev_p = bdgrab(sis->bdev);
1702
1703                                 spin_unlock(&swap_lock);
1704                                 bdput(bdev);
1705                                 return type;
1706                         }
1707                 }
1708         }
1709         spin_unlock(&swap_lock);
1710         if (bdev)
1711                 bdput(bdev);
1712
1713         return -ENODEV;
1714 }
1715
1716 /*
1717  * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1718  * corresponding to given index in swap_info (swap type).
1719  */
1720 sector_t swapdev_block(int type, pgoff_t offset)
1721 {
1722         struct block_device *bdev;
1723         struct swap_info_struct *si = swap_type_to_swap_info(type);
1724
1725         if (!si || !(si->flags & SWP_WRITEOK))
1726                 return 0;
1727         return map_swap_entry(swp_entry(type, offset), &bdev);
1728 }
1729
1730 /*
1731  * Return either the total number of swap pages of given type, or the number
1732  * of free pages of that type (depending on @free)
1733  *
1734  * This is needed for software suspend
1735  */
1736 unsigned int count_swap_pages(int type, int free)
1737 {
1738         unsigned int n = 0;
1739
1740         spin_lock(&swap_lock);
1741         if ((unsigned int)type < nr_swapfiles) {
1742                 struct swap_info_struct *sis = swap_info[type];
1743
1744                 spin_lock(&sis->lock);
1745                 if (sis->flags & SWP_WRITEOK) {
1746                         n = sis->pages;
1747                         if (free)
1748                                 n -= sis->inuse_pages;
1749                 }
1750                 spin_unlock(&sis->lock);
1751         }
1752         spin_unlock(&swap_lock);
1753         return n;
1754 }
1755 #endif /* CONFIG_HIBERNATION */
1756
1757 static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte)
1758 {
1759         return pte_same(pte_swp_clear_soft_dirty(pte), swp_pte);
1760 }
1761
1762 /*
1763  * No need to decide whether this PTE shares the swap entry with others,
1764  * just let do_wp_page work it out if a write is requested later - to
1765  * force COW, vm_page_prot omits write permission from any private vma.
1766  */
1767 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1768                 unsigned long addr, swp_entry_t entry, struct page *page)
1769 {
1770         struct page *swapcache;
1771         struct mem_cgroup *memcg;
1772         spinlock_t *ptl;
1773         pte_t *pte;
1774         int ret = 1;
1775
1776         swapcache = page;
1777         page = ksm_might_need_to_copy(page, vma, addr);
1778         if (unlikely(!page))
1779                 return -ENOMEM;
1780
1781         if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL,
1782                                 &memcg, false)) {
1783                 ret = -ENOMEM;
1784                 goto out_nolock;
1785         }
1786
1787         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1788         if (unlikely(!pte_same_as_swp(*pte, swp_entry_to_pte(entry)))) {
1789                 mem_cgroup_cancel_charge(page, memcg, false);
1790                 ret = 0;
1791                 goto out;
1792         }
1793
1794         dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1795         inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
1796         get_page(page);
1797         set_pte_at(vma->vm_mm, addr, pte,
1798                    pte_mkold(mk_pte(page, vma->vm_page_prot)));
1799         if (page == swapcache) {
1800                 page_add_anon_rmap(page, vma, addr, false);
1801                 mem_cgroup_commit_charge(page, memcg, true, false);
1802         } else { /* ksm created a completely new copy */
1803                 page_add_new_anon_rmap(page, vma, addr, false);
1804                 mem_cgroup_commit_charge(page, memcg, false, false);
1805                 lru_cache_add_active_or_unevictable(page, vma);
1806         }
1807         swap_free(entry);
1808         /*
1809          * Move the page to the active list so it is not
1810          * immediately swapped out again after swapon.
1811          */
1812         activate_page(page);
1813 out:
1814         pte_unmap_unlock(pte, ptl);
1815 out_nolock:
1816         if (page != swapcache) {
1817                 unlock_page(page);
1818                 put_page(page);
1819         }
1820         return ret;
1821 }
1822
1823 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
1824                                 unsigned long addr, unsigned long end,
1825                                 swp_entry_t entry, struct page *page)
1826 {
1827         pte_t swp_pte = swp_entry_to_pte(entry);
1828         pte_t *pte;
1829         int ret = 0;
1830
1831         /*
1832          * We don't actually need pte lock while scanning for swp_pte: since
1833          * we hold page lock and mmap_sem, swp_pte cannot be inserted into the
1834          * page table while we're scanning; though it could get zapped, and on
1835          * some architectures (e.g. x86_32 with PAE) we might catch a glimpse
1836          * of unmatched parts which look like swp_pte, so unuse_pte must
1837          * recheck under pte lock.  Scanning without pte lock lets it be
1838          * preemptable whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE.
1839          */
1840         pte = pte_offset_map(pmd, addr);
1841         do {
1842                 /*
1843                  * swapoff spends a _lot_ of time in this loop!
1844                  * Test inline before going to call unuse_pte.
1845                  */
1846                 if (unlikely(pte_same_as_swp(*pte, swp_pte))) {
1847                         pte_unmap(pte);
1848                         ret = unuse_pte(vma, pmd, addr, entry, page);
1849                         if (ret)
1850                                 goto out;
1851                         pte = pte_offset_map(pmd, addr);
1852                 }
1853         } while (pte++, addr += PAGE_SIZE, addr != end);
1854         pte_unmap(pte - 1);
1855 out:
1856         return ret;
1857 }
1858
1859 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
1860                                 unsigned long addr, unsigned long end,
1861                                 swp_entry_t entry, struct page *page)
1862 {
1863         pmd_t *pmd;
1864         unsigned long next;
1865         int ret;
1866
1867         pmd = pmd_offset(pud, addr);
1868         do {
1869                 cond_resched();
1870                 next = pmd_addr_end(addr, end);
1871                 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1872                         continue;
1873                 ret = unuse_pte_range(vma, pmd, addr, next, entry, page);
1874                 if (ret)
1875                         return ret;
1876         } while (pmd++, addr = next, addr != end);
1877         return 0;
1878 }
1879
1880 static inline int unuse_pud_range(struct vm_area_struct *vma, p4d_t *p4d,
1881                                 unsigned long addr, unsigned long end,
1882                                 swp_entry_t entry, struct page *page)
1883 {
1884         pud_t *pud;
1885         unsigned long next;
1886         int ret;
1887
1888         pud = pud_offset(p4d, addr);
1889         do {
1890                 next = pud_addr_end(addr, end);
1891                 if (pud_none_or_clear_bad(pud))
1892                         continue;
1893                 ret = unuse_pmd_range(vma, pud, addr, next, entry, page);
1894                 if (ret)
1895                         return ret;
1896         } while (pud++, addr = next, addr != end);
1897         return 0;
1898 }
1899
1900 static inline int unuse_p4d_range(struct vm_area_struct *vma, pgd_t *pgd,
1901                                 unsigned long addr, unsigned long end,
1902                                 swp_entry_t entry, struct page *page)
1903 {
1904         p4d_t *p4d;
1905         unsigned long next;
1906         int ret;
1907
1908         p4d = p4d_offset(pgd, addr);
1909         do {
1910                 next = p4d_addr_end(addr, end);
1911                 if (p4d_none_or_clear_bad(p4d))
1912                         continue;
1913                 ret = unuse_pud_range(vma, p4d, addr, next, entry, page);
1914                 if (ret)
1915                         return ret;
1916         } while (p4d++, addr = next, addr != end);
1917         return 0;
1918 }
1919
1920 static int unuse_vma(struct vm_area_struct *vma,
1921                                 swp_entry_t entry, struct page *page)
1922 {
1923         pgd_t *pgd;
1924         unsigned long addr, end, next;
1925         int ret;
1926
1927         if (page_anon_vma(page)) {
1928                 addr = page_address_in_vma(page, vma);
1929                 if (addr == -EFAULT)
1930                         return 0;
1931                 else
1932                         end = addr + PAGE_SIZE;
1933         } else {
1934                 addr = vma->vm_start;
1935                 end = vma->vm_end;
1936         }
1937
1938         pgd = pgd_offset(vma->vm_mm, addr);
1939         do {
1940                 next = pgd_addr_end(addr, end);
1941                 if (pgd_none_or_clear_bad(pgd))
1942                         continue;
1943                 ret = unuse_p4d_range(vma, pgd, addr, next, entry, page);
1944                 if (ret)
1945                         return ret;
1946         } while (pgd++, addr = next, addr != end);
1947         return 0;
1948 }
1949
1950 static int unuse_mm(struct mm_struct *mm,
1951                                 swp_entry_t entry, struct page *page)
1952 {
1953         struct vm_area_struct *vma;
1954         int ret = 0;
1955
1956         if (!down_read_trylock(&mm->mmap_sem)) {
1957                 /*
1958                  * Activate page so shrink_inactive_list is unlikely to unmap
1959                  * its ptes while lock is dropped, so swapoff can make progress.
1960                  */
1961                 activate_page(page);
1962                 unlock_page(page);
1963                 down_read(&mm->mmap_sem);
1964                 lock_page(page);
1965         }
1966         for (vma = mm->mmap; vma; vma = vma->vm_next) {
1967                 if (vma->anon_vma && (ret = unuse_vma(vma, entry, page)))
1968                         break;
1969                 cond_resched();
1970         }
1971         up_read(&mm->mmap_sem);
1972         return (ret < 0)? ret: 0;
1973 }
1974
1975 /*
1976  * Scan swap_map (or frontswap_map if frontswap parameter is true)
1977  * from current position to next entry still in use.
1978  * Recycle to start on reaching the end, returning 0 when empty.
1979  */
1980 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
1981                                         unsigned int prev, bool frontswap)
1982 {
1983         unsigned int max = si->max;
1984         unsigned int i = prev;
1985         unsigned char count;
1986
1987         /*
1988          * No need for swap_lock here: we're just looking
1989          * for whether an entry is in use, not modifying it; false
1990          * hits are okay, and sys_swapoff() has already prevented new
1991          * allocations from this area (while holding swap_lock).
1992          */
1993         for (;;) {
1994                 if (++i >= max) {
1995                         if (!prev) {
1996                                 i = 0;
1997                                 break;
1998                         }
1999                         /*
2000                          * No entries in use at top of swap_map,
2001                          * loop back to start and recheck there.
2002                          */
2003                         max = prev + 1;
2004                         prev = 0;
2005                         i = 1;
2006                 }
2007                 count = READ_ONCE(si->swap_map[i]);
2008                 if (count && swap_count(count) != SWAP_MAP_BAD)
2009                         if (!frontswap || frontswap_test(si, i))
2010                                 break;
2011                 if ((i % LATENCY_LIMIT) == 0)
2012                         cond_resched();
2013         }
2014         return i;
2015 }
2016
2017 /*
2018  * We completely avoid races by reading each swap page in advance,
2019  * and then search for the process using it.  All the necessary
2020  * page table adjustments can then be made atomically.
2021  *
2022  * if the boolean frontswap is true, only unuse pages_to_unuse pages;
2023  * pages_to_unuse==0 means all pages; ignored if frontswap is false
2024  */
2025 int try_to_unuse(unsigned int type, bool frontswap,
2026                  unsigned long pages_to_unuse)
2027 {
2028         struct swap_info_struct *si = swap_info[type];
2029         struct mm_struct *start_mm;
2030         volatile unsigned char *swap_map; /* swap_map is accessed without
2031                                            * locking. Mark it as volatile
2032                                            * to prevent compiler doing
2033                                            * something odd.
2034                                            */
2035         unsigned char swcount;
2036         struct page *page;
2037         swp_entry_t entry;
2038         unsigned int i = 0;
2039         int retval = 0;
2040
2041         /*
2042          * When searching mms for an entry, a good strategy is to
2043          * start at the first mm we freed the previous entry from
2044          * (though actually we don't notice whether we or coincidence
2045          * freed the entry).  Initialize this start_mm with a hold.
2046          *
2047          * A simpler strategy would be to start at the last mm we
2048          * freed the previous entry from; but that would take less
2049          * advantage of mmlist ordering, which clusters forked mms
2050          * together, child after parent.  If we race with dup_mmap(), we
2051          * prefer to resolve parent before child, lest we miss entries
2052          * duplicated after we scanned child: using last mm would invert
2053          * that.
2054          */
2055         start_mm = &init_mm;
2056         mmget(&init_mm);
2057
2058         /*
2059          * Keep on scanning until all entries have gone.  Usually,
2060          * one pass through swap_map is enough, but not necessarily:
2061          * there are races when an instance of an entry might be missed.
2062          */
2063         while ((i = find_next_to_unuse(si, i, frontswap)) != 0) {
2064                 if (signal_pending(current)) {
2065                         retval = -EINTR;
2066                         break;
2067                 }
2068
2069                 /*
2070                  * Get a page for the entry, using the existing swap
2071                  * cache page if there is one.  Otherwise, get a clean
2072                  * page and read the swap into it.
2073                  */
2074                 swap_map = &si->swap_map[i];
2075                 entry = swp_entry(type, i);
2076                 page = read_swap_cache_async(entry,
2077                                         GFP_HIGHUSER_MOVABLE, NULL, 0, false);
2078                 if (!page) {
2079                         /*
2080                          * Either swap_duplicate() failed because entry
2081                          * has been freed independently, and will not be
2082                          * reused since sys_swapoff() already disabled
2083                          * allocation from here, or alloc_page() failed.
2084                          */
2085                         swcount = *swap_map;
2086                         /*
2087                          * We don't hold lock here, so the swap entry could be
2088                          * SWAP_MAP_BAD (when the cluster is discarding).
2089                          * Instead of fail out, We can just skip the swap
2090                          * entry because swapoff will wait for discarding
2091                          * finish anyway.
2092                          */
2093                         if (!swcount || swcount == SWAP_MAP_BAD)
2094                                 continue;
2095                         retval = -ENOMEM;
2096                         break;
2097                 }
2098
2099                 /*
2100                  * Don't hold on to start_mm if it looks like exiting.
2101                  */
2102                 if (atomic_read(&start_mm->mm_users) == 1) {
2103                         mmput(start_mm);
2104                         start_mm = &init_mm;
2105                         mmget(&init_mm);
2106                 }
2107
2108                 /*
2109                  * Wait for and lock page.  When do_swap_page races with
2110                  * try_to_unuse, do_swap_page can handle the fault much
2111                  * faster than try_to_unuse can locate the entry.  This
2112                  * apparently redundant "wait_on_page_locked" lets try_to_unuse
2113                  * defer to do_swap_page in such a case - in some tests,
2114                  * do_swap_page and try_to_unuse repeatedly compete.
2115                  */
2116                 wait_on_page_locked(page);
2117                 wait_on_page_writeback(page);
2118                 lock_page(page);
2119                 wait_on_page_writeback(page);
2120
2121                 /*
2122                  * Remove all references to entry.
2123                  */
2124                 swcount = *swap_map;
2125                 if (swap_count(swcount) == SWAP_MAP_SHMEM) {
2126                         retval = shmem_unuse(entry, page);
2127                         /* page has already been unlocked and released */
2128                         if (retval < 0)
2129                                 break;
2130                         continue;
2131                 }
2132                 if (swap_count(swcount) && start_mm != &init_mm)
2133                         retval = unuse_mm(start_mm, entry, page);
2134
2135                 if (swap_count(*swap_map)) {
2136                         int set_start_mm = (*swap_map >= swcount);
2137                         struct list_head *p = &start_mm->mmlist;
2138                         struct mm_struct *new_start_mm = start_mm;
2139                         struct mm_struct *prev_mm = start_mm;
2140                         struct mm_struct *mm;
2141
2142                         mmget(new_start_mm);
2143                         mmget(prev_mm);
2144                         spin_lock(&mmlist_lock);
2145                         while (swap_count(*swap_map) && !retval &&
2146                                         (p = p->next) != &start_mm->mmlist) {
2147                                 mm = list_entry(p, struct mm_struct, mmlist);
2148                                 if (!mmget_not_zero(mm))
2149                                         continue;
2150                                 spin_unlock(&mmlist_lock);
2151                                 mmput(prev_mm);
2152                                 prev_mm = mm;
2153
2154                                 cond_resched();
2155
2156                                 swcount = *swap_map;
2157                                 if (!swap_count(swcount)) /* any usage ? */
2158                                         ;
2159                                 else if (mm == &init_mm)
2160                                         set_start_mm = 1;
2161                                 else
2162                                         retval = unuse_mm(mm, entry, page);
2163
2164                                 if (set_start_mm && *swap_map < swcount) {
2165                                         mmput(new_start_mm);
2166                                         mmget(mm);
2167                                         new_start_mm = mm;
2168                                         set_start_mm = 0;
2169                                 }
2170                                 spin_lock(&mmlist_lock);
2171                         }
2172                         spin_unlock(&mmlist_lock);
2173                         mmput(prev_mm);
2174                         mmput(start_mm);
2175                         start_mm = new_start_mm;
2176                 }
2177                 if (retval) {
2178                         unlock_page(page);
2179                         put_page(page);
2180                         break;
2181                 }
2182
2183                 /*
2184                  * If a reference remains (rare), we would like to leave
2185                  * the page in the swap cache; but try_to_unmap could
2186                  * then re-duplicate the entry once we drop page lock,
2187                  * so we might loop indefinitely; also, that page could
2188                  * not be swapped out to other storage meanwhile.  So:
2189                  * delete from cache even if there's another reference,
2190                  * after ensuring that the data has been saved to disk -
2191                  * since if the reference remains (rarer), it will be
2192                  * read from disk into another page.  Splitting into two
2193                  * pages would be incorrect if swap supported "shared
2194                  * private" pages, but they are handled by tmpfs files.
2195                  *
2196                  * Given how unuse_vma() targets one particular offset
2197                  * in an anon_vma, once the anon_vma has been determined,
2198                  * this splitting happens to be just what is needed to
2199                  * handle where KSM pages have been swapped out: re-reading
2200                  * is unnecessarily slow, but we can fix that later on.
2201                  */
2202                 if (swap_count(*swap_map) &&
2203                      PageDirty(page) && PageSwapCache(page)) {
2204                         struct writeback_control wbc = {
2205                                 .sync_mode = WB_SYNC_NONE,
2206                         };
2207
2208                         swap_writepage(compound_head(page), &wbc);
2209                         lock_page(page);
2210                         wait_on_page_writeback(page);
2211                 }
2212
2213                 /*
2214                  * It is conceivable that a racing task removed this page from
2215                  * swap cache just before we acquired the page lock at the top,
2216                  * or while we dropped it in unuse_mm().  The page might even
2217                  * be back in swap cache on another swap area: that we must not
2218                  * delete, since it may not have been written out to swap yet.
2219                  */
2220                 if (PageSwapCache(page) &&
2221                     likely(page_private(page) == entry.val) &&
2222                     (!PageTransCompound(page) ||
2223                      !swap_page_trans_huge_swapped(si, entry)))
2224                         delete_from_swap_cache(compound_head(page));
2225
2226                 /*
2227                  * So we could skip searching mms once swap count went
2228                  * to 1, we did not mark any present ptes as dirty: must
2229                  * mark page dirty so shrink_page_list will preserve it.
2230                  */
2231                 SetPageDirty(page);
2232                 unlock_page(page);
2233                 put_page(page);
2234
2235                 /*
2236                  * Make sure that we aren't completely killing
2237                  * interactive performance.
2238                  */
2239                 cond_resched();
2240                 if (frontswap && pages_to_unuse > 0) {
2241                         if (!--pages_to_unuse)
2242                                 break;
2243                 }
2244         }
2245
2246         mmput(start_mm);
2247         return retval;
2248 }
2249
2250 /*
2251  * After a successful try_to_unuse, if no swap is now in use, we know
2252  * we can empty the mmlist.  swap_lock must be held on entry and exit.
2253  * Note that mmlist_lock nests inside swap_lock, and an mm must be
2254  * added to the mmlist just after page_duplicate - before would be racy.
2255  */
2256 static void drain_mmlist(void)
2257 {
2258         struct list_head *p, *next;
2259         unsigned int type;
2260
2261         for (type = 0; type < nr_swapfiles; type++)
2262                 if (swap_info[type]->inuse_pages)
2263                         return;
2264         spin_lock(&mmlist_lock);
2265         list_for_each_safe(p, next, &init_mm.mmlist)
2266                 list_del_init(p);
2267         spin_unlock(&mmlist_lock);
2268 }
2269
2270 /*
2271  * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
2272  * corresponds to page offset for the specified swap entry.
2273  * Note that the type of this function is sector_t, but it returns page offset
2274  * into the bdev, not sector offset.
2275  */
2276 static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev)
2277 {
2278         struct swap_info_struct *sis;
2279         struct swap_extent *start_se;
2280         struct swap_extent *se;
2281         pgoff_t offset;
2282
2283         sis = swp_swap_info(entry);
2284         *bdev = sis->bdev;
2285
2286         offset = swp_offset(entry);
2287         start_se = sis->curr_swap_extent;
2288         se = start_se;
2289
2290         for ( ; ; ) {
2291                 if (se->start_page <= offset &&
2292                                 offset < (se->start_page + se->nr_pages)) {
2293                         return se->start_block + (offset - se->start_page);
2294                 }
2295                 se = list_next_entry(se, list);
2296                 sis->curr_swap_extent = se;
2297                 BUG_ON(se == start_se);         /* It *must* be present */
2298         }
2299 }
2300
2301 /*
2302  * Returns the page offset into bdev for the specified page's swap entry.
2303  */
2304 sector_t map_swap_page(struct page *page, struct block_device **bdev)
2305 {
2306         swp_entry_t entry;
2307         entry.val = page_private(page);
2308         return map_swap_entry(entry, bdev) << (PAGE_SHIFT - 9);
2309 }
2310
2311 /*
2312  * Free all of a swapdev's extent information
2313  */
2314 static void destroy_swap_extents(struct swap_info_struct *sis)
2315 {
2316         while (!list_empty(&sis->first_swap_extent.list)) {
2317                 struct swap_extent *se;
2318
2319                 se = list_first_entry(&sis->first_swap_extent.list,
2320                                 struct swap_extent, list);
2321                 list_del(&se->list);
2322                 kfree(se);
2323         }
2324
2325         if (sis->flags & SWP_FILE) {
2326                 struct file *swap_file = sis->swap_file;
2327                 struct address_space *mapping = swap_file->f_mapping;
2328
2329                 sis->flags &= ~SWP_FILE;
2330                 mapping->a_ops->swap_deactivate(swap_file);
2331         }
2332 }
2333
2334 /*
2335  * Add a block range (and the corresponding page range) into this swapdev's
2336  * extent list.  The extent list is kept sorted in page order.
2337  *
2338  * This function rather assumes that it is called in ascending page order.
2339  */
2340 int
2341 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
2342                 unsigned long nr_pages, sector_t start_block)
2343 {
2344         struct swap_extent *se;
2345         struct swap_extent *new_se;
2346         struct list_head *lh;
2347
2348         if (start_page == 0) {
2349                 se = &sis->first_swap_extent;
2350                 sis->curr_swap_extent = se;
2351                 se->start_page = 0;
2352                 se->nr_pages = nr_pages;
2353                 se->start_block = start_block;
2354                 return 1;
2355         } else {
2356                 lh = sis->first_swap_extent.list.prev;  /* Highest extent */
2357                 se = list_entry(lh, struct swap_extent, list);
2358                 BUG_ON(se->start_page + se->nr_pages != start_page);
2359                 if (se->start_block + se->nr_pages == start_block) {
2360                         /* Merge it */
2361                         se->nr_pages += nr_pages;
2362                         return 0;
2363                 }
2364         }
2365
2366         /*
2367          * No merge.  Insert a new extent, preserving ordering.
2368          */
2369         new_se = kmalloc(sizeof(*se), GFP_KERNEL);
2370         if (new_se == NULL)
2371                 return -ENOMEM;
2372         new_se->start_page = start_page;
2373         new_se->nr_pages = nr_pages;
2374         new_se->start_block = start_block;
2375
2376         list_add_tail(&new_se->list, &sis->first_swap_extent.list);
2377         return 1;
2378 }
2379
2380 /*
2381  * A `swap extent' is a simple thing which maps a contiguous range of pages
2382  * onto a contiguous range of disk blocks.  An ordered list of swap extents
2383  * is built at swapon time and is then used at swap_writepage/swap_readpage
2384  * time for locating where on disk a page belongs.
2385  *
2386  * If the swapfile is an S_ISBLK block device, a single extent is installed.
2387  * This is done so that the main operating code can treat S_ISBLK and S_ISREG
2388  * swap files identically.
2389  *
2390  * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
2391  * extent list operates in PAGE_SIZE disk blocks.  Both S_ISREG and S_ISBLK
2392  * swapfiles are handled *identically* after swapon time.
2393  *
2394  * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
2395  * and will parse them into an ordered extent list, in PAGE_SIZE chunks.  If
2396  * some stray blocks are found which do not fall within the PAGE_SIZE alignment
2397  * requirements, they are simply tossed out - we will never use those blocks
2398  * for swapping.
2399  *
2400  * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon.  This
2401  * prevents root from shooting her foot off by ftruncating an in-use swapfile,
2402  * which will scribble on the fs.
2403  *
2404  * The amount of disk space which a single swap extent represents varies.
2405  * Typically it is in the 1-4 megabyte range.  So we can have hundreds of
2406  * extents in the list.  To avoid much list walking, we cache the previous
2407  * search location in `curr_swap_extent', and start new searches from there.
2408  * This is extremely effective.  The average number of iterations in
2409  * map_swap_page() has been measured at about 0.3 per page.  - akpm.
2410  */
2411 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
2412 {
2413         struct file *swap_file = sis->swap_file;
2414         struct address_space *mapping = swap_file->f_mapping;
2415         struct inode *inode = mapping->host;
2416         int ret;
2417
2418         if (S_ISBLK(inode->i_mode)) {
2419                 ret = add_swap_extent(sis, 0, sis->max, 0);
2420                 *span = sis->pages;
2421                 return ret;
2422         }
2423
2424         if (mapping->a_ops->swap_activate) {
2425                 ret = mapping->a_ops->swap_activate(sis, swap_file, span);
2426                 if (!ret) {
2427                         sis->flags |= SWP_FILE;
2428                         ret = add_swap_extent(sis, 0, sis->max, 0);
2429                         *span = sis->pages;
2430                 }
2431                 return ret;
2432         }
2433
2434         return generic_swapfile_activate(sis, swap_file, span);
2435 }
2436
2437 static int swap_node(struct swap_info_struct *p)
2438 {
2439         struct block_device *bdev;
2440
2441         if (p->bdev)
2442                 bdev = p->bdev;
2443         else
2444                 bdev = p->swap_file->f_inode->i_sb->s_bdev;
2445
2446         return bdev ? bdev->bd_disk->node_id : NUMA_NO_NODE;
2447 }
2448
2449 static void _enable_swap_info(struct swap_info_struct *p, int prio,
2450                                 unsigned char *swap_map,
2451                                 struct swap_cluster_info *cluster_info)
2452 {
2453         int i;
2454
2455         if (prio >= 0)
2456                 p->prio = prio;
2457         else
2458                 p->prio = --least_priority;
2459         /*
2460          * the plist prio is negated because plist ordering is
2461          * low-to-high, while swap ordering is high-to-low
2462          */
2463         p->list.prio = -p->prio;
2464         for_each_node(i) {
2465                 if (p->prio >= 0)
2466                         p->avail_lists[i].prio = -p->prio;
2467                 else {
2468                         if (swap_node(p) == i)
2469                                 p->avail_lists[i].prio = 1;
2470                         else
2471                                 p->avail_lists[i].prio = -p->prio;
2472                 }
2473         }
2474         p->swap_map = swap_map;
2475         p->cluster_info = cluster_info;
2476         p->flags |= SWP_WRITEOK;
2477         atomic_long_add(p->pages, &nr_swap_pages);
2478         total_swap_pages += p->pages;
2479
2480         assert_spin_locked(&swap_lock);
2481         /*
2482          * both lists are plists, and thus priority ordered.
2483          * swap_active_head needs to be priority ordered for swapoff(),
2484          * which on removal of any swap_info_struct with an auto-assigned
2485          * (i.e. negative) priority increments the auto-assigned priority
2486          * of any lower-priority swap_info_structs.
2487          * swap_avail_head needs to be priority ordered for get_swap_page(),
2488          * which allocates swap pages from the highest available priority
2489          * swap_info_struct.
2490          */
2491         plist_add(&p->list, &swap_active_head);
2492         add_to_avail_list(p);
2493 }
2494
2495 static void enable_swap_info(struct swap_info_struct *p, int prio,
2496                                 unsigned char *swap_map,
2497                                 struct swap_cluster_info *cluster_info,
2498                                 unsigned long *frontswap_map)
2499 {
2500         frontswap_init(p->type, frontswap_map);
2501         spin_lock(&swap_lock);
2502         spin_lock(&p->lock);
2503          _enable_swap_info(p, prio, swap_map, cluster_info);
2504         spin_unlock(&p->lock);
2505         spin_unlock(&swap_lock);
2506 }
2507
2508 static void reinsert_swap_info(struct swap_info_struct *p)
2509 {
2510         spin_lock(&swap_lock);
2511         spin_lock(&p->lock);
2512         _enable_swap_info(p, p->prio, p->swap_map, p->cluster_info);
2513         spin_unlock(&p->lock);
2514         spin_unlock(&swap_lock);
2515 }
2516
2517 bool has_usable_swap(void)
2518 {
2519         bool ret = true;
2520
2521         spin_lock(&swap_lock);
2522         if (plist_head_empty(&swap_active_head))
2523                 ret = false;
2524         spin_unlock(&swap_lock);
2525         return ret;
2526 }
2527
2528 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
2529 {
2530         struct swap_info_struct *p = NULL;
2531         unsigned char *swap_map;
2532         struct swap_cluster_info *cluster_info;
2533         unsigned long *frontswap_map;
2534         struct file *swap_file, *victim;
2535         struct address_space *mapping;
2536         struct inode *inode;
2537         struct filename *pathname;
2538         int err, found = 0;
2539         unsigned int old_block_size;
2540
2541         if (!capable(CAP_SYS_ADMIN))
2542                 return -EPERM;
2543
2544         BUG_ON(!current->mm);
2545
2546         pathname = getname(specialfile);
2547         if (IS_ERR(pathname))
2548                 return PTR_ERR(pathname);
2549
2550         victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
2551         err = PTR_ERR(victim);
2552         if (IS_ERR(victim))
2553                 goto out;
2554
2555         mapping = victim->f_mapping;
2556         spin_lock(&swap_lock);
2557         plist_for_each_entry(p, &swap_active_head, list) {
2558                 if (p->flags & SWP_WRITEOK) {
2559                         if (p->swap_file->f_mapping == mapping) {
2560                                 found = 1;
2561                                 break;
2562                         }
2563                 }
2564         }
2565         if (!found) {
2566                 err = -EINVAL;
2567                 spin_unlock(&swap_lock);
2568                 goto out_dput;
2569         }
2570         if (!security_vm_enough_memory_mm(current->mm, p->pages))
2571                 vm_unacct_memory(p->pages);
2572         else {
2573                 err = -ENOMEM;
2574                 spin_unlock(&swap_lock);
2575                 goto out_dput;
2576         }
2577         del_from_avail_list(p);
2578         spin_lock(&p->lock);
2579         if (p->prio < 0) {
2580                 struct swap_info_struct *si = p;
2581                 int nid;
2582
2583                 plist_for_each_entry_continue(si, &swap_active_head, list) {
2584                         si->prio++;
2585                         si->list.prio--;
2586                         for_each_node(nid) {
2587                                 if (si->avail_lists[nid].prio != 1)
2588                                         si->avail_lists[nid].prio--;
2589                         }
2590                 }
2591                 least_priority++;
2592         }
2593         plist_del(&p->list, &swap_active_head);
2594         atomic_long_sub(p->pages, &nr_swap_pages);
2595         total_swap_pages -= p->pages;
2596         p->flags &= ~SWP_WRITEOK;
2597         spin_unlock(&p->lock);
2598         spin_unlock(&swap_lock);
2599
2600         disable_swap_slots_cache_lock();
2601
2602         set_current_oom_origin();
2603         err = try_to_unuse(p->type, false, 0); /* force unuse all pages */
2604         clear_current_oom_origin();
2605
2606         if (err) {
2607                 /* re-insert swap space back into swap_list */
2608                 reinsert_swap_info(p);
2609                 reenable_swap_slots_cache_unlock();
2610                 goto out_dput;
2611         }
2612
2613         reenable_swap_slots_cache_unlock();
2614
2615         flush_work(&p->discard_work);
2616
2617         destroy_swap_extents(p);
2618         if (p->flags & SWP_CONTINUED)
2619                 free_swap_count_continuations(p);
2620
2621         if (!p->bdev || !blk_queue_nonrot(bdev_get_queue(p->bdev)))
2622                 atomic_dec(&nr_rotate_swap);
2623
2624         mutex_lock(&swapon_mutex);
2625         spin_lock(&swap_lock);
2626         spin_lock(&p->lock);
2627         drain_mmlist();
2628
2629         /* wait for anyone still in scan_swap_map */
2630         p->highest_bit = 0;             /* cuts scans short */
2631         while (p->flags >= SWP_SCANNING) {
2632                 spin_unlock(&p->lock);
2633                 spin_unlock(&swap_lock);
2634                 schedule_timeout_uninterruptible(1);
2635                 spin_lock(&swap_lock);
2636                 spin_lock(&p->lock);
2637         }
2638
2639         swap_file = p->swap_file;
2640         old_block_size = p->old_block_size;
2641         p->swap_file = NULL;
2642         p->max = 0;
2643         swap_map = p->swap_map;
2644         p->swap_map = NULL;
2645         cluster_info = p->cluster_info;
2646         p->cluster_info = NULL;
2647         frontswap_map = frontswap_map_get(p);
2648         spin_unlock(&p->lock);
2649         spin_unlock(&swap_lock);
2650         frontswap_invalidate_area(p->type);
2651         frontswap_map_set(p, NULL);
2652         mutex_unlock(&swapon_mutex);
2653         free_percpu(p->percpu_cluster);
2654         p->percpu_cluster = NULL;
2655         vfree(swap_map);
2656         kvfree(cluster_info);
2657         kvfree(frontswap_map);
2658         /* Destroy swap account information */
2659         swap_cgroup_swapoff(p->type);
2660         exit_swap_address_space(p->type);
2661
2662         inode = mapping->host;
2663         if (S_ISBLK(inode->i_mode)) {
2664                 struct block_device *bdev = I_BDEV(inode);
2665                 set_blocksize(bdev, old_block_size);
2666                 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2667         } else {
2668                 inode_lock(inode);
2669                 inode->i_flags &= ~S_SWAPFILE;
2670                 inode_unlock(inode);
2671         }
2672         filp_close(swap_file, NULL);
2673
2674         /*
2675          * Clear the SWP_USED flag after all resources are freed so that swapon
2676          * can reuse this swap_info in alloc_swap_info() safely.  It is ok to
2677          * not hold p->lock after we cleared its SWP_WRITEOK.
2678          */
2679         spin_lock(&swap_lock);
2680         p->flags = 0;
2681         spin_unlock(&swap_lock);
2682
2683         err = 0;
2684         atomic_inc(&proc_poll_event);
2685         wake_up_interruptible(&proc_poll_wait);
2686
2687 out_dput:
2688         filp_close(victim, NULL);
2689 out:
2690         putname(pathname);
2691         return err;
2692 }
2693
2694 #ifdef CONFIG_PROC_FS
2695 static __poll_t swaps_poll(struct file *file, poll_table *wait)
2696 {
2697         struct seq_file *seq = file->private_data;
2698
2699         poll_wait(file, &proc_poll_wait, wait);
2700
2701         if (seq->poll_event != atomic_read(&proc_poll_event)) {
2702                 seq->poll_event = atomic_read(&proc_poll_event);
2703                 return EPOLLIN | EPOLLRDNORM | EPOLLERR | EPOLLPRI;
2704         }
2705
2706         return EPOLLIN | EPOLLRDNORM;
2707 }
2708
2709 /* iterator */
2710 static void *swap_start(struct seq_file *swap, loff_t *pos)
2711 {
2712         struct swap_info_struct *si;
2713         int type;
2714         loff_t l = *pos;
2715
2716         mutex_lock(&swapon_mutex);
2717
2718         if (!l)
2719                 return SEQ_START_TOKEN;
2720
2721         for (type = 0; (si = swap_type_to_swap_info(type)); type++) {
2722                 if (!(si->flags & SWP_USED) || !si->swap_map)
2723                         continue;
2724                 if (!--l)
2725                         return si;
2726         }
2727
2728         return NULL;
2729 }
2730
2731 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
2732 {
2733         struct swap_info_struct *si = v;
2734         int type;
2735
2736         if (v == SEQ_START_TOKEN)
2737                 type = 0;
2738         else
2739                 type = si->type + 1;
2740
2741         ++(*pos);
2742         for (; (si = swap_type_to_swap_info(type)); type++) {
2743                 if (!(si->flags & SWP_USED) || !si->swap_map)
2744                         continue;
2745                 return si;
2746         }
2747
2748         return NULL;
2749 }
2750
2751 static void swap_stop(struct seq_file *swap, void *v)
2752 {
2753         mutex_unlock(&swapon_mutex);
2754 }
2755
2756 static int swap_show(struct seq_file *swap, void *v)
2757 {
2758         struct swap_info_struct *si = v;
2759         struct file *file;
2760         int len;
2761
2762         if (si == SEQ_START_TOKEN) {
2763                 seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
2764                 return 0;
2765         }
2766
2767         file = si->swap_file;
2768         len = seq_file_path(swap, file, " \t\n\\");
2769         seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
2770                         len < 40 ? 40 - len : 1, " ",
2771                         S_ISBLK(file_inode(file)->i_mode) ?
2772                                 "partition" : "file\t",
2773                         si->pages << (PAGE_SHIFT - 10),
2774                         si->inuse_pages << (PAGE_SHIFT - 10),
2775                         si->prio);
2776         return 0;
2777 }
2778
2779 static const struct seq_operations swaps_op = {
2780         .start =        swap_start,
2781         .next =         swap_next,
2782         .stop =         swap_stop,
2783         .show =         swap_show
2784 };
2785
2786 static int swaps_open(struct inode *inode, struct file *file)
2787 {
2788         struct seq_file *seq;
2789         int ret;
2790
2791         ret = seq_open(file, &swaps_op);
2792         if (ret)
2793                 return ret;
2794
2795         seq = file->private_data;
2796         seq->poll_event = atomic_read(&proc_poll_event);
2797         return 0;
2798 }
2799
2800 static const struct file_operations proc_swaps_operations = {
2801         .open           = swaps_open,
2802         .read           = seq_read,
2803         .llseek         = seq_lseek,
2804         .release        = seq_release,
2805         .poll           = swaps_poll,
2806 };
2807
2808 static int __init procswaps_init(void)
2809 {
2810         proc_create("swaps", 0, NULL, &proc_swaps_operations);
2811         return 0;
2812 }
2813 __initcall(procswaps_init);
2814 #endif /* CONFIG_PROC_FS */
2815
2816 #ifdef MAX_SWAPFILES_CHECK
2817 static int __init max_swapfiles_check(void)
2818 {
2819         MAX_SWAPFILES_CHECK();
2820         return 0;
2821 }
2822 late_initcall(max_swapfiles_check);
2823 #endif
2824
2825 static struct swap_info_struct *alloc_swap_info(void)
2826 {
2827         struct swap_info_struct *p;
2828         struct swap_info_struct *defer = NULL;
2829         unsigned int type;
2830         int i;
2831         int size = sizeof(*p) + nr_node_ids * sizeof(struct plist_node);
2832
2833         p = kvzalloc(size, GFP_KERNEL);
2834         if (!p)
2835                 return ERR_PTR(-ENOMEM);
2836
2837         spin_lock(&swap_lock);
2838         for (type = 0; type < nr_swapfiles; type++) {
2839                 if (!(swap_info[type]->flags & SWP_USED))
2840                         break;
2841         }
2842         if (type >= MAX_SWAPFILES) {
2843                 spin_unlock(&swap_lock);
2844                 kvfree(p);
2845                 return ERR_PTR(-EPERM);
2846         }
2847         if (type >= nr_swapfiles) {
2848                 p->type = type;
2849                 WRITE_ONCE(swap_info[type], p);
2850                 /*
2851                  * Write swap_info[type] before nr_swapfiles, in case a
2852                  * racing procfs swap_start() or swap_next() is reading them.
2853                  * (We never shrink nr_swapfiles, we never free this entry.)
2854                  */
2855                 smp_wmb();
2856                 WRITE_ONCE(nr_swapfiles, nr_swapfiles + 1);
2857         } else {
2858                 defer = p;
2859                 p = swap_info[type];
2860                 /*
2861                  * Do not memset this entry: a racing procfs swap_next()
2862                  * would be relying on p->type to remain valid.
2863                  */
2864         }
2865         INIT_LIST_HEAD(&p->first_swap_extent.list);
2866         plist_node_init(&p->list, 0);
2867         for_each_node(i)
2868                 plist_node_init(&p->avail_lists[i], 0);
2869         p->flags = SWP_USED;
2870         spin_unlock(&swap_lock);
2871         kvfree(defer);
2872         spin_lock_init(&p->lock);
2873         spin_lock_init(&p->cont_lock);
2874
2875         return p;
2876 }
2877
2878 static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
2879 {
2880         int error;
2881
2882         if (S_ISBLK(inode->i_mode)) {
2883                 p->bdev = bdgrab(I_BDEV(inode));
2884                 error = blkdev_get(p->bdev,
2885                                    FMODE_READ | FMODE_WRITE | FMODE_EXCL, p);
2886                 if (error < 0) {
2887                         p->bdev = NULL;
2888                         return error;
2889                 }
2890                 p->old_block_size = block_size(p->bdev);
2891                 error = set_blocksize(p->bdev, PAGE_SIZE);
2892                 if (error < 0)
2893                         return error;
2894                 p->flags |= SWP_BLKDEV;
2895         } else if (S_ISREG(inode->i_mode)) {
2896                 p->bdev = inode->i_sb->s_bdev;
2897                 inode_lock(inode);
2898                 if (IS_SWAPFILE(inode))
2899                         return -EBUSY;
2900         } else
2901                 return -EINVAL;
2902
2903         return 0;
2904 }
2905
2906
2907 /*
2908  * Find out how many pages are allowed for a single swap device. There
2909  * are two limiting factors:
2910  * 1) the number of bits for the swap offset in the swp_entry_t type, and
2911  * 2) the number of bits in the swap pte, as defined by the different
2912  * architectures.
2913  *
2914  * In order to find the largest possible bit mask, a swap entry with
2915  * swap type 0 and swap offset ~0UL is created, encoded to a swap pte,
2916  * decoded to a swp_entry_t again, and finally the swap offset is
2917  * extracted.
2918  *
2919  * This will mask all the bits from the initial ~0UL mask that can't
2920  * be encoded in either the swp_entry_t or the architecture definition
2921  * of a swap pte.
2922  */
2923 unsigned long generic_max_swapfile_size(void)
2924 {
2925         return swp_offset(pte_to_swp_entry(
2926                         swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
2927 }
2928
2929 /* Can be overridden by an architecture for additional checks. */
2930 __weak unsigned long max_swapfile_size(void)
2931 {
2932         return generic_max_swapfile_size();
2933 }
2934
2935 static unsigned long read_swap_header(struct swap_info_struct *p,
2936                                         union swap_header *swap_header,
2937                                         struct inode *inode)
2938 {
2939         int i;
2940         unsigned long maxpages;
2941         unsigned long swapfilepages;
2942         unsigned long last_page;
2943
2944         if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
2945                 pr_err("Unable to find swap-space signature\n");
2946                 return 0;
2947         }
2948
2949         /* swap partition endianess hack... */
2950         if (swab32(swap_header->info.version) == 1) {
2951                 swab32s(&swap_header->info.version);
2952                 swab32s(&swap_header->info.last_page);
2953                 swab32s(&swap_header->info.nr_badpages);
2954                 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2955                         return 0;
2956                 for (i = 0; i < swap_header->info.nr_badpages; i++)
2957                         swab32s(&swap_header->info.badpages[i]);
2958         }
2959         /* Check the swap header's sub-version */
2960         if (swap_header->info.version != 1) {
2961                 pr_warn("Unable to handle swap header version %d\n",
2962                         swap_header->info.version);
2963                 return 0;
2964         }
2965
2966         p->lowest_bit  = 1;
2967         p->cluster_next = 1;
2968         p->cluster_nr = 0;
2969
2970         maxpages = max_swapfile_size();
2971         last_page = swap_header->info.last_page;
2972         if (!last_page) {
2973                 pr_warn("Empty swap-file\n");
2974                 return 0;
2975         }
2976         if (last_page > maxpages) {
2977                 pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
2978                         maxpages << (PAGE_SHIFT - 10),
2979                         last_page << (PAGE_SHIFT - 10));
2980         }
2981         if (maxpages > last_page) {
2982                 maxpages = last_page + 1;
2983                 /* p->max is an unsigned int: don't overflow it */
2984                 if ((unsigned int)maxpages == 0)
2985                         maxpages = UINT_MAX;
2986         }
2987         p->highest_bit = maxpages - 1;
2988
2989         if (!maxpages)
2990                 return 0;
2991         swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
2992         if (swapfilepages && maxpages > swapfilepages) {
2993                 pr_warn("Swap area shorter than signature indicates\n");
2994                 return 0;
2995         }
2996         if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
2997                 return 0;
2998         if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2999                 return 0;
3000
3001         return maxpages;
3002 }
3003
3004 #define SWAP_CLUSTER_INFO_COLS                                          \
3005         DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info))
3006 #define SWAP_CLUSTER_SPACE_COLS                                         \
3007         DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER)
3008 #define SWAP_CLUSTER_COLS                                               \
3009         max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS)
3010
3011 static int setup_swap_map_and_extents(struct swap_info_struct *p,
3012                                         union swap_header *swap_header,
3013                                         unsigned char *swap_map,
3014                                         struct swap_cluster_info *cluster_info,
3015                                         unsigned long maxpages,
3016                                         sector_t *span)
3017 {
3018         unsigned int j, k;
3019         unsigned int nr_good_pages;
3020         int nr_extents;
3021         unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
3022         unsigned long col = p->cluster_next / SWAPFILE_CLUSTER % SWAP_CLUSTER_COLS;
3023         unsigned long i, idx;
3024
3025         nr_good_pages = maxpages - 1;   /* omit header page */
3026
3027         cluster_list_init(&p->free_clusters);
3028         cluster_list_init(&p->discard_clusters);
3029
3030         for (i = 0; i < swap_header->info.nr_badpages; i++) {
3031                 unsigned int page_nr = swap_header->info.badpages[i];
3032                 if (page_nr == 0 || page_nr > swap_header->info.last_page)
3033                         return -EINVAL;
3034                 if (page_nr < maxpages) {
3035                         swap_map[page_nr] = SWAP_MAP_BAD;
3036                         nr_good_pages--;
3037                         /*
3038                          * Haven't marked the cluster free yet, no list
3039                          * operation involved
3040                          */
3041                         inc_cluster_info_page(p, cluster_info, page_nr);
3042                 }
3043         }
3044
3045         /* Haven't marked the cluster free yet, no list operation involved */
3046         for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
3047                 inc_cluster_info_page(p, cluster_info, i);
3048
3049         if (nr_good_pages) {
3050                 swap_map[0] = SWAP_MAP_BAD;
3051                 /*
3052                  * Not mark the cluster free yet, no list
3053                  * operation involved
3054                  */
3055                 inc_cluster_info_page(p, cluster_info, 0);
3056                 p->max = maxpages;
3057                 p->pages = nr_good_pages;
3058                 nr_extents = setup_swap_extents(p, span);
3059                 if (nr_extents < 0)
3060                         return nr_extents;
3061                 nr_good_pages = p->pages;
3062         }
3063         if (!nr_good_pages) {
3064                 pr_warn("Empty swap-file\n");
3065                 return -EINVAL;
3066         }
3067
3068         if (!cluster_info)
3069                 return nr_extents;
3070
3071
3072         /*
3073          * Reduce false cache line sharing between cluster_info and
3074          * sharing same address space.
3075          */
3076         for (k = 0; k < SWAP_CLUSTER_COLS; k++) {
3077                 j = (k + col) % SWAP_CLUSTER_COLS;
3078                 for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) {
3079                         idx = i * SWAP_CLUSTER_COLS + j;
3080                         if (idx >= nr_clusters)
3081                                 continue;
3082                         if (cluster_count(&cluster_info[idx]))
3083                                 continue;
3084                         cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
3085                         cluster_list_add_tail(&p->free_clusters, cluster_info,
3086                                               idx);
3087                 }
3088         }
3089         return nr_extents;
3090 }
3091
3092 /*
3093  * Helper to sys_swapon determining if a given swap
3094  * backing device queue supports DISCARD operations.
3095  */
3096 static bool swap_discardable(struct swap_info_struct *si)
3097 {
3098         struct request_queue *q = bdev_get_queue(si->bdev);
3099
3100         if (!q || !blk_queue_discard(q))
3101                 return false;
3102
3103         return true;
3104 }
3105
3106 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
3107 {
3108         struct swap_info_struct *p;
3109         struct filename *name;
3110         struct file *swap_file = NULL;
3111         struct address_space *mapping;
3112         int prio;
3113         int error;
3114         union swap_header *swap_header;
3115         int nr_extents;
3116         sector_t span;
3117         unsigned long maxpages;
3118         unsigned char *swap_map = NULL;
3119         struct swap_cluster_info *cluster_info = NULL;
3120         unsigned long *frontswap_map = NULL;
3121         struct page *page = NULL;
3122         struct inode *inode = NULL;
3123         bool inced_nr_rotate_swap = false;
3124
3125         if (swap_flags & ~SWAP_FLAGS_VALID)
3126                 return -EINVAL;
3127
3128         if (!capable(CAP_SYS_ADMIN))
3129                 return -EPERM;
3130
3131         if (!swap_avail_heads)
3132                 return -ENOMEM;
3133
3134         p = alloc_swap_info();
3135         if (IS_ERR(p))
3136                 return PTR_ERR(p);
3137
3138         INIT_WORK(&p->discard_work, swap_discard_work);
3139
3140         name = getname(specialfile);
3141         if (IS_ERR(name)) {
3142                 error = PTR_ERR(name);
3143                 name = NULL;
3144                 goto bad_swap;
3145         }
3146         swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
3147         if (IS_ERR(swap_file)) {
3148                 error = PTR_ERR(swap_file);
3149                 swap_file = NULL;
3150                 goto bad_swap;
3151         }
3152
3153         p->swap_file = swap_file;
3154         mapping = swap_file->f_mapping;
3155         inode = mapping->host;
3156
3157         /* If S_ISREG(inode->i_mode) will do inode_lock(inode); */
3158         error = claim_swapfile(p, inode);
3159         if (unlikely(error))
3160                 goto bad_swap;
3161
3162         /*
3163          * Read the swap header.
3164          */
3165         if (!mapping->a_ops->readpage) {
3166                 error = -EINVAL;
3167                 goto bad_swap;
3168         }
3169         page = read_mapping_page(mapping, 0, swap_file);
3170         if (IS_ERR(page)) {
3171                 error = PTR_ERR(page);
3172                 goto bad_swap;
3173         }
3174         swap_header = kmap(page);
3175
3176         maxpages = read_swap_header(p, swap_header, inode);
3177         if (unlikely(!maxpages)) {
3178                 error = -EINVAL;
3179                 goto bad_swap;
3180         }
3181
3182         /* OK, set up the swap map and apply the bad block list */
3183         swap_map = vzalloc(maxpages);
3184         if (!swap_map) {
3185                 error = -ENOMEM;
3186                 goto bad_swap;
3187         }
3188
3189         if (bdi_cap_stable_pages_required(inode_to_bdi(inode)))
3190                 p->flags |= SWP_STABLE_WRITES;
3191
3192         if (bdi_cap_synchronous_io(inode_to_bdi(inode)))
3193                 p->flags |= SWP_SYNCHRONOUS_IO;
3194
3195         if (p->bdev && blk_queue_nonrot(bdev_get_queue(p->bdev))) {
3196                 int cpu;
3197                 unsigned long ci, nr_cluster;
3198
3199                 p->flags |= SWP_SOLIDSTATE;
3200                 /*
3201                  * select a random position to start with to help wear leveling
3202                  * SSD
3203                  */
3204                 p->cluster_next = 1 + (prandom_u32() % p->highest_bit);
3205                 nr_cluster = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
3206
3207                 cluster_info = kvcalloc(nr_cluster, sizeof(*cluster_info),
3208                                         GFP_KERNEL);
3209                 if (!cluster_info) {
3210                         error = -ENOMEM;
3211                         goto bad_swap;
3212                 }
3213
3214                 for (ci = 0; ci < nr_cluster; ci++)
3215                         spin_lock_init(&((cluster_info + ci)->lock));
3216
3217                 p->percpu_cluster = alloc_percpu(struct percpu_cluster);
3218                 if (!p->percpu_cluster) {
3219                         error = -ENOMEM;
3220                         goto bad_swap;
3221                 }
3222                 for_each_possible_cpu(cpu) {
3223                         struct percpu_cluster *cluster;
3224                         cluster = per_cpu_ptr(p->percpu_cluster, cpu);
3225                         cluster_set_null(&cluster->index);
3226                 }
3227         } else {
3228                 atomic_inc(&nr_rotate_swap);
3229                 inced_nr_rotate_swap = true;
3230         }
3231
3232         error = swap_cgroup_swapon(p->type, maxpages);
3233         if (error)
3234                 goto bad_swap;
3235
3236         nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
3237                 cluster_info, maxpages, &span);
3238         if (unlikely(nr_extents < 0)) {
3239                 error = nr_extents;
3240                 goto bad_swap;
3241         }
3242         /* frontswap enabled? set up bit-per-page map for frontswap */
3243         if (IS_ENABLED(CONFIG_FRONTSWAP))
3244                 frontswap_map = kvcalloc(BITS_TO_LONGS(maxpages),
3245                                          sizeof(long),
3246                                          GFP_KERNEL);
3247
3248         if (p->bdev &&(swap_flags & SWAP_FLAG_DISCARD) && swap_discardable(p)) {
3249                 /*
3250                  * When discard is enabled for swap with no particular
3251                  * policy flagged, we set all swap discard flags here in
3252                  * order to sustain backward compatibility with older
3253                  * swapon(8) releases.
3254                  */
3255                 p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
3256                              SWP_PAGE_DISCARD);
3257
3258                 /*
3259                  * By flagging sys_swapon, a sysadmin can tell us to
3260                  * either do single-time area discards only, or to just
3261                  * perform discards for released swap page-clusters.
3262                  * Now it's time to adjust the p->flags accordingly.
3263                  */
3264                 if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
3265                         p->flags &= ~SWP_PAGE_DISCARD;
3266                 else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
3267                         p->flags &= ~SWP_AREA_DISCARD;
3268
3269                 /* issue a swapon-time discard if it's still required */
3270                 if (p->flags & SWP_AREA_DISCARD) {
3271                         int err = discard_swap(p);
3272                         if (unlikely(err))
3273                                 pr_err("swapon: discard_swap(%p): %d\n",
3274                                         p, err);
3275                 }
3276         }
3277
3278         error = init_swap_address_space(p->type, maxpages);
3279         if (error)
3280                 goto bad_swap;
3281
3282         mutex_lock(&swapon_mutex);
3283         prio = -1;
3284         if (swap_flags & SWAP_FLAG_PREFER)
3285                 prio =
3286                   (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
3287         enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map);
3288
3289         pr_info("Adding %uk swap on %s.  Priority:%d extents:%d across:%lluk %s%s%s%s%s\n",
3290                 p->pages<<(PAGE_SHIFT-10), name->name, p->prio,
3291                 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
3292                 (p->flags & SWP_SOLIDSTATE) ? "SS" : "",
3293                 (p->flags & SWP_DISCARDABLE) ? "D" : "",
3294                 (p->flags & SWP_AREA_DISCARD) ? "s" : "",
3295                 (p->flags & SWP_PAGE_DISCARD) ? "c" : "",
3296                 (frontswap_map) ? "FS" : "");
3297
3298         mutex_unlock(&swapon_mutex);
3299         atomic_inc(&proc_poll_event);
3300         wake_up_interruptible(&proc_poll_wait);
3301
3302         if (S_ISREG(inode->i_mode))
3303                 inode->i_flags |= S_SWAPFILE;
3304         error = 0;
3305         goto out;
3306 bad_swap:
3307         free_percpu(p->percpu_cluster);
3308         p->percpu_cluster = NULL;
3309         if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
3310                 set_blocksize(p->bdev, p->old_block_size);
3311                 blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
3312         }
3313         destroy_swap_extents(p);
3314         swap_cgroup_swapoff(p->type);
3315         spin_lock(&swap_lock);
3316         p->swap_file = NULL;
3317         p->flags = 0;
3318         spin_unlock(&swap_lock);
3319         vfree(swap_map);
3320         kvfree(cluster_info);
3321         kvfree(frontswap_map);
3322         if (inced_nr_rotate_swap)
3323                 atomic_dec(&nr_rotate_swap);
3324         if (swap_file) {
3325                 if (inode && S_ISREG(inode->i_mode)) {
3326                         inode_unlock(inode);
3327                         inode = NULL;
3328                 }
3329                 filp_close(swap_file, NULL);
3330         }
3331 out:
3332         if (page && !IS_ERR(page)) {
3333                 kunmap(page);
3334                 put_page(page);
3335         }
3336         if (name)
3337                 putname(name);
3338         if (inode && S_ISREG(inode->i_mode))
3339                 inode_unlock(inode);
3340         if (!error)
3341                 enable_swap_slots_cache();
3342         return error;
3343 }
3344
3345 void si_swapinfo(struct sysinfo *val)
3346 {
3347         unsigned int type;
3348         unsigned long nr_to_be_unused = 0;
3349
3350         spin_lock(&swap_lock);
3351         for (type = 0; type < nr_swapfiles; type++) {
3352                 struct swap_info_struct *si = swap_info[type];
3353
3354                 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
3355                         nr_to_be_unused += si->inuse_pages;
3356         }
3357         val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
3358         val->totalswap = total_swap_pages + nr_to_be_unused;
3359         spin_unlock(&swap_lock);
3360 }
3361
3362 /*
3363  * Verify that a swap entry is valid and increment its swap map count.
3364  *
3365  * Returns error code in following case.
3366  * - success -> 0
3367  * - swp_entry is invalid -> EINVAL
3368  * - swp_entry is migration entry -> EINVAL
3369  * - swap-cache reference is requested but there is already one. -> EEXIST
3370  * - swap-cache reference is requested but the entry is not used. -> ENOENT
3371  * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
3372  */
3373 static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
3374 {
3375         struct swap_info_struct *p;
3376         struct swap_cluster_info *ci;
3377         unsigned long offset;
3378         unsigned char count;
3379         unsigned char has_cache;
3380         int err = -EINVAL;
3381
3382         if (non_swap_entry(entry))
3383                 goto out;
3384
3385         p = swp_swap_info(entry);
3386         if (!p)
3387                 goto bad_file;
3388
3389         offset = swp_offset(entry);
3390         if (unlikely(offset >= p->max))
3391                 goto out;
3392
3393         ci = lock_cluster_or_swap_info(p, offset);
3394
3395         count = p->swap_map[offset];
3396
3397         /*
3398          * swapin_readahead() doesn't check if a swap entry is valid, so the
3399          * swap entry could be SWAP_MAP_BAD. Check here with lock held.
3400          */
3401         if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
3402                 err = -ENOENT;
3403                 goto unlock_out;
3404         }
3405
3406         has_cache = count & SWAP_HAS_CACHE;
3407         count &= ~SWAP_HAS_CACHE;
3408         err = 0;
3409
3410         if (usage == SWAP_HAS_CACHE) {
3411
3412                 /* set SWAP_HAS_CACHE if there is no cache and entry is used */
3413                 if (!has_cache && count)
3414                         has_cache = SWAP_HAS_CACHE;
3415                 else if (has_cache)             /* someone else added cache */
3416                         err = -EEXIST;
3417                 else                            /* no users remaining */
3418                         err = -ENOENT;
3419
3420         } else if (count || has_cache) {
3421
3422                 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
3423                         count += usage;
3424                 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
3425                         err = -EINVAL;
3426                 else if (swap_count_continued(p, offset, count))
3427                         count = COUNT_CONTINUED;
3428                 else
3429                         err = -ENOMEM;
3430         } else
3431                 err = -ENOENT;                  /* unused swap entry */
3432
3433         p->swap_map[offset] = count | has_cache;
3434
3435 unlock_out:
3436         unlock_cluster_or_swap_info(p, ci);
3437 out:
3438         return err;
3439
3440 bad_file:
3441         pr_err("swap_dup: %s%08lx\n", Bad_file, entry.val);
3442         goto out;
3443 }
3444
3445 /*
3446  * Help swapoff by noting that swap entry belongs to shmem/tmpfs
3447  * (in which case its reference count is never incremented).
3448  */
3449 void swap_shmem_alloc(swp_entry_t entry)
3450 {
3451         __swap_duplicate(entry, SWAP_MAP_SHMEM);
3452 }
3453
3454 /*
3455  * Increase reference count of swap entry by 1.
3456  * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
3457  * but could not be atomically allocated.  Returns 0, just as if it succeeded,
3458  * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
3459  * might occur if a page table entry has got corrupted.
3460  */
3461 int swap_duplicate(swp_entry_t entry)
3462 {
3463         int err = 0;
3464
3465         while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
3466                 err = add_swap_count_continuation(entry, GFP_ATOMIC);
3467         return err;
3468 }
3469
3470 /*
3471  * @entry: swap entry for which we allocate swap cache.
3472  *
3473  * Called when allocating swap cache for existing swap entry,
3474  * This can return error codes. Returns 0 at success.
3475  * -EBUSY means there is a swap cache.
3476  * Note: return code is different from swap_duplicate().
3477  */
3478 int swapcache_prepare(swp_entry_t entry)
3479 {
3480         return __swap_duplicate(entry, SWAP_HAS_CACHE);
3481 }
3482
3483 struct swap_info_struct *swp_swap_info(swp_entry_t entry)
3484 {
3485         return swap_type_to_swap_info(swp_type(entry));
3486 }
3487
3488 struct swap_info_struct *page_swap_info(struct page *page)
3489 {
3490         swp_entry_t entry = { .val = page_private(page) };
3491         return swp_swap_info(entry);
3492 }
3493
3494 /*
3495  * out-of-line __page_file_ methods to avoid include hell.
3496  */
3497 struct address_space *__page_file_mapping(struct page *page)
3498 {
3499         return page_swap_info(page)->swap_file->f_mapping;
3500 }
3501 EXPORT_SYMBOL_GPL(__page_file_mapping);
3502
3503 pgoff_t __page_file_index(struct page *page)
3504 {
3505         swp_entry_t swap = { .val = page_private(page) };
3506         return swp_offset(swap);
3507 }
3508 EXPORT_SYMBOL_GPL(__page_file_index);
3509
3510 /*
3511  * add_swap_count_continuation - called when a swap count is duplicated
3512  * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
3513  * page of the original vmalloc'ed swap_map, to hold the continuation count
3514  * (for that entry and for its neighbouring PAGE_SIZE swap entries).  Called
3515  * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
3516  *
3517  * These continuation pages are seldom referenced: the common paths all work
3518  * on the original swap_map, only referring to a continuation page when the
3519  * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
3520  *
3521  * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
3522  * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
3523  * can be called after dropping locks.
3524  */
3525 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
3526 {
3527         struct swap_info_struct *si;
3528         struct swap_cluster_info *ci;
3529         struct page *head;
3530         struct page *page;
3531         struct page *list_page;
3532         pgoff_t offset;
3533         unsigned char count;
3534
3535         /*
3536          * When debugging, it's easier to use __GFP_ZERO here; but it's better
3537          * for latency not to zero a page while GFP_ATOMIC and holding locks.
3538          */
3539         page = alloc_page(gfp_mask | __GFP_HIGHMEM);
3540
3541         si = swap_info_get(entry);
3542         if (!si) {
3543                 /*
3544                  * An acceptable race has occurred since the failing
3545                  * __swap_duplicate(): the swap entry has been freed,
3546                  * perhaps even the whole swap_map cleared for swapoff.
3547                  */
3548                 goto outer;
3549         }
3550
3551         offset = swp_offset(entry);
3552
3553         ci = lock_cluster(si, offset);
3554
3555         count = si->swap_map[offset] & ~SWAP_HAS_CACHE;
3556
3557         if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
3558                 /*
3559                  * The higher the swap count, the more likely it is that tasks
3560                  * will race to add swap count continuation: we need to avoid
3561                  * over-provisioning.
3562                  */
3563                 goto out;
3564         }
3565
3566         if (!page) {
3567                 unlock_cluster(ci);
3568                 spin_unlock(&si->lock);
3569                 return -ENOMEM;
3570         }
3571
3572         /*
3573          * We are fortunate that although vmalloc_to_page uses pte_offset_map,
3574          * no architecture is using highmem pages for kernel page tables: so it
3575          * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps.
3576          */
3577         head = vmalloc_to_page(si->swap_map + offset);
3578         offset &= ~PAGE_MASK;
3579
3580         spin_lock(&si->cont_lock);
3581         /*
3582          * Page allocation does not initialize the page's lru field,
3583          * but it does always reset its private field.
3584          */
3585         if (!page_private(head)) {
3586                 BUG_ON(count & COUNT_CONTINUED);
3587                 INIT_LIST_HEAD(&head->lru);
3588                 set_page_private(head, SWP_CONTINUED);
3589                 si->flags |= SWP_CONTINUED;
3590         }
3591
3592         list_for_each_entry(list_page, &head->lru, lru) {
3593                 unsigned char *map;
3594
3595                 /*
3596                  * If the previous map said no continuation, but we've found
3597                  * a continuation page, free our allocation and use this one.
3598                  */
3599                 if (!(count & COUNT_CONTINUED))
3600                         goto out_unlock_cont;
3601
3602                 map = kmap_atomic(list_page) + offset;
3603                 count = *map;
3604                 kunmap_atomic(map);
3605
3606                 /*
3607                  * If this continuation count now has some space in it,
3608                  * free our allocation and use this one.
3609                  */
3610                 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
3611                         goto out_unlock_cont;
3612         }
3613
3614         list_add_tail(&page->lru, &head->lru);
3615         page = NULL;                    /* now it's attached, don't free it */
3616 out_unlock_cont:
3617         spin_unlock(&si->cont_lock);
3618 out:
3619         unlock_cluster(ci);
3620         spin_unlock(&si->lock);
3621 outer:
3622         if (page)
3623                 __free_page(page);
3624         return 0;
3625 }
3626
3627 /*
3628  * swap_count_continued - when the original swap_map count is incremented
3629  * from SWAP_MAP_MAX, check if there is already a continuation page to carry
3630  * into, carry if so, or else fail until a new continuation page is allocated;
3631  * when the original swap_map count is decremented from 0 with continuation,
3632  * borrow from the continuation and report whether it still holds more.
3633  * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster
3634  * lock.
3635  */
3636 static bool swap_count_continued(struct swap_info_struct *si,
3637                                  pgoff_t offset, unsigned char count)
3638 {
3639         struct page *head;
3640         struct page *page;
3641         unsigned char *map;
3642         bool ret;
3643
3644         head = vmalloc_to_page(si->swap_map + offset);
3645         if (page_private(head) != SWP_CONTINUED) {
3646                 BUG_ON(count & COUNT_CONTINUED);
3647                 return false;           /* need to add count continuation */
3648         }
3649
3650         spin_lock(&si->cont_lock);
3651         offset &= ~PAGE_MASK;
3652         page = list_entry(head->lru.next, struct page, lru);
3653         map = kmap_atomic(page) + offset;
3654
3655         if (count == SWAP_MAP_MAX)      /* initial increment from swap_map */
3656                 goto init_map;          /* jump over SWAP_CONT_MAX checks */
3657
3658         if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
3659                 /*
3660                  * Think of how you add 1 to 999
3661                  */
3662                 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
3663                         kunmap_atomic(map);
3664                         page = list_entry(page->lru.next, struct page, lru);
3665                         BUG_ON(page == head);
3666                         map = kmap_atomic(page) + offset;
3667                 }
3668                 if (*map == SWAP_CONT_MAX) {
3669                         kunmap_atomic(map);
3670                         page = list_entry(page->lru.next, struct page, lru);
3671                         if (page == head) {
3672                                 ret = false;    /* add count continuation */
3673                                 goto out;
3674                         }
3675                         map = kmap_atomic(page) + offset;
3676 init_map:               *map = 0;               /* we didn't zero the page */
3677                 }
3678                 *map += 1;
3679                 kunmap_atomic(map);
3680                 page = list_entry(page->lru.prev, struct page, lru);
3681                 while (page != head) {
3682                         map = kmap_atomic(page) + offset;
3683                         *map = COUNT_CONTINUED;
3684                         kunmap_atomic(map);
3685                         page = list_entry(page->lru.prev, struct page, lru);
3686                 }
3687                 ret = true;                     /* incremented */
3688
3689         } else {                                /* decrementing */
3690                 /*
3691                  * Think of how you subtract 1 from 1000
3692                  */
3693                 BUG_ON(count != COUNT_CONTINUED);
3694                 while (*map == COUNT_CONTINUED) {
3695                         kunmap_atomic(map);
3696                         page = list_entry(page->lru.next, struct page, lru);
3697                         BUG_ON(page == head);
3698                         map = kmap_atomic(page) + offset;
3699                 }
3700                 BUG_ON(*map == 0);
3701                 *map -= 1;
3702                 if (*map == 0)
3703                         count = 0;
3704                 kunmap_atomic(map);
3705                 page = list_entry(page->lru.prev, struct page, lru);
3706                 while (page != head) {
3707                         map = kmap_atomic(page) + offset;
3708                         *map = SWAP_CONT_MAX | count;
3709                         count = COUNT_CONTINUED;
3710                         kunmap_atomic(map);
3711                         page = list_entry(page->lru.prev, struct page, lru);
3712                 }
3713                 ret = count == COUNT_CONTINUED;
3714         }
3715 out:
3716         spin_unlock(&si->cont_lock);
3717         return ret;
3718 }
3719
3720 /*
3721  * free_swap_count_continuations - swapoff free all the continuation pages
3722  * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
3723  */
3724 static void free_swap_count_continuations(struct swap_info_struct *si)
3725 {
3726         pgoff_t offset;
3727
3728         for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
3729                 struct page *head;
3730                 head = vmalloc_to_page(si->swap_map + offset);
3731                 if (page_private(head)) {
3732                         struct page *page, *next;
3733
3734                         list_for_each_entry_safe(page, next, &head->lru, lru) {
3735                                 list_del(&page->lru);
3736                                 __free_page(page);
3737                         }
3738                 }
3739         }
3740 }
3741
3742 #if defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP)
3743 void mem_cgroup_throttle_swaprate(struct mem_cgroup *memcg, int node,
3744                                   gfp_t gfp_mask)
3745 {
3746         struct swap_info_struct *si, *next;
3747         if (!(gfp_mask & __GFP_IO) || !memcg)
3748                 return;
3749
3750         if (!blk_cgroup_congested())
3751                 return;
3752
3753         /*
3754          * We've already scheduled a throttle, avoid taking the global swap
3755          * lock.
3756          */
3757         if (current->throttle_queue)
3758                 return;
3759
3760         spin_lock(&swap_avail_lock);
3761         plist_for_each_entry_safe(si, next, &swap_avail_heads[node],
3762                                   avail_lists[node]) {
3763                 if (si->bdev) {
3764                         blkcg_schedule_throttle(bdev_get_queue(si->bdev),
3765                                                 true);
3766                         break;
3767                 }
3768         }
3769         spin_unlock(&swap_avail_lock);
3770 }
3771 #endif
3772
3773 static int __init swapfile_init(void)
3774 {
3775         int nid;
3776
3777         swap_avail_heads = kmalloc_array(nr_node_ids, sizeof(struct plist_head),
3778                                          GFP_KERNEL);
3779         if (!swap_avail_heads) {
3780                 pr_emerg("Not enough memory for swap heads, swap is disabled\n");
3781                 return -ENOMEM;
3782         }
3783
3784         for_each_node(nid)
3785                 plist_head_init(&swap_avail_heads[nid]);
3786
3787         return 0;
3788 }
3789 subsys_initcall(swapfile_init);