OSDN Git Service

mm: shmem.c: Correctly annotate new inodes for lockdep
[android-x86/kernel.git] / mm / swapfile.c
1 /*
2  *  linux/mm/swapfile.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *  Swap reorganised 29.12.95, Stephen Tweedie
6  */
7
8 #include <linux/mm.h>
9 #include <linux/hugetlb.h>
10 #include <linux/mman.h>
11 #include <linux/slab.h>
12 #include <linux/kernel_stat.h>
13 #include <linux/swap.h>
14 #include <linux/vmalloc.h>
15 #include <linux/pagemap.h>
16 #include <linux/namei.h>
17 #include <linux/shmem_fs.h>
18 #include <linux/blkdev.h>
19 #include <linux/random.h>
20 #include <linux/writeback.h>
21 #include <linux/proc_fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/init.h>
24 #include <linux/ksm.h>
25 #include <linux/rmap.h>
26 #include <linux/security.h>
27 #include <linux/backing-dev.h>
28 #include <linux/mutex.h>
29 #include <linux/capability.h>
30 #include <linux/syscalls.h>
31 #include <linux/memcontrol.h>
32 #include <linux/poll.h>
33 #include <linux/oom.h>
34 #include <linux/frontswap.h>
35 #include <linux/swapfile.h>
36 #include <linux/export.h>
37
38 #include <asm/pgtable.h>
39 #include <asm/tlbflush.h>
40 #include <linux/swapops.h>
41 #include <linux/swap_cgroup.h>
42
43 static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
44                                  unsigned char);
45 static void free_swap_count_continuations(struct swap_info_struct *);
46 static sector_t map_swap_entry(swp_entry_t, struct block_device**);
47
48 DEFINE_SPINLOCK(swap_lock);
49 static unsigned int nr_swapfiles;
50 atomic_long_t nr_swap_pages;
51 /*
52  * Some modules use swappable objects and may try to swap them out under
53  * memory pressure (via the shrinker). Before doing so, they may wish to
54  * check to see if any swap space is available.
55  */
56 EXPORT_SYMBOL_GPL(nr_swap_pages);
57 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
58 long total_swap_pages;
59 static int least_priority;
60
61 static const char Bad_file[] = "Bad swap file entry ";
62 static const char Unused_file[] = "Unused swap file entry ";
63 static const char Bad_offset[] = "Bad swap offset entry ";
64 static const char Unused_offset[] = "Unused swap offset entry ";
65
66 /*
67  * all active swap_info_structs
68  * protected with swap_lock, and ordered by priority.
69  */
70 PLIST_HEAD(swap_active_head);
71
72 /*
73  * all available (active, not full) swap_info_structs
74  * protected with swap_avail_lock, ordered by priority.
75  * This is used by get_swap_page() instead of swap_active_head
76  * because swap_active_head includes all swap_info_structs,
77  * but get_swap_page() doesn't need to look at full ones.
78  * This uses its own lock instead of swap_lock because when a
79  * swap_info_struct changes between not-full/full, it needs to
80  * add/remove itself to/from this list, but the swap_info_struct->lock
81  * is held and the locking order requires swap_lock to be taken
82  * before any swap_info_struct->lock.
83  */
84 static PLIST_HEAD(swap_avail_head);
85 static DEFINE_SPINLOCK(swap_avail_lock);
86
87 struct swap_info_struct *swap_info[MAX_SWAPFILES];
88
89 static DEFINE_MUTEX(swapon_mutex);
90
91 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
92 /* Activity counter to indicate that a swapon or swapoff has occurred */
93 static atomic_t proc_poll_event = ATOMIC_INIT(0);
94
95 static inline unsigned char swap_count(unsigned char ent)
96 {
97         return ent & ~SWAP_HAS_CACHE;   /* may include SWAP_HAS_CONT flag */
98 }
99
100 /* returns 1 if swap entry is freed */
101 static int
102 __try_to_reclaim_swap(struct swap_info_struct *si, unsigned long offset)
103 {
104         swp_entry_t entry = swp_entry(si->type, offset);
105         struct page *page;
106         int ret = 0;
107
108         page = find_get_page(swap_address_space(entry), swp_offset(entry));
109         if (!page)
110                 return 0;
111         /*
112          * This function is called from scan_swap_map() and it's called
113          * by vmscan.c at reclaiming pages. So, we hold a lock on a page, here.
114          * We have to use trylock for avoiding deadlock. This is a special
115          * case and you should use try_to_free_swap() with explicit lock_page()
116          * in usual operations.
117          */
118         if (trylock_page(page)) {
119                 ret = try_to_free_swap(page);
120                 unlock_page(page);
121         }
122         put_page(page);
123         return ret;
124 }
125
126 /*
127  * swapon tell device that all the old swap contents can be discarded,
128  * to allow the swap device to optimize its wear-levelling.
129  */
130 static int discard_swap(struct swap_info_struct *si)
131 {
132         struct swap_extent *se;
133         sector_t start_block;
134         sector_t nr_blocks;
135         int err = 0;
136
137         /* Do not discard the swap header page! */
138         se = &si->first_swap_extent;
139         start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
140         nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
141         if (nr_blocks) {
142                 err = blkdev_issue_discard(si->bdev, start_block,
143                                 nr_blocks, GFP_KERNEL, 0);
144                 if (err)
145                         return err;
146                 cond_resched();
147         }
148
149         list_for_each_entry(se, &si->first_swap_extent.list, list) {
150                 start_block = se->start_block << (PAGE_SHIFT - 9);
151                 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
152
153                 err = blkdev_issue_discard(si->bdev, start_block,
154                                 nr_blocks, GFP_KERNEL, 0);
155                 if (err)
156                         break;
157
158                 cond_resched();
159         }
160         return err;             /* That will often be -EOPNOTSUPP */
161 }
162
163 /*
164  * swap allocation tell device that a cluster of swap can now be discarded,
165  * to allow the swap device to optimize its wear-levelling.
166  */
167 static void discard_swap_cluster(struct swap_info_struct *si,
168                                  pgoff_t start_page, pgoff_t nr_pages)
169 {
170         struct swap_extent *se = si->curr_swap_extent;
171         int found_extent = 0;
172
173         while (nr_pages) {
174                 if (se->start_page <= start_page &&
175                     start_page < se->start_page + se->nr_pages) {
176                         pgoff_t offset = start_page - se->start_page;
177                         sector_t start_block = se->start_block + offset;
178                         sector_t nr_blocks = se->nr_pages - offset;
179
180                         if (nr_blocks > nr_pages)
181                                 nr_blocks = nr_pages;
182                         start_page += nr_blocks;
183                         nr_pages -= nr_blocks;
184
185                         if (!found_extent++)
186                                 si->curr_swap_extent = se;
187
188                         start_block <<= PAGE_SHIFT - 9;
189                         nr_blocks <<= PAGE_SHIFT - 9;
190                         if (blkdev_issue_discard(si->bdev, start_block,
191                                     nr_blocks, GFP_NOIO, 0))
192                                 break;
193                 }
194
195                 se = list_next_entry(se, list);
196         }
197 }
198
199 #define SWAPFILE_CLUSTER        256
200 #define LATENCY_LIMIT           256
201
202 static inline void cluster_set_flag(struct swap_cluster_info *info,
203         unsigned int flag)
204 {
205         info->flags = flag;
206 }
207
208 static inline unsigned int cluster_count(struct swap_cluster_info *info)
209 {
210         return info->data;
211 }
212
213 static inline void cluster_set_count(struct swap_cluster_info *info,
214                                      unsigned int c)
215 {
216         info->data = c;
217 }
218
219 static inline void cluster_set_count_flag(struct swap_cluster_info *info,
220                                          unsigned int c, unsigned int f)
221 {
222         info->flags = f;
223         info->data = c;
224 }
225
226 static inline unsigned int cluster_next(struct swap_cluster_info *info)
227 {
228         return info->data;
229 }
230
231 static inline void cluster_set_next(struct swap_cluster_info *info,
232                                     unsigned int n)
233 {
234         info->data = n;
235 }
236
237 static inline void cluster_set_next_flag(struct swap_cluster_info *info,
238                                          unsigned int n, unsigned int f)
239 {
240         info->flags = f;
241         info->data = n;
242 }
243
244 static inline bool cluster_is_free(struct swap_cluster_info *info)
245 {
246         return info->flags & CLUSTER_FLAG_FREE;
247 }
248
249 static inline bool cluster_is_null(struct swap_cluster_info *info)
250 {
251         return info->flags & CLUSTER_FLAG_NEXT_NULL;
252 }
253
254 static inline void cluster_set_null(struct swap_cluster_info *info)
255 {
256         info->flags = CLUSTER_FLAG_NEXT_NULL;
257         info->data = 0;
258 }
259
260 static inline bool cluster_list_empty(struct swap_cluster_list *list)
261 {
262         return cluster_is_null(&list->head);
263 }
264
265 static inline unsigned int cluster_list_first(struct swap_cluster_list *list)
266 {
267         return cluster_next(&list->head);
268 }
269
270 static void cluster_list_init(struct swap_cluster_list *list)
271 {
272         cluster_set_null(&list->head);
273         cluster_set_null(&list->tail);
274 }
275
276 static void cluster_list_add_tail(struct swap_cluster_list *list,
277                                   struct swap_cluster_info *ci,
278                                   unsigned int idx)
279 {
280         if (cluster_list_empty(list)) {
281                 cluster_set_next_flag(&list->head, idx, 0);
282                 cluster_set_next_flag(&list->tail, idx, 0);
283         } else {
284                 unsigned int tail = cluster_next(&list->tail);
285
286                 cluster_set_next(&ci[tail], idx);
287                 cluster_set_next_flag(&list->tail, idx, 0);
288         }
289 }
290
291 static unsigned int cluster_list_del_first(struct swap_cluster_list *list,
292                                            struct swap_cluster_info *ci)
293 {
294         unsigned int idx;
295
296         idx = cluster_next(&list->head);
297         if (cluster_next(&list->tail) == idx) {
298                 cluster_set_null(&list->head);
299                 cluster_set_null(&list->tail);
300         } else
301                 cluster_set_next_flag(&list->head,
302                                       cluster_next(&ci[idx]), 0);
303
304         return idx;
305 }
306
307 /* Add a cluster to discard list and schedule it to do discard */
308 static void swap_cluster_schedule_discard(struct swap_info_struct *si,
309                 unsigned int idx)
310 {
311         /*
312          * If scan_swap_map() can't find a free cluster, it will check
313          * si->swap_map directly. To make sure the discarding cluster isn't
314          * taken by scan_swap_map(), mark the swap entries bad (occupied). It
315          * will be cleared after discard
316          */
317         memset(si->swap_map + idx * SWAPFILE_CLUSTER,
318                         SWAP_MAP_BAD, SWAPFILE_CLUSTER);
319
320         cluster_list_add_tail(&si->discard_clusters, si->cluster_info, idx);
321
322         schedule_work(&si->discard_work);
323 }
324
325 /*
326  * Doing discard actually. After a cluster discard is finished, the cluster
327  * will be added to free cluster list. caller should hold si->lock.
328 */
329 static void swap_do_scheduled_discard(struct swap_info_struct *si)
330 {
331         struct swap_cluster_info *info;
332         unsigned int idx;
333
334         info = si->cluster_info;
335
336         while (!cluster_list_empty(&si->discard_clusters)) {
337                 idx = cluster_list_del_first(&si->discard_clusters, info);
338                 spin_unlock(&si->lock);
339
340                 discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
341                                 SWAPFILE_CLUSTER);
342
343                 spin_lock(&si->lock);
344                 cluster_set_flag(&info[idx], CLUSTER_FLAG_FREE);
345                 cluster_list_add_tail(&si->free_clusters, info, idx);
346                 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
347                                 0, SWAPFILE_CLUSTER);
348         }
349 }
350
351 static void swap_discard_work(struct work_struct *work)
352 {
353         struct swap_info_struct *si;
354
355         si = container_of(work, struct swap_info_struct, discard_work);
356
357         spin_lock(&si->lock);
358         swap_do_scheduled_discard(si);
359         spin_unlock(&si->lock);
360 }
361
362 /*
363  * The cluster corresponding to page_nr will be used. The cluster will be
364  * removed from free cluster list and its usage counter will be increased.
365  */
366 static void inc_cluster_info_page(struct swap_info_struct *p,
367         struct swap_cluster_info *cluster_info, unsigned long page_nr)
368 {
369         unsigned long idx = page_nr / SWAPFILE_CLUSTER;
370
371         if (!cluster_info)
372                 return;
373         if (cluster_is_free(&cluster_info[idx])) {
374                 VM_BUG_ON(cluster_list_first(&p->free_clusters) != idx);
375                 cluster_list_del_first(&p->free_clusters, cluster_info);
376                 cluster_set_count_flag(&cluster_info[idx], 0, 0);
377         }
378
379         VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER);
380         cluster_set_count(&cluster_info[idx],
381                 cluster_count(&cluster_info[idx]) + 1);
382 }
383
384 /*
385  * The cluster corresponding to page_nr decreases one usage. If the usage
386  * counter becomes 0, which means no page in the cluster is in using, we can
387  * optionally discard the cluster and add it to free cluster list.
388  */
389 static void dec_cluster_info_page(struct swap_info_struct *p,
390         struct swap_cluster_info *cluster_info, unsigned long page_nr)
391 {
392         unsigned long idx = page_nr / SWAPFILE_CLUSTER;
393
394         if (!cluster_info)
395                 return;
396
397         VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0);
398         cluster_set_count(&cluster_info[idx],
399                 cluster_count(&cluster_info[idx]) - 1);
400
401         if (cluster_count(&cluster_info[idx]) == 0) {
402                 /*
403                  * If the swap is discardable, prepare discard the cluster
404                  * instead of free it immediately. The cluster will be freed
405                  * after discard.
406                  */
407                 if ((p->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
408                                  (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
409                         swap_cluster_schedule_discard(p, idx);
410                         return;
411                 }
412
413                 cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
414                 cluster_list_add_tail(&p->free_clusters, cluster_info, idx);
415         }
416 }
417
418 /*
419  * It's possible scan_swap_map() uses a free cluster in the middle of free
420  * cluster list. Avoiding such abuse to avoid list corruption.
421  */
422 static bool
423 scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si,
424         unsigned long offset)
425 {
426         struct percpu_cluster *percpu_cluster;
427         bool conflict;
428
429         offset /= SWAPFILE_CLUSTER;
430         conflict = !cluster_list_empty(&si->free_clusters) &&
431                 offset != cluster_list_first(&si->free_clusters) &&
432                 cluster_is_free(&si->cluster_info[offset]);
433
434         if (!conflict)
435                 return false;
436
437         percpu_cluster = this_cpu_ptr(si->percpu_cluster);
438         cluster_set_null(&percpu_cluster->index);
439         return true;
440 }
441
442 /*
443  * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
444  * might involve allocating a new cluster for current CPU too.
445  */
446 static void scan_swap_map_try_ssd_cluster(struct swap_info_struct *si,
447         unsigned long *offset, unsigned long *scan_base)
448 {
449         struct percpu_cluster *cluster;
450         bool found_free;
451         unsigned long tmp;
452
453 new_cluster:
454         cluster = this_cpu_ptr(si->percpu_cluster);
455         if (cluster_is_null(&cluster->index)) {
456                 if (!cluster_list_empty(&si->free_clusters)) {
457                         cluster->index = si->free_clusters.head;
458                         cluster->next = cluster_next(&cluster->index) *
459                                         SWAPFILE_CLUSTER;
460                 } else if (!cluster_list_empty(&si->discard_clusters)) {
461                         /*
462                          * we don't have free cluster but have some clusters in
463                          * discarding, do discard now and reclaim them
464                          */
465                         swap_do_scheduled_discard(si);
466                         *scan_base = *offset = si->cluster_next;
467                         goto new_cluster;
468                 } else
469                         return;
470         }
471
472         found_free = false;
473
474         /*
475          * Other CPUs can use our cluster if they can't find a free cluster,
476          * check if there is still free entry in the cluster
477          */
478         tmp = cluster->next;
479         while (tmp < si->max && tmp < (cluster_next(&cluster->index) + 1) *
480                SWAPFILE_CLUSTER) {
481                 if (!si->swap_map[tmp]) {
482                         found_free = true;
483                         break;
484                 }
485                 tmp++;
486         }
487         if (!found_free) {
488                 cluster_set_null(&cluster->index);
489                 goto new_cluster;
490         }
491         cluster->next = tmp + 1;
492         *offset = tmp;
493         *scan_base = tmp;
494 }
495
496 static unsigned long scan_swap_map(struct swap_info_struct *si,
497                                    unsigned char usage)
498 {
499         unsigned long offset;
500         unsigned long scan_base;
501         unsigned long last_in_cluster = 0;
502         int latency_ration = LATENCY_LIMIT;
503
504         /*
505          * We try to cluster swap pages by allocating them sequentially
506          * in swap.  Once we've allocated SWAPFILE_CLUSTER pages this
507          * way, however, we resort to first-free allocation, starting
508          * a new cluster.  This prevents us from scattering swap pages
509          * all over the entire swap partition, so that we reduce
510          * overall disk seek times between swap pages.  -- sct
511          * But we do now try to find an empty cluster.  -Andrea
512          * And we let swap pages go all over an SSD partition.  Hugh
513          */
514
515         si->flags += SWP_SCANNING;
516         scan_base = offset = si->cluster_next;
517
518         /* SSD algorithm */
519         if (si->cluster_info) {
520                 scan_swap_map_try_ssd_cluster(si, &offset, &scan_base);
521                 goto checks;
522         }
523
524         if (unlikely(!si->cluster_nr--)) {
525                 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
526                         si->cluster_nr = SWAPFILE_CLUSTER - 1;
527                         goto checks;
528                 }
529
530                 spin_unlock(&si->lock);
531
532                 /*
533                  * If seek is expensive, start searching for new cluster from
534                  * start of partition, to minimize the span of allocated swap.
535                  * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info
536                  * case, just handled by scan_swap_map_try_ssd_cluster() above.
537                  */
538                 scan_base = offset = si->lowest_bit;
539                 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
540
541                 /* Locate the first empty (unaligned) cluster */
542                 for (; last_in_cluster <= si->highest_bit; offset++) {
543                         if (si->swap_map[offset])
544                                 last_in_cluster = offset + SWAPFILE_CLUSTER;
545                         else if (offset == last_in_cluster) {
546                                 spin_lock(&si->lock);
547                                 offset -= SWAPFILE_CLUSTER - 1;
548                                 si->cluster_next = offset;
549                                 si->cluster_nr = SWAPFILE_CLUSTER - 1;
550                                 goto checks;
551                         }
552                         if (unlikely(--latency_ration < 0)) {
553                                 cond_resched();
554                                 latency_ration = LATENCY_LIMIT;
555                         }
556                 }
557
558                 offset = scan_base;
559                 spin_lock(&si->lock);
560                 si->cluster_nr = SWAPFILE_CLUSTER - 1;
561         }
562
563 checks:
564         if (si->cluster_info) {
565                 while (scan_swap_map_ssd_cluster_conflict(si, offset))
566                         scan_swap_map_try_ssd_cluster(si, &offset, &scan_base);
567         }
568         if (!(si->flags & SWP_WRITEOK))
569                 goto no_page;
570         if (!si->highest_bit)
571                 goto no_page;
572         if (offset > si->highest_bit)
573                 scan_base = offset = si->lowest_bit;
574
575         /* reuse swap entry of cache-only swap if not busy. */
576         if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
577                 int swap_was_freed;
578                 spin_unlock(&si->lock);
579                 swap_was_freed = __try_to_reclaim_swap(si, offset);
580                 spin_lock(&si->lock);
581                 /* entry was freed successfully, try to use this again */
582                 if (swap_was_freed)
583                         goto checks;
584                 goto scan; /* check next one */
585         }
586
587         if (si->swap_map[offset])
588                 goto scan;
589
590         if (offset == si->lowest_bit)
591                 si->lowest_bit++;
592         if (offset == si->highest_bit)
593                 si->highest_bit--;
594         si->inuse_pages++;
595         if (si->inuse_pages == si->pages) {
596                 si->lowest_bit = si->max;
597                 si->highest_bit = 0;
598                 spin_lock(&swap_avail_lock);
599                 plist_del(&si->avail_list, &swap_avail_head);
600                 spin_unlock(&swap_avail_lock);
601         }
602         si->swap_map[offset] = usage;
603         inc_cluster_info_page(si, si->cluster_info, offset);
604         si->cluster_next = offset + 1;
605         si->flags -= SWP_SCANNING;
606
607         return offset;
608
609 scan:
610         spin_unlock(&si->lock);
611         while (++offset <= si->highest_bit) {
612                 if (!si->swap_map[offset]) {
613                         spin_lock(&si->lock);
614                         goto checks;
615                 }
616                 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
617                         spin_lock(&si->lock);
618                         goto checks;
619                 }
620                 if (unlikely(--latency_ration < 0)) {
621                         cond_resched();
622                         latency_ration = LATENCY_LIMIT;
623                 }
624         }
625         offset = si->lowest_bit;
626         while (offset < scan_base) {
627                 if (!si->swap_map[offset]) {
628                         spin_lock(&si->lock);
629                         goto checks;
630                 }
631                 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
632                         spin_lock(&si->lock);
633                         goto checks;
634                 }
635                 if (unlikely(--latency_ration < 0)) {
636                         cond_resched();
637                         latency_ration = LATENCY_LIMIT;
638                 }
639                 offset++;
640         }
641         spin_lock(&si->lock);
642
643 no_page:
644         si->flags -= SWP_SCANNING;
645         return 0;
646 }
647
648 swp_entry_t get_swap_page(void)
649 {
650         struct swap_info_struct *si, *next;
651         pgoff_t offset;
652
653         if (atomic_long_read(&nr_swap_pages) <= 0)
654                 goto noswap;
655         atomic_long_dec(&nr_swap_pages);
656
657         spin_lock(&swap_avail_lock);
658
659 start_over:
660         plist_for_each_entry_safe(si, next, &swap_avail_head, avail_list) {
661                 /* requeue si to after same-priority siblings */
662                 plist_requeue(&si->avail_list, &swap_avail_head);
663                 spin_unlock(&swap_avail_lock);
664                 spin_lock(&si->lock);
665                 if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) {
666                         spin_lock(&swap_avail_lock);
667                         if (plist_node_empty(&si->avail_list)) {
668                                 spin_unlock(&si->lock);
669                                 goto nextsi;
670                         }
671                         WARN(!si->highest_bit,
672                              "swap_info %d in list but !highest_bit\n",
673                              si->type);
674                         WARN(!(si->flags & SWP_WRITEOK),
675                              "swap_info %d in list but !SWP_WRITEOK\n",
676                              si->type);
677                         plist_del(&si->avail_list, &swap_avail_head);
678                         spin_unlock(&si->lock);
679                         goto nextsi;
680                 }
681
682                 /* This is called for allocating swap entry for cache */
683                 offset = scan_swap_map(si, SWAP_HAS_CACHE);
684                 spin_unlock(&si->lock);
685                 if (offset)
686                         return swp_entry(si->type, offset);
687                 pr_debug("scan_swap_map of si %d failed to find offset\n",
688                        si->type);
689                 spin_lock(&swap_avail_lock);
690 nextsi:
691                 /*
692                  * if we got here, it's likely that si was almost full before,
693                  * and since scan_swap_map() can drop the si->lock, multiple
694                  * callers probably all tried to get a page from the same si
695                  * and it filled up before we could get one; or, the si filled
696                  * up between us dropping swap_avail_lock and taking si->lock.
697                  * Since we dropped the swap_avail_lock, the swap_avail_head
698                  * list may have been modified; so if next is still in the
699                  * swap_avail_head list then try it, otherwise start over.
700                  */
701                 if (plist_node_empty(&next->avail_list))
702                         goto start_over;
703         }
704
705         spin_unlock(&swap_avail_lock);
706
707         atomic_long_inc(&nr_swap_pages);
708 noswap:
709         return (swp_entry_t) {0};
710 }
711
712 /* The only caller of this function is now suspend routine */
713 swp_entry_t get_swap_page_of_type(int type)
714 {
715         struct swap_info_struct *si;
716         pgoff_t offset;
717
718         si = swap_info[type];
719         spin_lock(&si->lock);
720         if (si && (si->flags & SWP_WRITEOK)) {
721                 atomic_long_dec(&nr_swap_pages);
722                 /* This is called for allocating swap entry, not cache */
723                 offset = scan_swap_map(si, 1);
724                 if (offset) {
725                         spin_unlock(&si->lock);
726                         return swp_entry(type, offset);
727                 }
728                 atomic_long_inc(&nr_swap_pages);
729         }
730         spin_unlock(&si->lock);
731         return (swp_entry_t) {0};
732 }
733
734 static struct swap_info_struct *swap_info_get(swp_entry_t entry)
735 {
736         struct swap_info_struct *p;
737         unsigned long offset, type;
738
739         if (!entry.val)
740                 goto out;
741         type = swp_type(entry);
742         if (type >= nr_swapfiles)
743                 goto bad_nofile;
744         p = swap_info[type];
745         if (!(p->flags & SWP_USED))
746                 goto bad_device;
747         offset = swp_offset(entry);
748         if (offset >= p->max)
749                 goto bad_offset;
750         if (!p->swap_map[offset])
751                 goto bad_free;
752         spin_lock(&p->lock);
753         return p;
754
755 bad_free:
756         pr_err("swap_free: %s%08lx\n", Unused_offset, entry.val);
757         goto out;
758 bad_offset:
759         pr_err("swap_free: %s%08lx\n", Bad_offset, entry.val);
760         goto out;
761 bad_device:
762         pr_err("swap_free: %s%08lx\n", Unused_file, entry.val);
763         goto out;
764 bad_nofile:
765         pr_err("swap_free: %s%08lx\n", Bad_file, entry.val);
766 out:
767         return NULL;
768 }
769
770 static unsigned char swap_entry_free(struct swap_info_struct *p,
771                                      swp_entry_t entry, unsigned char usage)
772 {
773         unsigned long offset = swp_offset(entry);
774         unsigned char count;
775         unsigned char has_cache;
776
777         count = p->swap_map[offset];
778         has_cache = count & SWAP_HAS_CACHE;
779         count &= ~SWAP_HAS_CACHE;
780
781         if (usage == SWAP_HAS_CACHE) {
782                 VM_BUG_ON(!has_cache);
783                 has_cache = 0;
784         } else if (count == SWAP_MAP_SHMEM) {
785                 /*
786                  * Or we could insist on shmem.c using a special
787                  * swap_shmem_free() and free_shmem_swap_and_cache()...
788                  */
789                 count = 0;
790         } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
791                 if (count == COUNT_CONTINUED) {
792                         if (swap_count_continued(p, offset, count))
793                                 count = SWAP_MAP_MAX | COUNT_CONTINUED;
794                         else
795                                 count = SWAP_MAP_MAX;
796                 } else
797                         count--;
798         }
799
800         usage = count | has_cache;
801         p->swap_map[offset] = usage;
802
803         /* free if no reference */
804         if (!usage) {
805                 mem_cgroup_uncharge_swap(entry);
806                 dec_cluster_info_page(p, p->cluster_info, offset);
807                 if (offset < p->lowest_bit)
808                         p->lowest_bit = offset;
809                 if (offset > p->highest_bit) {
810                         bool was_full = !p->highest_bit;
811                         p->highest_bit = offset;
812                         if (was_full && (p->flags & SWP_WRITEOK)) {
813                                 spin_lock(&swap_avail_lock);
814                                 WARN_ON(!plist_node_empty(&p->avail_list));
815                                 if (plist_node_empty(&p->avail_list))
816                                         plist_add(&p->avail_list,
817                                                   &swap_avail_head);
818                                 spin_unlock(&swap_avail_lock);
819                         }
820                 }
821                 atomic_long_inc(&nr_swap_pages);
822                 p->inuse_pages--;
823                 frontswap_invalidate_page(p->type, offset);
824                 if (p->flags & SWP_BLKDEV) {
825                         struct gendisk *disk = p->bdev->bd_disk;
826                         if (disk->fops->swap_slot_free_notify)
827                                 disk->fops->swap_slot_free_notify(p->bdev,
828                                                                   offset);
829                 }
830         }
831
832         return usage;
833 }
834
835 /*
836  * Caller has made sure that the swap device corresponding to entry
837  * is still around or has not been recycled.
838  */
839 void swap_free(swp_entry_t entry)
840 {
841         struct swap_info_struct *p;
842
843         p = swap_info_get(entry);
844         if (p) {
845                 swap_entry_free(p, entry, 1);
846                 spin_unlock(&p->lock);
847         }
848 }
849
850 /*
851  * Called after dropping swapcache to decrease refcnt to swap entries.
852  */
853 void swapcache_free(swp_entry_t entry)
854 {
855         struct swap_info_struct *p;
856
857         p = swap_info_get(entry);
858         if (p) {
859                 swap_entry_free(p, entry, SWAP_HAS_CACHE);
860                 spin_unlock(&p->lock);
861         }
862 }
863
864 /*
865  * How many references to page are currently swapped out?
866  * This does not give an exact answer when swap count is continued,
867  * but does include the high COUNT_CONTINUED flag to allow for that.
868  */
869 int page_swapcount(struct page *page)
870 {
871         int count = 0;
872         struct swap_info_struct *p;
873         swp_entry_t entry;
874
875         entry.val = page_private(page);
876         p = swap_info_get(entry);
877         if (p) {
878                 count = swap_count(p->swap_map[swp_offset(entry)]);
879                 spin_unlock(&p->lock);
880         }
881         return count;
882 }
883
884 /*
885  * How many references to @entry are currently swapped out?
886  * This considers COUNT_CONTINUED so it returns exact answer.
887  */
888 int swp_swapcount(swp_entry_t entry)
889 {
890         int count, tmp_count, n;
891         struct swap_info_struct *p;
892         struct page *page;
893         pgoff_t offset;
894         unsigned char *map;
895
896         p = swap_info_get(entry);
897         if (!p)
898                 return 0;
899
900         count = swap_count(p->swap_map[swp_offset(entry)]);
901         if (!(count & COUNT_CONTINUED))
902                 goto out;
903
904         count &= ~COUNT_CONTINUED;
905         n = SWAP_MAP_MAX + 1;
906
907         offset = swp_offset(entry);
908         page = vmalloc_to_page(p->swap_map + offset);
909         offset &= ~PAGE_MASK;
910         VM_BUG_ON(page_private(page) != SWP_CONTINUED);
911
912         do {
913                 page = list_next_entry(page, lru);
914                 map = kmap_atomic(page);
915                 tmp_count = map[offset];
916                 kunmap_atomic(map);
917
918                 count += (tmp_count & ~COUNT_CONTINUED) * n;
919                 n *= (SWAP_CONT_MAX + 1);
920         } while (tmp_count & COUNT_CONTINUED);
921 out:
922         spin_unlock(&p->lock);
923         return count;
924 }
925
926 /*
927  * We can write to an anon page without COW if there are no other references
928  * to it.  And as a side-effect, free up its swap: because the old content
929  * on disk will never be read, and seeking back there to write new content
930  * later would only waste time away from clustering.
931  *
932  * NOTE: total_mapcount should not be relied upon by the caller if
933  * reuse_swap_page() returns false, but it may be always overwritten
934  * (see the other implementation for CONFIG_SWAP=n).
935  */
936 bool reuse_swap_page(struct page *page, int *total_mapcount)
937 {
938         int count;
939
940         VM_BUG_ON_PAGE(!PageLocked(page), page);
941         if (unlikely(PageKsm(page)))
942                 return false;
943         count = page_trans_huge_mapcount(page, total_mapcount);
944         if (count <= 1 && PageSwapCache(page)) {
945                 count += page_swapcount(page);
946                 if (count != 1)
947                         goto out;
948                 if (!PageWriteback(page)) {
949                         delete_from_swap_cache(page);
950                         SetPageDirty(page);
951                 } else {
952                         swp_entry_t entry;
953                         struct swap_info_struct *p;
954
955                         entry.val = page_private(page);
956                         p = swap_info_get(entry);
957                         if (p->flags & SWP_STABLE_WRITES) {
958                                 spin_unlock(&p->lock);
959                                 return false;
960                         }
961                         spin_unlock(&p->lock);
962                 }
963         }
964 out:
965         return count <= 1;
966 }
967
968 /*
969  * If swap is getting full, or if there are no more mappings of this page,
970  * then try_to_free_swap is called to free its swap space.
971  */
972 int try_to_free_swap(struct page *page)
973 {
974         VM_BUG_ON_PAGE(!PageLocked(page), page);
975
976         if (!PageSwapCache(page))
977                 return 0;
978         if (PageWriteback(page))
979                 return 0;
980         if (page_swapcount(page))
981                 return 0;
982
983         /*
984          * Once hibernation has begun to create its image of memory,
985          * there's a danger that one of the calls to try_to_free_swap()
986          * - most probably a call from __try_to_reclaim_swap() while
987          * hibernation is allocating its own swap pages for the image,
988          * but conceivably even a call from memory reclaim - will free
989          * the swap from a page which has already been recorded in the
990          * image as a clean swapcache page, and then reuse its swap for
991          * another page of the image.  On waking from hibernation, the
992          * original page might be freed under memory pressure, then
993          * later read back in from swap, now with the wrong data.
994          *
995          * Hibernation suspends storage while it is writing the image
996          * to disk so check that here.
997          */
998         if (pm_suspended_storage())
999                 return 0;
1000
1001         delete_from_swap_cache(page);
1002         SetPageDirty(page);
1003         return 1;
1004 }
1005
1006 /*
1007  * Free the swap entry like above, but also try to
1008  * free the page cache entry if it is the last user.
1009  */
1010 int free_swap_and_cache(swp_entry_t entry)
1011 {
1012         struct swap_info_struct *p;
1013         struct page *page = NULL;
1014
1015         if (non_swap_entry(entry))
1016                 return 1;
1017
1018         p = swap_info_get(entry);
1019         if (p) {
1020                 if (swap_entry_free(p, entry, 1) == SWAP_HAS_CACHE) {
1021                         page = find_get_page(swap_address_space(entry),
1022                                              swp_offset(entry));
1023                         if (page && !trylock_page(page)) {
1024                                 put_page(page);
1025                                 page = NULL;
1026                         }
1027                 }
1028                 spin_unlock(&p->lock);
1029         }
1030         if (page) {
1031                 /*
1032                  * Not mapped elsewhere, or swap space full? Free it!
1033                  * Also recheck PageSwapCache now page is locked (above).
1034                  */
1035                 if (PageSwapCache(page) && !PageWriteback(page) &&
1036                     (!page_mapped(page) || mem_cgroup_swap_full(page))) {
1037                         delete_from_swap_cache(page);
1038                         SetPageDirty(page);
1039                 }
1040                 unlock_page(page);
1041                 put_page(page);
1042         }
1043         return p != NULL;
1044 }
1045
1046 #ifdef CONFIG_HIBERNATION
1047 /*
1048  * Find the swap type that corresponds to given device (if any).
1049  *
1050  * @offset - number of the PAGE_SIZE-sized block of the device, starting
1051  * from 0, in which the swap header is expected to be located.
1052  *
1053  * This is needed for the suspend to disk (aka swsusp).
1054  */
1055 int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
1056 {
1057         struct block_device *bdev = NULL;
1058         int type;
1059
1060         if (device)
1061                 bdev = bdget(device);
1062
1063         spin_lock(&swap_lock);
1064         for (type = 0; type < nr_swapfiles; type++) {
1065                 struct swap_info_struct *sis = swap_info[type];
1066
1067                 if (!(sis->flags & SWP_WRITEOK))
1068                         continue;
1069
1070                 if (!bdev) {
1071                         if (bdev_p)
1072                                 *bdev_p = bdgrab(sis->bdev);
1073
1074                         spin_unlock(&swap_lock);
1075                         return type;
1076                 }
1077                 if (bdev == sis->bdev) {
1078                         struct swap_extent *se = &sis->first_swap_extent;
1079
1080                         if (se->start_block == offset) {
1081                                 if (bdev_p)
1082                                         *bdev_p = bdgrab(sis->bdev);
1083
1084                                 spin_unlock(&swap_lock);
1085                                 bdput(bdev);
1086                                 return type;
1087                         }
1088                 }
1089         }
1090         spin_unlock(&swap_lock);
1091         if (bdev)
1092                 bdput(bdev);
1093
1094         return -ENODEV;
1095 }
1096
1097 /*
1098  * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1099  * corresponding to given index in swap_info (swap type).
1100  */
1101 sector_t swapdev_block(int type, pgoff_t offset)
1102 {
1103         struct block_device *bdev;
1104
1105         if ((unsigned int)type >= nr_swapfiles)
1106                 return 0;
1107         if (!(swap_info[type]->flags & SWP_WRITEOK))
1108                 return 0;
1109         return map_swap_entry(swp_entry(type, offset), &bdev);
1110 }
1111
1112 /*
1113  * Return either the total number of swap pages of given type, or the number
1114  * of free pages of that type (depending on @free)
1115  *
1116  * This is needed for software suspend
1117  */
1118 unsigned int count_swap_pages(int type, int free)
1119 {
1120         unsigned int n = 0;
1121
1122         spin_lock(&swap_lock);
1123         if ((unsigned int)type < nr_swapfiles) {
1124                 struct swap_info_struct *sis = swap_info[type];
1125
1126                 spin_lock(&sis->lock);
1127                 if (sis->flags & SWP_WRITEOK) {
1128                         n = sis->pages;
1129                         if (free)
1130                                 n -= sis->inuse_pages;
1131                 }
1132                 spin_unlock(&sis->lock);
1133         }
1134         spin_unlock(&swap_lock);
1135         return n;
1136 }
1137 #endif /* CONFIG_HIBERNATION */
1138
1139 static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte)
1140 {
1141         return pte_same(pte_swp_clear_soft_dirty(pte), swp_pte);
1142 }
1143
1144 /*
1145  * No need to decide whether this PTE shares the swap entry with others,
1146  * just let do_wp_page work it out if a write is requested later - to
1147  * force COW, vm_page_prot omits write permission from any private vma.
1148  */
1149 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1150                 unsigned long addr, swp_entry_t entry, struct page *page)
1151 {
1152         struct page *swapcache;
1153         struct mem_cgroup *memcg;
1154         spinlock_t *ptl;
1155         pte_t *pte;
1156         int ret = 1;
1157
1158         swapcache = page;
1159         page = ksm_might_need_to_copy(page, vma, addr);
1160         if (unlikely(!page))
1161                 return -ENOMEM;
1162
1163         if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL,
1164                                 &memcg, false)) {
1165                 ret = -ENOMEM;
1166                 goto out_nolock;
1167         }
1168
1169         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1170         if (unlikely(!pte_same_as_swp(*pte, swp_entry_to_pte(entry)))) {
1171                 mem_cgroup_cancel_charge(page, memcg, false);
1172                 ret = 0;
1173                 goto out;
1174         }
1175
1176         dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1177         inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
1178         get_page(page);
1179         set_pte_at(vma->vm_mm, addr, pte,
1180                    pte_mkold(mk_pte(page, vma->vm_page_prot)));
1181         if (page == swapcache) {
1182                 page_add_anon_rmap(page, vma, addr, false);
1183                 mem_cgroup_commit_charge(page, memcg, true, false);
1184         } else { /* ksm created a completely new copy */
1185                 page_add_new_anon_rmap(page, vma, addr, false);
1186                 mem_cgroup_commit_charge(page, memcg, false, false);
1187                 lru_cache_add_active_or_unevictable(page, vma);
1188         }
1189         swap_free(entry);
1190         /*
1191          * Move the page to the active list so it is not
1192          * immediately swapped out again after swapon.
1193          */
1194         activate_page(page);
1195 out:
1196         pte_unmap_unlock(pte, ptl);
1197 out_nolock:
1198         if (page != swapcache) {
1199                 unlock_page(page);
1200                 put_page(page);
1201         }
1202         return ret;
1203 }
1204
1205 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
1206                                 unsigned long addr, unsigned long end,
1207                                 swp_entry_t entry, struct page *page)
1208 {
1209         pte_t swp_pte = swp_entry_to_pte(entry);
1210         pte_t *pte;
1211         int ret = 0;
1212
1213         /*
1214          * We don't actually need pte lock while scanning for swp_pte: since
1215          * we hold page lock and mmap_sem, swp_pte cannot be inserted into the
1216          * page table while we're scanning; though it could get zapped, and on
1217          * some architectures (e.g. x86_32 with PAE) we might catch a glimpse
1218          * of unmatched parts which look like swp_pte, so unuse_pte must
1219          * recheck under pte lock.  Scanning without pte lock lets it be
1220          * preemptable whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE.
1221          */
1222         pte = pte_offset_map(pmd, addr);
1223         do {
1224                 /*
1225                  * swapoff spends a _lot_ of time in this loop!
1226                  * Test inline before going to call unuse_pte.
1227                  */
1228                 if (unlikely(pte_same_as_swp(*pte, swp_pte))) {
1229                         pte_unmap(pte);
1230                         ret = unuse_pte(vma, pmd, addr, entry, page);
1231                         if (ret)
1232                                 goto out;
1233                         pte = pte_offset_map(pmd, addr);
1234                 }
1235         } while (pte++, addr += PAGE_SIZE, addr != end);
1236         pte_unmap(pte - 1);
1237 out:
1238         return ret;
1239 }
1240
1241 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
1242                                 unsigned long addr, unsigned long end,
1243                                 swp_entry_t entry, struct page *page)
1244 {
1245         pmd_t *pmd;
1246         unsigned long next;
1247         int ret;
1248
1249         pmd = pmd_offset(pud, addr);
1250         do {
1251                 next = pmd_addr_end(addr, end);
1252                 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1253                         continue;
1254                 ret = unuse_pte_range(vma, pmd, addr, next, entry, page);
1255                 if (ret)
1256                         return ret;
1257         } while (pmd++, addr = next, addr != end);
1258         return 0;
1259 }
1260
1261 static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
1262                                 unsigned long addr, unsigned long end,
1263                                 swp_entry_t entry, struct page *page)
1264 {
1265         pud_t *pud;
1266         unsigned long next;
1267         int ret;
1268
1269         pud = pud_offset(pgd, addr);
1270         do {
1271                 next = pud_addr_end(addr, end);
1272                 if (pud_none_or_clear_bad(pud))
1273                         continue;
1274                 ret = unuse_pmd_range(vma, pud, addr, next, entry, page);
1275                 if (ret)
1276                         return ret;
1277         } while (pud++, addr = next, addr != end);
1278         return 0;
1279 }
1280
1281 static int unuse_vma(struct vm_area_struct *vma,
1282                                 swp_entry_t entry, struct page *page)
1283 {
1284         pgd_t *pgd;
1285         unsigned long addr, end, next;
1286         int ret;
1287
1288         if (page_anon_vma(page)) {
1289                 addr = page_address_in_vma(page, vma);
1290                 if (addr == -EFAULT)
1291                         return 0;
1292                 else
1293                         end = addr + PAGE_SIZE;
1294         } else {
1295                 addr = vma->vm_start;
1296                 end = vma->vm_end;
1297         }
1298
1299         pgd = pgd_offset(vma->vm_mm, addr);
1300         do {
1301                 next = pgd_addr_end(addr, end);
1302                 if (pgd_none_or_clear_bad(pgd))
1303                         continue;
1304                 ret = unuse_pud_range(vma, pgd, addr, next, entry, page);
1305                 if (ret)
1306                         return ret;
1307         } while (pgd++, addr = next, addr != end);
1308         return 0;
1309 }
1310
1311 static int unuse_mm(struct mm_struct *mm,
1312                                 swp_entry_t entry, struct page *page)
1313 {
1314         struct vm_area_struct *vma;
1315         int ret = 0;
1316
1317         if (!down_read_trylock(&mm->mmap_sem)) {
1318                 /*
1319                  * Activate page so shrink_inactive_list is unlikely to unmap
1320                  * its ptes while lock is dropped, so swapoff can make progress.
1321                  */
1322                 activate_page(page);
1323                 unlock_page(page);
1324                 down_read(&mm->mmap_sem);
1325                 lock_page(page);
1326         }
1327         for (vma = mm->mmap; vma; vma = vma->vm_next) {
1328                 if (vma->anon_vma && (ret = unuse_vma(vma, entry, page)))
1329                         break;
1330         }
1331         up_read(&mm->mmap_sem);
1332         return (ret < 0)? ret: 0;
1333 }
1334
1335 /*
1336  * Scan swap_map (or frontswap_map if frontswap parameter is true)
1337  * from current position to next entry still in use.
1338  * Recycle to start on reaching the end, returning 0 when empty.
1339  */
1340 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
1341                                         unsigned int prev, bool frontswap)
1342 {
1343         unsigned int max = si->max;
1344         unsigned int i = prev;
1345         unsigned char count;
1346
1347         /*
1348          * No need for swap_lock here: we're just looking
1349          * for whether an entry is in use, not modifying it; false
1350          * hits are okay, and sys_swapoff() has already prevented new
1351          * allocations from this area (while holding swap_lock).
1352          */
1353         for (;;) {
1354                 if (++i >= max) {
1355                         if (!prev) {
1356                                 i = 0;
1357                                 break;
1358                         }
1359                         /*
1360                          * No entries in use at top of swap_map,
1361                          * loop back to start and recheck there.
1362                          */
1363                         max = prev + 1;
1364                         prev = 0;
1365                         i = 1;
1366                 }
1367                 if (frontswap) {
1368                         if (frontswap_test(si, i))
1369                                 break;
1370                         else
1371                                 continue;
1372                 }
1373                 count = READ_ONCE(si->swap_map[i]);
1374                 if (count && swap_count(count) != SWAP_MAP_BAD)
1375                         break;
1376         }
1377         return i;
1378 }
1379
1380 /*
1381  * We completely avoid races by reading each swap page in advance,
1382  * and then search for the process using it.  All the necessary
1383  * page table adjustments can then be made atomically.
1384  *
1385  * if the boolean frontswap is true, only unuse pages_to_unuse pages;
1386  * pages_to_unuse==0 means all pages; ignored if frontswap is false
1387  */
1388 int try_to_unuse(unsigned int type, bool frontswap,
1389                  unsigned long pages_to_unuse)
1390 {
1391         struct swap_info_struct *si = swap_info[type];
1392         struct mm_struct *start_mm;
1393         volatile unsigned char *swap_map; /* swap_map is accessed without
1394                                            * locking. Mark it as volatile
1395                                            * to prevent compiler doing
1396                                            * something odd.
1397                                            */
1398         unsigned char swcount;
1399         struct page *page;
1400         swp_entry_t entry;
1401         unsigned int i = 0;
1402         int retval = 0;
1403
1404         /*
1405          * When searching mms for an entry, a good strategy is to
1406          * start at the first mm we freed the previous entry from
1407          * (though actually we don't notice whether we or coincidence
1408          * freed the entry).  Initialize this start_mm with a hold.
1409          *
1410          * A simpler strategy would be to start at the last mm we
1411          * freed the previous entry from; but that would take less
1412          * advantage of mmlist ordering, which clusters forked mms
1413          * together, child after parent.  If we race with dup_mmap(), we
1414          * prefer to resolve parent before child, lest we miss entries
1415          * duplicated after we scanned child: using last mm would invert
1416          * that.
1417          */
1418         start_mm = &init_mm;
1419         atomic_inc(&init_mm.mm_users);
1420
1421         /*
1422          * Keep on scanning until all entries have gone.  Usually,
1423          * one pass through swap_map is enough, but not necessarily:
1424          * there are races when an instance of an entry might be missed.
1425          */
1426         while ((i = find_next_to_unuse(si, i, frontswap)) != 0) {
1427                 if (signal_pending(current)) {
1428                         retval = -EINTR;
1429                         break;
1430                 }
1431
1432                 /*
1433                  * Get a page for the entry, using the existing swap
1434                  * cache page if there is one.  Otherwise, get a clean
1435                  * page and read the swap into it.
1436                  */
1437                 swap_map = &si->swap_map[i];
1438                 entry = swp_entry(type, i);
1439                 page = read_swap_cache_async(entry,
1440                                         GFP_HIGHUSER_MOVABLE, NULL, 0);
1441                 if (!page) {
1442                         /*
1443                          * Either swap_duplicate() failed because entry
1444                          * has been freed independently, and will not be
1445                          * reused since sys_swapoff() already disabled
1446                          * allocation from here, or alloc_page() failed.
1447                          */
1448                         swcount = *swap_map;
1449                         /*
1450                          * We don't hold lock here, so the swap entry could be
1451                          * SWAP_MAP_BAD (when the cluster is discarding).
1452                          * Instead of fail out, We can just skip the swap
1453                          * entry because swapoff will wait for discarding
1454                          * finish anyway.
1455                          */
1456                         if (!swcount || swcount == SWAP_MAP_BAD)
1457                                 continue;
1458                         retval = -ENOMEM;
1459                         break;
1460                 }
1461
1462                 /*
1463                  * Don't hold on to start_mm if it looks like exiting.
1464                  */
1465                 if (atomic_read(&start_mm->mm_users) == 1) {
1466                         mmput(start_mm);
1467                         start_mm = &init_mm;
1468                         atomic_inc(&init_mm.mm_users);
1469                 }
1470
1471                 /*
1472                  * Wait for and lock page.  When do_swap_page races with
1473                  * try_to_unuse, do_swap_page can handle the fault much
1474                  * faster than try_to_unuse can locate the entry.  This
1475                  * apparently redundant "wait_on_page_locked" lets try_to_unuse
1476                  * defer to do_swap_page in such a case - in some tests,
1477                  * do_swap_page and try_to_unuse repeatedly compete.
1478                  */
1479                 wait_on_page_locked(page);
1480                 wait_on_page_writeback(page);
1481                 lock_page(page);
1482                 wait_on_page_writeback(page);
1483
1484                 /*
1485                  * Remove all references to entry.
1486                  */
1487                 swcount = *swap_map;
1488                 if (swap_count(swcount) == SWAP_MAP_SHMEM) {
1489                         retval = shmem_unuse(entry, page);
1490                         /* page has already been unlocked and released */
1491                         if (retval < 0)
1492                                 break;
1493                         continue;
1494                 }
1495                 if (swap_count(swcount) && start_mm != &init_mm)
1496                         retval = unuse_mm(start_mm, entry, page);
1497
1498                 if (swap_count(*swap_map)) {
1499                         int set_start_mm = (*swap_map >= swcount);
1500                         struct list_head *p = &start_mm->mmlist;
1501                         struct mm_struct *new_start_mm = start_mm;
1502                         struct mm_struct *prev_mm = start_mm;
1503                         struct mm_struct *mm;
1504
1505                         atomic_inc(&new_start_mm->mm_users);
1506                         atomic_inc(&prev_mm->mm_users);
1507                         spin_lock(&mmlist_lock);
1508                         while (swap_count(*swap_map) && !retval &&
1509                                         (p = p->next) != &start_mm->mmlist) {
1510                                 mm = list_entry(p, struct mm_struct, mmlist);
1511                                 if (!atomic_inc_not_zero(&mm->mm_users))
1512                                         continue;
1513                                 spin_unlock(&mmlist_lock);
1514                                 mmput(prev_mm);
1515                                 prev_mm = mm;
1516
1517                                 cond_resched();
1518
1519                                 swcount = *swap_map;
1520                                 if (!swap_count(swcount)) /* any usage ? */
1521                                         ;
1522                                 else if (mm == &init_mm)
1523                                         set_start_mm = 1;
1524                                 else
1525                                         retval = unuse_mm(mm, entry, page);
1526
1527                                 if (set_start_mm && *swap_map < swcount) {
1528                                         mmput(new_start_mm);
1529                                         atomic_inc(&mm->mm_users);
1530                                         new_start_mm = mm;
1531                                         set_start_mm = 0;
1532                                 }
1533                                 spin_lock(&mmlist_lock);
1534                         }
1535                         spin_unlock(&mmlist_lock);
1536                         mmput(prev_mm);
1537                         mmput(start_mm);
1538                         start_mm = new_start_mm;
1539                 }
1540                 if (retval) {
1541                         unlock_page(page);
1542                         put_page(page);
1543                         break;
1544                 }
1545
1546                 /*
1547                  * If a reference remains (rare), we would like to leave
1548                  * the page in the swap cache; but try_to_unmap could
1549                  * then re-duplicate the entry once we drop page lock,
1550                  * so we might loop indefinitely; also, that page could
1551                  * not be swapped out to other storage meanwhile.  So:
1552                  * delete from cache even if there's another reference,
1553                  * after ensuring that the data has been saved to disk -
1554                  * since if the reference remains (rarer), it will be
1555                  * read from disk into another page.  Splitting into two
1556                  * pages would be incorrect if swap supported "shared
1557                  * private" pages, but they are handled by tmpfs files.
1558                  *
1559                  * Given how unuse_vma() targets one particular offset
1560                  * in an anon_vma, once the anon_vma has been determined,
1561                  * this splitting happens to be just what is needed to
1562                  * handle where KSM pages have been swapped out: re-reading
1563                  * is unnecessarily slow, but we can fix that later on.
1564                  */
1565                 if (swap_count(*swap_map) &&
1566                      PageDirty(page) && PageSwapCache(page)) {
1567                         struct writeback_control wbc = {
1568                                 .sync_mode = WB_SYNC_NONE,
1569                         };
1570
1571                         swap_writepage(page, &wbc);
1572                         lock_page(page);
1573                         wait_on_page_writeback(page);
1574                 }
1575
1576                 /*
1577                  * It is conceivable that a racing task removed this page from
1578                  * swap cache just before we acquired the page lock at the top,
1579                  * or while we dropped it in unuse_mm().  The page might even
1580                  * be back in swap cache on another swap area: that we must not
1581                  * delete, since it may not have been written out to swap yet.
1582                  */
1583                 if (PageSwapCache(page) &&
1584                     likely(page_private(page) == entry.val))
1585                         delete_from_swap_cache(page);
1586
1587                 /*
1588                  * So we could skip searching mms once swap count went
1589                  * to 1, we did not mark any present ptes as dirty: must
1590                  * mark page dirty so shrink_page_list will preserve it.
1591                  */
1592                 SetPageDirty(page);
1593                 unlock_page(page);
1594                 put_page(page);
1595
1596                 /*
1597                  * Make sure that we aren't completely killing
1598                  * interactive performance.
1599                  */
1600                 cond_resched();
1601                 if (frontswap && pages_to_unuse > 0) {
1602                         if (!--pages_to_unuse)
1603                                 break;
1604                 }
1605         }
1606
1607         mmput(start_mm);
1608         return retval;
1609 }
1610
1611 /*
1612  * After a successful try_to_unuse, if no swap is now in use, we know
1613  * we can empty the mmlist.  swap_lock must be held on entry and exit.
1614  * Note that mmlist_lock nests inside swap_lock, and an mm must be
1615  * added to the mmlist just after page_duplicate - before would be racy.
1616  */
1617 static void drain_mmlist(void)
1618 {
1619         struct list_head *p, *next;
1620         unsigned int type;
1621
1622         for (type = 0; type < nr_swapfiles; type++)
1623                 if (swap_info[type]->inuse_pages)
1624                         return;
1625         spin_lock(&mmlist_lock);
1626         list_for_each_safe(p, next, &init_mm.mmlist)
1627                 list_del_init(p);
1628         spin_unlock(&mmlist_lock);
1629 }
1630
1631 /*
1632  * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
1633  * corresponds to page offset for the specified swap entry.
1634  * Note that the type of this function is sector_t, but it returns page offset
1635  * into the bdev, not sector offset.
1636  */
1637 static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev)
1638 {
1639         struct swap_info_struct *sis;
1640         struct swap_extent *start_se;
1641         struct swap_extent *se;
1642         pgoff_t offset;
1643
1644         sis = swap_info[swp_type(entry)];
1645         *bdev = sis->bdev;
1646
1647         offset = swp_offset(entry);
1648         start_se = sis->curr_swap_extent;
1649         se = start_se;
1650
1651         for ( ; ; ) {
1652                 if (se->start_page <= offset &&
1653                                 offset < (se->start_page + se->nr_pages)) {
1654                         return se->start_block + (offset - se->start_page);
1655                 }
1656                 se = list_next_entry(se, list);
1657                 sis->curr_swap_extent = se;
1658                 BUG_ON(se == start_se);         /* It *must* be present */
1659         }
1660 }
1661
1662 /*
1663  * Returns the page offset into bdev for the specified page's swap entry.
1664  */
1665 sector_t map_swap_page(struct page *page, struct block_device **bdev)
1666 {
1667         swp_entry_t entry;
1668         entry.val = page_private(page);
1669         return map_swap_entry(entry, bdev);
1670 }
1671
1672 /*
1673  * Free all of a swapdev's extent information
1674  */
1675 static void destroy_swap_extents(struct swap_info_struct *sis)
1676 {
1677         while (!list_empty(&sis->first_swap_extent.list)) {
1678                 struct swap_extent *se;
1679
1680                 se = list_first_entry(&sis->first_swap_extent.list,
1681                                 struct swap_extent, list);
1682                 list_del(&se->list);
1683                 kfree(se);
1684         }
1685
1686         if (sis->flags & SWP_FILE) {
1687                 struct file *swap_file = sis->swap_file;
1688                 struct address_space *mapping = swap_file->f_mapping;
1689
1690                 sis->flags &= ~SWP_FILE;
1691                 mapping->a_ops->swap_deactivate(swap_file);
1692         }
1693 }
1694
1695 /*
1696  * Add a block range (and the corresponding page range) into this swapdev's
1697  * extent list.  The extent list is kept sorted in page order.
1698  *
1699  * This function rather assumes that it is called in ascending page order.
1700  */
1701 int
1702 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
1703                 unsigned long nr_pages, sector_t start_block)
1704 {
1705         struct swap_extent *se;
1706         struct swap_extent *new_se;
1707         struct list_head *lh;
1708
1709         if (start_page == 0) {
1710                 se = &sis->first_swap_extent;
1711                 sis->curr_swap_extent = se;
1712                 se->start_page = 0;
1713                 se->nr_pages = nr_pages;
1714                 se->start_block = start_block;
1715                 return 1;
1716         } else {
1717                 lh = sis->first_swap_extent.list.prev;  /* Highest extent */
1718                 se = list_entry(lh, struct swap_extent, list);
1719                 BUG_ON(se->start_page + se->nr_pages != start_page);
1720                 if (se->start_block + se->nr_pages == start_block) {
1721                         /* Merge it */
1722                         se->nr_pages += nr_pages;
1723                         return 0;
1724                 }
1725         }
1726
1727         /*
1728          * No merge.  Insert a new extent, preserving ordering.
1729          */
1730         new_se = kmalloc(sizeof(*se), GFP_KERNEL);
1731         if (new_se == NULL)
1732                 return -ENOMEM;
1733         new_se->start_page = start_page;
1734         new_se->nr_pages = nr_pages;
1735         new_se->start_block = start_block;
1736
1737         list_add_tail(&new_se->list, &sis->first_swap_extent.list);
1738         return 1;
1739 }
1740
1741 /*
1742  * A `swap extent' is a simple thing which maps a contiguous range of pages
1743  * onto a contiguous range of disk blocks.  An ordered list of swap extents
1744  * is built at swapon time and is then used at swap_writepage/swap_readpage
1745  * time for locating where on disk a page belongs.
1746  *
1747  * If the swapfile is an S_ISBLK block device, a single extent is installed.
1748  * This is done so that the main operating code can treat S_ISBLK and S_ISREG
1749  * swap files identically.
1750  *
1751  * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
1752  * extent list operates in PAGE_SIZE disk blocks.  Both S_ISREG and S_ISBLK
1753  * swapfiles are handled *identically* after swapon time.
1754  *
1755  * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
1756  * and will parse them into an ordered extent list, in PAGE_SIZE chunks.  If
1757  * some stray blocks are found which do not fall within the PAGE_SIZE alignment
1758  * requirements, they are simply tossed out - we will never use those blocks
1759  * for swapping.
1760  *
1761  * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon.  This
1762  * prevents root from shooting her foot off by ftruncating an in-use swapfile,
1763  * which will scribble on the fs.
1764  *
1765  * The amount of disk space which a single swap extent represents varies.
1766  * Typically it is in the 1-4 megabyte range.  So we can have hundreds of
1767  * extents in the list.  To avoid much list walking, we cache the previous
1768  * search location in `curr_swap_extent', and start new searches from there.
1769  * This is extremely effective.  The average number of iterations in
1770  * map_swap_page() has been measured at about 0.3 per page.  - akpm.
1771  */
1772 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
1773 {
1774         struct file *swap_file = sis->swap_file;
1775         struct address_space *mapping = swap_file->f_mapping;
1776         struct inode *inode = mapping->host;
1777         int ret;
1778
1779         if (S_ISBLK(inode->i_mode)) {
1780                 ret = add_swap_extent(sis, 0, sis->max, 0);
1781                 *span = sis->pages;
1782                 return ret;
1783         }
1784
1785         if (mapping->a_ops->swap_activate) {
1786                 ret = mapping->a_ops->swap_activate(sis, swap_file, span);
1787                 if (!ret) {
1788                         sis->flags |= SWP_FILE;
1789                         ret = add_swap_extent(sis, 0, sis->max, 0);
1790                         *span = sis->pages;
1791                 }
1792                 return ret;
1793         }
1794
1795         return generic_swapfile_activate(sis, swap_file, span);
1796 }
1797
1798 static void _enable_swap_info(struct swap_info_struct *p, int prio,
1799                                 unsigned char *swap_map,
1800                                 struct swap_cluster_info *cluster_info)
1801 {
1802         if (prio >= 0)
1803                 p->prio = prio;
1804         else
1805                 p->prio = --least_priority;
1806         /*
1807          * the plist prio is negated because plist ordering is
1808          * low-to-high, while swap ordering is high-to-low
1809          */
1810         p->list.prio = -p->prio;
1811         p->avail_list.prio = -p->prio;
1812         p->swap_map = swap_map;
1813         p->cluster_info = cluster_info;
1814         p->flags |= SWP_WRITEOK;
1815         atomic_long_add(p->pages, &nr_swap_pages);
1816         total_swap_pages += p->pages;
1817
1818         assert_spin_locked(&swap_lock);
1819         /*
1820          * both lists are plists, and thus priority ordered.
1821          * swap_active_head needs to be priority ordered for swapoff(),
1822          * which on removal of any swap_info_struct with an auto-assigned
1823          * (i.e. negative) priority increments the auto-assigned priority
1824          * of any lower-priority swap_info_structs.
1825          * swap_avail_head needs to be priority ordered for get_swap_page(),
1826          * which allocates swap pages from the highest available priority
1827          * swap_info_struct.
1828          */
1829         plist_add(&p->list, &swap_active_head);
1830         spin_lock(&swap_avail_lock);
1831         plist_add(&p->avail_list, &swap_avail_head);
1832         spin_unlock(&swap_avail_lock);
1833 }
1834
1835 static void enable_swap_info(struct swap_info_struct *p, int prio,
1836                                 unsigned char *swap_map,
1837                                 struct swap_cluster_info *cluster_info,
1838                                 unsigned long *frontswap_map)
1839 {
1840         frontswap_init(p->type, frontswap_map);
1841         spin_lock(&swap_lock);
1842         spin_lock(&p->lock);
1843          _enable_swap_info(p, prio, swap_map, cluster_info);
1844         spin_unlock(&p->lock);
1845         spin_unlock(&swap_lock);
1846 }
1847
1848 static void reinsert_swap_info(struct swap_info_struct *p)
1849 {
1850         spin_lock(&swap_lock);
1851         spin_lock(&p->lock);
1852         _enable_swap_info(p, p->prio, p->swap_map, p->cluster_info);
1853         spin_unlock(&p->lock);
1854         spin_unlock(&swap_lock);
1855 }
1856
1857 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
1858 {
1859         struct swap_info_struct *p = NULL;
1860         unsigned char *swap_map;
1861         struct swap_cluster_info *cluster_info;
1862         unsigned long *frontswap_map;
1863         struct file *swap_file, *victim;
1864         struct address_space *mapping;
1865         struct inode *inode;
1866         struct filename *pathname;
1867         int err, found = 0;
1868         unsigned int old_block_size;
1869
1870         if (!capable(CAP_SYS_ADMIN))
1871                 return -EPERM;
1872
1873         BUG_ON(!current->mm);
1874
1875         pathname = getname(specialfile);
1876         if (IS_ERR(pathname))
1877                 return PTR_ERR(pathname);
1878
1879         victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
1880         err = PTR_ERR(victim);
1881         if (IS_ERR(victim))
1882                 goto out;
1883
1884         mapping = victim->f_mapping;
1885         spin_lock(&swap_lock);
1886         plist_for_each_entry(p, &swap_active_head, list) {
1887                 if (p->flags & SWP_WRITEOK) {
1888                         if (p->swap_file->f_mapping == mapping) {
1889                                 found = 1;
1890                                 break;
1891                         }
1892                 }
1893         }
1894         if (!found) {
1895                 err = -EINVAL;
1896                 spin_unlock(&swap_lock);
1897                 goto out_dput;
1898         }
1899         if (!security_vm_enough_memory_mm(current->mm, p->pages))
1900                 vm_unacct_memory(p->pages);
1901         else {
1902                 err = -ENOMEM;
1903                 spin_unlock(&swap_lock);
1904                 goto out_dput;
1905         }
1906         spin_lock(&swap_avail_lock);
1907         plist_del(&p->avail_list, &swap_avail_head);
1908         spin_unlock(&swap_avail_lock);
1909         spin_lock(&p->lock);
1910         if (p->prio < 0) {
1911                 struct swap_info_struct *si = p;
1912
1913                 plist_for_each_entry_continue(si, &swap_active_head, list) {
1914                         si->prio++;
1915                         si->list.prio--;
1916                         si->avail_list.prio--;
1917                 }
1918                 least_priority++;
1919         }
1920         plist_del(&p->list, &swap_active_head);
1921         atomic_long_sub(p->pages, &nr_swap_pages);
1922         total_swap_pages -= p->pages;
1923         p->flags &= ~SWP_WRITEOK;
1924         spin_unlock(&p->lock);
1925         spin_unlock(&swap_lock);
1926
1927         set_current_oom_origin();
1928         err = try_to_unuse(p->type, false, 0); /* force unuse all pages */
1929         clear_current_oom_origin();
1930
1931         if (err) {
1932                 /* re-insert swap space back into swap_list */
1933                 reinsert_swap_info(p);
1934                 goto out_dput;
1935         }
1936
1937         flush_work(&p->discard_work);
1938
1939         destroy_swap_extents(p);
1940         if (p->flags & SWP_CONTINUED)
1941                 free_swap_count_continuations(p);
1942
1943         mutex_lock(&swapon_mutex);
1944         spin_lock(&swap_lock);
1945         spin_lock(&p->lock);
1946         drain_mmlist();
1947
1948         /* wait for anyone still in scan_swap_map */
1949         p->highest_bit = 0;             /* cuts scans short */
1950         while (p->flags >= SWP_SCANNING) {
1951                 spin_unlock(&p->lock);
1952                 spin_unlock(&swap_lock);
1953                 schedule_timeout_uninterruptible(1);
1954                 spin_lock(&swap_lock);
1955                 spin_lock(&p->lock);
1956         }
1957
1958         swap_file = p->swap_file;
1959         old_block_size = p->old_block_size;
1960         p->swap_file = NULL;
1961         p->max = 0;
1962         swap_map = p->swap_map;
1963         p->swap_map = NULL;
1964         cluster_info = p->cluster_info;
1965         p->cluster_info = NULL;
1966         frontswap_map = frontswap_map_get(p);
1967         spin_unlock(&p->lock);
1968         spin_unlock(&swap_lock);
1969         frontswap_invalidate_area(p->type);
1970         frontswap_map_set(p, NULL);
1971         mutex_unlock(&swapon_mutex);
1972         free_percpu(p->percpu_cluster);
1973         p->percpu_cluster = NULL;
1974         vfree(swap_map);
1975         vfree(cluster_info);
1976         vfree(frontswap_map);
1977         /* Destroy swap account information */
1978         swap_cgroup_swapoff(p->type);
1979
1980         inode = mapping->host;
1981         if (S_ISBLK(inode->i_mode)) {
1982                 struct block_device *bdev = I_BDEV(inode);
1983                 set_blocksize(bdev, old_block_size);
1984                 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
1985         } else {
1986                 inode_lock(inode);
1987                 inode->i_flags &= ~S_SWAPFILE;
1988                 inode_unlock(inode);
1989         }
1990         filp_close(swap_file, NULL);
1991
1992         /*
1993          * Clear the SWP_USED flag after all resources are freed so that swapon
1994          * can reuse this swap_info in alloc_swap_info() safely.  It is ok to
1995          * not hold p->lock after we cleared its SWP_WRITEOK.
1996          */
1997         spin_lock(&swap_lock);
1998         p->flags = 0;
1999         spin_unlock(&swap_lock);
2000
2001         err = 0;
2002         atomic_inc(&proc_poll_event);
2003         wake_up_interruptible(&proc_poll_wait);
2004
2005 out_dput:
2006         filp_close(victim, NULL);
2007 out:
2008         putname(pathname);
2009         return err;
2010 }
2011
2012 #ifdef CONFIG_PROC_FS
2013 static unsigned swaps_poll(struct file *file, poll_table *wait)
2014 {
2015         struct seq_file *seq = file->private_data;
2016
2017         poll_wait(file, &proc_poll_wait, wait);
2018
2019         if (seq->poll_event != atomic_read(&proc_poll_event)) {
2020                 seq->poll_event = atomic_read(&proc_poll_event);
2021                 return POLLIN | POLLRDNORM | POLLERR | POLLPRI;
2022         }
2023
2024         return POLLIN | POLLRDNORM;
2025 }
2026
2027 /* iterator */
2028 static void *swap_start(struct seq_file *swap, loff_t *pos)
2029 {
2030         struct swap_info_struct *si;
2031         int type;
2032         loff_t l = *pos;
2033
2034         mutex_lock(&swapon_mutex);
2035
2036         if (!l)
2037                 return SEQ_START_TOKEN;
2038
2039         for (type = 0; type < nr_swapfiles; type++) {
2040                 smp_rmb();      /* read nr_swapfiles before swap_info[type] */
2041                 si = swap_info[type];
2042                 if (!(si->flags & SWP_USED) || !si->swap_map)
2043                         continue;
2044                 if (!--l)
2045                         return si;
2046         }
2047
2048         return NULL;
2049 }
2050
2051 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
2052 {
2053         struct swap_info_struct *si = v;
2054         int type;
2055
2056         if (v == SEQ_START_TOKEN)
2057                 type = 0;
2058         else
2059                 type = si->type + 1;
2060
2061         for (; type < nr_swapfiles; type++) {
2062                 smp_rmb();      /* read nr_swapfiles before swap_info[type] */
2063                 si = swap_info[type];
2064                 if (!(si->flags & SWP_USED) || !si->swap_map)
2065                         continue;
2066                 ++*pos;
2067                 return si;
2068         }
2069
2070         return NULL;
2071 }
2072
2073 static void swap_stop(struct seq_file *swap, void *v)
2074 {
2075         mutex_unlock(&swapon_mutex);
2076 }
2077
2078 static int swap_show(struct seq_file *swap, void *v)
2079 {
2080         struct swap_info_struct *si = v;
2081         struct file *file;
2082         int len;
2083
2084         if (si == SEQ_START_TOKEN) {
2085                 seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
2086                 return 0;
2087         }
2088
2089         file = si->swap_file;
2090         len = seq_file_path(swap, file, " \t\n\\");
2091         seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
2092                         len < 40 ? 40 - len : 1, " ",
2093                         S_ISBLK(file_inode(file)->i_mode) ?
2094                                 "partition" : "file\t",
2095                         si->pages << (PAGE_SHIFT - 10),
2096                         si->inuse_pages << (PAGE_SHIFT - 10),
2097                         si->prio);
2098         return 0;
2099 }
2100
2101 static const struct seq_operations swaps_op = {
2102         .start =        swap_start,
2103         .next =         swap_next,
2104         .stop =         swap_stop,
2105         .show =         swap_show
2106 };
2107
2108 static int swaps_open(struct inode *inode, struct file *file)
2109 {
2110         struct seq_file *seq;
2111         int ret;
2112
2113         ret = seq_open(file, &swaps_op);
2114         if (ret)
2115                 return ret;
2116
2117         seq = file->private_data;
2118         seq->poll_event = atomic_read(&proc_poll_event);
2119         return 0;
2120 }
2121
2122 static const struct file_operations proc_swaps_operations = {
2123         .open           = swaps_open,
2124         .read           = seq_read,
2125         .llseek         = seq_lseek,
2126         .release        = seq_release,
2127         .poll           = swaps_poll,
2128 };
2129
2130 static int __init procswaps_init(void)
2131 {
2132         proc_create("swaps", 0, NULL, &proc_swaps_operations);
2133         return 0;
2134 }
2135 __initcall(procswaps_init);
2136 #endif /* CONFIG_PROC_FS */
2137
2138 #ifdef MAX_SWAPFILES_CHECK
2139 static int __init max_swapfiles_check(void)
2140 {
2141         MAX_SWAPFILES_CHECK();
2142         return 0;
2143 }
2144 late_initcall(max_swapfiles_check);
2145 #endif
2146
2147 static struct swap_info_struct *alloc_swap_info(void)
2148 {
2149         struct swap_info_struct *p;
2150         unsigned int type;
2151
2152         p = kzalloc(sizeof(*p), GFP_KERNEL);
2153         if (!p)
2154                 return ERR_PTR(-ENOMEM);
2155
2156         spin_lock(&swap_lock);
2157         for (type = 0; type < nr_swapfiles; type++) {
2158                 if (!(swap_info[type]->flags & SWP_USED))
2159                         break;
2160         }
2161         if (type >= MAX_SWAPFILES) {
2162                 spin_unlock(&swap_lock);
2163                 kfree(p);
2164                 return ERR_PTR(-EPERM);
2165         }
2166         if (type >= nr_swapfiles) {
2167                 p->type = type;
2168                 swap_info[type] = p;
2169                 /*
2170                  * Write swap_info[type] before nr_swapfiles, in case a
2171                  * racing procfs swap_start() or swap_next() is reading them.
2172                  * (We never shrink nr_swapfiles, we never free this entry.)
2173                  */
2174                 smp_wmb();
2175                 nr_swapfiles++;
2176         } else {
2177                 kfree(p);
2178                 p = swap_info[type];
2179                 /*
2180                  * Do not memset this entry: a racing procfs swap_next()
2181                  * would be relying on p->type to remain valid.
2182                  */
2183         }
2184         INIT_LIST_HEAD(&p->first_swap_extent.list);
2185         plist_node_init(&p->list, 0);
2186         plist_node_init(&p->avail_list, 0);
2187         p->flags = SWP_USED;
2188         spin_unlock(&swap_lock);
2189         spin_lock_init(&p->lock);
2190
2191         return p;
2192 }
2193
2194 static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
2195 {
2196         int error;
2197
2198         if (S_ISBLK(inode->i_mode)) {
2199                 p->bdev = bdgrab(I_BDEV(inode));
2200                 error = blkdev_get(p->bdev,
2201                                    FMODE_READ | FMODE_WRITE | FMODE_EXCL, p);
2202                 if (error < 0) {
2203                         p->bdev = NULL;
2204                         return error;
2205                 }
2206                 p->old_block_size = block_size(p->bdev);
2207                 error = set_blocksize(p->bdev, PAGE_SIZE);
2208                 if (error < 0)
2209                         return error;
2210                 p->flags |= SWP_BLKDEV;
2211         } else if (S_ISREG(inode->i_mode)) {
2212                 p->bdev = inode->i_sb->s_bdev;
2213                 inode_lock(inode);
2214                 if (IS_SWAPFILE(inode))
2215                         return -EBUSY;
2216         } else
2217                 return -EINVAL;
2218
2219         return 0;
2220 }
2221
2222
2223 /*
2224  * Find out how many pages are allowed for a single swap device. There
2225  * are two limiting factors:
2226  * 1) the number of bits for the swap offset in the swp_entry_t type, and
2227  * 2) the number of bits in the swap pte, as defined by the different
2228  * architectures.
2229  *
2230  * In order to find the largest possible bit mask, a swap entry with
2231  * swap type 0 and swap offset ~0UL is created, encoded to a swap pte,
2232  * decoded to a swp_entry_t again, and finally the swap offset is
2233  * extracted.
2234  *
2235  * This will mask all the bits from the initial ~0UL mask that can't
2236  * be encoded in either the swp_entry_t or the architecture definition
2237  * of a swap pte.
2238  */
2239 unsigned long generic_max_swapfile_size(void)
2240 {
2241         return swp_offset(pte_to_swp_entry(
2242                         swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
2243 }
2244
2245 /* Can be overridden by an architecture for additional checks. */
2246 __weak unsigned long max_swapfile_size(void)
2247 {
2248         return generic_max_swapfile_size();
2249 }
2250
2251 static unsigned long read_swap_header(struct swap_info_struct *p,
2252                                         union swap_header *swap_header,
2253                                         struct inode *inode)
2254 {
2255         int i;
2256         unsigned long maxpages;
2257         unsigned long swapfilepages;
2258         unsigned long last_page;
2259
2260         if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
2261                 pr_err("Unable to find swap-space signature\n");
2262                 return 0;
2263         }
2264
2265         /* swap partition endianess hack... */
2266         if (swab32(swap_header->info.version) == 1) {
2267                 swab32s(&swap_header->info.version);
2268                 swab32s(&swap_header->info.last_page);
2269                 swab32s(&swap_header->info.nr_badpages);
2270                 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2271                         return 0;
2272                 for (i = 0; i < swap_header->info.nr_badpages; i++)
2273                         swab32s(&swap_header->info.badpages[i]);
2274         }
2275         /* Check the swap header's sub-version */
2276         if (swap_header->info.version != 1) {
2277                 pr_warn("Unable to handle swap header version %d\n",
2278                         swap_header->info.version);
2279                 return 0;
2280         }
2281
2282         p->lowest_bit  = 1;
2283         p->cluster_next = 1;
2284         p->cluster_nr = 0;
2285
2286         maxpages = max_swapfile_size();
2287         last_page = swap_header->info.last_page;
2288         if (!last_page) {
2289                 pr_warn("Empty swap-file\n");
2290                 return 0;
2291         }
2292         if (last_page > maxpages) {
2293                 pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
2294                         maxpages << (PAGE_SHIFT - 10),
2295                         last_page << (PAGE_SHIFT - 10));
2296         }
2297         if (maxpages > last_page) {
2298                 maxpages = last_page + 1;
2299                 /* p->max is an unsigned int: don't overflow it */
2300                 if ((unsigned int)maxpages == 0)
2301                         maxpages = UINT_MAX;
2302         }
2303         p->highest_bit = maxpages - 1;
2304
2305         if (!maxpages)
2306                 return 0;
2307         swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
2308         if (swapfilepages && maxpages > swapfilepages) {
2309                 pr_warn("Swap area shorter than signature indicates\n");
2310                 return 0;
2311         }
2312         if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
2313                 return 0;
2314         if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2315                 return 0;
2316
2317         return maxpages;
2318 }
2319
2320 static int setup_swap_map_and_extents(struct swap_info_struct *p,
2321                                         union swap_header *swap_header,
2322                                         unsigned char *swap_map,
2323                                         struct swap_cluster_info *cluster_info,
2324                                         unsigned long maxpages,
2325                                         sector_t *span)
2326 {
2327         int i;
2328         unsigned int nr_good_pages;
2329         int nr_extents;
2330         unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
2331         unsigned long idx = p->cluster_next / SWAPFILE_CLUSTER;
2332
2333         nr_good_pages = maxpages - 1;   /* omit header page */
2334
2335         cluster_list_init(&p->free_clusters);
2336         cluster_list_init(&p->discard_clusters);
2337
2338         for (i = 0; i < swap_header->info.nr_badpages; i++) {
2339                 unsigned int page_nr = swap_header->info.badpages[i];
2340                 if (page_nr == 0 || page_nr > swap_header->info.last_page)
2341                         return -EINVAL;
2342                 if (page_nr < maxpages) {
2343                         swap_map[page_nr] = SWAP_MAP_BAD;
2344                         nr_good_pages--;
2345                         /*
2346                          * Haven't marked the cluster free yet, no list
2347                          * operation involved
2348                          */
2349                         inc_cluster_info_page(p, cluster_info, page_nr);
2350                 }
2351         }
2352
2353         /* Haven't marked the cluster free yet, no list operation involved */
2354         for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
2355                 inc_cluster_info_page(p, cluster_info, i);
2356
2357         if (nr_good_pages) {
2358                 swap_map[0] = SWAP_MAP_BAD;
2359                 /*
2360                  * Not mark the cluster free yet, no list
2361                  * operation involved
2362                  */
2363                 inc_cluster_info_page(p, cluster_info, 0);
2364                 p->max = maxpages;
2365                 p->pages = nr_good_pages;
2366                 nr_extents = setup_swap_extents(p, span);
2367                 if (nr_extents < 0)
2368                         return nr_extents;
2369                 nr_good_pages = p->pages;
2370         }
2371         if (!nr_good_pages) {
2372                 pr_warn("Empty swap-file\n");
2373                 return -EINVAL;
2374         }
2375
2376         if (!cluster_info)
2377                 return nr_extents;
2378
2379         for (i = 0; i < nr_clusters; i++) {
2380                 if (!cluster_count(&cluster_info[idx])) {
2381                         cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
2382                         cluster_list_add_tail(&p->free_clusters, cluster_info,
2383                                               idx);
2384                 }
2385                 idx++;
2386                 if (idx == nr_clusters)
2387                         idx = 0;
2388         }
2389         return nr_extents;
2390 }
2391
2392 /*
2393  * Helper to sys_swapon determining if a given swap
2394  * backing device queue supports DISCARD operations.
2395  */
2396 static bool swap_discardable(struct swap_info_struct *si)
2397 {
2398         struct request_queue *q = bdev_get_queue(si->bdev);
2399
2400         if (!q || !blk_queue_discard(q))
2401                 return false;
2402
2403         return true;
2404 }
2405
2406 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
2407 {
2408         struct swap_info_struct *p;
2409         struct filename *name;
2410         struct file *swap_file = NULL;
2411         struct address_space *mapping;
2412         int prio;
2413         int error;
2414         union swap_header *swap_header;
2415         int nr_extents;
2416         sector_t span;
2417         unsigned long maxpages;
2418         unsigned char *swap_map = NULL;
2419         struct swap_cluster_info *cluster_info = NULL;
2420         unsigned long *frontswap_map = NULL;
2421         struct page *page = NULL;
2422         struct inode *inode = NULL;
2423
2424         if (swap_flags & ~SWAP_FLAGS_VALID)
2425                 return -EINVAL;
2426
2427         if (!capable(CAP_SYS_ADMIN))
2428                 return -EPERM;
2429
2430         p = alloc_swap_info();
2431         if (IS_ERR(p))
2432                 return PTR_ERR(p);
2433
2434         INIT_WORK(&p->discard_work, swap_discard_work);
2435
2436         name = getname(specialfile);
2437         if (IS_ERR(name)) {
2438                 error = PTR_ERR(name);
2439                 name = NULL;
2440                 goto bad_swap;
2441         }
2442         swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
2443         if (IS_ERR(swap_file)) {
2444                 error = PTR_ERR(swap_file);
2445                 swap_file = NULL;
2446                 goto bad_swap;
2447         }
2448
2449         p->swap_file = swap_file;
2450         mapping = swap_file->f_mapping;
2451         inode = mapping->host;
2452
2453         /* If S_ISREG(inode->i_mode) will do inode_lock(inode); */
2454         error = claim_swapfile(p, inode);
2455         if (unlikely(error))
2456                 goto bad_swap;
2457
2458         /*
2459          * Read the swap header.
2460          */
2461         if (!mapping->a_ops->readpage) {
2462                 error = -EINVAL;
2463                 goto bad_swap;
2464         }
2465         page = read_mapping_page(mapping, 0, swap_file);
2466         if (IS_ERR(page)) {
2467                 error = PTR_ERR(page);
2468                 goto bad_swap;
2469         }
2470         swap_header = kmap(page);
2471
2472         maxpages = read_swap_header(p, swap_header, inode);
2473         if (unlikely(!maxpages)) {
2474                 error = -EINVAL;
2475                 goto bad_swap;
2476         }
2477
2478         /* OK, set up the swap map and apply the bad block list */
2479         swap_map = vzalloc(maxpages);
2480         if (!swap_map) {
2481                 error = -ENOMEM;
2482                 goto bad_swap;
2483         }
2484
2485         if (bdi_cap_stable_pages_required(inode_to_bdi(inode)))
2486                 p->flags |= SWP_STABLE_WRITES;
2487
2488         if (p->bdev && blk_queue_nonrot(bdev_get_queue(p->bdev))) {
2489                 int cpu;
2490
2491                 p->flags |= SWP_SOLIDSTATE;
2492                 /*
2493                  * select a random position to start with to help wear leveling
2494                  * SSD
2495                  */
2496                 p->cluster_next = 1 + (prandom_u32() % p->highest_bit);
2497
2498                 cluster_info = vzalloc(DIV_ROUND_UP(maxpages,
2499                         SWAPFILE_CLUSTER) * sizeof(*cluster_info));
2500                 if (!cluster_info) {
2501                         error = -ENOMEM;
2502                         goto bad_swap;
2503                 }
2504                 p->percpu_cluster = alloc_percpu(struct percpu_cluster);
2505                 if (!p->percpu_cluster) {
2506                         error = -ENOMEM;
2507                         goto bad_swap;
2508                 }
2509                 for_each_possible_cpu(cpu) {
2510                         struct percpu_cluster *cluster;
2511                         cluster = per_cpu_ptr(p->percpu_cluster, cpu);
2512                         cluster_set_null(&cluster->index);
2513                 }
2514         }
2515
2516         error = swap_cgroup_swapon(p->type, maxpages);
2517         if (error)
2518                 goto bad_swap;
2519
2520         nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
2521                 cluster_info, maxpages, &span);
2522         if (unlikely(nr_extents < 0)) {
2523                 error = nr_extents;
2524                 goto bad_swap;
2525         }
2526         /* frontswap enabled? set up bit-per-page map for frontswap */
2527         if (IS_ENABLED(CONFIG_FRONTSWAP))
2528                 frontswap_map = vzalloc(BITS_TO_LONGS(maxpages) * sizeof(long));
2529
2530         if (p->bdev &&(swap_flags & SWAP_FLAG_DISCARD) && swap_discardable(p)) {
2531                 /*
2532                  * When discard is enabled for swap with no particular
2533                  * policy flagged, we set all swap discard flags here in
2534                  * order to sustain backward compatibility with older
2535                  * swapon(8) releases.
2536                  */
2537                 p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
2538                              SWP_PAGE_DISCARD);
2539
2540                 /*
2541                  * By flagging sys_swapon, a sysadmin can tell us to
2542                  * either do single-time area discards only, or to just
2543                  * perform discards for released swap page-clusters.
2544                  * Now it's time to adjust the p->flags accordingly.
2545                  */
2546                 if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
2547                         p->flags &= ~SWP_PAGE_DISCARD;
2548                 else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
2549                         p->flags &= ~SWP_AREA_DISCARD;
2550
2551                 /* issue a swapon-time discard if it's still required */
2552                 if (p->flags & SWP_AREA_DISCARD) {
2553                         int err = discard_swap(p);
2554                         if (unlikely(err))
2555                                 pr_err("swapon: discard_swap(%p): %d\n",
2556                                         p, err);
2557                 }
2558         }
2559
2560         mutex_lock(&swapon_mutex);
2561         prio = -1;
2562         if (swap_flags & SWAP_FLAG_PREFER)
2563                 prio =
2564                   (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
2565         enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map);
2566
2567         pr_info("Adding %uk swap on %s.  Priority:%d extents:%d across:%lluk %s%s%s%s%s\n",
2568                 p->pages<<(PAGE_SHIFT-10), name->name, p->prio,
2569                 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
2570                 (p->flags & SWP_SOLIDSTATE) ? "SS" : "",
2571                 (p->flags & SWP_DISCARDABLE) ? "D" : "",
2572                 (p->flags & SWP_AREA_DISCARD) ? "s" : "",
2573                 (p->flags & SWP_PAGE_DISCARD) ? "c" : "",
2574                 (frontswap_map) ? "FS" : "");
2575
2576         mutex_unlock(&swapon_mutex);
2577         atomic_inc(&proc_poll_event);
2578         wake_up_interruptible(&proc_poll_wait);
2579
2580         if (S_ISREG(inode->i_mode))
2581                 inode->i_flags |= S_SWAPFILE;
2582         error = 0;
2583         goto out;
2584 bad_swap:
2585         free_percpu(p->percpu_cluster);
2586         p->percpu_cluster = NULL;
2587         if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
2588                 set_blocksize(p->bdev, p->old_block_size);
2589                 blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2590         }
2591         destroy_swap_extents(p);
2592         swap_cgroup_swapoff(p->type);
2593         spin_lock(&swap_lock);
2594         p->swap_file = NULL;
2595         p->flags = 0;
2596         spin_unlock(&swap_lock);
2597         vfree(swap_map);
2598         vfree(cluster_info);
2599         if (swap_file) {
2600                 if (inode && S_ISREG(inode->i_mode)) {
2601                         inode_unlock(inode);
2602                         inode = NULL;
2603                 }
2604                 filp_close(swap_file, NULL);
2605         }
2606 out:
2607         if (page && !IS_ERR(page)) {
2608                 kunmap(page);
2609                 put_page(page);
2610         }
2611         if (name)
2612                 putname(name);
2613         if (inode && S_ISREG(inode->i_mode))
2614                 inode_unlock(inode);
2615         return error;
2616 }
2617
2618 void si_swapinfo(struct sysinfo *val)
2619 {
2620         unsigned int type;
2621         unsigned long nr_to_be_unused = 0;
2622
2623         spin_lock(&swap_lock);
2624         for (type = 0; type < nr_swapfiles; type++) {
2625                 struct swap_info_struct *si = swap_info[type];
2626
2627                 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
2628                         nr_to_be_unused += si->inuse_pages;
2629         }
2630         val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
2631         val->totalswap = total_swap_pages + nr_to_be_unused;
2632         spin_unlock(&swap_lock);
2633 }
2634
2635 /*
2636  * Verify that a swap entry is valid and increment its swap map count.
2637  *
2638  * Returns error code in following case.
2639  * - success -> 0
2640  * - swp_entry is invalid -> EINVAL
2641  * - swp_entry is migration entry -> EINVAL
2642  * - swap-cache reference is requested but there is already one. -> EEXIST
2643  * - swap-cache reference is requested but the entry is not used. -> ENOENT
2644  * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
2645  */
2646 static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
2647 {
2648         struct swap_info_struct *p;
2649         unsigned long offset, type;
2650         unsigned char count;
2651         unsigned char has_cache;
2652         int err = -EINVAL;
2653
2654         if (non_swap_entry(entry))
2655                 goto out;
2656
2657         type = swp_type(entry);
2658         if (type >= nr_swapfiles)
2659                 goto bad_file;
2660         p = swap_info[type];
2661         offset = swp_offset(entry);
2662
2663         spin_lock(&p->lock);
2664         if (unlikely(offset >= p->max))
2665                 goto unlock_out;
2666
2667         count = p->swap_map[offset];
2668
2669         /*
2670          * swapin_readahead() doesn't check if a swap entry is valid, so the
2671          * swap entry could be SWAP_MAP_BAD. Check here with lock held.
2672          */
2673         if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
2674                 err = -ENOENT;
2675                 goto unlock_out;
2676         }
2677
2678         has_cache = count & SWAP_HAS_CACHE;
2679         count &= ~SWAP_HAS_CACHE;
2680         err = 0;
2681
2682         if (usage == SWAP_HAS_CACHE) {
2683
2684                 /* set SWAP_HAS_CACHE if there is no cache and entry is used */
2685                 if (!has_cache && count)
2686                         has_cache = SWAP_HAS_CACHE;
2687                 else if (has_cache)             /* someone else added cache */
2688                         err = -EEXIST;
2689                 else                            /* no users remaining */
2690                         err = -ENOENT;
2691
2692         } else if (count || has_cache) {
2693
2694                 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
2695                         count += usage;
2696                 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
2697                         err = -EINVAL;
2698                 else if (swap_count_continued(p, offset, count))
2699                         count = COUNT_CONTINUED;
2700                 else
2701                         err = -ENOMEM;
2702         } else
2703                 err = -ENOENT;                  /* unused swap entry */
2704
2705         p->swap_map[offset] = count | has_cache;
2706
2707 unlock_out:
2708         spin_unlock(&p->lock);
2709 out:
2710         return err;
2711
2712 bad_file:
2713         pr_err("swap_dup: %s%08lx\n", Bad_file, entry.val);
2714         goto out;
2715 }
2716
2717 /*
2718  * Help swapoff by noting that swap entry belongs to shmem/tmpfs
2719  * (in which case its reference count is never incremented).
2720  */
2721 void swap_shmem_alloc(swp_entry_t entry)
2722 {
2723         __swap_duplicate(entry, SWAP_MAP_SHMEM);
2724 }
2725
2726 /*
2727  * Increase reference count of swap entry by 1.
2728  * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
2729  * but could not be atomically allocated.  Returns 0, just as if it succeeded,
2730  * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
2731  * might occur if a page table entry has got corrupted.
2732  */
2733 int swap_duplicate(swp_entry_t entry)
2734 {
2735         int err = 0;
2736
2737         while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
2738                 err = add_swap_count_continuation(entry, GFP_ATOMIC);
2739         return err;
2740 }
2741
2742 /*
2743  * @entry: swap entry for which we allocate swap cache.
2744  *
2745  * Called when allocating swap cache for existing swap entry,
2746  * This can return error codes. Returns 0 at success.
2747  * -EBUSY means there is a swap cache.
2748  * Note: return code is different from swap_duplicate().
2749  */
2750 int swapcache_prepare(swp_entry_t entry)
2751 {
2752         return __swap_duplicate(entry, SWAP_HAS_CACHE);
2753 }
2754
2755 struct swap_info_struct *page_swap_info(struct page *page)
2756 {
2757         swp_entry_t swap = { .val = page_private(page) };
2758         return swap_info[swp_type(swap)];
2759 }
2760
2761 /*
2762  * out-of-line __page_file_ methods to avoid include hell.
2763  */
2764 struct address_space *__page_file_mapping(struct page *page)
2765 {
2766         VM_BUG_ON_PAGE(!PageSwapCache(page), page);
2767         return page_swap_info(page)->swap_file->f_mapping;
2768 }
2769 EXPORT_SYMBOL_GPL(__page_file_mapping);
2770
2771 pgoff_t __page_file_index(struct page *page)
2772 {
2773         swp_entry_t swap = { .val = page_private(page) };
2774         VM_BUG_ON_PAGE(!PageSwapCache(page), page);
2775         return swp_offset(swap);
2776 }
2777 EXPORT_SYMBOL_GPL(__page_file_index);
2778
2779 /*
2780  * add_swap_count_continuation - called when a swap count is duplicated
2781  * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
2782  * page of the original vmalloc'ed swap_map, to hold the continuation count
2783  * (for that entry and for its neighbouring PAGE_SIZE swap entries).  Called
2784  * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
2785  *
2786  * These continuation pages are seldom referenced: the common paths all work
2787  * on the original swap_map, only referring to a continuation page when the
2788  * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
2789  *
2790  * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
2791  * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
2792  * can be called after dropping locks.
2793  */
2794 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
2795 {
2796         struct swap_info_struct *si;
2797         struct page *head;
2798         struct page *page;
2799         struct page *list_page;
2800         pgoff_t offset;
2801         unsigned char count;
2802
2803         /*
2804          * When debugging, it's easier to use __GFP_ZERO here; but it's better
2805          * for latency not to zero a page while GFP_ATOMIC and holding locks.
2806          */
2807         page = alloc_page(gfp_mask | __GFP_HIGHMEM);
2808
2809         si = swap_info_get(entry);
2810         if (!si) {
2811                 /*
2812                  * An acceptable race has occurred since the failing
2813                  * __swap_duplicate(): the swap entry has been freed,
2814                  * perhaps even the whole swap_map cleared for swapoff.
2815                  */
2816                 goto outer;
2817         }
2818
2819         offset = swp_offset(entry);
2820         count = si->swap_map[offset] & ~SWAP_HAS_CACHE;
2821
2822         if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
2823                 /*
2824                  * The higher the swap count, the more likely it is that tasks
2825                  * will race to add swap count continuation: we need to avoid
2826                  * over-provisioning.
2827                  */
2828                 goto out;
2829         }
2830
2831         if (!page) {
2832                 spin_unlock(&si->lock);
2833                 return -ENOMEM;
2834         }
2835
2836         /*
2837          * We are fortunate that although vmalloc_to_page uses pte_offset_map,
2838          * no architecture is using highmem pages for kernel page tables: so it
2839          * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps.
2840          */
2841         head = vmalloc_to_page(si->swap_map + offset);
2842         offset &= ~PAGE_MASK;
2843
2844         /*
2845          * Page allocation does not initialize the page's lru field,
2846          * but it does always reset its private field.
2847          */
2848         if (!page_private(head)) {
2849                 BUG_ON(count & COUNT_CONTINUED);
2850                 INIT_LIST_HEAD(&head->lru);
2851                 set_page_private(head, SWP_CONTINUED);
2852                 si->flags |= SWP_CONTINUED;
2853         }
2854
2855         list_for_each_entry(list_page, &head->lru, lru) {
2856                 unsigned char *map;
2857
2858                 /*
2859                  * If the previous map said no continuation, but we've found
2860                  * a continuation page, free our allocation and use this one.
2861                  */
2862                 if (!(count & COUNT_CONTINUED))
2863                         goto out;
2864
2865                 map = kmap_atomic(list_page) + offset;
2866                 count = *map;
2867                 kunmap_atomic(map);
2868
2869                 /*
2870                  * If this continuation count now has some space in it,
2871                  * free our allocation and use this one.
2872                  */
2873                 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
2874                         goto out;
2875         }
2876
2877         list_add_tail(&page->lru, &head->lru);
2878         page = NULL;                    /* now it's attached, don't free it */
2879 out:
2880         spin_unlock(&si->lock);
2881 outer:
2882         if (page)
2883                 __free_page(page);
2884         return 0;
2885 }
2886
2887 /*
2888  * swap_count_continued - when the original swap_map count is incremented
2889  * from SWAP_MAP_MAX, check if there is already a continuation page to carry
2890  * into, carry if so, or else fail until a new continuation page is allocated;
2891  * when the original swap_map count is decremented from 0 with continuation,
2892  * borrow from the continuation and report whether it still holds more.
2893  * Called while __swap_duplicate() or swap_entry_free() holds swap_lock.
2894  */
2895 static bool swap_count_continued(struct swap_info_struct *si,
2896                                  pgoff_t offset, unsigned char count)
2897 {
2898         struct page *head;
2899         struct page *page;
2900         unsigned char *map;
2901
2902         head = vmalloc_to_page(si->swap_map + offset);
2903         if (page_private(head) != SWP_CONTINUED) {
2904                 BUG_ON(count & COUNT_CONTINUED);
2905                 return false;           /* need to add count continuation */
2906         }
2907
2908         offset &= ~PAGE_MASK;
2909         page = list_entry(head->lru.next, struct page, lru);
2910         map = kmap_atomic(page) + offset;
2911
2912         if (count == SWAP_MAP_MAX)      /* initial increment from swap_map */
2913                 goto init_map;          /* jump over SWAP_CONT_MAX checks */
2914
2915         if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
2916                 /*
2917                  * Think of how you add 1 to 999
2918                  */
2919                 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
2920                         kunmap_atomic(map);
2921                         page = list_entry(page->lru.next, struct page, lru);
2922                         BUG_ON(page == head);
2923                         map = kmap_atomic(page) + offset;
2924                 }
2925                 if (*map == SWAP_CONT_MAX) {
2926                         kunmap_atomic(map);
2927                         page = list_entry(page->lru.next, struct page, lru);
2928                         if (page == head)
2929                                 return false;   /* add count continuation */
2930                         map = kmap_atomic(page) + offset;
2931 init_map:               *map = 0;               /* we didn't zero the page */
2932                 }
2933                 *map += 1;
2934                 kunmap_atomic(map);
2935                 page = list_entry(page->lru.prev, struct page, lru);
2936                 while (page != head) {
2937                         map = kmap_atomic(page) + offset;
2938                         *map = COUNT_CONTINUED;
2939                         kunmap_atomic(map);
2940                         page = list_entry(page->lru.prev, struct page, lru);
2941                 }
2942                 return true;                    /* incremented */
2943
2944         } else {                                /* decrementing */
2945                 /*
2946                  * Think of how you subtract 1 from 1000
2947                  */
2948                 BUG_ON(count != COUNT_CONTINUED);
2949                 while (*map == COUNT_CONTINUED) {
2950                         kunmap_atomic(map);
2951                         page = list_entry(page->lru.next, struct page, lru);
2952                         BUG_ON(page == head);
2953                         map = kmap_atomic(page) + offset;
2954                 }
2955                 BUG_ON(*map == 0);
2956                 *map -= 1;
2957                 if (*map == 0)
2958                         count = 0;
2959                 kunmap_atomic(map);
2960                 page = list_entry(page->lru.prev, struct page, lru);
2961                 while (page != head) {
2962                         map = kmap_atomic(page) + offset;
2963                         *map = SWAP_CONT_MAX | count;
2964                         count = COUNT_CONTINUED;
2965                         kunmap_atomic(map);
2966                         page = list_entry(page->lru.prev, struct page, lru);
2967                 }
2968                 return count == COUNT_CONTINUED;
2969         }
2970 }
2971
2972 /*
2973  * free_swap_count_continuations - swapoff free all the continuation pages
2974  * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
2975  */
2976 static void free_swap_count_continuations(struct swap_info_struct *si)
2977 {
2978         pgoff_t offset;
2979
2980         for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
2981                 struct page *head;
2982                 head = vmalloc_to_page(si->swap_map + offset);
2983                 if (page_private(head)) {
2984                         struct page *page, *next;
2985
2986                         list_for_each_entry_safe(page, next, &head->lru, lru) {
2987                                 list_del(&page->lru);
2988                                 __free_page(page);
2989                         }
2990                 }
2991         }
2992 }