OSDN Git Service

mm: kill frontswap
[tomoyo/tomoyo-test1.git] / mm / swapfile.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/swapfile.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  *  Swap reorganised 29.12.95, Stephen Tweedie
7  */
8
9 #include <linux/blkdev.h>
10 #include <linux/mm.h>
11 #include <linux/sched/mm.h>
12 #include <linux/sched/task.h>
13 #include <linux/hugetlb.h>
14 #include <linux/mman.h>
15 #include <linux/slab.h>
16 #include <linux/kernel_stat.h>
17 #include <linux/swap.h>
18 #include <linux/vmalloc.h>
19 #include <linux/pagemap.h>
20 #include <linux/namei.h>
21 #include <linux/shmem_fs.h>
22 #include <linux/blk-cgroup.h>
23 #include <linux/random.h>
24 #include <linux/writeback.h>
25 #include <linux/proc_fs.h>
26 #include <linux/seq_file.h>
27 #include <linux/init.h>
28 #include <linux/ksm.h>
29 #include <linux/rmap.h>
30 #include <linux/security.h>
31 #include <linux/backing-dev.h>
32 #include <linux/mutex.h>
33 #include <linux/capability.h>
34 #include <linux/syscalls.h>
35 #include <linux/memcontrol.h>
36 #include <linux/poll.h>
37 #include <linux/oom.h>
38 #include <linux/swapfile.h>
39 #include <linux/export.h>
40 #include <linux/swap_slots.h>
41 #include <linux/sort.h>
42 #include <linux/completion.h>
43 #include <linux/suspend.h>
44 #include <linux/zswap.h>
45
46 #include <asm/tlbflush.h>
47 #include <linux/swapops.h>
48 #include <linux/swap_cgroup.h>
49 #include "swap.h"
50
51 static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
52                                  unsigned char);
53 static void free_swap_count_continuations(struct swap_info_struct *);
54
55 static DEFINE_SPINLOCK(swap_lock);
56 static unsigned int nr_swapfiles;
57 atomic_long_t nr_swap_pages;
58 /*
59  * Some modules use swappable objects and may try to swap them out under
60  * memory pressure (via the shrinker). Before doing so, they may wish to
61  * check to see if any swap space is available.
62  */
63 EXPORT_SYMBOL_GPL(nr_swap_pages);
64 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
65 long total_swap_pages;
66 static int least_priority = -1;
67 unsigned long swapfile_maximum_size;
68 #ifdef CONFIG_MIGRATION
69 bool swap_migration_ad_supported;
70 #endif  /* CONFIG_MIGRATION */
71
72 static const char Bad_file[] = "Bad swap file entry ";
73 static const char Unused_file[] = "Unused swap file entry ";
74 static const char Bad_offset[] = "Bad swap offset entry ";
75 static const char Unused_offset[] = "Unused swap offset entry ";
76
77 /*
78  * all active swap_info_structs
79  * protected with swap_lock, and ordered by priority.
80  */
81 static PLIST_HEAD(swap_active_head);
82
83 /*
84  * all available (active, not full) swap_info_structs
85  * protected with swap_avail_lock, ordered by priority.
86  * This is used by folio_alloc_swap() instead of swap_active_head
87  * because swap_active_head includes all swap_info_structs,
88  * but folio_alloc_swap() doesn't need to look at full ones.
89  * This uses its own lock instead of swap_lock because when a
90  * swap_info_struct changes between not-full/full, it needs to
91  * add/remove itself to/from this list, but the swap_info_struct->lock
92  * is held and the locking order requires swap_lock to be taken
93  * before any swap_info_struct->lock.
94  */
95 static struct plist_head *swap_avail_heads;
96 static DEFINE_SPINLOCK(swap_avail_lock);
97
98 static struct swap_info_struct *swap_info[MAX_SWAPFILES];
99
100 static DEFINE_MUTEX(swapon_mutex);
101
102 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
103 /* Activity counter to indicate that a swapon or swapoff has occurred */
104 static atomic_t proc_poll_event = ATOMIC_INIT(0);
105
106 atomic_t nr_rotate_swap = ATOMIC_INIT(0);
107
108 static struct swap_info_struct *swap_type_to_swap_info(int type)
109 {
110         if (type >= MAX_SWAPFILES)
111                 return NULL;
112
113         return READ_ONCE(swap_info[type]); /* rcu_dereference() */
114 }
115
116 static inline unsigned char swap_count(unsigned char ent)
117 {
118         return ent & ~SWAP_HAS_CACHE;   /* may include COUNT_CONTINUED flag */
119 }
120
121 /* Reclaim the swap entry anyway if possible */
122 #define TTRS_ANYWAY             0x1
123 /*
124  * Reclaim the swap entry if there are no more mappings of the
125  * corresponding page
126  */
127 #define TTRS_UNMAPPED           0x2
128 /* Reclaim the swap entry if swap is getting full*/
129 #define TTRS_FULL               0x4
130
131 /* returns 1 if swap entry is freed */
132 static int __try_to_reclaim_swap(struct swap_info_struct *si,
133                                  unsigned long offset, unsigned long flags)
134 {
135         swp_entry_t entry = swp_entry(si->type, offset);
136         struct folio *folio;
137         int ret = 0;
138
139         folio = filemap_get_folio(swap_address_space(entry), offset);
140         if (IS_ERR(folio))
141                 return 0;
142         /*
143          * When this function is called from scan_swap_map_slots() and it's
144          * called by vmscan.c at reclaiming folios. So we hold a folio lock
145          * here. We have to use trylock for avoiding deadlock. This is a special
146          * case and you should use folio_free_swap() with explicit folio_lock()
147          * in usual operations.
148          */
149         if (folio_trylock(folio)) {
150                 if ((flags & TTRS_ANYWAY) ||
151                     ((flags & TTRS_UNMAPPED) && !folio_mapped(folio)) ||
152                     ((flags & TTRS_FULL) && mem_cgroup_swap_full(folio)))
153                         ret = folio_free_swap(folio);
154                 folio_unlock(folio);
155         }
156         folio_put(folio);
157         return ret;
158 }
159
160 static inline struct swap_extent *first_se(struct swap_info_struct *sis)
161 {
162         struct rb_node *rb = rb_first(&sis->swap_extent_root);
163         return rb_entry(rb, struct swap_extent, rb_node);
164 }
165
166 static inline struct swap_extent *next_se(struct swap_extent *se)
167 {
168         struct rb_node *rb = rb_next(&se->rb_node);
169         return rb ? rb_entry(rb, struct swap_extent, rb_node) : NULL;
170 }
171
172 /*
173  * swapon tell device that all the old swap contents can be discarded,
174  * to allow the swap device to optimize its wear-levelling.
175  */
176 static int discard_swap(struct swap_info_struct *si)
177 {
178         struct swap_extent *se;
179         sector_t start_block;
180         sector_t nr_blocks;
181         int err = 0;
182
183         /* Do not discard the swap header page! */
184         se = first_se(si);
185         start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
186         nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
187         if (nr_blocks) {
188                 err = blkdev_issue_discard(si->bdev, start_block,
189                                 nr_blocks, GFP_KERNEL);
190                 if (err)
191                         return err;
192                 cond_resched();
193         }
194
195         for (se = next_se(se); se; se = next_se(se)) {
196                 start_block = se->start_block << (PAGE_SHIFT - 9);
197                 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
198
199                 err = blkdev_issue_discard(si->bdev, start_block,
200                                 nr_blocks, GFP_KERNEL);
201                 if (err)
202                         break;
203
204                 cond_resched();
205         }
206         return err;             /* That will often be -EOPNOTSUPP */
207 }
208
209 static struct swap_extent *
210 offset_to_swap_extent(struct swap_info_struct *sis, unsigned long offset)
211 {
212         struct swap_extent *se;
213         struct rb_node *rb;
214
215         rb = sis->swap_extent_root.rb_node;
216         while (rb) {
217                 se = rb_entry(rb, struct swap_extent, rb_node);
218                 if (offset < se->start_page)
219                         rb = rb->rb_left;
220                 else if (offset >= se->start_page + se->nr_pages)
221                         rb = rb->rb_right;
222                 else
223                         return se;
224         }
225         /* It *must* be present */
226         BUG();
227 }
228
229 sector_t swap_page_sector(struct page *page)
230 {
231         struct swap_info_struct *sis = page_swap_info(page);
232         struct swap_extent *se;
233         sector_t sector;
234         pgoff_t offset;
235
236         offset = __page_file_index(page);
237         se = offset_to_swap_extent(sis, offset);
238         sector = se->start_block + (offset - se->start_page);
239         return sector << (PAGE_SHIFT - 9);
240 }
241
242 /*
243  * swap allocation tell device that a cluster of swap can now be discarded,
244  * to allow the swap device to optimize its wear-levelling.
245  */
246 static void discard_swap_cluster(struct swap_info_struct *si,
247                                  pgoff_t start_page, pgoff_t nr_pages)
248 {
249         struct swap_extent *se = offset_to_swap_extent(si, start_page);
250
251         while (nr_pages) {
252                 pgoff_t offset = start_page - se->start_page;
253                 sector_t start_block = se->start_block + offset;
254                 sector_t nr_blocks = se->nr_pages - offset;
255
256                 if (nr_blocks > nr_pages)
257                         nr_blocks = nr_pages;
258                 start_page += nr_blocks;
259                 nr_pages -= nr_blocks;
260
261                 start_block <<= PAGE_SHIFT - 9;
262                 nr_blocks <<= PAGE_SHIFT - 9;
263                 if (blkdev_issue_discard(si->bdev, start_block,
264                                         nr_blocks, GFP_NOIO))
265                         break;
266
267                 se = next_se(se);
268         }
269 }
270
271 #ifdef CONFIG_THP_SWAP
272 #define SWAPFILE_CLUSTER        HPAGE_PMD_NR
273
274 #define swap_entry_size(size)   (size)
275 #else
276 #define SWAPFILE_CLUSTER        256
277
278 /*
279  * Define swap_entry_size() as constant to let compiler to optimize
280  * out some code if !CONFIG_THP_SWAP
281  */
282 #define swap_entry_size(size)   1
283 #endif
284 #define LATENCY_LIMIT           256
285
286 static inline void cluster_set_flag(struct swap_cluster_info *info,
287         unsigned int flag)
288 {
289         info->flags = flag;
290 }
291
292 static inline unsigned int cluster_count(struct swap_cluster_info *info)
293 {
294         return info->data;
295 }
296
297 static inline void cluster_set_count(struct swap_cluster_info *info,
298                                      unsigned int c)
299 {
300         info->data = c;
301 }
302
303 static inline void cluster_set_count_flag(struct swap_cluster_info *info,
304                                          unsigned int c, unsigned int f)
305 {
306         info->flags = f;
307         info->data = c;
308 }
309
310 static inline unsigned int cluster_next(struct swap_cluster_info *info)
311 {
312         return info->data;
313 }
314
315 static inline void cluster_set_next(struct swap_cluster_info *info,
316                                     unsigned int n)
317 {
318         info->data = n;
319 }
320
321 static inline void cluster_set_next_flag(struct swap_cluster_info *info,
322                                          unsigned int n, unsigned int f)
323 {
324         info->flags = f;
325         info->data = n;
326 }
327
328 static inline bool cluster_is_free(struct swap_cluster_info *info)
329 {
330         return info->flags & CLUSTER_FLAG_FREE;
331 }
332
333 static inline bool cluster_is_null(struct swap_cluster_info *info)
334 {
335         return info->flags & CLUSTER_FLAG_NEXT_NULL;
336 }
337
338 static inline void cluster_set_null(struct swap_cluster_info *info)
339 {
340         info->flags = CLUSTER_FLAG_NEXT_NULL;
341         info->data = 0;
342 }
343
344 static inline bool cluster_is_huge(struct swap_cluster_info *info)
345 {
346         if (IS_ENABLED(CONFIG_THP_SWAP))
347                 return info->flags & CLUSTER_FLAG_HUGE;
348         return false;
349 }
350
351 static inline void cluster_clear_huge(struct swap_cluster_info *info)
352 {
353         info->flags &= ~CLUSTER_FLAG_HUGE;
354 }
355
356 static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si,
357                                                      unsigned long offset)
358 {
359         struct swap_cluster_info *ci;
360
361         ci = si->cluster_info;
362         if (ci) {
363                 ci += offset / SWAPFILE_CLUSTER;
364                 spin_lock(&ci->lock);
365         }
366         return ci;
367 }
368
369 static inline void unlock_cluster(struct swap_cluster_info *ci)
370 {
371         if (ci)
372                 spin_unlock(&ci->lock);
373 }
374
375 /*
376  * Determine the locking method in use for this device.  Return
377  * swap_cluster_info if SSD-style cluster-based locking is in place.
378  */
379 static inline struct swap_cluster_info *lock_cluster_or_swap_info(
380                 struct swap_info_struct *si, unsigned long offset)
381 {
382         struct swap_cluster_info *ci;
383
384         /* Try to use fine-grained SSD-style locking if available: */
385         ci = lock_cluster(si, offset);
386         /* Otherwise, fall back to traditional, coarse locking: */
387         if (!ci)
388                 spin_lock(&si->lock);
389
390         return ci;
391 }
392
393 static inline void unlock_cluster_or_swap_info(struct swap_info_struct *si,
394                                                struct swap_cluster_info *ci)
395 {
396         if (ci)
397                 unlock_cluster(ci);
398         else
399                 spin_unlock(&si->lock);
400 }
401
402 static inline bool cluster_list_empty(struct swap_cluster_list *list)
403 {
404         return cluster_is_null(&list->head);
405 }
406
407 static inline unsigned int cluster_list_first(struct swap_cluster_list *list)
408 {
409         return cluster_next(&list->head);
410 }
411
412 static void cluster_list_init(struct swap_cluster_list *list)
413 {
414         cluster_set_null(&list->head);
415         cluster_set_null(&list->tail);
416 }
417
418 static void cluster_list_add_tail(struct swap_cluster_list *list,
419                                   struct swap_cluster_info *ci,
420                                   unsigned int idx)
421 {
422         if (cluster_list_empty(list)) {
423                 cluster_set_next_flag(&list->head, idx, 0);
424                 cluster_set_next_flag(&list->tail, idx, 0);
425         } else {
426                 struct swap_cluster_info *ci_tail;
427                 unsigned int tail = cluster_next(&list->tail);
428
429                 /*
430                  * Nested cluster lock, but both cluster locks are
431                  * only acquired when we held swap_info_struct->lock
432                  */
433                 ci_tail = ci + tail;
434                 spin_lock_nested(&ci_tail->lock, SINGLE_DEPTH_NESTING);
435                 cluster_set_next(ci_tail, idx);
436                 spin_unlock(&ci_tail->lock);
437                 cluster_set_next_flag(&list->tail, idx, 0);
438         }
439 }
440
441 static unsigned int cluster_list_del_first(struct swap_cluster_list *list,
442                                            struct swap_cluster_info *ci)
443 {
444         unsigned int idx;
445
446         idx = cluster_next(&list->head);
447         if (cluster_next(&list->tail) == idx) {
448                 cluster_set_null(&list->head);
449                 cluster_set_null(&list->tail);
450         } else
451                 cluster_set_next_flag(&list->head,
452                                       cluster_next(&ci[idx]), 0);
453
454         return idx;
455 }
456
457 /* Add a cluster to discard list and schedule it to do discard */
458 static void swap_cluster_schedule_discard(struct swap_info_struct *si,
459                 unsigned int idx)
460 {
461         /*
462          * If scan_swap_map_slots() can't find a free cluster, it will check
463          * si->swap_map directly. To make sure the discarding cluster isn't
464          * taken by scan_swap_map_slots(), mark the swap entries bad (occupied).
465          * It will be cleared after discard
466          */
467         memset(si->swap_map + idx * SWAPFILE_CLUSTER,
468                         SWAP_MAP_BAD, SWAPFILE_CLUSTER);
469
470         cluster_list_add_tail(&si->discard_clusters, si->cluster_info, idx);
471
472         schedule_work(&si->discard_work);
473 }
474
475 static void __free_cluster(struct swap_info_struct *si, unsigned long idx)
476 {
477         struct swap_cluster_info *ci = si->cluster_info;
478
479         cluster_set_flag(ci + idx, CLUSTER_FLAG_FREE);
480         cluster_list_add_tail(&si->free_clusters, ci, idx);
481 }
482
483 /*
484  * Doing discard actually. After a cluster discard is finished, the cluster
485  * will be added to free cluster list. caller should hold si->lock.
486 */
487 static void swap_do_scheduled_discard(struct swap_info_struct *si)
488 {
489         struct swap_cluster_info *info, *ci;
490         unsigned int idx;
491
492         info = si->cluster_info;
493
494         while (!cluster_list_empty(&si->discard_clusters)) {
495                 idx = cluster_list_del_first(&si->discard_clusters, info);
496                 spin_unlock(&si->lock);
497
498                 discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
499                                 SWAPFILE_CLUSTER);
500
501                 spin_lock(&si->lock);
502                 ci = lock_cluster(si, idx * SWAPFILE_CLUSTER);
503                 __free_cluster(si, idx);
504                 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
505                                 0, SWAPFILE_CLUSTER);
506                 unlock_cluster(ci);
507         }
508 }
509
510 static void swap_discard_work(struct work_struct *work)
511 {
512         struct swap_info_struct *si;
513
514         si = container_of(work, struct swap_info_struct, discard_work);
515
516         spin_lock(&si->lock);
517         swap_do_scheduled_discard(si);
518         spin_unlock(&si->lock);
519 }
520
521 static void swap_users_ref_free(struct percpu_ref *ref)
522 {
523         struct swap_info_struct *si;
524
525         si = container_of(ref, struct swap_info_struct, users);
526         complete(&si->comp);
527 }
528
529 static void alloc_cluster(struct swap_info_struct *si, unsigned long idx)
530 {
531         struct swap_cluster_info *ci = si->cluster_info;
532
533         VM_BUG_ON(cluster_list_first(&si->free_clusters) != idx);
534         cluster_list_del_first(&si->free_clusters, ci);
535         cluster_set_count_flag(ci + idx, 0, 0);
536 }
537
538 static void free_cluster(struct swap_info_struct *si, unsigned long idx)
539 {
540         struct swap_cluster_info *ci = si->cluster_info + idx;
541
542         VM_BUG_ON(cluster_count(ci) != 0);
543         /*
544          * If the swap is discardable, prepare discard the cluster
545          * instead of free it immediately. The cluster will be freed
546          * after discard.
547          */
548         if ((si->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
549             (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
550                 swap_cluster_schedule_discard(si, idx);
551                 return;
552         }
553
554         __free_cluster(si, idx);
555 }
556
557 /*
558  * The cluster corresponding to page_nr will be used. The cluster will be
559  * removed from free cluster list and its usage counter will be increased.
560  */
561 static void inc_cluster_info_page(struct swap_info_struct *p,
562         struct swap_cluster_info *cluster_info, unsigned long page_nr)
563 {
564         unsigned long idx = page_nr / SWAPFILE_CLUSTER;
565
566         if (!cluster_info)
567                 return;
568         if (cluster_is_free(&cluster_info[idx]))
569                 alloc_cluster(p, idx);
570
571         VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER);
572         cluster_set_count(&cluster_info[idx],
573                 cluster_count(&cluster_info[idx]) + 1);
574 }
575
576 /*
577  * The cluster corresponding to page_nr decreases one usage. If the usage
578  * counter becomes 0, which means no page in the cluster is in using, we can
579  * optionally discard the cluster and add it to free cluster list.
580  */
581 static void dec_cluster_info_page(struct swap_info_struct *p,
582         struct swap_cluster_info *cluster_info, unsigned long page_nr)
583 {
584         unsigned long idx = page_nr / SWAPFILE_CLUSTER;
585
586         if (!cluster_info)
587                 return;
588
589         VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0);
590         cluster_set_count(&cluster_info[idx],
591                 cluster_count(&cluster_info[idx]) - 1);
592
593         if (cluster_count(&cluster_info[idx]) == 0)
594                 free_cluster(p, idx);
595 }
596
597 /*
598  * It's possible scan_swap_map_slots() uses a free cluster in the middle of free
599  * cluster list. Avoiding such abuse to avoid list corruption.
600  */
601 static bool
602 scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si,
603         unsigned long offset)
604 {
605         struct percpu_cluster *percpu_cluster;
606         bool conflict;
607
608         offset /= SWAPFILE_CLUSTER;
609         conflict = !cluster_list_empty(&si->free_clusters) &&
610                 offset != cluster_list_first(&si->free_clusters) &&
611                 cluster_is_free(&si->cluster_info[offset]);
612
613         if (!conflict)
614                 return false;
615
616         percpu_cluster = this_cpu_ptr(si->percpu_cluster);
617         cluster_set_null(&percpu_cluster->index);
618         return true;
619 }
620
621 /*
622  * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
623  * might involve allocating a new cluster for current CPU too.
624  */
625 static bool scan_swap_map_try_ssd_cluster(struct swap_info_struct *si,
626         unsigned long *offset, unsigned long *scan_base)
627 {
628         struct percpu_cluster *cluster;
629         struct swap_cluster_info *ci;
630         unsigned long tmp, max;
631
632 new_cluster:
633         cluster = this_cpu_ptr(si->percpu_cluster);
634         if (cluster_is_null(&cluster->index)) {
635                 if (!cluster_list_empty(&si->free_clusters)) {
636                         cluster->index = si->free_clusters.head;
637                         cluster->next = cluster_next(&cluster->index) *
638                                         SWAPFILE_CLUSTER;
639                 } else if (!cluster_list_empty(&si->discard_clusters)) {
640                         /*
641                          * we don't have free cluster but have some clusters in
642                          * discarding, do discard now and reclaim them, then
643                          * reread cluster_next_cpu since we dropped si->lock
644                          */
645                         swap_do_scheduled_discard(si);
646                         *scan_base = this_cpu_read(*si->cluster_next_cpu);
647                         *offset = *scan_base;
648                         goto new_cluster;
649                 } else
650                         return false;
651         }
652
653         /*
654          * Other CPUs can use our cluster if they can't find a free cluster,
655          * check if there is still free entry in the cluster
656          */
657         tmp = cluster->next;
658         max = min_t(unsigned long, si->max,
659                     (cluster_next(&cluster->index) + 1) * SWAPFILE_CLUSTER);
660         if (tmp < max) {
661                 ci = lock_cluster(si, tmp);
662                 while (tmp < max) {
663                         if (!si->swap_map[tmp])
664                                 break;
665                         tmp++;
666                 }
667                 unlock_cluster(ci);
668         }
669         if (tmp >= max) {
670                 cluster_set_null(&cluster->index);
671                 goto new_cluster;
672         }
673         cluster->next = tmp + 1;
674         *offset = tmp;
675         *scan_base = tmp;
676         return true;
677 }
678
679 static void __del_from_avail_list(struct swap_info_struct *p)
680 {
681         int nid;
682
683         assert_spin_locked(&p->lock);
684         for_each_node(nid)
685                 plist_del(&p->avail_lists[nid], &swap_avail_heads[nid]);
686 }
687
688 static void del_from_avail_list(struct swap_info_struct *p)
689 {
690         spin_lock(&swap_avail_lock);
691         __del_from_avail_list(p);
692         spin_unlock(&swap_avail_lock);
693 }
694
695 static void swap_range_alloc(struct swap_info_struct *si, unsigned long offset,
696                              unsigned int nr_entries)
697 {
698         unsigned int end = offset + nr_entries - 1;
699
700         if (offset == si->lowest_bit)
701                 si->lowest_bit += nr_entries;
702         if (end == si->highest_bit)
703                 WRITE_ONCE(si->highest_bit, si->highest_bit - nr_entries);
704         WRITE_ONCE(si->inuse_pages, si->inuse_pages + nr_entries);
705         if (si->inuse_pages == si->pages) {
706                 si->lowest_bit = si->max;
707                 si->highest_bit = 0;
708                 del_from_avail_list(si);
709         }
710 }
711
712 static void add_to_avail_list(struct swap_info_struct *p)
713 {
714         int nid;
715
716         spin_lock(&swap_avail_lock);
717         for_each_node(nid)
718                 plist_add(&p->avail_lists[nid], &swap_avail_heads[nid]);
719         spin_unlock(&swap_avail_lock);
720 }
721
722 static void swap_range_free(struct swap_info_struct *si, unsigned long offset,
723                             unsigned int nr_entries)
724 {
725         unsigned long begin = offset;
726         unsigned long end = offset + nr_entries - 1;
727         void (*swap_slot_free_notify)(struct block_device *, unsigned long);
728
729         if (offset < si->lowest_bit)
730                 si->lowest_bit = offset;
731         if (end > si->highest_bit) {
732                 bool was_full = !si->highest_bit;
733
734                 WRITE_ONCE(si->highest_bit, end);
735                 if (was_full && (si->flags & SWP_WRITEOK))
736                         add_to_avail_list(si);
737         }
738         atomic_long_add(nr_entries, &nr_swap_pages);
739         WRITE_ONCE(si->inuse_pages, si->inuse_pages - nr_entries);
740         if (si->flags & SWP_BLKDEV)
741                 swap_slot_free_notify =
742                         si->bdev->bd_disk->fops->swap_slot_free_notify;
743         else
744                 swap_slot_free_notify = NULL;
745         while (offset <= end) {
746                 arch_swap_invalidate_page(si->type, offset);
747                 zswap_invalidate(si->type, offset);
748                 if (swap_slot_free_notify)
749                         swap_slot_free_notify(si->bdev, offset);
750                 offset++;
751         }
752         clear_shadow_from_swap_cache(si->type, begin, end);
753 }
754
755 static void set_cluster_next(struct swap_info_struct *si, unsigned long next)
756 {
757         unsigned long prev;
758
759         if (!(si->flags & SWP_SOLIDSTATE)) {
760                 si->cluster_next = next;
761                 return;
762         }
763
764         prev = this_cpu_read(*si->cluster_next_cpu);
765         /*
766          * Cross the swap address space size aligned trunk, choose
767          * another trunk randomly to avoid lock contention on swap
768          * address space if possible.
769          */
770         if ((prev >> SWAP_ADDRESS_SPACE_SHIFT) !=
771             (next >> SWAP_ADDRESS_SPACE_SHIFT)) {
772                 /* No free swap slots available */
773                 if (si->highest_bit <= si->lowest_bit)
774                         return;
775                 next = get_random_u32_inclusive(si->lowest_bit, si->highest_bit);
776                 next = ALIGN_DOWN(next, SWAP_ADDRESS_SPACE_PAGES);
777                 next = max_t(unsigned int, next, si->lowest_bit);
778         }
779         this_cpu_write(*si->cluster_next_cpu, next);
780 }
781
782 static bool swap_offset_available_and_locked(struct swap_info_struct *si,
783                                              unsigned long offset)
784 {
785         if (data_race(!si->swap_map[offset])) {
786                 spin_lock(&si->lock);
787                 return true;
788         }
789
790         if (vm_swap_full() && READ_ONCE(si->swap_map[offset]) == SWAP_HAS_CACHE) {
791                 spin_lock(&si->lock);
792                 return true;
793         }
794
795         return false;
796 }
797
798 static int scan_swap_map_slots(struct swap_info_struct *si,
799                                unsigned char usage, int nr,
800                                swp_entry_t slots[])
801 {
802         struct swap_cluster_info *ci;
803         unsigned long offset;
804         unsigned long scan_base;
805         unsigned long last_in_cluster = 0;
806         int latency_ration = LATENCY_LIMIT;
807         int n_ret = 0;
808         bool scanned_many = false;
809
810         /*
811          * We try to cluster swap pages by allocating them sequentially
812          * in swap.  Once we've allocated SWAPFILE_CLUSTER pages this
813          * way, however, we resort to first-free allocation, starting
814          * a new cluster.  This prevents us from scattering swap pages
815          * all over the entire swap partition, so that we reduce
816          * overall disk seek times between swap pages.  -- sct
817          * But we do now try to find an empty cluster.  -Andrea
818          * And we let swap pages go all over an SSD partition.  Hugh
819          */
820
821         si->flags += SWP_SCANNING;
822         /*
823          * Use percpu scan base for SSD to reduce lock contention on
824          * cluster and swap cache.  For HDD, sequential access is more
825          * important.
826          */
827         if (si->flags & SWP_SOLIDSTATE)
828                 scan_base = this_cpu_read(*si->cluster_next_cpu);
829         else
830                 scan_base = si->cluster_next;
831         offset = scan_base;
832
833         /* SSD algorithm */
834         if (si->cluster_info) {
835                 if (!scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
836                         goto scan;
837         } else if (unlikely(!si->cluster_nr--)) {
838                 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
839                         si->cluster_nr = SWAPFILE_CLUSTER - 1;
840                         goto checks;
841                 }
842
843                 spin_unlock(&si->lock);
844
845                 /*
846                  * If seek is expensive, start searching for new cluster from
847                  * start of partition, to minimize the span of allocated swap.
848                  * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info
849                  * case, just handled by scan_swap_map_try_ssd_cluster() above.
850                  */
851                 scan_base = offset = si->lowest_bit;
852                 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
853
854                 /* Locate the first empty (unaligned) cluster */
855                 for (; last_in_cluster <= si->highest_bit; offset++) {
856                         if (si->swap_map[offset])
857                                 last_in_cluster = offset + SWAPFILE_CLUSTER;
858                         else if (offset == last_in_cluster) {
859                                 spin_lock(&si->lock);
860                                 offset -= SWAPFILE_CLUSTER - 1;
861                                 si->cluster_next = offset;
862                                 si->cluster_nr = SWAPFILE_CLUSTER - 1;
863                                 goto checks;
864                         }
865                         if (unlikely(--latency_ration < 0)) {
866                                 cond_resched();
867                                 latency_ration = LATENCY_LIMIT;
868                         }
869                 }
870
871                 offset = scan_base;
872                 spin_lock(&si->lock);
873                 si->cluster_nr = SWAPFILE_CLUSTER - 1;
874         }
875
876 checks:
877         if (si->cluster_info) {
878                 while (scan_swap_map_ssd_cluster_conflict(si, offset)) {
879                 /* take a break if we already got some slots */
880                         if (n_ret)
881                                 goto done;
882                         if (!scan_swap_map_try_ssd_cluster(si, &offset,
883                                                         &scan_base))
884                                 goto scan;
885                 }
886         }
887         if (!(si->flags & SWP_WRITEOK))
888                 goto no_page;
889         if (!si->highest_bit)
890                 goto no_page;
891         if (offset > si->highest_bit)
892                 scan_base = offset = si->lowest_bit;
893
894         ci = lock_cluster(si, offset);
895         /* reuse swap entry of cache-only swap if not busy. */
896         if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
897                 int swap_was_freed;
898                 unlock_cluster(ci);
899                 spin_unlock(&si->lock);
900                 swap_was_freed = __try_to_reclaim_swap(si, offset, TTRS_ANYWAY);
901                 spin_lock(&si->lock);
902                 /* entry was freed successfully, try to use this again */
903                 if (swap_was_freed)
904                         goto checks;
905                 goto scan; /* check next one */
906         }
907
908         if (si->swap_map[offset]) {
909                 unlock_cluster(ci);
910                 if (!n_ret)
911                         goto scan;
912                 else
913                         goto done;
914         }
915         WRITE_ONCE(si->swap_map[offset], usage);
916         inc_cluster_info_page(si, si->cluster_info, offset);
917         unlock_cluster(ci);
918
919         swap_range_alloc(si, offset, 1);
920         slots[n_ret++] = swp_entry(si->type, offset);
921
922         /* got enough slots or reach max slots? */
923         if ((n_ret == nr) || (offset >= si->highest_bit))
924                 goto done;
925
926         /* search for next available slot */
927
928         /* time to take a break? */
929         if (unlikely(--latency_ration < 0)) {
930                 if (n_ret)
931                         goto done;
932                 spin_unlock(&si->lock);
933                 cond_resched();
934                 spin_lock(&si->lock);
935                 latency_ration = LATENCY_LIMIT;
936         }
937
938         /* try to get more slots in cluster */
939         if (si->cluster_info) {
940                 if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
941                         goto checks;
942         } else if (si->cluster_nr && !si->swap_map[++offset]) {
943                 /* non-ssd case, still more slots in cluster? */
944                 --si->cluster_nr;
945                 goto checks;
946         }
947
948         /*
949          * Even if there's no free clusters available (fragmented),
950          * try to scan a little more quickly with lock held unless we
951          * have scanned too many slots already.
952          */
953         if (!scanned_many) {
954                 unsigned long scan_limit;
955
956                 if (offset < scan_base)
957                         scan_limit = scan_base;
958                 else
959                         scan_limit = si->highest_bit;
960                 for (; offset <= scan_limit && --latency_ration > 0;
961                      offset++) {
962                         if (!si->swap_map[offset])
963                                 goto checks;
964                 }
965         }
966
967 done:
968         set_cluster_next(si, offset + 1);
969         si->flags -= SWP_SCANNING;
970         return n_ret;
971
972 scan:
973         spin_unlock(&si->lock);
974         while (++offset <= READ_ONCE(si->highest_bit)) {
975                 if (unlikely(--latency_ration < 0)) {
976                         cond_resched();
977                         latency_ration = LATENCY_LIMIT;
978                         scanned_many = true;
979                 }
980                 if (swap_offset_available_and_locked(si, offset))
981                         goto checks;
982         }
983         offset = si->lowest_bit;
984         while (offset < scan_base) {
985                 if (unlikely(--latency_ration < 0)) {
986                         cond_resched();
987                         latency_ration = LATENCY_LIMIT;
988                         scanned_many = true;
989                 }
990                 if (swap_offset_available_and_locked(si, offset))
991                         goto checks;
992                 offset++;
993         }
994         spin_lock(&si->lock);
995
996 no_page:
997         si->flags -= SWP_SCANNING;
998         return n_ret;
999 }
1000
1001 static int swap_alloc_cluster(struct swap_info_struct *si, swp_entry_t *slot)
1002 {
1003         unsigned long idx;
1004         struct swap_cluster_info *ci;
1005         unsigned long offset;
1006
1007         /*
1008          * Should not even be attempting cluster allocations when huge
1009          * page swap is disabled.  Warn and fail the allocation.
1010          */
1011         if (!IS_ENABLED(CONFIG_THP_SWAP)) {
1012                 VM_WARN_ON_ONCE(1);
1013                 return 0;
1014         }
1015
1016         if (cluster_list_empty(&si->free_clusters))
1017                 return 0;
1018
1019         idx = cluster_list_first(&si->free_clusters);
1020         offset = idx * SWAPFILE_CLUSTER;
1021         ci = lock_cluster(si, offset);
1022         alloc_cluster(si, idx);
1023         cluster_set_count_flag(ci, SWAPFILE_CLUSTER, CLUSTER_FLAG_HUGE);
1024
1025         memset(si->swap_map + offset, SWAP_HAS_CACHE, SWAPFILE_CLUSTER);
1026         unlock_cluster(ci);
1027         swap_range_alloc(si, offset, SWAPFILE_CLUSTER);
1028         *slot = swp_entry(si->type, offset);
1029
1030         return 1;
1031 }
1032
1033 static void swap_free_cluster(struct swap_info_struct *si, unsigned long idx)
1034 {
1035         unsigned long offset = idx * SWAPFILE_CLUSTER;
1036         struct swap_cluster_info *ci;
1037
1038         ci = lock_cluster(si, offset);
1039         memset(si->swap_map + offset, 0, SWAPFILE_CLUSTER);
1040         cluster_set_count_flag(ci, 0, 0);
1041         free_cluster(si, idx);
1042         unlock_cluster(ci);
1043         swap_range_free(si, offset, SWAPFILE_CLUSTER);
1044 }
1045
1046 int get_swap_pages(int n_goal, swp_entry_t swp_entries[], int entry_size)
1047 {
1048         unsigned long size = swap_entry_size(entry_size);
1049         struct swap_info_struct *si, *next;
1050         long avail_pgs;
1051         int n_ret = 0;
1052         int node;
1053
1054         /* Only single cluster request supported */
1055         WARN_ON_ONCE(n_goal > 1 && size == SWAPFILE_CLUSTER);
1056
1057         spin_lock(&swap_avail_lock);
1058
1059         avail_pgs = atomic_long_read(&nr_swap_pages) / size;
1060         if (avail_pgs <= 0) {
1061                 spin_unlock(&swap_avail_lock);
1062                 goto noswap;
1063         }
1064
1065         n_goal = min3((long)n_goal, (long)SWAP_BATCH, avail_pgs);
1066
1067         atomic_long_sub(n_goal * size, &nr_swap_pages);
1068
1069 start_over:
1070         node = numa_node_id();
1071         plist_for_each_entry_safe(si, next, &swap_avail_heads[node], avail_lists[node]) {
1072                 /* requeue si to after same-priority siblings */
1073                 plist_requeue(&si->avail_lists[node], &swap_avail_heads[node]);
1074                 spin_unlock(&swap_avail_lock);
1075                 spin_lock(&si->lock);
1076                 if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) {
1077                         spin_lock(&swap_avail_lock);
1078                         if (plist_node_empty(&si->avail_lists[node])) {
1079                                 spin_unlock(&si->lock);
1080                                 goto nextsi;
1081                         }
1082                         WARN(!si->highest_bit,
1083                              "swap_info %d in list but !highest_bit\n",
1084                              si->type);
1085                         WARN(!(si->flags & SWP_WRITEOK),
1086                              "swap_info %d in list but !SWP_WRITEOK\n",
1087                              si->type);
1088                         __del_from_avail_list(si);
1089                         spin_unlock(&si->lock);
1090                         goto nextsi;
1091                 }
1092                 if (size == SWAPFILE_CLUSTER) {
1093                         if (si->flags & SWP_BLKDEV)
1094                                 n_ret = swap_alloc_cluster(si, swp_entries);
1095                 } else
1096                         n_ret = scan_swap_map_slots(si, SWAP_HAS_CACHE,
1097                                                     n_goal, swp_entries);
1098                 spin_unlock(&si->lock);
1099                 if (n_ret || size == SWAPFILE_CLUSTER)
1100                         goto check_out;
1101                 cond_resched();
1102
1103                 spin_lock(&swap_avail_lock);
1104 nextsi:
1105                 /*
1106                  * if we got here, it's likely that si was almost full before,
1107                  * and since scan_swap_map_slots() can drop the si->lock,
1108                  * multiple callers probably all tried to get a page from the
1109                  * same si and it filled up before we could get one; or, the si
1110                  * filled up between us dropping swap_avail_lock and taking
1111                  * si->lock. Since we dropped the swap_avail_lock, the
1112                  * swap_avail_head list may have been modified; so if next is
1113                  * still in the swap_avail_head list then try it, otherwise
1114                  * start over if we have not gotten any slots.
1115                  */
1116                 if (plist_node_empty(&next->avail_lists[node]))
1117                         goto start_over;
1118         }
1119
1120         spin_unlock(&swap_avail_lock);
1121
1122 check_out:
1123         if (n_ret < n_goal)
1124                 atomic_long_add((long)(n_goal - n_ret) * size,
1125                                 &nr_swap_pages);
1126 noswap:
1127         return n_ret;
1128 }
1129
1130 static struct swap_info_struct *_swap_info_get(swp_entry_t entry)
1131 {
1132         struct swap_info_struct *p;
1133         unsigned long offset;
1134
1135         if (!entry.val)
1136                 goto out;
1137         p = swp_swap_info(entry);
1138         if (!p)
1139                 goto bad_nofile;
1140         if (data_race(!(p->flags & SWP_USED)))
1141                 goto bad_device;
1142         offset = swp_offset(entry);
1143         if (offset >= p->max)
1144                 goto bad_offset;
1145         if (data_race(!p->swap_map[swp_offset(entry)]))
1146                 goto bad_free;
1147         return p;
1148
1149 bad_free:
1150         pr_err("%s: %s%08lx\n", __func__, Unused_offset, entry.val);
1151         goto out;
1152 bad_offset:
1153         pr_err("%s: %s%08lx\n", __func__, Bad_offset, entry.val);
1154         goto out;
1155 bad_device:
1156         pr_err("%s: %s%08lx\n", __func__, Unused_file, entry.val);
1157         goto out;
1158 bad_nofile:
1159         pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val);
1160 out:
1161         return NULL;
1162 }
1163
1164 static struct swap_info_struct *swap_info_get_cont(swp_entry_t entry,
1165                                         struct swap_info_struct *q)
1166 {
1167         struct swap_info_struct *p;
1168
1169         p = _swap_info_get(entry);
1170
1171         if (p != q) {
1172                 if (q != NULL)
1173                         spin_unlock(&q->lock);
1174                 if (p != NULL)
1175                         spin_lock(&p->lock);
1176         }
1177         return p;
1178 }
1179
1180 static unsigned char __swap_entry_free_locked(struct swap_info_struct *p,
1181                                               unsigned long offset,
1182                                               unsigned char usage)
1183 {
1184         unsigned char count;
1185         unsigned char has_cache;
1186
1187         count = p->swap_map[offset];
1188
1189         has_cache = count & SWAP_HAS_CACHE;
1190         count &= ~SWAP_HAS_CACHE;
1191
1192         if (usage == SWAP_HAS_CACHE) {
1193                 VM_BUG_ON(!has_cache);
1194                 has_cache = 0;
1195         } else if (count == SWAP_MAP_SHMEM) {
1196                 /*
1197                  * Or we could insist on shmem.c using a special
1198                  * swap_shmem_free() and free_shmem_swap_and_cache()...
1199                  */
1200                 count = 0;
1201         } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
1202                 if (count == COUNT_CONTINUED) {
1203                         if (swap_count_continued(p, offset, count))
1204                                 count = SWAP_MAP_MAX | COUNT_CONTINUED;
1205                         else
1206                                 count = SWAP_MAP_MAX;
1207                 } else
1208                         count--;
1209         }
1210
1211         usage = count | has_cache;
1212         if (usage)
1213                 WRITE_ONCE(p->swap_map[offset], usage);
1214         else
1215                 WRITE_ONCE(p->swap_map[offset], SWAP_HAS_CACHE);
1216
1217         return usage;
1218 }
1219
1220 /*
1221  * When we get a swap entry, if there aren't some other ways to
1222  * prevent swapoff, such as the folio in swap cache is locked, page
1223  * table lock is held, etc., the swap entry may become invalid because
1224  * of swapoff.  Then, we need to enclose all swap related functions
1225  * with get_swap_device() and put_swap_device(), unless the swap
1226  * functions call get/put_swap_device() by themselves.
1227  *
1228  * Check whether swap entry is valid in the swap device.  If so,
1229  * return pointer to swap_info_struct, and keep the swap entry valid
1230  * via preventing the swap device from being swapoff, until
1231  * put_swap_device() is called.  Otherwise return NULL.
1232  *
1233  * Notice that swapoff or swapoff+swapon can still happen before the
1234  * percpu_ref_tryget_live() in get_swap_device() or after the
1235  * percpu_ref_put() in put_swap_device() if there isn't any other way
1236  * to prevent swapoff.  The caller must be prepared for that.  For
1237  * example, the following situation is possible.
1238  *
1239  *   CPU1                               CPU2
1240  *   do_swap_page()
1241  *     ...                              swapoff+swapon
1242  *     __read_swap_cache_async()
1243  *       swapcache_prepare()
1244  *         __swap_duplicate()
1245  *           // check swap_map
1246  *     // verify PTE not changed
1247  *
1248  * In __swap_duplicate(), the swap_map need to be checked before
1249  * changing partly because the specified swap entry may be for another
1250  * swap device which has been swapoff.  And in do_swap_page(), after
1251  * the page is read from the swap device, the PTE is verified not
1252  * changed with the page table locked to check whether the swap device
1253  * has been swapoff or swapoff+swapon.
1254  */
1255 struct swap_info_struct *get_swap_device(swp_entry_t entry)
1256 {
1257         struct swap_info_struct *si;
1258         unsigned long offset;
1259
1260         if (!entry.val)
1261                 goto out;
1262         si = swp_swap_info(entry);
1263         if (!si)
1264                 goto bad_nofile;
1265         if (!percpu_ref_tryget_live(&si->users))
1266                 goto out;
1267         /*
1268          * Guarantee the si->users are checked before accessing other
1269          * fields of swap_info_struct.
1270          *
1271          * Paired with the spin_unlock() after setup_swap_info() in
1272          * enable_swap_info().
1273          */
1274         smp_rmb();
1275         offset = swp_offset(entry);
1276         if (offset >= si->max)
1277                 goto put_out;
1278
1279         return si;
1280 bad_nofile:
1281         pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val);
1282 out:
1283         return NULL;
1284 put_out:
1285         pr_err("%s: %s%08lx\n", __func__, Bad_offset, entry.val);
1286         percpu_ref_put(&si->users);
1287         return NULL;
1288 }
1289
1290 static unsigned char __swap_entry_free(struct swap_info_struct *p,
1291                                        swp_entry_t entry)
1292 {
1293         struct swap_cluster_info *ci;
1294         unsigned long offset = swp_offset(entry);
1295         unsigned char usage;
1296
1297         ci = lock_cluster_or_swap_info(p, offset);
1298         usage = __swap_entry_free_locked(p, offset, 1);
1299         unlock_cluster_or_swap_info(p, ci);
1300         if (!usage)
1301                 free_swap_slot(entry);
1302
1303         return usage;
1304 }
1305
1306 static void swap_entry_free(struct swap_info_struct *p, swp_entry_t entry)
1307 {
1308         struct swap_cluster_info *ci;
1309         unsigned long offset = swp_offset(entry);
1310         unsigned char count;
1311
1312         ci = lock_cluster(p, offset);
1313         count = p->swap_map[offset];
1314         VM_BUG_ON(count != SWAP_HAS_CACHE);
1315         p->swap_map[offset] = 0;
1316         dec_cluster_info_page(p, p->cluster_info, offset);
1317         unlock_cluster(ci);
1318
1319         mem_cgroup_uncharge_swap(entry, 1);
1320         swap_range_free(p, offset, 1);
1321 }
1322
1323 /*
1324  * Caller has made sure that the swap device corresponding to entry
1325  * is still around or has not been recycled.
1326  */
1327 void swap_free(swp_entry_t entry)
1328 {
1329         struct swap_info_struct *p;
1330
1331         p = _swap_info_get(entry);
1332         if (p)
1333                 __swap_entry_free(p, entry);
1334 }
1335
1336 /*
1337  * Called after dropping swapcache to decrease refcnt to swap entries.
1338  */
1339 void put_swap_folio(struct folio *folio, swp_entry_t entry)
1340 {
1341         unsigned long offset = swp_offset(entry);
1342         unsigned long idx = offset / SWAPFILE_CLUSTER;
1343         struct swap_cluster_info *ci;
1344         struct swap_info_struct *si;
1345         unsigned char *map;
1346         unsigned int i, free_entries = 0;
1347         unsigned char val;
1348         int size = swap_entry_size(folio_nr_pages(folio));
1349
1350         si = _swap_info_get(entry);
1351         if (!si)
1352                 return;
1353
1354         ci = lock_cluster_or_swap_info(si, offset);
1355         if (size == SWAPFILE_CLUSTER) {
1356                 VM_BUG_ON(!cluster_is_huge(ci));
1357                 map = si->swap_map + offset;
1358                 for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1359                         val = map[i];
1360                         VM_BUG_ON(!(val & SWAP_HAS_CACHE));
1361                         if (val == SWAP_HAS_CACHE)
1362                                 free_entries++;
1363                 }
1364                 cluster_clear_huge(ci);
1365                 if (free_entries == SWAPFILE_CLUSTER) {
1366                         unlock_cluster_or_swap_info(si, ci);
1367                         spin_lock(&si->lock);
1368                         mem_cgroup_uncharge_swap(entry, SWAPFILE_CLUSTER);
1369                         swap_free_cluster(si, idx);
1370                         spin_unlock(&si->lock);
1371                         return;
1372                 }
1373         }
1374         for (i = 0; i < size; i++, entry.val++) {
1375                 if (!__swap_entry_free_locked(si, offset + i, SWAP_HAS_CACHE)) {
1376                         unlock_cluster_or_swap_info(si, ci);
1377                         free_swap_slot(entry);
1378                         if (i == size - 1)
1379                                 return;
1380                         lock_cluster_or_swap_info(si, offset);
1381                 }
1382         }
1383         unlock_cluster_or_swap_info(si, ci);
1384 }
1385
1386 #ifdef CONFIG_THP_SWAP
1387 int split_swap_cluster(swp_entry_t entry)
1388 {
1389         struct swap_info_struct *si;
1390         struct swap_cluster_info *ci;
1391         unsigned long offset = swp_offset(entry);
1392
1393         si = _swap_info_get(entry);
1394         if (!si)
1395                 return -EBUSY;
1396         ci = lock_cluster(si, offset);
1397         cluster_clear_huge(ci);
1398         unlock_cluster(ci);
1399         return 0;
1400 }
1401 #endif
1402
1403 static int swp_entry_cmp(const void *ent1, const void *ent2)
1404 {
1405         const swp_entry_t *e1 = ent1, *e2 = ent2;
1406
1407         return (int)swp_type(*e1) - (int)swp_type(*e2);
1408 }
1409
1410 void swapcache_free_entries(swp_entry_t *entries, int n)
1411 {
1412         struct swap_info_struct *p, *prev;
1413         int i;
1414
1415         if (n <= 0)
1416                 return;
1417
1418         prev = NULL;
1419         p = NULL;
1420
1421         /*
1422          * Sort swap entries by swap device, so each lock is only taken once.
1423          * nr_swapfiles isn't absolutely correct, but the overhead of sort() is
1424          * so low that it isn't necessary to optimize further.
1425          */
1426         if (nr_swapfiles > 1)
1427                 sort(entries, n, sizeof(entries[0]), swp_entry_cmp, NULL);
1428         for (i = 0; i < n; ++i) {
1429                 p = swap_info_get_cont(entries[i], prev);
1430                 if (p)
1431                         swap_entry_free(p, entries[i]);
1432                 prev = p;
1433         }
1434         if (p)
1435                 spin_unlock(&p->lock);
1436 }
1437
1438 int __swap_count(swp_entry_t entry)
1439 {
1440         struct swap_info_struct *si = swp_swap_info(entry);
1441         pgoff_t offset = swp_offset(entry);
1442
1443         return swap_count(si->swap_map[offset]);
1444 }
1445
1446 /*
1447  * How many references to @entry are currently swapped out?
1448  * This does not give an exact answer when swap count is continued,
1449  * but does include the high COUNT_CONTINUED flag to allow for that.
1450  */
1451 int swap_swapcount(struct swap_info_struct *si, swp_entry_t entry)
1452 {
1453         pgoff_t offset = swp_offset(entry);
1454         struct swap_cluster_info *ci;
1455         int count;
1456
1457         ci = lock_cluster_or_swap_info(si, offset);
1458         count = swap_count(si->swap_map[offset]);
1459         unlock_cluster_or_swap_info(si, ci);
1460         return count;
1461 }
1462
1463 /*
1464  * How many references to @entry are currently swapped out?
1465  * This considers COUNT_CONTINUED so it returns exact answer.
1466  */
1467 int swp_swapcount(swp_entry_t entry)
1468 {
1469         int count, tmp_count, n;
1470         struct swap_info_struct *p;
1471         struct swap_cluster_info *ci;
1472         struct page *page;
1473         pgoff_t offset;
1474         unsigned char *map;
1475
1476         p = _swap_info_get(entry);
1477         if (!p)
1478                 return 0;
1479
1480         offset = swp_offset(entry);
1481
1482         ci = lock_cluster_or_swap_info(p, offset);
1483
1484         count = swap_count(p->swap_map[offset]);
1485         if (!(count & COUNT_CONTINUED))
1486                 goto out;
1487
1488         count &= ~COUNT_CONTINUED;
1489         n = SWAP_MAP_MAX + 1;
1490
1491         page = vmalloc_to_page(p->swap_map + offset);
1492         offset &= ~PAGE_MASK;
1493         VM_BUG_ON(page_private(page) != SWP_CONTINUED);
1494
1495         do {
1496                 page = list_next_entry(page, lru);
1497                 map = kmap_atomic(page);
1498                 tmp_count = map[offset];
1499                 kunmap_atomic(map);
1500
1501                 count += (tmp_count & ~COUNT_CONTINUED) * n;
1502                 n *= (SWAP_CONT_MAX + 1);
1503         } while (tmp_count & COUNT_CONTINUED);
1504 out:
1505         unlock_cluster_or_swap_info(p, ci);
1506         return count;
1507 }
1508
1509 static bool swap_page_trans_huge_swapped(struct swap_info_struct *si,
1510                                          swp_entry_t entry)
1511 {
1512         struct swap_cluster_info *ci;
1513         unsigned char *map = si->swap_map;
1514         unsigned long roffset = swp_offset(entry);
1515         unsigned long offset = round_down(roffset, SWAPFILE_CLUSTER);
1516         int i;
1517         bool ret = false;
1518
1519         ci = lock_cluster_or_swap_info(si, offset);
1520         if (!ci || !cluster_is_huge(ci)) {
1521                 if (swap_count(map[roffset]))
1522                         ret = true;
1523                 goto unlock_out;
1524         }
1525         for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1526                 if (swap_count(map[offset + i])) {
1527                         ret = true;
1528                         break;
1529                 }
1530         }
1531 unlock_out:
1532         unlock_cluster_or_swap_info(si, ci);
1533         return ret;
1534 }
1535
1536 static bool folio_swapped(struct folio *folio)
1537 {
1538         swp_entry_t entry = folio_swap_entry(folio);
1539         struct swap_info_struct *si = _swap_info_get(entry);
1540
1541         if (!si)
1542                 return false;
1543
1544         if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!folio_test_large(folio)))
1545                 return swap_swapcount(si, entry) != 0;
1546
1547         return swap_page_trans_huge_swapped(si, entry);
1548 }
1549
1550 /**
1551  * folio_free_swap() - Free the swap space used for this folio.
1552  * @folio: The folio to remove.
1553  *
1554  * If swap is getting full, or if there are no more mappings of this folio,
1555  * then call folio_free_swap to free its swap space.
1556  *
1557  * Return: true if we were able to release the swap space.
1558  */
1559 bool folio_free_swap(struct folio *folio)
1560 {
1561         VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1562
1563         if (!folio_test_swapcache(folio))
1564                 return false;
1565         if (folio_test_writeback(folio))
1566                 return false;
1567         if (folio_swapped(folio))
1568                 return false;
1569
1570         /*
1571          * Once hibernation has begun to create its image of memory,
1572          * there's a danger that one of the calls to folio_free_swap()
1573          * - most probably a call from __try_to_reclaim_swap() while
1574          * hibernation is allocating its own swap pages for the image,
1575          * but conceivably even a call from memory reclaim - will free
1576          * the swap from a folio which has already been recorded in the
1577          * image as a clean swapcache folio, and then reuse its swap for
1578          * another page of the image.  On waking from hibernation, the
1579          * original folio might be freed under memory pressure, then
1580          * later read back in from swap, now with the wrong data.
1581          *
1582          * Hibernation suspends storage while it is writing the image
1583          * to disk so check that here.
1584          */
1585         if (pm_suspended_storage())
1586                 return false;
1587
1588         delete_from_swap_cache(folio);
1589         folio_set_dirty(folio);
1590         return true;
1591 }
1592
1593 /*
1594  * Free the swap entry like above, but also try to
1595  * free the page cache entry if it is the last user.
1596  */
1597 int free_swap_and_cache(swp_entry_t entry)
1598 {
1599         struct swap_info_struct *p;
1600         unsigned char count;
1601
1602         if (non_swap_entry(entry))
1603                 return 1;
1604
1605         p = _swap_info_get(entry);
1606         if (p) {
1607                 count = __swap_entry_free(p, entry);
1608                 if (count == SWAP_HAS_CACHE &&
1609                     !swap_page_trans_huge_swapped(p, entry))
1610                         __try_to_reclaim_swap(p, swp_offset(entry),
1611                                               TTRS_UNMAPPED | TTRS_FULL);
1612         }
1613         return p != NULL;
1614 }
1615
1616 #ifdef CONFIG_HIBERNATION
1617
1618 swp_entry_t get_swap_page_of_type(int type)
1619 {
1620         struct swap_info_struct *si = swap_type_to_swap_info(type);
1621         swp_entry_t entry = {0};
1622
1623         if (!si)
1624                 goto fail;
1625
1626         /* This is called for allocating swap entry, not cache */
1627         spin_lock(&si->lock);
1628         if ((si->flags & SWP_WRITEOK) && scan_swap_map_slots(si, 1, 1, &entry))
1629                 atomic_long_dec(&nr_swap_pages);
1630         spin_unlock(&si->lock);
1631 fail:
1632         return entry;
1633 }
1634
1635 /*
1636  * Find the swap type that corresponds to given device (if any).
1637  *
1638  * @offset - number of the PAGE_SIZE-sized block of the device, starting
1639  * from 0, in which the swap header is expected to be located.
1640  *
1641  * This is needed for the suspend to disk (aka swsusp).
1642  */
1643 int swap_type_of(dev_t device, sector_t offset)
1644 {
1645         int type;
1646
1647         if (!device)
1648                 return -1;
1649
1650         spin_lock(&swap_lock);
1651         for (type = 0; type < nr_swapfiles; type++) {
1652                 struct swap_info_struct *sis = swap_info[type];
1653
1654                 if (!(sis->flags & SWP_WRITEOK))
1655                         continue;
1656
1657                 if (device == sis->bdev->bd_dev) {
1658                         struct swap_extent *se = first_se(sis);
1659
1660                         if (se->start_block == offset) {
1661                                 spin_unlock(&swap_lock);
1662                                 return type;
1663                         }
1664                 }
1665         }
1666         spin_unlock(&swap_lock);
1667         return -ENODEV;
1668 }
1669
1670 int find_first_swap(dev_t *device)
1671 {
1672         int type;
1673
1674         spin_lock(&swap_lock);
1675         for (type = 0; type < nr_swapfiles; type++) {
1676                 struct swap_info_struct *sis = swap_info[type];
1677
1678                 if (!(sis->flags & SWP_WRITEOK))
1679                         continue;
1680                 *device = sis->bdev->bd_dev;
1681                 spin_unlock(&swap_lock);
1682                 return type;
1683         }
1684         spin_unlock(&swap_lock);
1685         return -ENODEV;
1686 }
1687
1688 /*
1689  * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1690  * corresponding to given index in swap_info (swap type).
1691  */
1692 sector_t swapdev_block(int type, pgoff_t offset)
1693 {
1694         struct swap_info_struct *si = swap_type_to_swap_info(type);
1695         struct swap_extent *se;
1696
1697         if (!si || !(si->flags & SWP_WRITEOK))
1698                 return 0;
1699         se = offset_to_swap_extent(si, offset);
1700         return se->start_block + (offset - se->start_page);
1701 }
1702
1703 /*
1704  * Return either the total number of swap pages of given type, or the number
1705  * of free pages of that type (depending on @free)
1706  *
1707  * This is needed for software suspend
1708  */
1709 unsigned int count_swap_pages(int type, int free)
1710 {
1711         unsigned int n = 0;
1712
1713         spin_lock(&swap_lock);
1714         if ((unsigned int)type < nr_swapfiles) {
1715                 struct swap_info_struct *sis = swap_info[type];
1716
1717                 spin_lock(&sis->lock);
1718                 if (sis->flags & SWP_WRITEOK) {
1719                         n = sis->pages;
1720                         if (free)
1721                                 n -= sis->inuse_pages;
1722                 }
1723                 spin_unlock(&sis->lock);
1724         }
1725         spin_unlock(&swap_lock);
1726         return n;
1727 }
1728 #endif /* CONFIG_HIBERNATION */
1729
1730 static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte)
1731 {
1732         return pte_same(pte_swp_clear_flags(pte), swp_pte);
1733 }
1734
1735 /*
1736  * No need to decide whether this PTE shares the swap entry with others,
1737  * just let do_wp_page work it out if a write is requested later - to
1738  * force COW, vm_page_prot omits write permission from any private vma.
1739  */
1740 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1741                 unsigned long addr, swp_entry_t entry, struct folio *folio)
1742 {
1743         struct page *page = folio_file_page(folio, swp_offset(entry));
1744         struct page *swapcache;
1745         spinlock_t *ptl;
1746         pte_t *pte, new_pte, old_pte;
1747         bool hwposioned = false;
1748         int ret = 1;
1749
1750         swapcache = page;
1751         page = ksm_might_need_to_copy(page, vma, addr);
1752         if (unlikely(!page))
1753                 return -ENOMEM;
1754         else if (unlikely(PTR_ERR(page) == -EHWPOISON))
1755                 hwposioned = true;
1756
1757         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1758         if (unlikely(!pte || !pte_same_as_swp(ptep_get(pte),
1759                                                 swp_entry_to_pte(entry)))) {
1760                 ret = 0;
1761                 goto out;
1762         }
1763
1764         old_pte = ptep_get(pte);
1765
1766         if (unlikely(hwposioned || !PageUptodate(page))) {
1767                 swp_entry_t swp_entry;
1768
1769                 dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1770                 if (hwposioned) {
1771                         swp_entry = make_hwpoison_entry(swapcache);
1772                         page = swapcache;
1773                 } else {
1774                         swp_entry = make_poisoned_swp_entry();
1775                 }
1776                 new_pte = swp_entry_to_pte(swp_entry);
1777                 ret = 0;
1778                 goto setpte;
1779         }
1780
1781         /*
1782          * Some architectures may have to restore extra metadata to the page
1783          * when reading from swap. This metadata may be indexed by swap entry
1784          * so this must be called before swap_free().
1785          */
1786         arch_swap_restore(entry, page_folio(page));
1787
1788         /* See do_swap_page() */
1789         BUG_ON(!PageAnon(page) && PageMappedToDisk(page));
1790         BUG_ON(PageAnon(page) && PageAnonExclusive(page));
1791
1792         dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1793         inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
1794         get_page(page);
1795         if (page == swapcache) {
1796                 rmap_t rmap_flags = RMAP_NONE;
1797
1798                 /*
1799                  * See do_swap_page(): PageWriteback() would be problematic.
1800                  * However, we do a wait_on_page_writeback() just before this
1801                  * call and have the page locked.
1802                  */
1803                 VM_BUG_ON_PAGE(PageWriteback(page), page);
1804                 if (pte_swp_exclusive(old_pte))
1805                         rmap_flags |= RMAP_EXCLUSIVE;
1806
1807                 page_add_anon_rmap(page, vma, addr, rmap_flags);
1808         } else { /* ksm created a completely new copy */
1809                 page_add_new_anon_rmap(page, vma, addr);
1810                 lru_cache_add_inactive_or_unevictable(page, vma);
1811         }
1812         new_pte = pte_mkold(mk_pte(page, vma->vm_page_prot));
1813         if (pte_swp_soft_dirty(old_pte))
1814                 new_pte = pte_mksoft_dirty(new_pte);
1815         if (pte_swp_uffd_wp(old_pte))
1816                 new_pte = pte_mkuffd_wp(new_pte);
1817 setpte:
1818         set_pte_at(vma->vm_mm, addr, pte, new_pte);
1819         swap_free(entry);
1820 out:
1821         if (pte)
1822                 pte_unmap_unlock(pte, ptl);
1823         if (page != swapcache) {
1824                 unlock_page(page);
1825                 put_page(page);
1826         }
1827         return ret;
1828 }
1829
1830 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
1831                         unsigned long addr, unsigned long end,
1832                         unsigned int type)
1833 {
1834         pte_t *pte = NULL;
1835         struct swap_info_struct *si;
1836
1837         si = swap_info[type];
1838         do {
1839                 struct folio *folio;
1840                 unsigned long offset;
1841                 unsigned char swp_count;
1842                 swp_entry_t entry;
1843                 int ret;
1844                 pte_t ptent;
1845
1846                 if (!pte++) {
1847                         pte = pte_offset_map(pmd, addr);
1848                         if (!pte)
1849                                 break;
1850                 }
1851
1852                 ptent = ptep_get_lockless(pte);
1853
1854                 if (!is_swap_pte(ptent))
1855                         continue;
1856
1857                 entry = pte_to_swp_entry(ptent);
1858                 if (swp_type(entry) != type)
1859                         continue;
1860
1861                 offset = swp_offset(entry);
1862                 pte_unmap(pte);
1863                 pte = NULL;
1864
1865                 folio = swap_cache_get_folio(entry, vma, addr);
1866                 if (!folio) {
1867                         struct page *page;
1868                         struct vm_fault vmf = {
1869                                 .vma = vma,
1870                                 .address = addr,
1871                                 .real_address = addr,
1872                                 .pmd = pmd,
1873                         };
1874
1875                         page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
1876                                                 &vmf);
1877                         if (page)
1878                                 folio = page_folio(page);
1879                 }
1880                 if (!folio) {
1881                         swp_count = READ_ONCE(si->swap_map[offset]);
1882                         if (swp_count == 0 || swp_count == SWAP_MAP_BAD)
1883                                 continue;
1884                         return -ENOMEM;
1885                 }
1886
1887                 folio_lock(folio);
1888                 folio_wait_writeback(folio);
1889                 ret = unuse_pte(vma, pmd, addr, entry, folio);
1890                 if (ret < 0) {
1891                         folio_unlock(folio);
1892                         folio_put(folio);
1893                         return ret;
1894                 }
1895
1896                 folio_free_swap(folio);
1897                 folio_unlock(folio);
1898                 folio_put(folio);
1899         } while (addr += PAGE_SIZE, addr != end);
1900
1901         if (pte)
1902                 pte_unmap(pte);
1903         return 0;
1904 }
1905
1906 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
1907                                 unsigned long addr, unsigned long end,
1908                                 unsigned int type)
1909 {
1910         pmd_t *pmd;
1911         unsigned long next;
1912         int ret;
1913
1914         pmd = pmd_offset(pud, addr);
1915         do {
1916                 cond_resched();
1917                 next = pmd_addr_end(addr, end);
1918                 ret = unuse_pte_range(vma, pmd, addr, next, type);
1919                 if (ret)
1920                         return ret;
1921         } while (pmd++, addr = next, addr != end);
1922         return 0;
1923 }
1924
1925 static inline int unuse_pud_range(struct vm_area_struct *vma, p4d_t *p4d,
1926                                 unsigned long addr, unsigned long end,
1927                                 unsigned int type)
1928 {
1929         pud_t *pud;
1930         unsigned long next;
1931         int ret;
1932
1933         pud = pud_offset(p4d, addr);
1934         do {
1935                 next = pud_addr_end(addr, end);
1936                 if (pud_none_or_clear_bad(pud))
1937                         continue;
1938                 ret = unuse_pmd_range(vma, pud, addr, next, type);
1939                 if (ret)
1940                         return ret;
1941         } while (pud++, addr = next, addr != end);
1942         return 0;
1943 }
1944
1945 static inline int unuse_p4d_range(struct vm_area_struct *vma, pgd_t *pgd,
1946                                 unsigned long addr, unsigned long end,
1947                                 unsigned int type)
1948 {
1949         p4d_t *p4d;
1950         unsigned long next;
1951         int ret;
1952
1953         p4d = p4d_offset(pgd, addr);
1954         do {
1955                 next = p4d_addr_end(addr, end);
1956                 if (p4d_none_or_clear_bad(p4d))
1957                         continue;
1958                 ret = unuse_pud_range(vma, p4d, addr, next, type);
1959                 if (ret)
1960                         return ret;
1961         } while (p4d++, addr = next, addr != end);
1962         return 0;
1963 }
1964
1965 static int unuse_vma(struct vm_area_struct *vma, unsigned int type)
1966 {
1967         pgd_t *pgd;
1968         unsigned long addr, end, next;
1969         int ret;
1970
1971         addr = vma->vm_start;
1972         end = vma->vm_end;
1973
1974         pgd = pgd_offset(vma->vm_mm, addr);
1975         do {
1976                 next = pgd_addr_end(addr, end);
1977                 if (pgd_none_or_clear_bad(pgd))
1978                         continue;
1979                 ret = unuse_p4d_range(vma, pgd, addr, next, type);
1980                 if (ret)
1981                         return ret;
1982         } while (pgd++, addr = next, addr != end);
1983         return 0;
1984 }
1985
1986 static int unuse_mm(struct mm_struct *mm, unsigned int type)
1987 {
1988         struct vm_area_struct *vma;
1989         int ret = 0;
1990         VMA_ITERATOR(vmi, mm, 0);
1991
1992         mmap_read_lock(mm);
1993         for_each_vma(vmi, vma) {
1994                 if (vma->anon_vma) {
1995                         ret = unuse_vma(vma, type);
1996                         if (ret)
1997                                 break;
1998                 }
1999
2000                 cond_resched();
2001         }
2002         mmap_read_unlock(mm);
2003         return ret;
2004 }
2005
2006 /*
2007  * Scan swap_map from current position to next entry still in use.
2008  * Return 0 if there are no inuse entries after prev till end of
2009  * the map.
2010  */
2011 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
2012                                         unsigned int prev)
2013 {
2014         unsigned int i;
2015         unsigned char count;
2016
2017         /*
2018          * No need for swap_lock here: we're just looking
2019          * for whether an entry is in use, not modifying it; false
2020          * hits are okay, and sys_swapoff() has already prevented new
2021          * allocations from this area (while holding swap_lock).
2022          */
2023         for (i = prev + 1; i < si->max; i++) {
2024                 count = READ_ONCE(si->swap_map[i]);
2025                 if (count && swap_count(count) != SWAP_MAP_BAD)
2026                         break;
2027                 if ((i % LATENCY_LIMIT) == 0)
2028                         cond_resched();
2029         }
2030
2031         if (i == si->max)
2032                 i = 0;
2033
2034         return i;
2035 }
2036
2037 static int try_to_unuse(unsigned int type)
2038 {
2039         struct mm_struct *prev_mm;
2040         struct mm_struct *mm;
2041         struct list_head *p;
2042         int retval = 0;
2043         struct swap_info_struct *si = swap_info[type];
2044         struct folio *folio;
2045         swp_entry_t entry;
2046         unsigned int i;
2047
2048         if (!READ_ONCE(si->inuse_pages))
2049                 return 0;
2050
2051 retry:
2052         retval = shmem_unuse(type);
2053         if (retval)
2054                 return retval;
2055
2056         prev_mm = &init_mm;
2057         mmget(prev_mm);
2058
2059         spin_lock(&mmlist_lock);
2060         p = &init_mm.mmlist;
2061         while (READ_ONCE(si->inuse_pages) &&
2062                !signal_pending(current) &&
2063                (p = p->next) != &init_mm.mmlist) {
2064
2065                 mm = list_entry(p, struct mm_struct, mmlist);
2066                 if (!mmget_not_zero(mm))
2067                         continue;
2068                 spin_unlock(&mmlist_lock);
2069                 mmput(prev_mm);
2070                 prev_mm = mm;
2071                 retval = unuse_mm(mm, type);
2072                 if (retval) {
2073                         mmput(prev_mm);
2074                         return retval;
2075                 }
2076
2077                 /*
2078                  * Make sure that we aren't completely killing
2079                  * interactive performance.
2080                  */
2081                 cond_resched();
2082                 spin_lock(&mmlist_lock);
2083         }
2084         spin_unlock(&mmlist_lock);
2085
2086         mmput(prev_mm);
2087
2088         i = 0;
2089         while (READ_ONCE(si->inuse_pages) &&
2090                !signal_pending(current) &&
2091                (i = find_next_to_unuse(si, i)) != 0) {
2092
2093                 entry = swp_entry(type, i);
2094                 folio = filemap_get_folio(swap_address_space(entry), i);
2095                 if (IS_ERR(folio))
2096                         continue;
2097
2098                 /*
2099                  * It is conceivable that a racing task removed this folio from
2100                  * swap cache just before we acquired the page lock. The folio
2101                  * might even be back in swap cache on another swap area. But
2102                  * that is okay, folio_free_swap() only removes stale folios.
2103                  */
2104                 folio_lock(folio);
2105                 folio_wait_writeback(folio);
2106                 folio_free_swap(folio);
2107                 folio_unlock(folio);
2108                 folio_put(folio);
2109         }
2110
2111         /*
2112          * Lets check again to see if there are still swap entries in the map.
2113          * If yes, we would need to do retry the unuse logic again.
2114          * Under global memory pressure, swap entries can be reinserted back
2115          * into process space after the mmlist loop above passes over them.
2116          *
2117          * Limit the number of retries? No: when mmget_not_zero()
2118          * above fails, that mm is likely to be freeing swap from
2119          * exit_mmap(), which proceeds at its own independent pace;
2120          * and even shmem_writepage() could have been preempted after
2121          * folio_alloc_swap(), temporarily hiding that swap.  It's easy
2122          * and robust (though cpu-intensive) just to keep retrying.
2123          */
2124         if (READ_ONCE(si->inuse_pages)) {
2125                 if (!signal_pending(current))
2126                         goto retry;
2127                 return -EINTR;
2128         }
2129
2130         return 0;
2131 }
2132
2133 /*
2134  * After a successful try_to_unuse, if no swap is now in use, we know
2135  * we can empty the mmlist.  swap_lock must be held on entry and exit.
2136  * Note that mmlist_lock nests inside swap_lock, and an mm must be
2137  * added to the mmlist just after page_duplicate - before would be racy.
2138  */
2139 static void drain_mmlist(void)
2140 {
2141         struct list_head *p, *next;
2142         unsigned int type;
2143
2144         for (type = 0; type < nr_swapfiles; type++)
2145                 if (swap_info[type]->inuse_pages)
2146                         return;
2147         spin_lock(&mmlist_lock);
2148         list_for_each_safe(p, next, &init_mm.mmlist)
2149                 list_del_init(p);
2150         spin_unlock(&mmlist_lock);
2151 }
2152
2153 /*
2154  * Free all of a swapdev's extent information
2155  */
2156 static void destroy_swap_extents(struct swap_info_struct *sis)
2157 {
2158         while (!RB_EMPTY_ROOT(&sis->swap_extent_root)) {
2159                 struct rb_node *rb = sis->swap_extent_root.rb_node;
2160                 struct swap_extent *se = rb_entry(rb, struct swap_extent, rb_node);
2161
2162                 rb_erase(rb, &sis->swap_extent_root);
2163                 kfree(se);
2164         }
2165
2166         if (sis->flags & SWP_ACTIVATED) {
2167                 struct file *swap_file = sis->swap_file;
2168                 struct address_space *mapping = swap_file->f_mapping;
2169
2170                 sis->flags &= ~SWP_ACTIVATED;
2171                 if (mapping->a_ops->swap_deactivate)
2172                         mapping->a_ops->swap_deactivate(swap_file);
2173         }
2174 }
2175
2176 /*
2177  * Add a block range (and the corresponding page range) into this swapdev's
2178  * extent tree.
2179  *
2180  * This function rather assumes that it is called in ascending page order.
2181  */
2182 int
2183 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
2184                 unsigned long nr_pages, sector_t start_block)
2185 {
2186         struct rb_node **link = &sis->swap_extent_root.rb_node, *parent = NULL;
2187         struct swap_extent *se;
2188         struct swap_extent *new_se;
2189
2190         /*
2191          * place the new node at the right most since the
2192          * function is called in ascending page order.
2193          */
2194         while (*link) {
2195                 parent = *link;
2196                 link = &parent->rb_right;
2197         }
2198
2199         if (parent) {
2200                 se = rb_entry(parent, struct swap_extent, rb_node);
2201                 BUG_ON(se->start_page + se->nr_pages != start_page);
2202                 if (se->start_block + se->nr_pages == start_block) {
2203                         /* Merge it */
2204                         se->nr_pages += nr_pages;
2205                         return 0;
2206                 }
2207         }
2208
2209         /* No merge, insert a new extent. */
2210         new_se = kmalloc(sizeof(*se), GFP_KERNEL);
2211         if (new_se == NULL)
2212                 return -ENOMEM;
2213         new_se->start_page = start_page;
2214         new_se->nr_pages = nr_pages;
2215         new_se->start_block = start_block;
2216
2217         rb_link_node(&new_se->rb_node, parent, link);
2218         rb_insert_color(&new_se->rb_node, &sis->swap_extent_root);
2219         return 1;
2220 }
2221 EXPORT_SYMBOL_GPL(add_swap_extent);
2222
2223 /*
2224  * A `swap extent' is a simple thing which maps a contiguous range of pages
2225  * onto a contiguous range of disk blocks.  A rbtree of swap extents is
2226  * built at swapon time and is then used at swap_writepage/swap_readpage
2227  * time for locating where on disk a page belongs.
2228  *
2229  * If the swapfile is an S_ISBLK block device, a single extent is installed.
2230  * This is done so that the main operating code can treat S_ISBLK and S_ISREG
2231  * swap files identically.
2232  *
2233  * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
2234  * extent rbtree operates in PAGE_SIZE disk blocks.  Both S_ISREG and S_ISBLK
2235  * swapfiles are handled *identically* after swapon time.
2236  *
2237  * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
2238  * and will parse them into a rbtree, in PAGE_SIZE chunks.  If some stray
2239  * blocks are found which do not fall within the PAGE_SIZE alignment
2240  * requirements, they are simply tossed out - we will never use those blocks
2241  * for swapping.
2242  *
2243  * For all swap devices we set S_SWAPFILE across the life of the swapon.  This
2244  * prevents users from writing to the swap device, which will corrupt memory.
2245  *
2246  * The amount of disk space which a single swap extent represents varies.
2247  * Typically it is in the 1-4 megabyte range.  So we can have hundreds of
2248  * extents in the rbtree. - akpm.
2249  */
2250 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
2251 {
2252         struct file *swap_file = sis->swap_file;
2253         struct address_space *mapping = swap_file->f_mapping;
2254         struct inode *inode = mapping->host;
2255         int ret;
2256
2257         if (S_ISBLK(inode->i_mode)) {
2258                 ret = add_swap_extent(sis, 0, sis->max, 0);
2259                 *span = sis->pages;
2260                 return ret;
2261         }
2262
2263         if (mapping->a_ops->swap_activate) {
2264                 ret = mapping->a_ops->swap_activate(sis, swap_file, span);
2265                 if (ret < 0)
2266                         return ret;
2267                 sis->flags |= SWP_ACTIVATED;
2268                 if ((sis->flags & SWP_FS_OPS) &&
2269                     sio_pool_init() != 0) {
2270                         destroy_swap_extents(sis);
2271                         return -ENOMEM;
2272                 }
2273                 return ret;
2274         }
2275
2276         return generic_swapfile_activate(sis, swap_file, span);
2277 }
2278
2279 static int swap_node(struct swap_info_struct *p)
2280 {
2281         struct block_device *bdev;
2282
2283         if (p->bdev)
2284                 bdev = p->bdev;
2285         else
2286                 bdev = p->swap_file->f_inode->i_sb->s_bdev;
2287
2288         return bdev ? bdev->bd_disk->node_id : NUMA_NO_NODE;
2289 }
2290
2291 static void setup_swap_info(struct swap_info_struct *p, int prio,
2292                             unsigned char *swap_map,
2293                             struct swap_cluster_info *cluster_info)
2294 {
2295         int i;
2296
2297         if (prio >= 0)
2298                 p->prio = prio;
2299         else
2300                 p->prio = --least_priority;
2301         /*
2302          * the plist prio is negated because plist ordering is
2303          * low-to-high, while swap ordering is high-to-low
2304          */
2305         p->list.prio = -p->prio;
2306         for_each_node(i) {
2307                 if (p->prio >= 0)
2308                         p->avail_lists[i].prio = -p->prio;
2309                 else {
2310                         if (swap_node(p) == i)
2311                                 p->avail_lists[i].prio = 1;
2312                         else
2313                                 p->avail_lists[i].prio = -p->prio;
2314                 }
2315         }
2316         p->swap_map = swap_map;
2317         p->cluster_info = cluster_info;
2318 }
2319
2320 static void _enable_swap_info(struct swap_info_struct *p)
2321 {
2322         p->flags |= SWP_WRITEOK;
2323         atomic_long_add(p->pages, &nr_swap_pages);
2324         total_swap_pages += p->pages;
2325
2326         assert_spin_locked(&swap_lock);
2327         /*
2328          * both lists are plists, and thus priority ordered.
2329          * swap_active_head needs to be priority ordered for swapoff(),
2330          * which on removal of any swap_info_struct with an auto-assigned
2331          * (i.e. negative) priority increments the auto-assigned priority
2332          * of any lower-priority swap_info_structs.
2333          * swap_avail_head needs to be priority ordered for folio_alloc_swap(),
2334          * which allocates swap pages from the highest available priority
2335          * swap_info_struct.
2336          */
2337         plist_add(&p->list, &swap_active_head);
2338
2339         /* add to available list iff swap device is not full */
2340         if (p->highest_bit)
2341                 add_to_avail_list(p);
2342 }
2343
2344 static void enable_swap_info(struct swap_info_struct *p, int prio,
2345                                 unsigned char *swap_map,
2346                                 struct swap_cluster_info *cluster_info)
2347 {
2348         zswap_swapon(p->type);
2349
2350         spin_lock(&swap_lock);
2351         spin_lock(&p->lock);
2352         setup_swap_info(p, prio, swap_map, cluster_info);
2353         spin_unlock(&p->lock);
2354         spin_unlock(&swap_lock);
2355         /*
2356          * Finished initializing swap device, now it's safe to reference it.
2357          */
2358         percpu_ref_resurrect(&p->users);
2359         spin_lock(&swap_lock);
2360         spin_lock(&p->lock);
2361         _enable_swap_info(p);
2362         spin_unlock(&p->lock);
2363         spin_unlock(&swap_lock);
2364 }
2365
2366 static void reinsert_swap_info(struct swap_info_struct *p)
2367 {
2368         spin_lock(&swap_lock);
2369         spin_lock(&p->lock);
2370         setup_swap_info(p, p->prio, p->swap_map, p->cluster_info);
2371         _enable_swap_info(p);
2372         spin_unlock(&p->lock);
2373         spin_unlock(&swap_lock);
2374 }
2375
2376 bool has_usable_swap(void)
2377 {
2378         bool ret = true;
2379
2380         spin_lock(&swap_lock);
2381         if (plist_head_empty(&swap_active_head))
2382                 ret = false;
2383         spin_unlock(&swap_lock);
2384         return ret;
2385 }
2386
2387 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
2388 {
2389         struct swap_info_struct *p = NULL;
2390         unsigned char *swap_map;
2391         struct swap_cluster_info *cluster_info;
2392         struct file *swap_file, *victim;
2393         struct address_space *mapping;
2394         struct inode *inode;
2395         struct filename *pathname;
2396         int err, found = 0;
2397         unsigned int old_block_size;
2398
2399         if (!capable(CAP_SYS_ADMIN))
2400                 return -EPERM;
2401
2402         BUG_ON(!current->mm);
2403
2404         pathname = getname(specialfile);
2405         if (IS_ERR(pathname))
2406                 return PTR_ERR(pathname);
2407
2408         victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
2409         err = PTR_ERR(victim);
2410         if (IS_ERR(victim))
2411                 goto out;
2412
2413         mapping = victim->f_mapping;
2414         spin_lock(&swap_lock);
2415         plist_for_each_entry(p, &swap_active_head, list) {
2416                 if (p->flags & SWP_WRITEOK) {
2417                         if (p->swap_file->f_mapping == mapping) {
2418                                 found = 1;
2419                                 break;
2420                         }
2421                 }
2422         }
2423         if (!found) {
2424                 err = -EINVAL;
2425                 spin_unlock(&swap_lock);
2426                 goto out_dput;
2427         }
2428         if (!security_vm_enough_memory_mm(current->mm, p->pages))
2429                 vm_unacct_memory(p->pages);
2430         else {
2431                 err = -ENOMEM;
2432                 spin_unlock(&swap_lock);
2433                 goto out_dput;
2434         }
2435         spin_lock(&p->lock);
2436         del_from_avail_list(p);
2437         if (p->prio < 0) {
2438                 struct swap_info_struct *si = p;
2439                 int nid;
2440
2441                 plist_for_each_entry_continue(si, &swap_active_head, list) {
2442                         si->prio++;
2443                         si->list.prio--;
2444                         for_each_node(nid) {
2445                                 if (si->avail_lists[nid].prio != 1)
2446                                         si->avail_lists[nid].prio--;
2447                         }
2448                 }
2449                 least_priority++;
2450         }
2451         plist_del(&p->list, &swap_active_head);
2452         atomic_long_sub(p->pages, &nr_swap_pages);
2453         total_swap_pages -= p->pages;
2454         p->flags &= ~SWP_WRITEOK;
2455         spin_unlock(&p->lock);
2456         spin_unlock(&swap_lock);
2457
2458         disable_swap_slots_cache_lock();
2459
2460         set_current_oom_origin();
2461         err = try_to_unuse(p->type);
2462         clear_current_oom_origin();
2463
2464         if (err) {
2465                 /* re-insert swap space back into swap_list */
2466                 reinsert_swap_info(p);
2467                 reenable_swap_slots_cache_unlock();
2468                 goto out_dput;
2469         }
2470
2471         reenable_swap_slots_cache_unlock();
2472
2473         /*
2474          * Wait for swap operations protected by get/put_swap_device()
2475          * to complete.
2476          *
2477          * We need synchronize_rcu() here to protect the accessing to
2478          * the swap cache data structure.
2479          */
2480         percpu_ref_kill(&p->users);
2481         synchronize_rcu();
2482         wait_for_completion(&p->comp);
2483
2484         flush_work(&p->discard_work);
2485
2486         destroy_swap_extents(p);
2487         if (p->flags & SWP_CONTINUED)
2488                 free_swap_count_continuations(p);
2489
2490         if (!p->bdev || !bdev_nonrot(p->bdev))
2491                 atomic_dec(&nr_rotate_swap);
2492
2493         mutex_lock(&swapon_mutex);
2494         spin_lock(&swap_lock);
2495         spin_lock(&p->lock);
2496         drain_mmlist();
2497
2498         /* wait for anyone still in scan_swap_map_slots */
2499         p->highest_bit = 0;             /* cuts scans short */
2500         while (p->flags >= SWP_SCANNING) {
2501                 spin_unlock(&p->lock);
2502                 spin_unlock(&swap_lock);
2503                 schedule_timeout_uninterruptible(1);
2504                 spin_lock(&swap_lock);
2505                 spin_lock(&p->lock);
2506         }
2507
2508         swap_file = p->swap_file;
2509         old_block_size = p->old_block_size;
2510         p->swap_file = NULL;
2511         p->max = 0;
2512         swap_map = p->swap_map;
2513         p->swap_map = NULL;
2514         cluster_info = p->cluster_info;
2515         p->cluster_info = NULL;
2516         spin_unlock(&p->lock);
2517         spin_unlock(&swap_lock);
2518         arch_swap_invalidate_area(p->type);
2519         zswap_swapoff(p->type);
2520         mutex_unlock(&swapon_mutex);
2521         free_percpu(p->percpu_cluster);
2522         p->percpu_cluster = NULL;
2523         free_percpu(p->cluster_next_cpu);
2524         p->cluster_next_cpu = NULL;
2525         vfree(swap_map);
2526         kvfree(cluster_info);
2527         /* Destroy swap account information */
2528         swap_cgroup_swapoff(p->type);
2529         exit_swap_address_space(p->type);
2530
2531         inode = mapping->host;
2532         if (S_ISBLK(inode->i_mode)) {
2533                 struct block_device *bdev = I_BDEV(inode);
2534
2535                 set_blocksize(bdev, old_block_size);
2536                 blkdev_put(bdev, p);
2537         }
2538
2539         inode_lock(inode);
2540         inode->i_flags &= ~S_SWAPFILE;
2541         inode_unlock(inode);
2542         filp_close(swap_file, NULL);
2543
2544         /*
2545          * Clear the SWP_USED flag after all resources are freed so that swapon
2546          * can reuse this swap_info in alloc_swap_info() safely.  It is ok to
2547          * not hold p->lock after we cleared its SWP_WRITEOK.
2548          */
2549         spin_lock(&swap_lock);
2550         p->flags = 0;
2551         spin_unlock(&swap_lock);
2552
2553         err = 0;
2554         atomic_inc(&proc_poll_event);
2555         wake_up_interruptible(&proc_poll_wait);
2556
2557 out_dput:
2558         filp_close(victim, NULL);
2559 out:
2560         putname(pathname);
2561         return err;
2562 }
2563
2564 #ifdef CONFIG_PROC_FS
2565 static __poll_t swaps_poll(struct file *file, poll_table *wait)
2566 {
2567         struct seq_file *seq = file->private_data;
2568
2569         poll_wait(file, &proc_poll_wait, wait);
2570
2571         if (seq->poll_event != atomic_read(&proc_poll_event)) {
2572                 seq->poll_event = atomic_read(&proc_poll_event);
2573                 return EPOLLIN | EPOLLRDNORM | EPOLLERR | EPOLLPRI;
2574         }
2575
2576         return EPOLLIN | EPOLLRDNORM;
2577 }
2578
2579 /* iterator */
2580 static void *swap_start(struct seq_file *swap, loff_t *pos)
2581 {
2582         struct swap_info_struct *si;
2583         int type;
2584         loff_t l = *pos;
2585
2586         mutex_lock(&swapon_mutex);
2587
2588         if (!l)
2589                 return SEQ_START_TOKEN;
2590
2591         for (type = 0; (si = swap_type_to_swap_info(type)); type++) {
2592                 if (!(si->flags & SWP_USED) || !si->swap_map)
2593                         continue;
2594                 if (!--l)
2595                         return si;
2596         }
2597
2598         return NULL;
2599 }
2600
2601 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
2602 {
2603         struct swap_info_struct *si = v;
2604         int type;
2605
2606         if (v == SEQ_START_TOKEN)
2607                 type = 0;
2608         else
2609                 type = si->type + 1;
2610
2611         ++(*pos);
2612         for (; (si = swap_type_to_swap_info(type)); type++) {
2613                 if (!(si->flags & SWP_USED) || !si->swap_map)
2614                         continue;
2615                 return si;
2616         }
2617
2618         return NULL;
2619 }
2620
2621 static void swap_stop(struct seq_file *swap, void *v)
2622 {
2623         mutex_unlock(&swapon_mutex);
2624 }
2625
2626 static int swap_show(struct seq_file *swap, void *v)
2627 {
2628         struct swap_info_struct *si = v;
2629         struct file *file;
2630         int len;
2631         unsigned long bytes, inuse;
2632
2633         if (si == SEQ_START_TOKEN) {
2634                 seq_puts(swap, "Filename\t\t\t\tType\t\tSize\t\tUsed\t\tPriority\n");
2635                 return 0;
2636         }
2637
2638         bytes = si->pages << (PAGE_SHIFT - 10);
2639         inuse = READ_ONCE(si->inuse_pages) << (PAGE_SHIFT - 10);
2640
2641         file = si->swap_file;
2642         len = seq_file_path(swap, file, " \t\n\\");
2643         seq_printf(swap, "%*s%s\t%lu\t%s%lu\t%s%d\n",
2644                         len < 40 ? 40 - len : 1, " ",
2645                         S_ISBLK(file_inode(file)->i_mode) ?
2646                                 "partition" : "file\t",
2647                         bytes, bytes < 10000000 ? "\t" : "",
2648                         inuse, inuse < 10000000 ? "\t" : "",
2649                         si->prio);
2650         return 0;
2651 }
2652
2653 static const struct seq_operations swaps_op = {
2654         .start =        swap_start,
2655         .next =         swap_next,
2656         .stop =         swap_stop,
2657         .show =         swap_show
2658 };
2659
2660 static int swaps_open(struct inode *inode, struct file *file)
2661 {
2662         struct seq_file *seq;
2663         int ret;
2664
2665         ret = seq_open(file, &swaps_op);
2666         if (ret)
2667                 return ret;
2668
2669         seq = file->private_data;
2670         seq->poll_event = atomic_read(&proc_poll_event);
2671         return 0;
2672 }
2673
2674 static const struct proc_ops swaps_proc_ops = {
2675         .proc_flags     = PROC_ENTRY_PERMANENT,
2676         .proc_open      = swaps_open,
2677         .proc_read      = seq_read,
2678         .proc_lseek     = seq_lseek,
2679         .proc_release   = seq_release,
2680         .proc_poll      = swaps_poll,
2681 };
2682
2683 static int __init procswaps_init(void)
2684 {
2685         proc_create("swaps", 0, NULL, &swaps_proc_ops);
2686         return 0;
2687 }
2688 __initcall(procswaps_init);
2689 #endif /* CONFIG_PROC_FS */
2690
2691 #ifdef MAX_SWAPFILES_CHECK
2692 static int __init max_swapfiles_check(void)
2693 {
2694         MAX_SWAPFILES_CHECK();
2695         return 0;
2696 }
2697 late_initcall(max_swapfiles_check);
2698 #endif
2699
2700 static struct swap_info_struct *alloc_swap_info(void)
2701 {
2702         struct swap_info_struct *p;
2703         struct swap_info_struct *defer = NULL;
2704         unsigned int type;
2705         int i;
2706
2707         p = kvzalloc(struct_size(p, avail_lists, nr_node_ids), GFP_KERNEL);
2708         if (!p)
2709                 return ERR_PTR(-ENOMEM);
2710
2711         if (percpu_ref_init(&p->users, swap_users_ref_free,
2712                             PERCPU_REF_INIT_DEAD, GFP_KERNEL)) {
2713                 kvfree(p);
2714                 return ERR_PTR(-ENOMEM);
2715         }
2716
2717         spin_lock(&swap_lock);
2718         for (type = 0; type < nr_swapfiles; type++) {
2719                 if (!(swap_info[type]->flags & SWP_USED))
2720                         break;
2721         }
2722         if (type >= MAX_SWAPFILES) {
2723                 spin_unlock(&swap_lock);
2724                 percpu_ref_exit(&p->users);
2725                 kvfree(p);
2726                 return ERR_PTR(-EPERM);
2727         }
2728         if (type >= nr_swapfiles) {
2729                 p->type = type;
2730                 /*
2731                  * Publish the swap_info_struct after initializing it.
2732                  * Note that kvzalloc() above zeroes all its fields.
2733                  */
2734                 smp_store_release(&swap_info[type], p); /* rcu_assign_pointer() */
2735                 nr_swapfiles++;
2736         } else {
2737                 defer = p;
2738                 p = swap_info[type];
2739                 /*
2740                  * Do not memset this entry: a racing procfs swap_next()
2741                  * would be relying on p->type to remain valid.
2742                  */
2743         }
2744         p->swap_extent_root = RB_ROOT;
2745         plist_node_init(&p->list, 0);
2746         for_each_node(i)
2747                 plist_node_init(&p->avail_lists[i], 0);
2748         p->flags = SWP_USED;
2749         spin_unlock(&swap_lock);
2750         if (defer) {
2751                 percpu_ref_exit(&defer->users);
2752                 kvfree(defer);
2753         }
2754         spin_lock_init(&p->lock);
2755         spin_lock_init(&p->cont_lock);
2756         init_completion(&p->comp);
2757
2758         return p;
2759 }
2760
2761 static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
2762 {
2763         int error;
2764
2765         if (S_ISBLK(inode->i_mode)) {
2766                 p->bdev = blkdev_get_by_dev(inode->i_rdev,
2767                                 BLK_OPEN_READ | BLK_OPEN_WRITE, p, NULL);
2768                 if (IS_ERR(p->bdev)) {
2769                         error = PTR_ERR(p->bdev);
2770                         p->bdev = NULL;
2771                         return error;
2772                 }
2773                 p->old_block_size = block_size(p->bdev);
2774                 error = set_blocksize(p->bdev, PAGE_SIZE);
2775                 if (error < 0)
2776                         return error;
2777                 /*
2778                  * Zoned block devices contain zones that have a sequential
2779                  * write only restriction.  Hence zoned block devices are not
2780                  * suitable for swapping.  Disallow them here.
2781                  */
2782                 if (bdev_is_zoned(p->bdev))
2783                         return -EINVAL;
2784                 p->flags |= SWP_BLKDEV;
2785         } else if (S_ISREG(inode->i_mode)) {
2786                 p->bdev = inode->i_sb->s_bdev;
2787         }
2788
2789         return 0;
2790 }
2791
2792
2793 /*
2794  * Find out how many pages are allowed for a single swap device. There
2795  * are two limiting factors:
2796  * 1) the number of bits for the swap offset in the swp_entry_t type, and
2797  * 2) the number of bits in the swap pte, as defined by the different
2798  * architectures.
2799  *
2800  * In order to find the largest possible bit mask, a swap entry with
2801  * swap type 0 and swap offset ~0UL is created, encoded to a swap pte,
2802  * decoded to a swp_entry_t again, and finally the swap offset is
2803  * extracted.
2804  *
2805  * This will mask all the bits from the initial ~0UL mask that can't
2806  * be encoded in either the swp_entry_t or the architecture definition
2807  * of a swap pte.
2808  */
2809 unsigned long generic_max_swapfile_size(void)
2810 {
2811         return swp_offset(pte_to_swp_entry(
2812                         swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
2813 }
2814
2815 /* Can be overridden by an architecture for additional checks. */
2816 __weak unsigned long arch_max_swapfile_size(void)
2817 {
2818         return generic_max_swapfile_size();
2819 }
2820
2821 static unsigned long read_swap_header(struct swap_info_struct *p,
2822                                         union swap_header *swap_header,
2823                                         struct inode *inode)
2824 {
2825         int i;
2826         unsigned long maxpages;
2827         unsigned long swapfilepages;
2828         unsigned long last_page;
2829
2830         if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
2831                 pr_err("Unable to find swap-space signature\n");
2832                 return 0;
2833         }
2834
2835         /* swap partition endianness hack... */
2836         if (swab32(swap_header->info.version) == 1) {
2837                 swab32s(&swap_header->info.version);
2838                 swab32s(&swap_header->info.last_page);
2839                 swab32s(&swap_header->info.nr_badpages);
2840                 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2841                         return 0;
2842                 for (i = 0; i < swap_header->info.nr_badpages; i++)
2843                         swab32s(&swap_header->info.badpages[i]);
2844         }
2845         /* Check the swap header's sub-version */
2846         if (swap_header->info.version != 1) {
2847                 pr_warn("Unable to handle swap header version %d\n",
2848                         swap_header->info.version);
2849                 return 0;
2850         }
2851
2852         p->lowest_bit  = 1;
2853         p->cluster_next = 1;
2854         p->cluster_nr = 0;
2855
2856         maxpages = swapfile_maximum_size;
2857         last_page = swap_header->info.last_page;
2858         if (!last_page) {
2859                 pr_warn("Empty swap-file\n");
2860                 return 0;
2861         }
2862         if (last_page > maxpages) {
2863                 pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
2864                         maxpages << (PAGE_SHIFT - 10),
2865                         last_page << (PAGE_SHIFT - 10));
2866         }
2867         if (maxpages > last_page) {
2868                 maxpages = last_page + 1;
2869                 /* p->max is an unsigned int: don't overflow it */
2870                 if ((unsigned int)maxpages == 0)
2871                         maxpages = UINT_MAX;
2872         }
2873         p->highest_bit = maxpages - 1;
2874
2875         if (!maxpages)
2876                 return 0;
2877         swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
2878         if (swapfilepages && maxpages > swapfilepages) {
2879                 pr_warn("Swap area shorter than signature indicates\n");
2880                 return 0;
2881         }
2882         if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
2883                 return 0;
2884         if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2885                 return 0;
2886
2887         return maxpages;
2888 }
2889
2890 #define SWAP_CLUSTER_INFO_COLS                                          \
2891         DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info))
2892 #define SWAP_CLUSTER_SPACE_COLS                                         \
2893         DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER)
2894 #define SWAP_CLUSTER_COLS                                               \
2895         max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS)
2896
2897 static int setup_swap_map_and_extents(struct swap_info_struct *p,
2898                                         union swap_header *swap_header,
2899                                         unsigned char *swap_map,
2900                                         struct swap_cluster_info *cluster_info,
2901                                         unsigned long maxpages,
2902                                         sector_t *span)
2903 {
2904         unsigned int j, k;
2905         unsigned int nr_good_pages;
2906         int nr_extents;
2907         unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
2908         unsigned long col = p->cluster_next / SWAPFILE_CLUSTER % SWAP_CLUSTER_COLS;
2909         unsigned long i, idx;
2910
2911         nr_good_pages = maxpages - 1;   /* omit header page */
2912
2913         cluster_list_init(&p->free_clusters);
2914         cluster_list_init(&p->discard_clusters);
2915
2916         for (i = 0; i < swap_header->info.nr_badpages; i++) {
2917                 unsigned int page_nr = swap_header->info.badpages[i];
2918                 if (page_nr == 0 || page_nr > swap_header->info.last_page)
2919                         return -EINVAL;
2920                 if (page_nr < maxpages) {
2921                         swap_map[page_nr] = SWAP_MAP_BAD;
2922                         nr_good_pages--;
2923                         /*
2924                          * Haven't marked the cluster free yet, no list
2925                          * operation involved
2926                          */
2927                         inc_cluster_info_page(p, cluster_info, page_nr);
2928                 }
2929         }
2930
2931         /* Haven't marked the cluster free yet, no list operation involved */
2932         for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
2933                 inc_cluster_info_page(p, cluster_info, i);
2934
2935         if (nr_good_pages) {
2936                 swap_map[0] = SWAP_MAP_BAD;
2937                 /*
2938                  * Not mark the cluster free yet, no list
2939                  * operation involved
2940                  */
2941                 inc_cluster_info_page(p, cluster_info, 0);
2942                 p->max = maxpages;
2943                 p->pages = nr_good_pages;
2944                 nr_extents = setup_swap_extents(p, span);
2945                 if (nr_extents < 0)
2946                         return nr_extents;
2947                 nr_good_pages = p->pages;
2948         }
2949         if (!nr_good_pages) {
2950                 pr_warn("Empty swap-file\n");
2951                 return -EINVAL;
2952         }
2953
2954         if (!cluster_info)
2955                 return nr_extents;
2956
2957
2958         /*
2959          * Reduce false cache line sharing between cluster_info and
2960          * sharing same address space.
2961          */
2962         for (k = 0; k < SWAP_CLUSTER_COLS; k++) {
2963                 j = (k + col) % SWAP_CLUSTER_COLS;
2964                 for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) {
2965                         idx = i * SWAP_CLUSTER_COLS + j;
2966                         if (idx >= nr_clusters)
2967                                 continue;
2968                         if (cluster_count(&cluster_info[idx]))
2969                                 continue;
2970                         cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
2971                         cluster_list_add_tail(&p->free_clusters, cluster_info,
2972                                               idx);
2973                 }
2974         }
2975         return nr_extents;
2976 }
2977
2978 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
2979 {
2980         struct swap_info_struct *p;
2981         struct filename *name;
2982         struct file *swap_file = NULL;
2983         struct address_space *mapping;
2984         struct dentry *dentry;
2985         int prio;
2986         int error;
2987         union swap_header *swap_header;
2988         int nr_extents;
2989         sector_t span;
2990         unsigned long maxpages;
2991         unsigned char *swap_map = NULL;
2992         struct swap_cluster_info *cluster_info = NULL;
2993         struct page *page = NULL;
2994         struct inode *inode = NULL;
2995         bool inced_nr_rotate_swap = false;
2996
2997         if (swap_flags & ~SWAP_FLAGS_VALID)
2998                 return -EINVAL;
2999
3000         if (!capable(CAP_SYS_ADMIN))
3001                 return -EPERM;
3002
3003         if (!swap_avail_heads)
3004                 return -ENOMEM;
3005
3006         p = alloc_swap_info();
3007         if (IS_ERR(p))
3008                 return PTR_ERR(p);
3009
3010         INIT_WORK(&p->discard_work, swap_discard_work);
3011
3012         name = getname(specialfile);
3013         if (IS_ERR(name)) {
3014                 error = PTR_ERR(name);
3015                 name = NULL;
3016                 goto bad_swap;
3017         }
3018         swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
3019         if (IS_ERR(swap_file)) {
3020                 error = PTR_ERR(swap_file);
3021                 swap_file = NULL;
3022                 goto bad_swap;
3023         }
3024
3025         p->swap_file = swap_file;
3026         mapping = swap_file->f_mapping;
3027         dentry = swap_file->f_path.dentry;
3028         inode = mapping->host;
3029
3030         error = claim_swapfile(p, inode);
3031         if (unlikely(error))
3032                 goto bad_swap;
3033
3034         inode_lock(inode);
3035         if (d_unlinked(dentry) || cant_mount(dentry)) {
3036                 error = -ENOENT;
3037                 goto bad_swap_unlock_inode;
3038         }
3039         if (IS_SWAPFILE(inode)) {
3040                 error = -EBUSY;
3041                 goto bad_swap_unlock_inode;
3042         }
3043
3044         /*
3045          * Read the swap header.
3046          */
3047         if (!mapping->a_ops->read_folio) {
3048                 error = -EINVAL;
3049                 goto bad_swap_unlock_inode;
3050         }
3051         page = read_mapping_page(mapping, 0, swap_file);
3052         if (IS_ERR(page)) {
3053                 error = PTR_ERR(page);
3054                 goto bad_swap_unlock_inode;
3055         }
3056         swap_header = kmap(page);
3057
3058         maxpages = read_swap_header(p, swap_header, inode);
3059         if (unlikely(!maxpages)) {
3060                 error = -EINVAL;
3061                 goto bad_swap_unlock_inode;
3062         }
3063
3064         /* OK, set up the swap map and apply the bad block list */
3065         swap_map = vzalloc(maxpages);
3066         if (!swap_map) {
3067                 error = -ENOMEM;
3068                 goto bad_swap_unlock_inode;
3069         }
3070
3071         if (p->bdev && bdev_stable_writes(p->bdev))
3072                 p->flags |= SWP_STABLE_WRITES;
3073
3074         if (p->bdev && bdev_synchronous(p->bdev))
3075                 p->flags |= SWP_SYNCHRONOUS_IO;
3076
3077         if (p->bdev && bdev_nonrot(p->bdev)) {
3078                 int cpu;
3079                 unsigned long ci, nr_cluster;
3080
3081                 p->flags |= SWP_SOLIDSTATE;
3082                 p->cluster_next_cpu = alloc_percpu(unsigned int);
3083                 if (!p->cluster_next_cpu) {
3084                         error = -ENOMEM;
3085                         goto bad_swap_unlock_inode;
3086                 }
3087                 /*
3088                  * select a random position to start with to help wear leveling
3089                  * SSD
3090                  */
3091                 for_each_possible_cpu(cpu) {
3092                         per_cpu(*p->cluster_next_cpu, cpu) =
3093                                 get_random_u32_inclusive(1, p->highest_bit);
3094                 }
3095                 nr_cluster = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
3096
3097                 cluster_info = kvcalloc(nr_cluster, sizeof(*cluster_info),
3098                                         GFP_KERNEL);
3099                 if (!cluster_info) {
3100                         error = -ENOMEM;
3101                         goto bad_swap_unlock_inode;
3102                 }
3103
3104                 for (ci = 0; ci < nr_cluster; ci++)
3105                         spin_lock_init(&((cluster_info + ci)->lock));
3106
3107                 p->percpu_cluster = alloc_percpu(struct percpu_cluster);
3108                 if (!p->percpu_cluster) {
3109                         error = -ENOMEM;
3110                         goto bad_swap_unlock_inode;
3111                 }
3112                 for_each_possible_cpu(cpu) {
3113                         struct percpu_cluster *cluster;
3114                         cluster = per_cpu_ptr(p->percpu_cluster, cpu);
3115                         cluster_set_null(&cluster->index);
3116                 }
3117         } else {
3118                 atomic_inc(&nr_rotate_swap);
3119                 inced_nr_rotate_swap = true;
3120         }
3121
3122         error = swap_cgroup_swapon(p->type, maxpages);
3123         if (error)
3124                 goto bad_swap_unlock_inode;
3125
3126         nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
3127                 cluster_info, maxpages, &span);
3128         if (unlikely(nr_extents < 0)) {
3129                 error = nr_extents;
3130                 goto bad_swap_unlock_inode;
3131         }
3132
3133         if ((swap_flags & SWAP_FLAG_DISCARD) &&
3134             p->bdev && bdev_max_discard_sectors(p->bdev)) {
3135                 /*
3136                  * When discard is enabled for swap with no particular
3137                  * policy flagged, we set all swap discard flags here in
3138                  * order to sustain backward compatibility with older
3139                  * swapon(8) releases.
3140                  */
3141                 p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
3142                              SWP_PAGE_DISCARD);
3143
3144                 /*
3145                  * By flagging sys_swapon, a sysadmin can tell us to
3146                  * either do single-time area discards only, or to just
3147                  * perform discards for released swap page-clusters.
3148                  * Now it's time to adjust the p->flags accordingly.
3149                  */
3150                 if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
3151                         p->flags &= ~SWP_PAGE_DISCARD;
3152                 else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
3153                         p->flags &= ~SWP_AREA_DISCARD;
3154
3155                 /* issue a swapon-time discard if it's still required */
3156                 if (p->flags & SWP_AREA_DISCARD) {
3157                         int err = discard_swap(p);
3158                         if (unlikely(err))
3159                                 pr_err("swapon: discard_swap(%p): %d\n",
3160                                         p, err);
3161                 }
3162         }
3163
3164         error = init_swap_address_space(p->type, maxpages);
3165         if (error)
3166                 goto bad_swap_unlock_inode;
3167
3168         /*
3169          * Flush any pending IO and dirty mappings before we start using this
3170          * swap device.
3171          */
3172         inode->i_flags |= S_SWAPFILE;
3173         error = inode_drain_writes(inode);
3174         if (error) {
3175                 inode->i_flags &= ~S_SWAPFILE;
3176                 goto free_swap_address_space;
3177         }
3178
3179         mutex_lock(&swapon_mutex);
3180         prio = -1;
3181         if (swap_flags & SWAP_FLAG_PREFER)
3182                 prio =
3183                   (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
3184         enable_swap_info(p, prio, swap_map, cluster_info);
3185
3186         pr_info("Adding %uk swap on %s.  Priority:%d extents:%d across:%lluk %s%s%s%s\n",
3187                 p->pages<<(PAGE_SHIFT-10), name->name, p->prio,
3188                 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
3189                 (p->flags & SWP_SOLIDSTATE) ? "SS" : "",
3190                 (p->flags & SWP_DISCARDABLE) ? "D" : "",
3191                 (p->flags & SWP_AREA_DISCARD) ? "s" : "",
3192                 (p->flags & SWP_PAGE_DISCARD) ? "c" : "");
3193
3194         mutex_unlock(&swapon_mutex);
3195         atomic_inc(&proc_poll_event);
3196         wake_up_interruptible(&proc_poll_wait);
3197
3198         error = 0;
3199         goto out;
3200 free_swap_address_space:
3201         exit_swap_address_space(p->type);
3202 bad_swap_unlock_inode:
3203         inode_unlock(inode);
3204 bad_swap:
3205         free_percpu(p->percpu_cluster);
3206         p->percpu_cluster = NULL;
3207         free_percpu(p->cluster_next_cpu);
3208         p->cluster_next_cpu = NULL;
3209         if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
3210                 set_blocksize(p->bdev, p->old_block_size);
3211                 blkdev_put(p->bdev, p);
3212         }
3213         inode = NULL;
3214         destroy_swap_extents(p);
3215         swap_cgroup_swapoff(p->type);
3216         spin_lock(&swap_lock);
3217         p->swap_file = NULL;
3218         p->flags = 0;
3219         spin_unlock(&swap_lock);
3220         vfree(swap_map);
3221         kvfree(cluster_info);
3222         if (inced_nr_rotate_swap)
3223                 atomic_dec(&nr_rotate_swap);
3224         if (swap_file)
3225                 filp_close(swap_file, NULL);
3226 out:
3227         if (page && !IS_ERR(page)) {
3228                 kunmap(page);
3229                 put_page(page);
3230         }
3231         if (name)
3232                 putname(name);
3233         if (inode)
3234                 inode_unlock(inode);
3235         if (!error)
3236                 enable_swap_slots_cache();
3237         return error;
3238 }
3239
3240 void si_swapinfo(struct sysinfo *val)
3241 {
3242         unsigned int type;
3243         unsigned long nr_to_be_unused = 0;
3244
3245         spin_lock(&swap_lock);
3246         for (type = 0; type < nr_swapfiles; type++) {
3247                 struct swap_info_struct *si = swap_info[type];
3248
3249                 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
3250                         nr_to_be_unused += READ_ONCE(si->inuse_pages);
3251         }
3252         val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
3253         val->totalswap = total_swap_pages + nr_to_be_unused;
3254         spin_unlock(&swap_lock);
3255 }
3256
3257 /*
3258  * Verify that a swap entry is valid and increment its swap map count.
3259  *
3260  * Returns error code in following case.
3261  * - success -> 0
3262  * - swp_entry is invalid -> EINVAL
3263  * - swp_entry is migration entry -> EINVAL
3264  * - swap-cache reference is requested but there is already one. -> EEXIST
3265  * - swap-cache reference is requested but the entry is not used. -> ENOENT
3266  * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
3267  */
3268 static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
3269 {
3270         struct swap_info_struct *p;
3271         struct swap_cluster_info *ci;
3272         unsigned long offset;
3273         unsigned char count;
3274         unsigned char has_cache;
3275         int err;
3276
3277         p = swp_swap_info(entry);
3278
3279         offset = swp_offset(entry);
3280         ci = lock_cluster_or_swap_info(p, offset);
3281
3282         count = p->swap_map[offset];
3283
3284         /*
3285          * swapin_readahead() doesn't check if a swap entry is valid, so the
3286          * swap entry could be SWAP_MAP_BAD. Check here with lock held.
3287          */
3288         if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
3289                 err = -ENOENT;
3290                 goto unlock_out;
3291         }
3292
3293         has_cache = count & SWAP_HAS_CACHE;
3294         count &= ~SWAP_HAS_CACHE;
3295         err = 0;
3296
3297         if (usage == SWAP_HAS_CACHE) {
3298
3299                 /* set SWAP_HAS_CACHE if there is no cache and entry is used */
3300                 if (!has_cache && count)
3301                         has_cache = SWAP_HAS_CACHE;
3302                 else if (has_cache)             /* someone else added cache */
3303                         err = -EEXIST;
3304                 else                            /* no users remaining */
3305                         err = -ENOENT;
3306
3307         } else if (count || has_cache) {
3308
3309                 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
3310                         count += usage;
3311                 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
3312                         err = -EINVAL;
3313                 else if (swap_count_continued(p, offset, count))
3314                         count = COUNT_CONTINUED;
3315                 else
3316                         err = -ENOMEM;
3317         } else
3318                 err = -ENOENT;                  /* unused swap entry */
3319
3320         WRITE_ONCE(p->swap_map[offset], count | has_cache);
3321
3322 unlock_out:
3323         unlock_cluster_or_swap_info(p, ci);
3324         return err;
3325 }
3326
3327 /*
3328  * Help swapoff by noting that swap entry belongs to shmem/tmpfs
3329  * (in which case its reference count is never incremented).
3330  */
3331 void swap_shmem_alloc(swp_entry_t entry)
3332 {
3333         __swap_duplicate(entry, SWAP_MAP_SHMEM);
3334 }
3335
3336 /*
3337  * Increase reference count of swap entry by 1.
3338  * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
3339  * but could not be atomically allocated.  Returns 0, just as if it succeeded,
3340  * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
3341  * might occur if a page table entry has got corrupted.
3342  */
3343 int swap_duplicate(swp_entry_t entry)
3344 {
3345         int err = 0;
3346
3347         while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
3348                 err = add_swap_count_continuation(entry, GFP_ATOMIC);
3349         return err;
3350 }
3351
3352 /*
3353  * @entry: swap entry for which we allocate swap cache.
3354  *
3355  * Called when allocating swap cache for existing swap entry,
3356  * This can return error codes. Returns 0 at success.
3357  * -EEXIST means there is a swap cache.
3358  * Note: return code is different from swap_duplicate().
3359  */
3360 int swapcache_prepare(swp_entry_t entry)
3361 {
3362         return __swap_duplicate(entry, SWAP_HAS_CACHE);
3363 }
3364
3365 struct swap_info_struct *swp_swap_info(swp_entry_t entry)
3366 {
3367         return swap_type_to_swap_info(swp_type(entry));
3368 }
3369
3370 struct swap_info_struct *page_swap_info(struct page *page)
3371 {
3372         swp_entry_t entry = { .val = page_private(page) };
3373         return swp_swap_info(entry);
3374 }
3375
3376 /*
3377  * out-of-line methods to avoid include hell.
3378  */
3379 struct address_space *swapcache_mapping(struct folio *folio)
3380 {
3381         return page_swap_info(&folio->page)->swap_file->f_mapping;
3382 }
3383 EXPORT_SYMBOL_GPL(swapcache_mapping);
3384
3385 pgoff_t __page_file_index(struct page *page)
3386 {
3387         swp_entry_t swap = { .val = page_private(page) };
3388         return swp_offset(swap);
3389 }
3390 EXPORT_SYMBOL_GPL(__page_file_index);
3391
3392 /*
3393  * add_swap_count_continuation - called when a swap count is duplicated
3394  * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
3395  * page of the original vmalloc'ed swap_map, to hold the continuation count
3396  * (for that entry and for its neighbouring PAGE_SIZE swap entries).  Called
3397  * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
3398  *
3399  * These continuation pages are seldom referenced: the common paths all work
3400  * on the original swap_map, only referring to a continuation page when the
3401  * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
3402  *
3403  * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
3404  * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
3405  * can be called after dropping locks.
3406  */
3407 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
3408 {
3409         struct swap_info_struct *si;
3410         struct swap_cluster_info *ci;
3411         struct page *head;
3412         struct page *page;
3413         struct page *list_page;
3414         pgoff_t offset;
3415         unsigned char count;
3416         int ret = 0;
3417
3418         /*
3419          * When debugging, it's easier to use __GFP_ZERO here; but it's better
3420          * for latency not to zero a page while GFP_ATOMIC and holding locks.
3421          */
3422         page = alloc_page(gfp_mask | __GFP_HIGHMEM);
3423
3424         si = get_swap_device(entry);
3425         if (!si) {
3426                 /*
3427                  * An acceptable race has occurred since the failing
3428                  * __swap_duplicate(): the swap device may be swapoff
3429                  */
3430                 goto outer;
3431         }
3432         spin_lock(&si->lock);
3433
3434         offset = swp_offset(entry);
3435
3436         ci = lock_cluster(si, offset);
3437
3438         count = swap_count(si->swap_map[offset]);
3439
3440         if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
3441                 /*
3442                  * The higher the swap count, the more likely it is that tasks
3443                  * will race to add swap count continuation: we need to avoid
3444                  * over-provisioning.
3445                  */
3446                 goto out;
3447         }
3448
3449         if (!page) {
3450                 ret = -ENOMEM;
3451                 goto out;
3452         }
3453
3454         head = vmalloc_to_page(si->swap_map + offset);
3455         offset &= ~PAGE_MASK;
3456
3457         spin_lock(&si->cont_lock);
3458         /*
3459          * Page allocation does not initialize the page's lru field,
3460          * but it does always reset its private field.
3461          */
3462         if (!page_private(head)) {
3463                 BUG_ON(count & COUNT_CONTINUED);
3464                 INIT_LIST_HEAD(&head->lru);
3465                 set_page_private(head, SWP_CONTINUED);
3466                 si->flags |= SWP_CONTINUED;
3467         }
3468
3469         list_for_each_entry(list_page, &head->lru, lru) {
3470                 unsigned char *map;
3471
3472                 /*
3473                  * If the previous map said no continuation, but we've found
3474                  * a continuation page, free our allocation and use this one.
3475                  */
3476                 if (!(count & COUNT_CONTINUED))
3477                         goto out_unlock_cont;
3478
3479                 map = kmap_atomic(list_page) + offset;
3480                 count = *map;
3481                 kunmap_atomic(map);
3482
3483                 /*
3484                  * If this continuation count now has some space in it,
3485                  * free our allocation and use this one.
3486                  */
3487                 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
3488                         goto out_unlock_cont;
3489         }
3490
3491         list_add_tail(&page->lru, &head->lru);
3492         page = NULL;                    /* now it's attached, don't free it */
3493 out_unlock_cont:
3494         spin_unlock(&si->cont_lock);
3495 out:
3496         unlock_cluster(ci);
3497         spin_unlock(&si->lock);
3498         put_swap_device(si);
3499 outer:
3500         if (page)
3501                 __free_page(page);
3502         return ret;
3503 }
3504
3505 /*
3506  * swap_count_continued - when the original swap_map count is incremented
3507  * from SWAP_MAP_MAX, check if there is already a continuation page to carry
3508  * into, carry if so, or else fail until a new continuation page is allocated;
3509  * when the original swap_map count is decremented from 0 with continuation,
3510  * borrow from the continuation and report whether it still holds more.
3511  * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster
3512  * lock.
3513  */
3514 static bool swap_count_continued(struct swap_info_struct *si,
3515                                  pgoff_t offset, unsigned char count)
3516 {
3517         struct page *head;
3518         struct page *page;
3519         unsigned char *map;
3520         bool ret;
3521
3522         head = vmalloc_to_page(si->swap_map + offset);
3523         if (page_private(head) != SWP_CONTINUED) {
3524                 BUG_ON(count & COUNT_CONTINUED);
3525                 return false;           /* need to add count continuation */
3526         }
3527
3528         spin_lock(&si->cont_lock);
3529         offset &= ~PAGE_MASK;
3530         page = list_next_entry(head, lru);
3531         map = kmap_atomic(page) + offset;
3532
3533         if (count == SWAP_MAP_MAX)      /* initial increment from swap_map */
3534                 goto init_map;          /* jump over SWAP_CONT_MAX checks */
3535
3536         if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
3537                 /*
3538                  * Think of how you add 1 to 999
3539                  */
3540                 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
3541                         kunmap_atomic(map);
3542                         page = list_next_entry(page, lru);
3543                         BUG_ON(page == head);
3544                         map = kmap_atomic(page) + offset;
3545                 }
3546                 if (*map == SWAP_CONT_MAX) {
3547                         kunmap_atomic(map);
3548                         page = list_next_entry(page, lru);
3549                         if (page == head) {
3550                                 ret = false;    /* add count continuation */
3551                                 goto out;
3552                         }
3553                         map = kmap_atomic(page) + offset;
3554 init_map:               *map = 0;               /* we didn't zero the page */
3555                 }
3556                 *map += 1;
3557                 kunmap_atomic(map);
3558                 while ((page = list_prev_entry(page, lru)) != head) {
3559                         map = kmap_atomic(page) + offset;
3560                         *map = COUNT_CONTINUED;
3561                         kunmap_atomic(map);
3562                 }
3563                 ret = true;                     /* incremented */
3564
3565         } else {                                /* decrementing */
3566                 /*
3567                  * Think of how you subtract 1 from 1000
3568                  */
3569                 BUG_ON(count != COUNT_CONTINUED);
3570                 while (*map == COUNT_CONTINUED) {
3571                         kunmap_atomic(map);
3572                         page = list_next_entry(page, lru);
3573                         BUG_ON(page == head);
3574                         map = kmap_atomic(page) + offset;
3575                 }
3576                 BUG_ON(*map == 0);
3577                 *map -= 1;
3578                 if (*map == 0)
3579                         count = 0;
3580                 kunmap_atomic(map);
3581                 while ((page = list_prev_entry(page, lru)) != head) {
3582                         map = kmap_atomic(page) + offset;
3583                         *map = SWAP_CONT_MAX | count;
3584                         count = COUNT_CONTINUED;
3585                         kunmap_atomic(map);
3586                 }
3587                 ret = count == COUNT_CONTINUED;
3588         }
3589 out:
3590         spin_unlock(&si->cont_lock);
3591         return ret;
3592 }
3593
3594 /*
3595  * free_swap_count_continuations - swapoff free all the continuation pages
3596  * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
3597  */
3598 static void free_swap_count_continuations(struct swap_info_struct *si)
3599 {
3600         pgoff_t offset;
3601
3602         for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
3603                 struct page *head;
3604                 head = vmalloc_to_page(si->swap_map + offset);
3605                 if (page_private(head)) {
3606                         struct page *page, *next;
3607
3608                         list_for_each_entry_safe(page, next, &head->lru, lru) {
3609                                 list_del(&page->lru);
3610                                 __free_page(page);
3611                         }
3612                 }
3613         }
3614 }
3615
3616 #if defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP)
3617 void __folio_throttle_swaprate(struct folio *folio, gfp_t gfp)
3618 {
3619         struct swap_info_struct *si, *next;
3620         int nid = folio_nid(folio);
3621
3622         if (!(gfp & __GFP_IO))
3623                 return;
3624
3625         if (!blk_cgroup_congested())
3626                 return;
3627
3628         /*
3629          * We've already scheduled a throttle, avoid taking the global swap
3630          * lock.
3631          */
3632         if (current->throttle_disk)
3633                 return;
3634
3635         spin_lock(&swap_avail_lock);
3636         plist_for_each_entry_safe(si, next, &swap_avail_heads[nid],
3637                                   avail_lists[nid]) {
3638                 if (si->bdev) {
3639                         blkcg_schedule_throttle(si->bdev->bd_disk, true);
3640                         break;
3641                 }
3642         }
3643         spin_unlock(&swap_avail_lock);
3644 }
3645 #endif
3646
3647 static int __init swapfile_init(void)
3648 {
3649         int nid;
3650
3651         swap_avail_heads = kmalloc_array(nr_node_ids, sizeof(struct plist_head),
3652                                          GFP_KERNEL);
3653         if (!swap_avail_heads) {
3654                 pr_emerg("Not enough memory for swap heads, swap is disabled\n");
3655                 return -ENOMEM;
3656         }
3657
3658         for_each_node(nid)
3659                 plist_head_init(&swap_avail_heads[nid]);
3660
3661         swapfile_maximum_size = arch_max_swapfile_size();
3662
3663 #ifdef CONFIG_MIGRATION
3664         if (swapfile_maximum_size >= (1UL << SWP_MIG_TOTAL_BITS))
3665                 swap_migration_ad_supported = true;
3666 #endif  /* CONFIG_MIGRATION */
3667
3668         return 0;
3669 }
3670 subsys_initcall(swapfile_init);