OSDN Git Service

shrinker: Kill old ->shrink API.
[uclinux-h8/linux.git] / mm / vmscan.c
1 /*
2  *  linux/mm/vmscan.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *
6  *  Swap reorganised 29.12.95, Stephen Tweedie.
7  *  kswapd added: 7.1.96  sct
8  *  Removed kswapd_ctl limits, and swap out as many pages as needed
9  *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10  *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11  *  Multiqueue VM started 5.8.00, Rik van Riel.
12  */
13
14 #include <linux/mm.h>
15 #include <linux/module.h>
16 #include <linux/gfp.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/init.h>
21 #include <linux/highmem.h>
22 #include <linux/vmpressure.h>
23 #include <linux/vmstat.h>
24 #include <linux/file.h>
25 #include <linux/writeback.h>
26 #include <linux/blkdev.h>
27 #include <linux/buffer_head.h>  /* for try_to_release_page(),
28                                         buffer_heads_over_limit */
29 #include <linux/mm_inline.h>
30 #include <linux/backing-dev.h>
31 #include <linux/rmap.h>
32 #include <linux/topology.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/compaction.h>
36 #include <linux/notifier.h>
37 #include <linux/rwsem.h>
38 #include <linux/delay.h>
39 #include <linux/kthread.h>
40 #include <linux/freezer.h>
41 #include <linux/memcontrol.h>
42 #include <linux/delayacct.h>
43 #include <linux/sysctl.h>
44 #include <linux/oom.h>
45 #include <linux/prefetch.h>
46
47 #include <asm/tlbflush.h>
48 #include <asm/div64.h>
49
50 #include <linux/swapops.h>
51
52 #include "internal.h"
53
54 #define CREATE_TRACE_POINTS
55 #include <trace/events/vmscan.h>
56
57 struct scan_control {
58         /* Incremented by the number of inactive pages that were scanned */
59         unsigned long nr_scanned;
60
61         /* Number of pages freed so far during a call to shrink_zones() */
62         unsigned long nr_reclaimed;
63
64         /* How many pages shrink_list() should reclaim */
65         unsigned long nr_to_reclaim;
66
67         unsigned long hibernation_mode;
68
69         /* This context's GFP mask */
70         gfp_t gfp_mask;
71
72         int may_writepage;
73
74         /* Can mapped pages be reclaimed? */
75         int may_unmap;
76
77         /* Can pages be swapped as part of reclaim? */
78         int may_swap;
79
80         int order;
81
82         /* Scan (total_size >> priority) pages at once */
83         int priority;
84
85         /*
86          * The memory cgroup that hit its limit and as a result is the
87          * primary target of this reclaim invocation.
88          */
89         struct mem_cgroup *target_mem_cgroup;
90
91         /*
92          * Nodemask of nodes allowed by the caller. If NULL, all nodes
93          * are scanned.
94          */
95         nodemask_t      *nodemask;
96 };
97
98 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
99
100 #ifdef ARCH_HAS_PREFETCH
101 #define prefetch_prev_lru_page(_page, _base, _field)                    \
102         do {                                                            \
103                 if ((_page)->lru.prev != _base) {                       \
104                         struct page *prev;                              \
105                                                                         \
106                         prev = lru_to_page(&(_page->lru));              \
107                         prefetch(&prev->_field);                        \
108                 }                                                       \
109         } while (0)
110 #else
111 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
112 #endif
113
114 #ifdef ARCH_HAS_PREFETCHW
115 #define prefetchw_prev_lru_page(_page, _base, _field)                   \
116         do {                                                            \
117                 if ((_page)->lru.prev != _base) {                       \
118                         struct page *prev;                              \
119                                                                         \
120                         prev = lru_to_page(&(_page->lru));              \
121                         prefetchw(&prev->_field);                       \
122                 }                                                       \
123         } while (0)
124 #else
125 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
126 #endif
127
128 /*
129  * From 0 .. 100.  Higher means more swappy.
130  */
131 int vm_swappiness = 60;
132 unsigned long vm_total_pages;   /* The total number of pages which the VM controls */
133
134 static LIST_HEAD(shrinker_list);
135 static DECLARE_RWSEM(shrinker_rwsem);
136
137 #ifdef CONFIG_MEMCG
138 static bool global_reclaim(struct scan_control *sc)
139 {
140         return !sc->target_mem_cgroup;
141 }
142 #else
143 static bool global_reclaim(struct scan_control *sc)
144 {
145         return true;
146 }
147 #endif
148
149 static unsigned long get_lru_size(struct lruvec *lruvec, enum lru_list lru)
150 {
151         if (!mem_cgroup_disabled())
152                 return mem_cgroup_get_lru_size(lruvec, lru);
153
154         return zone_page_state(lruvec_zone(lruvec), NR_LRU_BASE + lru);
155 }
156
157 /*
158  * Add a shrinker callback to be called from the vm.
159  */
160 int register_shrinker(struct shrinker *shrinker)
161 {
162         size_t size = sizeof(*shrinker->nr_deferred);
163
164         /*
165          * If we only have one possible node in the system anyway, save
166          * ourselves the trouble and disable NUMA aware behavior. This way we
167          * will save memory and some small loop time later.
168          */
169         if (nr_node_ids == 1)
170                 shrinker->flags &= ~SHRINKER_NUMA_AWARE;
171
172         if (shrinker->flags & SHRINKER_NUMA_AWARE)
173                 size *= nr_node_ids;
174
175         shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
176         if (!shrinker->nr_deferred)
177                 return -ENOMEM;
178
179         down_write(&shrinker_rwsem);
180         list_add_tail(&shrinker->list, &shrinker_list);
181         up_write(&shrinker_rwsem);
182         return 0;
183 }
184 EXPORT_SYMBOL(register_shrinker);
185
186 /*
187  * Remove one
188  */
189 void unregister_shrinker(struct shrinker *shrinker)
190 {
191         down_write(&shrinker_rwsem);
192         list_del(&shrinker->list);
193         up_write(&shrinker_rwsem);
194 }
195 EXPORT_SYMBOL(unregister_shrinker);
196
197 #define SHRINK_BATCH 128
198
199 static unsigned long
200 shrink_slab_node(struct shrink_control *shrinkctl, struct shrinker *shrinker,
201                  unsigned long nr_pages_scanned, unsigned long lru_pages)
202 {
203         unsigned long freed = 0;
204         unsigned long long delta;
205         long total_scan;
206         long max_pass;
207         long nr;
208         long new_nr;
209         int nid = shrinkctl->nid;
210         long batch_size = shrinker->batch ? shrinker->batch
211                                           : SHRINK_BATCH;
212
213         max_pass = shrinker->count_objects(shrinker, shrinkctl);
214         if (max_pass == 0)
215                 return 0;
216
217         /*
218          * copy the current shrinker scan count into a local variable
219          * and zero it so that other concurrent shrinker invocations
220          * don't also do this scanning work.
221          */
222         nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
223
224         total_scan = nr;
225         delta = (4 * nr_pages_scanned) / shrinker->seeks;
226         delta *= max_pass;
227         do_div(delta, lru_pages + 1);
228         total_scan += delta;
229         if (total_scan < 0) {
230                 printk(KERN_ERR
231                 "shrink_slab: %pF negative objects to delete nr=%ld\n",
232                        shrinker->scan_objects, total_scan);
233                 total_scan = max_pass;
234         }
235
236         /*
237          * We need to avoid excessive windup on filesystem shrinkers
238          * due to large numbers of GFP_NOFS allocations causing the
239          * shrinkers to return -1 all the time. This results in a large
240          * nr being built up so when a shrink that can do some work
241          * comes along it empties the entire cache due to nr >>>
242          * max_pass.  This is bad for sustaining a working set in
243          * memory.
244          *
245          * Hence only allow the shrinker to scan the entire cache when
246          * a large delta change is calculated directly.
247          */
248         if (delta < max_pass / 4)
249                 total_scan = min(total_scan, max_pass / 2);
250
251         /*
252          * Avoid risking looping forever due to too large nr value:
253          * never try to free more than twice the estimate number of
254          * freeable entries.
255          */
256         if (total_scan > max_pass * 2)
257                 total_scan = max_pass * 2;
258
259         trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
260                                 nr_pages_scanned, lru_pages,
261                                 max_pass, delta, total_scan);
262
263         while (total_scan >= batch_size) {
264                 unsigned long ret;
265
266                 shrinkctl->nr_to_scan = batch_size;
267                 ret = shrinker->scan_objects(shrinker, shrinkctl);
268                 if (ret == SHRINK_STOP)
269                         break;
270                 freed += ret;
271
272                 count_vm_events(SLABS_SCANNED, batch_size);
273                 total_scan -= batch_size;
274
275                 cond_resched();
276         }
277
278         /*
279          * move the unused scan count back into the shrinker in a
280          * manner that handles concurrent updates. If we exhausted the
281          * scan, there is no need to do an update.
282          */
283         if (total_scan > 0)
284                 new_nr = atomic_long_add_return(total_scan,
285                                                 &shrinker->nr_deferred[nid]);
286         else
287                 new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);
288
289         trace_mm_shrink_slab_end(shrinker, freed, nr, new_nr);
290         return freed;
291 }
292
293 /*
294  * Call the shrink functions to age shrinkable caches
295  *
296  * Here we assume it costs one seek to replace a lru page and that it also
297  * takes a seek to recreate a cache object.  With this in mind we age equal
298  * percentages of the lru and ageable caches.  This should balance the seeks
299  * generated by these structures.
300  *
301  * If the vm encountered mapped pages on the LRU it increase the pressure on
302  * slab to avoid swapping.
303  *
304  * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
305  *
306  * `lru_pages' represents the number of on-LRU pages in all the zones which
307  * are eligible for the caller's allocation attempt.  It is used for balancing
308  * slab reclaim versus page reclaim.
309  *
310  * Returns the number of slab objects which we shrunk.
311  */
312 unsigned long shrink_slab(struct shrink_control *shrinkctl,
313                           unsigned long nr_pages_scanned,
314                           unsigned long lru_pages)
315 {
316         struct shrinker *shrinker;
317         unsigned long freed = 0;
318
319         if (nr_pages_scanned == 0)
320                 nr_pages_scanned = SWAP_CLUSTER_MAX;
321
322         if (!down_read_trylock(&shrinker_rwsem)) {
323                 /*
324                  * If we would return 0, our callers would understand that we
325                  * have nothing else to shrink and give up trying. By returning
326                  * 1 we keep it going and assume we'll be able to shrink next
327                  * time.
328                  */
329                 freed = 1;
330                 goto out;
331         }
332
333         list_for_each_entry(shrinker, &shrinker_list, list) {
334                 for_each_node_mask(shrinkctl->nid, shrinkctl->nodes_to_scan) {
335                         if (!node_online(shrinkctl->nid))
336                                 continue;
337
338                         if (!(shrinker->flags & SHRINKER_NUMA_AWARE) &&
339                             (shrinkctl->nid != 0))
340                                 break;
341
342                         freed += shrink_slab_node(shrinkctl, shrinker,
343                                  nr_pages_scanned, lru_pages);
344
345                 }
346         }
347         up_read(&shrinker_rwsem);
348 out:
349         cond_resched();
350         return freed;
351 }
352
353 static inline int is_page_cache_freeable(struct page *page)
354 {
355         /*
356          * A freeable page cache page is referenced only by the caller
357          * that isolated the page, the page cache radix tree and
358          * optional buffer heads at page->private.
359          */
360         return page_count(page) - page_has_private(page) == 2;
361 }
362
363 static int may_write_to_queue(struct backing_dev_info *bdi,
364                               struct scan_control *sc)
365 {
366         if (current->flags & PF_SWAPWRITE)
367                 return 1;
368         if (!bdi_write_congested(bdi))
369                 return 1;
370         if (bdi == current->backing_dev_info)
371                 return 1;
372         return 0;
373 }
374
375 /*
376  * We detected a synchronous write error writing a page out.  Probably
377  * -ENOSPC.  We need to propagate that into the address_space for a subsequent
378  * fsync(), msync() or close().
379  *
380  * The tricky part is that after writepage we cannot touch the mapping: nothing
381  * prevents it from being freed up.  But we have a ref on the page and once
382  * that page is locked, the mapping is pinned.
383  *
384  * We're allowed to run sleeping lock_page() here because we know the caller has
385  * __GFP_FS.
386  */
387 static void handle_write_error(struct address_space *mapping,
388                                 struct page *page, int error)
389 {
390         lock_page(page);
391         if (page_mapping(page) == mapping)
392                 mapping_set_error(mapping, error);
393         unlock_page(page);
394 }
395
396 /* possible outcome of pageout() */
397 typedef enum {
398         /* failed to write page out, page is locked */
399         PAGE_KEEP,
400         /* move page to the active list, page is locked */
401         PAGE_ACTIVATE,
402         /* page has been sent to the disk successfully, page is unlocked */
403         PAGE_SUCCESS,
404         /* page is clean and locked */
405         PAGE_CLEAN,
406 } pageout_t;
407
408 /*
409  * pageout is called by shrink_page_list() for each dirty page.
410  * Calls ->writepage().
411  */
412 static pageout_t pageout(struct page *page, struct address_space *mapping,
413                          struct scan_control *sc)
414 {
415         /*
416          * If the page is dirty, only perform writeback if that write
417          * will be non-blocking.  To prevent this allocation from being
418          * stalled by pagecache activity.  But note that there may be
419          * stalls if we need to run get_block().  We could test
420          * PagePrivate for that.
421          *
422          * If this process is currently in __generic_file_aio_write() against
423          * this page's queue, we can perform writeback even if that
424          * will block.
425          *
426          * If the page is swapcache, write it back even if that would
427          * block, for some throttling. This happens by accident, because
428          * swap_backing_dev_info is bust: it doesn't reflect the
429          * congestion state of the swapdevs.  Easy to fix, if needed.
430          */
431         if (!is_page_cache_freeable(page))
432                 return PAGE_KEEP;
433         if (!mapping) {
434                 /*
435                  * Some data journaling orphaned pages can have
436                  * page->mapping == NULL while being dirty with clean buffers.
437                  */
438                 if (page_has_private(page)) {
439                         if (try_to_free_buffers(page)) {
440                                 ClearPageDirty(page);
441                                 printk("%s: orphaned page\n", __func__);
442                                 return PAGE_CLEAN;
443                         }
444                 }
445                 return PAGE_KEEP;
446         }
447         if (mapping->a_ops->writepage == NULL)
448                 return PAGE_ACTIVATE;
449         if (!may_write_to_queue(mapping->backing_dev_info, sc))
450                 return PAGE_KEEP;
451
452         if (clear_page_dirty_for_io(page)) {
453                 int res;
454                 struct writeback_control wbc = {
455                         .sync_mode = WB_SYNC_NONE,
456                         .nr_to_write = SWAP_CLUSTER_MAX,
457                         .range_start = 0,
458                         .range_end = LLONG_MAX,
459                         .for_reclaim = 1,
460                 };
461
462                 SetPageReclaim(page);
463                 res = mapping->a_ops->writepage(page, &wbc);
464                 if (res < 0)
465                         handle_write_error(mapping, page, res);
466                 if (res == AOP_WRITEPAGE_ACTIVATE) {
467                         ClearPageReclaim(page);
468                         return PAGE_ACTIVATE;
469                 }
470
471                 if (!PageWriteback(page)) {
472                         /* synchronous write or broken a_ops? */
473                         ClearPageReclaim(page);
474                 }
475                 trace_mm_vmscan_writepage(page, trace_reclaim_flags(page));
476                 inc_zone_page_state(page, NR_VMSCAN_WRITE);
477                 return PAGE_SUCCESS;
478         }
479
480         return PAGE_CLEAN;
481 }
482
483 /*
484  * Same as remove_mapping, but if the page is removed from the mapping, it
485  * gets returned with a refcount of 0.
486  */
487 static int __remove_mapping(struct address_space *mapping, struct page *page)
488 {
489         BUG_ON(!PageLocked(page));
490         BUG_ON(mapping != page_mapping(page));
491
492         spin_lock_irq(&mapping->tree_lock);
493         /*
494          * The non racy check for a busy page.
495          *
496          * Must be careful with the order of the tests. When someone has
497          * a ref to the page, it may be possible that they dirty it then
498          * drop the reference. So if PageDirty is tested before page_count
499          * here, then the following race may occur:
500          *
501          * get_user_pages(&page);
502          * [user mapping goes away]
503          * write_to(page);
504          *                              !PageDirty(page)    [good]
505          * SetPageDirty(page);
506          * put_page(page);
507          *                              !page_count(page)   [good, discard it]
508          *
509          * [oops, our write_to data is lost]
510          *
511          * Reversing the order of the tests ensures such a situation cannot
512          * escape unnoticed. The smp_rmb is needed to ensure the page->flags
513          * load is not satisfied before that of page->_count.
514          *
515          * Note that if SetPageDirty is always performed via set_page_dirty,
516          * and thus under tree_lock, then this ordering is not required.
517          */
518         if (!page_freeze_refs(page, 2))
519                 goto cannot_free;
520         /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
521         if (unlikely(PageDirty(page))) {
522                 page_unfreeze_refs(page, 2);
523                 goto cannot_free;
524         }
525
526         if (PageSwapCache(page)) {
527                 swp_entry_t swap = { .val = page_private(page) };
528                 __delete_from_swap_cache(page);
529                 spin_unlock_irq(&mapping->tree_lock);
530                 swapcache_free(swap, page);
531         } else {
532                 void (*freepage)(struct page *);
533
534                 freepage = mapping->a_ops->freepage;
535
536                 __delete_from_page_cache(page);
537                 spin_unlock_irq(&mapping->tree_lock);
538                 mem_cgroup_uncharge_cache_page(page);
539
540                 if (freepage != NULL)
541                         freepage(page);
542         }
543
544         return 1;
545
546 cannot_free:
547         spin_unlock_irq(&mapping->tree_lock);
548         return 0;
549 }
550
551 /*
552  * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
553  * someone else has a ref on the page, abort and return 0.  If it was
554  * successfully detached, return 1.  Assumes the caller has a single ref on
555  * this page.
556  */
557 int remove_mapping(struct address_space *mapping, struct page *page)
558 {
559         if (__remove_mapping(mapping, page)) {
560                 /*
561                  * Unfreezing the refcount with 1 rather than 2 effectively
562                  * drops the pagecache ref for us without requiring another
563                  * atomic operation.
564                  */
565                 page_unfreeze_refs(page, 1);
566                 return 1;
567         }
568         return 0;
569 }
570
571 /**
572  * putback_lru_page - put previously isolated page onto appropriate LRU list
573  * @page: page to be put back to appropriate lru list
574  *
575  * Add previously isolated @page to appropriate LRU list.
576  * Page may still be unevictable for other reasons.
577  *
578  * lru_lock must not be held, interrupts must be enabled.
579  */
580 void putback_lru_page(struct page *page)
581 {
582         int lru;
583         int was_unevictable = PageUnevictable(page);
584
585         VM_BUG_ON(PageLRU(page));
586
587 redo:
588         ClearPageUnevictable(page);
589
590         if (page_evictable(page)) {
591                 /*
592                  * For evictable pages, we can use the cache.
593                  * In event of a race, worst case is we end up with an
594                  * unevictable page on [in]active list.
595                  * We know how to handle that.
596                  */
597                 lru = page_lru_base_type(page);
598                 lru_cache_add(page);
599         } else {
600                 /*
601                  * Put unevictable pages directly on zone's unevictable
602                  * list.
603                  */
604                 lru = LRU_UNEVICTABLE;
605                 add_page_to_unevictable_list(page);
606                 /*
607                  * When racing with an mlock or AS_UNEVICTABLE clearing
608                  * (page is unlocked) make sure that if the other thread
609                  * does not observe our setting of PG_lru and fails
610                  * isolation/check_move_unevictable_pages,
611                  * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
612                  * the page back to the evictable list.
613                  *
614                  * The other side is TestClearPageMlocked() or shmem_lock().
615                  */
616                 smp_mb();
617         }
618
619         /*
620          * page's status can change while we move it among lru. If an evictable
621          * page is on unevictable list, it never be freed. To avoid that,
622          * check after we added it to the list, again.
623          */
624         if (lru == LRU_UNEVICTABLE && page_evictable(page)) {
625                 if (!isolate_lru_page(page)) {
626                         put_page(page);
627                         goto redo;
628                 }
629                 /* This means someone else dropped this page from LRU
630                  * So, it will be freed or putback to LRU again. There is
631                  * nothing to do here.
632                  */
633         }
634
635         if (was_unevictable && lru != LRU_UNEVICTABLE)
636                 count_vm_event(UNEVICTABLE_PGRESCUED);
637         else if (!was_unevictable && lru == LRU_UNEVICTABLE)
638                 count_vm_event(UNEVICTABLE_PGCULLED);
639
640         put_page(page);         /* drop ref from isolate */
641 }
642
643 enum page_references {
644         PAGEREF_RECLAIM,
645         PAGEREF_RECLAIM_CLEAN,
646         PAGEREF_KEEP,
647         PAGEREF_ACTIVATE,
648 };
649
650 static enum page_references page_check_references(struct page *page,
651                                                   struct scan_control *sc)
652 {
653         int referenced_ptes, referenced_page;
654         unsigned long vm_flags;
655
656         referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
657                                           &vm_flags);
658         referenced_page = TestClearPageReferenced(page);
659
660         /*
661          * Mlock lost the isolation race with us.  Let try_to_unmap()
662          * move the page to the unevictable list.
663          */
664         if (vm_flags & VM_LOCKED)
665                 return PAGEREF_RECLAIM;
666
667         if (referenced_ptes) {
668                 if (PageSwapBacked(page))
669                         return PAGEREF_ACTIVATE;
670                 /*
671                  * All mapped pages start out with page table
672                  * references from the instantiating fault, so we need
673                  * to look twice if a mapped file page is used more
674                  * than once.
675                  *
676                  * Mark it and spare it for another trip around the
677                  * inactive list.  Another page table reference will
678                  * lead to its activation.
679                  *
680                  * Note: the mark is set for activated pages as well
681                  * so that recently deactivated but used pages are
682                  * quickly recovered.
683                  */
684                 SetPageReferenced(page);
685
686                 if (referenced_page || referenced_ptes > 1)
687                         return PAGEREF_ACTIVATE;
688
689                 /*
690                  * Activate file-backed executable pages after first usage.
691                  */
692                 if (vm_flags & VM_EXEC)
693                         return PAGEREF_ACTIVATE;
694
695                 return PAGEREF_KEEP;
696         }
697
698         /* Reclaim if clean, defer dirty pages to writeback */
699         if (referenced_page && !PageSwapBacked(page))
700                 return PAGEREF_RECLAIM_CLEAN;
701
702         return PAGEREF_RECLAIM;
703 }
704
705 /* Check if a page is dirty or under writeback */
706 static void page_check_dirty_writeback(struct page *page,
707                                        bool *dirty, bool *writeback)
708 {
709         struct address_space *mapping;
710
711         /*
712          * Anonymous pages are not handled by flushers and must be written
713          * from reclaim context. Do not stall reclaim based on them
714          */
715         if (!page_is_file_cache(page)) {
716                 *dirty = false;
717                 *writeback = false;
718                 return;
719         }
720
721         /* By default assume that the page flags are accurate */
722         *dirty = PageDirty(page);
723         *writeback = PageWriteback(page);
724
725         /* Verify dirty/writeback state if the filesystem supports it */
726         if (!page_has_private(page))
727                 return;
728
729         mapping = page_mapping(page);
730         if (mapping && mapping->a_ops->is_dirty_writeback)
731                 mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
732 }
733
734 /*
735  * shrink_page_list() returns the number of reclaimed pages
736  */
737 static unsigned long shrink_page_list(struct list_head *page_list,
738                                       struct zone *zone,
739                                       struct scan_control *sc,
740                                       enum ttu_flags ttu_flags,
741                                       unsigned long *ret_nr_dirty,
742                                       unsigned long *ret_nr_unqueued_dirty,
743                                       unsigned long *ret_nr_congested,
744                                       unsigned long *ret_nr_writeback,
745                                       unsigned long *ret_nr_immediate,
746                                       bool force_reclaim)
747 {
748         LIST_HEAD(ret_pages);
749         LIST_HEAD(free_pages);
750         int pgactivate = 0;
751         unsigned long nr_unqueued_dirty = 0;
752         unsigned long nr_dirty = 0;
753         unsigned long nr_congested = 0;
754         unsigned long nr_reclaimed = 0;
755         unsigned long nr_writeback = 0;
756         unsigned long nr_immediate = 0;
757
758         cond_resched();
759
760         mem_cgroup_uncharge_start();
761         while (!list_empty(page_list)) {
762                 struct address_space *mapping;
763                 struct page *page;
764                 int may_enter_fs;
765                 enum page_references references = PAGEREF_RECLAIM_CLEAN;
766                 bool dirty, writeback;
767
768                 cond_resched();
769
770                 page = lru_to_page(page_list);
771                 list_del(&page->lru);
772
773                 if (!trylock_page(page))
774                         goto keep;
775
776                 VM_BUG_ON(PageActive(page));
777                 VM_BUG_ON(page_zone(page) != zone);
778
779                 sc->nr_scanned++;
780
781                 if (unlikely(!page_evictable(page)))
782                         goto cull_mlocked;
783
784                 if (!sc->may_unmap && page_mapped(page))
785                         goto keep_locked;
786
787                 /* Double the slab pressure for mapped and swapcache pages */
788                 if (page_mapped(page) || PageSwapCache(page))
789                         sc->nr_scanned++;
790
791                 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
792                         (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
793
794                 /*
795                  * The number of dirty pages determines if a zone is marked
796                  * reclaim_congested which affects wait_iff_congested. kswapd
797                  * will stall and start writing pages if the tail of the LRU
798                  * is all dirty unqueued pages.
799                  */
800                 page_check_dirty_writeback(page, &dirty, &writeback);
801                 if (dirty || writeback)
802                         nr_dirty++;
803
804                 if (dirty && !writeback)
805                         nr_unqueued_dirty++;
806
807                 /*
808                  * Treat this page as congested if the underlying BDI is or if
809                  * pages are cycling through the LRU so quickly that the
810                  * pages marked for immediate reclaim are making it to the
811                  * end of the LRU a second time.
812                  */
813                 mapping = page_mapping(page);
814                 if ((mapping && bdi_write_congested(mapping->backing_dev_info)) ||
815                     (writeback && PageReclaim(page)))
816                         nr_congested++;
817
818                 /*
819                  * If a page at the tail of the LRU is under writeback, there
820                  * are three cases to consider.
821                  *
822                  * 1) If reclaim is encountering an excessive number of pages
823                  *    under writeback and this page is both under writeback and
824                  *    PageReclaim then it indicates that pages are being queued
825                  *    for IO but are being recycled through the LRU before the
826                  *    IO can complete. Waiting on the page itself risks an
827                  *    indefinite stall if it is impossible to writeback the
828                  *    page due to IO error or disconnected storage so instead
829                  *    note that the LRU is being scanned too quickly and the
830                  *    caller can stall after page list has been processed.
831                  *
832                  * 2) Global reclaim encounters a page, memcg encounters a
833                  *    page that is not marked for immediate reclaim or
834                  *    the caller does not have __GFP_IO. In this case mark
835                  *    the page for immediate reclaim and continue scanning.
836                  *
837                  *    __GFP_IO is checked  because a loop driver thread might
838                  *    enter reclaim, and deadlock if it waits on a page for
839                  *    which it is needed to do the write (loop masks off
840                  *    __GFP_IO|__GFP_FS for this reason); but more thought
841                  *    would probably show more reasons.
842                  *
843                  *    Don't require __GFP_FS, since we're not going into the
844                  *    FS, just waiting on its writeback completion. Worryingly,
845                  *    ext4 gfs2 and xfs allocate pages with
846                  *    grab_cache_page_write_begin(,,AOP_FLAG_NOFS), so testing
847                  *    may_enter_fs here is liable to OOM on them.
848                  *
849                  * 3) memcg encounters a page that is not already marked
850                  *    PageReclaim. memcg does not have any dirty pages
851                  *    throttling so we could easily OOM just because too many
852                  *    pages are in writeback and there is nothing else to
853                  *    reclaim. Wait for the writeback to complete.
854                  */
855                 if (PageWriteback(page)) {
856                         /* Case 1 above */
857                         if (current_is_kswapd() &&
858                             PageReclaim(page) &&
859                             zone_is_reclaim_writeback(zone)) {
860                                 nr_immediate++;
861                                 goto keep_locked;
862
863                         /* Case 2 above */
864                         } else if (global_reclaim(sc) ||
865                             !PageReclaim(page) || !(sc->gfp_mask & __GFP_IO)) {
866                                 /*
867                                  * This is slightly racy - end_page_writeback()
868                                  * might have just cleared PageReclaim, then
869                                  * setting PageReclaim here end up interpreted
870                                  * as PageReadahead - but that does not matter
871                                  * enough to care.  What we do want is for this
872                                  * page to have PageReclaim set next time memcg
873                                  * reclaim reaches the tests above, so it will
874                                  * then wait_on_page_writeback() to avoid OOM;
875                                  * and it's also appropriate in global reclaim.
876                                  */
877                                 SetPageReclaim(page);
878                                 nr_writeback++;
879
880                                 goto keep_locked;
881
882                         /* Case 3 above */
883                         } else {
884                                 wait_on_page_writeback(page);
885                         }
886                 }
887
888                 if (!force_reclaim)
889                         references = page_check_references(page, sc);
890
891                 switch (references) {
892                 case PAGEREF_ACTIVATE:
893                         goto activate_locked;
894                 case PAGEREF_KEEP:
895                         goto keep_locked;
896                 case PAGEREF_RECLAIM:
897                 case PAGEREF_RECLAIM_CLEAN:
898                         ; /* try to reclaim the page below */
899                 }
900
901                 /*
902                  * Anonymous process memory has backing store?
903                  * Try to allocate it some swap space here.
904                  */
905                 if (PageAnon(page) && !PageSwapCache(page)) {
906                         if (!(sc->gfp_mask & __GFP_IO))
907                                 goto keep_locked;
908                         if (!add_to_swap(page, page_list))
909                                 goto activate_locked;
910                         may_enter_fs = 1;
911
912                         /* Adding to swap updated mapping */
913                         mapping = page_mapping(page);
914                 }
915
916                 /*
917                  * The page is mapped into the page tables of one or more
918                  * processes. Try to unmap it here.
919                  */
920                 if (page_mapped(page) && mapping) {
921                         switch (try_to_unmap(page, ttu_flags)) {
922                         case SWAP_FAIL:
923                                 goto activate_locked;
924                         case SWAP_AGAIN:
925                                 goto keep_locked;
926                         case SWAP_MLOCK:
927                                 goto cull_mlocked;
928                         case SWAP_SUCCESS:
929                                 ; /* try to free the page below */
930                         }
931                 }
932
933                 if (PageDirty(page)) {
934                         /*
935                          * Only kswapd can writeback filesystem pages to
936                          * avoid risk of stack overflow but only writeback
937                          * if many dirty pages have been encountered.
938                          */
939                         if (page_is_file_cache(page) &&
940                                         (!current_is_kswapd() ||
941                                          !zone_is_reclaim_dirty(zone))) {
942                                 /*
943                                  * Immediately reclaim when written back.
944                                  * Similar in principal to deactivate_page()
945                                  * except we already have the page isolated
946                                  * and know it's dirty
947                                  */
948                                 inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);
949                                 SetPageReclaim(page);
950
951                                 goto keep_locked;
952                         }
953
954                         if (references == PAGEREF_RECLAIM_CLEAN)
955                                 goto keep_locked;
956                         if (!may_enter_fs)
957                                 goto keep_locked;
958                         if (!sc->may_writepage)
959                                 goto keep_locked;
960
961                         /* Page is dirty, try to write it out here */
962                         switch (pageout(page, mapping, sc)) {
963                         case PAGE_KEEP:
964                                 goto keep_locked;
965                         case PAGE_ACTIVATE:
966                                 goto activate_locked;
967                         case PAGE_SUCCESS:
968                                 if (PageWriteback(page))
969                                         goto keep;
970                                 if (PageDirty(page))
971                                         goto keep;
972
973                                 /*
974                                  * A synchronous write - probably a ramdisk.  Go
975                                  * ahead and try to reclaim the page.
976                                  */
977                                 if (!trylock_page(page))
978                                         goto keep;
979                                 if (PageDirty(page) || PageWriteback(page))
980                                         goto keep_locked;
981                                 mapping = page_mapping(page);
982                         case PAGE_CLEAN:
983                                 ; /* try to free the page below */
984                         }
985                 }
986
987                 /*
988                  * If the page has buffers, try to free the buffer mappings
989                  * associated with this page. If we succeed we try to free
990                  * the page as well.
991                  *
992                  * We do this even if the page is PageDirty().
993                  * try_to_release_page() does not perform I/O, but it is
994                  * possible for a page to have PageDirty set, but it is actually
995                  * clean (all its buffers are clean).  This happens if the
996                  * buffers were written out directly, with submit_bh(). ext3
997                  * will do this, as well as the blockdev mapping.
998                  * try_to_release_page() will discover that cleanness and will
999                  * drop the buffers and mark the page clean - it can be freed.
1000                  *
1001                  * Rarely, pages can have buffers and no ->mapping.  These are
1002                  * the pages which were not successfully invalidated in
1003                  * truncate_complete_page().  We try to drop those buffers here
1004                  * and if that worked, and the page is no longer mapped into
1005                  * process address space (page_count == 1) it can be freed.
1006                  * Otherwise, leave the page on the LRU so it is swappable.
1007                  */
1008                 if (page_has_private(page)) {
1009                         if (!try_to_release_page(page, sc->gfp_mask))
1010                                 goto activate_locked;
1011                         if (!mapping && page_count(page) == 1) {
1012                                 unlock_page(page);
1013                                 if (put_page_testzero(page))
1014                                         goto free_it;
1015                                 else {
1016                                         /*
1017                                          * rare race with speculative reference.
1018                                          * the speculative reference will free
1019                                          * this page shortly, so we may
1020                                          * increment nr_reclaimed here (and
1021                                          * leave it off the LRU).
1022                                          */
1023                                         nr_reclaimed++;
1024                                         continue;
1025                                 }
1026                         }
1027                 }
1028
1029                 if (!mapping || !__remove_mapping(mapping, page))
1030                         goto keep_locked;
1031
1032                 /*
1033                  * At this point, we have no other references and there is
1034                  * no way to pick any more up (removed from LRU, removed
1035                  * from pagecache). Can use non-atomic bitops now (and
1036                  * we obviously don't have to worry about waking up a process
1037                  * waiting on the page lock, because there are no references.
1038                  */
1039                 __clear_page_locked(page);
1040 free_it:
1041                 nr_reclaimed++;
1042
1043                 /*
1044                  * Is there need to periodically free_page_list? It would
1045                  * appear not as the counts should be low
1046                  */
1047                 list_add(&page->lru, &free_pages);
1048                 continue;
1049
1050 cull_mlocked:
1051                 if (PageSwapCache(page))
1052                         try_to_free_swap(page);
1053                 unlock_page(page);
1054                 putback_lru_page(page);
1055                 continue;
1056
1057 activate_locked:
1058                 /* Not a candidate for swapping, so reclaim swap space. */
1059                 if (PageSwapCache(page) && vm_swap_full())
1060                         try_to_free_swap(page);
1061                 VM_BUG_ON(PageActive(page));
1062                 SetPageActive(page);
1063                 pgactivate++;
1064 keep_locked:
1065                 unlock_page(page);
1066 keep:
1067                 list_add(&page->lru, &ret_pages);
1068                 VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
1069         }
1070
1071         free_hot_cold_page_list(&free_pages, 1);
1072
1073         list_splice(&ret_pages, page_list);
1074         count_vm_events(PGACTIVATE, pgactivate);
1075         mem_cgroup_uncharge_end();
1076         *ret_nr_dirty += nr_dirty;
1077         *ret_nr_congested += nr_congested;
1078         *ret_nr_unqueued_dirty += nr_unqueued_dirty;
1079         *ret_nr_writeback += nr_writeback;
1080         *ret_nr_immediate += nr_immediate;
1081         return nr_reclaimed;
1082 }
1083
1084 unsigned long reclaim_clean_pages_from_list(struct zone *zone,
1085                                             struct list_head *page_list)
1086 {
1087         struct scan_control sc = {
1088                 .gfp_mask = GFP_KERNEL,
1089                 .priority = DEF_PRIORITY,
1090                 .may_unmap = 1,
1091         };
1092         unsigned long ret, dummy1, dummy2, dummy3, dummy4, dummy5;
1093         struct page *page, *next;
1094         LIST_HEAD(clean_pages);
1095
1096         list_for_each_entry_safe(page, next, page_list, lru) {
1097                 if (page_is_file_cache(page) && !PageDirty(page)) {
1098                         ClearPageActive(page);
1099                         list_move(&page->lru, &clean_pages);
1100                 }
1101         }
1102
1103         ret = shrink_page_list(&clean_pages, zone, &sc,
1104                         TTU_UNMAP|TTU_IGNORE_ACCESS,
1105                         &dummy1, &dummy2, &dummy3, &dummy4, &dummy5, true);
1106         list_splice(&clean_pages, page_list);
1107         __mod_zone_page_state(zone, NR_ISOLATED_FILE, -ret);
1108         return ret;
1109 }
1110
1111 /*
1112  * Attempt to remove the specified page from its LRU.  Only take this page
1113  * if it is of the appropriate PageActive status.  Pages which are being
1114  * freed elsewhere are also ignored.
1115  *
1116  * page:        page to consider
1117  * mode:        one of the LRU isolation modes defined above
1118  *
1119  * returns 0 on success, -ve errno on failure.
1120  */
1121 int __isolate_lru_page(struct page *page, isolate_mode_t mode)
1122 {
1123         int ret = -EINVAL;
1124
1125         /* Only take pages on the LRU. */
1126         if (!PageLRU(page))
1127                 return ret;
1128
1129         /* Compaction should not handle unevictable pages but CMA can do so */
1130         if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
1131                 return ret;
1132
1133         ret = -EBUSY;
1134
1135         /*
1136          * To minimise LRU disruption, the caller can indicate that it only
1137          * wants to isolate pages it will be able to operate on without
1138          * blocking - clean pages for the most part.
1139          *
1140          * ISOLATE_CLEAN means that only clean pages should be isolated. This
1141          * is used by reclaim when it is cannot write to backing storage
1142          *
1143          * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1144          * that it is possible to migrate without blocking
1145          */
1146         if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
1147                 /* All the caller can do on PageWriteback is block */
1148                 if (PageWriteback(page))
1149                         return ret;
1150
1151                 if (PageDirty(page)) {
1152                         struct address_space *mapping;
1153
1154                         /* ISOLATE_CLEAN means only clean pages */
1155                         if (mode & ISOLATE_CLEAN)
1156                                 return ret;
1157
1158                         /*
1159                          * Only pages without mappings or that have a
1160                          * ->migratepage callback are possible to migrate
1161                          * without blocking
1162                          */
1163                         mapping = page_mapping(page);
1164                         if (mapping && !mapping->a_ops->migratepage)
1165                                 return ret;
1166                 }
1167         }
1168
1169         if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1170                 return ret;
1171
1172         if (likely(get_page_unless_zero(page))) {
1173                 /*
1174                  * Be careful not to clear PageLRU until after we're
1175                  * sure the page is not being freed elsewhere -- the
1176                  * page release code relies on it.
1177                  */
1178                 ClearPageLRU(page);
1179                 ret = 0;
1180         }
1181
1182         return ret;
1183 }
1184
1185 /*
1186  * zone->lru_lock is heavily contended.  Some of the functions that
1187  * shrink the lists perform better by taking out a batch of pages
1188  * and working on them outside the LRU lock.
1189  *
1190  * For pagecache intensive workloads, this function is the hottest
1191  * spot in the kernel (apart from copy_*_user functions).
1192  *
1193  * Appropriate locks must be held before calling this function.
1194  *
1195  * @nr_to_scan: The number of pages to look through on the list.
1196  * @lruvec:     The LRU vector to pull pages from.
1197  * @dst:        The temp list to put pages on to.
1198  * @nr_scanned: The number of pages that were scanned.
1199  * @sc:         The scan_control struct for this reclaim session
1200  * @mode:       One of the LRU isolation modes
1201  * @lru:        LRU list id for isolating
1202  *
1203  * returns how many pages were moved onto *@dst.
1204  */
1205 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1206                 struct lruvec *lruvec, struct list_head *dst,
1207                 unsigned long *nr_scanned, struct scan_control *sc,
1208                 isolate_mode_t mode, enum lru_list lru)
1209 {
1210         struct list_head *src = &lruvec->lists[lru];
1211         unsigned long nr_taken = 0;
1212         unsigned long scan;
1213
1214         for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
1215                 struct page *page;
1216                 int nr_pages;
1217
1218                 page = lru_to_page(src);
1219                 prefetchw_prev_lru_page(page, src, flags);
1220
1221                 VM_BUG_ON(!PageLRU(page));
1222
1223                 switch (__isolate_lru_page(page, mode)) {
1224                 case 0:
1225                         nr_pages = hpage_nr_pages(page);
1226                         mem_cgroup_update_lru_size(lruvec, lru, -nr_pages);
1227                         list_move(&page->lru, dst);
1228                         nr_taken += nr_pages;
1229                         break;
1230
1231                 case -EBUSY:
1232                         /* else it is being freed elsewhere */
1233                         list_move(&page->lru, src);
1234                         continue;
1235
1236                 default:
1237                         BUG();
1238                 }
1239         }
1240
1241         *nr_scanned = scan;
1242         trace_mm_vmscan_lru_isolate(sc->order, nr_to_scan, scan,
1243                                     nr_taken, mode, is_file_lru(lru));
1244         return nr_taken;
1245 }
1246
1247 /**
1248  * isolate_lru_page - tries to isolate a page from its LRU list
1249  * @page: page to isolate from its LRU list
1250  *
1251  * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1252  * vmstat statistic corresponding to whatever LRU list the page was on.
1253  *
1254  * Returns 0 if the page was removed from an LRU list.
1255  * Returns -EBUSY if the page was not on an LRU list.
1256  *
1257  * The returned page will have PageLRU() cleared.  If it was found on
1258  * the active list, it will have PageActive set.  If it was found on
1259  * the unevictable list, it will have the PageUnevictable bit set. That flag
1260  * may need to be cleared by the caller before letting the page go.
1261  *
1262  * The vmstat statistic corresponding to the list on which the page was
1263  * found will be decremented.
1264  *
1265  * Restrictions:
1266  * (1) Must be called with an elevated refcount on the page. This is a
1267  *     fundamentnal difference from isolate_lru_pages (which is called
1268  *     without a stable reference).
1269  * (2) the lru_lock must not be held.
1270  * (3) interrupts must be enabled.
1271  */
1272 int isolate_lru_page(struct page *page)
1273 {
1274         int ret = -EBUSY;
1275
1276         VM_BUG_ON(!page_count(page));
1277
1278         if (PageLRU(page)) {
1279                 struct zone *zone = page_zone(page);
1280                 struct lruvec *lruvec;
1281
1282                 spin_lock_irq(&zone->lru_lock);
1283                 lruvec = mem_cgroup_page_lruvec(page, zone);
1284                 if (PageLRU(page)) {
1285                         int lru = page_lru(page);
1286                         get_page(page);
1287                         ClearPageLRU(page);
1288                         del_page_from_lru_list(page, lruvec, lru);
1289                         ret = 0;
1290                 }
1291                 spin_unlock_irq(&zone->lru_lock);
1292         }
1293         return ret;
1294 }
1295
1296 /*
1297  * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1298  * then get resheduled. When there are massive number of tasks doing page
1299  * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1300  * the LRU list will go small and be scanned faster than necessary, leading to
1301  * unnecessary swapping, thrashing and OOM.
1302  */
1303 static int too_many_isolated(struct zone *zone, int file,
1304                 struct scan_control *sc)
1305 {
1306         unsigned long inactive, isolated;
1307
1308         if (current_is_kswapd())
1309                 return 0;
1310
1311         if (!global_reclaim(sc))
1312                 return 0;
1313
1314         if (file) {
1315                 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1316                 isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1317         } else {
1318                 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1319                 isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1320         }
1321
1322         /*
1323          * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1324          * won't get blocked by normal direct-reclaimers, forming a circular
1325          * deadlock.
1326          */
1327         if ((sc->gfp_mask & GFP_IOFS) == GFP_IOFS)
1328                 inactive >>= 3;
1329
1330         return isolated > inactive;
1331 }
1332
1333 static noinline_for_stack void
1334 putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
1335 {
1336         struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1337         struct zone *zone = lruvec_zone(lruvec);
1338         LIST_HEAD(pages_to_free);
1339
1340         /*
1341          * Put back any unfreeable pages.
1342          */
1343         while (!list_empty(page_list)) {
1344                 struct page *page = lru_to_page(page_list);
1345                 int lru;
1346
1347                 VM_BUG_ON(PageLRU(page));
1348                 list_del(&page->lru);
1349                 if (unlikely(!page_evictable(page))) {
1350                         spin_unlock_irq(&zone->lru_lock);
1351                         putback_lru_page(page);
1352                         spin_lock_irq(&zone->lru_lock);
1353                         continue;
1354                 }
1355
1356                 lruvec = mem_cgroup_page_lruvec(page, zone);
1357
1358                 SetPageLRU(page);
1359                 lru = page_lru(page);
1360                 add_page_to_lru_list(page, lruvec, lru);
1361
1362                 if (is_active_lru(lru)) {
1363                         int file = is_file_lru(lru);
1364                         int numpages = hpage_nr_pages(page);
1365                         reclaim_stat->recent_rotated[file] += numpages;
1366                 }
1367                 if (put_page_testzero(page)) {
1368                         __ClearPageLRU(page);
1369                         __ClearPageActive(page);
1370                         del_page_from_lru_list(page, lruvec, lru);
1371
1372                         if (unlikely(PageCompound(page))) {
1373                                 spin_unlock_irq(&zone->lru_lock);
1374                                 (*get_compound_page_dtor(page))(page);
1375                                 spin_lock_irq(&zone->lru_lock);
1376                         } else
1377                                 list_add(&page->lru, &pages_to_free);
1378                 }
1379         }
1380
1381         /*
1382          * To save our caller's stack, now use input list for pages to free.
1383          */
1384         list_splice(&pages_to_free, page_list);
1385 }
1386
1387 /*
1388  * shrink_inactive_list() is a helper for shrink_zone().  It returns the number
1389  * of reclaimed pages
1390  */
1391 static noinline_for_stack unsigned long
1392 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1393                      struct scan_control *sc, enum lru_list lru)
1394 {
1395         LIST_HEAD(page_list);
1396         unsigned long nr_scanned;
1397         unsigned long nr_reclaimed = 0;
1398         unsigned long nr_taken;
1399         unsigned long nr_dirty = 0;
1400         unsigned long nr_congested = 0;
1401         unsigned long nr_unqueued_dirty = 0;
1402         unsigned long nr_writeback = 0;
1403         unsigned long nr_immediate = 0;
1404         isolate_mode_t isolate_mode = 0;
1405         int file = is_file_lru(lru);
1406         struct zone *zone = lruvec_zone(lruvec);
1407         struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1408
1409         while (unlikely(too_many_isolated(zone, file, sc))) {
1410                 congestion_wait(BLK_RW_ASYNC, HZ/10);
1411
1412                 /* We are about to die and free our memory. Return now. */
1413                 if (fatal_signal_pending(current))
1414                         return SWAP_CLUSTER_MAX;
1415         }
1416
1417         lru_add_drain();
1418
1419         if (!sc->may_unmap)
1420                 isolate_mode |= ISOLATE_UNMAPPED;
1421         if (!sc->may_writepage)
1422                 isolate_mode |= ISOLATE_CLEAN;
1423
1424         spin_lock_irq(&zone->lru_lock);
1425
1426         nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1427                                      &nr_scanned, sc, isolate_mode, lru);
1428
1429         __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
1430         __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1431
1432         if (global_reclaim(sc)) {
1433                 zone->pages_scanned += nr_scanned;
1434                 if (current_is_kswapd())
1435                         __count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scanned);
1436                 else
1437                         __count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scanned);
1438         }
1439         spin_unlock_irq(&zone->lru_lock);
1440
1441         if (nr_taken == 0)
1442                 return 0;
1443
1444         nr_reclaimed = shrink_page_list(&page_list, zone, sc, TTU_UNMAP,
1445                                 &nr_dirty, &nr_unqueued_dirty, &nr_congested,
1446                                 &nr_writeback, &nr_immediate,
1447                                 false);
1448
1449         spin_lock_irq(&zone->lru_lock);
1450
1451         reclaim_stat->recent_scanned[file] += nr_taken;
1452
1453         if (global_reclaim(sc)) {
1454                 if (current_is_kswapd())
1455                         __count_zone_vm_events(PGSTEAL_KSWAPD, zone,
1456                                                nr_reclaimed);
1457                 else
1458                         __count_zone_vm_events(PGSTEAL_DIRECT, zone,
1459                                                nr_reclaimed);
1460         }
1461
1462         putback_inactive_pages(lruvec, &page_list);
1463
1464         __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1465
1466         spin_unlock_irq(&zone->lru_lock);
1467
1468         free_hot_cold_page_list(&page_list, 1);
1469
1470         /*
1471          * If reclaim is isolating dirty pages under writeback, it implies
1472          * that the long-lived page allocation rate is exceeding the page
1473          * laundering rate. Either the global limits are not being effective
1474          * at throttling processes due to the page distribution throughout
1475          * zones or there is heavy usage of a slow backing device. The
1476          * only option is to throttle from reclaim context which is not ideal
1477          * as there is no guarantee the dirtying process is throttled in the
1478          * same way balance_dirty_pages() manages.
1479          *
1480          * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number
1481          * of pages under pages flagged for immediate reclaim and stall if any
1482          * are encountered in the nr_immediate check below.
1483          */
1484         if (nr_writeback && nr_writeback == nr_taken)
1485                 zone_set_flag(zone, ZONE_WRITEBACK);
1486
1487         /*
1488          * memcg will stall in page writeback so only consider forcibly
1489          * stalling for global reclaim
1490          */
1491         if (global_reclaim(sc)) {
1492                 /*
1493                  * Tag a zone as congested if all the dirty pages scanned were
1494                  * backed by a congested BDI and wait_iff_congested will stall.
1495                  */
1496                 if (nr_dirty && nr_dirty == nr_congested)
1497                         zone_set_flag(zone, ZONE_CONGESTED);
1498
1499                 /*
1500                  * If dirty pages are scanned that are not queued for IO, it
1501                  * implies that flushers are not keeping up. In this case, flag
1502                  * the zone ZONE_TAIL_LRU_DIRTY and kswapd will start writing
1503                  * pages from reclaim context. It will forcibly stall in the
1504                  * next check.
1505                  */
1506                 if (nr_unqueued_dirty == nr_taken)
1507                         zone_set_flag(zone, ZONE_TAIL_LRU_DIRTY);
1508
1509                 /*
1510                  * In addition, if kswapd scans pages marked marked for
1511                  * immediate reclaim and under writeback (nr_immediate), it
1512                  * implies that pages are cycling through the LRU faster than
1513                  * they are written so also forcibly stall.
1514                  */
1515                 if (nr_unqueued_dirty == nr_taken || nr_immediate)
1516                         congestion_wait(BLK_RW_ASYNC, HZ/10);
1517         }
1518
1519         /*
1520          * Stall direct reclaim for IO completions if underlying BDIs or zone
1521          * is congested. Allow kswapd to continue until it starts encountering
1522          * unqueued dirty pages or cycling through the LRU too quickly.
1523          */
1524         if (!sc->hibernation_mode && !current_is_kswapd())
1525                 wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10);
1526
1527         trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
1528                 zone_idx(zone),
1529                 nr_scanned, nr_reclaimed,
1530                 sc->priority,
1531                 trace_shrink_flags(file));
1532         return nr_reclaimed;
1533 }
1534
1535 /*
1536  * This moves pages from the active list to the inactive list.
1537  *
1538  * We move them the other way if the page is referenced by one or more
1539  * processes, from rmap.
1540  *
1541  * If the pages are mostly unmapped, the processing is fast and it is
1542  * appropriate to hold zone->lru_lock across the whole operation.  But if
1543  * the pages are mapped, the processing is slow (page_referenced()) so we
1544  * should drop zone->lru_lock around each page.  It's impossible to balance
1545  * this, so instead we remove the pages from the LRU while processing them.
1546  * It is safe to rely on PG_active against the non-LRU pages in here because
1547  * nobody will play with that bit on a non-LRU page.
1548  *
1549  * The downside is that we have to touch page->_count against each page.
1550  * But we had to alter page->flags anyway.
1551  */
1552
1553 static void move_active_pages_to_lru(struct lruvec *lruvec,
1554                                      struct list_head *list,
1555                                      struct list_head *pages_to_free,
1556                                      enum lru_list lru)
1557 {
1558         struct zone *zone = lruvec_zone(lruvec);
1559         unsigned long pgmoved = 0;
1560         struct page *page;
1561         int nr_pages;
1562
1563         while (!list_empty(list)) {
1564                 page = lru_to_page(list);
1565                 lruvec = mem_cgroup_page_lruvec(page, zone);
1566
1567                 VM_BUG_ON(PageLRU(page));
1568                 SetPageLRU(page);
1569
1570                 nr_pages = hpage_nr_pages(page);
1571                 mem_cgroup_update_lru_size(lruvec, lru, nr_pages);
1572                 list_move(&page->lru, &lruvec->lists[lru]);
1573                 pgmoved += nr_pages;
1574
1575                 if (put_page_testzero(page)) {
1576                         __ClearPageLRU(page);
1577                         __ClearPageActive(page);
1578                         del_page_from_lru_list(page, lruvec, lru);
1579
1580                         if (unlikely(PageCompound(page))) {
1581                                 spin_unlock_irq(&zone->lru_lock);
1582                                 (*get_compound_page_dtor(page))(page);
1583                                 spin_lock_irq(&zone->lru_lock);
1584                         } else
1585                                 list_add(&page->lru, pages_to_free);
1586                 }
1587         }
1588         __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1589         if (!is_active_lru(lru))
1590                 __count_vm_events(PGDEACTIVATE, pgmoved);
1591 }
1592
1593 static void shrink_active_list(unsigned long nr_to_scan,
1594                                struct lruvec *lruvec,
1595                                struct scan_control *sc,
1596                                enum lru_list lru)
1597 {
1598         unsigned long nr_taken;
1599         unsigned long nr_scanned;
1600         unsigned long vm_flags;
1601         LIST_HEAD(l_hold);      /* The pages which were snipped off */
1602         LIST_HEAD(l_active);
1603         LIST_HEAD(l_inactive);
1604         struct page *page;
1605         struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1606         unsigned long nr_rotated = 0;
1607         isolate_mode_t isolate_mode = 0;
1608         int file = is_file_lru(lru);
1609         struct zone *zone = lruvec_zone(lruvec);
1610
1611         lru_add_drain();
1612
1613         if (!sc->may_unmap)
1614                 isolate_mode |= ISOLATE_UNMAPPED;
1615         if (!sc->may_writepage)
1616                 isolate_mode |= ISOLATE_CLEAN;
1617
1618         spin_lock_irq(&zone->lru_lock);
1619
1620         nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
1621                                      &nr_scanned, sc, isolate_mode, lru);
1622         if (global_reclaim(sc))
1623                 zone->pages_scanned += nr_scanned;
1624
1625         reclaim_stat->recent_scanned[file] += nr_taken;
1626
1627         __count_zone_vm_events(PGREFILL, zone, nr_scanned);
1628         __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
1629         __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1630         spin_unlock_irq(&zone->lru_lock);
1631
1632         while (!list_empty(&l_hold)) {
1633                 cond_resched();
1634                 page = lru_to_page(&l_hold);
1635                 list_del(&page->lru);
1636
1637                 if (unlikely(!page_evictable(page))) {
1638                         putback_lru_page(page);
1639                         continue;
1640                 }
1641
1642                 if (unlikely(buffer_heads_over_limit)) {
1643                         if (page_has_private(page) && trylock_page(page)) {
1644                                 if (page_has_private(page))
1645                                         try_to_release_page(page, 0);
1646                                 unlock_page(page);
1647                         }
1648                 }
1649
1650                 if (page_referenced(page, 0, sc->target_mem_cgroup,
1651                                     &vm_flags)) {
1652                         nr_rotated += hpage_nr_pages(page);
1653                         /*
1654                          * Identify referenced, file-backed active pages and
1655                          * give them one more trip around the active list. So
1656                          * that executable code get better chances to stay in
1657                          * memory under moderate memory pressure.  Anon pages
1658                          * are not likely to be evicted by use-once streaming
1659                          * IO, plus JVM can create lots of anon VM_EXEC pages,
1660                          * so we ignore them here.
1661                          */
1662                         if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1663                                 list_add(&page->lru, &l_active);
1664                                 continue;
1665                         }
1666                 }
1667
1668                 ClearPageActive(page);  /* we are de-activating */
1669                 list_add(&page->lru, &l_inactive);
1670         }
1671
1672         /*
1673          * Move pages back to the lru list.
1674          */
1675         spin_lock_irq(&zone->lru_lock);
1676         /*
1677          * Count referenced pages from currently used mappings as rotated,
1678          * even though only some of them are actually re-activated.  This
1679          * helps balance scan pressure between file and anonymous pages in
1680          * get_scan_ratio.
1681          */
1682         reclaim_stat->recent_rotated[file] += nr_rotated;
1683
1684         move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
1685         move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
1686         __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1687         spin_unlock_irq(&zone->lru_lock);
1688
1689         free_hot_cold_page_list(&l_hold, 1);
1690 }
1691
1692 #ifdef CONFIG_SWAP
1693 static int inactive_anon_is_low_global(struct zone *zone)
1694 {
1695         unsigned long active, inactive;
1696
1697         active = zone_page_state(zone, NR_ACTIVE_ANON);
1698         inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1699
1700         if (inactive * zone->inactive_ratio < active)
1701                 return 1;
1702
1703         return 0;
1704 }
1705
1706 /**
1707  * inactive_anon_is_low - check if anonymous pages need to be deactivated
1708  * @lruvec: LRU vector to check
1709  *
1710  * Returns true if the zone does not have enough inactive anon pages,
1711  * meaning some active anon pages need to be deactivated.
1712  */
1713 static int inactive_anon_is_low(struct lruvec *lruvec)
1714 {
1715         /*
1716          * If we don't have swap space, anonymous page deactivation
1717          * is pointless.
1718          */
1719         if (!total_swap_pages)
1720                 return 0;
1721
1722         if (!mem_cgroup_disabled())
1723                 return mem_cgroup_inactive_anon_is_low(lruvec);
1724
1725         return inactive_anon_is_low_global(lruvec_zone(lruvec));
1726 }
1727 #else
1728 static inline int inactive_anon_is_low(struct lruvec *lruvec)
1729 {
1730         return 0;
1731 }
1732 #endif
1733
1734 /**
1735  * inactive_file_is_low - check if file pages need to be deactivated
1736  * @lruvec: LRU vector to check
1737  *
1738  * When the system is doing streaming IO, memory pressure here
1739  * ensures that active file pages get deactivated, until more
1740  * than half of the file pages are on the inactive list.
1741  *
1742  * Once we get to that situation, protect the system's working
1743  * set from being evicted by disabling active file page aging.
1744  *
1745  * This uses a different ratio than the anonymous pages, because
1746  * the page cache uses a use-once replacement algorithm.
1747  */
1748 static int inactive_file_is_low(struct lruvec *lruvec)
1749 {
1750         unsigned long inactive;
1751         unsigned long active;
1752
1753         inactive = get_lru_size(lruvec, LRU_INACTIVE_FILE);
1754         active = get_lru_size(lruvec, LRU_ACTIVE_FILE);
1755
1756         return active > inactive;
1757 }
1758
1759 static int inactive_list_is_low(struct lruvec *lruvec, enum lru_list lru)
1760 {
1761         if (is_file_lru(lru))
1762                 return inactive_file_is_low(lruvec);
1763         else
1764                 return inactive_anon_is_low(lruvec);
1765 }
1766
1767 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1768                                  struct lruvec *lruvec, struct scan_control *sc)
1769 {
1770         if (is_active_lru(lru)) {
1771                 if (inactive_list_is_low(lruvec, lru))
1772                         shrink_active_list(nr_to_scan, lruvec, sc, lru);
1773                 return 0;
1774         }
1775
1776         return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
1777 }
1778
1779 static int vmscan_swappiness(struct scan_control *sc)
1780 {
1781         if (global_reclaim(sc))
1782                 return vm_swappiness;
1783         return mem_cgroup_swappiness(sc->target_mem_cgroup);
1784 }
1785
1786 enum scan_balance {
1787         SCAN_EQUAL,
1788         SCAN_FRACT,
1789         SCAN_ANON,
1790         SCAN_FILE,
1791 };
1792
1793 /*
1794  * Determine how aggressively the anon and file LRU lists should be
1795  * scanned.  The relative value of each set of LRU lists is determined
1796  * by looking at the fraction of the pages scanned we did rotate back
1797  * onto the active list instead of evict.
1798  *
1799  * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
1800  * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
1801  */
1802 static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
1803                            unsigned long *nr)
1804 {
1805         struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1806         u64 fraction[2];
1807         u64 denominator = 0;    /* gcc */
1808         struct zone *zone = lruvec_zone(lruvec);
1809         unsigned long anon_prio, file_prio;
1810         enum scan_balance scan_balance;
1811         unsigned long anon, file, free;
1812         bool force_scan = false;
1813         unsigned long ap, fp;
1814         enum lru_list lru;
1815
1816         /*
1817          * If the zone or memcg is small, nr[l] can be 0.  This
1818          * results in no scanning on this priority and a potential
1819          * priority drop.  Global direct reclaim can go to the next
1820          * zone and tends to have no problems. Global kswapd is for
1821          * zone balancing and it needs to scan a minimum amount. When
1822          * reclaiming for a memcg, a priority drop can cause high
1823          * latencies, so it's better to scan a minimum amount there as
1824          * well.
1825          */
1826         if (current_is_kswapd() && zone->all_unreclaimable)
1827                 force_scan = true;
1828         if (!global_reclaim(sc))
1829                 force_scan = true;
1830
1831         /* If we have no swap space, do not bother scanning anon pages. */
1832         if (!sc->may_swap || (get_nr_swap_pages() <= 0)) {
1833                 scan_balance = SCAN_FILE;
1834                 goto out;
1835         }
1836
1837         /*
1838          * Global reclaim will swap to prevent OOM even with no
1839          * swappiness, but memcg users want to use this knob to
1840          * disable swapping for individual groups completely when
1841          * using the memory controller's swap limit feature would be
1842          * too expensive.
1843          */
1844         if (!global_reclaim(sc) && !vmscan_swappiness(sc)) {
1845                 scan_balance = SCAN_FILE;
1846                 goto out;
1847         }
1848
1849         /*
1850          * Do not apply any pressure balancing cleverness when the
1851          * system is close to OOM, scan both anon and file equally
1852          * (unless the swappiness setting disagrees with swapping).
1853          */
1854         if (!sc->priority && vmscan_swappiness(sc)) {
1855                 scan_balance = SCAN_EQUAL;
1856                 goto out;
1857         }
1858
1859         anon  = get_lru_size(lruvec, LRU_ACTIVE_ANON) +
1860                 get_lru_size(lruvec, LRU_INACTIVE_ANON);
1861         file  = get_lru_size(lruvec, LRU_ACTIVE_FILE) +
1862                 get_lru_size(lruvec, LRU_INACTIVE_FILE);
1863
1864         /*
1865          * If it's foreseeable that reclaiming the file cache won't be
1866          * enough to get the zone back into a desirable shape, we have
1867          * to swap.  Better start now and leave the - probably heavily
1868          * thrashing - remaining file pages alone.
1869          */
1870         if (global_reclaim(sc)) {
1871                 free = zone_page_state(zone, NR_FREE_PAGES);
1872                 if (unlikely(file + free <= high_wmark_pages(zone))) {
1873                         scan_balance = SCAN_ANON;
1874                         goto out;
1875                 }
1876         }
1877
1878         /*
1879          * There is enough inactive page cache, do not reclaim
1880          * anything from the anonymous working set right now.
1881          */
1882         if (!inactive_file_is_low(lruvec)) {
1883                 scan_balance = SCAN_FILE;
1884                 goto out;
1885         }
1886
1887         scan_balance = SCAN_FRACT;
1888
1889         /*
1890          * With swappiness at 100, anonymous and file have the same priority.
1891          * This scanning priority is essentially the inverse of IO cost.
1892          */
1893         anon_prio = vmscan_swappiness(sc);
1894         file_prio = 200 - anon_prio;
1895
1896         /*
1897          * OK, so we have swap space and a fair amount of page cache
1898          * pages.  We use the recently rotated / recently scanned
1899          * ratios to determine how valuable each cache is.
1900          *
1901          * Because workloads change over time (and to avoid overflow)
1902          * we keep these statistics as a floating average, which ends
1903          * up weighing recent references more than old ones.
1904          *
1905          * anon in [0], file in [1]
1906          */
1907         spin_lock_irq(&zone->lru_lock);
1908         if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
1909                 reclaim_stat->recent_scanned[0] /= 2;
1910                 reclaim_stat->recent_rotated[0] /= 2;
1911         }
1912
1913         if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
1914                 reclaim_stat->recent_scanned[1] /= 2;
1915                 reclaim_stat->recent_rotated[1] /= 2;
1916         }
1917
1918         /*
1919          * The amount of pressure on anon vs file pages is inversely
1920          * proportional to the fraction of recently scanned pages on
1921          * each list that were recently referenced and in active use.
1922          */
1923         ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
1924         ap /= reclaim_stat->recent_rotated[0] + 1;
1925
1926         fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
1927         fp /= reclaim_stat->recent_rotated[1] + 1;
1928         spin_unlock_irq(&zone->lru_lock);
1929
1930         fraction[0] = ap;
1931         fraction[1] = fp;
1932         denominator = ap + fp + 1;
1933 out:
1934         for_each_evictable_lru(lru) {
1935                 int file = is_file_lru(lru);
1936                 unsigned long size;
1937                 unsigned long scan;
1938
1939                 size = get_lru_size(lruvec, lru);
1940                 scan = size >> sc->priority;
1941
1942                 if (!scan && force_scan)
1943                         scan = min(size, SWAP_CLUSTER_MAX);
1944
1945                 switch (scan_balance) {
1946                 case SCAN_EQUAL:
1947                         /* Scan lists relative to size */
1948                         break;
1949                 case SCAN_FRACT:
1950                         /*
1951                          * Scan types proportional to swappiness and
1952                          * their relative recent reclaim efficiency.
1953                          */
1954                         scan = div64_u64(scan * fraction[file], denominator);
1955                         break;
1956                 case SCAN_FILE:
1957                 case SCAN_ANON:
1958                         /* Scan one type exclusively */
1959                         if ((scan_balance == SCAN_FILE) != file)
1960                                 scan = 0;
1961                         break;
1962                 default:
1963                         /* Look ma, no brain */
1964                         BUG();
1965                 }
1966                 nr[lru] = scan;
1967         }
1968 }
1969
1970 /*
1971  * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
1972  */
1973 static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
1974 {
1975         unsigned long nr[NR_LRU_LISTS];
1976         unsigned long targets[NR_LRU_LISTS];
1977         unsigned long nr_to_scan;
1978         enum lru_list lru;
1979         unsigned long nr_reclaimed = 0;
1980         unsigned long nr_to_reclaim = sc->nr_to_reclaim;
1981         struct blk_plug plug;
1982         bool scan_adjusted = false;
1983
1984         get_scan_count(lruvec, sc, nr);
1985
1986         /* Record the original scan target for proportional adjustments later */
1987         memcpy(targets, nr, sizeof(nr));
1988
1989         blk_start_plug(&plug);
1990         while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
1991                                         nr[LRU_INACTIVE_FILE]) {
1992                 unsigned long nr_anon, nr_file, percentage;
1993                 unsigned long nr_scanned;
1994
1995                 for_each_evictable_lru(lru) {
1996                         if (nr[lru]) {
1997                                 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
1998                                 nr[lru] -= nr_to_scan;
1999
2000                                 nr_reclaimed += shrink_list(lru, nr_to_scan,
2001                                                             lruvec, sc);
2002                         }
2003                 }
2004
2005                 if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2006                         continue;
2007
2008                 /*
2009                  * For global direct reclaim, reclaim only the number of pages
2010                  * requested. Less care is taken to scan proportionally as it
2011                  * is more important to minimise direct reclaim stall latency
2012                  * than it is to properly age the LRU lists.
2013                  */
2014                 if (global_reclaim(sc) && !current_is_kswapd())
2015                         break;
2016
2017                 /*
2018                  * For kswapd and memcg, reclaim at least the number of pages
2019                  * requested. Ensure that the anon and file LRUs shrink
2020                  * proportionally what was requested by get_scan_count(). We
2021                  * stop reclaiming one LRU and reduce the amount scanning
2022                  * proportional to the original scan target.
2023                  */
2024                 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2025                 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2026
2027                 if (nr_file > nr_anon) {
2028                         unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2029                                                 targets[LRU_ACTIVE_ANON] + 1;
2030                         lru = LRU_BASE;
2031                         percentage = nr_anon * 100 / scan_target;
2032                 } else {
2033                         unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2034                                                 targets[LRU_ACTIVE_FILE] + 1;
2035                         lru = LRU_FILE;
2036                         percentage = nr_file * 100 / scan_target;
2037                 }
2038
2039                 /* Stop scanning the smaller of the LRU */
2040                 nr[lru] = 0;
2041                 nr[lru + LRU_ACTIVE] = 0;
2042
2043                 /*
2044                  * Recalculate the other LRU scan count based on its original
2045                  * scan target and the percentage scanning already complete
2046                  */
2047                 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2048                 nr_scanned = targets[lru] - nr[lru];
2049                 nr[lru] = targets[lru] * (100 - percentage) / 100;
2050                 nr[lru] -= min(nr[lru], nr_scanned);
2051
2052                 lru += LRU_ACTIVE;
2053                 nr_scanned = targets[lru] - nr[lru];
2054                 nr[lru] = targets[lru] * (100 - percentage) / 100;
2055                 nr[lru] -= min(nr[lru], nr_scanned);
2056
2057                 scan_adjusted = true;
2058         }
2059         blk_finish_plug(&plug);
2060         sc->nr_reclaimed += nr_reclaimed;
2061
2062         /*
2063          * Even if we did not try to evict anon pages at all, we want to
2064          * rebalance the anon lru active/inactive ratio.
2065          */
2066         if (inactive_anon_is_low(lruvec))
2067                 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2068                                    sc, LRU_ACTIVE_ANON);
2069
2070         throttle_vm_writeout(sc->gfp_mask);
2071 }
2072
2073 /* Use reclaim/compaction for costly allocs or under memory pressure */
2074 static bool in_reclaim_compaction(struct scan_control *sc)
2075 {
2076         if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2077                         (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2078                          sc->priority < DEF_PRIORITY - 2))
2079                 return true;
2080
2081         return false;
2082 }
2083
2084 /*
2085  * Reclaim/compaction is used for high-order allocation requests. It reclaims
2086  * order-0 pages before compacting the zone. should_continue_reclaim() returns
2087  * true if more pages should be reclaimed such that when the page allocator
2088  * calls try_to_compact_zone() that it will have enough free pages to succeed.
2089  * It will give up earlier than that if there is difficulty reclaiming pages.
2090  */
2091 static inline bool should_continue_reclaim(struct zone *zone,
2092                                         unsigned long nr_reclaimed,
2093                                         unsigned long nr_scanned,
2094                                         struct scan_control *sc)
2095 {
2096         unsigned long pages_for_compaction;
2097         unsigned long inactive_lru_pages;
2098
2099         /* If not in reclaim/compaction mode, stop */
2100         if (!in_reclaim_compaction(sc))
2101                 return false;
2102
2103         /* Consider stopping depending on scan and reclaim activity */
2104         if (sc->gfp_mask & __GFP_REPEAT) {
2105                 /*
2106                  * For __GFP_REPEAT allocations, stop reclaiming if the
2107                  * full LRU list has been scanned and we are still failing
2108                  * to reclaim pages. This full LRU scan is potentially
2109                  * expensive but a __GFP_REPEAT caller really wants to succeed
2110                  */
2111                 if (!nr_reclaimed && !nr_scanned)
2112                         return false;
2113         } else {
2114                 /*
2115                  * For non-__GFP_REPEAT allocations which can presumably
2116                  * fail without consequence, stop if we failed to reclaim
2117                  * any pages from the last SWAP_CLUSTER_MAX number of
2118                  * pages that were scanned. This will return to the
2119                  * caller faster at the risk reclaim/compaction and
2120                  * the resulting allocation attempt fails
2121                  */
2122                 if (!nr_reclaimed)
2123                         return false;
2124         }
2125
2126         /*
2127          * If we have not reclaimed enough pages for compaction and the
2128          * inactive lists are large enough, continue reclaiming
2129          */
2130         pages_for_compaction = (2UL << sc->order);
2131         inactive_lru_pages = zone_page_state(zone, NR_INACTIVE_FILE);
2132         if (get_nr_swap_pages() > 0)
2133                 inactive_lru_pages += zone_page_state(zone, NR_INACTIVE_ANON);
2134         if (sc->nr_reclaimed < pages_for_compaction &&
2135                         inactive_lru_pages > pages_for_compaction)
2136                 return true;
2137
2138         /* If compaction would go ahead or the allocation would succeed, stop */
2139         switch (compaction_suitable(zone, sc->order)) {
2140         case COMPACT_PARTIAL:
2141         case COMPACT_CONTINUE:
2142                 return false;
2143         default:
2144                 return true;
2145         }
2146 }
2147
2148 static void shrink_zone(struct zone *zone, struct scan_control *sc)
2149 {
2150         unsigned long nr_reclaimed, nr_scanned;
2151
2152         do {
2153                 struct mem_cgroup *root = sc->target_mem_cgroup;
2154                 struct mem_cgroup_reclaim_cookie reclaim = {
2155                         .zone = zone,
2156                         .priority = sc->priority,
2157                 };
2158                 struct mem_cgroup *memcg;
2159
2160                 nr_reclaimed = sc->nr_reclaimed;
2161                 nr_scanned = sc->nr_scanned;
2162
2163                 memcg = mem_cgroup_iter(root, NULL, &reclaim);
2164                 do {
2165                         struct lruvec *lruvec;
2166
2167                         lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2168
2169                         shrink_lruvec(lruvec, sc);
2170
2171                         /*
2172                          * Direct reclaim and kswapd have to scan all memory
2173                          * cgroups to fulfill the overall scan target for the
2174                          * zone.
2175                          *
2176                          * Limit reclaim, on the other hand, only cares about
2177                          * nr_to_reclaim pages to be reclaimed and it will
2178                          * retry with decreasing priority if one round over the
2179                          * whole hierarchy is not sufficient.
2180                          */
2181                         if (!global_reclaim(sc) &&
2182                                         sc->nr_reclaimed >= sc->nr_to_reclaim) {
2183                                 mem_cgroup_iter_break(root, memcg);
2184                                 break;
2185                         }
2186                         memcg = mem_cgroup_iter(root, memcg, &reclaim);
2187                 } while (memcg);
2188
2189                 vmpressure(sc->gfp_mask, sc->target_mem_cgroup,
2190                            sc->nr_scanned - nr_scanned,
2191                            sc->nr_reclaimed - nr_reclaimed);
2192
2193         } while (should_continue_reclaim(zone, sc->nr_reclaimed - nr_reclaimed,
2194                                          sc->nr_scanned - nr_scanned, sc));
2195 }
2196
2197 /* Returns true if compaction should go ahead for a high-order request */
2198 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
2199 {
2200         unsigned long balance_gap, watermark;
2201         bool watermark_ok;
2202
2203         /* Do not consider compaction for orders reclaim is meant to satisfy */
2204         if (sc->order <= PAGE_ALLOC_COSTLY_ORDER)
2205                 return false;
2206
2207         /*
2208          * Compaction takes time to run and there are potentially other
2209          * callers using the pages just freed. Continue reclaiming until
2210          * there is a buffer of free pages available to give compaction
2211          * a reasonable chance of completing and allocating the page
2212          */
2213         balance_gap = min(low_wmark_pages(zone),
2214                 (zone->managed_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2215                         KSWAPD_ZONE_BALANCE_GAP_RATIO);
2216         watermark = high_wmark_pages(zone) + balance_gap + (2UL << sc->order);
2217         watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0, 0);
2218
2219         /*
2220          * If compaction is deferred, reclaim up to a point where
2221          * compaction will have a chance of success when re-enabled
2222          */
2223         if (compaction_deferred(zone, sc->order))
2224                 return watermark_ok;
2225
2226         /* If compaction is not ready to start, keep reclaiming */
2227         if (!compaction_suitable(zone, sc->order))
2228                 return false;
2229
2230         return watermark_ok;
2231 }
2232
2233 /*
2234  * This is the direct reclaim path, for page-allocating processes.  We only
2235  * try to reclaim pages from zones which will satisfy the caller's allocation
2236  * request.
2237  *
2238  * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
2239  * Because:
2240  * a) The caller may be trying to free *extra* pages to satisfy a higher-order
2241  *    allocation or
2242  * b) The target zone may be at high_wmark_pages(zone) but the lower zones
2243  *    must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
2244  *    zone defense algorithm.
2245  *
2246  * If a zone is deemed to be full of pinned pages then just give it a light
2247  * scan then give up on it.
2248  *
2249  * This function returns true if a zone is being reclaimed for a costly
2250  * high-order allocation and compaction is ready to begin. This indicates to
2251  * the caller that it should consider retrying the allocation instead of
2252  * further reclaim.
2253  */
2254 static bool shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
2255 {
2256         struct zoneref *z;
2257         struct zone *zone;
2258         unsigned long nr_soft_reclaimed;
2259         unsigned long nr_soft_scanned;
2260         bool aborted_reclaim = false;
2261
2262         /*
2263          * If the number of buffer_heads in the machine exceeds the maximum
2264          * allowed level, force direct reclaim to scan the highmem zone as
2265          * highmem pages could be pinning lowmem pages storing buffer_heads
2266          */
2267         if (buffer_heads_over_limit)
2268                 sc->gfp_mask |= __GFP_HIGHMEM;
2269
2270         for_each_zone_zonelist_nodemask(zone, z, zonelist,
2271                                         gfp_zone(sc->gfp_mask), sc->nodemask) {
2272                 if (!populated_zone(zone))
2273                         continue;
2274                 /*
2275                  * Take care memory controller reclaiming has small influence
2276                  * to global LRU.
2277                  */
2278                 if (global_reclaim(sc)) {
2279                         if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2280                                 continue;
2281                         if (zone->all_unreclaimable &&
2282                                         sc->priority != DEF_PRIORITY)
2283                                 continue;       /* Let kswapd poll it */
2284                         if (IS_ENABLED(CONFIG_COMPACTION)) {
2285                                 /*
2286                                  * If we already have plenty of memory free for
2287                                  * compaction in this zone, don't free any more.
2288                                  * Even though compaction is invoked for any
2289                                  * non-zero order, only frequent costly order
2290                                  * reclamation is disruptive enough to become a
2291                                  * noticeable problem, like transparent huge
2292                                  * page allocations.
2293                                  */
2294                                 if (compaction_ready(zone, sc)) {
2295                                         aborted_reclaim = true;
2296                                         continue;
2297                                 }
2298                         }
2299                         /*
2300                          * This steals pages from memory cgroups over softlimit
2301                          * and returns the number of reclaimed pages and
2302                          * scanned pages. This works for global memory pressure
2303                          * and balancing, not for a memcg's limit.
2304                          */
2305                         nr_soft_scanned = 0;
2306                         nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2307                                                 sc->order, sc->gfp_mask,
2308                                                 &nr_soft_scanned);
2309                         sc->nr_reclaimed += nr_soft_reclaimed;
2310                         sc->nr_scanned += nr_soft_scanned;
2311                         /* need some check for avoid more shrink_zone() */
2312                 }
2313
2314                 shrink_zone(zone, sc);
2315         }
2316
2317         return aborted_reclaim;
2318 }
2319
2320 static bool zone_reclaimable(struct zone *zone)
2321 {
2322         return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
2323 }
2324
2325 /* All zones in zonelist are unreclaimable? */
2326 static bool all_unreclaimable(struct zonelist *zonelist,
2327                 struct scan_control *sc)
2328 {
2329         struct zoneref *z;
2330         struct zone *zone;
2331
2332         for_each_zone_zonelist_nodemask(zone, z, zonelist,
2333                         gfp_zone(sc->gfp_mask), sc->nodemask) {
2334                 if (!populated_zone(zone))
2335                         continue;
2336                 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2337                         continue;
2338                 if (!zone->all_unreclaimable)
2339                         return false;
2340         }
2341
2342         return true;
2343 }
2344
2345 /*
2346  * This is the main entry point to direct page reclaim.
2347  *
2348  * If a full scan of the inactive list fails to free enough memory then we
2349  * are "out of memory" and something needs to be killed.
2350  *
2351  * If the caller is !__GFP_FS then the probability of a failure is reasonably
2352  * high - the zone may be full of dirty or under-writeback pages, which this
2353  * caller can't do much about.  We kick the writeback threads and take explicit
2354  * naps in the hope that some of these pages can be written.  But if the
2355  * allocating task holds filesystem locks which prevent writeout this might not
2356  * work, and the allocation attempt will fail.
2357  *
2358  * returns:     0, if no pages reclaimed
2359  *              else, the number of pages reclaimed
2360  */
2361 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2362                                         struct scan_control *sc,
2363                                         struct shrink_control *shrink)
2364 {
2365         unsigned long total_scanned = 0;
2366         struct reclaim_state *reclaim_state = current->reclaim_state;
2367         struct zoneref *z;
2368         struct zone *zone;
2369         unsigned long writeback_threshold;
2370         bool aborted_reclaim;
2371
2372         delayacct_freepages_start();
2373
2374         if (global_reclaim(sc))
2375                 count_vm_event(ALLOCSTALL);
2376
2377         do {
2378                 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
2379                                 sc->priority);
2380                 sc->nr_scanned = 0;
2381                 aborted_reclaim = shrink_zones(zonelist, sc);
2382
2383                 /*
2384                  * Don't shrink slabs when reclaiming memory from over limit
2385                  * cgroups but do shrink slab at least once when aborting
2386                  * reclaim for compaction to avoid unevenly scanning file/anon
2387                  * LRU pages over slab pages.
2388                  */
2389                 if (global_reclaim(sc)) {
2390                         unsigned long lru_pages = 0;
2391
2392                         nodes_clear(shrink->nodes_to_scan);
2393                         for_each_zone_zonelist(zone, z, zonelist,
2394                                         gfp_zone(sc->gfp_mask)) {
2395                                 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2396                                         continue;
2397
2398                                 lru_pages += zone_reclaimable_pages(zone);
2399                                 node_set(zone_to_nid(zone),
2400                                          shrink->nodes_to_scan);
2401                         }
2402
2403                         shrink_slab(shrink, sc->nr_scanned, lru_pages);
2404                         if (reclaim_state) {
2405                                 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2406                                 reclaim_state->reclaimed_slab = 0;
2407                         }
2408                 }
2409                 total_scanned += sc->nr_scanned;
2410                 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2411                         goto out;
2412
2413                 /*
2414                  * If we're getting trouble reclaiming, start doing
2415                  * writepage even in laptop mode.
2416                  */
2417                 if (sc->priority < DEF_PRIORITY - 2)
2418                         sc->may_writepage = 1;
2419
2420                 /*
2421                  * Try to write back as many pages as we just scanned.  This
2422                  * tends to cause slow streaming writers to write data to the
2423                  * disk smoothly, at the dirtying rate, which is nice.   But
2424                  * that's undesirable in laptop mode, where we *want* lumpy
2425                  * writeout.  So in laptop mode, write out the whole world.
2426                  */
2427                 writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2428                 if (total_scanned > writeback_threshold) {
2429                         wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
2430                                                 WB_REASON_TRY_TO_FREE_PAGES);
2431                         sc->may_writepage = 1;
2432                 }
2433         } while (--sc->priority >= 0 && !aborted_reclaim);
2434
2435 out:
2436         delayacct_freepages_end();
2437
2438         if (sc->nr_reclaimed)
2439                 return sc->nr_reclaimed;
2440
2441         /*
2442          * As hibernation is going on, kswapd is freezed so that it can't mark
2443          * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
2444          * check.
2445          */
2446         if (oom_killer_disabled)
2447                 return 0;
2448
2449         /* Aborted reclaim to try compaction? don't OOM, then */
2450         if (aborted_reclaim)
2451                 return 1;
2452
2453         /* top priority shrink_zones still had more to do? don't OOM, then */
2454         if (global_reclaim(sc) && !all_unreclaimable(zonelist, sc))
2455                 return 1;
2456
2457         return 0;
2458 }
2459
2460 static bool pfmemalloc_watermark_ok(pg_data_t *pgdat)
2461 {
2462         struct zone *zone;
2463         unsigned long pfmemalloc_reserve = 0;
2464         unsigned long free_pages = 0;
2465         int i;
2466         bool wmark_ok;
2467
2468         for (i = 0; i <= ZONE_NORMAL; i++) {
2469                 zone = &pgdat->node_zones[i];
2470                 pfmemalloc_reserve += min_wmark_pages(zone);
2471                 free_pages += zone_page_state(zone, NR_FREE_PAGES);
2472         }
2473
2474         wmark_ok = free_pages > pfmemalloc_reserve / 2;
2475
2476         /* kswapd must be awake if processes are being throttled */
2477         if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
2478                 pgdat->classzone_idx = min(pgdat->classzone_idx,
2479                                                 (enum zone_type)ZONE_NORMAL);
2480                 wake_up_interruptible(&pgdat->kswapd_wait);
2481         }
2482
2483         return wmark_ok;
2484 }
2485
2486 /*
2487  * Throttle direct reclaimers if backing storage is backed by the network
2488  * and the PFMEMALLOC reserve for the preferred node is getting dangerously
2489  * depleted. kswapd will continue to make progress and wake the processes
2490  * when the low watermark is reached.
2491  *
2492  * Returns true if a fatal signal was delivered during throttling. If this
2493  * happens, the page allocator should not consider triggering the OOM killer.
2494  */
2495 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
2496                                         nodemask_t *nodemask)
2497 {
2498         struct zone *zone;
2499         int high_zoneidx = gfp_zone(gfp_mask);
2500         pg_data_t *pgdat;
2501
2502         /*
2503          * Kernel threads should not be throttled as they may be indirectly
2504          * responsible for cleaning pages necessary for reclaim to make forward
2505          * progress. kjournald for example may enter direct reclaim while
2506          * committing a transaction where throttling it could forcing other
2507          * processes to block on log_wait_commit().
2508          */
2509         if (current->flags & PF_KTHREAD)
2510                 goto out;
2511
2512         /*
2513          * If a fatal signal is pending, this process should not throttle.
2514          * It should return quickly so it can exit and free its memory
2515          */
2516         if (fatal_signal_pending(current))
2517                 goto out;
2518
2519         /* Check if the pfmemalloc reserves are ok */
2520         first_zones_zonelist(zonelist, high_zoneidx, NULL, &zone);
2521         pgdat = zone->zone_pgdat;
2522         if (pfmemalloc_watermark_ok(pgdat))
2523                 goto out;
2524
2525         /* Account for the throttling */
2526         count_vm_event(PGSCAN_DIRECT_THROTTLE);
2527
2528         /*
2529          * If the caller cannot enter the filesystem, it's possible that it
2530          * is due to the caller holding an FS lock or performing a journal
2531          * transaction in the case of a filesystem like ext[3|4]. In this case,
2532          * it is not safe to block on pfmemalloc_wait as kswapd could be
2533          * blocked waiting on the same lock. Instead, throttle for up to a
2534          * second before continuing.
2535          */
2536         if (!(gfp_mask & __GFP_FS)) {
2537                 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
2538                         pfmemalloc_watermark_ok(pgdat), HZ);
2539
2540                 goto check_pending;
2541         }
2542
2543         /* Throttle until kswapd wakes the process */
2544         wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
2545                 pfmemalloc_watermark_ok(pgdat));
2546
2547 check_pending:
2548         if (fatal_signal_pending(current))
2549                 return true;
2550
2551 out:
2552         return false;
2553 }
2554
2555 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2556                                 gfp_t gfp_mask, nodemask_t *nodemask)
2557 {
2558         unsigned long nr_reclaimed;
2559         struct scan_control sc = {
2560                 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
2561                 .may_writepage = !laptop_mode,
2562                 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2563                 .may_unmap = 1,
2564                 .may_swap = 1,
2565                 .order = order,
2566                 .priority = DEF_PRIORITY,
2567                 .target_mem_cgroup = NULL,
2568                 .nodemask = nodemask,
2569         };
2570         struct shrink_control shrink = {
2571                 .gfp_mask = sc.gfp_mask,
2572         };
2573
2574         /*
2575          * Do not enter reclaim if fatal signal was delivered while throttled.
2576          * 1 is returned so that the page allocator does not OOM kill at this
2577          * point.
2578          */
2579         if (throttle_direct_reclaim(gfp_mask, zonelist, nodemask))
2580                 return 1;
2581
2582         trace_mm_vmscan_direct_reclaim_begin(order,
2583                                 sc.may_writepage,
2584                                 gfp_mask);
2585
2586         nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2587
2588         trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2589
2590         return nr_reclaimed;
2591 }
2592
2593 #ifdef CONFIG_MEMCG
2594
2595 unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg,
2596                                                 gfp_t gfp_mask, bool noswap,
2597                                                 struct zone *zone,
2598                                                 unsigned long *nr_scanned)
2599 {
2600         struct scan_control sc = {
2601                 .nr_scanned = 0,
2602                 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2603                 .may_writepage = !laptop_mode,
2604                 .may_unmap = 1,
2605                 .may_swap = !noswap,
2606                 .order = 0,
2607                 .priority = 0,
2608                 .target_mem_cgroup = memcg,
2609         };
2610         struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2611
2612         sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2613                         (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2614
2615         trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
2616                                                       sc.may_writepage,
2617                                                       sc.gfp_mask);
2618
2619         /*
2620          * NOTE: Although we can get the priority field, using it
2621          * here is not a good idea, since it limits the pages we can scan.
2622          * if we don't reclaim here, the shrink_zone from balance_pgdat
2623          * will pick up pages from other mem cgroup's as well. We hack
2624          * the priority and make it zero.
2625          */
2626         shrink_lruvec(lruvec, &sc);
2627
2628         trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2629
2630         *nr_scanned = sc.nr_scanned;
2631         return sc.nr_reclaimed;
2632 }
2633
2634 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
2635                                            gfp_t gfp_mask,
2636                                            bool noswap)
2637 {
2638         struct zonelist *zonelist;
2639         unsigned long nr_reclaimed;
2640         int nid;
2641         struct scan_control sc = {
2642                 .may_writepage = !laptop_mode,
2643                 .may_unmap = 1,
2644                 .may_swap = !noswap,
2645                 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2646                 .order = 0,
2647                 .priority = DEF_PRIORITY,
2648                 .target_mem_cgroup = memcg,
2649                 .nodemask = NULL, /* we don't care the placement */
2650                 .gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2651                                 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
2652         };
2653         struct shrink_control shrink = {
2654                 .gfp_mask = sc.gfp_mask,
2655         };
2656
2657         /*
2658          * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
2659          * take care of from where we get pages. So the node where we start the
2660          * scan does not need to be the current node.
2661          */
2662         nid = mem_cgroup_select_victim_node(memcg);
2663
2664         zonelist = NODE_DATA(nid)->node_zonelists;
2665
2666         trace_mm_vmscan_memcg_reclaim_begin(0,
2667                                             sc.may_writepage,
2668                                             sc.gfp_mask);
2669
2670         nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2671
2672         trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2673
2674         return nr_reclaimed;
2675 }
2676 #endif
2677
2678 static void age_active_anon(struct zone *zone, struct scan_control *sc)
2679 {
2680         struct mem_cgroup *memcg;
2681
2682         if (!total_swap_pages)
2683                 return;
2684
2685         memcg = mem_cgroup_iter(NULL, NULL, NULL);
2686         do {
2687                 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2688
2689                 if (inactive_anon_is_low(lruvec))
2690                         shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2691                                            sc, LRU_ACTIVE_ANON);
2692
2693                 memcg = mem_cgroup_iter(NULL, memcg, NULL);
2694         } while (memcg);
2695 }
2696
2697 static bool zone_balanced(struct zone *zone, int order,
2698                           unsigned long balance_gap, int classzone_idx)
2699 {
2700         if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone) +
2701                                     balance_gap, classzone_idx, 0))
2702                 return false;
2703
2704         if (IS_ENABLED(CONFIG_COMPACTION) && order &&
2705             !compaction_suitable(zone, order))
2706                 return false;
2707
2708         return true;
2709 }
2710
2711 /*
2712  * pgdat_balanced() is used when checking if a node is balanced.
2713  *
2714  * For order-0, all zones must be balanced!
2715  *
2716  * For high-order allocations only zones that meet watermarks and are in a
2717  * zone allowed by the callers classzone_idx are added to balanced_pages. The
2718  * total of balanced pages must be at least 25% of the zones allowed by
2719  * classzone_idx for the node to be considered balanced. Forcing all zones to
2720  * be balanced for high orders can cause excessive reclaim when there are
2721  * imbalanced zones.
2722  * The choice of 25% is due to
2723  *   o a 16M DMA zone that is balanced will not balance a zone on any
2724  *     reasonable sized machine
2725  *   o On all other machines, the top zone must be at least a reasonable
2726  *     percentage of the middle zones. For example, on 32-bit x86, highmem
2727  *     would need to be at least 256M for it to be balance a whole node.
2728  *     Similarly, on x86-64 the Normal zone would need to be at least 1G
2729  *     to balance a node on its own. These seemed like reasonable ratios.
2730  */
2731 static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
2732 {
2733         unsigned long managed_pages = 0;
2734         unsigned long balanced_pages = 0;
2735         int i;
2736
2737         /* Check the watermark levels */
2738         for (i = 0; i <= classzone_idx; i++) {
2739                 struct zone *zone = pgdat->node_zones + i;
2740
2741                 if (!populated_zone(zone))
2742                         continue;
2743
2744                 managed_pages += zone->managed_pages;
2745
2746                 /*
2747                  * A special case here:
2748                  *
2749                  * balance_pgdat() skips over all_unreclaimable after
2750                  * DEF_PRIORITY. Effectively, it considers them balanced so
2751                  * they must be considered balanced here as well!
2752                  */
2753                 if (zone->all_unreclaimable) {
2754                         balanced_pages += zone->managed_pages;
2755                         continue;
2756                 }
2757
2758                 if (zone_balanced(zone, order, 0, i))
2759                         balanced_pages += zone->managed_pages;
2760                 else if (!order)
2761                         return false;
2762         }
2763
2764         if (order)
2765                 return balanced_pages >= (managed_pages >> 2);
2766         else
2767                 return true;
2768 }
2769
2770 /*
2771  * Prepare kswapd for sleeping. This verifies that there are no processes
2772  * waiting in throttle_direct_reclaim() and that watermarks have been met.
2773  *
2774  * Returns true if kswapd is ready to sleep
2775  */
2776 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, long remaining,
2777                                         int classzone_idx)
2778 {
2779         /* If a direct reclaimer woke kswapd within HZ/10, it's premature */
2780         if (remaining)
2781                 return false;
2782
2783         /*
2784          * There is a potential race between when kswapd checks its watermarks
2785          * and a process gets throttled. There is also a potential race if
2786          * processes get throttled, kswapd wakes, a large process exits therby
2787          * balancing the zones that causes kswapd to miss a wakeup. If kswapd
2788          * is going to sleep, no process should be sleeping on pfmemalloc_wait
2789          * so wake them now if necessary. If necessary, processes will wake
2790          * kswapd and get throttled again
2791          */
2792         if (waitqueue_active(&pgdat->pfmemalloc_wait)) {
2793                 wake_up(&pgdat->pfmemalloc_wait);
2794                 return false;
2795         }
2796
2797         return pgdat_balanced(pgdat, order, classzone_idx);
2798 }
2799
2800 /*
2801  * kswapd shrinks the zone by the number of pages required to reach
2802  * the high watermark.
2803  *
2804  * Returns true if kswapd scanned at least the requested number of pages to
2805  * reclaim or if the lack of progress was due to pages under writeback.
2806  * This is used to determine if the scanning priority needs to be raised.
2807  */
2808 static bool kswapd_shrink_zone(struct zone *zone,
2809                                int classzone_idx,
2810                                struct scan_control *sc,
2811                                unsigned long lru_pages,
2812                                unsigned long *nr_attempted)
2813 {
2814         unsigned long nr_slab;
2815         int testorder = sc->order;
2816         unsigned long balance_gap;
2817         struct reclaim_state *reclaim_state = current->reclaim_state;
2818         struct shrink_control shrink = {
2819                 .gfp_mask = sc->gfp_mask,
2820         };
2821         bool lowmem_pressure;
2822
2823         /* Reclaim above the high watermark. */
2824         sc->nr_to_reclaim = max(SWAP_CLUSTER_MAX, high_wmark_pages(zone));
2825
2826         /*
2827          * Kswapd reclaims only single pages with compaction enabled. Trying
2828          * too hard to reclaim until contiguous free pages have become
2829          * available can hurt performance by evicting too much useful data
2830          * from memory. Do not reclaim more than needed for compaction.
2831          */
2832         if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2833                         compaction_suitable(zone, sc->order) !=
2834                                 COMPACT_SKIPPED)
2835                 testorder = 0;
2836
2837         /*
2838          * We put equal pressure on every zone, unless one zone has way too
2839          * many pages free already. The "too many pages" is defined as the
2840          * high wmark plus a "gap" where the gap is either the low
2841          * watermark or 1% of the zone, whichever is smaller.
2842          */
2843         balance_gap = min(low_wmark_pages(zone),
2844                 (zone->managed_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2845                 KSWAPD_ZONE_BALANCE_GAP_RATIO);
2846
2847         /*
2848          * If there is no low memory pressure or the zone is balanced then no
2849          * reclaim is necessary
2850          */
2851         lowmem_pressure = (buffer_heads_over_limit && is_highmem(zone));
2852         if (!lowmem_pressure && zone_balanced(zone, testorder,
2853                                                 balance_gap, classzone_idx))
2854                 return true;
2855
2856         shrink_zone(zone, sc);
2857         nodes_clear(shrink.nodes_to_scan);
2858         node_set(zone_to_nid(zone), shrink.nodes_to_scan);
2859
2860         reclaim_state->reclaimed_slab = 0;
2861         nr_slab = shrink_slab(&shrink, sc->nr_scanned, lru_pages);
2862         sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2863
2864         /* Account for the number of pages attempted to reclaim */
2865         *nr_attempted += sc->nr_to_reclaim;
2866
2867         if (nr_slab == 0 && !zone_reclaimable(zone))
2868                 zone->all_unreclaimable = 1;
2869
2870         zone_clear_flag(zone, ZONE_WRITEBACK);
2871
2872         /*
2873          * If a zone reaches its high watermark, consider it to be no longer
2874          * congested. It's possible there are dirty pages backed by congested
2875          * BDIs but as pressure is relieved, speculatively avoid congestion
2876          * waits.
2877          */
2878         if (!zone->all_unreclaimable &&
2879             zone_balanced(zone, testorder, 0, classzone_idx)) {
2880                 zone_clear_flag(zone, ZONE_CONGESTED);
2881                 zone_clear_flag(zone, ZONE_TAIL_LRU_DIRTY);
2882         }
2883
2884         return sc->nr_scanned >= sc->nr_to_reclaim;
2885 }
2886
2887 /*
2888  * For kswapd, balance_pgdat() will work across all this node's zones until
2889  * they are all at high_wmark_pages(zone).
2890  *
2891  * Returns the final order kswapd was reclaiming at
2892  *
2893  * There is special handling here for zones which are full of pinned pages.
2894  * This can happen if the pages are all mlocked, or if they are all used by
2895  * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
2896  * What we do is to detect the case where all pages in the zone have been
2897  * scanned twice and there has been zero successful reclaim.  Mark the zone as
2898  * dead and from now on, only perform a short scan.  Basically we're polling
2899  * the zone for when the problem goes away.
2900  *
2901  * kswapd scans the zones in the highmem->normal->dma direction.  It skips
2902  * zones which have free_pages > high_wmark_pages(zone), but once a zone is
2903  * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
2904  * lower zones regardless of the number of free pages in the lower zones. This
2905  * interoperates with the page allocator fallback scheme to ensure that aging
2906  * of pages is balanced across the zones.
2907  */
2908 static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
2909                                                         int *classzone_idx)
2910 {
2911         int i;
2912         int end_zone = 0;       /* Inclusive.  0 = ZONE_DMA */
2913         unsigned long nr_soft_reclaimed;
2914         unsigned long nr_soft_scanned;
2915         struct scan_control sc = {
2916                 .gfp_mask = GFP_KERNEL,
2917                 .priority = DEF_PRIORITY,
2918                 .may_unmap = 1,
2919                 .may_swap = 1,
2920                 .may_writepage = !laptop_mode,
2921                 .order = order,
2922                 .target_mem_cgroup = NULL,
2923         };
2924         count_vm_event(PAGEOUTRUN);
2925
2926         do {
2927                 unsigned long lru_pages = 0;
2928                 unsigned long nr_attempted = 0;
2929                 bool raise_priority = true;
2930                 bool pgdat_needs_compaction = (order > 0);
2931
2932                 sc.nr_reclaimed = 0;
2933
2934                 /*
2935                  * Scan in the highmem->dma direction for the highest
2936                  * zone which needs scanning
2937                  */
2938                 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
2939                         struct zone *zone = pgdat->node_zones + i;
2940
2941                         if (!populated_zone(zone))
2942                                 continue;
2943
2944                         if (zone->all_unreclaimable &&
2945                             sc.priority != DEF_PRIORITY)
2946                                 continue;
2947
2948                         /*
2949                          * Do some background aging of the anon list, to give
2950                          * pages a chance to be referenced before reclaiming.
2951                          */
2952                         age_active_anon(zone, &sc);
2953
2954                         /*
2955                          * If the number of buffer_heads in the machine
2956                          * exceeds the maximum allowed level and this node
2957                          * has a highmem zone, force kswapd to reclaim from
2958                          * it to relieve lowmem pressure.
2959                          */
2960                         if (buffer_heads_over_limit && is_highmem_idx(i)) {
2961                                 end_zone = i;
2962                                 break;
2963                         }
2964
2965                         if (!zone_balanced(zone, order, 0, 0)) {
2966                                 end_zone = i;
2967                                 break;
2968                         } else {
2969                                 /*
2970                                  * If balanced, clear the dirty and congested
2971                                  * flags
2972                                  */
2973                                 zone_clear_flag(zone, ZONE_CONGESTED);
2974                                 zone_clear_flag(zone, ZONE_TAIL_LRU_DIRTY);
2975                         }
2976                 }
2977
2978                 if (i < 0)
2979                         goto out;
2980
2981                 for (i = 0; i <= end_zone; i++) {
2982                         struct zone *zone = pgdat->node_zones + i;
2983
2984                         if (!populated_zone(zone))
2985                                 continue;
2986
2987                         lru_pages += zone_reclaimable_pages(zone);
2988
2989                         /*
2990                          * If any zone is currently balanced then kswapd will
2991                          * not call compaction as it is expected that the
2992                          * necessary pages are already available.
2993                          */
2994                         if (pgdat_needs_compaction &&
2995                                         zone_watermark_ok(zone, order,
2996                                                 low_wmark_pages(zone),
2997                                                 *classzone_idx, 0))
2998                                 pgdat_needs_compaction = false;
2999                 }
3000
3001                 /*
3002                  * If we're getting trouble reclaiming, start doing writepage
3003                  * even in laptop mode.
3004                  */
3005                 if (sc.priority < DEF_PRIORITY - 2)
3006                         sc.may_writepage = 1;
3007
3008                 /*
3009                  * Now scan the zone in the dma->highmem direction, stopping
3010                  * at the last zone which needs scanning.
3011                  *
3012                  * We do this because the page allocator works in the opposite
3013                  * direction.  This prevents the page allocator from allocating
3014                  * pages behind kswapd's direction of progress, which would
3015                  * cause too much scanning of the lower zones.
3016                  */
3017                 for (i = 0; i <= end_zone; i++) {
3018                         struct zone *zone = pgdat->node_zones + i;
3019
3020                         if (!populated_zone(zone))
3021                                 continue;
3022
3023                         if (zone->all_unreclaimable &&
3024                             sc.priority != DEF_PRIORITY)
3025                                 continue;
3026
3027                         sc.nr_scanned = 0;
3028
3029                         nr_soft_scanned = 0;
3030                         /*
3031                          * Call soft limit reclaim before calling shrink_zone.
3032                          */
3033                         nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
3034                                                         order, sc.gfp_mask,
3035                                                         &nr_soft_scanned);
3036                         sc.nr_reclaimed += nr_soft_reclaimed;
3037
3038                         /*
3039                          * There should be no need to raise the scanning
3040                          * priority if enough pages are already being scanned
3041                          * that that high watermark would be met at 100%
3042                          * efficiency.
3043                          */
3044                         if (kswapd_shrink_zone(zone, end_zone, &sc,
3045                                         lru_pages, &nr_attempted))
3046                                 raise_priority = false;
3047                 }
3048
3049                 /*
3050                  * If the low watermark is met there is no need for processes
3051                  * to be throttled on pfmemalloc_wait as they should not be
3052                  * able to safely make forward progress. Wake them
3053                  */
3054                 if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3055                                 pfmemalloc_watermark_ok(pgdat))
3056                         wake_up(&pgdat->pfmemalloc_wait);
3057
3058                 /*
3059                  * Fragmentation may mean that the system cannot be rebalanced
3060                  * for high-order allocations in all zones. If twice the
3061                  * allocation size has been reclaimed and the zones are still
3062                  * not balanced then recheck the watermarks at order-0 to
3063                  * prevent kswapd reclaiming excessively. Assume that a
3064                  * process requested a high-order can direct reclaim/compact.
3065                  */
3066                 if (order && sc.nr_reclaimed >= 2UL << order)
3067                         order = sc.order = 0;
3068
3069                 /* Check if kswapd should be suspending */
3070                 if (try_to_freeze() || kthread_should_stop())
3071                         break;
3072
3073                 /*
3074                  * Compact if necessary and kswapd is reclaiming at least the
3075                  * high watermark number of pages as requsted
3076                  */
3077                 if (pgdat_needs_compaction && sc.nr_reclaimed > nr_attempted)
3078                         compact_pgdat(pgdat, order);
3079
3080                 /*
3081                  * Raise priority if scanning rate is too low or there was no
3082                  * progress in reclaiming pages
3083                  */
3084                 if (raise_priority || !sc.nr_reclaimed)
3085                         sc.priority--;
3086         } while (sc.priority >= 1 &&
3087                  !pgdat_balanced(pgdat, order, *classzone_idx));
3088
3089 out:
3090         /*
3091          * Return the order we were reclaiming at so prepare_kswapd_sleep()
3092          * makes a decision on the order we were last reclaiming at. However,
3093          * if another caller entered the allocator slow path while kswapd
3094          * was awake, order will remain at the higher level
3095          */
3096         *classzone_idx = end_zone;
3097         return order;
3098 }
3099
3100 static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
3101 {
3102         long remaining = 0;
3103         DEFINE_WAIT(wait);
3104
3105         if (freezing(current) || kthread_should_stop())
3106                 return;
3107
3108         prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3109
3110         /* Try to sleep for a short interval */
3111         if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
3112                 remaining = schedule_timeout(HZ/10);
3113                 finish_wait(&pgdat->kswapd_wait, &wait);
3114                 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3115         }
3116
3117         /*
3118          * After a short sleep, check if it was a premature sleep. If not, then
3119          * go fully to sleep until explicitly woken up.
3120          */
3121         if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
3122                 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3123
3124                 /*
3125                  * vmstat counters are not perfectly accurate and the estimated
3126                  * value for counters such as NR_FREE_PAGES can deviate from the
3127                  * true value by nr_online_cpus * threshold. To avoid the zone
3128                  * watermarks being breached while under pressure, we reduce the
3129                  * per-cpu vmstat threshold while kswapd is awake and restore
3130                  * them before going back to sleep.
3131                  */
3132                 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3133
3134                 /*
3135                  * Compaction records what page blocks it recently failed to
3136                  * isolate pages from and skips them in the future scanning.
3137                  * When kswapd is going to sleep, it is reasonable to assume
3138                  * that pages and compaction may succeed so reset the cache.
3139                  */
3140                 reset_isolation_suitable(pgdat);
3141
3142                 if (!kthread_should_stop())
3143                         schedule();
3144
3145                 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3146         } else {
3147                 if (remaining)
3148                         count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3149                 else
3150                         count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3151         }
3152         finish_wait(&pgdat->kswapd_wait, &wait);
3153 }
3154
3155 /*
3156  * The background pageout daemon, started as a kernel thread
3157  * from the init process.
3158  *
3159  * This basically trickles out pages so that we have _some_
3160  * free memory available even if there is no other activity
3161  * that frees anything up. This is needed for things like routing
3162  * etc, where we otherwise might have all activity going on in
3163  * asynchronous contexts that cannot page things out.
3164  *
3165  * If there are applications that are active memory-allocators
3166  * (most normal use), this basically shouldn't matter.
3167  */
3168 static int kswapd(void *p)
3169 {
3170         unsigned long order, new_order;
3171         unsigned balanced_order;
3172         int classzone_idx, new_classzone_idx;
3173         int balanced_classzone_idx;
3174         pg_data_t *pgdat = (pg_data_t*)p;
3175         struct task_struct *tsk = current;
3176
3177         struct reclaim_state reclaim_state = {
3178                 .reclaimed_slab = 0,
3179         };
3180         const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
3181
3182         lockdep_set_current_reclaim_state(GFP_KERNEL);
3183
3184         if (!cpumask_empty(cpumask))
3185                 set_cpus_allowed_ptr(tsk, cpumask);
3186         current->reclaim_state = &reclaim_state;
3187
3188         /*
3189          * Tell the memory management that we're a "memory allocator",
3190          * and that if we need more memory we should get access to it
3191          * regardless (see "__alloc_pages()"). "kswapd" should
3192          * never get caught in the normal page freeing logic.
3193          *
3194          * (Kswapd normally doesn't need memory anyway, but sometimes
3195          * you need a small amount of memory in order to be able to
3196          * page out something else, and this flag essentially protects
3197          * us from recursively trying to free more memory as we're
3198          * trying to free the first piece of memory in the first place).
3199          */
3200         tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3201         set_freezable();
3202
3203         order = new_order = 0;
3204         balanced_order = 0;
3205         classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
3206         balanced_classzone_idx = classzone_idx;
3207         for ( ; ; ) {
3208                 bool ret;
3209
3210                 /*
3211                  * If the last balance_pgdat was unsuccessful it's unlikely a
3212                  * new request of a similar or harder type will succeed soon
3213                  * so consider going to sleep on the basis we reclaimed at
3214                  */
3215                 if (balanced_classzone_idx >= new_classzone_idx &&
3216                                         balanced_order == new_order) {
3217                         new_order = pgdat->kswapd_max_order;
3218                         new_classzone_idx = pgdat->classzone_idx;
3219                         pgdat->kswapd_max_order =  0;
3220                         pgdat->classzone_idx = pgdat->nr_zones - 1;
3221                 }
3222
3223                 if (order < new_order || classzone_idx > new_classzone_idx) {
3224                         /*
3225                          * Don't sleep if someone wants a larger 'order'
3226                          * allocation or has tigher zone constraints
3227                          */
3228                         order = new_order;
3229                         classzone_idx = new_classzone_idx;
3230                 } else {
3231                         kswapd_try_to_sleep(pgdat, balanced_order,
3232                                                 balanced_classzone_idx);
3233                         order = pgdat->kswapd_max_order;
3234                         classzone_idx = pgdat->classzone_idx;
3235                         new_order = order;
3236                         new_classzone_idx = classzone_idx;
3237                         pgdat->kswapd_max_order = 0;
3238                         pgdat->classzone_idx = pgdat->nr_zones - 1;
3239                 }
3240
3241                 ret = try_to_freeze();
3242                 if (kthread_should_stop())
3243                         break;
3244
3245                 /*
3246                  * We can speed up thawing tasks if we don't call balance_pgdat
3247                  * after returning from the refrigerator
3248                  */
3249                 if (!ret) {
3250                         trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
3251                         balanced_classzone_idx = classzone_idx;
3252                         balanced_order = balance_pgdat(pgdat, order,
3253                                                 &balanced_classzone_idx);
3254                 }
3255         }
3256
3257         current->reclaim_state = NULL;
3258         return 0;
3259 }
3260
3261 /*
3262  * A zone is low on free memory, so wake its kswapd task to service it.
3263  */
3264 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
3265 {
3266         pg_data_t *pgdat;
3267
3268         if (!populated_zone(zone))
3269                 return;
3270
3271         if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
3272                 return;
3273         pgdat = zone->zone_pgdat;
3274         if (pgdat->kswapd_max_order < order) {
3275                 pgdat->kswapd_max_order = order;
3276                 pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
3277         }
3278         if (!waitqueue_active(&pgdat->kswapd_wait))
3279                 return;
3280         if (zone_watermark_ok_safe(zone, order, low_wmark_pages(zone), 0, 0))
3281                 return;
3282
3283         trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
3284         wake_up_interruptible(&pgdat->kswapd_wait);
3285 }
3286
3287 /*
3288  * The reclaimable count would be mostly accurate.
3289  * The less reclaimable pages may be
3290  * - mlocked pages, which will be moved to unevictable list when encountered
3291  * - mapped pages, which may require several travels to be reclaimed
3292  * - dirty pages, which is not "instantly" reclaimable
3293  */
3294 unsigned long global_reclaimable_pages(void)
3295 {
3296         int nr;
3297
3298         nr = global_page_state(NR_ACTIVE_FILE) +
3299              global_page_state(NR_INACTIVE_FILE);
3300
3301         if (get_nr_swap_pages() > 0)
3302                 nr += global_page_state(NR_ACTIVE_ANON) +
3303                       global_page_state(NR_INACTIVE_ANON);
3304
3305         return nr;
3306 }
3307
3308 unsigned long zone_reclaimable_pages(struct zone *zone)
3309 {
3310         int nr;
3311
3312         nr = zone_page_state(zone, NR_ACTIVE_FILE) +
3313              zone_page_state(zone, NR_INACTIVE_FILE);
3314
3315         if (get_nr_swap_pages() > 0)
3316                 nr += zone_page_state(zone, NR_ACTIVE_ANON) +
3317                       zone_page_state(zone, NR_INACTIVE_ANON);
3318
3319         return nr;
3320 }
3321
3322 #ifdef CONFIG_HIBERNATION
3323 /*
3324  * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3325  * freed pages.
3326  *
3327  * Rather than trying to age LRUs the aim is to preserve the overall
3328  * LRU order by reclaiming preferentially
3329  * inactive > active > active referenced > active mapped
3330  */
3331 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
3332 {
3333         struct reclaim_state reclaim_state;
3334         struct scan_control sc = {
3335                 .gfp_mask = GFP_HIGHUSER_MOVABLE,
3336                 .may_swap = 1,
3337                 .may_unmap = 1,
3338                 .may_writepage = 1,
3339                 .nr_to_reclaim = nr_to_reclaim,
3340                 .hibernation_mode = 1,
3341                 .order = 0,
3342                 .priority = DEF_PRIORITY,
3343         };
3344         struct shrink_control shrink = {
3345                 .gfp_mask = sc.gfp_mask,
3346         };
3347         struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3348         struct task_struct *p = current;
3349         unsigned long nr_reclaimed;
3350
3351         p->flags |= PF_MEMALLOC;
3352         lockdep_set_current_reclaim_state(sc.gfp_mask);
3353         reclaim_state.reclaimed_slab = 0;
3354         p->reclaim_state = &reclaim_state;
3355
3356         nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
3357
3358         p->reclaim_state = NULL;
3359         lockdep_clear_current_reclaim_state();
3360         p->flags &= ~PF_MEMALLOC;
3361
3362         return nr_reclaimed;
3363 }
3364 #endif /* CONFIG_HIBERNATION */
3365
3366 /* It's optimal to keep kswapds on the same CPUs as their memory, but
3367    not required for correctness.  So if the last cpu in a node goes
3368    away, we get changed to run anywhere: as the first one comes back,
3369    restore their cpu bindings. */
3370 static int cpu_callback(struct notifier_block *nfb, unsigned long action,
3371                         void *hcpu)
3372 {
3373         int nid;
3374
3375         if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
3376                 for_each_node_state(nid, N_MEMORY) {
3377                         pg_data_t *pgdat = NODE_DATA(nid);
3378                         const struct cpumask *mask;
3379
3380                         mask = cpumask_of_node(pgdat->node_id);
3381
3382                         if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3383                                 /* One of our CPUs online: restore mask */
3384                                 set_cpus_allowed_ptr(pgdat->kswapd, mask);
3385                 }
3386         }
3387         return NOTIFY_OK;
3388 }
3389
3390 /*
3391  * This kswapd start function will be called by init and node-hot-add.
3392  * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3393  */
3394 int kswapd_run(int nid)
3395 {
3396         pg_data_t *pgdat = NODE_DATA(nid);
3397         int ret = 0;
3398
3399         if (pgdat->kswapd)
3400                 return 0;
3401
3402         pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3403         if (IS_ERR(pgdat->kswapd)) {
3404                 /* failure at boot is fatal */
3405                 BUG_ON(system_state == SYSTEM_BOOTING);
3406                 pr_err("Failed to start kswapd on node %d\n", nid);
3407                 ret = PTR_ERR(pgdat->kswapd);
3408                 pgdat->kswapd = NULL;
3409         }
3410         return ret;
3411 }
3412
3413 /*
3414  * Called by memory hotplug when all memory in a node is offlined.  Caller must
3415  * hold lock_memory_hotplug().
3416  */
3417 void kswapd_stop(int nid)
3418 {
3419         struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3420
3421         if (kswapd) {
3422                 kthread_stop(kswapd);
3423                 NODE_DATA(nid)->kswapd = NULL;
3424         }
3425 }
3426
3427 static int __init kswapd_init(void)
3428 {
3429         int nid;
3430
3431         swap_setup();
3432         for_each_node_state(nid, N_MEMORY)
3433                 kswapd_run(nid);
3434         hotcpu_notifier(cpu_callback, 0);
3435         return 0;
3436 }
3437
3438 module_init(kswapd_init)
3439
3440 #ifdef CONFIG_NUMA
3441 /*
3442  * Zone reclaim mode
3443  *
3444  * If non-zero call zone_reclaim when the number of free pages falls below
3445  * the watermarks.
3446  */
3447 int zone_reclaim_mode __read_mostly;
3448
3449 #define RECLAIM_OFF 0
3450 #define RECLAIM_ZONE (1<<0)     /* Run shrink_inactive_list on the zone */
3451 #define RECLAIM_WRITE (1<<1)    /* Writeout pages during reclaim */
3452 #define RECLAIM_SWAP (1<<2)     /* Swap pages out during reclaim */
3453
3454 /*
3455  * Priority for ZONE_RECLAIM. This determines the fraction of pages
3456  * of a node considered for each zone_reclaim. 4 scans 1/16th of
3457  * a zone.
3458  */
3459 #define ZONE_RECLAIM_PRIORITY 4
3460
3461 /*
3462  * Percentage of pages in a zone that must be unmapped for zone_reclaim to
3463  * occur.
3464  */
3465 int sysctl_min_unmapped_ratio = 1;
3466
3467 /*
3468  * If the number of slab pages in a zone grows beyond this percentage then
3469  * slab reclaim needs to occur.
3470  */
3471 int sysctl_min_slab_ratio = 5;
3472
3473 static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
3474 {
3475         unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
3476         unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
3477                 zone_page_state(zone, NR_ACTIVE_FILE);
3478
3479         /*
3480          * It's possible for there to be more file mapped pages than
3481          * accounted for by the pages on the file LRU lists because
3482          * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3483          */
3484         return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3485 }
3486
3487 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
3488 static long zone_pagecache_reclaimable(struct zone *zone)
3489 {
3490         long nr_pagecache_reclaimable;
3491         long delta = 0;
3492
3493         /*
3494          * If RECLAIM_SWAP is set, then all file pages are considered
3495          * potentially reclaimable. Otherwise, we have to worry about
3496          * pages like swapcache and zone_unmapped_file_pages() provides
3497          * a better estimate
3498          */
3499         if (zone_reclaim_mode & RECLAIM_SWAP)
3500                 nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
3501         else
3502                 nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
3503
3504         /* If we can't clean pages, remove dirty pages from consideration */
3505         if (!(zone_reclaim_mode & RECLAIM_WRITE))
3506                 delta += zone_page_state(zone, NR_FILE_DIRTY);
3507
3508         /* Watch for any possible underflows due to delta */
3509         if (unlikely(delta > nr_pagecache_reclaimable))
3510                 delta = nr_pagecache_reclaimable;
3511
3512         return nr_pagecache_reclaimable - delta;
3513 }
3514
3515 /*
3516  * Try to free up some pages from this zone through reclaim.
3517  */
3518 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3519 {
3520         /* Minimum pages needed in order to stay on node */
3521         const unsigned long nr_pages = 1 << order;
3522         struct task_struct *p = current;
3523         struct reclaim_state reclaim_state;
3524         struct scan_control sc = {
3525                 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
3526                 .may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
3527                 .may_swap = 1,
3528                 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3529                 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
3530                 .order = order,
3531                 .priority = ZONE_RECLAIM_PRIORITY,
3532         };
3533         struct shrink_control shrink = {
3534                 .gfp_mask = sc.gfp_mask,
3535         };
3536         unsigned long nr_slab_pages0, nr_slab_pages1;
3537
3538         cond_resched();
3539         /*
3540          * We need to be able to allocate from the reserves for RECLAIM_SWAP
3541          * and we also need to be able to write out pages for RECLAIM_WRITE
3542          * and RECLAIM_SWAP.
3543          */
3544         p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3545         lockdep_set_current_reclaim_state(gfp_mask);
3546         reclaim_state.reclaimed_slab = 0;
3547         p->reclaim_state = &reclaim_state;
3548
3549         if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
3550                 /*
3551                  * Free memory by calling shrink zone with increasing
3552                  * priorities until we have enough memory freed.
3553                  */
3554                 do {
3555                         shrink_zone(zone, &sc);
3556                 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
3557         }
3558
3559         nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3560         if (nr_slab_pages0 > zone->min_slab_pages) {
3561                 /*
3562                  * shrink_slab() does not currently allow us to determine how
3563                  * many pages were freed in this zone. So we take the current
3564                  * number of slab pages and shake the slab until it is reduced
3565                  * by the same nr_pages that we used for reclaiming unmapped
3566                  * pages.
3567                  */
3568                 nodes_clear(shrink.nodes_to_scan);
3569                 node_set(zone_to_nid(zone), shrink.nodes_to_scan);
3570                 for (;;) {
3571                         unsigned long lru_pages = zone_reclaimable_pages(zone);
3572
3573                         /* No reclaimable slab or very low memory pressure */
3574                         if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages))
3575                                 break;
3576
3577                         /* Freed enough memory */
3578                         nr_slab_pages1 = zone_page_state(zone,
3579                                                         NR_SLAB_RECLAIMABLE);
3580                         if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
3581                                 break;
3582                 }
3583
3584                 /*
3585                  * Update nr_reclaimed by the number of slab pages we
3586                  * reclaimed from this zone.
3587                  */
3588                 nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3589                 if (nr_slab_pages1 < nr_slab_pages0)
3590                         sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
3591         }
3592
3593         p->reclaim_state = NULL;
3594         current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3595         lockdep_clear_current_reclaim_state();
3596         return sc.nr_reclaimed >= nr_pages;
3597 }
3598
3599 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3600 {
3601         int node_id;
3602         int ret;
3603
3604         /*
3605          * Zone reclaim reclaims unmapped file backed pages and
3606          * slab pages if we are over the defined limits.
3607          *
3608          * A small portion of unmapped file backed pages is needed for
3609          * file I/O otherwise pages read by file I/O will be immediately
3610          * thrown out if the zone is overallocated. So we do not reclaim
3611          * if less than a specified percentage of the zone is used by
3612          * unmapped file backed pages.
3613          */
3614         if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
3615             zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
3616                 return ZONE_RECLAIM_FULL;
3617
3618         if (zone->all_unreclaimable)
3619                 return ZONE_RECLAIM_FULL;
3620
3621         /*
3622          * Do not scan if the allocation should not be delayed.
3623          */
3624         if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
3625                 return ZONE_RECLAIM_NOSCAN;
3626
3627         /*
3628          * Only run zone reclaim on the local zone or on zones that do not
3629          * have associated processors. This will favor the local processor
3630          * over remote processors and spread off node memory allocations
3631          * as wide as possible.
3632          */
3633         node_id = zone_to_nid(zone);
3634         if (node_state(node_id, N_CPU) && node_id != numa_node_id())
3635                 return ZONE_RECLAIM_NOSCAN;
3636
3637         if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
3638                 return ZONE_RECLAIM_NOSCAN;
3639
3640         ret = __zone_reclaim(zone, gfp_mask, order);
3641         zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
3642
3643         if (!ret)
3644                 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3645
3646         return ret;
3647 }
3648 #endif
3649
3650 /*
3651  * page_evictable - test whether a page is evictable
3652  * @page: the page to test
3653  *
3654  * Test whether page is evictable--i.e., should be placed on active/inactive
3655  * lists vs unevictable list.
3656  *
3657  * Reasons page might not be evictable:
3658  * (1) page's mapping marked unevictable
3659  * (2) page is part of an mlocked VMA
3660  *
3661  */
3662 int page_evictable(struct page *page)
3663 {
3664         return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
3665 }
3666
3667 #ifdef CONFIG_SHMEM
3668 /**
3669  * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3670  * @pages:      array of pages to check
3671  * @nr_pages:   number of pages to check
3672  *
3673  * Checks pages for evictability and moves them to the appropriate lru list.
3674  *
3675  * This function is only used for SysV IPC SHM_UNLOCK.
3676  */
3677 void check_move_unevictable_pages(struct page **pages, int nr_pages)
3678 {
3679         struct lruvec *lruvec;
3680         struct zone *zone = NULL;
3681         int pgscanned = 0;
3682         int pgrescued = 0;
3683         int i;
3684
3685         for (i = 0; i < nr_pages; i++) {
3686                 struct page *page = pages[i];
3687                 struct zone *pagezone;
3688
3689                 pgscanned++;
3690                 pagezone = page_zone(page);
3691                 if (pagezone != zone) {
3692                         if (zone)
3693                                 spin_unlock_irq(&zone->lru_lock);
3694                         zone = pagezone;
3695                         spin_lock_irq(&zone->lru_lock);
3696                 }
3697                 lruvec = mem_cgroup_page_lruvec(page, zone);
3698
3699                 if (!PageLRU(page) || !PageUnevictable(page))
3700                         continue;
3701
3702                 if (page_evictable(page)) {
3703                         enum lru_list lru = page_lru_base_type(page);
3704
3705                         VM_BUG_ON(PageActive(page));
3706                         ClearPageUnevictable(page);
3707                         del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
3708                         add_page_to_lru_list(page, lruvec, lru);
3709                         pgrescued++;
3710                 }
3711         }
3712
3713         if (zone) {
3714                 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
3715                 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
3716                 spin_unlock_irq(&zone->lru_lock);
3717         }
3718 }
3719 #endif /* CONFIG_SHMEM */
3720
3721 static void warn_scan_unevictable_pages(void)
3722 {
3723         printk_once(KERN_WARNING
3724                     "%s: The scan_unevictable_pages sysctl/node-interface has been "
3725                     "disabled for lack of a legitimate use case.  If you have "
3726                     "one, please send an email to linux-mm@kvack.org.\n",
3727                     current->comm);
3728 }
3729
3730 /*
3731  * scan_unevictable_pages [vm] sysctl handler.  On demand re-scan of
3732  * all nodes' unevictable lists for evictable pages
3733  */
3734 unsigned long scan_unevictable_pages;
3735
3736 int scan_unevictable_handler(struct ctl_table *table, int write,
3737                            void __user *buffer,
3738                            size_t *length, loff_t *ppos)
3739 {
3740         warn_scan_unevictable_pages();
3741         proc_doulongvec_minmax(table, write, buffer, length, ppos);
3742         scan_unevictable_pages = 0;
3743         return 0;
3744 }
3745
3746 #ifdef CONFIG_NUMA
3747 /*
3748  * per node 'scan_unevictable_pages' attribute.  On demand re-scan of
3749  * a specified node's per zone unevictable lists for evictable pages.
3750  */
3751
3752 static ssize_t read_scan_unevictable_node(struct device *dev,
3753                                           struct device_attribute *attr,
3754                                           char *buf)
3755 {
3756         warn_scan_unevictable_pages();
3757         return sprintf(buf, "0\n");     /* always zero; should fit... */
3758 }
3759
3760 static ssize_t write_scan_unevictable_node(struct device *dev,
3761                                            struct device_attribute *attr,
3762                                         const char *buf, size_t count)
3763 {
3764         warn_scan_unevictable_pages();
3765         return 1;
3766 }
3767
3768
3769 static DEVICE_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
3770                         read_scan_unevictable_node,
3771                         write_scan_unevictable_node);
3772
3773 int scan_unevictable_register_node(struct node *node)
3774 {
3775         return device_create_file(&node->dev, &dev_attr_scan_unevictable_pages);
3776 }
3777
3778 void scan_unevictable_unregister_node(struct node *node)
3779 {
3780         device_remove_file(&node->dev, &dev_attr_scan_unevictable_pages);
3781 }
3782 #endif