4 * Manages VM statistics
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Copyright (C) 2006 Silicon Graphics, Inc.,
9 * Christoph Lameter <christoph@lameter.com>
10 * Copyright (C) 2008-2014 Christoph Lameter
14 #include <linux/err.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/cpu.h>
18 #include <linux/cpumask.h>
19 #include <linux/vmstat.h>
20 #include <linux/sched.h>
21 #include <linux/math64.h>
22 #include <linux/writeback.h>
23 #include <linux/compaction.h>
24 #include <linux/mm_inline.h>
28 #ifdef CONFIG_VM_EVENT_COUNTERS
29 DEFINE_PER_CPU(struct vm_event_state, vm_event_states) = {{0}};
30 EXPORT_PER_CPU_SYMBOL(vm_event_states);
32 static void sum_vm_events(unsigned long *ret)
37 memset(ret, 0, NR_VM_EVENT_ITEMS * sizeof(unsigned long));
39 for_each_online_cpu(cpu) {
40 struct vm_event_state *this = &per_cpu(vm_event_states, cpu);
42 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
43 ret[i] += this->event[i];
48 * Accumulate the vm event counters across all CPUs.
49 * The result is unavoidably approximate - it can change
50 * during and after execution of this function.
52 void all_vm_events(unsigned long *ret)
58 EXPORT_SYMBOL_GPL(all_vm_events);
61 * Fold the foreign cpu events into our own.
63 * This is adding to the events on one processor
64 * but keeps the global counts constant.
66 void vm_events_fold_cpu(int cpu)
68 struct vm_event_state *fold_state = &per_cpu(vm_event_states, cpu);
71 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
72 count_vm_events(i, fold_state->event[i]);
73 fold_state->event[i] = 0;
77 #endif /* CONFIG_VM_EVENT_COUNTERS */
80 * Manage combined zone based / global counters
82 * vm_stat contains the global counters
84 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS] __cacheline_aligned_in_smp;
85 EXPORT_SYMBOL(vm_stat);
89 int calculate_pressure_threshold(struct zone *zone)
92 int watermark_distance;
95 * As vmstats are not up to date, there is drift between the estimated
96 * and real values. For high thresholds and a high number of CPUs, it
97 * is possible for the min watermark to be breached while the estimated
98 * value looks fine. The pressure threshold is a reduced value such
99 * that even the maximum amount of drift will not accidentally breach
102 watermark_distance = low_wmark_pages(zone) - min_wmark_pages(zone);
103 threshold = max(1, (int)(watermark_distance / num_online_cpus()));
106 * Maximum threshold is 125
108 threshold = min(125, threshold);
113 int calculate_normal_threshold(struct zone *zone)
116 int mem; /* memory in 128 MB units */
119 * The threshold scales with the number of processors and the amount
120 * of memory per zone. More memory means that we can defer updates for
121 * longer, more processors could lead to more contention.
122 * fls() is used to have a cheap way of logarithmic scaling.
124 * Some sample thresholds:
126 * Threshold Processors (fls) Zonesize fls(mem+1)
127 * ------------------------------------------------------------------
144 * 125 1024 10 8-16 GB 8
145 * 125 1024 10 16-32 GB 9
148 mem = zone->managed_pages >> (27 - PAGE_SHIFT);
150 threshold = 2 * fls(num_online_cpus()) * (1 + fls(mem));
153 * Maximum threshold is 125
155 threshold = min(125, threshold);
161 * Refresh the thresholds for each zone.
163 void refresh_zone_stat_thresholds(void)
169 for_each_populated_zone(zone) {
170 unsigned long max_drift, tolerate_drift;
172 threshold = calculate_normal_threshold(zone);
174 for_each_online_cpu(cpu)
175 per_cpu_ptr(zone->pageset, cpu)->stat_threshold
179 * Only set percpu_drift_mark if there is a danger that
180 * NR_FREE_PAGES reports the low watermark is ok when in fact
181 * the min watermark could be breached by an allocation
183 tolerate_drift = low_wmark_pages(zone) - min_wmark_pages(zone);
184 max_drift = num_online_cpus() * threshold;
185 if (max_drift > tolerate_drift)
186 zone->percpu_drift_mark = high_wmark_pages(zone) +
191 void set_pgdat_percpu_threshold(pg_data_t *pgdat,
192 int (*calculate_pressure)(struct zone *))
199 for (i = 0; i < pgdat->nr_zones; i++) {
200 zone = &pgdat->node_zones[i];
201 if (!zone->percpu_drift_mark)
204 threshold = (*calculate_pressure)(zone);
205 for_each_online_cpu(cpu)
206 per_cpu_ptr(zone->pageset, cpu)->stat_threshold
212 * For use when we know that interrupts are disabled,
213 * or when we know that preemption is disabled and that
214 * particular counter cannot be updated from interrupt context.
216 void __mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
219 struct per_cpu_pageset __percpu *pcp = zone->pageset;
220 s8 __percpu *p = pcp->vm_stat_diff + item;
224 x = delta + __this_cpu_read(*p);
226 t = __this_cpu_read(pcp->stat_threshold);
228 if (unlikely(x > t || x < -t)) {
229 zone_page_state_add(x, zone, item);
232 __this_cpu_write(*p, x);
234 EXPORT_SYMBOL(__mod_zone_page_state);
237 * Optimized increment and decrement functions.
239 * These are only for a single page and therefore can take a struct page *
240 * argument instead of struct zone *. This allows the inclusion of the code
241 * generated for page_zone(page) into the optimized functions.
243 * No overflow check is necessary and therefore the differential can be
244 * incremented or decremented in place which may allow the compilers to
245 * generate better code.
246 * The increment or decrement is known and therefore one boundary check can
249 * NOTE: These functions are very performance sensitive. Change only
252 * Some processors have inc/dec instructions that are atomic vs an interrupt.
253 * However, the code must first determine the differential location in a zone
254 * based on the processor number and then inc/dec the counter. There is no
255 * guarantee without disabling preemption that the processor will not change
256 * in between and therefore the atomicity vs. interrupt cannot be exploited
257 * in a useful way here.
259 void __inc_zone_state(struct zone *zone, enum zone_stat_item item)
261 struct per_cpu_pageset __percpu *pcp = zone->pageset;
262 s8 __percpu *p = pcp->vm_stat_diff + item;
265 v = __this_cpu_inc_return(*p);
266 t = __this_cpu_read(pcp->stat_threshold);
267 if (unlikely(v > t)) {
268 s8 overstep = t >> 1;
270 zone_page_state_add(v + overstep, zone, item);
271 __this_cpu_write(*p, -overstep);
275 void __inc_zone_page_state(struct page *page, enum zone_stat_item item)
277 __inc_zone_state(page_zone(page), item);
279 EXPORT_SYMBOL(__inc_zone_page_state);
281 void __dec_zone_state(struct zone *zone, enum zone_stat_item item)
283 struct per_cpu_pageset __percpu *pcp = zone->pageset;
284 s8 __percpu *p = pcp->vm_stat_diff + item;
287 v = __this_cpu_dec_return(*p);
288 t = __this_cpu_read(pcp->stat_threshold);
289 if (unlikely(v < - t)) {
290 s8 overstep = t >> 1;
292 zone_page_state_add(v - overstep, zone, item);
293 __this_cpu_write(*p, overstep);
297 void __dec_zone_page_state(struct page *page, enum zone_stat_item item)
299 __dec_zone_state(page_zone(page), item);
301 EXPORT_SYMBOL(__dec_zone_page_state);
303 #ifdef CONFIG_HAVE_CMPXCHG_LOCAL
305 * If we have cmpxchg_local support then we do not need to incur the overhead
306 * that comes with local_irq_save/restore if we use this_cpu_cmpxchg.
308 * mod_state() modifies the zone counter state through atomic per cpu
311 * Overstep mode specifies how overstep should handled:
313 * 1 Overstepping half of threshold
314 * -1 Overstepping minus half of threshold
316 static inline void mod_state(struct zone *zone,
317 enum zone_stat_item item, int delta, int overstep_mode)
319 struct per_cpu_pageset __percpu *pcp = zone->pageset;
320 s8 __percpu *p = pcp->vm_stat_diff + item;
324 z = 0; /* overflow to zone counters */
327 * The fetching of the stat_threshold is racy. We may apply
328 * a counter threshold to the wrong the cpu if we get
329 * rescheduled while executing here. However, the next
330 * counter update will apply the threshold again and
331 * therefore bring the counter under the threshold again.
333 * Most of the time the thresholds are the same anyways
334 * for all cpus in a zone.
336 t = this_cpu_read(pcp->stat_threshold);
338 o = this_cpu_read(*p);
341 if (n > t || n < -t) {
342 int os = overstep_mode * (t >> 1) ;
344 /* Overflow must be added to zone counters */
348 } while (this_cpu_cmpxchg(*p, o, n) != o);
351 zone_page_state_add(z, zone, item);
354 void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
357 mod_state(zone, item, delta, 0);
359 EXPORT_SYMBOL(mod_zone_page_state);
361 void inc_zone_state(struct zone *zone, enum zone_stat_item item)
363 mod_state(zone, item, 1, 1);
366 void inc_zone_page_state(struct page *page, enum zone_stat_item item)
368 mod_state(page_zone(page), item, 1, 1);
370 EXPORT_SYMBOL(inc_zone_page_state);
372 void dec_zone_page_state(struct page *page, enum zone_stat_item item)
374 mod_state(page_zone(page), item, -1, -1);
376 EXPORT_SYMBOL(dec_zone_page_state);
379 * Use interrupt disable to serialize counter updates
381 void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
386 local_irq_save(flags);
387 __mod_zone_page_state(zone, item, delta);
388 local_irq_restore(flags);
390 EXPORT_SYMBOL(mod_zone_page_state);
392 void inc_zone_state(struct zone *zone, enum zone_stat_item item)
396 local_irq_save(flags);
397 __inc_zone_state(zone, item);
398 local_irq_restore(flags);
401 void inc_zone_page_state(struct page *page, enum zone_stat_item item)
406 zone = page_zone(page);
407 local_irq_save(flags);
408 __inc_zone_state(zone, item);
409 local_irq_restore(flags);
411 EXPORT_SYMBOL(inc_zone_page_state);
413 void dec_zone_page_state(struct page *page, enum zone_stat_item item)
417 local_irq_save(flags);
418 __dec_zone_page_state(page, item);
419 local_irq_restore(flags);
421 EXPORT_SYMBOL(dec_zone_page_state);
426 * Fold a differential into the global counters.
427 * Returns the number of counters updated.
429 static int fold_diff(int *diff)
434 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
436 atomic_long_add(diff[i], &vm_stat[i]);
443 * Update the zone counters for the current cpu.
445 * Note that refresh_cpu_vm_stats strives to only access
446 * node local memory. The per cpu pagesets on remote zones are placed
447 * in the memory local to the processor using that pageset. So the
448 * loop over all zones will access a series of cachelines local to
451 * The call to zone_page_state_add updates the cachelines with the
452 * statistics in the remote zone struct as well as the global cachelines
453 * with the global counters. These could cause remote node cache line
454 * bouncing and will have to be only done when necessary.
456 * The function returns the number of global counters updated.
458 static int refresh_cpu_vm_stats(void)
462 int global_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
465 for_each_populated_zone(zone) {
466 struct per_cpu_pageset __percpu *p = zone->pageset;
468 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
471 v = this_cpu_xchg(p->vm_stat_diff[i], 0);
474 atomic_long_add(v, &zone->vm_stat[i]);
477 /* 3 seconds idle till flush */
478 __this_cpu_write(p->expire, 3);
485 * Deal with draining the remote pageset of this
488 * Check if there are pages remaining in this pageset
489 * if not then there is nothing to expire.
491 if (!__this_cpu_read(p->expire) ||
492 !__this_cpu_read(p->pcp.count))
496 * We never drain zones local to this processor.
498 if (zone_to_nid(zone) == numa_node_id()) {
499 __this_cpu_write(p->expire, 0);
503 if (__this_cpu_dec_return(p->expire))
506 if (__this_cpu_read(p->pcp.count)) {
507 drain_zone_pages(zone, this_cpu_ptr(&p->pcp));
512 changes += fold_diff(global_diff);
517 * Fold the data for an offline cpu into the global array.
518 * There cannot be any access by the offline cpu and therefore
519 * synchronization is simplified.
521 void cpu_vm_stats_fold(int cpu)
525 int global_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
527 for_each_populated_zone(zone) {
528 struct per_cpu_pageset *p;
530 p = per_cpu_ptr(zone->pageset, cpu);
532 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
533 if (p->vm_stat_diff[i]) {
536 v = p->vm_stat_diff[i];
537 p->vm_stat_diff[i] = 0;
538 atomic_long_add(v, &zone->vm_stat[i]);
543 fold_diff(global_diff);
547 * this is only called if !populated_zone(zone), which implies no other users of
548 * pset->vm_stat_diff[] exsist.
550 void drain_zonestat(struct zone *zone, struct per_cpu_pageset *pset)
554 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
555 if (pset->vm_stat_diff[i]) {
556 int v = pset->vm_stat_diff[i];
557 pset->vm_stat_diff[i] = 0;
558 atomic_long_add(v, &zone->vm_stat[i]);
559 atomic_long_add(v, &vm_stat[i]);
566 * zonelist = the list of zones passed to the allocator
567 * z = the zone from which the allocation occurred.
569 * Must be called with interrupts disabled.
571 * When __GFP_OTHER_NODE is set assume the node of the preferred
572 * zone is the local node. This is useful for daemons who allocate
573 * memory on behalf of other processes.
575 void zone_statistics(struct zone *preferred_zone, struct zone *z, gfp_t flags)
577 if (z->zone_pgdat == preferred_zone->zone_pgdat) {
578 __inc_zone_state(z, NUMA_HIT);
580 __inc_zone_state(z, NUMA_MISS);
581 __inc_zone_state(preferred_zone, NUMA_FOREIGN);
583 if (z->node == ((flags & __GFP_OTHER_NODE) ?
584 preferred_zone->node : numa_node_id()))
585 __inc_zone_state(z, NUMA_LOCAL);
587 __inc_zone_state(z, NUMA_OTHER);
591 #ifdef CONFIG_COMPACTION
593 struct contig_page_info {
594 unsigned long free_pages;
595 unsigned long free_blocks_total;
596 unsigned long free_blocks_suitable;
600 * Calculate the number of free pages in a zone, how many contiguous
601 * pages are free and how many are large enough to satisfy an allocation of
602 * the target size. Note that this function makes no attempt to estimate
603 * how many suitable free blocks there *might* be if MOVABLE pages were
604 * migrated. Calculating that is possible, but expensive and can be
605 * figured out from userspace
607 static void fill_contig_page_info(struct zone *zone,
608 unsigned int suitable_order,
609 struct contig_page_info *info)
613 info->free_pages = 0;
614 info->free_blocks_total = 0;
615 info->free_blocks_suitable = 0;
617 for (order = 0; order < MAX_ORDER; order++) {
618 unsigned long blocks;
620 /* Count number of free blocks */
621 blocks = zone->free_area[order].nr_free;
622 info->free_blocks_total += blocks;
624 /* Count free base pages */
625 info->free_pages += blocks << order;
627 /* Count the suitable free blocks */
628 if (order >= suitable_order)
629 info->free_blocks_suitable += blocks <<
630 (order - suitable_order);
635 * A fragmentation index only makes sense if an allocation of a requested
636 * size would fail. If that is true, the fragmentation index indicates
637 * whether external fragmentation or a lack of memory was the problem.
638 * The value can be used to determine if page reclaim or compaction
641 static int __fragmentation_index(unsigned int order, struct contig_page_info *info)
643 unsigned long requested = 1UL << order;
645 if (!info->free_blocks_total)
648 /* Fragmentation index only makes sense when a request would fail */
649 if (info->free_blocks_suitable)
653 * Index is between 0 and 1 so return within 3 decimal places
655 * 0 => allocation would fail due to lack of memory
656 * 1 => allocation would fail due to fragmentation
658 return 1000 - div_u64( (1000+(div_u64(info->free_pages * 1000ULL, requested))), info->free_blocks_total);
661 /* Same as __fragmentation index but allocs contig_page_info on stack */
662 int fragmentation_index(struct zone *zone, unsigned int order)
664 struct contig_page_info info;
666 fill_contig_page_info(zone, order, &info);
667 return __fragmentation_index(order, &info);
671 #if defined(CONFIG_PROC_FS) || defined(CONFIG_COMPACTION)
672 #include <linux/proc_fs.h>
673 #include <linux/seq_file.h>
675 static char * const migratetype_names[MIGRATE_TYPES] = {
683 #ifdef CONFIG_MEMORY_ISOLATION
688 static void *frag_start(struct seq_file *m, loff_t *pos)
692 for (pgdat = first_online_pgdat();
694 pgdat = next_online_pgdat(pgdat))
700 static void *frag_next(struct seq_file *m, void *arg, loff_t *pos)
702 pg_data_t *pgdat = (pg_data_t *)arg;
705 return next_online_pgdat(pgdat);
708 static void frag_stop(struct seq_file *m, void *arg)
712 /* Walk all the zones in a node and print using a callback */
713 static void walk_zones_in_node(struct seq_file *m, pg_data_t *pgdat,
714 void (*print)(struct seq_file *m, pg_data_t *, struct zone *))
717 struct zone *node_zones = pgdat->node_zones;
720 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
721 if (!populated_zone(zone))
724 spin_lock_irqsave(&zone->lock, flags);
725 print(m, pgdat, zone);
726 spin_unlock_irqrestore(&zone->lock, flags);
731 #if defined(CONFIG_PROC_FS) || defined(CONFIG_SYSFS) || defined(CONFIG_NUMA)
732 #ifdef CONFIG_ZONE_DMA
733 #define TEXT_FOR_DMA(xx) xx "_dma",
735 #define TEXT_FOR_DMA(xx)
738 #ifdef CONFIG_ZONE_DMA32
739 #define TEXT_FOR_DMA32(xx) xx "_dma32",
741 #define TEXT_FOR_DMA32(xx)
744 #ifdef CONFIG_HIGHMEM
745 #define TEXT_FOR_HIGHMEM(xx) xx "_high",
747 #define TEXT_FOR_HIGHMEM(xx)
750 #define TEXTS_FOR_ZONES(xx) TEXT_FOR_DMA(xx) TEXT_FOR_DMA32(xx) xx "_normal", \
751 TEXT_FOR_HIGHMEM(xx) xx "_movable",
753 const char * const vmstat_text[] = {
754 /* enum zone_stat_item countes */
768 "nr_slab_reclaimable",
769 "nr_slab_unreclaimable",
770 "nr_page_table_pages",
775 "nr_vmscan_immediate_reclaim",
792 "workingset_refault",
793 "workingset_activate",
794 "workingset_nodereclaim",
795 "nr_anon_transparent_hugepages",
798 /* enum writeback_stat_item counters */
799 "nr_dirty_threshold",
800 "nr_dirty_background_threshold",
802 #ifdef CONFIG_VM_EVENT_COUNTERS
803 /* enum vm_event_item counters */
809 TEXTS_FOR_ZONES("pgalloc")
818 TEXTS_FOR_ZONES("pgrefill")
819 TEXTS_FOR_ZONES("pgsteal_kswapd")
820 TEXTS_FOR_ZONES("pgsteal_direct")
821 TEXTS_FOR_ZONES("pgscan_kswapd")
822 TEXTS_FOR_ZONES("pgscan_direct")
823 "pgscan_direct_throttle",
826 "zone_reclaim_failed",
831 "kswapd_low_wmark_hit_quickly",
832 "kswapd_high_wmark_hit_quickly",
841 #ifdef CONFIG_NUMA_BALANCING
843 "numa_huge_pte_updates",
845 "numa_hint_faults_local",
846 "numa_pages_migrated",
848 #ifdef CONFIG_MIGRATION
852 #ifdef CONFIG_COMPACTION
853 "compact_migrate_scanned",
854 "compact_free_scanned",
861 #ifdef CONFIG_HUGETLB_PAGE
862 "htlb_buddy_alloc_success",
863 "htlb_buddy_alloc_fail",
865 "unevictable_pgs_culled",
866 "unevictable_pgs_scanned",
867 "unevictable_pgs_rescued",
868 "unevictable_pgs_mlocked",
869 "unevictable_pgs_munlocked",
870 "unevictable_pgs_cleared",
871 "unevictable_pgs_stranded",
873 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
875 "thp_fault_fallback",
876 "thp_collapse_alloc",
877 "thp_collapse_alloc_failed",
879 "thp_zero_page_alloc",
880 "thp_zero_page_alloc_failed",
882 #ifdef CONFIG_MEMORY_BALLOON
885 #ifdef CONFIG_BALLOON_COMPACTION
888 #endif /* CONFIG_MEMORY_BALLOON */
889 #ifdef CONFIG_DEBUG_TLBFLUSH
891 "nr_tlb_remote_flush",
892 "nr_tlb_remote_flush_received",
893 #endif /* CONFIG_SMP */
894 "nr_tlb_local_flush_all",
895 "nr_tlb_local_flush_one",
896 #endif /* CONFIG_DEBUG_TLBFLUSH */
898 #ifdef CONFIG_DEBUG_VM_VMACACHE
899 "vmacache_find_calls",
900 "vmacache_find_hits",
902 #endif /* CONFIG_VM_EVENTS_COUNTERS */
904 #endif /* CONFIG_PROC_FS || CONFIG_SYSFS || CONFIG_NUMA */
907 #ifdef CONFIG_PROC_FS
908 static void frag_show_print(struct seq_file *m, pg_data_t *pgdat,
913 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
914 for (order = 0; order < MAX_ORDER; ++order)
915 seq_printf(m, "%6lu ", zone->free_area[order].nr_free);
920 * This walks the free areas for each zone.
922 static int frag_show(struct seq_file *m, void *arg)
924 pg_data_t *pgdat = (pg_data_t *)arg;
925 walk_zones_in_node(m, pgdat, frag_show_print);
929 static void pagetypeinfo_showfree_print(struct seq_file *m,
930 pg_data_t *pgdat, struct zone *zone)
934 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) {
935 seq_printf(m, "Node %4d, zone %8s, type %12s ",
938 migratetype_names[mtype]);
939 for (order = 0; order < MAX_ORDER; ++order) {
940 unsigned long freecount = 0;
941 struct free_area *area;
942 struct list_head *curr;
944 area = &(zone->free_area[order]);
946 list_for_each(curr, &area->free_list[mtype])
948 seq_printf(m, "%6lu ", freecount);
954 /* Print out the free pages at each order for each migatetype */
955 static int pagetypeinfo_showfree(struct seq_file *m, void *arg)
958 pg_data_t *pgdat = (pg_data_t *)arg;
961 seq_printf(m, "%-43s ", "Free pages count per migrate type at order");
962 for (order = 0; order < MAX_ORDER; ++order)
963 seq_printf(m, "%6d ", order);
966 walk_zones_in_node(m, pgdat, pagetypeinfo_showfree_print);
971 static void pagetypeinfo_showblockcount_print(struct seq_file *m,
972 pg_data_t *pgdat, struct zone *zone)
976 unsigned long start_pfn = zone->zone_start_pfn;
977 unsigned long end_pfn = zone_end_pfn(zone);
978 unsigned long count[MIGRATE_TYPES] = { 0, };
980 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
986 page = pfn_to_page(pfn);
988 /* Watch for unexpected holes punched in the memmap */
989 if (!memmap_valid_within(pfn, page, zone))
992 mtype = get_pageblock_migratetype(page);
994 if (mtype < MIGRATE_TYPES)
999 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
1000 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1001 seq_printf(m, "%12lu ", count[mtype]);
1005 /* Print out the free pages at each order for each migratetype */
1006 static int pagetypeinfo_showblockcount(struct seq_file *m, void *arg)
1009 pg_data_t *pgdat = (pg_data_t *)arg;
1011 seq_printf(m, "\n%-23s", "Number of blocks type ");
1012 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1013 seq_printf(m, "%12s ", migratetype_names[mtype]);
1015 walk_zones_in_node(m, pgdat, pagetypeinfo_showblockcount_print);
1021 * This prints out statistics in relation to grouping pages by mobility.
1022 * It is expensive to collect so do not constantly read the file.
1024 static int pagetypeinfo_show(struct seq_file *m, void *arg)
1026 pg_data_t *pgdat = (pg_data_t *)arg;
1028 /* check memoryless node */
1029 if (!node_state(pgdat->node_id, N_MEMORY))
1032 seq_printf(m, "Page block order: %d\n", pageblock_order);
1033 seq_printf(m, "Pages per block: %lu\n", pageblock_nr_pages);
1035 pagetypeinfo_showfree(m, pgdat);
1036 pagetypeinfo_showblockcount(m, pgdat);
1041 static const struct seq_operations fragmentation_op = {
1042 .start = frag_start,
1048 static int fragmentation_open(struct inode *inode, struct file *file)
1050 return seq_open(file, &fragmentation_op);
1053 static const struct file_operations fragmentation_file_operations = {
1054 .open = fragmentation_open,
1056 .llseek = seq_lseek,
1057 .release = seq_release,
1060 static const struct seq_operations pagetypeinfo_op = {
1061 .start = frag_start,
1064 .show = pagetypeinfo_show,
1067 static int pagetypeinfo_open(struct inode *inode, struct file *file)
1069 return seq_open(file, &pagetypeinfo_op);
1072 static const struct file_operations pagetypeinfo_file_ops = {
1073 .open = pagetypeinfo_open,
1075 .llseek = seq_lseek,
1076 .release = seq_release,
1079 static void zoneinfo_show_print(struct seq_file *m, pg_data_t *pgdat,
1083 seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name);
1093 zone_page_state(zone, NR_FREE_PAGES),
1094 min_wmark_pages(zone),
1095 low_wmark_pages(zone),
1096 high_wmark_pages(zone),
1097 zone_page_state(zone, NR_PAGES_SCANNED),
1098 zone->spanned_pages,
1099 zone->present_pages,
1100 zone->managed_pages);
1102 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
1103 seq_printf(m, "\n %-12s %lu", vmstat_text[i],
1104 zone_page_state(zone, i));
1107 "\n protection: (%ld",
1108 zone->lowmem_reserve[0]);
1109 for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++)
1110 seq_printf(m, ", %ld", zone->lowmem_reserve[i]);
1114 for_each_online_cpu(i) {
1115 struct per_cpu_pageset *pageset;
1117 pageset = per_cpu_ptr(zone->pageset, i);
1126 pageset->pcp.batch);
1128 seq_printf(m, "\n vm stats threshold: %d",
1129 pageset->stat_threshold);
1133 "\n all_unreclaimable: %u"
1135 "\n inactive_ratio: %u",
1136 !zone_reclaimable(zone),
1137 zone->zone_start_pfn,
1138 zone->inactive_ratio);
1143 * Output information about zones in @pgdat.
1145 static int zoneinfo_show(struct seq_file *m, void *arg)
1147 pg_data_t *pgdat = (pg_data_t *)arg;
1148 walk_zones_in_node(m, pgdat, zoneinfo_show_print);
1152 static const struct seq_operations zoneinfo_op = {
1153 .start = frag_start, /* iterate over all zones. The same as in
1157 .show = zoneinfo_show,
1160 static int zoneinfo_open(struct inode *inode, struct file *file)
1162 return seq_open(file, &zoneinfo_op);
1165 static const struct file_operations proc_zoneinfo_file_operations = {
1166 .open = zoneinfo_open,
1168 .llseek = seq_lseek,
1169 .release = seq_release,
1172 enum writeback_stat_item {
1174 NR_DIRTY_BG_THRESHOLD,
1175 NR_VM_WRITEBACK_STAT_ITEMS,
1178 static void *vmstat_start(struct seq_file *m, loff_t *pos)
1181 int i, stat_items_size;
1183 if (*pos >= ARRAY_SIZE(vmstat_text))
1185 stat_items_size = NR_VM_ZONE_STAT_ITEMS * sizeof(unsigned long) +
1186 NR_VM_WRITEBACK_STAT_ITEMS * sizeof(unsigned long);
1188 #ifdef CONFIG_VM_EVENT_COUNTERS
1189 stat_items_size += sizeof(struct vm_event_state);
1192 v = kmalloc(stat_items_size, GFP_KERNEL);
1195 return ERR_PTR(-ENOMEM);
1196 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
1197 v[i] = global_page_state(i);
1198 v += NR_VM_ZONE_STAT_ITEMS;
1200 global_dirty_limits(v + NR_DIRTY_BG_THRESHOLD,
1201 v + NR_DIRTY_THRESHOLD);
1202 v += NR_VM_WRITEBACK_STAT_ITEMS;
1204 #ifdef CONFIG_VM_EVENT_COUNTERS
1206 v[PGPGIN] /= 2; /* sectors -> kbytes */
1209 return (unsigned long *)m->private + *pos;
1212 static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos)
1215 if (*pos >= ARRAY_SIZE(vmstat_text))
1217 return (unsigned long *)m->private + *pos;
1220 static int vmstat_show(struct seq_file *m, void *arg)
1222 unsigned long *l = arg;
1223 unsigned long off = l - (unsigned long *)m->private;
1225 seq_printf(m, "%s %lu\n", vmstat_text[off], *l);
1229 static void vmstat_stop(struct seq_file *m, void *arg)
1235 static const struct seq_operations vmstat_op = {
1236 .start = vmstat_start,
1237 .next = vmstat_next,
1238 .stop = vmstat_stop,
1239 .show = vmstat_show,
1242 static int vmstat_open(struct inode *inode, struct file *file)
1244 return seq_open(file, &vmstat_op);
1247 static const struct file_operations proc_vmstat_file_operations = {
1248 .open = vmstat_open,
1250 .llseek = seq_lseek,
1251 .release = seq_release,
1253 #endif /* CONFIG_PROC_FS */
1256 static DEFINE_PER_CPU(struct delayed_work, vmstat_work);
1257 int sysctl_stat_interval __read_mostly = HZ;
1258 static cpumask_var_t cpu_stat_off;
1260 static void vmstat_update(struct work_struct *w)
1262 if (refresh_cpu_vm_stats())
1264 * Counters were updated so we expect more updates
1265 * to occur in the future. Keep on running the
1266 * update worker thread.
1268 schedule_delayed_work(this_cpu_ptr(&vmstat_work),
1269 round_jiffies_relative(sysctl_stat_interval));
1272 * We did not update any counters so the app may be in
1273 * a mode where it does not cause counter updates.
1274 * We may be uselessly running vmstat_update.
1275 * Defer the checking for differentials to the
1276 * shepherd thread on a different processor.
1280 * Shepherd work thread does not race since it never
1281 * changes the bit if its zero but the cpu
1282 * online / off line code may race if
1283 * worker threads are still allowed during
1284 * shutdown / startup.
1286 r = cpumask_test_and_set_cpu(smp_processor_id(),
1293 * Check if the diffs for a certain cpu indicate that
1294 * an update is needed.
1296 static bool need_update(int cpu)
1300 for_each_populated_zone(zone) {
1301 struct per_cpu_pageset *p = per_cpu_ptr(zone->pageset, cpu);
1303 BUILD_BUG_ON(sizeof(p->vm_stat_diff[0]) != 1);
1305 * The fast way of checking if there are any vmstat diffs.
1306 * This works because the diffs are byte sized items.
1308 if (memchr_inv(p->vm_stat_diff, 0, NR_VM_ZONE_STAT_ITEMS))
1317 * Shepherd worker thread that checks the
1318 * differentials of processors that have their worker
1319 * threads for vm statistics updates disabled because of
1322 static void vmstat_shepherd(struct work_struct *w);
1324 static DECLARE_DELAYED_WORK(shepherd, vmstat_shepherd);
1326 static void vmstat_shepherd(struct work_struct *w)
1331 /* Check processors whose vmstat worker threads have been disabled */
1332 for_each_cpu(cpu, cpu_stat_off)
1333 if (need_update(cpu) &&
1334 cpumask_test_and_clear_cpu(cpu, cpu_stat_off))
1336 schedule_delayed_work_on(cpu, &per_cpu(vmstat_work, cpu),
1337 __round_jiffies_relative(sysctl_stat_interval, cpu));
1341 schedule_delayed_work(&shepherd,
1342 round_jiffies_relative(sysctl_stat_interval));
1346 static void __init start_shepherd_timer(void)
1350 for_each_possible_cpu(cpu)
1351 INIT_DEFERRABLE_WORK(per_cpu_ptr(&vmstat_work, cpu),
1354 if (!alloc_cpumask_var(&cpu_stat_off, GFP_KERNEL))
1356 cpumask_copy(cpu_stat_off, cpu_online_mask);
1358 schedule_delayed_work(&shepherd,
1359 round_jiffies_relative(sysctl_stat_interval));
1362 static void vmstat_cpu_dead(int node)
1367 for_each_online_cpu(cpu)
1368 if (cpu_to_node(cpu) == node)
1371 node_clear_state(node, N_CPU);
1377 * Use the cpu notifier to insure that the thresholds are recalculated
1380 static int vmstat_cpuup_callback(struct notifier_block *nfb,
1381 unsigned long action,
1384 long cpu = (long)hcpu;
1388 case CPU_ONLINE_FROZEN:
1389 refresh_zone_stat_thresholds();
1390 node_set_state(cpu_to_node(cpu), N_CPU);
1391 cpumask_set_cpu(cpu, cpu_stat_off);
1393 case CPU_DOWN_PREPARE:
1394 case CPU_DOWN_PREPARE_FROZEN:
1395 cancel_delayed_work_sync(&per_cpu(vmstat_work, cpu));
1396 cpumask_clear_cpu(cpu, cpu_stat_off);
1398 case CPU_DOWN_FAILED:
1399 case CPU_DOWN_FAILED_FROZEN:
1400 cpumask_set_cpu(cpu, cpu_stat_off);
1403 case CPU_DEAD_FROZEN:
1404 refresh_zone_stat_thresholds();
1405 vmstat_cpu_dead(cpu_to_node(cpu));
1413 static struct notifier_block vmstat_notifier =
1414 { &vmstat_cpuup_callback, NULL, 0 };
1417 static int __init setup_vmstat(void)
1420 cpu_notifier_register_begin();
1421 __register_cpu_notifier(&vmstat_notifier);
1423 start_shepherd_timer();
1424 cpu_notifier_register_done();
1426 #ifdef CONFIG_PROC_FS
1427 proc_create("buddyinfo", S_IRUGO, NULL, &fragmentation_file_operations);
1428 proc_create("pagetypeinfo", S_IRUGO, NULL, &pagetypeinfo_file_ops);
1429 proc_create("vmstat", S_IRUGO, NULL, &proc_vmstat_file_operations);
1430 proc_create("zoneinfo", S_IRUGO, NULL, &proc_zoneinfo_file_operations);
1434 module_init(setup_vmstat)
1436 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)
1437 #include <linux/debugfs.h>
1441 * Return an index indicating how much of the available free memory is
1442 * unusable for an allocation of the requested size.
1444 static int unusable_free_index(unsigned int order,
1445 struct contig_page_info *info)
1447 /* No free memory is interpreted as all free memory is unusable */
1448 if (info->free_pages == 0)
1452 * Index should be a value between 0 and 1. Return a value to 3
1455 * 0 => no fragmentation
1456 * 1 => high fragmentation
1458 return div_u64((info->free_pages - (info->free_blocks_suitable << order)) * 1000ULL, info->free_pages);
1462 static void unusable_show_print(struct seq_file *m,
1463 pg_data_t *pgdat, struct zone *zone)
1467 struct contig_page_info info;
1469 seq_printf(m, "Node %d, zone %8s ",
1472 for (order = 0; order < MAX_ORDER; ++order) {
1473 fill_contig_page_info(zone, order, &info);
1474 index = unusable_free_index(order, &info);
1475 seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
1482 * Display unusable free space index
1484 * The unusable free space index measures how much of the available free
1485 * memory cannot be used to satisfy an allocation of a given size and is a
1486 * value between 0 and 1. The higher the value, the more of free memory is
1487 * unusable and by implication, the worse the external fragmentation is. This
1488 * can be expressed as a percentage by multiplying by 100.
1490 static int unusable_show(struct seq_file *m, void *arg)
1492 pg_data_t *pgdat = (pg_data_t *)arg;
1494 /* check memoryless node */
1495 if (!node_state(pgdat->node_id, N_MEMORY))
1498 walk_zones_in_node(m, pgdat, unusable_show_print);
1503 static const struct seq_operations unusable_op = {
1504 .start = frag_start,
1507 .show = unusable_show,
1510 static int unusable_open(struct inode *inode, struct file *file)
1512 return seq_open(file, &unusable_op);
1515 static const struct file_operations unusable_file_ops = {
1516 .open = unusable_open,
1518 .llseek = seq_lseek,
1519 .release = seq_release,
1522 static void extfrag_show_print(struct seq_file *m,
1523 pg_data_t *pgdat, struct zone *zone)
1528 /* Alloc on stack as interrupts are disabled for zone walk */
1529 struct contig_page_info info;
1531 seq_printf(m, "Node %d, zone %8s ",
1534 for (order = 0; order < MAX_ORDER; ++order) {
1535 fill_contig_page_info(zone, order, &info);
1536 index = __fragmentation_index(order, &info);
1537 seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
1544 * Display fragmentation index for orders that allocations would fail for
1546 static int extfrag_show(struct seq_file *m, void *arg)
1548 pg_data_t *pgdat = (pg_data_t *)arg;
1550 walk_zones_in_node(m, pgdat, extfrag_show_print);
1555 static const struct seq_operations extfrag_op = {
1556 .start = frag_start,
1559 .show = extfrag_show,
1562 static int extfrag_open(struct inode *inode, struct file *file)
1564 return seq_open(file, &extfrag_op);
1567 static const struct file_operations extfrag_file_ops = {
1568 .open = extfrag_open,
1570 .llseek = seq_lseek,
1571 .release = seq_release,
1574 static int __init extfrag_debug_init(void)
1576 struct dentry *extfrag_debug_root;
1578 extfrag_debug_root = debugfs_create_dir("extfrag", NULL);
1579 if (!extfrag_debug_root)
1582 if (!debugfs_create_file("unusable_index", 0444,
1583 extfrag_debug_root, NULL, &unusable_file_ops))
1586 if (!debugfs_create_file("extfrag_index", 0444,
1587 extfrag_debug_root, NULL, &extfrag_file_ops))
1592 debugfs_remove_recursive(extfrag_debug_root);
1596 module_init(extfrag_debug_init);