OSDN Git Service

zsmalloc: separate free_zspage from putback_zspage
[uclinux-h8/linux.git] / mm / zsmalloc.c
1 /*
2  * zsmalloc memory allocator
3  *
4  * Copyright (C) 2011  Nitin Gupta
5  * Copyright (C) 2012, 2013 Minchan Kim
6  *
7  * This code is released using a dual license strategy: BSD/GPL
8  * You can choose the license that better fits your requirements.
9  *
10  * Released under the terms of 3-clause BSD License
11  * Released under the terms of GNU General Public License Version 2.0
12  */
13
14 /*
15  * Following is how we use various fields and flags of underlying
16  * struct page(s) to form a zspage.
17  *
18  * Usage of struct page fields:
19  *      page->private: points to zspage
20  *      page->index: offset of the first object starting in this page.
21  *              For the first page, this is always 0, so we use this field
22  *              to store handle for huge object.
23  *      page->next: links together all component pages of a zspage
24  *
25  * Usage of struct page flags:
26  *      PG_private: identifies the first component page
27  *      PG_private2: identifies the last component page
28  *
29  */
30
31 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
32
33 #include <linux/module.h>
34 #include <linux/kernel.h>
35 #include <linux/sched.h>
36 #include <linux/bitops.h>
37 #include <linux/errno.h>
38 #include <linux/highmem.h>
39 #include <linux/string.h>
40 #include <linux/slab.h>
41 #include <asm/tlbflush.h>
42 #include <asm/pgtable.h>
43 #include <linux/cpumask.h>
44 #include <linux/cpu.h>
45 #include <linux/vmalloc.h>
46 #include <linux/preempt.h>
47 #include <linux/spinlock.h>
48 #include <linux/types.h>
49 #include <linux/debugfs.h>
50 #include <linux/zsmalloc.h>
51 #include <linux/zpool.h>
52
53 /*
54  * This must be power of 2 and greater than of equal to sizeof(link_free).
55  * These two conditions ensure that any 'struct link_free' itself doesn't
56  * span more than 1 page which avoids complex case of mapping 2 pages simply
57  * to restore link_free pointer values.
58  */
59 #define ZS_ALIGN                8
60
61 /*
62  * A single 'zspage' is composed of up to 2^N discontiguous 0-order (single)
63  * pages. ZS_MAX_ZSPAGE_ORDER defines upper limit on N.
64  */
65 #define ZS_MAX_ZSPAGE_ORDER 2
66 #define ZS_MAX_PAGES_PER_ZSPAGE (_AC(1, UL) << ZS_MAX_ZSPAGE_ORDER)
67
68 #define ZS_HANDLE_SIZE (sizeof(unsigned long))
69
70 /*
71  * Object location (<PFN>, <obj_idx>) is encoded as
72  * as single (unsigned long) handle value.
73  *
74  * Note that object index <obj_idx> is relative to system
75  * page <PFN> it is stored in, so for each sub-page belonging
76  * to a zspage, obj_idx starts with 0.
77  *
78  * This is made more complicated by various memory models and PAE.
79  */
80
81 #ifndef MAX_PHYSMEM_BITS
82 #ifdef CONFIG_HIGHMEM64G
83 #define MAX_PHYSMEM_BITS 36
84 #else /* !CONFIG_HIGHMEM64G */
85 /*
86  * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just
87  * be PAGE_SHIFT
88  */
89 #define MAX_PHYSMEM_BITS BITS_PER_LONG
90 #endif
91 #endif
92 #define _PFN_BITS               (MAX_PHYSMEM_BITS - PAGE_SHIFT)
93
94 /*
95  * Memory for allocating for handle keeps object position by
96  * encoding <page, obj_idx> and the encoded value has a room
97  * in least bit(ie, look at obj_to_location).
98  * We use the bit to synchronize between object access by
99  * user and migration.
100  */
101 #define HANDLE_PIN_BIT  0
102
103 /*
104  * Head in allocated object should have OBJ_ALLOCATED_TAG
105  * to identify the object was allocated or not.
106  * It's okay to add the status bit in the least bit because
107  * header keeps handle which is 4byte-aligned address so we
108  * have room for two bit at least.
109  */
110 #define OBJ_ALLOCATED_TAG 1
111 #define OBJ_TAG_BITS 1
112 #define OBJ_INDEX_BITS  (BITS_PER_LONG - _PFN_BITS - OBJ_TAG_BITS)
113 #define OBJ_INDEX_MASK  ((_AC(1, UL) << OBJ_INDEX_BITS) - 1)
114
115 #define MAX(a, b) ((a) >= (b) ? (a) : (b))
116 /* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */
117 #define ZS_MIN_ALLOC_SIZE \
118         MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS))
119 /* each chunk includes extra space to keep handle */
120 #define ZS_MAX_ALLOC_SIZE       PAGE_SIZE
121
122 /*
123  * On systems with 4K page size, this gives 255 size classes! There is a
124  * trader-off here:
125  *  - Large number of size classes is potentially wasteful as free page are
126  *    spread across these classes
127  *  - Small number of size classes causes large internal fragmentation
128  *  - Probably its better to use specific size classes (empirically
129  *    determined). NOTE: all those class sizes must be set as multiple of
130  *    ZS_ALIGN to make sure link_free itself never has to span 2 pages.
131  *
132  *  ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN
133  *  (reason above)
134  */
135 #define ZS_SIZE_CLASS_DELTA     (PAGE_SIZE >> CLASS_BITS)
136
137 /*
138  * We do not maintain any list for completely empty or full pages
139  */
140 enum fullness_group {
141         ZS_ALMOST_FULL,
142         ZS_ALMOST_EMPTY,
143         ZS_EMPTY,
144         ZS_FULL
145 };
146
147 enum zs_stat_type {
148         OBJ_ALLOCATED,
149         OBJ_USED,
150         CLASS_ALMOST_FULL,
151         CLASS_ALMOST_EMPTY,
152 };
153
154 #ifdef CONFIG_ZSMALLOC_STAT
155 #define NR_ZS_STAT_TYPE (CLASS_ALMOST_EMPTY + 1)
156 #else
157 #define NR_ZS_STAT_TYPE (OBJ_USED + 1)
158 #endif
159
160 struct zs_size_stat {
161         unsigned long objs[NR_ZS_STAT_TYPE];
162 };
163
164 #ifdef CONFIG_ZSMALLOC_STAT
165 static struct dentry *zs_stat_root;
166 #endif
167
168 /*
169  * number of size_classes
170  */
171 static int zs_size_classes;
172
173 /*
174  * We assign a page to ZS_ALMOST_EMPTY fullness group when:
175  *      n <= N / f, where
176  * n = number of allocated objects
177  * N = total number of objects zspage can store
178  * f = fullness_threshold_frac
179  *
180  * Similarly, we assign zspage to:
181  *      ZS_ALMOST_FULL  when n > N / f
182  *      ZS_EMPTY        when n == 0
183  *      ZS_FULL         when n == N
184  *
185  * (see: fix_fullness_group())
186  */
187 static const int fullness_threshold_frac = 4;
188
189 struct size_class {
190         spinlock_t lock;
191         struct list_head fullness_list[2];
192         /*
193          * Size of objects stored in this class. Must be multiple
194          * of ZS_ALIGN.
195          */
196         int size;
197         int objs_per_zspage;
198         unsigned int index;
199
200         struct zs_size_stat stats;
201
202         /* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */
203         int pages_per_zspage;
204         /* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */
205         bool huge;
206 };
207
208 /*
209  * Placed within free objects to form a singly linked list.
210  * For every zspage, zspage->freeobj gives head of this list.
211  *
212  * This must be power of 2 and less than or equal to ZS_ALIGN
213  */
214 struct link_free {
215         union {
216                 /*
217                  * Position of next free chunk (encodes <PFN, obj_idx>)
218                  * It's valid for non-allocated object
219                  */
220                 void *next;
221                 /*
222                  * Handle of allocated object.
223                  */
224                 unsigned long handle;
225         };
226 };
227
228 struct zs_pool {
229         const char *name;
230
231         struct size_class **size_class;
232         struct kmem_cache *handle_cachep;
233         struct kmem_cache *zspage_cachep;
234
235         atomic_long_t pages_allocated;
236
237         struct zs_pool_stats stats;
238
239         /* Compact classes */
240         struct shrinker shrinker;
241         /*
242          * To signify that register_shrinker() was successful
243          * and unregister_shrinker() will not Oops.
244          */
245         bool shrinker_enabled;
246 #ifdef CONFIG_ZSMALLOC_STAT
247         struct dentry *stat_dentry;
248 #endif
249 };
250
251 /*
252  * A zspage's class index and fullness group
253  * are encoded in its (first)page->mapping
254  */
255 #define FULLNESS_BITS   2
256 #define CLASS_BITS      8
257
258 struct zspage {
259         struct {
260                 unsigned int fullness:FULLNESS_BITS;
261                 unsigned int class:CLASS_BITS;
262         };
263         unsigned int inuse;
264         void *freeobj;
265         struct page *first_page;
266         struct list_head list; /* fullness list */
267 };
268
269 struct mapping_area {
270 #ifdef CONFIG_PGTABLE_MAPPING
271         struct vm_struct *vm; /* vm area for mapping object that span pages */
272 #else
273         char *vm_buf; /* copy buffer for objects that span pages */
274 #endif
275         char *vm_addr; /* address of kmap_atomic()'ed pages */
276         enum zs_mapmode vm_mm; /* mapping mode */
277 };
278
279 static int create_cache(struct zs_pool *pool)
280 {
281         pool->handle_cachep = kmem_cache_create("zs_handle", ZS_HANDLE_SIZE,
282                                         0, 0, NULL);
283         if (!pool->handle_cachep)
284                 return 1;
285
286         pool->zspage_cachep = kmem_cache_create("zspage", sizeof(struct zspage),
287                                         0, 0, NULL);
288         if (!pool->zspage_cachep) {
289                 kmem_cache_destroy(pool->handle_cachep);
290                 pool->handle_cachep = NULL;
291                 return 1;
292         }
293
294         return 0;
295 }
296
297 static void destroy_cache(struct zs_pool *pool)
298 {
299         kmem_cache_destroy(pool->handle_cachep);
300         kmem_cache_destroy(pool->zspage_cachep);
301 }
302
303 static unsigned long cache_alloc_handle(struct zs_pool *pool, gfp_t gfp)
304 {
305         return (unsigned long)kmem_cache_alloc(pool->handle_cachep,
306                         gfp & ~__GFP_HIGHMEM);
307 }
308
309 static void cache_free_handle(struct zs_pool *pool, unsigned long handle)
310 {
311         kmem_cache_free(pool->handle_cachep, (void *)handle);
312 }
313
314 static struct zspage *cache_alloc_zspage(struct zs_pool *pool, gfp_t flags)
315 {
316         return kmem_cache_alloc(pool->zspage_cachep, flags & ~__GFP_HIGHMEM);
317 };
318
319 static void cache_free_zspage(struct zs_pool *pool, struct zspage *zspage)
320 {
321         kmem_cache_free(pool->zspage_cachep, zspage);
322 }
323
324 static void record_obj(unsigned long handle, unsigned long obj)
325 {
326         /*
327          * lsb of @obj represents handle lock while other bits
328          * represent object value the handle is pointing so
329          * updating shouldn't do store tearing.
330          */
331         WRITE_ONCE(*(unsigned long *)handle, obj);
332 }
333
334 /* zpool driver */
335
336 #ifdef CONFIG_ZPOOL
337
338 static void *zs_zpool_create(const char *name, gfp_t gfp,
339                              const struct zpool_ops *zpool_ops,
340                              struct zpool *zpool)
341 {
342         /*
343          * Ignore global gfp flags: zs_malloc() may be invoked from
344          * different contexts and its caller must provide a valid
345          * gfp mask.
346          */
347         return zs_create_pool(name);
348 }
349
350 static void zs_zpool_destroy(void *pool)
351 {
352         zs_destroy_pool(pool);
353 }
354
355 static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp,
356                         unsigned long *handle)
357 {
358         *handle = zs_malloc(pool, size, gfp);
359         return *handle ? 0 : -1;
360 }
361 static void zs_zpool_free(void *pool, unsigned long handle)
362 {
363         zs_free(pool, handle);
364 }
365
366 static int zs_zpool_shrink(void *pool, unsigned int pages,
367                         unsigned int *reclaimed)
368 {
369         return -EINVAL;
370 }
371
372 static void *zs_zpool_map(void *pool, unsigned long handle,
373                         enum zpool_mapmode mm)
374 {
375         enum zs_mapmode zs_mm;
376
377         switch (mm) {
378         case ZPOOL_MM_RO:
379                 zs_mm = ZS_MM_RO;
380                 break;
381         case ZPOOL_MM_WO:
382                 zs_mm = ZS_MM_WO;
383                 break;
384         case ZPOOL_MM_RW: /* fallthru */
385         default:
386                 zs_mm = ZS_MM_RW;
387                 break;
388         }
389
390         return zs_map_object(pool, handle, zs_mm);
391 }
392 static void zs_zpool_unmap(void *pool, unsigned long handle)
393 {
394         zs_unmap_object(pool, handle);
395 }
396
397 static u64 zs_zpool_total_size(void *pool)
398 {
399         return zs_get_total_pages(pool) << PAGE_SHIFT;
400 }
401
402 static struct zpool_driver zs_zpool_driver = {
403         .type =         "zsmalloc",
404         .owner =        THIS_MODULE,
405         .create =       zs_zpool_create,
406         .destroy =      zs_zpool_destroy,
407         .malloc =       zs_zpool_malloc,
408         .free =         zs_zpool_free,
409         .shrink =       zs_zpool_shrink,
410         .map =          zs_zpool_map,
411         .unmap =        zs_zpool_unmap,
412         .total_size =   zs_zpool_total_size,
413 };
414
415 MODULE_ALIAS("zpool-zsmalloc");
416 #endif /* CONFIG_ZPOOL */
417
418 static unsigned int get_maxobj_per_zspage(int size, int pages_per_zspage)
419 {
420         return pages_per_zspage * PAGE_SIZE / size;
421 }
422
423 /* per-cpu VM mapping areas for zspage accesses that cross page boundaries */
424 static DEFINE_PER_CPU(struct mapping_area, zs_map_area);
425
426 static int is_first_page(struct page *page)
427 {
428         return PagePrivate(page);
429 }
430
431 static inline int get_zspage_inuse(struct zspage *zspage)
432 {
433         return zspage->inuse;
434 }
435
436 static inline void set_zspage_inuse(struct zspage *zspage, int val)
437 {
438         zspage->inuse = val;
439 }
440
441 static inline void mod_zspage_inuse(struct zspage *zspage, int val)
442 {
443         zspage->inuse += val;
444 }
445
446 static inline int get_first_obj_offset(struct page *page)
447 {
448         if (is_first_page(page))
449                 return 0;
450
451         return page->index;
452 }
453
454 static inline void set_first_obj_offset(struct page *page, int offset)
455 {
456         if (is_first_page(page))
457                 return;
458
459         page->index = offset;
460 }
461
462 static inline unsigned long get_freeobj(struct zspage *zspage)
463 {
464         return (unsigned long)zspage->freeobj;
465 }
466
467 static inline void set_freeobj(struct zspage *zspage, unsigned long obj)
468 {
469         zspage->freeobj = (void *)obj;
470 }
471
472 static void get_zspage_mapping(struct zspage *zspage,
473                                 unsigned int *class_idx,
474                                 enum fullness_group *fullness)
475 {
476         *fullness = zspage->fullness;
477         *class_idx = zspage->class;
478 }
479
480 static void set_zspage_mapping(struct zspage *zspage,
481                                 unsigned int class_idx,
482                                 enum fullness_group fullness)
483 {
484         zspage->class = class_idx;
485         zspage->fullness = fullness;
486 }
487
488 /*
489  * zsmalloc divides the pool into various size classes where each
490  * class maintains a list of zspages where each zspage is divided
491  * into equal sized chunks. Each allocation falls into one of these
492  * classes depending on its size. This function returns index of the
493  * size class which has chunk size big enough to hold the give size.
494  */
495 static int get_size_class_index(int size)
496 {
497         int idx = 0;
498
499         if (likely(size > ZS_MIN_ALLOC_SIZE))
500                 idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE,
501                                 ZS_SIZE_CLASS_DELTA);
502
503         return min(zs_size_classes - 1, idx);
504 }
505
506 static inline void zs_stat_inc(struct size_class *class,
507                                 enum zs_stat_type type, unsigned long cnt)
508 {
509         if (type < NR_ZS_STAT_TYPE)
510                 class->stats.objs[type] += cnt;
511 }
512
513 static inline void zs_stat_dec(struct size_class *class,
514                                 enum zs_stat_type type, unsigned long cnt)
515 {
516         if (type < NR_ZS_STAT_TYPE)
517                 class->stats.objs[type] -= cnt;
518 }
519
520 static inline unsigned long zs_stat_get(struct size_class *class,
521                                 enum zs_stat_type type)
522 {
523         if (type < NR_ZS_STAT_TYPE)
524                 return class->stats.objs[type];
525         return 0;
526 }
527
528 #ifdef CONFIG_ZSMALLOC_STAT
529
530 static void __init zs_stat_init(void)
531 {
532         if (!debugfs_initialized()) {
533                 pr_warn("debugfs not available, stat dir not created\n");
534                 return;
535         }
536
537         zs_stat_root = debugfs_create_dir("zsmalloc", NULL);
538         if (!zs_stat_root)
539                 pr_warn("debugfs 'zsmalloc' stat dir creation failed\n");
540 }
541
542 static void __exit zs_stat_exit(void)
543 {
544         debugfs_remove_recursive(zs_stat_root);
545 }
546
547 static unsigned long zs_can_compact(struct size_class *class);
548
549 static int zs_stats_size_show(struct seq_file *s, void *v)
550 {
551         int i;
552         struct zs_pool *pool = s->private;
553         struct size_class *class;
554         int objs_per_zspage;
555         unsigned long class_almost_full, class_almost_empty;
556         unsigned long obj_allocated, obj_used, pages_used, freeable;
557         unsigned long total_class_almost_full = 0, total_class_almost_empty = 0;
558         unsigned long total_objs = 0, total_used_objs = 0, total_pages = 0;
559         unsigned long total_freeable = 0;
560
561         seq_printf(s, " %5s %5s %11s %12s %13s %10s %10s %16s %8s\n",
562                         "class", "size", "almost_full", "almost_empty",
563                         "obj_allocated", "obj_used", "pages_used",
564                         "pages_per_zspage", "freeable");
565
566         for (i = 0; i < zs_size_classes; i++) {
567                 class = pool->size_class[i];
568
569                 if (class->index != i)
570                         continue;
571
572                 spin_lock(&class->lock);
573                 class_almost_full = zs_stat_get(class, CLASS_ALMOST_FULL);
574                 class_almost_empty = zs_stat_get(class, CLASS_ALMOST_EMPTY);
575                 obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
576                 obj_used = zs_stat_get(class, OBJ_USED);
577                 freeable = zs_can_compact(class);
578                 spin_unlock(&class->lock);
579
580                 objs_per_zspage = get_maxobj_per_zspage(class->size,
581                                 class->pages_per_zspage);
582                 pages_used = obj_allocated / objs_per_zspage *
583                                 class->pages_per_zspage;
584
585                 seq_printf(s, " %5u %5u %11lu %12lu %13lu"
586                                 " %10lu %10lu %16d %8lu\n",
587                         i, class->size, class_almost_full, class_almost_empty,
588                         obj_allocated, obj_used, pages_used,
589                         class->pages_per_zspage, freeable);
590
591                 total_class_almost_full += class_almost_full;
592                 total_class_almost_empty += class_almost_empty;
593                 total_objs += obj_allocated;
594                 total_used_objs += obj_used;
595                 total_pages += pages_used;
596                 total_freeable += freeable;
597         }
598
599         seq_puts(s, "\n");
600         seq_printf(s, " %5s %5s %11lu %12lu %13lu %10lu %10lu %16s %8lu\n",
601                         "Total", "", total_class_almost_full,
602                         total_class_almost_empty, total_objs,
603                         total_used_objs, total_pages, "", total_freeable);
604
605         return 0;
606 }
607
608 static int zs_stats_size_open(struct inode *inode, struct file *file)
609 {
610         return single_open(file, zs_stats_size_show, inode->i_private);
611 }
612
613 static const struct file_operations zs_stat_size_ops = {
614         .open           = zs_stats_size_open,
615         .read           = seq_read,
616         .llseek         = seq_lseek,
617         .release        = single_release,
618 };
619
620 static void zs_pool_stat_create(struct zs_pool *pool, const char *name)
621 {
622         struct dentry *entry;
623
624         if (!zs_stat_root) {
625                 pr_warn("no root stat dir, not creating <%s> stat dir\n", name);
626                 return;
627         }
628
629         entry = debugfs_create_dir(name, zs_stat_root);
630         if (!entry) {
631                 pr_warn("debugfs dir <%s> creation failed\n", name);
632                 return;
633         }
634         pool->stat_dentry = entry;
635
636         entry = debugfs_create_file("classes", S_IFREG | S_IRUGO,
637                         pool->stat_dentry, pool, &zs_stat_size_ops);
638         if (!entry) {
639                 pr_warn("%s: debugfs file entry <%s> creation failed\n",
640                                 name, "classes");
641                 debugfs_remove_recursive(pool->stat_dentry);
642                 pool->stat_dentry = NULL;
643         }
644 }
645
646 static void zs_pool_stat_destroy(struct zs_pool *pool)
647 {
648         debugfs_remove_recursive(pool->stat_dentry);
649 }
650
651 #else /* CONFIG_ZSMALLOC_STAT */
652 static void __init zs_stat_init(void)
653 {
654 }
655
656 static void __exit zs_stat_exit(void)
657 {
658 }
659
660 static inline void zs_pool_stat_create(struct zs_pool *pool, const char *name)
661 {
662 }
663
664 static inline void zs_pool_stat_destroy(struct zs_pool *pool)
665 {
666 }
667 #endif
668
669 /*
670  * For each size class, zspages are divided into different groups
671  * depending on how "full" they are. This was done so that we could
672  * easily find empty or nearly empty zspages when we try to shrink
673  * the pool (not yet implemented). This function returns fullness
674  * status of the given page.
675  */
676 static enum fullness_group get_fullness_group(struct size_class *class,
677                                                 struct zspage *zspage)
678 {
679         int inuse, objs_per_zspage;
680         enum fullness_group fg;
681
682         inuse = get_zspage_inuse(zspage);
683         objs_per_zspage = class->objs_per_zspage;
684
685         if (inuse == 0)
686                 fg = ZS_EMPTY;
687         else if (inuse == objs_per_zspage)
688                 fg = ZS_FULL;
689         else if (inuse <= 3 * objs_per_zspage / fullness_threshold_frac)
690                 fg = ZS_ALMOST_EMPTY;
691         else
692                 fg = ZS_ALMOST_FULL;
693
694         return fg;
695 }
696
697 /*
698  * Each size class maintains various freelists and zspages are assigned
699  * to one of these freelists based on the number of live objects they
700  * have. This functions inserts the given zspage into the freelist
701  * identified by <class, fullness_group>.
702  */
703 static void insert_zspage(struct size_class *class,
704                                 struct zspage *zspage,
705                                 enum fullness_group fullness)
706 {
707         struct zspage *head;
708
709         if (fullness >= ZS_EMPTY)
710                 return;
711
712         head = list_first_entry_or_null(&class->fullness_list[fullness],
713                                         struct zspage, list);
714
715         zs_stat_inc(class, fullness == ZS_ALMOST_EMPTY ?
716                         CLASS_ALMOST_EMPTY : CLASS_ALMOST_FULL, 1);
717
718         /*
719          * We want to see more ZS_FULL pages and less almost empty/full.
720          * Put pages with higher ->inuse first.
721          */
722         if (head) {
723                 if (get_zspage_inuse(zspage) < get_zspage_inuse(head)) {
724                         list_add(&zspage->list, &head->list);
725                         return;
726                 }
727         }
728         list_add(&zspage->list, &class->fullness_list[fullness]);
729 }
730
731 /*
732  * This function removes the given zspage from the freelist identified
733  * by <class, fullness_group>.
734  */
735 static void remove_zspage(struct size_class *class,
736                                 struct zspage *zspage,
737                                 enum fullness_group fullness)
738 {
739         if (fullness >= ZS_EMPTY)
740                 return;
741
742         VM_BUG_ON(list_empty(&class->fullness_list[fullness]));
743
744         list_del_init(&zspage->list);
745         zs_stat_dec(class, fullness == ZS_ALMOST_EMPTY ?
746                         CLASS_ALMOST_EMPTY : CLASS_ALMOST_FULL, 1);
747 }
748
749 /*
750  * Each size class maintains zspages in different fullness groups depending
751  * on the number of live objects they contain. When allocating or freeing
752  * objects, the fullness status of the page can change, say, from ALMOST_FULL
753  * to ALMOST_EMPTY when freeing an object. This function checks if such
754  * a status change has occurred for the given page and accordingly moves the
755  * page from the freelist of the old fullness group to that of the new
756  * fullness group.
757  */
758 static enum fullness_group fix_fullness_group(struct size_class *class,
759                                                 struct zspage *zspage)
760 {
761         int class_idx;
762         enum fullness_group currfg, newfg;
763
764         get_zspage_mapping(zspage, &class_idx, &currfg);
765         newfg = get_fullness_group(class, zspage);
766         if (newfg == currfg)
767                 goto out;
768
769         remove_zspage(class, zspage, currfg);
770         insert_zspage(class, zspage, newfg);
771         set_zspage_mapping(zspage, class_idx, newfg);
772
773 out:
774         return newfg;
775 }
776
777 /*
778  * We have to decide on how many pages to link together
779  * to form a zspage for each size class. This is important
780  * to reduce wastage due to unusable space left at end of
781  * each zspage which is given as:
782  *     wastage = Zp % class_size
783  *     usage = Zp - wastage
784  * where Zp = zspage size = k * PAGE_SIZE where k = 1, 2, ...
785  *
786  * For example, for size class of 3/8 * PAGE_SIZE, we should
787  * link together 3 PAGE_SIZE sized pages to form a zspage
788  * since then we can perfectly fit in 8 such objects.
789  */
790 static int get_pages_per_zspage(int class_size)
791 {
792         int i, max_usedpc = 0;
793         /* zspage order which gives maximum used size per KB */
794         int max_usedpc_order = 1;
795
796         for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) {
797                 int zspage_size;
798                 int waste, usedpc;
799
800                 zspage_size = i * PAGE_SIZE;
801                 waste = zspage_size % class_size;
802                 usedpc = (zspage_size - waste) * 100 / zspage_size;
803
804                 if (usedpc > max_usedpc) {
805                         max_usedpc = usedpc;
806                         max_usedpc_order = i;
807                 }
808         }
809
810         return max_usedpc_order;
811 }
812
813
814 static struct zspage *get_zspage(struct page *page)
815 {
816         return (struct zspage *)page->private;
817 }
818
819 static struct page *get_next_page(struct page *page)
820 {
821         return page->next;
822 }
823
824 /*
825  * Encode <page, obj_idx> as a single handle value.
826  * We use the least bit of handle for tagging.
827  */
828 static void *location_to_obj(struct page *page, unsigned long obj_idx)
829 {
830         unsigned long obj;
831
832         if (!page) {
833                 VM_BUG_ON(obj_idx);
834                 return NULL;
835         }
836
837         obj = page_to_pfn(page) << OBJ_INDEX_BITS;
838         obj |= ((obj_idx) & OBJ_INDEX_MASK);
839         obj <<= OBJ_TAG_BITS;
840
841         return (void *)obj;
842 }
843
844 /*
845  * Decode <page, obj_idx> pair from the given object handle. We adjust the
846  * decoded obj_idx back to its original value since it was adjusted in
847  * location_to_obj().
848  */
849 static void obj_to_location(unsigned long obj, struct page **page,
850                                 unsigned long *obj_idx)
851 {
852         obj >>= OBJ_TAG_BITS;
853         *page = pfn_to_page(obj >> OBJ_INDEX_BITS);
854         *obj_idx = (obj & OBJ_INDEX_MASK);
855 }
856
857 static unsigned long handle_to_obj(unsigned long handle)
858 {
859         return *(unsigned long *)handle;
860 }
861
862 static unsigned long obj_to_head(struct size_class *class, struct page *page,
863                         void *obj)
864 {
865         if (class->huge) {
866                 VM_BUG_ON_PAGE(!is_first_page(page), page);
867                 return page->index;
868         } else
869                 return *(unsigned long *)obj;
870 }
871
872 static unsigned long obj_idx_to_offset(struct page *page,
873                                 unsigned long obj_idx, int class_size)
874 {
875         unsigned long off;
876
877         off = get_first_obj_offset(page);
878
879         return off + obj_idx * class_size;
880 }
881
882 static inline int trypin_tag(unsigned long handle)
883 {
884         return bit_spin_trylock(HANDLE_PIN_BIT, (unsigned long *)handle);
885 }
886
887 static void pin_tag(unsigned long handle)
888 {
889         bit_spin_lock(HANDLE_PIN_BIT, (unsigned long *)handle);
890 }
891
892 static void unpin_tag(unsigned long handle)
893 {
894         bit_spin_unlock(HANDLE_PIN_BIT, (unsigned long *)handle);
895 }
896
897 static void reset_page(struct page *page)
898 {
899         clear_bit(PG_private, &page->flags);
900         clear_bit(PG_private_2, &page->flags);
901         set_page_private(page, 0);
902         page->index = 0;
903 }
904
905 static void free_zspage(struct zs_pool *pool, struct zspage *zspage)
906 {
907         struct page *page, *next;
908
909         VM_BUG_ON(get_zspage_inuse(zspage));
910
911         next = page = zspage->first_page;
912         do {
913                 next = page->next;
914                 reset_page(page);
915                 put_page(page);
916                 page = next;
917         } while (page != NULL);
918
919         cache_free_zspage(pool, zspage);
920 }
921
922 /* Initialize a newly allocated zspage */
923 static void init_zspage(struct size_class *class, struct zspage *zspage)
924 {
925         unsigned long off = 0;
926         struct page *page = zspage->first_page;
927
928         while (page) {
929                 struct page *next_page;
930                 struct link_free *link;
931                 unsigned int i = 1;
932                 void *vaddr;
933
934                 set_first_obj_offset(page, off);
935
936                 vaddr = kmap_atomic(page);
937                 link = (struct link_free *)vaddr + off / sizeof(*link);
938
939                 while ((off += class->size) < PAGE_SIZE) {
940                         link->next = location_to_obj(page, i++);
941                         link += class->size / sizeof(*link);
942                 }
943
944                 /*
945                  * We now come to the last (full or partial) object on this
946                  * page, which must point to the first object on the next
947                  * page (if present)
948                  */
949                 next_page = get_next_page(page);
950                 link->next = location_to_obj(next_page, 0);
951                 kunmap_atomic(vaddr);
952                 page = next_page;
953                 off %= PAGE_SIZE;
954         }
955
956         set_freeobj(zspage,
957                 (unsigned long)location_to_obj(zspage->first_page, 0));
958 }
959
960 static void create_page_chain(struct zspage *zspage, struct page *pages[],
961                                 int nr_pages)
962 {
963         int i;
964         struct page *page;
965         struct page *prev_page = NULL;
966
967         /*
968          * Allocate individual pages and link them together as:
969          * 1. all pages are linked together using page->next
970          * 2. each sub-page point to zspage using page->private
971          *
972          * we set PG_private to identify the first page (i.e. no other sub-page
973          * has this flag set) and PG_private_2 to identify the last page.
974          */
975         for (i = 0; i < nr_pages; i++) {
976                 page = pages[i];
977                 set_page_private(page, (unsigned long)zspage);
978                 if (i == 0) {
979                         zspage->first_page = page;
980                         SetPagePrivate(page);
981                 } else {
982                         prev_page->next = page;
983                 }
984                 if (i == nr_pages - 1) {
985                         SetPagePrivate2(page);
986                         page->next = NULL;
987                 }
988                 prev_page = page;
989         }
990 }
991
992 /*
993  * Allocate a zspage for the given size class
994  */
995 static struct zspage *alloc_zspage(struct zs_pool *pool,
996                                         struct size_class *class,
997                                         gfp_t gfp)
998 {
999         int i;
1000         struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE];
1001         struct zspage *zspage = cache_alloc_zspage(pool, gfp);
1002
1003         if (!zspage)
1004                 return NULL;
1005
1006         memset(zspage, 0, sizeof(struct zspage));
1007
1008         for (i = 0; i < class->pages_per_zspage; i++) {
1009                 struct page *page;
1010
1011                 page = alloc_page(gfp);
1012                 if (!page) {
1013                         while (--i >= 0)
1014                                 __free_page(pages[i]);
1015                         cache_free_zspage(pool, zspage);
1016                         return NULL;
1017                 }
1018                 pages[i] = page;
1019         }
1020
1021         create_page_chain(zspage, pages, class->pages_per_zspage);
1022         init_zspage(class, zspage);
1023
1024         return zspage;
1025 }
1026
1027 static struct zspage *find_get_zspage(struct size_class *class)
1028 {
1029         int i;
1030         struct zspage *zspage;
1031
1032         for (i = ZS_ALMOST_FULL; i <= ZS_ALMOST_EMPTY; i++) {
1033                 zspage = list_first_entry_or_null(&class->fullness_list[i],
1034                                 struct zspage, list);
1035                 if (zspage)
1036                         break;
1037         }
1038
1039         return zspage;
1040 }
1041
1042 #ifdef CONFIG_PGTABLE_MAPPING
1043 static inline int __zs_cpu_up(struct mapping_area *area)
1044 {
1045         /*
1046          * Make sure we don't leak memory if a cpu UP notification
1047          * and zs_init() race and both call zs_cpu_up() on the same cpu
1048          */
1049         if (area->vm)
1050                 return 0;
1051         area->vm = alloc_vm_area(PAGE_SIZE * 2, NULL);
1052         if (!area->vm)
1053                 return -ENOMEM;
1054         return 0;
1055 }
1056
1057 static inline void __zs_cpu_down(struct mapping_area *area)
1058 {
1059         if (area->vm)
1060                 free_vm_area(area->vm);
1061         area->vm = NULL;
1062 }
1063
1064 static inline void *__zs_map_object(struct mapping_area *area,
1065                                 struct page *pages[2], int off, int size)
1066 {
1067         BUG_ON(map_vm_area(area->vm, PAGE_KERNEL, pages));
1068         area->vm_addr = area->vm->addr;
1069         return area->vm_addr + off;
1070 }
1071
1072 static inline void __zs_unmap_object(struct mapping_area *area,
1073                                 struct page *pages[2], int off, int size)
1074 {
1075         unsigned long addr = (unsigned long)area->vm_addr;
1076
1077         unmap_kernel_range(addr, PAGE_SIZE * 2);
1078 }
1079
1080 #else /* CONFIG_PGTABLE_MAPPING */
1081
1082 static inline int __zs_cpu_up(struct mapping_area *area)
1083 {
1084         /*
1085          * Make sure we don't leak memory if a cpu UP notification
1086          * and zs_init() race and both call zs_cpu_up() on the same cpu
1087          */
1088         if (area->vm_buf)
1089                 return 0;
1090         area->vm_buf = kmalloc(ZS_MAX_ALLOC_SIZE, GFP_KERNEL);
1091         if (!area->vm_buf)
1092                 return -ENOMEM;
1093         return 0;
1094 }
1095
1096 static inline void __zs_cpu_down(struct mapping_area *area)
1097 {
1098         kfree(area->vm_buf);
1099         area->vm_buf = NULL;
1100 }
1101
1102 static void *__zs_map_object(struct mapping_area *area,
1103                         struct page *pages[2], int off, int size)
1104 {
1105         int sizes[2];
1106         void *addr;
1107         char *buf = area->vm_buf;
1108
1109         /* disable page faults to match kmap_atomic() return conditions */
1110         pagefault_disable();
1111
1112         /* no read fastpath */
1113         if (area->vm_mm == ZS_MM_WO)
1114                 goto out;
1115
1116         sizes[0] = PAGE_SIZE - off;
1117         sizes[1] = size - sizes[0];
1118
1119         /* copy object to per-cpu buffer */
1120         addr = kmap_atomic(pages[0]);
1121         memcpy(buf, addr + off, sizes[0]);
1122         kunmap_atomic(addr);
1123         addr = kmap_atomic(pages[1]);
1124         memcpy(buf + sizes[0], addr, sizes[1]);
1125         kunmap_atomic(addr);
1126 out:
1127         return area->vm_buf;
1128 }
1129
1130 static void __zs_unmap_object(struct mapping_area *area,
1131                         struct page *pages[2], int off, int size)
1132 {
1133         int sizes[2];
1134         void *addr;
1135         char *buf;
1136
1137         /* no write fastpath */
1138         if (area->vm_mm == ZS_MM_RO)
1139                 goto out;
1140
1141         buf = area->vm_buf;
1142         buf = buf + ZS_HANDLE_SIZE;
1143         size -= ZS_HANDLE_SIZE;
1144         off += ZS_HANDLE_SIZE;
1145
1146         sizes[0] = PAGE_SIZE - off;
1147         sizes[1] = size - sizes[0];
1148
1149         /* copy per-cpu buffer to object */
1150         addr = kmap_atomic(pages[0]);
1151         memcpy(addr + off, buf, sizes[0]);
1152         kunmap_atomic(addr);
1153         addr = kmap_atomic(pages[1]);
1154         memcpy(addr, buf + sizes[0], sizes[1]);
1155         kunmap_atomic(addr);
1156
1157 out:
1158         /* enable page faults to match kunmap_atomic() return conditions */
1159         pagefault_enable();
1160 }
1161
1162 #endif /* CONFIG_PGTABLE_MAPPING */
1163
1164 static int zs_cpu_notifier(struct notifier_block *nb, unsigned long action,
1165                                 void *pcpu)
1166 {
1167         int ret, cpu = (long)pcpu;
1168         struct mapping_area *area;
1169
1170         switch (action) {
1171         case CPU_UP_PREPARE:
1172                 area = &per_cpu(zs_map_area, cpu);
1173                 ret = __zs_cpu_up(area);
1174                 if (ret)
1175                         return notifier_from_errno(ret);
1176                 break;
1177         case CPU_DEAD:
1178         case CPU_UP_CANCELED:
1179                 area = &per_cpu(zs_map_area, cpu);
1180                 __zs_cpu_down(area);
1181                 break;
1182         }
1183
1184         return NOTIFY_OK;
1185 }
1186
1187 static struct notifier_block zs_cpu_nb = {
1188         .notifier_call = zs_cpu_notifier
1189 };
1190
1191 static int zs_register_cpu_notifier(void)
1192 {
1193         int cpu, uninitialized_var(ret);
1194
1195         cpu_notifier_register_begin();
1196
1197         __register_cpu_notifier(&zs_cpu_nb);
1198         for_each_online_cpu(cpu) {
1199                 ret = zs_cpu_notifier(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
1200                 if (notifier_to_errno(ret))
1201                         break;
1202         }
1203
1204         cpu_notifier_register_done();
1205         return notifier_to_errno(ret);
1206 }
1207
1208 static void zs_unregister_cpu_notifier(void)
1209 {
1210         int cpu;
1211
1212         cpu_notifier_register_begin();
1213
1214         for_each_online_cpu(cpu)
1215                 zs_cpu_notifier(NULL, CPU_DEAD, (void *)(long)cpu);
1216         __unregister_cpu_notifier(&zs_cpu_nb);
1217
1218         cpu_notifier_register_done();
1219 }
1220
1221 static void init_zs_size_classes(void)
1222 {
1223         int nr;
1224
1225         nr = (ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE) / ZS_SIZE_CLASS_DELTA + 1;
1226         if ((ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE) % ZS_SIZE_CLASS_DELTA)
1227                 nr += 1;
1228
1229         zs_size_classes = nr;
1230 }
1231
1232 static bool can_merge(struct size_class *prev, int size, int pages_per_zspage)
1233 {
1234         if (prev->pages_per_zspage != pages_per_zspage)
1235                 return false;
1236
1237         if (get_maxobj_per_zspage(prev->size, prev->pages_per_zspage)
1238                 != get_maxobj_per_zspage(size, pages_per_zspage))
1239                 return false;
1240
1241         return true;
1242 }
1243
1244 static bool zspage_full(struct size_class *class, struct zspage *zspage)
1245 {
1246         return get_zspage_inuse(zspage) == class->objs_per_zspage;
1247 }
1248
1249 unsigned long zs_get_total_pages(struct zs_pool *pool)
1250 {
1251         return atomic_long_read(&pool->pages_allocated);
1252 }
1253 EXPORT_SYMBOL_GPL(zs_get_total_pages);
1254
1255 /**
1256  * zs_map_object - get address of allocated object from handle.
1257  * @pool: pool from which the object was allocated
1258  * @handle: handle returned from zs_malloc
1259  *
1260  * Before using an object allocated from zs_malloc, it must be mapped using
1261  * this function. When done with the object, it must be unmapped using
1262  * zs_unmap_object.
1263  *
1264  * Only one object can be mapped per cpu at a time. There is no protection
1265  * against nested mappings.
1266  *
1267  * This function returns with preemption and page faults disabled.
1268  */
1269 void *zs_map_object(struct zs_pool *pool, unsigned long handle,
1270                         enum zs_mapmode mm)
1271 {
1272         struct zspage *zspage;
1273         struct page *page;
1274         unsigned long obj, obj_idx, off;
1275
1276         unsigned int class_idx;
1277         enum fullness_group fg;
1278         struct size_class *class;
1279         struct mapping_area *area;
1280         struct page *pages[2];
1281         void *ret;
1282
1283         /*
1284          * Because we use per-cpu mapping areas shared among the
1285          * pools/users, we can't allow mapping in interrupt context
1286          * because it can corrupt another users mappings.
1287          */
1288         WARN_ON_ONCE(in_interrupt());
1289
1290         /* From now on, migration cannot move the object */
1291         pin_tag(handle);
1292
1293         obj = handle_to_obj(handle);
1294         obj_to_location(obj, &page, &obj_idx);
1295         zspage = get_zspage(page);
1296         get_zspage_mapping(zspage, &class_idx, &fg);
1297         class = pool->size_class[class_idx];
1298         off = obj_idx_to_offset(page, obj_idx, class->size);
1299
1300         area = &get_cpu_var(zs_map_area);
1301         area->vm_mm = mm;
1302         if (off + class->size <= PAGE_SIZE) {
1303                 /* this object is contained entirely within a page */
1304                 area->vm_addr = kmap_atomic(page);
1305                 ret = area->vm_addr + off;
1306                 goto out;
1307         }
1308
1309         /* this object spans two pages */
1310         pages[0] = page;
1311         pages[1] = get_next_page(page);
1312         BUG_ON(!pages[1]);
1313
1314         ret = __zs_map_object(area, pages, off, class->size);
1315 out:
1316         if (!class->huge)
1317                 ret += ZS_HANDLE_SIZE;
1318
1319         return ret;
1320 }
1321 EXPORT_SYMBOL_GPL(zs_map_object);
1322
1323 void zs_unmap_object(struct zs_pool *pool, unsigned long handle)
1324 {
1325         struct zspage *zspage;
1326         struct page *page;
1327         unsigned long obj, obj_idx, off;
1328
1329         unsigned int class_idx;
1330         enum fullness_group fg;
1331         struct size_class *class;
1332         struct mapping_area *area;
1333
1334         obj = handle_to_obj(handle);
1335         obj_to_location(obj, &page, &obj_idx);
1336         zspage = get_zspage(page);
1337         get_zspage_mapping(zspage, &class_idx, &fg);
1338         class = pool->size_class[class_idx];
1339         off = obj_idx_to_offset(page, obj_idx, class->size);
1340
1341         area = this_cpu_ptr(&zs_map_area);
1342         if (off + class->size <= PAGE_SIZE)
1343                 kunmap_atomic(area->vm_addr);
1344         else {
1345                 struct page *pages[2];
1346
1347                 pages[0] = page;
1348                 pages[1] = get_next_page(page);
1349                 BUG_ON(!pages[1]);
1350
1351                 __zs_unmap_object(area, pages, off, class->size);
1352         }
1353         put_cpu_var(zs_map_area);
1354         unpin_tag(handle);
1355 }
1356 EXPORT_SYMBOL_GPL(zs_unmap_object);
1357
1358 static unsigned long obj_malloc(struct size_class *class,
1359                                 struct zspage *zspage, unsigned long handle)
1360 {
1361         unsigned long obj;
1362         struct link_free *link;
1363
1364         struct page *m_page;
1365         unsigned long m_objidx, m_offset;
1366         void *vaddr;
1367
1368         handle |= OBJ_ALLOCATED_TAG;
1369         obj = get_freeobj(zspage);
1370         obj_to_location(obj, &m_page, &m_objidx);
1371         m_offset = obj_idx_to_offset(m_page, m_objidx, class->size);
1372
1373         vaddr = kmap_atomic(m_page);
1374         link = (struct link_free *)vaddr + m_offset / sizeof(*link);
1375         set_freeobj(zspage, (unsigned long)link->next);
1376         if (!class->huge)
1377                 /* record handle in the header of allocated chunk */
1378                 link->handle = handle;
1379         else
1380                 /* record handle to page->index */
1381                 zspage->first_page->index = handle;
1382
1383         kunmap_atomic(vaddr);
1384         mod_zspage_inuse(zspage, 1);
1385         zs_stat_inc(class, OBJ_USED, 1);
1386
1387         return obj;
1388 }
1389
1390
1391 /**
1392  * zs_malloc - Allocate block of given size from pool.
1393  * @pool: pool to allocate from
1394  * @size: size of block to allocate
1395  *
1396  * On success, handle to the allocated object is returned,
1397  * otherwise 0.
1398  * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail.
1399  */
1400 unsigned long zs_malloc(struct zs_pool *pool, size_t size, gfp_t gfp)
1401 {
1402         unsigned long handle, obj;
1403         struct size_class *class;
1404         struct zspage *zspage;
1405
1406         if (unlikely(!size || size > ZS_MAX_ALLOC_SIZE))
1407                 return 0;
1408
1409         handle = cache_alloc_handle(pool, gfp);
1410         if (!handle)
1411                 return 0;
1412
1413         /* extra space in chunk to keep the handle */
1414         size += ZS_HANDLE_SIZE;
1415         class = pool->size_class[get_size_class_index(size)];
1416
1417         spin_lock(&class->lock);
1418         zspage = find_get_zspage(class);
1419
1420         if (!zspage) {
1421                 spin_unlock(&class->lock);
1422                 zspage = alloc_zspage(pool, class, gfp);
1423                 if (unlikely(!zspage)) {
1424                         cache_free_handle(pool, handle);
1425                         return 0;
1426                 }
1427
1428                 set_zspage_mapping(zspage, class->index, ZS_EMPTY);
1429                 atomic_long_add(class->pages_per_zspage,
1430                                         &pool->pages_allocated);
1431
1432                 spin_lock(&class->lock);
1433                 zs_stat_inc(class, OBJ_ALLOCATED, get_maxobj_per_zspage(
1434                                 class->size, class->pages_per_zspage));
1435         }
1436
1437         obj = obj_malloc(class, zspage, handle);
1438         /* Now move the zspage to another fullness group, if required */
1439         fix_fullness_group(class, zspage);
1440         record_obj(handle, obj);
1441         spin_unlock(&class->lock);
1442
1443         return handle;
1444 }
1445 EXPORT_SYMBOL_GPL(zs_malloc);
1446
1447 static void obj_free(struct size_class *class, unsigned long obj)
1448 {
1449         struct link_free *link;
1450         struct zspage *zspage;
1451         struct page *f_page;
1452         unsigned long f_objidx, f_offset;
1453         void *vaddr;
1454
1455         obj &= ~OBJ_ALLOCATED_TAG;
1456         obj_to_location(obj, &f_page, &f_objidx);
1457         zspage = get_zspage(f_page);
1458
1459         f_offset = obj_idx_to_offset(f_page, f_objidx, class->size);
1460
1461         vaddr = kmap_atomic(f_page);
1462
1463         /* Insert this object in containing zspage's freelist */
1464         link = (struct link_free *)(vaddr + f_offset);
1465         link->next = (void *)get_freeobj(zspage);
1466         kunmap_atomic(vaddr);
1467         set_freeobj(zspage, obj);
1468         mod_zspage_inuse(zspage, -1);
1469         zs_stat_dec(class, OBJ_USED, 1);
1470 }
1471
1472 void zs_free(struct zs_pool *pool, unsigned long handle)
1473 {
1474         struct zspage *zspage;
1475         struct page *f_page;
1476         unsigned long obj, f_objidx;
1477         int class_idx;
1478         struct size_class *class;
1479         enum fullness_group fullness;
1480
1481         if (unlikely(!handle))
1482                 return;
1483
1484         pin_tag(handle);
1485         obj = handle_to_obj(handle);
1486         obj_to_location(obj, &f_page, &f_objidx);
1487         zspage = get_zspage(f_page);
1488
1489         get_zspage_mapping(zspage, &class_idx, &fullness);
1490         class = pool->size_class[class_idx];
1491
1492         spin_lock(&class->lock);
1493         obj_free(class, obj);
1494         fullness = fix_fullness_group(class, zspage);
1495         if (fullness == ZS_EMPTY) {
1496                 zs_stat_dec(class, OBJ_ALLOCATED, get_maxobj_per_zspage(
1497                                 class->size, class->pages_per_zspage));
1498                 atomic_long_sub(class->pages_per_zspage,
1499                                 &pool->pages_allocated);
1500                 free_zspage(pool, zspage);
1501         }
1502         spin_unlock(&class->lock);
1503         unpin_tag(handle);
1504
1505         cache_free_handle(pool, handle);
1506 }
1507 EXPORT_SYMBOL_GPL(zs_free);
1508
1509 static void zs_object_copy(struct size_class *class, unsigned long dst,
1510                                 unsigned long src)
1511 {
1512         struct page *s_page, *d_page;
1513         unsigned long s_objidx, d_objidx;
1514         unsigned long s_off, d_off;
1515         void *s_addr, *d_addr;
1516         int s_size, d_size, size;
1517         int written = 0;
1518
1519         s_size = d_size = class->size;
1520
1521         obj_to_location(src, &s_page, &s_objidx);
1522         obj_to_location(dst, &d_page, &d_objidx);
1523
1524         s_off = obj_idx_to_offset(s_page, s_objidx, class->size);
1525         d_off = obj_idx_to_offset(d_page, d_objidx, class->size);
1526
1527         if (s_off + class->size > PAGE_SIZE)
1528                 s_size = PAGE_SIZE - s_off;
1529
1530         if (d_off + class->size > PAGE_SIZE)
1531                 d_size = PAGE_SIZE - d_off;
1532
1533         s_addr = kmap_atomic(s_page);
1534         d_addr = kmap_atomic(d_page);
1535
1536         while (1) {
1537                 size = min(s_size, d_size);
1538                 memcpy(d_addr + d_off, s_addr + s_off, size);
1539                 written += size;
1540
1541                 if (written == class->size)
1542                         break;
1543
1544                 s_off += size;
1545                 s_size -= size;
1546                 d_off += size;
1547                 d_size -= size;
1548
1549                 if (s_off >= PAGE_SIZE) {
1550                         kunmap_atomic(d_addr);
1551                         kunmap_atomic(s_addr);
1552                         s_page = get_next_page(s_page);
1553                         s_addr = kmap_atomic(s_page);
1554                         d_addr = kmap_atomic(d_page);
1555                         s_size = class->size - written;
1556                         s_off = 0;
1557                 }
1558
1559                 if (d_off >= PAGE_SIZE) {
1560                         kunmap_atomic(d_addr);
1561                         d_page = get_next_page(d_page);
1562                         d_addr = kmap_atomic(d_page);
1563                         d_size = class->size - written;
1564                         d_off = 0;
1565                 }
1566         }
1567
1568         kunmap_atomic(d_addr);
1569         kunmap_atomic(s_addr);
1570 }
1571
1572 /*
1573  * Find alloced object in zspage from index object and
1574  * return handle.
1575  */
1576 static unsigned long find_alloced_obj(struct size_class *class,
1577                                         struct page *page, int index)
1578 {
1579         unsigned long head;
1580         int offset = 0;
1581         unsigned long handle = 0;
1582         void *addr = kmap_atomic(page);
1583
1584         offset = get_first_obj_offset(page);
1585         offset += class->size * index;
1586
1587         while (offset < PAGE_SIZE) {
1588                 head = obj_to_head(class, page, addr + offset);
1589                 if (head & OBJ_ALLOCATED_TAG) {
1590                         handle = head & ~OBJ_ALLOCATED_TAG;
1591                         if (trypin_tag(handle))
1592                                 break;
1593                         handle = 0;
1594                 }
1595
1596                 offset += class->size;
1597                 index++;
1598         }
1599
1600         kunmap_atomic(addr);
1601         return handle;
1602 }
1603
1604 struct zs_compact_control {
1605         /* Source spage for migration which could be a subpage of zspage */
1606         struct page *s_page;
1607         /* Destination page for migration which should be a first page
1608          * of zspage. */
1609         struct page *d_page;
1610          /* Starting object index within @s_page which used for live object
1611           * in the subpage. */
1612         int index;
1613 };
1614
1615 static int migrate_zspage(struct zs_pool *pool, struct size_class *class,
1616                                 struct zs_compact_control *cc)
1617 {
1618         unsigned long used_obj, free_obj;
1619         unsigned long handle;
1620         struct page *s_page = cc->s_page;
1621         struct page *d_page = cc->d_page;
1622         unsigned long index = cc->index;
1623         int ret = 0;
1624
1625         while (1) {
1626                 handle = find_alloced_obj(class, s_page, index);
1627                 if (!handle) {
1628                         s_page = get_next_page(s_page);
1629                         if (!s_page)
1630                                 break;
1631                         index = 0;
1632                         continue;
1633                 }
1634
1635                 /* Stop if there is no more space */
1636                 if (zspage_full(class, get_zspage(d_page))) {
1637                         unpin_tag(handle);
1638                         ret = -ENOMEM;
1639                         break;
1640                 }
1641
1642                 used_obj = handle_to_obj(handle);
1643                 free_obj = obj_malloc(class, get_zspage(d_page), handle);
1644                 zs_object_copy(class, free_obj, used_obj);
1645                 index++;
1646                 /*
1647                  * record_obj updates handle's value to free_obj and it will
1648                  * invalidate lock bit(ie, HANDLE_PIN_BIT) of handle, which
1649                  * breaks synchronization using pin_tag(e,g, zs_free) so
1650                  * let's keep the lock bit.
1651                  */
1652                 free_obj |= BIT(HANDLE_PIN_BIT);
1653                 record_obj(handle, free_obj);
1654                 unpin_tag(handle);
1655                 obj_free(class, used_obj);
1656         }
1657
1658         /* Remember last position in this iteration */
1659         cc->s_page = s_page;
1660         cc->index = index;
1661
1662         return ret;
1663 }
1664
1665 static struct zspage *isolate_zspage(struct size_class *class, bool source)
1666 {
1667         int i;
1668         struct zspage *zspage;
1669         enum fullness_group fg[2] = {ZS_ALMOST_EMPTY, ZS_ALMOST_FULL};
1670
1671         if (!source) {
1672                 fg[0] = ZS_ALMOST_FULL;
1673                 fg[1] = ZS_ALMOST_EMPTY;
1674         }
1675
1676         for (i = 0; i < 2; i++) {
1677                 zspage = list_first_entry_or_null(&class->fullness_list[fg[i]],
1678                                                         struct zspage, list);
1679                 if (zspage) {
1680                         remove_zspage(class, zspage, fg[i]);
1681                         return zspage;
1682                 }
1683         }
1684
1685         return zspage;
1686 }
1687
1688 /*
1689  * putback_zspage - add @zspage into right class's fullness list
1690  * @class: destination class
1691  * @zspage: target page
1692  *
1693  * Return @zspage's fullness_group
1694  */
1695 static enum fullness_group putback_zspage(struct size_class *class,
1696                         struct zspage *zspage)
1697 {
1698         enum fullness_group fullness;
1699
1700         fullness = get_fullness_group(class, zspage);
1701         insert_zspage(class, zspage, fullness);
1702         set_zspage_mapping(zspage, class->index, fullness);
1703
1704         return fullness;
1705 }
1706
1707 /*
1708  *
1709  * Based on the number of unused allocated objects calculate
1710  * and return the number of pages that we can free.
1711  */
1712 static unsigned long zs_can_compact(struct size_class *class)
1713 {
1714         unsigned long obj_wasted;
1715         unsigned long obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
1716         unsigned long obj_used = zs_stat_get(class, OBJ_USED);
1717
1718         if (obj_allocated <= obj_used)
1719                 return 0;
1720
1721         obj_wasted = obj_allocated - obj_used;
1722         obj_wasted /= get_maxobj_per_zspage(class->size,
1723                         class->pages_per_zspage);
1724
1725         return obj_wasted * class->pages_per_zspage;
1726 }
1727
1728 static void __zs_compact(struct zs_pool *pool, struct size_class *class)
1729 {
1730         struct zs_compact_control cc;
1731         struct zspage *src_zspage;
1732         struct zspage *dst_zspage = NULL;
1733
1734         spin_lock(&class->lock);
1735         while ((src_zspage = isolate_zspage(class, true))) {
1736
1737                 if (!zs_can_compact(class))
1738                         break;
1739
1740                 cc.index = 0;
1741                 cc.s_page = src_zspage->first_page;
1742
1743                 while ((dst_zspage = isolate_zspage(class, false))) {
1744                         cc.d_page = dst_zspage->first_page;
1745                         /*
1746                          * If there is no more space in dst_page, resched
1747                          * and see if anyone had allocated another zspage.
1748                          */
1749                         if (!migrate_zspage(pool, class, &cc))
1750                                 break;
1751
1752                         putback_zspage(class, dst_zspage);
1753                 }
1754
1755                 /* Stop if we couldn't find slot */
1756                 if (dst_zspage == NULL)
1757                         break;
1758
1759                 putback_zspage(class, dst_zspage);
1760                 if (putback_zspage(class, src_zspage) == ZS_EMPTY) {
1761                         zs_stat_dec(class, OBJ_ALLOCATED, get_maxobj_per_zspage(
1762                                         class->size, class->pages_per_zspage));
1763                         atomic_long_sub(class->pages_per_zspage,
1764                                         &pool->pages_allocated);
1765                         free_zspage(pool, src_zspage);
1766                         pool->stats.pages_compacted += class->pages_per_zspage;
1767                 }
1768                 spin_unlock(&class->lock);
1769                 cond_resched();
1770                 spin_lock(&class->lock);
1771         }
1772
1773         if (src_zspage)
1774                 putback_zspage(class, src_zspage);
1775
1776         spin_unlock(&class->lock);
1777 }
1778
1779 unsigned long zs_compact(struct zs_pool *pool)
1780 {
1781         int i;
1782         struct size_class *class;
1783
1784         for (i = zs_size_classes - 1; i >= 0; i--) {
1785                 class = pool->size_class[i];
1786                 if (!class)
1787                         continue;
1788                 if (class->index != i)
1789                         continue;
1790                 __zs_compact(pool, class);
1791         }
1792
1793         return pool->stats.pages_compacted;
1794 }
1795 EXPORT_SYMBOL_GPL(zs_compact);
1796
1797 void zs_pool_stats(struct zs_pool *pool, struct zs_pool_stats *stats)
1798 {
1799         memcpy(stats, &pool->stats, sizeof(struct zs_pool_stats));
1800 }
1801 EXPORT_SYMBOL_GPL(zs_pool_stats);
1802
1803 static unsigned long zs_shrinker_scan(struct shrinker *shrinker,
1804                 struct shrink_control *sc)
1805 {
1806         unsigned long pages_freed;
1807         struct zs_pool *pool = container_of(shrinker, struct zs_pool,
1808                         shrinker);
1809
1810         pages_freed = pool->stats.pages_compacted;
1811         /*
1812          * Compact classes and calculate compaction delta.
1813          * Can run concurrently with a manually triggered
1814          * (by user) compaction.
1815          */
1816         pages_freed = zs_compact(pool) - pages_freed;
1817
1818         return pages_freed ? pages_freed : SHRINK_STOP;
1819 }
1820
1821 static unsigned long zs_shrinker_count(struct shrinker *shrinker,
1822                 struct shrink_control *sc)
1823 {
1824         int i;
1825         struct size_class *class;
1826         unsigned long pages_to_free = 0;
1827         struct zs_pool *pool = container_of(shrinker, struct zs_pool,
1828                         shrinker);
1829
1830         for (i = zs_size_classes - 1; i >= 0; i--) {
1831                 class = pool->size_class[i];
1832                 if (!class)
1833                         continue;
1834                 if (class->index != i)
1835                         continue;
1836
1837                 pages_to_free += zs_can_compact(class);
1838         }
1839
1840         return pages_to_free;
1841 }
1842
1843 static void zs_unregister_shrinker(struct zs_pool *pool)
1844 {
1845         if (pool->shrinker_enabled) {
1846                 unregister_shrinker(&pool->shrinker);
1847                 pool->shrinker_enabled = false;
1848         }
1849 }
1850
1851 static int zs_register_shrinker(struct zs_pool *pool)
1852 {
1853         pool->shrinker.scan_objects = zs_shrinker_scan;
1854         pool->shrinker.count_objects = zs_shrinker_count;
1855         pool->shrinker.batch = 0;
1856         pool->shrinker.seeks = DEFAULT_SEEKS;
1857
1858         return register_shrinker(&pool->shrinker);
1859 }
1860
1861 /**
1862  * zs_create_pool - Creates an allocation pool to work from.
1863  * @flags: allocation flags used to allocate pool metadata
1864  *
1865  * This function must be called before anything when using
1866  * the zsmalloc allocator.
1867  *
1868  * On success, a pointer to the newly created pool is returned,
1869  * otherwise NULL.
1870  */
1871 struct zs_pool *zs_create_pool(const char *name)
1872 {
1873         int i;
1874         struct zs_pool *pool;
1875         struct size_class *prev_class = NULL;
1876
1877         pool = kzalloc(sizeof(*pool), GFP_KERNEL);
1878         if (!pool)
1879                 return NULL;
1880
1881         pool->size_class = kcalloc(zs_size_classes, sizeof(struct size_class *),
1882                         GFP_KERNEL);
1883         if (!pool->size_class) {
1884                 kfree(pool);
1885                 return NULL;
1886         }
1887
1888         pool->name = kstrdup(name, GFP_KERNEL);
1889         if (!pool->name)
1890                 goto err;
1891
1892         if (create_cache(pool))
1893                 goto err;
1894
1895         /*
1896          * Iterate reversly, because, size of size_class that we want to use
1897          * for merging should be larger or equal to current size.
1898          */
1899         for (i = zs_size_classes - 1; i >= 0; i--) {
1900                 int size;
1901                 int pages_per_zspage;
1902                 struct size_class *class;
1903                 int fullness = 0;
1904
1905                 size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA;
1906                 if (size > ZS_MAX_ALLOC_SIZE)
1907                         size = ZS_MAX_ALLOC_SIZE;
1908                 pages_per_zspage = get_pages_per_zspage(size);
1909
1910                 /*
1911                  * size_class is used for normal zsmalloc operation such
1912                  * as alloc/free for that size. Although it is natural that we
1913                  * have one size_class for each size, there is a chance that we
1914                  * can get more memory utilization if we use one size_class for
1915                  * many different sizes whose size_class have same
1916                  * characteristics. So, we makes size_class point to
1917                  * previous size_class if possible.
1918                  */
1919                 if (prev_class) {
1920                         if (can_merge(prev_class, size, pages_per_zspage)) {
1921                                 pool->size_class[i] = prev_class;
1922                                 continue;
1923                         }
1924                 }
1925
1926                 class = kzalloc(sizeof(struct size_class), GFP_KERNEL);
1927                 if (!class)
1928                         goto err;
1929
1930                 class->size = size;
1931                 class->index = i;
1932                 class->pages_per_zspage = pages_per_zspage;
1933                 class->objs_per_zspage = class->pages_per_zspage *
1934                                                 PAGE_SIZE / class->size;
1935                 if (pages_per_zspage == 1 && class->objs_per_zspage == 1)
1936                         class->huge = true;
1937                 spin_lock_init(&class->lock);
1938                 pool->size_class[i] = class;
1939                 for (fullness = ZS_ALMOST_FULL; fullness <= ZS_ALMOST_EMPTY;
1940                                                                 fullness++)
1941                         INIT_LIST_HEAD(&class->fullness_list[fullness]);
1942
1943                 prev_class = class;
1944         }
1945
1946         /* debug only, don't abort if it fails */
1947         zs_pool_stat_create(pool, name);
1948
1949         /*
1950          * Not critical, we still can use the pool
1951          * and user can trigger compaction manually.
1952          */
1953         if (zs_register_shrinker(pool) == 0)
1954                 pool->shrinker_enabled = true;
1955         return pool;
1956
1957 err:
1958         zs_destroy_pool(pool);
1959         return NULL;
1960 }
1961 EXPORT_SYMBOL_GPL(zs_create_pool);
1962
1963 void zs_destroy_pool(struct zs_pool *pool)
1964 {
1965         int i;
1966
1967         zs_unregister_shrinker(pool);
1968         zs_pool_stat_destroy(pool);
1969
1970         for (i = 0; i < zs_size_classes; i++) {
1971                 int fg;
1972                 struct size_class *class = pool->size_class[i];
1973
1974                 if (!class)
1975                         continue;
1976
1977                 if (class->index != i)
1978                         continue;
1979
1980                 for (fg = ZS_ALMOST_FULL; fg <= ZS_ALMOST_EMPTY; fg++) {
1981                         if (!list_empty(&class->fullness_list[fg])) {
1982                                 pr_info("Freeing non-empty class with size %db, fullness group %d\n",
1983                                         class->size, fg);
1984                         }
1985                 }
1986                 kfree(class);
1987         }
1988
1989         destroy_cache(pool);
1990         kfree(pool->size_class);
1991         kfree(pool->name);
1992         kfree(pool);
1993 }
1994 EXPORT_SYMBOL_GPL(zs_destroy_pool);
1995
1996 static int __init zs_init(void)
1997 {
1998         int ret = zs_register_cpu_notifier();
1999
2000         if (ret)
2001                 goto notifier_fail;
2002
2003         init_zs_size_classes();
2004
2005 #ifdef CONFIG_ZPOOL
2006         zpool_register_driver(&zs_zpool_driver);
2007 #endif
2008
2009         zs_stat_init();
2010
2011         return 0;
2012
2013 notifier_fail:
2014         zs_unregister_cpu_notifier();
2015
2016         return ret;
2017 }
2018
2019 static void __exit zs_exit(void)
2020 {
2021 #ifdef CONFIG_ZPOOL
2022         zpool_unregister_driver(&zs_zpool_driver);
2023 #endif
2024         zs_unregister_cpu_notifier();
2025
2026         zs_stat_exit();
2027 }
2028
2029 module_init(zs_init);
2030 module_exit(zs_exit);
2031
2032 MODULE_LICENSE("Dual BSD/GPL");
2033 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");