OSDN Git Service

smb3: Add defines for new information level, FileIdInformation
[tomoyo/tomoyo-test1.git] / net / core / dev.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *      NET3    Protocol independent device support routines.
4  *
5  *      Derived from the non IP parts of dev.c 1.0.19
6  *              Authors:        Ross Biro
7  *                              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8  *                              Mark Evans, <evansmp@uhura.aston.ac.uk>
9  *
10  *      Additional Authors:
11  *              Florian la Roche <rzsfl@rz.uni-sb.de>
12  *              Alan Cox <gw4pts@gw4pts.ampr.org>
13  *              David Hinds <dahinds@users.sourceforge.net>
14  *              Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15  *              Adam Sulmicki <adam@cfar.umd.edu>
16  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
17  *
18  *      Changes:
19  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
20  *                                      to 2 if register_netdev gets called
21  *                                      before net_dev_init & also removed a
22  *                                      few lines of code in the process.
23  *              Alan Cox        :       device private ioctl copies fields back.
24  *              Alan Cox        :       Transmit queue code does relevant
25  *                                      stunts to keep the queue safe.
26  *              Alan Cox        :       Fixed double lock.
27  *              Alan Cox        :       Fixed promisc NULL pointer trap
28  *              ????????        :       Support the full private ioctl range
29  *              Alan Cox        :       Moved ioctl permission check into
30  *                                      drivers
31  *              Tim Kordas      :       SIOCADDMULTI/SIOCDELMULTI
32  *              Alan Cox        :       100 backlog just doesn't cut it when
33  *                                      you start doing multicast video 8)
34  *              Alan Cox        :       Rewrote net_bh and list manager.
35  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
36  *              Alan Cox        :       Took out transmit every packet pass
37  *                                      Saved a few bytes in the ioctl handler
38  *              Alan Cox        :       Network driver sets packet type before
39  *                                      calling netif_rx. Saves a function
40  *                                      call a packet.
41  *              Alan Cox        :       Hashed net_bh()
42  *              Richard Kooijman:       Timestamp fixes.
43  *              Alan Cox        :       Wrong field in SIOCGIFDSTADDR
44  *              Alan Cox        :       Device lock protection.
45  *              Alan Cox        :       Fixed nasty side effect of device close
46  *                                      changes.
47  *              Rudi Cilibrasi  :       Pass the right thing to
48  *                                      set_mac_address()
49  *              Dave Miller     :       32bit quantity for the device lock to
50  *                                      make it work out on a Sparc.
51  *              Bjorn Ekwall    :       Added KERNELD hack.
52  *              Alan Cox        :       Cleaned up the backlog initialise.
53  *              Craig Metz      :       SIOCGIFCONF fix if space for under
54  *                                      1 device.
55  *          Thomas Bogendoerfer :       Return ENODEV for dev_open, if there
56  *                                      is no device open function.
57  *              Andi Kleen      :       Fix error reporting for SIOCGIFCONF
58  *          Michael Chastain    :       Fix signed/unsigned for SIOCGIFCONF
59  *              Cyrus Durgin    :       Cleaned for KMOD
60  *              Adam Sulmicki   :       Bug Fix : Network Device Unload
61  *                                      A network device unload needs to purge
62  *                                      the backlog queue.
63  *      Paul Rusty Russell      :       SIOCSIFNAME
64  *              Pekka Riikonen  :       Netdev boot-time settings code
65  *              Andrew Morton   :       Make unregister_netdevice wait
66  *                                      indefinitely on dev->refcnt
67  *              J Hadi Salim    :       - Backlog queue sampling
68  *                                      - netif_rx() feedback
69  */
70
71 #include <linux/uaccess.h>
72 #include <linux/bitops.h>
73 #include <linux/capability.h>
74 #include <linux/cpu.h>
75 #include <linux/types.h>
76 #include <linux/kernel.h>
77 #include <linux/hash.h>
78 #include <linux/slab.h>
79 #include <linux/sched.h>
80 #include <linux/sched/mm.h>
81 #include <linux/mutex.h>
82 #include <linux/string.h>
83 #include <linux/mm.h>
84 #include <linux/socket.h>
85 #include <linux/sockios.h>
86 #include <linux/errno.h>
87 #include <linux/interrupt.h>
88 #include <linux/if_ether.h>
89 #include <linux/netdevice.h>
90 #include <linux/etherdevice.h>
91 #include <linux/ethtool.h>
92 #include <linux/skbuff.h>
93 #include <linux/bpf.h>
94 #include <linux/bpf_trace.h>
95 #include <net/net_namespace.h>
96 #include <net/sock.h>
97 #include <net/busy_poll.h>
98 #include <linux/rtnetlink.h>
99 #include <linux/stat.h>
100 #include <net/dst.h>
101 #include <net/dst_metadata.h>
102 #include <net/pkt_sched.h>
103 #include <net/pkt_cls.h>
104 #include <net/checksum.h>
105 #include <net/xfrm.h>
106 #include <linux/highmem.h>
107 #include <linux/init.h>
108 #include <linux/module.h>
109 #include <linux/netpoll.h>
110 #include <linux/rcupdate.h>
111 #include <linux/delay.h>
112 #include <net/iw_handler.h>
113 #include <asm/current.h>
114 #include <linux/audit.h>
115 #include <linux/dmaengine.h>
116 #include <linux/err.h>
117 #include <linux/ctype.h>
118 #include <linux/if_arp.h>
119 #include <linux/if_vlan.h>
120 #include <linux/ip.h>
121 #include <net/ip.h>
122 #include <net/mpls.h>
123 #include <linux/ipv6.h>
124 #include <linux/in.h>
125 #include <linux/jhash.h>
126 #include <linux/random.h>
127 #include <trace/events/napi.h>
128 #include <trace/events/net.h>
129 #include <trace/events/skb.h>
130 #include <linux/inetdevice.h>
131 #include <linux/cpu_rmap.h>
132 #include <linux/static_key.h>
133 #include <linux/hashtable.h>
134 #include <linux/vmalloc.h>
135 #include <linux/if_macvlan.h>
136 #include <linux/errqueue.h>
137 #include <linux/hrtimer.h>
138 #include <linux/netfilter_ingress.h>
139 #include <linux/crash_dump.h>
140 #include <linux/sctp.h>
141 #include <net/udp_tunnel.h>
142 #include <linux/net_namespace.h>
143 #include <linux/indirect_call_wrapper.h>
144 #include <net/devlink.h>
145
146 #include "net-sysfs.h"
147
148 #define MAX_GRO_SKBS 8
149 #define MAX_NEST_DEV 8
150
151 /* This should be increased if a protocol with a bigger head is added. */
152 #define GRO_MAX_HEAD (MAX_HEADER + 128)
153
154 static DEFINE_SPINLOCK(ptype_lock);
155 static DEFINE_SPINLOCK(offload_lock);
156 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
157 struct list_head ptype_all __read_mostly;       /* Taps */
158 static struct list_head offload_base __read_mostly;
159
160 static int netif_rx_internal(struct sk_buff *skb);
161 static int call_netdevice_notifiers_info(unsigned long val,
162                                          struct netdev_notifier_info *info);
163 static int call_netdevice_notifiers_extack(unsigned long val,
164                                            struct net_device *dev,
165                                            struct netlink_ext_ack *extack);
166 static struct napi_struct *napi_by_id(unsigned int napi_id);
167
168 /*
169  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
170  * semaphore.
171  *
172  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
173  *
174  * Writers must hold the rtnl semaphore while they loop through the
175  * dev_base_head list, and hold dev_base_lock for writing when they do the
176  * actual updates.  This allows pure readers to access the list even
177  * while a writer is preparing to update it.
178  *
179  * To put it another way, dev_base_lock is held for writing only to
180  * protect against pure readers; the rtnl semaphore provides the
181  * protection against other writers.
182  *
183  * See, for example usages, register_netdevice() and
184  * unregister_netdevice(), which must be called with the rtnl
185  * semaphore held.
186  */
187 DEFINE_RWLOCK(dev_base_lock);
188 EXPORT_SYMBOL(dev_base_lock);
189
190 static DEFINE_MUTEX(ifalias_mutex);
191
192 /* protects napi_hash addition/deletion and napi_gen_id */
193 static DEFINE_SPINLOCK(napi_hash_lock);
194
195 static unsigned int napi_gen_id = NR_CPUS;
196 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
197
198 static seqcount_t devnet_rename_seq;
199
200 static inline void dev_base_seq_inc(struct net *net)
201 {
202         while (++net->dev_base_seq == 0)
203                 ;
204 }
205
206 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
207 {
208         unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
209
210         return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
211 }
212
213 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
214 {
215         return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
216 }
217
218 static inline void rps_lock(struct softnet_data *sd)
219 {
220 #ifdef CONFIG_RPS
221         spin_lock(&sd->input_pkt_queue.lock);
222 #endif
223 }
224
225 static inline void rps_unlock(struct softnet_data *sd)
226 {
227 #ifdef CONFIG_RPS
228         spin_unlock(&sd->input_pkt_queue.lock);
229 #endif
230 }
231
232 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
233                                                        const char *name)
234 {
235         struct netdev_name_node *name_node;
236
237         name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
238         if (!name_node)
239                 return NULL;
240         INIT_HLIST_NODE(&name_node->hlist);
241         name_node->dev = dev;
242         name_node->name = name;
243         return name_node;
244 }
245
246 static struct netdev_name_node *
247 netdev_name_node_head_alloc(struct net_device *dev)
248 {
249         struct netdev_name_node *name_node;
250
251         name_node = netdev_name_node_alloc(dev, dev->name);
252         if (!name_node)
253                 return NULL;
254         INIT_LIST_HEAD(&name_node->list);
255         return name_node;
256 }
257
258 static void netdev_name_node_free(struct netdev_name_node *name_node)
259 {
260         kfree(name_node);
261 }
262
263 static void netdev_name_node_add(struct net *net,
264                                  struct netdev_name_node *name_node)
265 {
266         hlist_add_head_rcu(&name_node->hlist,
267                            dev_name_hash(net, name_node->name));
268 }
269
270 static void netdev_name_node_del(struct netdev_name_node *name_node)
271 {
272         hlist_del_rcu(&name_node->hlist);
273 }
274
275 static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
276                                                         const char *name)
277 {
278         struct hlist_head *head = dev_name_hash(net, name);
279         struct netdev_name_node *name_node;
280
281         hlist_for_each_entry(name_node, head, hlist)
282                 if (!strcmp(name_node->name, name))
283                         return name_node;
284         return NULL;
285 }
286
287 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
288                                                             const char *name)
289 {
290         struct hlist_head *head = dev_name_hash(net, name);
291         struct netdev_name_node *name_node;
292
293         hlist_for_each_entry_rcu(name_node, head, hlist)
294                 if (!strcmp(name_node->name, name))
295                         return name_node;
296         return NULL;
297 }
298
299 int netdev_name_node_alt_create(struct net_device *dev, const char *name)
300 {
301         struct netdev_name_node *name_node;
302         struct net *net = dev_net(dev);
303
304         name_node = netdev_name_node_lookup(net, name);
305         if (name_node)
306                 return -EEXIST;
307         name_node = netdev_name_node_alloc(dev, name);
308         if (!name_node)
309                 return -ENOMEM;
310         netdev_name_node_add(net, name_node);
311         /* The node that holds dev->name acts as a head of per-device list. */
312         list_add_tail(&name_node->list, &dev->name_node->list);
313
314         return 0;
315 }
316 EXPORT_SYMBOL(netdev_name_node_alt_create);
317
318 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
319 {
320         list_del(&name_node->list);
321         netdev_name_node_del(name_node);
322         kfree(name_node->name);
323         netdev_name_node_free(name_node);
324 }
325
326 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
327 {
328         struct netdev_name_node *name_node;
329         struct net *net = dev_net(dev);
330
331         name_node = netdev_name_node_lookup(net, name);
332         if (!name_node)
333                 return -ENOENT;
334         __netdev_name_node_alt_destroy(name_node);
335
336         return 0;
337 }
338 EXPORT_SYMBOL(netdev_name_node_alt_destroy);
339
340 static void netdev_name_node_alt_flush(struct net_device *dev)
341 {
342         struct netdev_name_node *name_node, *tmp;
343
344         list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list)
345                 __netdev_name_node_alt_destroy(name_node);
346 }
347
348 /* Device list insertion */
349 static void list_netdevice(struct net_device *dev)
350 {
351         struct net *net = dev_net(dev);
352
353         ASSERT_RTNL();
354
355         write_lock_bh(&dev_base_lock);
356         list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
357         netdev_name_node_add(net, dev->name_node);
358         hlist_add_head_rcu(&dev->index_hlist,
359                            dev_index_hash(net, dev->ifindex));
360         write_unlock_bh(&dev_base_lock);
361
362         dev_base_seq_inc(net);
363 }
364
365 /* Device list removal
366  * caller must respect a RCU grace period before freeing/reusing dev
367  */
368 static void unlist_netdevice(struct net_device *dev)
369 {
370         ASSERT_RTNL();
371
372         /* Unlink dev from the device chain */
373         write_lock_bh(&dev_base_lock);
374         list_del_rcu(&dev->dev_list);
375         netdev_name_node_del(dev->name_node);
376         hlist_del_rcu(&dev->index_hlist);
377         write_unlock_bh(&dev_base_lock);
378
379         dev_base_seq_inc(dev_net(dev));
380 }
381
382 /*
383  *      Our notifier list
384  */
385
386 static RAW_NOTIFIER_HEAD(netdev_chain);
387
388 /*
389  *      Device drivers call our routines to queue packets here. We empty the
390  *      queue in the local softnet handler.
391  */
392
393 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
394 EXPORT_PER_CPU_SYMBOL(softnet_data);
395
396 /*******************************************************************************
397  *
398  *              Protocol management and registration routines
399  *
400  *******************************************************************************/
401
402
403 /*
404  *      Add a protocol ID to the list. Now that the input handler is
405  *      smarter we can dispense with all the messy stuff that used to be
406  *      here.
407  *
408  *      BEWARE!!! Protocol handlers, mangling input packets,
409  *      MUST BE last in hash buckets and checking protocol handlers
410  *      MUST start from promiscuous ptype_all chain in net_bh.
411  *      It is true now, do not change it.
412  *      Explanation follows: if protocol handler, mangling packet, will
413  *      be the first on list, it is not able to sense, that packet
414  *      is cloned and should be copied-on-write, so that it will
415  *      change it and subsequent readers will get broken packet.
416  *                                                      --ANK (980803)
417  */
418
419 static inline struct list_head *ptype_head(const struct packet_type *pt)
420 {
421         if (pt->type == htons(ETH_P_ALL))
422                 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
423         else
424                 return pt->dev ? &pt->dev->ptype_specific :
425                                  &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
426 }
427
428 /**
429  *      dev_add_pack - add packet handler
430  *      @pt: packet type declaration
431  *
432  *      Add a protocol handler to the networking stack. The passed &packet_type
433  *      is linked into kernel lists and may not be freed until it has been
434  *      removed from the kernel lists.
435  *
436  *      This call does not sleep therefore it can not
437  *      guarantee all CPU's that are in middle of receiving packets
438  *      will see the new packet type (until the next received packet).
439  */
440
441 void dev_add_pack(struct packet_type *pt)
442 {
443         struct list_head *head = ptype_head(pt);
444
445         spin_lock(&ptype_lock);
446         list_add_rcu(&pt->list, head);
447         spin_unlock(&ptype_lock);
448 }
449 EXPORT_SYMBOL(dev_add_pack);
450
451 /**
452  *      __dev_remove_pack        - remove packet handler
453  *      @pt: packet type declaration
454  *
455  *      Remove a protocol handler that was previously added to the kernel
456  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
457  *      from the kernel lists and can be freed or reused once this function
458  *      returns.
459  *
460  *      The packet type might still be in use by receivers
461  *      and must not be freed until after all the CPU's have gone
462  *      through a quiescent state.
463  */
464 void __dev_remove_pack(struct packet_type *pt)
465 {
466         struct list_head *head = ptype_head(pt);
467         struct packet_type *pt1;
468
469         spin_lock(&ptype_lock);
470
471         list_for_each_entry(pt1, head, list) {
472                 if (pt == pt1) {
473                         list_del_rcu(&pt->list);
474                         goto out;
475                 }
476         }
477
478         pr_warn("dev_remove_pack: %p not found\n", pt);
479 out:
480         spin_unlock(&ptype_lock);
481 }
482 EXPORT_SYMBOL(__dev_remove_pack);
483
484 /**
485  *      dev_remove_pack  - remove packet handler
486  *      @pt: packet type declaration
487  *
488  *      Remove a protocol handler that was previously added to the kernel
489  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
490  *      from the kernel lists and can be freed or reused once this function
491  *      returns.
492  *
493  *      This call sleeps to guarantee that no CPU is looking at the packet
494  *      type after return.
495  */
496 void dev_remove_pack(struct packet_type *pt)
497 {
498         __dev_remove_pack(pt);
499
500         synchronize_net();
501 }
502 EXPORT_SYMBOL(dev_remove_pack);
503
504
505 /**
506  *      dev_add_offload - register offload handlers
507  *      @po: protocol offload declaration
508  *
509  *      Add protocol offload handlers to the networking stack. The passed
510  *      &proto_offload is linked into kernel lists and may not be freed until
511  *      it has been removed from the kernel lists.
512  *
513  *      This call does not sleep therefore it can not
514  *      guarantee all CPU's that are in middle of receiving packets
515  *      will see the new offload handlers (until the next received packet).
516  */
517 void dev_add_offload(struct packet_offload *po)
518 {
519         struct packet_offload *elem;
520
521         spin_lock(&offload_lock);
522         list_for_each_entry(elem, &offload_base, list) {
523                 if (po->priority < elem->priority)
524                         break;
525         }
526         list_add_rcu(&po->list, elem->list.prev);
527         spin_unlock(&offload_lock);
528 }
529 EXPORT_SYMBOL(dev_add_offload);
530
531 /**
532  *      __dev_remove_offload     - remove offload handler
533  *      @po: packet offload declaration
534  *
535  *      Remove a protocol offload handler that was previously added to the
536  *      kernel offload handlers by dev_add_offload(). The passed &offload_type
537  *      is removed from the kernel lists and can be freed or reused once this
538  *      function returns.
539  *
540  *      The packet type might still be in use by receivers
541  *      and must not be freed until after all the CPU's have gone
542  *      through a quiescent state.
543  */
544 static void __dev_remove_offload(struct packet_offload *po)
545 {
546         struct list_head *head = &offload_base;
547         struct packet_offload *po1;
548
549         spin_lock(&offload_lock);
550
551         list_for_each_entry(po1, head, list) {
552                 if (po == po1) {
553                         list_del_rcu(&po->list);
554                         goto out;
555                 }
556         }
557
558         pr_warn("dev_remove_offload: %p not found\n", po);
559 out:
560         spin_unlock(&offload_lock);
561 }
562
563 /**
564  *      dev_remove_offload       - remove packet offload handler
565  *      @po: packet offload declaration
566  *
567  *      Remove a packet offload handler that was previously added to the kernel
568  *      offload handlers by dev_add_offload(). The passed &offload_type is
569  *      removed from the kernel lists and can be freed or reused once this
570  *      function returns.
571  *
572  *      This call sleeps to guarantee that no CPU is looking at the packet
573  *      type after return.
574  */
575 void dev_remove_offload(struct packet_offload *po)
576 {
577         __dev_remove_offload(po);
578
579         synchronize_net();
580 }
581 EXPORT_SYMBOL(dev_remove_offload);
582
583 /******************************************************************************
584  *
585  *                    Device Boot-time Settings Routines
586  *
587  ******************************************************************************/
588
589 /* Boot time configuration table */
590 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
591
592 /**
593  *      netdev_boot_setup_add   - add new setup entry
594  *      @name: name of the device
595  *      @map: configured settings for the device
596  *
597  *      Adds new setup entry to the dev_boot_setup list.  The function
598  *      returns 0 on error and 1 on success.  This is a generic routine to
599  *      all netdevices.
600  */
601 static int netdev_boot_setup_add(char *name, struct ifmap *map)
602 {
603         struct netdev_boot_setup *s;
604         int i;
605
606         s = dev_boot_setup;
607         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
608                 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
609                         memset(s[i].name, 0, sizeof(s[i].name));
610                         strlcpy(s[i].name, name, IFNAMSIZ);
611                         memcpy(&s[i].map, map, sizeof(s[i].map));
612                         break;
613                 }
614         }
615
616         return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
617 }
618
619 /**
620  * netdev_boot_setup_check      - check boot time settings
621  * @dev: the netdevice
622  *
623  * Check boot time settings for the device.
624  * The found settings are set for the device to be used
625  * later in the device probing.
626  * Returns 0 if no settings found, 1 if they are.
627  */
628 int netdev_boot_setup_check(struct net_device *dev)
629 {
630         struct netdev_boot_setup *s = dev_boot_setup;
631         int i;
632
633         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
634                 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
635                     !strcmp(dev->name, s[i].name)) {
636                         dev->irq = s[i].map.irq;
637                         dev->base_addr = s[i].map.base_addr;
638                         dev->mem_start = s[i].map.mem_start;
639                         dev->mem_end = s[i].map.mem_end;
640                         return 1;
641                 }
642         }
643         return 0;
644 }
645 EXPORT_SYMBOL(netdev_boot_setup_check);
646
647
648 /**
649  * netdev_boot_base     - get address from boot time settings
650  * @prefix: prefix for network device
651  * @unit: id for network device
652  *
653  * Check boot time settings for the base address of device.
654  * The found settings are set for the device to be used
655  * later in the device probing.
656  * Returns 0 if no settings found.
657  */
658 unsigned long netdev_boot_base(const char *prefix, int unit)
659 {
660         const struct netdev_boot_setup *s = dev_boot_setup;
661         char name[IFNAMSIZ];
662         int i;
663
664         sprintf(name, "%s%d", prefix, unit);
665
666         /*
667          * If device already registered then return base of 1
668          * to indicate not to probe for this interface
669          */
670         if (__dev_get_by_name(&init_net, name))
671                 return 1;
672
673         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
674                 if (!strcmp(name, s[i].name))
675                         return s[i].map.base_addr;
676         return 0;
677 }
678
679 /*
680  * Saves at boot time configured settings for any netdevice.
681  */
682 int __init netdev_boot_setup(char *str)
683 {
684         int ints[5];
685         struct ifmap map;
686
687         str = get_options(str, ARRAY_SIZE(ints), ints);
688         if (!str || !*str)
689                 return 0;
690
691         /* Save settings */
692         memset(&map, 0, sizeof(map));
693         if (ints[0] > 0)
694                 map.irq = ints[1];
695         if (ints[0] > 1)
696                 map.base_addr = ints[2];
697         if (ints[0] > 2)
698                 map.mem_start = ints[3];
699         if (ints[0] > 3)
700                 map.mem_end = ints[4];
701
702         /* Add new entry to the list */
703         return netdev_boot_setup_add(str, &map);
704 }
705
706 __setup("netdev=", netdev_boot_setup);
707
708 /*******************************************************************************
709  *
710  *                          Device Interface Subroutines
711  *
712  *******************************************************************************/
713
714 /**
715  *      dev_get_iflink  - get 'iflink' value of a interface
716  *      @dev: targeted interface
717  *
718  *      Indicates the ifindex the interface is linked to.
719  *      Physical interfaces have the same 'ifindex' and 'iflink' values.
720  */
721
722 int dev_get_iflink(const struct net_device *dev)
723 {
724         if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
725                 return dev->netdev_ops->ndo_get_iflink(dev);
726
727         return dev->ifindex;
728 }
729 EXPORT_SYMBOL(dev_get_iflink);
730
731 /**
732  *      dev_fill_metadata_dst - Retrieve tunnel egress information.
733  *      @dev: targeted interface
734  *      @skb: The packet.
735  *
736  *      For better visibility of tunnel traffic OVS needs to retrieve
737  *      egress tunnel information for a packet. Following API allows
738  *      user to get this info.
739  */
740 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
741 {
742         struct ip_tunnel_info *info;
743
744         if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
745                 return -EINVAL;
746
747         info = skb_tunnel_info_unclone(skb);
748         if (!info)
749                 return -ENOMEM;
750         if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
751                 return -EINVAL;
752
753         return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
754 }
755 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
756
757 /**
758  *      __dev_get_by_name       - find a device by its name
759  *      @net: the applicable net namespace
760  *      @name: name to find
761  *
762  *      Find an interface by name. Must be called under RTNL semaphore
763  *      or @dev_base_lock. If the name is found a pointer to the device
764  *      is returned. If the name is not found then %NULL is returned. The
765  *      reference counters are not incremented so the caller must be
766  *      careful with locks.
767  */
768
769 struct net_device *__dev_get_by_name(struct net *net, const char *name)
770 {
771         struct netdev_name_node *node_name;
772
773         node_name = netdev_name_node_lookup(net, name);
774         return node_name ? node_name->dev : NULL;
775 }
776 EXPORT_SYMBOL(__dev_get_by_name);
777
778 /**
779  * dev_get_by_name_rcu  - find a device by its name
780  * @net: the applicable net namespace
781  * @name: name to find
782  *
783  * Find an interface by name.
784  * If the name is found a pointer to the device is returned.
785  * If the name is not found then %NULL is returned.
786  * The reference counters are not incremented so the caller must be
787  * careful with locks. The caller must hold RCU lock.
788  */
789
790 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
791 {
792         struct netdev_name_node *node_name;
793
794         node_name = netdev_name_node_lookup_rcu(net, name);
795         return node_name ? node_name->dev : NULL;
796 }
797 EXPORT_SYMBOL(dev_get_by_name_rcu);
798
799 /**
800  *      dev_get_by_name         - find a device by its name
801  *      @net: the applicable net namespace
802  *      @name: name to find
803  *
804  *      Find an interface by name. This can be called from any
805  *      context and does its own locking. The returned handle has
806  *      the usage count incremented and the caller must use dev_put() to
807  *      release it when it is no longer needed. %NULL is returned if no
808  *      matching device is found.
809  */
810
811 struct net_device *dev_get_by_name(struct net *net, const char *name)
812 {
813         struct net_device *dev;
814
815         rcu_read_lock();
816         dev = dev_get_by_name_rcu(net, name);
817         if (dev)
818                 dev_hold(dev);
819         rcu_read_unlock();
820         return dev;
821 }
822 EXPORT_SYMBOL(dev_get_by_name);
823
824 /**
825  *      __dev_get_by_index - find a device by its ifindex
826  *      @net: the applicable net namespace
827  *      @ifindex: index of device
828  *
829  *      Search for an interface by index. Returns %NULL if the device
830  *      is not found or a pointer to the device. The device has not
831  *      had its reference counter increased so the caller must be careful
832  *      about locking. The caller must hold either the RTNL semaphore
833  *      or @dev_base_lock.
834  */
835
836 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
837 {
838         struct net_device *dev;
839         struct hlist_head *head = dev_index_hash(net, ifindex);
840
841         hlist_for_each_entry(dev, head, index_hlist)
842                 if (dev->ifindex == ifindex)
843                         return dev;
844
845         return NULL;
846 }
847 EXPORT_SYMBOL(__dev_get_by_index);
848
849 /**
850  *      dev_get_by_index_rcu - find a device by its ifindex
851  *      @net: the applicable net namespace
852  *      @ifindex: index of device
853  *
854  *      Search for an interface by index. Returns %NULL if the device
855  *      is not found or a pointer to the device. The device has not
856  *      had its reference counter increased so the caller must be careful
857  *      about locking. The caller must hold RCU lock.
858  */
859
860 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
861 {
862         struct net_device *dev;
863         struct hlist_head *head = dev_index_hash(net, ifindex);
864
865         hlist_for_each_entry_rcu(dev, head, index_hlist)
866                 if (dev->ifindex == ifindex)
867                         return dev;
868
869         return NULL;
870 }
871 EXPORT_SYMBOL(dev_get_by_index_rcu);
872
873
874 /**
875  *      dev_get_by_index - find a device by its ifindex
876  *      @net: the applicable net namespace
877  *      @ifindex: index of device
878  *
879  *      Search for an interface by index. Returns NULL if the device
880  *      is not found or a pointer to the device. The device returned has
881  *      had a reference added and the pointer is safe until the user calls
882  *      dev_put to indicate they have finished with it.
883  */
884
885 struct net_device *dev_get_by_index(struct net *net, int ifindex)
886 {
887         struct net_device *dev;
888
889         rcu_read_lock();
890         dev = dev_get_by_index_rcu(net, ifindex);
891         if (dev)
892                 dev_hold(dev);
893         rcu_read_unlock();
894         return dev;
895 }
896 EXPORT_SYMBOL(dev_get_by_index);
897
898 /**
899  *      dev_get_by_napi_id - find a device by napi_id
900  *      @napi_id: ID of the NAPI struct
901  *
902  *      Search for an interface by NAPI ID. Returns %NULL if the device
903  *      is not found or a pointer to the device. The device has not had
904  *      its reference counter increased so the caller must be careful
905  *      about locking. The caller must hold RCU lock.
906  */
907
908 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
909 {
910         struct napi_struct *napi;
911
912         WARN_ON_ONCE(!rcu_read_lock_held());
913
914         if (napi_id < MIN_NAPI_ID)
915                 return NULL;
916
917         napi = napi_by_id(napi_id);
918
919         return napi ? napi->dev : NULL;
920 }
921 EXPORT_SYMBOL(dev_get_by_napi_id);
922
923 /**
924  *      netdev_get_name - get a netdevice name, knowing its ifindex.
925  *      @net: network namespace
926  *      @name: a pointer to the buffer where the name will be stored.
927  *      @ifindex: the ifindex of the interface to get the name from.
928  *
929  *      The use of raw_seqcount_begin() and cond_resched() before
930  *      retrying is required as we want to give the writers a chance
931  *      to complete when CONFIG_PREEMPTION is not set.
932  */
933 int netdev_get_name(struct net *net, char *name, int ifindex)
934 {
935         struct net_device *dev;
936         unsigned int seq;
937
938 retry:
939         seq = raw_seqcount_begin(&devnet_rename_seq);
940         rcu_read_lock();
941         dev = dev_get_by_index_rcu(net, ifindex);
942         if (!dev) {
943                 rcu_read_unlock();
944                 return -ENODEV;
945         }
946
947         strcpy(name, dev->name);
948         rcu_read_unlock();
949         if (read_seqcount_retry(&devnet_rename_seq, seq)) {
950                 cond_resched();
951                 goto retry;
952         }
953
954         return 0;
955 }
956
957 /**
958  *      dev_getbyhwaddr_rcu - find a device by its hardware address
959  *      @net: the applicable net namespace
960  *      @type: media type of device
961  *      @ha: hardware address
962  *
963  *      Search for an interface by MAC address. Returns NULL if the device
964  *      is not found or a pointer to the device.
965  *      The caller must hold RCU or RTNL.
966  *      The returned device has not had its ref count increased
967  *      and the caller must therefore be careful about locking
968  *
969  */
970
971 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
972                                        const char *ha)
973 {
974         struct net_device *dev;
975
976         for_each_netdev_rcu(net, dev)
977                 if (dev->type == type &&
978                     !memcmp(dev->dev_addr, ha, dev->addr_len))
979                         return dev;
980
981         return NULL;
982 }
983 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
984
985 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
986 {
987         struct net_device *dev;
988
989         ASSERT_RTNL();
990         for_each_netdev(net, dev)
991                 if (dev->type == type)
992                         return dev;
993
994         return NULL;
995 }
996 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
997
998 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
999 {
1000         struct net_device *dev, *ret = NULL;
1001
1002         rcu_read_lock();
1003         for_each_netdev_rcu(net, dev)
1004                 if (dev->type == type) {
1005                         dev_hold(dev);
1006                         ret = dev;
1007                         break;
1008                 }
1009         rcu_read_unlock();
1010         return ret;
1011 }
1012 EXPORT_SYMBOL(dev_getfirstbyhwtype);
1013
1014 /**
1015  *      __dev_get_by_flags - find any device with given flags
1016  *      @net: the applicable net namespace
1017  *      @if_flags: IFF_* values
1018  *      @mask: bitmask of bits in if_flags to check
1019  *
1020  *      Search for any interface with the given flags. Returns NULL if a device
1021  *      is not found or a pointer to the device. Must be called inside
1022  *      rtnl_lock(), and result refcount is unchanged.
1023  */
1024
1025 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1026                                       unsigned short mask)
1027 {
1028         struct net_device *dev, *ret;
1029
1030         ASSERT_RTNL();
1031
1032         ret = NULL;
1033         for_each_netdev(net, dev) {
1034                 if (((dev->flags ^ if_flags) & mask) == 0) {
1035                         ret = dev;
1036                         break;
1037                 }
1038         }
1039         return ret;
1040 }
1041 EXPORT_SYMBOL(__dev_get_by_flags);
1042
1043 /**
1044  *      dev_valid_name - check if name is okay for network device
1045  *      @name: name string
1046  *
1047  *      Network device names need to be valid file names to
1048  *      to allow sysfs to work.  We also disallow any kind of
1049  *      whitespace.
1050  */
1051 bool dev_valid_name(const char *name)
1052 {
1053         if (*name == '\0')
1054                 return false;
1055         if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1056                 return false;
1057         if (!strcmp(name, ".") || !strcmp(name, ".."))
1058                 return false;
1059
1060         while (*name) {
1061                 if (*name == '/' || *name == ':' || isspace(*name))
1062                         return false;
1063                 name++;
1064         }
1065         return true;
1066 }
1067 EXPORT_SYMBOL(dev_valid_name);
1068
1069 /**
1070  *      __dev_alloc_name - allocate a name for a device
1071  *      @net: network namespace to allocate the device name in
1072  *      @name: name format string
1073  *      @buf:  scratch buffer and result name string
1074  *
1075  *      Passed a format string - eg "lt%d" it will try and find a suitable
1076  *      id. It scans list of devices to build up a free map, then chooses
1077  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1078  *      while allocating the name and adding the device in order to avoid
1079  *      duplicates.
1080  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1081  *      Returns the number of the unit assigned or a negative errno code.
1082  */
1083
1084 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1085 {
1086         int i = 0;
1087         const char *p;
1088         const int max_netdevices = 8*PAGE_SIZE;
1089         unsigned long *inuse;
1090         struct net_device *d;
1091
1092         if (!dev_valid_name(name))
1093                 return -EINVAL;
1094
1095         p = strchr(name, '%');
1096         if (p) {
1097                 /*
1098                  * Verify the string as this thing may have come from
1099                  * the user.  There must be either one "%d" and no other "%"
1100                  * characters.
1101                  */
1102                 if (p[1] != 'd' || strchr(p + 2, '%'))
1103                         return -EINVAL;
1104
1105                 /* Use one page as a bit array of possible slots */
1106                 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1107                 if (!inuse)
1108                         return -ENOMEM;
1109
1110                 for_each_netdev(net, d) {
1111                         if (!sscanf(d->name, name, &i))
1112                                 continue;
1113                         if (i < 0 || i >= max_netdevices)
1114                                 continue;
1115
1116                         /*  avoid cases where sscanf is not exact inverse of printf */
1117                         snprintf(buf, IFNAMSIZ, name, i);
1118                         if (!strncmp(buf, d->name, IFNAMSIZ))
1119                                 set_bit(i, inuse);
1120                 }
1121
1122                 i = find_first_zero_bit(inuse, max_netdevices);
1123                 free_page((unsigned long) inuse);
1124         }
1125
1126         snprintf(buf, IFNAMSIZ, name, i);
1127         if (!__dev_get_by_name(net, buf))
1128                 return i;
1129
1130         /* It is possible to run out of possible slots
1131          * when the name is long and there isn't enough space left
1132          * for the digits, or if all bits are used.
1133          */
1134         return -ENFILE;
1135 }
1136
1137 static int dev_alloc_name_ns(struct net *net,
1138                              struct net_device *dev,
1139                              const char *name)
1140 {
1141         char buf[IFNAMSIZ];
1142         int ret;
1143
1144         BUG_ON(!net);
1145         ret = __dev_alloc_name(net, name, buf);
1146         if (ret >= 0)
1147                 strlcpy(dev->name, buf, IFNAMSIZ);
1148         return ret;
1149 }
1150
1151 /**
1152  *      dev_alloc_name - allocate a name for a device
1153  *      @dev: device
1154  *      @name: name format string
1155  *
1156  *      Passed a format string - eg "lt%d" it will try and find a suitable
1157  *      id. It scans list of devices to build up a free map, then chooses
1158  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1159  *      while allocating the name and adding the device in order to avoid
1160  *      duplicates.
1161  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1162  *      Returns the number of the unit assigned or a negative errno code.
1163  */
1164
1165 int dev_alloc_name(struct net_device *dev, const char *name)
1166 {
1167         return dev_alloc_name_ns(dev_net(dev), dev, name);
1168 }
1169 EXPORT_SYMBOL(dev_alloc_name);
1170
1171 static int dev_get_valid_name(struct net *net, struct net_device *dev,
1172                               const char *name)
1173 {
1174         BUG_ON(!net);
1175
1176         if (!dev_valid_name(name))
1177                 return -EINVAL;
1178
1179         if (strchr(name, '%'))
1180                 return dev_alloc_name_ns(net, dev, name);
1181         else if (__dev_get_by_name(net, name))
1182                 return -EEXIST;
1183         else if (dev->name != name)
1184                 strlcpy(dev->name, name, IFNAMSIZ);
1185
1186         return 0;
1187 }
1188
1189 /**
1190  *      dev_change_name - change name of a device
1191  *      @dev: device
1192  *      @newname: name (or format string) must be at least IFNAMSIZ
1193  *
1194  *      Change name of a device, can pass format strings "eth%d".
1195  *      for wildcarding.
1196  */
1197 int dev_change_name(struct net_device *dev, const char *newname)
1198 {
1199         unsigned char old_assign_type;
1200         char oldname[IFNAMSIZ];
1201         int err = 0;
1202         int ret;
1203         struct net *net;
1204
1205         ASSERT_RTNL();
1206         BUG_ON(!dev_net(dev));
1207
1208         net = dev_net(dev);
1209
1210         /* Some auto-enslaved devices e.g. failover slaves are
1211          * special, as userspace might rename the device after
1212          * the interface had been brought up and running since
1213          * the point kernel initiated auto-enslavement. Allow
1214          * live name change even when these slave devices are
1215          * up and running.
1216          *
1217          * Typically, users of these auto-enslaving devices
1218          * don't actually care about slave name change, as
1219          * they are supposed to operate on master interface
1220          * directly.
1221          */
1222         if (dev->flags & IFF_UP &&
1223             likely(!(dev->priv_flags & IFF_LIVE_RENAME_OK)))
1224                 return -EBUSY;
1225
1226         write_seqcount_begin(&devnet_rename_seq);
1227
1228         if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1229                 write_seqcount_end(&devnet_rename_seq);
1230                 return 0;
1231         }
1232
1233         memcpy(oldname, dev->name, IFNAMSIZ);
1234
1235         err = dev_get_valid_name(net, dev, newname);
1236         if (err < 0) {
1237                 write_seqcount_end(&devnet_rename_seq);
1238                 return err;
1239         }
1240
1241         if (oldname[0] && !strchr(oldname, '%'))
1242                 netdev_info(dev, "renamed from %s\n", oldname);
1243
1244         old_assign_type = dev->name_assign_type;
1245         dev->name_assign_type = NET_NAME_RENAMED;
1246
1247 rollback:
1248         ret = device_rename(&dev->dev, dev->name);
1249         if (ret) {
1250                 memcpy(dev->name, oldname, IFNAMSIZ);
1251                 dev->name_assign_type = old_assign_type;
1252                 write_seqcount_end(&devnet_rename_seq);
1253                 return ret;
1254         }
1255
1256         write_seqcount_end(&devnet_rename_seq);
1257
1258         netdev_adjacent_rename_links(dev, oldname);
1259
1260         write_lock_bh(&dev_base_lock);
1261         netdev_name_node_del(dev->name_node);
1262         write_unlock_bh(&dev_base_lock);
1263
1264         synchronize_rcu();
1265
1266         write_lock_bh(&dev_base_lock);
1267         netdev_name_node_add(net, dev->name_node);
1268         write_unlock_bh(&dev_base_lock);
1269
1270         ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1271         ret = notifier_to_errno(ret);
1272
1273         if (ret) {
1274                 /* err >= 0 after dev_alloc_name() or stores the first errno */
1275                 if (err >= 0) {
1276                         err = ret;
1277                         write_seqcount_begin(&devnet_rename_seq);
1278                         memcpy(dev->name, oldname, IFNAMSIZ);
1279                         memcpy(oldname, newname, IFNAMSIZ);
1280                         dev->name_assign_type = old_assign_type;
1281                         old_assign_type = NET_NAME_RENAMED;
1282                         goto rollback;
1283                 } else {
1284                         pr_err("%s: name change rollback failed: %d\n",
1285                                dev->name, ret);
1286                 }
1287         }
1288
1289         return err;
1290 }
1291
1292 /**
1293  *      dev_set_alias - change ifalias of a device
1294  *      @dev: device
1295  *      @alias: name up to IFALIASZ
1296  *      @len: limit of bytes to copy from info
1297  *
1298  *      Set ifalias for a device,
1299  */
1300 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1301 {
1302         struct dev_ifalias *new_alias = NULL;
1303
1304         if (len >= IFALIASZ)
1305                 return -EINVAL;
1306
1307         if (len) {
1308                 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1309                 if (!new_alias)
1310                         return -ENOMEM;
1311
1312                 memcpy(new_alias->ifalias, alias, len);
1313                 new_alias->ifalias[len] = 0;
1314         }
1315
1316         mutex_lock(&ifalias_mutex);
1317         new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1318                                         mutex_is_locked(&ifalias_mutex));
1319         mutex_unlock(&ifalias_mutex);
1320
1321         if (new_alias)
1322                 kfree_rcu(new_alias, rcuhead);
1323
1324         return len;
1325 }
1326 EXPORT_SYMBOL(dev_set_alias);
1327
1328 /**
1329  *      dev_get_alias - get ifalias of a device
1330  *      @dev: device
1331  *      @name: buffer to store name of ifalias
1332  *      @len: size of buffer
1333  *
1334  *      get ifalias for a device.  Caller must make sure dev cannot go
1335  *      away,  e.g. rcu read lock or own a reference count to device.
1336  */
1337 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1338 {
1339         const struct dev_ifalias *alias;
1340         int ret = 0;
1341
1342         rcu_read_lock();
1343         alias = rcu_dereference(dev->ifalias);
1344         if (alias)
1345                 ret = snprintf(name, len, "%s", alias->ifalias);
1346         rcu_read_unlock();
1347
1348         return ret;
1349 }
1350
1351 /**
1352  *      netdev_features_change - device changes features
1353  *      @dev: device to cause notification
1354  *
1355  *      Called to indicate a device has changed features.
1356  */
1357 void netdev_features_change(struct net_device *dev)
1358 {
1359         call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1360 }
1361 EXPORT_SYMBOL(netdev_features_change);
1362
1363 /**
1364  *      netdev_state_change - device changes state
1365  *      @dev: device to cause notification
1366  *
1367  *      Called to indicate a device has changed state. This function calls
1368  *      the notifier chains for netdev_chain and sends a NEWLINK message
1369  *      to the routing socket.
1370  */
1371 void netdev_state_change(struct net_device *dev)
1372 {
1373         if (dev->flags & IFF_UP) {
1374                 struct netdev_notifier_change_info change_info = {
1375                         .info.dev = dev,
1376                 };
1377
1378                 call_netdevice_notifiers_info(NETDEV_CHANGE,
1379                                               &change_info.info);
1380                 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1381         }
1382 }
1383 EXPORT_SYMBOL(netdev_state_change);
1384
1385 /**
1386  * netdev_notify_peers - notify network peers about existence of @dev
1387  * @dev: network device
1388  *
1389  * Generate traffic such that interested network peers are aware of
1390  * @dev, such as by generating a gratuitous ARP. This may be used when
1391  * a device wants to inform the rest of the network about some sort of
1392  * reconfiguration such as a failover event or virtual machine
1393  * migration.
1394  */
1395 void netdev_notify_peers(struct net_device *dev)
1396 {
1397         rtnl_lock();
1398         call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1399         call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1400         rtnl_unlock();
1401 }
1402 EXPORT_SYMBOL(netdev_notify_peers);
1403
1404 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1405 {
1406         const struct net_device_ops *ops = dev->netdev_ops;
1407         int ret;
1408
1409         ASSERT_RTNL();
1410
1411         if (!netif_device_present(dev))
1412                 return -ENODEV;
1413
1414         /* Block netpoll from trying to do any rx path servicing.
1415          * If we don't do this there is a chance ndo_poll_controller
1416          * or ndo_poll may be running while we open the device
1417          */
1418         netpoll_poll_disable(dev);
1419
1420         ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1421         ret = notifier_to_errno(ret);
1422         if (ret)
1423                 return ret;
1424
1425         set_bit(__LINK_STATE_START, &dev->state);
1426
1427         if (ops->ndo_validate_addr)
1428                 ret = ops->ndo_validate_addr(dev);
1429
1430         if (!ret && ops->ndo_open)
1431                 ret = ops->ndo_open(dev);
1432
1433         netpoll_poll_enable(dev);
1434
1435         if (ret)
1436                 clear_bit(__LINK_STATE_START, &dev->state);
1437         else {
1438                 dev->flags |= IFF_UP;
1439                 dev_set_rx_mode(dev);
1440                 dev_activate(dev);
1441                 add_device_randomness(dev->dev_addr, dev->addr_len);
1442         }
1443
1444         return ret;
1445 }
1446
1447 /**
1448  *      dev_open        - prepare an interface for use.
1449  *      @dev: device to open
1450  *      @extack: netlink extended ack
1451  *
1452  *      Takes a device from down to up state. The device's private open
1453  *      function is invoked and then the multicast lists are loaded. Finally
1454  *      the device is moved into the up state and a %NETDEV_UP message is
1455  *      sent to the netdev notifier chain.
1456  *
1457  *      Calling this function on an active interface is a nop. On a failure
1458  *      a negative errno code is returned.
1459  */
1460 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1461 {
1462         int ret;
1463
1464         if (dev->flags & IFF_UP)
1465                 return 0;
1466
1467         ret = __dev_open(dev, extack);
1468         if (ret < 0)
1469                 return ret;
1470
1471         rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1472         call_netdevice_notifiers(NETDEV_UP, dev);
1473
1474         return ret;
1475 }
1476 EXPORT_SYMBOL(dev_open);
1477
1478 static void __dev_close_many(struct list_head *head)
1479 {
1480         struct net_device *dev;
1481
1482         ASSERT_RTNL();
1483         might_sleep();
1484
1485         list_for_each_entry(dev, head, close_list) {
1486                 /* Temporarily disable netpoll until the interface is down */
1487                 netpoll_poll_disable(dev);
1488
1489                 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1490
1491                 clear_bit(__LINK_STATE_START, &dev->state);
1492
1493                 /* Synchronize to scheduled poll. We cannot touch poll list, it
1494                  * can be even on different cpu. So just clear netif_running().
1495                  *
1496                  * dev->stop() will invoke napi_disable() on all of it's
1497                  * napi_struct instances on this device.
1498                  */
1499                 smp_mb__after_atomic(); /* Commit netif_running(). */
1500         }
1501
1502         dev_deactivate_many(head);
1503
1504         list_for_each_entry(dev, head, close_list) {
1505                 const struct net_device_ops *ops = dev->netdev_ops;
1506
1507                 /*
1508                  *      Call the device specific close. This cannot fail.
1509                  *      Only if device is UP
1510                  *
1511                  *      We allow it to be called even after a DETACH hot-plug
1512                  *      event.
1513                  */
1514                 if (ops->ndo_stop)
1515                         ops->ndo_stop(dev);
1516
1517                 dev->flags &= ~IFF_UP;
1518                 netpoll_poll_enable(dev);
1519         }
1520 }
1521
1522 static void __dev_close(struct net_device *dev)
1523 {
1524         LIST_HEAD(single);
1525
1526         list_add(&dev->close_list, &single);
1527         __dev_close_many(&single);
1528         list_del(&single);
1529 }
1530
1531 void dev_close_many(struct list_head *head, bool unlink)
1532 {
1533         struct net_device *dev, *tmp;
1534
1535         /* Remove the devices that don't need to be closed */
1536         list_for_each_entry_safe(dev, tmp, head, close_list)
1537                 if (!(dev->flags & IFF_UP))
1538                         list_del_init(&dev->close_list);
1539
1540         __dev_close_many(head);
1541
1542         list_for_each_entry_safe(dev, tmp, head, close_list) {
1543                 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1544                 call_netdevice_notifiers(NETDEV_DOWN, dev);
1545                 if (unlink)
1546                         list_del_init(&dev->close_list);
1547         }
1548 }
1549 EXPORT_SYMBOL(dev_close_many);
1550
1551 /**
1552  *      dev_close - shutdown an interface.
1553  *      @dev: device to shutdown
1554  *
1555  *      This function moves an active device into down state. A
1556  *      %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1557  *      is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1558  *      chain.
1559  */
1560 void dev_close(struct net_device *dev)
1561 {
1562         if (dev->flags & IFF_UP) {
1563                 LIST_HEAD(single);
1564
1565                 list_add(&dev->close_list, &single);
1566                 dev_close_many(&single, true);
1567                 list_del(&single);
1568         }
1569 }
1570 EXPORT_SYMBOL(dev_close);
1571
1572
1573 /**
1574  *      dev_disable_lro - disable Large Receive Offload on a device
1575  *      @dev: device
1576  *
1577  *      Disable Large Receive Offload (LRO) on a net device.  Must be
1578  *      called under RTNL.  This is needed if received packets may be
1579  *      forwarded to another interface.
1580  */
1581 void dev_disable_lro(struct net_device *dev)
1582 {
1583         struct net_device *lower_dev;
1584         struct list_head *iter;
1585
1586         dev->wanted_features &= ~NETIF_F_LRO;
1587         netdev_update_features(dev);
1588
1589         if (unlikely(dev->features & NETIF_F_LRO))
1590                 netdev_WARN(dev, "failed to disable LRO!\n");
1591
1592         netdev_for_each_lower_dev(dev, lower_dev, iter)
1593                 dev_disable_lro(lower_dev);
1594 }
1595 EXPORT_SYMBOL(dev_disable_lro);
1596
1597 /**
1598  *      dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1599  *      @dev: device
1600  *
1601  *      Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
1602  *      called under RTNL.  This is needed if Generic XDP is installed on
1603  *      the device.
1604  */
1605 static void dev_disable_gro_hw(struct net_device *dev)
1606 {
1607         dev->wanted_features &= ~NETIF_F_GRO_HW;
1608         netdev_update_features(dev);
1609
1610         if (unlikely(dev->features & NETIF_F_GRO_HW))
1611                 netdev_WARN(dev, "failed to disable GRO_HW!\n");
1612 }
1613
1614 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1615 {
1616 #define N(val)                                          \
1617         case NETDEV_##val:                              \
1618                 return "NETDEV_" __stringify(val);
1619         switch (cmd) {
1620         N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1621         N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1622         N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1623         N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER)
1624         N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO)
1625         N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO)
1626         N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1627         N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1628         N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1629         N(PRE_CHANGEADDR)
1630         }
1631 #undef N
1632         return "UNKNOWN_NETDEV_EVENT";
1633 }
1634 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1635
1636 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1637                                    struct net_device *dev)
1638 {
1639         struct netdev_notifier_info info = {
1640                 .dev = dev,
1641         };
1642
1643         return nb->notifier_call(nb, val, &info);
1644 }
1645
1646 static int call_netdevice_register_notifiers(struct notifier_block *nb,
1647                                              struct net_device *dev)
1648 {
1649         int err;
1650
1651         err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1652         err = notifier_to_errno(err);
1653         if (err)
1654                 return err;
1655
1656         if (!(dev->flags & IFF_UP))
1657                 return 0;
1658
1659         call_netdevice_notifier(nb, NETDEV_UP, dev);
1660         return 0;
1661 }
1662
1663 static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1664                                                 struct net_device *dev)
1665 {
1666         if (dev->flags & IFF_UP) {
1667                 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1668                                         dev);
1669                 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1670         }
1671         call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1672 }
1673
1674 static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1675                                                  struct net *net)
1676 {
1677         struct net_device *dev;
1678         int err;
1679
1680         for_each_netdev(net, dev) {
1681                 err = call_netdevice_register_notifiers(nb, dev);
1682                 if (err)
1683                         goto rollback;
1684         }
1685         return 0;
1686
1687 rollback:
1688         for_each_netdev_continue_reverse(net, dev)
1689                 call_netdevice_unregister_notifiers(nb, dev);
1690         return err;
1691 }
1692
1693 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1694                                                     struct net *net)
1695 {
1696         struct net_device *dev;
1697
1698         for_each_netdev(net, dev)
1699                 call_netdevice_unregister_notifiers(nb, dev);
1700 }
1701
1702 static int dev_boot_phase = 1;
1703
1704 /**
1705  * register_netdevice_notifier - register a network notifier block
1706  * @nb: notifier
1707  *
1708  * Register a notifier to be called when network device events occur.
1709  * The notifier passed is linked into the kernel structures and must
1710  * not be reused until it has been unregistered. A negative errno code
1711  * is returned on a failure.
1712  *
1713  * When registered all registration and up events are replayed
1714  * to the new notifier to allow device to have a race free
1715  * view of the network device list.
1716  */
1717
1718 int register_netdevice_notifier(struct notifier_block *nb)
1719 {
1720         struct net *net;
1721         int err;
1722
1723         /* Close race with setup_net() and cleanup_net() */
1724         down_write(&pernet_ops_rwsem);
1725         rtnl_lock();
1726         err = raw_notifier_chain_register(&netdev_chain, nb);
1727         if (err)
1728                 goto unlock;
1729         if (dev_boot_phase)
1730                 goto unlock;
1731         for_each_net(net) {
1732                 err = call_netdevice_register_net_notifiers(nb, net);
1733                 if (err)
1734                         goto rollback;
1735         }
1736
1737 unlock:
1738         rtnl_unlock();
1739         up_write(&pernet_ops_rwsem);
1740         return err;
1741
1742 rollback:
1743         for_each_net_continue_reverse(net)
1744                 call_netdevice_unregister_net_notifiers(nb, net);
1745
1746         raw_notifier_chain_unregister(&netdev_chain, nb);
1747         goto unlock;
1748 }
1749 EXPORT_SYMBOL(register_netdevice_notifier);
1750
1751 /**
1752  * unregister_netdevice_notifier - unregister a network notifier block
1753  * @nb: notifier
1754  *
1755  * Unregister a notifier previously registered by
1756  * register_netdevice_notifier(). The notifier is unlinked into the
1757  * kernel structures and may then be reused. A negative errno code
1758  * is returned on a failure.
1759  *
1760  * After unregistering unregister and down device events are synthesized
1761  * for all devices on the device list to the removed notifier to remove
1762  * the need for special case cleanup code.
1763  */
1764
1765 int unregister_netdevice_notifier(struct notifier_block *nb)
1766 {
1767         struct net *net;
1768         int err;
1769
1770         /* Close race with setup_net() and cleanup_net() */
1771         down_write(&pernet_ops_rwsem);
1772         rtnl_lock();
1773         err = raw_notifier_chain_unregister(&netdev_chain, nb);
1774         if (err)
1775                 goto unlock;
1776
1777         for_each_net(net)
1778                 call_netdevice_unregister_net_notifiers(nb, net);
1779
1780 unlock:
1781         rtnl_unlock();
1782         up_write(&pernet_ops_rwsem);
1783         return err;
1784 }
1785 EXPORT_SYMBOL(unregister_netdevice_notifier);
1786
1787 static int __register_netdevice_notifier_net(struct net *net,
1788                                              struct notifier_block *nb,
1789                                              bool ignore_call_fail)
1790 {
1791         int err;
1792
1793         err = raw_notifier_chain_register(&net->netdev_chain, nb);
1794         if (err)
1795                 return err;
1796         if (dev_boot_phase)
1797                 return 0;
1798
1799         err = call_netdevice_register_net_notifiers(nb, net);
1800         if (err && !ignore_call_fail)
1801                 goto chain_unregister;
1802
1803         return 0;
1804
1805 chain_unregister:
1806         raw_notifier_chain_unregister(&net->netdev_chain, nb);
1807         return err;
1808 }
1809
1810 static int __unregister_netdevice_notifier_net(struct net *net,
1811                                                struct notifier_block *nb)
1812 {
1813         int err;
1814
1815         err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
1816         if (err)
1817                 return err;
1818
1819         call_netdevice_unregister_net_notifiers(nb, net);
1820         return 0;
1821 }
1822
1823 /**
1824  * register_netdevice_notifier_net - register a per-netns network notifier block
1825  * @net: network namespace
1826  * @nb: notifier
1827  *
1828  * Register a notifier to be called when network device events occur.
1829  * The notifier passed is linked into the kernel structures and must
1830  * not be reused until it has been unregistered. A negative errno code
1831  * is returned on a failure.
1832  *
1833  * When registered all registration and up events are replayed
1834  * to the new notifier to allow device to have a race free
1835  * view of the network device list.
1836  */
1837
1838 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
1839 {
1840         int err;
1841
1842         rtnl_lock();
1843         err = __register_netdevice_notifier_net(net, nb, false);
1844         rtnl_unlock();
1845         return err;
1846 }
1847 EXPORT_SYMBOL(register_netdevice_notifier_net);
1848
1849 /**
1850  * unregister_netdevice_notifier_net - unregister a per-netns
1851  *                                     network notifier block
1852  * @net: network namespace
1853  * @nb: notifier
1854  *
1855  * Unregister a notifier previously registered by
1856  * register_netdevice_notifier(). The notifier is unlinked into the
1857  * kernel structures and may then be reused. A negative errno code
1858  * is returned on a failure.
1859  *
1860  * After unregistering unregister and down device events are synthesized
1861  * for all devices on the device list to the removed notifier to remove
1862  * the need for special case cleanup code.
1863  */
1864
1865 int unregister_netdevice_notifier_net(struct net *net,
1866                                       struct notifier_block *nb)
1867 {
1868         int err;
1869
1870         rtnl_lock();
1871         err = __unregister_netdevice_notifier_net(net, nb);
1872         rtnl_unlock();
1873         return err;
1874 }
1875 EXPORT_SYMBOL(unregister_netdevice_notifier_net);
1876
1877 int register_netdevice_notifier_dev_net(struct net_device *dev,
1878                                         struct notifier_block *nb,
1879                                         struct netdev_net_notifier *nn)
1880 {
1881         int err;
1882
1883         rtnl_lock();
1884         err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
1885         if (!err) {
1886                 nn->nb = nb;
1887                 list_add(&nn->list, &dev->net_notifier_list);
1888         }
1889         rtnl_unlock();
1890         return err;
1891 }
1892 EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
1893
1894 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
1895                                           struct notifier_block *nb,
1896                                           struct netdev_net_notifier *nn)
1897 {
1898         int err;
1899
1900         rtnl_lock();
1901         list_del(&nn->list);
1902         err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
1903         rtnl_unlock();
1904         return err;
1905 }
1906 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
1907
1908 static void move_netdevice_notifiers_dev_net(struct net_device *dev,
1909                                              struct net *net)
1910 {
1911         struct netdev_net_notifier *nn;
1912
1913         list_for_each_entry(nn, &dev->net_notifier_list, list) {
1914                 __unregister_netdevice_notifier_net(dev_net(dev), nn->nb);
1915                 __register_netdevice_notifier_net(net, nn->nb, true);
1916         }
1917 }
1918
1919 /**
1920  *      call_netdevice_notifiers_info - call all network notifier blocks
1921  *      @val: value passed unmodified to notifier function
1922  *      @info: notifier information data
1923  *
1924  *      Call all network notifier blocks.  Parameters and return value
1925  *      are as for raw_notifier_call_chain().
1926  */
1927
1928 static int call_netdevice_notifiers_info(unsigned long val,
1929                                          struct netdev_notifier_info *info)
1930 {
1931         struct net *net = dev_net(info->dev);
1932         int ret;
1933
1934         ASSERT_RTNL();
1935
1936         /* Run per-netns notifier block chain first, then run the global one.
1937          * Hopefully, one day, the global one is going to be removed after
1938          * all notifier block registrators get converted to be per-netns.
1939          */
1940         ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
1941         if (ret & NOTIFY_STOP_MASK)
1942                 return ret;
1943         return raw_notifier_call_chain(&netdev_chain, val, info);
1944 }
1945
1946 static int call_netdevice_notifiers_extack(unsigned long val,
1947                                            struct net_device *dev,
1948                                            struct netlink_ext_ack *extack)
1949 {
1950         struct netdev_notifier_info info = {
1951                 .dev = dev,
1952                 .extack = extack,
1953         };
1954
1955         return call_netdevice_notifiers_info(val, &info);
1956 }
1957
1958 /**
1959  *      call_netdevice_notifiers - call all network notifier blocks
1960  *      @val: value passed unmodified to notifier function
1961  *      @dev: net_device pointer passed unmodified to notifier function
1962  *
1963  *      Call all network notifier blocks.  Parameters and return value
1964  *      are as for raw_notifier_call_chain().
1965  */
1966
1967 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1968 {
1969         return call_netdevice_notifiers_extack(val, dev, NULL);
1970 }
1971 EXPORT_SYMBOL(call_netdevice_notifiers);
1972
1973 /**
1974  *      call_netdevice_notifiers_mtu - call all network notifier blocks
1975  *      @val: value passed unmodified to notifier function
1976  *      @dev: net_device pointer passed unmodified to notifier function
1977  *      @arg: additional u32 argument passed to the notifier function
1978  *
1979  *      Call all network notifier blocks.  Parameters and return value
1980  *      are as for raw_notifier_call_chain().
1981  */
1982 static int call_netdevice_notifiers_mtu(unsigned long val,
1983                                         struct net_device *dev, u32 arg)
1984 {
1985         struct netdev_notifier_info_ext info = {
1986                 .info.dev = dev,
1987                 .ext.mtu = arg,
1988         };
1989
1990         BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
1991
1992         return call_netdevice_notifiers_info(val, &info.info);
1993 }
1994
1995 #ifdef CONFIG_NET_INGRESS
1996 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
1997
1998 void net_inc_ingress_queue(void)
1999 {
2000         static_branch_inc(&ingress_needed_key);
2001 }
2002 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2003
2004 void net_dec_ingress_queue(void)
2005 {
2006         static_branch_dec(&ingress_needed_key);
2007 }
2008 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2009 #endif
2010
2011 #ifdef CONFIG_NET_EGRESS
2012 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
2013
2014 void net_inc_egress_queue(void)
2015 {
2016         static_branch_inc(&egress_needed_key);
2017 }
2018 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2019
2020 void net_dec_egress_queue(void)
2021 {
2022         static_branch_dec(&egress_needed_key);
2023 }
2024 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2025 #endif
2026
2027 static DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2028 #ifdef CONFIG_JUMP_LABEL
2029 static atomic_t netstamp_needed_deferred;
2030 static atomic_t netstamp_wanted;
2031 static void netstamp_clear(struct work_struct *work)
2032 {
2033         int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2034         int wanted;
2035
2036         wanted = atomic_add_return(deferred, &netstamp_wanted);
2037         if (wanted > 0)
2038                 static_branch_enable(&netstamp_needed_key);
2039         else
2040                 static_branch_disable(&netstamp_needed_key);
2041 }
2042 static DECLARE_WORK(netstamp_work, netstamp_clear);
2043 #endif
2044
2045 void net_enable_timestamp(void)
2046 {
2047 #ifdef CONFIG_JUMP_LABEL
2048         int wanted;
2049
2050         while (1) {
2051                 wanted = atomic_read(&netstamp_wanted);
2052                 if (wanted <= 0)
2053                         break;
2054                 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
2055                         return;
2056         }
2057         atomic_inc(&netstamp_needed_deferred);
2058         schedule_work(&netstamp_work);
2059 #else
2060         static_branch_inc(&netstamp_needed_key);
2061 #endif
2062 }
2063 EXPORT_SYMBOL(net_enable_timestamp);
2064
2065 void net_disable_timestamp(void)
2066 {
2067 #ifdef CONFIG_JUMP_LABEL
2068         int wanted;
2069
2070         while (1) {
2071                 wanted = atomic_read(&netstamp_wanted);
2072                 if (wanted <= 1)
2073                         break;
2074                 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
2075                         return;
2076         }
2077         atomic_dec(&netstamp_needed_deferred);
2078         schedule_work(&netstamp_work);
2079 #else
2080         static_branch_dec(&netstamp_needed_key);
2081 #endif
2082 }
2083 EXPORT_SYMBOL(net_disable_timestamp);
2084
2085 static inline void net_timestamp_set(struct sk_buff *skb)
2086 {
2087         skb->tstamp = 0;
2088         if (static_branch_unlikely(&netstamp_needed_key))
2089                 __net_timestamp(skb);
2090 }
2091
2092 #define net_timestamp_check(COND, SKB)                          \
2093         if (static_branch_unlikely(&netstamp_needed_key)) {     \
2094                 if ((COND) && !(SKB)->tstamp)                   \
2095                         __net_timestamp(SKB);                   \
2096         }                                                       \
2097
2098 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2099 {
2100         unsigned int len;
2101
2102         if (!(dev->flags & IFF_UP))
2103                 return false;
2104
2105         len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
2106         if (skb->len <= len)
2107                 return true;
2108
2109         /* if TSO is enabled, we don't care about the length as the packet
2110          * could be forwarded without being segmented before
2111          */
2112         if (skb_is_gso(skb))
2113                 return true;
2114
2115         return false;
2116 }
2117 EXPORT_SYMBOL_GPL(is_skb_forwardable);
2118
2119 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2120 {
2121         int ret = ____dev_forward_skb(dev, skb);
2122
2123         if (likely(!ret)) {
2124                 skb->protocol = eth_type_trans(skb, dev);
2125                 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2126         }
2127
2128         return ret;
2129 }
2130 EXPORT_SYMBOL_GPL(__dev_forward_skb);
2131
2132 /**
2133  * dev_forward_skb - loopback an skb to another netif
2134  *
2135  * @dev: destination network device
2136  * @skb: buffer to forward
2137  *
2138  * return values:
2139  *      NET_RX_SUCCESS  (no congestion)
2140  *      NET_RX_DROP     (packet was dropped, but freed)
2141  *
2142  * dev_forward_skb can be used for injecting an skb from the
2143  * start_xmit function of one device into the receive queue
2144  * of another device.
2145  *
2146  * The receiving device may be in another namespace, so
2147  * we have to clear all information in the skb that could
2148  * impact namespace isolation.
2149  */
2150 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2151 {
2152         return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2153 }
2154 EXPORT_SYMBOL_GPL(dev_forward_skb);
2155
2156 static inline int deliver_skb(struct sk_buff *skb,
2157                               struct packet_type *pt_prev,
2158                               struct net_device *orig_dev)
2159 {
2160         if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2161                 return -ENOMEM;
2162         refcount_inc(&skb->users);
2163         return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2164 }
2165
2166 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2167                                           struct packet_type **pt,
2168                                           struct net_device *orig_dev,
2169                                           __be16 type,
2170                                           struct list_head *ptype_list)
2171 {
2172         struct packet_type *ptype, *pt_prev = *pt;
2173
2174         list_for_each_entry_rcu(ptype, ptype_list, list) {
2175                 if (ptype->type != type)
2176                         continue;
2177                 if (pt_prev)
2178                         deliver_skb(skb, pt_prev, orig_dev);
2179                 pt_prev = ptype;
2180         }
2181         *pt = pt_prev;
2182 }
2183
2184 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2185 {
2186         if (!ptype->af_packet_priv || !skb->sk)
2187                 return false;
2188
2189         if (ptype->id_match)
2190                 return ptype->id_match(ptype, skb->sk);
2191         else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2192                 return true;
2193
2194         return false;
2195 }
2196
2197 /**
2198  * dev_nit_active - return true if any network interface taps are in use
2199  *
2200  * @dev: network device to check for the presence of taps
2201  */
2202 bool dev_nit_active(struct net_device *dev)
2203 {
2204         return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
2205 }
2206 EXPORT_SYMBOL_GPL(dev_nit_active);
2207
2208 /*
2209  *      Support routine. Sends outgoing frames to any network
2210  *      taps currently in use.
2211  */
2212
2213 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2214 {
2215         struct packet_type *ptype;
2216         struct sk_buff *skb2 = NULL;
2217         struct packet_type *pt_prev = NULL;
2218         struct list_head *ptype_list = &ptype_all;
2219
2220         rcu_read_lock();
2221 again:
2222         list_for_each_entry_rcu(ptype, ptype_list, list) {
2223                 if (ptype->ignore_outgoing)
2224                         continue;
2225
2226                 /* Never send packets back to the socket
2227                  * they originated from - MvS (miquels@drinkel.ow.org)
2228                  */
2229                 if (skb_loop_sk(ptype, skb))
2230                         continue;
2231
2232                 if (pt_prev) {
2233                         deliver_skb(skb2, pt_prev, skb->dev);
2234                         pt_prev = ptype;
2235                         continue;
2236                 }
2237
2238                 /* need to clone skb, done only once */
2239                 skb2 = skb_clone(skb, GFP_ATOMIC);
2240                 if (!skb2)
2241                         goto out_unlock;
2242
2243                 net_timestamp_set(skb2);
2244
2245                 /* skb->nh should be correctly
2246                  * set by sender, so that the second statement is
2247                  * just protection against buggy protocols.
2248                  */
2249                 skb_reset_mac_header(skb2);
2250
2251                 if (skb_network_header(skb2) < skb2->data ||
2252                     skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2253                         net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2254                                              ntohs(skb2->protocol),
2255                                              dev->name);
2256                         skb_reset_network_header(skb2);
2257                 }
2258
2259                 skb2->transport_header = skb2->network_header;
2260                 skb2->pkt_type = PACKET_OUTGOING;
2261                 pt_prev = ptype;
2262         }
2263
2264         if (ptype_list == &ptype_all) {
2265                 ptype_list = &dev->ptype_all;
2266                 goto again;
2267         }
2268 out_unlock:
2269         if (pt_prev) {
2270                 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2271                         pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2272                 else
2273                         kfree_skb(skb2);
2274         }
2275         rcu_read_unlock();
2276 }
2277 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2278
2279 /**
2280  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2281  * @dev: Network device
2282  * @txq: number of queues available
2283  *
2284  * If real_num_tx_queues is changed the tc mappings may no longer be
2285  * valid. To resolve this verify the tc mapping remains valid and if
2286  * not NULL the mapping. With no priorities mapping to this
2287  * offset/count pair it will no longer be used. In the worst case TC0
2288  * is invalid nothing can be done so disable priority mappings. If is
2289  * expected that drivers will fix this mapping if they can before
2290  * calling netif_set_real_num_tx_queues.
2291  */
2292 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2293 {
2294         int i;
2295         struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2296
2297         /* If TC0 is invalidated disable TC mapping */
2298         if (tc->offset + tc->count > txq) {
2299                 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2300                 dev->num_tc = 0;
2301                 return;
2302         }
2303
2304         /* Invalidated prio to tc mappings set to TC0 */
2305         for (i = 1; i < TC_BITMASK + 1; i++) {
2306                 int q = netdev_get_prio_tc_map(dev, i);
2307
2308                 tc = &dev->tc_to_txq[q];
2309                 if (tc->offset + tc->count > txq) {
2310                         pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2311                                 i, q);
2312                         netdev_set_prio_tc_map(dev, i, 0);
2313                 }
2314         }
2315 }
2316
2317 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2318 {
2319         if (dev->num_tc) {
2320                 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2321                 int i;
2322
2323                 /* walk through the TCs and see if it falls into any of them */
2324                 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2325                         if ((txq - tc->offset) < tc->count)
2326                                 return i;
2327                 }
2328
2329                 /* didn't find it, just return -1 to indicate no match */
2330                 return -1;
2331         }
2332
2333         return 0;
2334 }
2335 EXPORT_SYMBOL(netdev_txq_to_tc);
2336
2337 #ifdef CONFIG_XPS
2338 struct static_key xps_needed __read_mostly;
2339 EXPORT_SYMBOL(xps_needed);
2340 struct static_key xps_rxqs_needed __read_mostly;
2341 EXPORT_SYMBOL(xps_rxqs_needed);
2342 static DEFINE_MUTEX(xps_map_mutex);
2343 #define xmap_dereference(P)             \
2344         rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2345
2346 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2347                              int tci, u16 index)
2348 {
2349         struct xps_map *map = NULL;
2350         int pos;
2351
2352         if (dev_maps)
2353                 map = xmap_dereference(dev_maps->attr_map[tci]);
2354         if (!map)
2355                 return false;
2356
2357         for (pos = map->len; pos--;) {
2358                 if (map->queues[pos] != index)
2359                         continue;
2360
2361                 if (map->len > 1) {
2362                         map->queues[pos] = map->queues[--map->len];
2363                         break;
2364                 }
2365
2366                 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2367                 kfree_rcu(map, rcu);
2368                 return false;
2369         }
2370
2371         return true;
2372 }
2373
2374 static bool remove_xps_queue_cpu(struct net_device *dev,
2375                                  struct xps_dev_maps *dev_maps,
2376                                  int cpu, u16 offset, u16 count)
2377 {
2378         int num_tc = dev->num_tc ? : 1;
2379         bool active = false;
2380         int tci;
2381
2382         for (tci = cpu * num_tc; num_tc--; tci++) {
2383                 int i, j;
2384
2385                 for (i = count, j = offset; i--; j++) {
2386                         if (!remove_xps_queue(dev_maps, tci, j))
2387                                 break;
2388                 }
2389
2390                 active |= i < 0;
2391         }
2392
2393         return active;
2394 }
2395
2396 static void reset_xps_maps(struct net_device *dev,
2397                            struct xps_dev_maps *dev_maps,
2398                            bool is_rxqs_map)
2399 {
2400         if (is_rxqs_map) {
2401                 static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2402                 RCU_INIT_POINTER(dev->xps_rxqs_map, NULL);
2403         } else {
2404                 RCU_INIT_POINTER(dev->xps_cpus_map, NULL);
2405         }
2406         static_key_slow_dec_cpuslocked(&xps_needed);
2407         kfree_rcu(dev_maps, rcu);
2408 }
2409
2410 static void clean_xps_maps(struct net_device *dev, const unsigned long *mask,
2411                            struct xps_dev_maps *dev_maps, unsigned int nr_ids,
2412                            u16 offset, u16 count, bool is_rxqs_map)
2413 {
2414         bool active = false;
2415         int i, j;
2416
2417         for (j = -1; j = netif_attrmask_next(j, mask, nr_ids),
2418              j < nr_ids;)
2419                 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset,
2420                                                count);
2421         if (!active)
2422                 reset_xps_maps(dev, dev_maps, is_rxqs_map);
2423
2424         if (!is_rxqs_map) {
2425                 for (i = offset + (count - 1); count--; i--) {
2426                         netdev_queue_numa_node_write(
2427                                 netdev_get_tx_queue(dev, i),
2428                                 NUMA_NO_NODE);
2429                 }
2430         }
2431 }
2432
2433 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2434                                    u16 count)
2435 {
2436         const unsigned long *possible_mask = NULL;
2437         struct xps_dev_maps *dev_maps;
2438         unsigned int nr_ids;
2439
2440         if (!static_key_false(&xps_needed))
2441                 return;
2442
2443         cpus_read_lock();
2444         mutex_lock(&xps_map_mutex);
2445
2446         if (static_key_false(&xps_rxqs_needed)) {
2447                 dev_maps = xmap_dereference(dev->xps_rxqs_map);
2448                 if (dev_maps) {
2449                         nr_ids = dev->num_rx_queues;
2450                         clean_xps_maps(dev, possible_mask, dev_maps, nr_ids,
2451                                        offset, count, true);
2452                 }
2453         }
2454
2455         dev_maps = xmap_dereference(dev->xps_cpus_map);
2456         if (!dev_maps)
2457                 goto out_no_maps;
2458
2459         if (num_possible_cpus() > 1)
2460                 possible_mask = cpumask_bits(cpu_possible_mask);
2461         nr_ids = nr_cpu_ids;
2462         clean_xps_maps(dev, possible_mask, dev_maps, nr_ids, offset, count,
2463                        false);
2464
2465 out_no_maps:
2466         mutex_unlock(&xps_map_mutex);
2467         cpus_read_unlock();
2468 }
2469
2470 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2471 {
2472         netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2473 }
2474
2475 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2476                                       u16 index, bool is_rxqs_map)
2477 {
2478         struct xps_map *new_map;
2479         int alloc_len = XPS_MIN_MAP_ALLOC;
2480         int i, pos;
2481
2482         for (pos = 0; map && pos < map->len; pos++) {
2483                 if (map->queues[pos] != index)
2484                         continue;
2485                 return map;
2486         }
2487
2488         /* Need to add tx-queue to this CPU's/rx-queue's existing map */
2489         if (map) {
2490                 if (pos < map->alloc_len)
2491                         return map;
2492
2493                 alloc_len = map->alloc_len * 2;
2494         }
2495
2496         /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2497          *  map
2498          */
2499         if (is_rxqs_map)
2500                 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2501         else
2502                 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2503                                        cpu_to_node(attr_index));
2504         if (!new_map)
2505                 return NULL;
2506
2507         for (i = 0; i < pos; i++)
2508                 new_map->queues[i] = map->queues[i];
2509         new_map->alloc_len = alloc_len;
2510         new_map->len = pos;
2511
2512         return new_map;
2513 }
2514
2515 /* Must be called under cpus_read_lock */
2516 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2517                           u16 index, bool is_rxqs_map)
2518 {
2519         const unsigned long *online_mask = NULL, *possible_mask = NULL;
2520         struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2521         int i, j, tci, numa_node_id = -2;
2522         int maps_sz, num_tc = 1, tc = 0;
2523         struct xps_map *map, *new_map;
2524         bool active = false;
2525         unsigned int nr_ids;
2526
2527         if (dev->num_tc) {
2528                 /* Do not allow XPS on subordinate device directly */
2529                 num_tc = dev->num_tc;
2530                 if (num_tc < 0)
2531                         return -EINVAL;
2532
2533                 /* If queue belongs to subordinate dev use its map */
2534                 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2535
2536                 tc = netdev_txq_to_tc(dev, index);
2537                 if (tc < 0)
2538                         return -EINVAL;
2539         }
2540
2541         mutex_lock(&xps_map_mutex);
2542         if (is_rxqs_map) {
2543                 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2544                 dev_maps = xmap_dereference(dev->xps_rxqs_map);
2545                 nr_ids = dev->num_rx_queues;
2546         } else {
2547                 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2548                 if (num_possible_cpus() > 1) {
2549                         online_mask = cpumask_bits(cpu_online_mask);
2550                         possible_mask = cpumask_bits(cpu_possible_mask);
2551                 }
2552                 dev_maps = xmap_dereference(dev->xps_cpus_map);
2553                 nr_ids = nr_cpu_ids;
2554         }
2555
2556         if (maps_sz < L1_CACHE_BYTES)
2557                 maps_sz = L1_CACHE_BYTES;
2558
2559         /* allocate memory for queue storage */
2560         for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2561              j < nr_ids;) {
2562                 if (!new_dev_maps)
2563                         new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2564                 if (!new_dev_maps) {
2565                         mutex_unlock(&xps_map_mutex);
2566                         return -ENOMEM;
2567                 }
2568
2569                 tci = j * num_tc + tc;
2570                 map = dev_maps ? xmap_dereference(dev_maps->attr_map[tci]) :
2571                                  NULL;
2572
2573                 map = expand_xps_map(map, j, index, is_rxqs_map);
2574                 if (!map)
2575                         goto error;
2576
2577                 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2578         }
2579
2580         if (!new_dev_maps)
2581                 goto out_no_new_maps;
2582
2583         if (!dev_maps) {
2584                 /* Increment static keys at most once per type */
2585                 static_key_slow_inc_cpuslocked(&xps_needed);
2586                 if (is_rxqs_map)
2587                         static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2588         }
2589
2590         for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2591              j < nr_ids;) {
2592                 /* copy maps belonging to foreign traffic classes */
2593                 for (i = tc, tci = j * num_tc; dev_maps && i--; tci++) {
2594                         /* fill in the new device map from the old device map */
2595                         map = xmap_dereference(dev_maps->attr_map[tci]);
2596                         RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2597                 }
2598
2599                 /* We need to explicitly update tci as prevous loop
2600                  * could break out early if dev_maps is NULL.
2601                  */
2602                 tci = j * num_tc + tc;
2603
2604                 if (netif_attr_test_mask(j, mask, nr_ids) &&
2605                     netif_attr_test_online(j, online_mask, nr_ids)) {
2606                         /* add tx-queue to CPU/rx-queue maps */
2607                         int pos = 0;
2608
2609                         map = xmap_dereference(new_dev_maps->attr_map[tci]);
2610                         while ((pos < map->len) && (map->queues[pos] != index))
2611                                 pos++;
2612
2613                         if (pos == map->len)
2614                                 map->queues[map->len++] = index;
2615 #ifdef CONFIG_NUMA
2616                         if (!is_rxqs_map) {
2617                                 if (numa_node_id == -2)
2618                                         numa_node_id = cpu_to_node(j);
2619                                 else if (numa_node_id != cpu_to_node(j))
2620                                         numa_node_id = -1;
2621                         }
2622 #endif
2623                 } else if (dev_maps) {
2624                         /* fill in the new device map from the old device map */
2625                         map = xmap_dereference(dev_maps->attr_map[tci]);
2626                         RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2627                 }
2628
2629                 /* copy maps belonging to foreign traffic classes */
2630                 for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2631                         /* fill in the new device map from the old device map */
2632                         map = xmap_dereference(dev_maps->attr_map[tci]);
2633                         RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2634                 }
2635         }
2636
2637         if (is_rxqs_map)
2638                 rcu_assign_pointer(dev->xps_rxqs_map, new_dev_maps);
2639         else
2640                 rcu_assign_pointer(dev->xps_cpus_map, new_dev_maps);
2641
2642         /* Cleanup old maps */
2643         if (!dev_maps)
2644                 goto out_no_old_maps;
2645
2646         for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2647              j < nr_ids;) {
2648                 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2649                         new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2650                         map = xmap_dereference(dev_maps->attr_map[tci]);
2651                         if (map && map != new_map)
2652                                 kfree_rcu(map, rcu);
2653                 }
2654         }
2655
2656         kfree_rcu(dev_maps, rcu);
2657
2658 out_no_old_maps:
2659         dev_maps = new_dev_maps;
2660         active = true;
2661
2662 out_no_new_maps:
2663         if (!is_rxqs_map) {
2664                 /* update Tx queue numa node */
2665                 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2666                                              (numa_node_id >= 0) ?
2667                                              numa_node_id : NUMA_NO_NODE);
2668         }
2669
2670         if (!dev_maps)
2671                 goto out_no_maps;
2672
2673         /* removes tx-queue from unused CPUs/rx-queues */
2674         for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2675              j < nr_ids;) {
2676                 for (i = tc, tci = j * num_tc; i--; tci++)
2677                         active |= remove_xps_queue(dev_maps, tci, index);
2678                 if (!netif_attr_test_mask(j, mask, nr_ids) ||
2679                     !netif_attr_test_online(j, online_mask, nr_ids))
2680                         active |= remove_xps_queue(dev_maps, tci, index);
2681                 for (i = num_tc - tc, tci++; --i; tci++)
2682                         active |= remove_xps_queue(dev_maps, tci, index);
2683         }
2684
2685         /* free map if not active */
2686         if (!active)
2687                 reset_xps_maps(dev, dev_maps, is_rxqs_map);
2688
2689 out_no_maps:
2690         mutex_unlock(&xps_map_mutex);
2691
2692         return 0;
2693 error:
2694         /* remove any maps that we added */
2695         for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2696              j < nr_ids;) {
2697                 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2698                         new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2699                         map = dev_maps ?
2700                               xmap_dereference(dev_maps->attr_map[tci]) :
2701                               NULL;
2702                         if (new_map && new_map != map)
2703                                 kfree(new_map);
2704                 }
2705         }
2706
2707         mutex_unlock(&xps_map_mutex);
2708
2709         kfree(new_dev_maps);
2710         return -ENOMEM;
2711 }
2712 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2713
2714 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2715                         u16 index)
2716 {
2717         int ret;
2718
2719         cpus_read_lock();
2720         ret =  __netif_set_xps_queue(dev, cpumask_bits(mask), index, false);
2721         cpus_read_unlock();
2722
2723         return ret;
2724 }
2725 EXPORT_SYMBOL(netif_set_xps_queue);
2726
2727 #endif
2728 static void netdev_unbind_all_sb_channels(struct net_device *dev)
2729 {
2730         struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2731
2732         /* Unbind any subordinate channels */
2733         while (txq-- != &dev->_tx[0]) {
2734                 if (txq->sb_dev)
2735                         netdev_unbind_sb_channel(dev, txq->sb_dev);
2736         }
2737 }
2738
2739 void netdev_reset_tc(struct net_device *dev)
2740 {
2741 #ifdef CONFIG_XPS
2742         netif_reset_xps_queues_gt(dev, 0);
2743 #endif
2744         netdev_unbind_all_sb_channels(dev);
2745
2746         /* Reset TC configuration of device */
2747         dev->num_tc = 0;
2748         memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2749         memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2750 }
2751 EXPORT_SYMBOL(netdev_reset_tc);
2752
2753 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2754 {
2755         if (tc >= dev->num_tc)
2756                 return -EINVAL;
2757
2758 #ifdef CONFIG_XPS
2759         netif_reset_xps_queues(dev, offset, count);
2760 #endif
2761         dev->tc_to_txq[tc].count = count;
2762         dev->tc_to_txq[tc].offset = offset;
2763         return 0;
2764 }
2765 EXPORT_SYMBOL(netdev_set_tc_queue);
2766
2767 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2768 {
2769         if (num_tc > TC_MAX_QUEUE)
2770                 return -EINVAL;
2771
2772 #ifdef CONFIG_XPS
2773         netif_reset_xps_queues_gt(dev, 0);
2774 #endif
2775         netdev_unbind_all_sb_channels(dev);
2776
2777         dev->num_tc = num_tc;
2778         return 0;
2779 }
2780 EXPORT_SYMBOL(netdev_set_num_tc);
2781
2782 void netdev_unbind_sb_channel(struct net_device *dev,
2783                               struct net_device *sb_dev)
2784 {
2785         struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2786
2787 #ifdef CONFIG_XPS
2788         netif_reset_xps_queues_gt(sb_dev, 0);
2789 #endif
2790         memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2791         memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2792
2793         while (txq-- != &dev->_tx[0]) {
2794                 if (txq->sb_dev == sb_dev)
2795                         txq->sb_dev = NULL;
2796         }
2797 }
2798 EXPORT_SYMBOL(netdev_unbind_sb_channel);
2799
2800 int netdev_bind_sb_channel_queue(struct net_device *dev,
2801                                  struct net_device *sb_dev,
2802                                  u8 tc, u16 count, u16 offset)
2803 {
2804         /* Make certain the sb_dev and dev are already configured */
2805         if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2806                 return -EINVAL;
2807
2808         /* We cannot hand out queues we don't have */
2809         if ((offset + count) > dev->real_num_tx_queues)
2810                 return -EINVAL;
2811
2812         /* Record the mapping */
2813         sb_dev->tc_to_txq[tc].count = count;
2814         sb_dev->tc_to_txq[tc].offset = offset;
2815
2816         /* Provide a way for Tx queue to find the tc_to_txq map or
2817          * XPS map for itself.
2818          */
2819         while (count--)
2820                 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2821
2822         return 0;
2823 }
2824 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2825
2826 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2827 {
2828         /* Do not use a multiqueue device to represent a subordinate channel */
2829         if (netif_is_multiqueue(dev))
2830                 return -ENODEV;
2831
2832         /* We allow channels 1 - 32767 to be used for subordinate channels.
2833          * Channel 0 is meant to be "native" mode and used only to represent
2834          * the main root device. We allow writing 0 to reset the device back
2835          * to normal mode after being used as a subordinate channel.
2836          */
2837         if (channel > S16_MAX)
2838                 return -EINVAL;
2839
2840         dev->num_tc = -channel;
2841
2842         return 0;
2843 }
2844 EXPORT_SYMBOL(netdev_set_sb_channel);
2845
2846 /*
2847  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2848  * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2849  */
2850 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2851 {
2852         bool disabling;
2853         int rc;
2854
2855         disabling = txq < dev->real_num_tx_queues;
2856
2857         if (txq < 1 || txq > dev->num_tx_queues)
2858                 return -EINVAL;
2859
2860         if (dev->reg_state == NETREG_REGISTERED ||
2861             dev->reg_state == NETREG_UNREGISTERING) {
2862                 ASSERT_RTNL();
2863
2864                 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2865                                                   txq);
2866                 if (rc)
2867                         return rc;
2868
2869                 if (dev->num_tc)
2870                         netif_setup_tc(dev, txq);
2871
2872                 dev->real_num_tx_queues = txq;
2873
2874                 if (disabling) {
2875                         synchronize_net();
2876                         qdisc_reset_all_tx_gt(dev, txq);
2877 #ifdef CONFIG_XPS
2878                         netif_reset_xps_queues_gt(dev, txq);
2879 #endif
2880                 }
2881         } else {
2882                 dev->real_num_tx_queues = txq;
2883         }
2884
2885         return 0;
2886 }
2887 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2888
2889 #ifdef CONFIG_SYSFS
2890 /**
2891  *      netif_set_real_num_rx_queues - set actual number of RX queues used
2892  *      @dev: Network device
2893  *      @rxq: Actual number of RX queues
2894  *
2895  *      This must be called either with the rtnl_lock held or before
2896  *      registration of the net device.  Returns 0 on success, or a
2897  *      negative error code.  If called before registration, it always
2898  *      succeeds.
2899  */
2900 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2901 {
2902         int rc;
2903
2904         if (rxq < 1 || rxq > dev->num_rx_queues)
2905                 return -EINVAL;
2906
2907         if (dev->reg_state == NETREG_REGISTERED) {
2908                 ASSERT_RTNL();
2909
2910                 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2911                                                   rxq);
2912                 if (rc)
2913                         return rc;
2914         }
2915
2916         dev->real_num_rx_queues = rxq;
2917         return 0;
2918 }
2919 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2920 #endif
2921
2922 /**
2923  * netif_get_num_default_rss_queues - default number of RSS queues
2924  *
2925  * This routine should set an upper limit on the number of RSS queues
2926  * used by default by multiqueue devices.
2927  */
2928 int netif_get_num_default_rss_queues(void)
2929 {
2930         return is_kdump_kernel() ?
2931                 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2932 }
2933 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2934
2935 static void __netif_reschedule(struct Qdisc *q)
2936 {
2937         struct softnet_data *sd;
2938         unsigned long flags;
2939
2940         local_irq_save(flags);
2941         sd = this_cpu_ptr(&softnet_data);
2942         q->next_sched = NULL;
2943         *sd->output_queue_tailp = q;
2944         sd->output_queue_tailp = &q->next_sched;
2945         raise_softirq_irqoff(NET_TX_SOFTIRQ);
2946         local_irq_restore(flags);
2947 }
2948
2949 void __netif_schedule(struct Qdisc *q)
2950 {
2951         if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2952                 __netif_reschedule(q);
2953 }
2954 EXPORT_SYMBOL(__netif_schedule);
2955
2956 struct dev_kfree_skb_cb {
2957         enum skb_free_reason reason;
2958 };
2959
2960 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2961 {
2962         return (struct dev_kfree_skb_cb *)skb->cb;
2963 }
2964
2965 void netif_schedule_queue(struct netdev_queue *txq)
2966 {
2967         rcu_read_lock();
2968         if (!netif_xmit_stopped(txq)) {
2969                 struct Qdisc *q = rcu_dereference(txq->qdisc);
2970
2971                 __netif_schedule(q);
2972         }
2973         rcu_read_unlock();
2974 }
2975 EXPORT_SYMBOL(netif_schedule_queue);
2976
2977 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2978 {
2979         if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2980                 struct Qdisc *q;
2981
2982                 rcu_read_lock();
2983                 q = rcu_dereference(dev_queue->qdisc);
2984                 __netif_schedule(q);
2985                 rcu_read_unlock();
2986         }
2987 }
2988 EXPORT_SYMBOL(netif_tx_wake_queue);
2989
2990 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2991 {
2992         unsigned long flags;
2993
2994         if (unlikely(!skb))
2995                 return;
2996
2997         if (likely(refcount_read(&skb->users) == 1)) {
2998                 smp_rmb();
2999                 refcount_set(&skb->users, 0);
3000         } else if (likely(!refcount_dec_and_test(&skb->users))) {
3001                 return;
3002         }
3003         get_kfree_skb_cb(skb)->reason = reason;
3004         local_irq_save(flags);
3005         skb->next = __this_cpu_read(softnet_data.completion_queue);
3006         __this_cpu_write(softnet_data.completion_queue, skb);
3007         raise_softirq_irqoff(NET_TX_SOFTIRQ);
3008         local_irq_restore(flags);
3009 }
3010 EXPORT_SYMBOL(__dev_kfree_skb_irq);
3011
3012 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
3013 {
3014         if (in_irq() || irqs_disabled())
3015                 __dev_kfree_skb_irq(skb, reason);
3016         else
3017                 dev_kfree_skb(skb);
3018 }
3019 EXPORT_SYMBOL(__dev_kfree_skb_any);
3020
3021
3022 /**
3023  * netif_device_detach - mark device as removed
3024  * @dev: network device
3025  *
3026  * Mark device as removed from system and therefore no longer available.
3027  */
3028 void netif_device_detach(struct net_device *dev)
3029 {
3030         if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3031             netif_running(dev)) {
3032                 netif_tx_stop_all_queues(dev);
3033         }
3034 }
3035 EXPORT_SYMBOL(netif_device_detach);
3036
3037 /**
3038  * netif_device_attach - mark device as attached
3039  * @dev: network device
3040  *
3041  * Mark device as attached from system and restart if needed.
3042  */
3043 void netif_device_attach(struct net_device *dev)
3044 {
3045         if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3046             netif_running(dev)) {
3047                 netif_tx_wake_all_queues(dev);
3048                 __netdev_watchdog_up(dev);
3049         }
3050 }
3051 EXPORT_SYMBOL(netif_device_attach);
3052
3053 /*
3054  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3055  * to be used as a distribution range.
3056  */
3057 static u16 skb_tx_hash(const struct net_device *dev,
3058                        const struct net_device *sb_dev,
3059                        struct sk_buff *skb)
3060 {
3061         u32 hash;
3062         u16 qoffset = 0;
3063         u16 qcount = dev->real_num_tx_queues;
3064
3065         if (dev->num_tc) {
3066                 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3067
3068                 qoffset = sb_dev->tc_to_txq[tc].offset;
3069                 qcount = sb_dev->tc_to_txq[tc].count;
3070         }
3071
3072         if (skb_rx_queue_recorded(skb)) {
3073                 hash = skb_get_rx_queue(skb);
3074                 while (unlikely(hash >= qcount))
3075                         hash -= qcount;
3076                 return hash + qoffset;
3077         }
3078
3079         return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3080 }
3081
3082 static void skb_warn_bad_offload(const struct sk_buff *skb)
3083 {
3084         static const netdev_features_t null_features;
3085         struct net_device *dev = skb->dev;
3086         const char *name = "";
3087
3088         if (!net_ratelimit())
3089                 return;
3090
3091         if (dev) {
3092                 if (dev->dev.parent)
3093                         name = dev_driver_string(dev->dev.parent);
3094                 else
3095                         name = netdev_name(dev);
3096         }
3097         skb_dump(KERN_WARNING, skb, false);
3098         WARN(1, "%s: caps=(%pNF, %pNF)\n",
3099              name, dev ? &dev->features : &null_features,
3100              skb->sk ? &skb->sk->sk_route_caps : &null_features);
3101 }
3102
3103 /*
3104  * Invalidate hardware checksum when packet is to be mangled, and
3105  * complete checksum manually on outgoing path.
3106  */
3107 int skb_checksum_help(struct sk_buff *skb)
3108 {
3109         __wsum csum;
3110         int ret = 0, offset;
3111
3112         if (skb->ip_summed == CHECKSUM_COMPLETE)
3113                 goto out_set_summed;
3114
3115         if (unlikely(skb_shinfo(skb)->gso_size)) {
3116                 skb_warn_bad_offload(skb);
3117                 return -EINVAL;
3118         }
3119
3120         /* Before computing a checksum, we should make sure no frag could
3121          * be modified by an external entity : checksum could be wrong.
3122          */
3123         if (skb_has_shared_frag(skb)) {
3124                 ret = __skb_linearize(skb);
3125                 if (ret)
3126                         goto out;
3127         }
3128
3129         offset = skb_checksum_start_offset(skb);
3130         BUG_ON(offset >= skb_headlen(skb));
3131         csum = skb_checksum(skb, offset, skb->len - offset, 0);
3132
3133         offset += skb->csum_offset;
3134         BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
3135
3136         ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3137         if (ret)
3138                 goto out;
3139
3140         *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3141 out_set_summed:
3142         skb->ip_summed = CHECKSUM_NONE;
3143 out:
3144         return ret;
3145 }
3146 EXPORT_SYMBOL(skb_checksum_help);
3147
3148 int skb_crc32c_csum_help(struct sk_buff *skb)
3149 {
3150         __le32 crc32c_csum;
3151         int ret = 0, offset, start;
3152
3153         if (skb->ip_summed != CHECKSUM_PARTIAL)
3154                 goto out;
3155
3156         if (unlikely(skb_is_gso(skb)))
3157                 goto out;
3158
3159         /* Before computing a checksum, we should make sure no frag could
3160          * be modified by an external entity : checksum could be wrong.
3161          */
3162         if (unlikely(skb_has_shared_frag(skb))) {
3163                 ret = __skb_linearize(skb);
3164                 if (ret)
3165                         goto out;
3166         }
3167         start = skb_checksum_start_offset(skb);
3168         offset = start + offsetof(struct sctphdr, checksum);
3169         if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3170                 ret = -EINVAL;
3171                 goto out;
3172         }
3173
3174         ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3175         if (ret)
3176                 goto out;
3177
3178         crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3179                                                   skb->len - start, ~(__u32)0,
3180                                                   crc32c_csum_stub));
3181         *(__le32 *)(skb->data + offset) = crc32c_csum;
3182         skb->ip_summed = CHECKSUM_NONE;
3183         skb->csum_not_inet = 0;
3184 out:
3185         return ret;
3186 }
3187
3188 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3189 {
3190         __be16 type = skb->protocol;
3191
3192         /* Tunnel gso handlers can set protocol to ethernet. */
3193         if (type == htons(ETH_P_TEB)) {
3194                 struct ethhdr *eth;
3195
3196                 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3197                         return 0;
3198
3199                 eth = (struct ethhdr *)skb->data;
3200                 type = eth->h_proto;
3201         }
3202
3203         return __vlan_get_protocol(skb, type, depth);
3204 }
3205
3206 /**
3207  *      skb_mac_gso_segment - mac layer segmentation handler.
3208  *      @skb: buffer to segment
3209  *      @features: features for the output path (see dev->features)
3210  */
3211 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3212                                     netdev_features_t features)
3213 {
3214         struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
3215         struct packet_offload *ptype;
3216         int vlan_depth = skb->mac_len;
3217         __be16 type = skb_network_protocol(skb, &vlan_depth);
3218
3219         if (unlikely(!type))
3220                 return ERR_PTR(-EINVAL);
3221
3222         __skb_pull(skb, vlan_depth);
3223
3224         rcu_read_lock();
3225         list_for_each_entry_rcu(ptype, &offload_base, list) {
3226                 if (ptype->type == type && ptype->callbacks.gso_segment) {
3227                         segs = ptype->callbacks.gso_segment(skb, features);
3228                         break;
3229                 }
3230         }
3231         rcu_read_unlock();
3232
3233         __skb_push(skb, skb->data - skb_mac_header(skb));
3234
3235         return segs;
3236 }
3237 EXPORT_SYMBOL(skb_mac_gso_segment);
3238
3239
3240 /* openvswitch calls this on rx path, so we need a different check.
3241  */
3242 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
3243 {
3244         if (tx_path)
3245                 return skb->ip_summed != CHECKSUM_PARTIAL &&
3246                        skb->ip_summed != CHECKSUM_UNNECESSARY;
3247
3248         return skb->ip_summed == CHECKSUM_NONE;
3249 }
3250
3251 /**
3252  *      __skb_gso_segment - Perform segmentation on skb.
3253  *      @skb: buffer to segment
3254  *      @features: features for the output path (see dev->features)
3255  *      @tx_path: whether it is called in TX path
3256  *
3257  *      This function segments the given skb and returns a list of segments.
3258  *
3259  *      It may return NULL if the skb requires no segmentation.  This is
3260  *      only possible when GSO is used for verifying header integrity.
3261  *
3262  *      Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
3263  */
3264 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3265                                   netdev_features_t features, bool tx_path)
3266 {
3267         struct sk_buff *segs;
3268
3269         if (unlikely(skb_needs_check(skb, tx_path))) {
3270                 int err;
3271
3272                 /* We're going to init ->check field in TCP or UDP header */
3273                 err = skb_cow_head(skb, 0);
3274                 if (err < 0)
3275                         return ERR_PTR(err);
3276         }
3277
3278         /* Only report GSO partial support if it will enable us to
3279          * support segmentation on this frame without needing additional
3280          * work.
3281          */
3282         if (features & NETIF_F_GSO_PARTIAL) {
3283                 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
3284                 struct net_device *dev = skb->dev;
3285
3286                 partial_features |= dev->features & dev->gso_partial_features;
3287                 if (!skb_gso_ok(skb, features | partial_features))
3288                         features &= ~NETIF_F_GSO_PARTIAL;
3289         }
3290
3291         BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
3292                      sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
3293
3294         SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3295         SKB_GSO_CB(skb)->encap_level = 0;
3296
3297         skb_reset_mac_header(skb);
3298         skb_reset_mac_len(skb);
3299
3300         segs = skb_mac_gso_segment(skb, features);
3301
3302         if (segs != skb && unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
3303                 skb_warn_bad_offload(skb);
3304
3305         return segs;
3306 }
3307 EXPORT_SYMBOL(__skb_gso_segment);
3308
3309 /* Take action when hardware reception checksum errors are detected. */
3310 #ifdef CONFIG_BUG
3311 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3312 {
3313         if (net_ratelimit()) {
3314                 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
3315                 skb_dump(KERN_ERR, skb, true);
3316                 dump_stack();
3317         }
3318 }
3319 EXPORT_SYMBOL(netdev_rx_csum_fault);
3320 #endif
3321
3322 /* XXX: check that highmem exists at all on the given machine. */
3323 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3324 {
3325 #ifdef CONFIG_HIGHMEM
3326         int i;
3327
3328         if (!(dev->features & NETIF_F_HIGHDMA)) {
3329                 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3330                         skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3331
3332                         if (PageHighMem(skb_frag_page(frag)))
3333                                 return 1;
3334                 }
3335         }
3336 #endif
3337         return 0;
3338 }
3339
3340 /* If MPLS offload request, verify we are testing hardware MPLS features
3341  * instead of standard features for the netdev.
3342  */
3343 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3344 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3345                                            netdev_features_t features,
3346                                            __be16 type)
3347 {
3348         if (eth_p_mpls(type))
3349                 features &= skb->dev->mpls_features;
3350
3351         return features;
3352 }
3353 #else
3354 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3355                                            netdev_features_t features,
3356                                            __be16 type)
3357 {
3358         return features;
3359 }
3360 #endif
3361
3362 static netdev_features_t harmonize_features(struct sk_buff *skb,
3363         netdev_features_t features)
3364 {
3365         int tmp;
3366         __be16 type;
3367
3368         type = skb_network_protocol(skb, &tmp);
3369         features = net_mpls_features(skb, features, type);
3370
3371         if (skb->ip_summed != CHECKSUM_NONE &&
3372             !can_checksum_protocol(features, type)) {
3373                 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3374         }
3375         if (illegal_highdma(skb->dev, skb))
3376                 features &= ~NETIF_F_SG;
3377
3378         return features;
3379 }
3380
3381 netdev_features_t passthru_features_check(struct sk_buff *skb,
3382                                           struct net_device *dev,
3383                                           netdev_features_t features)
3384 {
3385         return features;
3386 }
3387 EXPORT_SYMBOL(passthru_features_check);
3388
3389 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3390                                              struct net_device *dev,
3391                                              netdev_features_t features)
3392 {
3393         return vlan_features_check(skb, features);
3394 }
3395
3396 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3397                                             struct net_device *dev,
3398                                             netdev_features_t features)
3399 {
3400         u16 gso_segs = skb_shinfo(skb)->gso_segs;
3401
3402         if (gso_segs > dev->gso_max_segs)
3403                 return features & ~NETIF_F_GSO_MASK;
3404
3405         /* Support for GSO partial features requires software
3406          * intervention before we can actually process the packets
3407          * so we need to strip support for any partial features now
3408          * and we can pull them back in after we have partially
3409          * segmented the frame.
3410          */
3411         if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3412                 features &= ~dev->gso_partial_features;
3413
3414         /* Make sure to clear the IPv4 ID mangling feature if the
3415          * IPv4 header has the potential to be fragmented.
3416          */
3417         if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3418                 struct iphdr *iph = skb->encapsulation ?
3419                                     inner_ip_hdr(skb) : ip_hdr(skb);
3420
3421                 if (!(iph->frag_off & htons(IP_DF)))
3422                         features &= ~NETIF_F_TSO_MANGLEID;
3423         }
3424
3425         return features;
3426 }
3427
3428 netdev_features_t netif_skb_features(struct sk_buff *skb)
3429 {
3430         struct net_device *dev = skb->dev;
3431         netdev_features_t features = dev->features;
3432
3433         if (skb_is_gso(skb))
3434                 features = gso_features_check(skb, dev, features);
3435
3436         /* If encapsulation offload request, verify we are testing
3437          * hardware encapsulation features instead of standard
3438          * features for the netdev
3439          */
3440         if (skb->encapsulation)
3441                 features &= dev->hw_enc_features;
3442
3443         if (skb_vlan_tagged(skb))
3444                 features = netdev_intersect_features(features,
3445                                                      dev->vlan_features |
3446                                                      NETIF_F_HW_VLAN_CTAG_TX |
3447                                                      NETIF_F_HW_VLAN_STAG_TX);
3448
3449         if (dev->netdev_ops->ndo_features_check)
3450                 features &= dev->netdev_ops->ndo_features_check(skb, dev,
3451                                                                 features);
3452         else
3453                 features &= dflt_features_check(skb, dev, features);
3454
3455         return harmonize_features(skb, features);
3456 }
3457 EXPORT_SYMBOL(netif_skb_features);
3458
3459 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3460                     struct netdev_queue *txq, bool more)
3461 {
3462         unsigned int len;
3463         int rc;
3464
3465         if (dev_nit_active(dev))
3466                 dev_queue_xmit_nit(skb, dev);
3467
3468         len = skb->len;
3469         trace_net_dev_start_xmit(skb, dev);
3470         rc = netdev_start_xmit(skb, dev, txq, more);
3471         trace_net_dev_xmit(skb, rc, dev, len);
3472
3473         return rc;
3474 }
3475
3476 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3477                                     struct netdev_queue *txq, int *ret)
3478 {
3479         struct sk_buff *skb = first;
3480         int rc = NETDEV_TX_OK;
3481
3482         while (skb) {
3483                 struct sk_buff *next = skb->next;
3484
3485                 skb_mark_not_on_list(skb);
3486                 rc = xmit_one(skb, dev, txq, next != NULL);
3487                 if (unlikely(!dev_xmit_complete(rc))) {
3488                         skb->next = next;
3489                         goto out;
3490                 }
3491
3492                 skb = next;
3493                 if (netif_tx_queue_stopped(txq) && skb) {
3494                         rc = NETDEV_TX_BUSY;
3495                         break;
3496                 }
3497         }
3498
3499 out:
3500         *ret = rc;
3501         return skb;
3502 }
3503
3504 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3505                                           netdev_features_t features)
3506 {
3507         if (skb_vlan_tag_present(skb) &&
3508             !vlan_hw_offload_capable(features, skb->vlan_proto))
3509                 skb = __vlan_hwaccel_push_inside(skb);
3510         return skb;
3511 }
3512
3513 int skb_csum_hwoffload_help(struct sk_buff *skb,
3514                             const netdev_features_t features)
3515 {
3516         if (unlikely(skb->csum_not_inet))
3517                 return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3518                         skb_crc32c_csum_help(skb);
3519
3520         return !!(features & NETIF_F_CSUM_MASK) ? 0 : skb_checksum_help(skb);
3521 }
3522 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3523
3524 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3525 {
3526         netdev_features_t features;
3527
3528         features = netif_skb_features(skb);
3529         skb = validate_xmit_vlan(skb, features);
3530         if (unlikely(!skb))
3531                 goto out_null;
3532
3533         skb = sk_validate_xmit_skb(skb, dev);
3534         if (unlikely(!skb))
3535                 goto out_null;
3536
3537         if (netif_needs_gso(skb, features)) {
3538                 struct sk_buff *segs;
3539
3540                 segs = skb_gso_segment(skb, features);
3541                 if (IS_ERR(segs)) {
3542                         goto out_kfree_skb;
3543                 } else if (segs) {
3544                         consume_skb(skb);
3545                         skb = segs;
3546                 }
3547         } else {
3548                 if (skb_needs_linearize(skb, features) &&
3549                     __skb_linearize(skb))
3550                         goto out_kfree_skb;
3551
3552                 /* If packet is not checksummed and device does not
3553                  * support checksumming for this protocol, complete
3554                  * checksumming here.
3555                  */
3556                 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3557                         if (skb->encapsulation)
3558                                 skb_set_inner_transport_header(skb,
3559                                                                skb_checksum_start_offset(skb));
3560                         else
3561                                 skb_set_transport_header(skb,
3562                                                          skb_checksum_start_offset(skb));
3563                         if (skb_csum_hwoffload_help(skb, features))
3564                                 goto out_kfree_skb;
3565                 }
3566         }
3567
3568         skb = validate_xmit_xfrm(skb, features, again);
3569
3570         return skb;
3571
3572 out_kfree_skb:
3573         kfree_skb(skb);
3574 out_null:
3575         atomic_long_inc(&dev->tx_dropped);
3576         return NULL;
3577 }
3578
3579 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3580 {
3581         struct sk_buff *next, *head = NULL, *tail;
3582
3583         for (; skb != NULL; skb = next) {
3584                 next = skb->next;
3585                 skb_mark_not_on_list(skb);
3586
3587                 /* in case skb wont be segmented, point to itself */
3588                 skb->prev = skb;
3589
3590                 skb = validate_xmit_skb(skb, dev, again);
3591                 if (!skb)
3592                         continue;
3593
3594                 if (!head)
3595                         head = skb;
3596                 else
3597                         tail->next = skb;
3598                 /* If skb was segmented, skb->prev points to
3599                  * the last segment. If not, it still contains skb.
3600                  */
3601                 tail = skb->prev;
3602         }
3603         return head;
3604 }
3605 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3606
3607 static void qdisc_pkt_len_init(struct sk_buff *skb)
3608 {
3609         const struct skb_shared_info *shinfo = skb_shinfo(skb);
3610
3611         qdisc_skb_cb(skb)->pkt_len = skb->len;
3612
3613         /* To get more precise estimation of bytes sent on wire,
3614          * we add to pkt_len the headers size of all segments
3615          */
3616         if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3617                 unsigned int hdr_len;
3618                 u16 gso_segs = shinfo->gso_segs;
3619
3620                 /* mac layer + network layer */
3621                 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3622
3623                 /* + transport layer */
3624                 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3625                         const struct tcphdr *th;
3626                         struct tcphdr _tcphdr;
3627
3628                         th = skb_header_pointer(skb, skb_transport_offset(skb),
3629                                                 sizeof(_tcphdr), &_tcphdr);
3630                         if (likely(th))
3631                                 hdr_len += __tcp_hdrlen(th);
3632                 } else {
3633                         struct udphdr _udphdr;
3634
3635                         if (skb_header_pointer(skb, skb_transport_offset(skb),
3636                                                sizeof(_udphdr), &_udphdr))
3637                                 hdr_len += sizeof(struct udphdr);
3638                 }
3639
3640                 if (shinfo->gso_type & SKB_GSO_DODGY)
3641                         gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3642                                                 shinfo->gso_size);
3643
3644                 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3645         }
3646 }
3647
3648 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3649                                  struct net_device *dev,
3650                                  struct netdev_queue *txq)
3651 {
3652         spinlock_t *root_lock = qdisc_lock(q);
3653         struct sk_buff *to_free = NULL;
3654         bool contended;
3655         int rc;
3656
3657         qdisc_calculate_pkt_len(skb, q);
3658
3659         if (q->flags & TCQ_F_NOLOCK) {
3660                 if ((q->flags & TCQ_F_CAN_BYPASS) && READ_ONCE(q->empty) &&
3661                     qdisc_run_begin(q)) {
3662                         if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED,
3663                                               &q->state))) {
3664                                 __qdisc_drop(skb, &to_free);
3665                                 rc = NET_XMIT_DROP;
3666                                 goto end_run;
3667                         }
3668                         qdisc_bstats_cpu_update(q, skb);
3669
3670                         rc = NET_XMIT_SUCCESS;
3671                         if (sch_direct_xmit(skb, q, dev, txq, NULL, true))
3672                                 __qdisc_run(q);
3673
3674 end_run:
3675                         qdisc_run_end(q);
3676                 } else {
3677                         rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3678                         qdisc_run(q);
3679                 }
3680
3681                 if (unlikely(to_free))
3682                         kfree_skb_list(to_free);
3683                 return rc;
3684         }
3685
3686         /*
3687          * Heuristic to force contended enqueues to serialize on a
3688          * separate lock before trying to get qdisc main lock.
3689          * This permits qdisc->running owner to get the lock more
3690          * often and dequeue packets faster.
3691          */
3692         contended = qdisc_is_running(q);
3693         if (unlikely(contended))
3694                 spin_lock(&q->busylock);
3695
3696         spin_lock(root_lock);
3697         if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3698                 __qdisc_drop(skb, &to_free);
3699                 rc = NET_XMIT_DROP;
3700         } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3701                    qdisc_run_begin(q)) {
3702                 /*
3703                  * This is a work-conserving queue; there are no old skbs
3704                  * waiting to be sent out; and the qdisc is not running -
3705                  * xmit the skb directly.
3706                  */
3707
3708                 qdisc_bstats_update(q, skb);
3709
3710                 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3711                         if (unlikely(contended)) {
3712                                 spin_unlock(&q->busylock);
3713                                 contended = false;
3714                         }
3715                         __qdisc_run(q);
3716                 }
3717
3718                 qdisc_run_end(q);
3719                 rc = NET_XMIT_SUCCESS;
3720         } else {
3721                 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3722                 if (qdisc_run_begin(q)) {
3723                         if (unlikely(contended)) {
3724                                 spin_unlock(&q->busylock);
3725                                 contended = false;
3726                         }
3727                         __qdisc_run(q);
3728                         qdisc_run_end(q);
3729                 }
3730         }
3731         spin_unlock(root_lock);
3732         if (unlikely(to_free))
3733                 kfree_skb_list(to_free);
3734         if (unlikely(contended))
3735                 spin_unlock(&q->busylock);
3736         return rc;
3737 }
3738
3739 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3740 static void skb_update_prio(struct sk_buff *skb)
3741 {
3742         const struct netprio_map *map;
3743         const struct sock *sk;
3744         unsigned int prioidx;
3745
3746         if (skb->priority)
3747                 return;
3748         map = rcu_dereference_bh(skb->dev->priomap);
3749         if (!map)
3750                 return;
3751         sk = skb_to_full_sk(skb);
3752         if (!sk)
3753                 return;
3754
3755         prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3756
3757         if (prioidx < map->priomap_len)
3758                 skb->priority = map->priomap[prioidx];
3759 }
3760 #else
3761 #define skb_update_prio(skb)
3762 #endif
3763
3764 /**
3765  *      dev_loopback_xmit - loop back @skb
3766  *      @net: network namespace this loopback is happening in
3767  *      @sk:  sk needed to be a netfilter okfn
3768  *      @skb: buffer to transmit
3769  */
3770 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3771 {
3772         skb_reset_mac_header(skb);
3773         __skb_pull(skb, skb_network_offset(skb));
3774         skb->pkt_type = PACKET_LOOPBACK;
3775         skb->ip_summed = CHECKSUM_UNNECESSARY;
3776         WARN_ON(!skb_dst(skb));
3777         skb_dst_force(skb);
3778         netif_rx_ni(skb);
3779         return 0;
3780 }
3781 EXPORT_SYMBOL(dev_loopback_xmit);
3782
3783 #ifdef CONFIG_NET_EGRESS
3784 static struct sk_buff *
3785 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3786 {
3787         struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
3788         struct tcf_result cl_res;
3789
3790         if (!miniq)
3791                 return skb;
3792
3793         /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3794         mini_qdisc_bstats_cpu_update(miniq, skb);
3795
3796         switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
3797         case TC_ACT_OK:
3798         case TC_ACT_RECLASSIFY:
3799                 skb->tc_index = TC_H_MIN(cl_res.classid);
3800                 break;
3801         case TC_ACT_SHOT:
3802                 mini_qdisc_qstats_cpu_drop(miniq);
3803                 *ret = NET_XMIT_DROP;
3804                 kfree_skb(skb);
3805                 return NULL;
3806         case TC_ACT_STOLEN:
3807         case TC_ACT_QUEUED:
3808         case TC_ACT_TRAP:
3809                 *ret = NET_XMIT_SUCCESS;
3810                 consume_skb(skb);
3811                 return NULL;
3812         case TC_ACT_REDIRECT:
3813                 /* No need to push/pop skb's mac_header here on egress! */
3814                 skb_do_redirect(skb);
3815                 *ret = NET_XMIT_SUCCESS;
3816                 return NULL;
3817         default:
3818                 break;
3819         }
3820
3821         return skb;
3822 }
3823 #endif /* CONFIG_NET_EGRESS */
3824
3825 #ifdef CONFIG_XPS
3826 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
3827                                struct xps_dev_maps *dev_maps, unsigned int tci)
3828 {
3829         struct xps_map *map;
3830         int queue_index = -1;
3831
3832         if (dev->num_tc) {
3833                 tci *= dev->num_tc;
3834                 tci += netdev_get_prio_tc_map(dev, skb->priority);
3835         }
3836
3837         map = rcu_dereference(dev_maps->attr_map[tci]);
3838         if (map) {
3839                 if (map->len == 1)
3840                         queue_index = map->queues[0];
3841                 else
3842                         queue_index = map->queues[reciprocal_scale(
3843                                                 skb_get_hash(skb), map->len)];
3844                 if (unlikely(queue_index >= dev->real_num_tx_queues))
3845                         queue_index = -1;
3846         }
3847         return queue_index;
3848 }
3849 #endif
3850
3851 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
3852                          struct sk_buff *skb)
3853 {
3854 #ifdef CONFIG_XPS
3855         struct xps_dev_maps *dev_maps;
3856         struct sock *sk = skb->sk;
3857         int queue_index = -1;
3858
3859         if (!static_key_false(&xps_needed))
3860                 return -1;
3861
3862         rcu_read_lock();
3863         if (!static_key_false(&xps_rxqs_needed))
3864                 goto get_cpus_map;
3865
3866         dev_maps = rcu_dereference(sb_dev->xps_rxqs_map);
3867         if (dev_maps) {
3868                 int tci = sk_rx_queue_get(sk);
3869
3870                 if (tci >= 0 && tci < dev->num_rx_queues)
3871                         queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3872                                                           tci);
3873         }
3874
3875 get_cpus_map:
3876         if (queue_index < 0) {
3877                 dev_maps = rcu_dereference(sb_dev->xps_cpus_map);
3878                 if (dev_maps) {
3879                         unsigned int tci = skb->sender_cpu - 1;
3880
3881                         queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3882                                                           tci);
3883                 }
3884         }
3885         rcu_read_unlock();
3886
3887         return queue_index;
3888 #else
3889         return -1;
3890 #endif
3891 }
3892
3893 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
3894                      struct net_device *sb_dev)
3895 {
3896         return 0;
3897 }
3898 EXPORT_SYMBOL(dev_pick_tx_zero);
3899
3900 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
3901                        struct net_device *sb_dev)
3902 {
3903         return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
3904 }
3905 EXPORT_SYMBOL(dev_pick_tx_cpu_id);
3906
3907 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
3908                      struct net_device *sb_dev)
3909 {
3910         struct sock *sk = skb->sk;
3911         int queue_index = sk_tx_queue_get(sk);
3912
3913         sb_dev = sb_dev ? : dev;
3914
3915         if (queue_index < 0 || skb->ooo_okay ||
3916             queue_index >= dev->real_num_tx_queues) {
3917                 int new_index = get_xps_queue(dev, sb_dev, skb);
3918
3919                 if (new_index < 0)
3920                         new_index = skb_tx_hash(dev, sb_dev, skb);
3921
3922                 if (queue_index != new_index && sk &&
3923                     sk_fullsock(sk) &&
3924                     rcu_access_pointer(sk->sk_dst_cache))
3925                         sk_tx_queue_set(sk, new_index);
3926
3927                 queue_index = new_index;
3928         }
3929
3930         return queue_index;
3931 }
3932 EXPORT_SYMBOL(netdev_pick_tx);
3933
3934 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
3935                                          struct sk_buff *skb,
3936                                          struct net_device *sb_dev)
3937 {
3938         int queue_index = 0;
3939
3940 #ifdef CONFIG_XPS
3941         u32 sender_cpu = skb->sender_cpu - 1;
3942
3943         if (sender_cpu >= (u32)NR_CPUS)
3944                 skb->sender_cpu = raw_smp_processor_id() + 1;
3945 #endif
3946
3947         if (dev->real_num_tx_queues != 1) {
3948                 const struct net_device_ops *ops = dev->netdev_ops;
3949
3950                 if (ops->ndo_select_queue)
3951                         queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
3952                 else
3953                         queue_index = netdev_pick_tx(dev, skb, sb_dev);
3954
3955                 queue_index = netdev_cap_txqueue(dev, queue_index);
3956         }
3957
3958         skb_set_queue_mapping(skb, queue_index);
3959         return netdev_get_tx_queue(dev, queue_index);
3960 }
3961
3962 /**
3963  *      __dev_queue_xmit - transmit a buffer
3964  *      @skb: buffer to transmit
3965  *      @sb_dev: suboordinate device used for L2 forwarding offload
3966  *
3967  *      Queue a buffer for transmission to a network device. The caller must
3968  *      have set the device and priority and built the buffer before calling
3969  *      this function. The function can be called from an interrupt.
3970  *
3971  *      A negative errno code is returned on a failure. A success does not
3972  *      guarantee the frame will be transmitted as it may be dropped due
3973  *      to congestion or traffic shaping.
3974  *
3975  * -----------------------------------------------------------------------------------
3976  *      I notice this method can also return errors from the queue disciplines,
3977  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
3978  *      be positive.
3979  *
3980  *      Regardless of the return value, the skb is consumed, so it is currently
3981  *      difficult to retry a send to this method.  (You can bump the ref count
3982  *      before sending to hold a reference for retry if you are careful.)
3983  *
3984  *      When calling this method, interrupts MUST be enabled.  This is because
3985  *      the BH enable code must have IRQs enabled so that it will not deadlock.
3986  *          --BLG
3987  */
3988 static int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
3989 {
3990         struct net_device *dev = skb->dev;
3991         struct netdev_queue *txq;
3992         struct Qdisc *q;
3993         int rc = -ENOMEM;
3994         bool again = false;
3995
3996         skb_reset_mac_header(skb);
3997
3998         if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3999                 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
4000
4001         /* Disable soft irqs for various locks below. Also
4002          * stops preemption for RCU.
4003          */
4004         rcu_read_lock_bh();
4005
4006         skb_update_prio(skb);
4007
4008         qdisc_pkt_len_init(skb);
4009 #ifdef CONFIG_NET_CLS_ACT
4010         skb->tc_at_ingress = 0;
4011 # ifdef CONFIG_NET_EGRESS
4012         if (static_branch_unlikely(&egress_needed_key)) {
4013                 skb = sch_handle_egress(skb, &rc, dev);
4014                 if (!skb)
4015                         goto out;
4016         }
4017 # endif
4018 #endif
4019         /* If device/qdisc don't need skb->dst, release it right now while
4020          * its hot in this cpu cache.
4021          */
4022         if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4023                 skb_dst_drop(skb);
4024         else
4025                 skb_dst_force(skb);
4026
4027         txq = netdev_core_pick_tx(dev, skb, sb_dev);
4028         q = rcu_dereference_bh(txq->qdisc);
4029
4030         trace_net_dev_queue(skb);
4031         if (q->enqueue) {
4032                 rc = __dev_xmit_skb(skb, q, dev, txq);
4033                 goto out;
4034         }
4035
4036         /* The device has no queue. Common case for software devices:
4037          * loopback, all the sorts of tunnels...
4038
4039          * Really, it is unlikely that netif_tx_lock protection is necessary
4040          * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
4041          * counters.)
4042          * However, it is possible, that they rely on protection
4043          * made by us here.
4044
4045          * Check this and shot the lock. It is not prone from deadlocks.
4046          *Either shot noqueue qdisc, it is even simpler 8)
4047          */
4048         if (dev->flags & IFF_UP) {
4049                 int cpu = smp_processor_id(); /* ok because BHs are off */
4050
4051                 if (txq->xmit_lock_owner != cpu) {
4052                         if (dev_xmit_recursion())
4053                                 goto recursion_alert;
4054
4055                         skb = validate_xmit_skb(skb, dev, &again);
4056                         if (!skb)
4057                                 goto out;
4058
4059                         HARD_TX_LOCK(dev, txq, cpu);
4060
4061                         if (!netif_xmit_stopped(txq)) {
4062                                 dev_xmit_recursion_inc();
4063                                 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4064                                 dev_xmit_recursion_dec();
4065                                 if (dev_xmit_complete(rc)) {
4066                                         HARD_TX_UNLOCK(dev, txq);
4067                                         goto out;
4068                                 }
4069                         }
4070                         HARD_TX_UNLOCK(dev, txq);
4071                         net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4072                                              dev->name);
4073                 } else {
4074                         /* Recursion is detected! It is possible,
4075                          * unfortunately
4076                          */
4077 recursion_alert:
4078                         net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4079                                              dev->name);
4080                 }
4081         }
4082
4083         rc = -ENETDOWN;
4084         rcu_read_unlock_bh();
4085
4086         atomic_long_inc(&dev->tx_dropped);
4087         kfree_skb_list(skb);
4088         return rc;
4089 out:
4090         rcu_read_unlock_bh();
4091         return rc;
4092 }
4093
4094 int dev_queue_xmit(struct sk_buff *skb)
4095 {
4096         return __dev_queue_xmit(skb, NULL);
4097 }
4098 EXPORT_SYMBOL(dev_queue_xmit);
4099
4100 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev)
4101 {
4102         return __dev_queue_xmit(skb, sb_dev);
4103 }
4104 EXPORT_SYMBOL(dev_queue_xmit_accel);
4105
4106 int dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4107 {
4108         struct net_device *dev = skb->dev;
4109         struct sk_buff *orig_skb = skb;
4110         struct netdev_queue *txq;
4111         int ret = NETDEV_TX_BUSY;
4112         bool again = false;
4113
4114         if (unlikely(!netif_running(dev) ||
4115                      !netif_carrier_ok(dev)))
4116                 goto drop;
4117
4118         skb = validate_xmit_skb_list(skb, dev, &again);
4119         if (skb != orig_skb)
4120                 goto drop;
4121
4122         skb_set_queue_mapping(skb, queue_id);
4123         txq = skb_get_tx_queue(dev, skb);
4124
4125         local_bh_disable();
4126
4127         HARD_TX_LOCK(dev, txq, smp_processor_id());
4128         if (!netif_xmit_frozen_or_drv_stopped(txq))
4129                 ret = netdev_start_xmit(skb, dev, txq, false);
4130         HARD_TX_UNLOCK(dev, txq);
4131
4132         local_bh_enable();
4133
4134         if (!dev_xmit_complete(ret))
4135                 kfree_skb(skb);
4136
4137         return ret;
4138 drop:
4139         atomic_long_inc(&dev->tx_dropped);
4140         kfree_skb_list(skb);
4141         return NET_XMIT_DROP;
4142 }
4143 EXPORT_SYMBOL(dev_direct_xmit);
4144
4145 /*************************************************************************
4146  *                      Receiver routines
4147  *************************************************************************/
4148
4149 int netdev_max_backlog __read_mostly = 1000;
4150 EXPORT_SYMBOL(netdev_max_backlog);
4151
4152 int netdev_tstamp_prequeue __read_mostly = 1;
4153 int netdev_budget __read_mostly = 300;
4154 unsigned int __read_mostly netdev_budget_usecs = 2000;
4155 int weight_p __read_mostly = 64;           /* old backlog weight */
4156 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
4157 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
4158 int dev_rx_weight __read_mostly = 64;
4159 int dev_tx_weight __read_mostly = 64;
4160 /* Maximum number of GRO_NORMAL skbs to batch up for list-RX */
4161 int gro_normal_batch __read_mostly = 8;
4162
4163 /* Called with irq disabled */
4164 static inline void ____napi_schedule(struct softnet_data *sd,
4165                                      struct napi_struct *napi)
4166 {
4167         list_add_tail(&napi->poll_list, &sd->poll_list);
4168         __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4169 }
4170
4171 #ifdef CONFIG_RPS
4172
4173 /* One global table that all flow-based protocols share. */
4174 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
4175 EXPORT_SYMBOL(rps_sock_flow_table);
4176 u32 rps_cpu_mask __read_mostly;
4177 EXPORT_SYMBOL(rps_cpu_mask);
4178
4179 struct static_key_false rps_needed __read_mostly;
4180 EXPORT_SYMBOL(rps_needed);
4181 struct static_key_false rfs_needed __read_mostly;
4182 EXPORT_SYMBOL(rfs_needed);
4183
4184 static struct rps_dev_flow *
4185 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4186             struct rps_dev_flow *rflow, u16 next_cpu)
4187 {
4188         if (next_cpu < nr_cpu_ids) {
4189 #ifdef CONFIG_RFS_ACCEL
4190                 struct netdev_rx_queue *rxqueue;
4191                 struct rps_dev_flow_table *flow_table;
4192                 struct rps_dev_flow *old_rflow;
4193                 u32 flow_id;
4194                 u16 rxq_index;
4195                 int rc;
4196
4197                 /* Should we steer this flow to a different hardware queue? */
4198                 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4199                     !(dev->features & NETIF_F_NTUPLE))
4200                         goto out;
4201                 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4202                 if (rxq_index == skb_get_rx_queue(skb))
4203                         goto out;
4204
4205                 rxqueue = dev->_rx + rxq_index;
4206                 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4207                 if (!flow_table)
4208                         goto out;
4209                 flow_id = skb_get_hash(skb) & flow_table->mask;
4210                 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4211                                                         rxq_index, flow_id);
4212                 if (rc < 0)
4213                         goto out;
4214                 old_rflow = rflow;
4215                 rflow = &flow_table->flows[flow_id];
4216                 rflow->filter = rc;
4217                 if (old_rflow->filter == rflow->filter)
4218                         old_rflow->filter = RPS_NO_FILTER;
4219         out:
4220 #endif
4221                 rflow->last_qtail =
4222                         per_cpu(softnet_data, next_cpu).input_queue_head;
4223         }
4224
4225         rflow->cpu = next_cpu;
4226         return rflow;
4227 }
4228
4229 /*
4230  * get_rps_cpu is called from netif_receive_skb and returns the target
4231  * CPU from the RPS map of the receiving queue for a given skb.
4232  * rcu_read_lock must be held on entry.
4233  */
4234 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4235                        struct rps_dev_flow **rflowp)
4236 {
4237         const struct rps_sock_flow_table *sock_flow_table;
4238         struct netdev_rx_queue *rxqueue = dev->_rx;
4239         struct rps_dev_flow_table *flow_table;
4240         struct rps_map *map;
4241         int cpu = -1;
4242         u32 tcpu;
4243         u32 hash;
4244
4245         if (skb_rx_queue_recorded(skb)) {
4246                 u16 index = skb_get_rx_queue(skb);
4247
4248                 if (unlikely(index >= dev->real_num_rx_queues)) {
4249                         WARN_ONCE(dev->real_num_rx_queues > 1,
4250                                   "%s received packet on queue %u, but number "
4251                                   "of RX queues is %u\n",
4252                                   dev->name, index, dev->real_num_rx_queues);
4253                         goto done;
4254                 }
4255                 rxqueue += index;
4256         }
4257
4258         /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4259
4260         flow_table = rcu_dereference(rxqueue->rps_flow_table);
4261         map = rcu_dereference(rxqueue->rps_map);
4262         if (!flow_table && !map)
4263                 goto done;
4264
4265         skb_reset_network_header(skb);
4266         hash = skb_get_hash(skb);
4267         if (!hash)
4268                 goto done;
4269
4270         sock_flow_table = rcu_dereference(rps_sock_flow_table);
4271         if (flow_table && sock_flow_table) {
4272                 struct rps_dev_flow *rflow;
4273                 u32 next_cpu;
4274                 u32 ident;
4275
4276                 /* First check into global flow table if there is a match */
4277                 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
4278                 if ((ident ^ hash) & ~rps_cpu_mask)
4279                         goto try_rps;
4280
4281                 next_cpu = ident & rps_cpu_mask;
4282
4283                 /* OK, now we know there is a match,
4284                  * we can look at the local (per receive queue) flow table
4285                  */
4286                 rflow = &flow_table->flows[hash & flow_table->mask];
4287                 tcpu = rflow->cpu;
4288
4289                 /*
4290                  * If the desired CPU (where last recvmsg was done) is
4291                  * different from current CPU (one in the rx-queue flow
4292                  * table entry), switch if one of the following holds:
4293                  *   - Current CPU is unset (>= nr_cpu_ids).
4294                  *   - Current CPU is offline.
4295                  *   - The current CPU's queue tail has advanced beyond the
4296                  *     last packet that was enqueued using this table entry.
4297                  *     This guarantees that all previous packets for the flow
4298                  *     have been dequeued, thus preserving in order delivery.
4299                  */
4300                 if (unlikely(tcpu != next_cpu) &&
4301                     (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4302                      ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4303                       rflow->last_qtail)) >= 0)) {
4304                         tcpu = next_cpu;
4305                         rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4306                 }
4307
4308                 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4309                         *rflowp = rflow;
4310                         cpu = tcpu;
4311                         goto done;
4312                 }
4313         }
4314
4315 try_rps:
4316
4317         if (map) {
4318                 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4319                 if (cpu_online(tcpu)) {
4320                         cpu = tcpu;
4321                         goto done;
4322                 }
4323         }
4324
4325 done:
4326         return cpu;
4327 }
4328
4329 #ifdef CONFIG_RFS_ACCEL
4330
4331 /**
4332  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4333  * @dev: Device on which the filter was set
4334  * @rxq_index: RX queue index
4335  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4336  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4337  *
4338  * Drivers that implement ndo_rx_flow_steer() should periodically call
4339  * this function for each installed filter and remove the filters for
4340  * which it returns %true.
4341  */
4342 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4343                          u32 flow_id, u16 filter_id)
4344 {
4345         struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4346         struct rps_dev_flow_table *flow_table;
4347         struct rps_dev_flow *rflow;
4348         bool expire = true;
4349         unsigned int cpu;
4350
4351         rcu_read_lock();
4352         flow_table = rcu_dereference(rxqueue->rps_flow_table);
4353         if (flow_table && flow_id <= flow_table->mask) {
4354                 rflow = &flow_table->flows[flow_id];
4355                 cpu = READ_ONCE(rflow->cpu);
4356                 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4357                     ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4358                            rflow->last_qtail) <
4359                      (int)(10 * flow_table->mask)))
4360                         expire = false;
4361         }
4362         rcu_read_unlock();
4363         return expire;
4364 }
4365 EXPORT_SYMBOL(rps_may_expire_flow);
4366
4367 #endif /* CONFIG_RFS_ACCEL */
4368
4369 /* Called from hardirq (IPI) context */
4370 static void rps_trigger_softirq(void *data)
4371 {
4372         struct softnet_data *sd = data;
4373
4374         ____napi_schedule(sd, &sd->backlog);
4375         sd->received_rps++;
4376 }
4377
4378 #endif /* CONFIG_RPS */
4379
4380 /*
4381  * Check if this softnet_data structure is another cpu one
4382  * If yes, queue it to our IPI list and return 1
4383  * If no, return 0
4384  */
4385 static int rps_ipi_queued(struct softnet_data *sd)
4386 {
4387 #ifdef CONFIG_RPS
4388         struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4389
4390         if (sd != mysd) {
4391                 sd->rps_ipi_next = mysd->rps_ipi_list;
4392                 mysd->rps_ipi_list = sd;
4393
4394                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4395                 return 1;
4396         }
4397 #endif /* CONFIG_RPS */
4398         return 0;
4399 }
4400
4401 #ifdef CONFIG_NET_FLOW_LIMIT
4402 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4403 #endif
4404
4405 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4406 {
4407 #ifdef CONFIG_NET_FLOW_LIMIT
4408         struct sd_flow_limit *fl;
4409         struct softnet_data *sd;
4410         unsigned int old_flow, new_flow;
4411
4412         if (qlen < (netdev_max_backlog >> 1))
4413                 return false;
4414
4415         sd = this_cpu_ptr(&softnet_data);
4416
4417         rcu_read_lock();
4418         fl = rcu_dereference(sd->flow_limit);
4419         if (fl) {
4420                 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4421                 old_flow = fl->history[fl->history_head];
4422                 fl->history[fl->history_head] = new_flow;
4423
4424                 fl->history_head++;
4425                 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4426
4427                 if (likely(fl->buckets[old_flow]))
4428                         fl->buckets[old_flow]--;
4429
4430                 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4431                         fl->count++;
4432                         rcu_read_unlock();
4433                         return true;
4434                 }
4435         }
4436         rcu_read_unlock();
4437 #endif
4438         return false;
4439 }
4440
4441 /*
4442  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4443  * queue (may be a remote CPU queue).
4444  */
4445 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4446                               unsigned int *qtail)
4447 {
4448         struct softnet_data *sd;
4449         unsigned long flags;
4450         unsigned int qlen;
4451
4452         sd = &per_cpu(softnet_data, cpu);
4453
4454         local_irq_save(flags);
4455
4456         rps_lock(sd);
4457         if (!netif_running(skb->dev))
4458                 goto drop;
4459         qlen = skb_queue_len(&sd->input_pkt_queue);
4460         if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
4461                 if (qlen) {
4462 enqueue:
4463                         __skb_queue_tail(&sd->input_pkt_queue, skb);
4464                         input_queue_tail_incr_save(sd, qtail);
4465                         rps_unlock(sd);
4466                         local_irq_restore(flags);
4467                         return NET_RX_SUCCESS;
4468                 }
4469
4470                 /* Schedule NAPI for backlog device
4471                  * We can use non atomic operation since we own the queue lock
4472                  */
4473                 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
4474                         if (!rps_ipi_queued(sd))
4475                                 ____napi_schedule(sd, &sd->backlog);
4476                 }
4477                 goto enqueue;
4478         }
4479
4480 drop:
4481         sd->dropped++;
4482         rps_unlock(sd);
4483
4484         local_irq_restore(flags);
4485
4486         atomic_long_inc(&skb->dev->rx_dropped);
4487         kfree_skb(skb);
4488         return NET_RX_DROP;
4489 }
4490
4491 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4492 {
4493         struct net_device *dev = skb->dev;
4494         struct netdev_rx_queue *rxqueue;
4495
4496         rxqueue = dev->_rx;
4497
4498         if (skb_rx_queue_recorded(skb)) {
4499                 u16 index = skb_get_rx_queue(skb);
4500
4501                 if (unlikely(index >= dev->real_num_rx_queues)) {
4502                         WARN_ONCE(dev->real_num_rx_queues > 1,
4503                                   "%s received packet on queue %u, but number "
4504                                   "of RX queues is %u\n",
4505                                   dev->name, index, dev->real_num_rx_queues);
4506
4507                         return rxqueue; /* Return first rxqueue */
4508                 }
4509                 rxqueue += index;
4510         }
4511         return rxqueue;
4512 }
4513
4514 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4515                                      struct xdp_buff *xdp,
4516                                      struct bpf_prog *xdp_prog)
4517 {
4518         struct netdev_rx_queue *rxqueue;
4519         void *orig_data, *orig_data_end;
4520         u32 metalen, act = XDP_DROP;
4521         __be16 orig_eth_type;
4522         struct ethhdr *eth;
4523         bool orig_bcast;
4524         int hlen, off;
4525         u32 mac_len;
4526
4527         /* Reinjected packets coming from act_mirred or similar should
4528          * not get XDP generic processing.
4529          */
4530         if (skb_cloned(skb) || skb_is_tc_redirected(skb))
4531                 return XDP_PASS;
4532
4533         /* XDP packets must be linear and must have sufficient headroom
4534          * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4535          * native XDP provides, thus we need to do it here as well.
4536          */
4537         if (skb_is_nonlinear(skb) ||
4538             skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4539                 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4540                 int troom = skb->tail + skb->data_len - skb->end;
4541
4542                 /* In case we have to go down the path and also linearize,
4543                  * then lets do the pskb_expand_head() work just once here.
4544                  */
4545                 if (pskb_expand_head(skb,
4546                                      hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4547                                      troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4548                         goto do_drop;
4549                 if (skb_linearize(skb))
4550                         goto do_drop;
4551         }
4552
4553         /* The XDP program wants to see the packet starting at the MAC
4554          * header.
4555          */
4556         mac_len = skb->data - skb_mac_header(skb);
4557         hlen = skb_headlen(skb) + mac_len;
4558         xdp->data = skb->data - mac_len;
4559         xdp->data_meta = xdp->data;
4560         xdp->data_end = xdp->data + hlen;
4561         xdp->data_hard_start = skb->data - skb_headroom(skb);
4562         orig_data_end = xdp->data_end;
4563         orig_data = xdp->data;
4564         eth = (struct ethhdr *)xdp->data;
4565         orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4566         orig_eth_type = eth->h_proto;
4567
4568         rxqueue = netif_get_rxqueue(skb);
4569         xdp->rxq = &rxqueue->xdp_rxq;
4570
4571         act = bpf_prog_run_xdp(xdp_prog, xdp);
4572
4573         /* check if bpf_xdp_adjust_head was used */
4574         off = xdp->data - orig_data;
4575         if (off) {
4576                 if (off > 0)
4577                         __skb_pull(skb, off);
4578                 else if (off < 0)
4579                         __skb_push(skb, -off);
4580
4581                 skb->mac_header += off;
4582                 skb_reset_network_header(skb);
4583         }
4584
4585         /* check if bpf_xdp_adjust_tail was used. it can only "shrink"
4586          * pckt.
4587          */
4588         off = orig_data_end - xdp->data_end;
4589         if (off != 0) {
4590                 skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4591                 skb->len -= off;
4592
4593         }
4594
4595         /* check if XDP changed eth hdr such SKB needs update */
4596         eth = (struct ethhdr *)xdp->data;
4597         if ((orig_eth_type != eth->h_proto) ||
4598             (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4599                 __skb_push(skb, ETH_HLEN);
4600                 skb->protocol = eth_type_trans(skb, skb->dev);
4601         }
4602
4603         switch (act) {
4604         case XDP_REDIRECT:
4605         case XDP_TX:
4606                 __skb_push(skb, mac_len);
4607                 break;
4608         case XDP_PASS:
4609                 metalen = xdp->data - xdp->data_meta;
4610                 if (metalen)
4611                         skb_metadata_set(skb, metalen);
4612                 break;
4613         default:
4614                 bpf_warn_invalid_xdp_action(act);
4615                 /* fall through */
4616         case XDP_ABORTED:
4617                 trace_xdp_exception(skb->dev, xdp_prog, act);
4618                 /* fall through */
4619         case XDP_DROP:
4620         do_drop:
4621                 kfree_skb(skb);
4622                 break;
4623         }
4624
4625         return act;
4626 }
4627
4628 /* When doing generic XDP we have to bypass the qdisc layer and the
4629  * network taps in order to match in-driver-XDP behavior.
4630  */
4631 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4632 {
4633         struct net_device *dev = skb->dev;
4634         struct netdev_queue *txq;
4635         bool free_skb = true;
4636         int cpu, rc;
4637
4638         txq = netdev_core_pick_tx(dev, skb, NULL);
4639         cpu = smp_processor_id();
4640         HARD_TX_LOCK(dev, txq, cpu);
4641         if (!netif_xmit_stopped(txq)) {
4642                 rc = netdev_start_xmit(skb, dev, txq, 0);
4643                 if (dev_xmit_complete(rc))
4644                         free_skb = false;
4645         }
4646         HARD_TX_UNLOCK(dev, txq);
4647         if (free_skb) {
4648                 trace_xdp_exception(dev, xdp_prog, XDP_TX);
4649                 kfree_skb(skb);
4650         }
4651 }
4652 EXPORT_SYMBOL_GPL(generic_xdp_tx);
4653
4654 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
4655
4656 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4657 {
4658         if (xdp_prog) {
4659                 struct xdp_buff xdp;
4660                 u32 act;
4661                 int err;
4662
4663                 act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
4664                 if (act != XDP_PASS) {
4665                         switch (act) {
4666                         case XDP_REDIRECT:
4667                                 err = xdp_do_generic_redirect(skb->dev, skb,
4668                                                               &xdp, xdp_prog);
4669                                 if (err)
4670                                         goto out_redir;
4671                                 break;
4672                         case XDP_TX:
4673                                 generic_xdp_tx(skb, xdp_prog);
4674                                 break;
4675                         }
4676                         return XDP_DROP;
4677                 }
4678         }
4679         return XDP_PASS;
4680 out_redir:
4681         kfree_skb(skb);
4682         return XDP_DROP;
4683 }
4684 EXPORT_SYMBOL_GPL(do_xdp_generic);
4685
4686 static int netif_rx_internal(struct sk_buff *skb)
4687 {
4688         int ret;
4689
4690         net_timestamp_check(netdev_tstamp_prequeue, skb);
4691
4692         trace_netif_rx(skb);
4693
4694 #ifdef CONFIG_RPS
4695         if (static_branch_unlikely(&rps_needed)) {
4696                 struct rps_dev_flow voidflow, *rflow = &voidflow;
4697                 int cpu;
4698
4699                 preempt_disable();
4700                 rcu_read_lock();
4701
4702                 cpu = get_rps_cpu(skb->dev, skb, &rflow);
4703                 if (cpu < 0)
4704                         cpu = smp_processor_id();
4705
4706                 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4707
4708                 rcu_read_unlock();
4709                 preempt_enable();
4710         } else
4711 #endif
4712         {
4713                 unsigned int qtail;
4714
4715                 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4716                 put_cpu();
4717         }
4718         return ret;
4719 }
4720
4721 /**
4722  *      netif_rx        -       post buffer to the network code
4723  *      @skb: buffer to post
4724  *
4725  *      This function receives a packet from a device driver and queues it for
4726  *      the upper (protocol) levels to process.  It always succeeds. The buffer
4727  *      may be dropped during processing for congestion control or by the
4728  *      protocol layers.
4729  *
4730  *      return values:
4731  *      NET_RX_SUCCESS  (no congestion)
4732  *      NET_RX_DROP     (packet was dropped)
4733  *
4734  */
4735
4736 int netif_rx(struct sk_buff *skb)
4737 {
4738         int ret;
4739
4740         trace_netif_rx_entry(skb);
4741
4742         ret = netif_rx_internal(skb);
4743         trace_netif_rx_exit(ret);
4744
4745         return ret;
4746 }
4747 EXPORT_SYMBOL(netif_rx);
4748
4749 int netif_rx_ni(struct sk_buff *skb)
4750 {
4751         int err;
4752
4753         trace_netif_rx_ni_entry(skb);
4754
4755         preempt_disable();
4756         err = netif_rx_internal(skb);
4757         if (local_softirq_pending())
4758                 do_softirq();
4759         preempt_enable();
4760         trace_netif_rx_ni_exit(err);
4761
4762         return err;
4763 }
4764 EXPORT_SYMBOL(netif_rx_ni);
4765
4766 static __latent_entropy void net_tx_action(struct softirq_action *h)
4767 {
4768         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4769
4770         if (sd->completion_queue) {
4771                 struct sk_buff *clist;
4772
4773                 local_irq_disable();
4774                 clist = sd->completion_queue;
4775                 sd->completion_queue = NULL;
4776                 local_irq_enable();
4777
4778                 while (clist) {
4779                         struct sk_buff *skb = clist;
4780
4781                         clist = clist->next;
4782
4783                         WARN_ON(refcount_read(&skb->users));
4784                         if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
4785                                 trace_consume_skb(skb);
4786                         else
4787                                 trace_kfree_skb(skb, net_tx_action);
4788
4789                         if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
4790                                 __kfree_skb(skb);
4791                         else
4792                                 __kfree_skb_defer(skb);
4793                 }
4794
4795                 __kfree_skb_flush();
4796         }
4797
4798         if (sd->output_queue) {
4799                 struct Qdisc *head;
4800
4801                 local_irq_disable();
4802                 head = sd->output_queue;
4803                 sd->output_queue = NULL;
4804                 sd->output_queue_tailp = &sd->output_queue;
4805                 local_irq_enable();
4806
4807                 while (head) {
4808                         struct Qdisc *q = head;
4809                         spinlock_t *root_lock = NULL;
4810
4811                         head = head->next_sched;
4812
4813                         if (!(q->flags & TCQ_F_NOLOCK)) {
4814                                 root_lock = qdisc_lock(q);
4815                                 spin_lock(root_lock);
4816                         }
4817                         /* We need to make sure head->next_sched is read
4818                          * before clearing __QDISC_STATE_SCHED
4819                          */
4820                         smp_mb__before_atomic();
4821                         clear_bit(__QDISC_STATE_SCHED, &q->state);
4822                         qdisc_run(q);
4823                         if (root_lock)
4824                                 spin_unlock(root_lock);
4825                 }
4826         }
4827
4828         xfrm_dev_backlog(sd);
4829 }
4830
4831 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
4832 /* This hook is defined here for ATM LANE */
4833 int (*br_fdb_test_addr_hook)(struct net_device *dev,
4834                              unsigned char *addr) __read_mostly;
4835 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
4836 #endif
4837
4838 static inline struct sk_buff *
4839 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4840                    struct net_device *orig_dev)
4841 {
4842 #ifdef CONFIG_NET_CLS_ACT
4843         struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
4844         struct tcf_result cl_res;
4845
4846         /* If there's at least one ingress present somewhere (so
4847          * we get here via enabled static key), remaining devices
4848          * that are not configured with an ingress qdisc will bail
4849          * out here.
4850          */
4851         if (!miniq)
4852                 return skb;
4853
4854         if (*pt_prev) {
4855                 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4856                 *pt_prev = NULL;
4857         }
4858
4859         qdisc_skb_cb(skb)->pkt_len = skb->len;
4860         skb->tc_at_ingress = 1;
4861         mini_qdisc_bstats_cpu_update(miniq, skb);
4862
4863         switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
4864         case TC_ACT_OK:
4865         case TC_ACT_RECLASSIFY:
4866                 skb->tc_index = TC_H_MIN(cl_res.classid);
4867                 break;
4868         case TC_ACT_SHOT:
4869                 mini_qdisc_qstats_cpu_drop(miniq);
4870                 kfree_skb(skb);
4871                 return NULL;
4872         case TC_ACT_STOLEN:
4873         case TC_ACT_QUEUED:
4874         case TC_ACT_TRAP:
4875                 consume_skb(skb);
4876                 return NULL;
4877         case TC_ACT_REDIRECT:
4878                 /* skb_mac_header check was done by cls/act_bpf, so
4879                  * we can safely push the L2 header back before
4880                  * redirecting to another netdev
4881                  */
4882                 __skb_push(skb, skb->mac_len);
4883                 skb_do_redirect(skb);
4884                 return NULL;
4885         case TC_ACT_CONSUMED:
4886                 return NULL;
4887         default:
4888                 break;
4889         }
4890 #endif /* CONFIG_NET_CLS_ACT */
4891         return skb;
4892 }
4893
4894 /**
4895  *      netdev_is_rx_handler_busy - check if receive handler is registered
4896  *      @dev: device to check
4897  *
4898  *      Check if a receive handler is already registered for a given device.
4899  *      Return true if there one.
4900  *
4901  *      The caller must hold the rtnl_mutex.
4902  */
4903 bool netdev_is_rx_handler_busy(struct net_device *dev)
4904 {
4905         ASSERT_RTNL();
4906         return dev && rtnl_dereference(dev->rx_handler);
4907 }
4908 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
4909
4910 /**
4911  *      netdev_rx_handler_register - register receive handler
4912  *      @dev: device to register a handler for
4913  *      @rx_handler: receive handler to register
4914  *      @rx_handler_data: data pointer that is used by rx handler
4915  *
4916  *      Register a receive handler for a device. This handler will then be
4917  *      called from __netif_receive_skb. A negative errno code is returned
4918  *      on a failure.
4919  *
4920  *      The caller must hold the rtnl_mutex.
4921  *
4922  *      For a general description of rx_handler, see enum rx_handler_result.
4923  */
4924 int netdev_rx_handler_register(struct net_device *dev,
4925                                rx_handler_func_t *rx_handler,
4926                                void *rx_handler_data)
4927 {
4928         if (netdev_is_rx_handler_busy(dev))
4929                 return -EBUSY;
4930
4931         if (dev->priv_flags & IFF_NO_RX_HANDLER)
4932                 return -EINVAL;
4933
4934         /* Note: rx_handler_data must be set before rx_handler */
4935         rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
4936         rcu_assign_pointer(dev->rx_handler, rx_handler);
4937
4938         return 0;
4939 }
4940 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
4941
4942 /**
4943  *      netdev_rx_handler_unregister - unregister receive handler
4944  *      @dev: device to unregister a handler from
4945  *
4946  *      Unregister a receive handler from a device.
4947  *
4948  *      The caller must hold the rtnl_mutex.
4949  */
4950 void netdev_rx_handler_unregister(struct net_device *dev)
4951 {
4952
4953         ASSERT_RTNL();
4954         RCU_INIT_POINTER(dev->rx_handler, NULL);
4955         /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
4956          * section has a guarantee to see a non NULL rx_handler_data
4957          * as well.
4958          */
4959         synchronize_net();
4960         RCU_INIT_POINTER(dev->rx_handler_data, NULL);
4961 }
4962 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
4963
4964 /*
4965  * Limit the use of PFMEMALLOC reserves to those protocols that implement
4966  * the special handling of PFMEMALLOC skbs.
4967  */
4968 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
4969 {
4970         switch (skb->protocol) {
4971         case htons(ETH_P_ARP):
4972         case htons(ETH_P_IP):
4973         case htons(ETH_P_IPV6):
4974         case htons(ETH_P_8021Q):
4975         case htons(ETH_P_8021AD):
4976                 return true;
4977         default:
4978                 return false;
4979         }
4980 }
4981
4982 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
4983                              int *ret, struct net_device *orig_dev)
4984 {
4985         if (nf_hook_ingress_active(skb)) {
4986                 int ingress_retval;
4987
4988                 if (*pt_prev) {
4989                         *ret = deliver_skb(skb, *pt_prev, orig_dev);
4990                         *pt_prev = NULL;
4991                 }
4992
4993                 rcu_read_lock();
4994                 ingress_retval = nf_hook_ingress(skb);
4995                 rcu_read_unlock();
4996                 return ingress_retval;
4997         }
4998         return 0;
4999 }
5000
5001 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc,
5002                                     struct packet_type **ppt_prev)
5003 {
5004         struct packet_type *ptype, *pt_prev;
5005         rx_handler_func_t *rx_handler;
5006         struct net_device *orig_dev;
5007         bool deliver_exact = false;
5008         int ret = NET_RX_DROP;
5009         __be16 type;
5010
5011         net_timestamp_check(!netdev_tstamp_prequeue, skb);
5012
5013         trace_netif_receive_skb(skb);
5014
5015         orig_dev = skb->dev;
5016
5017         skb_reset_network_header(skb);
5018         if (!skb_transport_header_was_set(skb))
5019                 skb_reset_transport_header(skb);
5020         skb_reset_mac_len(skb);
5021
5022         pt_prev = NULL;
5023
5024 another_round:
5025         skb->skb_iif = skb->dev->ifindex;
5026
5027         __this_cpu_inc(softnet_data.processed);
5028
5029         if (static_branch_unlikely(&generic_xdp_needed_key)) {
5030                 int ret2;
5031
5032                 preempt_disable();
5033                 ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
5034                 preempt_enable();
5035
5036                 if (ret2 != XDP_PASS)
5037                         return NET_RX_DROP;
5038                 skb_reset_mac_len(skb);
5039         }
5040
5041         if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
5042             skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
5043                 skb = skb_vlan_untag(skb);
5044                 if (unlikely(!skb))
5045                         goto out;
5046         }
5047
5048         if (skb_skip_tc_classify(skb))
5049                 goto skip_classify;
5050
5051         if (pfmemalloc)
5052                 goto skip_taps;
5053
5054         list_for_each_entry_rcu(ptype, &ptype_all, list) {
5055                 if (pt_prev)
5056                         ret = deliver_skb(skb, pt_prev, orig_dev);
5057                 pt_prev = ptype;
5058         }
5059
5060         list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5061                 if (pt_prev)
5062                         ret = deliver_skb(skb, pt_prev, orig_dev);
5063                 pt_prev = ptype;
5064         }
5065
5066 skip_taps:
5067 #ifdef CONFIG_NET_INGRESS
5068         if (static_branch_unlikely(&ingress_needed_key)) {
5069                 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
5070                 if (!skb)
5071                         goto out;
5072
5073                 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5074                         goto out;
5075         }
5076 #endif
5077         skb_reset_tc(skb);
5078 skip_classify:
5079         if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
5080                 goto drop;
5081
5082         if (skb_vlan_tag_present(skb)) {
5083                 if (pt_prev) {
5084                         ret = deliver_skb(skb, pt_prev, orig_dev);
5085                         pt_prev = NULL;
5086                 }
5087                 if (vlan_do_receive(&skb))
5088                         goto another_round;
5089                 else if (unlikely(!skb))
5090                         goto out;
5091         }
5092
5093         rx_handler = rcu_dereference(skb->dev->rx_handler);
5094         if (rx_handler) {
5095                 if (pt_prev) {
5096                         ret = deliver_skb(skb, pt_prev, orig_dev);
5097                         pt_prev = NULL;
5098                 }
5099                 switch (rx_handler(&skb)) {
5100                 case RX_HANDLER_CONSUMED:
5101                         ret = NET_RX_SUCCESS;
5102                         goto out;
5103                 case RX_HANDLER_ANOTHER:
5104                         goto another_round;
5105                 case RX_HANDLER_EXACT:
5106                         deliver_exact = true;
5107                 case RX_HANDLER_PASS:
5108                         break;
5109                 default:
5110                         BUG();
5111                 }
5112         }
5113
5114         if (unlikely(skb_vlan_tag_present(skb))) {
5115 check_vlan_id:
5116                 if (skb_vlan_tag_get_id(skb)) {
5117                         /* Vlan id is non 0 and vlan_do_receive() above couldn't
5118                          * find vlan device.
5119                          */
5120                         skb->pkt_type = PACKET_OTHERHOST;
5121                 } else if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
5122                            skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
5123                         /* Outer header is 802.1P with vlan 0, inner header is
5124                          * 802.1Q or 802.1AD and vlan_do_receive() above could
5125                          * not find vlan dev for vlan id 0.
5126                          */
5127                         __vlan_hwaccel_clear_tag(skb);
5128                         skb = skb_vlan_untag(skb);
5129                         if (unlikely(!skb))
5130                                 goto out;
5131                         if (vlan_do_receive(&skb))
5132                                 /* After stripping off 802.1P header with vlan 0
5133                                  * vlan dev is found for inner header.
5134                                  */
5135                                 goto another_round;
5136                         else if (unlikely(!skb))
5137                                 goto out;
5138                         else
5139                                 /* We have stripped outer 802.1P vlan 0 header.
5140                                  * But could not find vlan dev.
5141                                  * check again for vlan id to set OTHERHOST.
5142                                  */
5143                                 goto check_vlan_id;
5144                 }
5145                 /* Note: we might in the future use prio bits
5146                  * and set skb->priority like in vlan_do_receive()
5147                  * For the time being, just ignore Priority Code Point
5148                  */
5149                 __vlan_hwaccel_clear_tag(skb);
5150         }
5151
5152         type = skb->protocol;
5153
5154         /* deliver only exact match when indicated */
5155         if (likely(!deliver_exact)) {
5156                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5157                                        &ptype_base[ntohs(type) &
5158                                                    PTYPE_HASH_MASK]);
5159         }
5160
5161         deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5162                                &orig_dev->ptype_specific);
5163
5164         if (unlikely(skb->dev != orig_dev)) {
5165                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5166                                        &skb->dev->ptype_specific);
5167         }
5168
5169         if (pt_prev) {
5170                 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
5171                         goto drop;
5172                 *ppt_prev = pt_prev;
5173         } else {
5174 drop:
5175                 if (!deliver_exact)
5176                         atomic_long_inc(&skb->dev->rx_dropped);
5177                 else
5178                         atomic_long_inc(&skb->dev->rx_nohandler);
5179                 kfree_skb(skb);
5180                 /* Jamal, now you will not able to escape explaining
5181                  * me how you were going to use this. :-)
5182                  */
5183                 ret = NET_RX_DROP;
5184         }
5185
5186 out:
5187         return ret;
5188 }
5189
5190 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5191 {
5192         struct net_device *orig_dev = skb->dev;
5193         struct packet_type *pt_prev = NULL;
5194         int ret;
5195
5196         ret = __netif_receive_skb_core(skb, pfmemalloc, &pt_prev);
5197         if (pt_prev)
5198                 ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5199                                          skb->dev, pt_prev, orig_dev);
5200         return ret;
5201 }
5202
5203 /**
5204  *      netif_receive_skb_core - special purpose version of netif_receive_skb
5205  *      @skb: buffer to process
5206  *
5207  *      More direct receive version of netif_receive_skb().  It should
5208  *      only be used by callers that have a need to skip RPS and Generic XDP.
5209  *      Caller must also take care of handling if (page_is_)pfmemalloc.
5210  *
5211  *      This function may only be called from softirq context and interrupts
5212  *      should be enabled.
5213  *
5214  *      Return values (usually ignored):
5215  *      NET_RX_SUCCESS: no congestion
5216  *      NET_RX_DROP: packet was dropped
5217  */
5218 int netif_receive_skb_core(struct sk_buff *skb)
5219 {
5220         int ret;
5221
5222         rcu_read_lock();
5223         ret = __netif_receive_skb_one_core(skb, false);
5224         rcu_read_unlock();
5225
5226         return ret;
5227 }
5228 EXPORT_SYMBOL(netif_receive_skb_core);
5229
5230 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5231                                                   struct packet_type *pt_prev,
5232                                                   struct net_device *orig_dev)
5233 {
5234         struct sk_buff *skb, *next;
5235
5236         if (!pt_prev)
5237                 return;
5238         if (list_empty(head))
5239                 return;
5240         if (pt_prev->list_func != NULL)
5241                 INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5242                                    ip_list_rcv, head, pt_prev, orig_dev);
5243         else
5244                 list_for_each_entry_safe(skb, next, head, list) {
5245                         skb_list_del_init(skb);
5246                         pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5247                 }
5248 }
5249
5250 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5251 {
5252         /* Fast-path assumptions:
5253          * - There is no RX handler.
5254          * - Only one packet_type matches.
5255          * If either of these fails, we will end up doing some per-packet
5256          * processing in-line, then handling the 'last ptype' for the whole
5257          * sublist.  This can't cause out-of-order delivery to any single ptype,
5258          * because the 'last ptype' must be constant across the sublist, and all
5259          * other ptypes are handled per-packet.
5260          */
5261         /* Current (common) ptype of sublist */
5262         struct packet_type *pt_curr = NULL;
5263         /* Current (common) orig_dev of sublist */
5264         struct net_device *od_curr = NULL;
5265         struct list_head sublist;
5266         struct sk_buff *skb, *next;
5267
5268         INIT_LIST_HEAD(&sublist);
5269         list_for_each_entry_safe(skb, next, head, list) {
5270                 struct net_device *orig_dev = skb->dev;
5271                 struct packet_type *pt_prev = NULL;
5272
5273                 skb_list_del_init(skb);
5274                 __netif_receive_skb_core(skb, pfmemalloc, &pt_prev);
5275                 if (!pt_prev)
5276                         continue;
5277                 if (pt_curr != pt_prev || od_curr != orig_dev) {
5278                         /* dispatch old sublist */
5279                         __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5280                         /* start new sublist */
5281                         INIT_LIST_HEAD(&sublist);
5282                         pt_curr = pt_prev;
5283                         od_curr = orig_dev;
5284                 }
5285                 list_add_tail(&skb->list, &sublist);
5286         }
5287
5288         /* dispatch final sublist */
5289         __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5290 }
5291
5292 static int __netif_receive_skb(struct sk_buff *skb)
5293 {
5294         int ret;
5295
5296         if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5297                 unsigned int noreclaim_flag;
5298
5299                 /*
5300                  * PFMEMALLOC skbs are special, they should
5301                  * - be delivered to SOCK_MEMALLOC sockets only
5302                  * - stay away from userspace
5303                  * - have bounded memory usage
5304                  *
5305                  * Use PF_MEMALLOC as this saves us from propagating the allocation
5306                  * context down to all allocation sites.
5307                  */
5308                 noreclaim_flag = memalloc_noreclaim_save();
5309                 ret = __netif_receive_skb_one_core(skb, true);
5310                 memalloc_noreclaim_restore(noreclaim_flag);
5311         } else
5312                 ret = __netif_receive_skb_one_core(skb, false);
5313
5314         return ret;
5315 }
5316
5317 static void __netif_receive_skb_list(struct list_head *head)
5318 {
5319         unsigned long noreclaim_flag = 0;
5320         struct sk_buff *skb, *next;
5321         bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5322
5323         list_for_each_entry_safe(skb, next, head, list) {
5324                 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5325                         struct list_head sublist;
5326
5327                         /* Handle the previous sublist */
5328                         list_cut_before(&sublist, head, &skb->list);
5329                         if (!list_empty(&sublist))
5330                                 __netif_receive_skb_list_core(&sublist, pfmemalloc);
5331                         pfmemalloc = !pfmemalloc;
5332                         /* See comments in __netif_receive_skb */
5333                         if (pfmemalloc)
5334                                 noreclaim_flag = memalloc_noreclaim_save();
5335                         else
5336                                 memalloc_noreclaim_restore(noreclaim_flag);
5337                 }
5338         }
5339         /* Handle the remaining sublist */
5340         if (!list_empty(head))
5341                 __netif_receive_skb_list_core(head, pfmemalloc);
5342         /* Restore pflags */
5343         if (pfmemalloc)
5344                 memalloc_noreclaim_restore(noreclaim_flag);
5345 }
5346
5347 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5348 {
5349         struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5350         struct bpf_prog *new = xdp->prog;
5351         int ret = 0;
5352
5353         switch (xdp->command) {
5354         case XDP_SETUP_PROG:
5355                 rcu_assign_pointer(dev->xdp_prog, new);
5356                 if (old)
5357                         bpf_prog_put(old);
5358
5359                 if (old && !new) {
5360                         static_branch_dec(&generic_xdp_needed_key);
5361                 } else if (new && !old) {
5362                         static_branch_inc(&generic_xdp_needed_key);
5363                         dev_disable_lro(dev);
5364                         dev_disable_gro_hw(dev);
5365                 }
5366                 break;
5367
5368         case XDP_QUERY_PROG:
5369                 xdp->prog_id = old ? old->aux->id : 0;
5370                 break;
5371
5372         default:
5373                 ret = -EINVAL;
5374                 break;
5375         }
5376
5377         return ret;
5378 }
5379
5380 static int netif_receive_skb_internal(struct sk_buff *skb)
5381 {
5382         int ret;
5383
5384         net_timestamp_check(netdev_tstamp_prequeue, skb);
5385
5386         if (skb_defer_rx_timestamp(skb))
5387                 return NET_RX_SUCCESS;
5388
5389         rcu_read_lock();
5390 #ifdef CONFIG_RPS
5391         if (static_branch_unlikely(&rps_needed)) {
5392                 struct rps_dev_flow voidflow, *rflow = &voidflow;
5393                 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5394
5395                 if (cpu >= 0) {
5396                         ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5397                         rcu_read_unlock();
5398                         return ret;
5399                 }
5400         }
5401 #endif
5402         ret = __netif_receive_skb(skb);
5403         rcu_read_unlock();
5404         return ret;
5405 }
5406
5407 static void netif_receive_skb_list_internal(struct list_head *head)
5408 {
5409         struct sk_buff *skb, *next;
5410         struct list_head sublist;
5411
5412         INIT_LIST_HEAD(&sublist);
5413         list_for_each_entry_safe(skb, next, head, list) {
5414                 net_timestamp_check(netdev_tstamp_prequeue, skb);
5415                 skb_list_del_init(skb);
5416                 if (!skb_defer_rx_timestamp(skb))
5417                         list_add_tail(&skb->list, &sublist);
5418         }
5419         list_splice_init(&sublist, head);
5420
5421         rcu_read_lock();
5422 #ifdef CONFIG_RPS
5423         if (static_branch_unlikely(&rps_needed)) {
5424                 list_for_each_entry_safe(skb, next, head, list) {
5425                         struct rps_dev_flow voidflow, *rflow = &voidflow;
5426                         int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5427
5428                         if (cpu >= 0) {
5429                                 /* Will be handled, remove from list */
5430                                 skb_list_del_init(skb);
5431                                 enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5432                         }
5433                 }
5434         }
5435 #endif
5436         __netif_receive_skb_list(head);
5437         rcu_read_unlock();
5438 }
5439
5440 /**
5441  *      netif_receive_skb - process receive buffer from network
5442  *      @skb: buffer to process
5443  *
5444  *      netif_receive_skb() is the main receive data processing function.
5445  *      It always succeeds. The buffer may be dropped during processing
5446  *      for congestion control or by the protocol layers.
5447  *
5448  *      This function may only be called from softirq context and interrupts
5449  *      should be enabled.
5450  *
5451  *      Return values (usually ignored):
5452  *      NET_RX_SUCCESS: no congestion
5453  *      NET_RX_DROP: packet was dropped
5454  */
5455 int netif_receive_skb(struct sk_buff *skb)
5456 {
5457         int ret;
5458
5459         trace_netif_receive_skb_entry(skb);
5460
5461         ret = netif_receive_skb_internal(skb);
5462         trace_netif_receive_skb_exit(ret);
5463
5464         return ret;
5465 }
5466 EXPORT_SYMBOL(netif_receive_skb);
5467
5468 /**
5469  *      netif_receive_skb_list - process many receive buffers from network
5470  *      @head: list of skbs to process.
5471  *
5472  *      Since return value of netif_receive_skb() is normally ignored, and
5473  *      wouldn't be meaningful for a list, this function returns void.
5474  *
5475  *      This function may only be called from softirq context and interrupts
5476  *      should be enabled.
5477  */
5478 void netif_receive_skb_list(struct list_head *head)
5479 {
5480         struct sk_buff *skb;
5481
5482         if (list_empty(head))
5483                 return;
5484         if (trace_netif_receive_skb_list_entry_enabled()) {
5485                 list_for_each_entry(skb, head, list)
5486                         trace_netif_receive_skb_list_entry(skb);
5487         }
5488         netif_receive_skb_list_internal(head);
5489         trace_netif_receive_skb_list_exit(0);
5490 }
5491 EXPORT_SYMBOL(netif_receive_skb_list);
5492
5493 DEFINE_PER_CPU(struct work_struct, flush_works);
5494
5495 /* Network device is going away, flush any packets still pending */
5496 static void flush_backlog(struct work_struct *work)
5497 {
5498         struct sk_buff *skb, *tmp;
5499         struct softnet_data *sd;
5500
5501         local_bh_disable();
5502         sd = this_cpu_ptr(&softnet_data);
5503
5504         local_irq_disable();
5505         rps_lock(sd);
5506         skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5507                 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5508                         __skb_unlink(skb, &sd->input_pkt_queue);
5509                         kfree_skb(skb);
5510                         input_queue_head_incr(sd);
5511                 }
5512         }
5513         rps_unlock(sd);
5514         local_irq_enable();
5515
5516         skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5517                 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5518                         __skb_unlink(skb, &sd->process_queue);
5519                         kfree_skb(skb);
5520                         input_queue_head_incr(sd);
5521                 }
5522         }
5523         local_bh_enable();
5524 }
5525
5526 static void flush_all_backlogs(void)
5527 {
5528         unsigned int cpu;
5529
5530         get_online_cpus();
5531
5532         for_each_online_cpu(cpu)
5533                 queue_work_on(cpu, system_highpri_wq,
5534                               per_cpu_ptr(&flush_works, cpu));
5535
5536         for_each_online_cpu(cpu)
5537                 flush_work(per_cpu_ptr(&flush_works, cpu));
5538
5539         put_online_cpus();
5540 }
5541
5542 /* Pass the currently batched GRO_NORMAL SKBs up to the stack. */
5543 static void gro_normal_list(struct napi_struct *napi)
5544 {
5545         if (!napi->rx_count)
5546                 return;
5547         netif_receive_skb_list_internal(&napi->rx_list);
5548         INIT_LIST_HEAD(&napi->rx_list);
5549         napi->rx_count = 0;
5550 }
5551
5552 /* Queue one GRO_NORMAL SKB up for list processing. If batch size exceeded,
5553  * pass the whole batch up to the stack.
5554  */
5555 static void gro_normal_one(struct napi_struct *napi, struct sk_buff *skb)
5556 {
5557         list_add_tail(&skb->list, &napi->rx_list);
5558         if (++napi->rx_count >= gro_normal_batch)
5559                 gro_normal_list(napi);
5560 }
5561
5562 INDIRECT_CALLABLE_DECLARE(int inet_gro_complete(struct sk_buff *, int));
5563 INDIRECT_CALLABLE_DECLARE(int ipv6_gro_complete(struct sk_buff *, int));
5564 static int napi_gro_complete(struct napi_struct *napi, struct sk_buff *skb)
5565 {
5566         struct packet_offload *ptype;
5567         __be16 type = skb->protocol;
5568         struct list_head *head = &offload_base;
5569         int err = -ENOENT;
5570
5571         BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
5572
5573         if (NAPI_GRO_CB(skb)->count == 1) {
5574                 skb_shinfo(skb)->gso_size = 0;
5575                 goto out;
5576         }
5577
5578         rcu_read_lock();
5579         list_for_each_entry_rcu(ptype, head, list) {
5580                 if (ptype->type != type || !ptype->callbacks.gro_complete)
5581                         continue;
5582
5583                 err = INDIRECT_CALL_INET(ptype->callbacks.gro_complete,
5584                                          ipv6_gro_complete, inet_gro_complete,
5585                                          skb, 0);
5586                 break;
5587         }
5588         rcu_read_unlock();
5589
5590         if (err) {
5591                 WARN_ON(&ptype->list == head);
5592                 kfree_skb(skb);
5593                 return NET_RX_SUCCESS;
5594         }
5595
5596 out:
5597         gro_normal_one(napi, skb);
5598         return NET_RX_SUCCESS;
5599 }
5600
5601 static void __napi_gro_flush_chain(struct napi_struct *napi, u32 index,
5602                                    bool flush_old)
5603 {
5604         struct list_head *head = &napi->gro_hash[index].list;
5605         struct sk_buff *skb, *p;
5606
5607         list_for_each_entry_safe_reverse(skb, p, head, list) {
5608                 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
5609                         return;
5610                 skb_list_del_init(skb);
5611                 napi_gro_complete(napi, skb);
5612                 napi->gro_hash[index].count--;
5613         }
5614
5615         if (!napi->gro_hash[index].count)
5616                 __clear_bit(index, &napi->gro_bitmask);
5617 }
5618
5619 /* napi->gro_hash[].list contains packets ordered by age.
5620  * youngest packets at the head of it.
5621  * Complete skbs in reverse order to reduce latencies.
5622  */
5623 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
5624 {
5625         unsigned long bitmask = napi->gro_bitmask;
5626         unsigned int i, base = ~0U;
5627
5628         while ((i = ffs(bitmask)) != 0) {
5629                 bitmask >>= i;
5630                 base += i;
5631                 __napi_gro_flush_chain(napi, base, flush_old);
5632         }
5633 }
5634 EXPORT_SYMBOL(napi_gro_flush);
5635
5636 static struct list_head *gro_list_prepare(struct napi_struct *napi,
5637                                           struct sk_buff *skb)
5638 {
5639         unsigned int maclen = skb->dev->hard_header_len;
5640         u32 hash = skb_get_hash_raw(skb);
5641         struct list_head *head;
5642         struct sk_buff *p;
5643
5644         head = &napi->gro_hash[hash & (GRO_HASH_BUCKETS - 1)].list;
5645         list_for_each_entry(p, head, list) {
5646                 unsigned long diffs;
5647
5648                 NAPI_GRO_CB(p)->flush = 0;
5649
5650                 if (hash != skb_get_hash_raw(p)) {
5651                         NAPI_GRO_CB(p)->same_flow = 0;
5652                         continue;
5653                 }
5654
5655                 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
5656                 diffs |= skb_vlan_tag_present(p) ^ skb_vlan_tag_present(skb);
5657                 if (skb_vlan_tag_present(p))
5658                         diffs |= skb_vlan_tag_get(p) ^ skb_vlan_tag_get(skb);
5659                 diffs |= skb_metadata_dst_cmp(p, skb);
5660                 diffs |= skb_metadata_differs(p, skb);
5661                 if (maclen == ETH_HLEN)
5662                         diffs |= compare_ether_header(skb_mac_header(p),
5663                                                       skb_mac_header(skb));
5664                 else if (!diffs)
5665                         diffs = memcmp(skb_mac_header(p),
5666                                        skb_mac_header(skb),
5667                                        maclen);
5668                 NAPI_GRO_CB(p)->same_flow = !diffs;
5669         }
5670
5671         return head;
5672 }
5673
5674 static void skb_gro_reset_offset(struct sk_buff *skb)
5675 {
5676         const struct skb_shared_info *pinfo = skb_shinfo(skb);
5677         const skb_frag_t *frag0 = &pinfo->frags[0];
5678
5679         NAPI_GRO_CB(skb)->data_offset = 0;
5680         NAPI_GRO_CB(skb)->frag0 = NULL;
5681         NAPI_GRO_CB(skb)->frag0_len = 0;
5682
5683         if (!skb_headlen(skb) && pinfo->nr_frags &&
5684             !PageHighMem(skb_frag_page(frag0))) {
5685                 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
5686                 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
5687                                                     skb_frag_size(frag0),
5688                                                     skb->end - skb->tail);
5689         }
5690 }
5691
5692 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
5693 {
5694         struct skb_shared_info *pinfo = skb_shinfo(skb);
5695
5696         BUG_ON(skb->end - skb->tail < grow);
5697
5698         memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
5699
5700         skb->data_len -= grow;
5701         skb->tail += grow;
5702
5703         skb_frag_off_add(&pinfo->frags[0], grow);
5704         skb_frag_size_sub(&pinfo->frags[0], grow);
5705
5706         if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
5707                 skb_frag_unref(skb, 0);
5708                 memmove(pinfo->frags, pinfo->frags + 1,
5709                         --pinfo->nr_frags * sizeof(pinfo->frags[0]));
5710         }
5711 }
5712
5713 static void gro_flush_oldest(struct napi_struct *napi, struct list_head *head)
5714 {
5715         struct sk_buff *oldest;
5716
5717         oldest = list_last_entry(head, struct sk_buff, list);
5718
5719         /* We are called with head length >= MAX_GRO_SKBS, so this is
5720          * impossible.
5721          */
5722         if (WARN_ON_ONCE(!oldest))
5723                 return;
5724
5725         /* Do not adjust napi->gro_hash[].count, caller is adding a new
5726          * SKB to the chain.
5727          */
5728         skb_list_del_init(oldest);
5729         napi_gro_complete(napi, oldest);
5730 }
5731
5732 INDIRECT_CALLABLE_DECLARE(struct sk_buff *inet_gro_receive(struct list_head *,
5733                                                            struct sk_buff *));
5734 INDIRECT_CALLABLE_DECLARE(struct sk_buff *ipv6_gro_receive(struct list_head *,
5735                                                            struct sk_buff *));
5736 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5737 {
5738         u32 hash = skb_get_hash_raw(skb) & (GRO_HASH_BUCKETS - 1);
5739         struct list_head *head = &offload_base;
5740         struct packet_offload *ptype;
5741         __be16 type = skb->protocol;
5742         struct list_head *gro_head;
5743         struct sk_buff *pp = NULL;
5744         enum gro_result ret;
5745         int same_flow;
5746         int grow;
5747
5748         if (netif_elide_gro(skb->dev))
5749                 goto normal;
5750
5751         gro_head = gro_list_prepare(napi, skb);
5752
5753         rcu_read_lock();
5754         list_for_each_entry_rcu(ptype, head, list) {
5755                 if (ptype->type != type || !ptype->callbacks.gro_receive)
5756                         continue;
5757
5758                 skb_set_network_header(skb, skb_gro_offset(skb));
5759                 skb_reset_mac_len(skb);
5760                 NAPI_GRO_CB(skb)->same_flow = 0;
5761                 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
5762                 NAPI_GRO_CB(skb)->free = 0;
5763                 NAPI_GRO_CB(skb)->encap_mark = 0;
5764                 NAPI_GRO_CB(skb)->recursion_counter = 0;
5765                 NAPI_GRO_CB(skb)->is_fou = 0;
5766                 NAPI_GRO_CB(skb)->is_atomic = 1;
5767                 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
5768
5769                 /* Setup for GRO checksum validation */
5770                 switch (skb->ip_summed) {
5771                 case CHECKSUM_COMPLETE:
5772                         NAPI_GRO_CB(skb)->csum = skb->csum;
5773                         NAPI_GRO_CB(skb)->csum_valid = 1;
5774                         NAPI_GRO_CB(skb)->csum_cnt = 0;
5775                         break;
5776                 case CHECKSUM_UNNECESSARY:
5777                         NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
5778                         NAPI_GRO_CB(skb)->csum_valid = 0;
5779                         break;
5780                 default:
5781                         NAPI_GRO_CB(skb)->csum_cnt = 0;
5782                         NAPI_GRO_CB(skb)->csum_valid = 0;
5783                 }
5784
5785                 pp = INDIRECT_CALL_INET(ptype->callbacks.gro_receive,
5786                                         ipv6_gro_receive, inet_gro_receive,
5787                                         gro_head, skb);
5788                 break;
5789         }
5790         rcu_read_unlock();
5791
5792         if (&ptype->list == head)
5793                 goto normal;
5794
5795         if (IS_ERR(pp) && PTR_ERR(pp) == -EINPROGRESS) {
5796                 ret = GRO_CONSUMED;
5797                 goto ok;
5798         }
5799
5800         same_flow = NAPI_GRO_CB(skb)->same_flow;
5801         ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
5802
5803         if (pp) {
5804                 skb_list_del_init(pp);
5805                 napi_gro_complete(napi, pp);
5806                 napi->gro_hash[hash].count--;
5807         }
5808
5809         if (same_flow)
5810                 goto ok;
5811
5812         if (NAPI_GRO_CB(skb)->flush)
5813                 goto normal;
5814
5815         if (unlikely(napi->gro_hash[hash].count >= MAX_GRO_SKBS)) {
5816                 gro_flush_oldest(napi, gro_head);
5817         } else {
5818                 napi->gro_hash[hash].count++;
5819         }
5820         NAPI_GRO_CB(skb)->count = 1;
5821         NAPI_GRO_CB(skb)->age = jiffies;
5822         NAPI_GRO_CB(skb)->last = skb;
5823         skb_shinfo(skb)->gso_size = skb_gro_len(skb);
5824         list_add(&skb->list, gro_head);
5825         ret = GRO_HELD;
5826
5827 pull:
5828         grow = skb_gro_offset(skb) - skb_headlen(skb);
5829         if (grow > 0)
5830                 gro_pull_from_frag0(skb, grow);
5831 ok:
5832         if (napi->gro_hash[hash].count) {
5833                 if (!test_bit(hash, &napi->gro_bitmask))
5834                         __set_bit(hash, &napi->gro_bitmask);
5835         } else if (test_bit(hash, &napi->gro_bitmask)) {
5836                 __clear_bit(hash, &napi->gro_bitmask);
5837         }
5838
5839         return ret;
5840
5841 normal:
5842         ret = GRO_NORMAL;
5843         goto pull;
5844 }
5845
5846 struct packet_offload *gro_find_receive_by_type(__be16 type)
5847 {
5848         struct list_head *offload_head = &offload_base;
5849         struct packet_offload *ptype;
5850
5851         list_for_each_entry_rcu(ptype, offload_head, list) {
5852                 if (ptype->type != type || !ptype->callbacks.gro_receive)
5853                         continue;
5854                 return ptype;
5855         }
5856         return NULL;
5857 }
5858 EXPORT_SYMBOL(gro_find_receive_by_type);
5859
5860 struct packet_offload *gro_find_complete_by_type(__be16 type)
5861 {
5862         struct list_head *offload_head = &offload_base;
5863         struct packet_offload *ptype;
5864
5865         list_for_each_entry_rcu(ptype, offload_head, list) {
5866                 if (ptype->type != type || !ptype->callbacks.gro_complete)
5867                         continue;
5868                 return ptype;
5869         }
5870         return NULL;
5871 }
5872 EXPORT_SYMBOL(gro_find_complete_by_type);
5873
5874 static void napi_skb_free_stolen_head(struct sk_buff *skb)
5875 {
5876         skb_dst_drop(skb);
5877         skb_ext_put(skb);
5878         kmem_cache_free(skbuff_head_cache, skb);
5879 }
5880
5881 static gro_result_t napi_skb_finish(struct napi_struct *napi,
5882                                     struct sk_buff *skb,
5883                                     gro_result_t ret)
5884 {
5885         switch (ret) {
5886         case GRO_NORMAL:
5887                 gro_normal_one(napi, skb);
5888                 break;
5889
5890         case GRO_DROP:
5891                 kfree_skb(skb);
5892                 break;
5893
5894         case GRO_MERGED_FREE:
5895                 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5896                         napi_skb_free_stolen_head(skb);
5897                 else
5898                         __kfree_skb(skb);
5899                 break;
5900
5901         case GRO_HELD:
5902         case GRO_MERGED:
5903         case GRO_CONSUMED:
5904                 break;
5905         }
5906
5907         return ret;
5908 }
5909
5910 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5911 {
5912         gro_result_t ret;
5913
5914         skb_mark_napi_id(skb, napi);
5915         trace_napi_gro_receive_entry(skb);
5916
5917         skb_gro_reset_offset(skb);
5918
5919         ret = napi_skb_finish(napi, skb, dev_gro_receive(napi, skb));
5920         trace_napi_gro_receive_exit(ret);
5921
5922         return ret;
5923 }
5924 EXPORT_SYMBOL(napi_gro_receive);
5925
5926 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
5927 {
5928         if (unlikely(skb->pfmemalloc)) {
5929                 consume_skb(skb);
5930                 return;
5931         }
5932         __skb_pull(skb, skb_headlen(skb));
5933         /* restore the reserve we had after netdev_alloc_skb_ip_align() */
5934         skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
5935         __vlan_hwaccel_clear_tag(skb);
5936         skb->dev = napi->dev;
5937         skb->skb_iif = 0;
5938
5939         /* eth_type_trans() assumes pkt_type is PACKET_HOST */
5940         skb->pkt_type = PACKET_HOST;
5941
5942         skb->encapsulation = 0;
5943         skb_shinfo(skb)->gso_type = 0;
5944         skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
5945         skb_ext_reset(skb);
5946
5947         napi->skb = skb;
5948 }
5949
5950 struct sk_buff *napi_get_frags(struct napi_struct *napi)
5951 {
5952         struct sk_buff *skb = napi->skb;
5953
5954         if (!skb) {
5955                 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
5956                 if (skb) {
5957                         napi->skb = skb;
5958                         skb_mark_napi_id(skb, napi);
5959                 }
5960         }
5961         return skb;
5962 }
5963 EXPORT_SYMBOL(napi_get_frags);
5964
5965 static gro_result_t napi_frags_finish(struct napi_struct *napi,
5966                                       struct sk_buff *skb,
5967                                       gro_result_t ret)
5968 {
5969         switch (ret) {
5970         case GRO_NORMAL:
5971         case GRO_HELD:
5972                 __skb_push(skb, ETH_HLEN);
5973                 skb->protocol = eth_type_trans(skb, skb->dev);
5974                 if (ret == GRO_NORMAL)
5975                         gro_normal_one(napi, skb);
5976                 break;
5977
5978         case GRO_DROP:
5979                 napi_reuse_skb(napi, skb);
5980                 break;
5981
5982         case GRO_MERGED_FREE:
5983                 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5984                         napi_skb_free_stolen_head(skb);
5985                 else
5986                         napi_reuse_skb(napi, skb);
5987                 break;
5988
5989         case GRO_MERGED:
5990         case GRO_CONSUMED:
5991                 break;
5992         }
5993
5994         return ret;
5995 }
5996
5997 /* Upper GRO stack assumes network header starts at gro_offset=0
5998  * Drivers could call both napi_gro_frags() and napi_gro_receive()
5999  * We copy ethernet header into skb->data to have a common layout.
6000  */
6001 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
6002 {
6003         struct sk_buff *skb = napi->skb;
6004         const struct ethhdr *eth;
6005         unsigned int hlen = sizeof(*eth);
6006
6007         napi->skb = NULL;
6008
6009         skb_reset_mac_header(skb);
6010         skb_gro_reset_offset(skb);
6011
6012         if (unlikely(skb_gro_header_hard(skb, hlen))) {
6013                 eth = skb_gro_header_slow(skb, hlen, 0);
6014                 if (unlikely(!eth)) {
6015                         net_warn_ratelimited("%s: dropping impossible skb from %s\n",
6016                                              __func__, napi->dev->name);
6017                         napi_reuse_skb(napi, skb);
6018                         return NULL;
6019                 }
6020         } else {
6021                 eth = (const struct ethhdr *)skb->data;
6022                 gro_pull_from_frag0(skb, hlen);
6023                 NAPI_GRO_CB(skb)->frag0 += hlen;
6024                 NAPI_GRO_CB(skb)->frag0_len -= hlen;
6025         }
6026         __skb_pull(skb, hlen);
6027
6028         /*
6029          * This works because the only protocols we care about don't require
6030          * special handling.
6031          * We'll fix it up properly in napi_frags_finish()
6032          */
6033         skb->protocol = eth->h_proto;
6034
6035         return skb;
6036 }
6037
6038 gro_result_t napi_gro_frags(struct napi_struct *napi)
6039 {
6040         gro_result_t ret;
6041         struct sk_buff *skb = napi_frags_skb(napi);
6042
6043         if (!skb)
6044                 return GRO_DROP;
6045
6046         trace_napi_gro_frags_entry(skb);
6047
6048         ret = napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
6049         trace_napi_gro_frags_exit(ret);
6050
6051         return ret;
6052 }
6053 EXPORT_SYMBOL(napi_gro_frags);
6054
6055 /* Compute the checksum from gro_offset and return the folded value
6056  * after adding in any pseudo checksum.
6057  */
6058 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
6059 {
6060         __wsum wsum;
6061         __sum16 sum;
6062
6063         wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
6064
6065         /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
6066         sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
6067         /* See comments in __skb_checksum_complete(). */
6068         if (likely(!sum)) {
6069                 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
6070                     !skb->csum_complete_sw)
6071                         netdev_rx_csum_fault(skb->dev, skb);
6072         }
6073
6074         NAPI_GRO_CB(skb)->csum = wsum;
6075         NAPI_GRO_CB(skb)->csum_valid = 1;
6076
6077         return sum;
6078 }
6079 EXPORT_SYMBOL(__skb_gro_checksum_complete);
6080
6081 static void net_rps_send_ipi(struct softnet_data *remsd)
6082 {
6083 #ifdef CONFIG_RPS
6084         while (remsd) {
6085                 struct softnet_data *next = remsd->rps_ipi_next;
6086
6087                 if (cpu_online(remsd->cpu))
6088                         smp_call_function_single_async(remsd->cpu, &remsd->csd);
6089                 remsd = next;
6090         }
6091 #endif
6092 }
6093
6094 /*
6095  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
6096  * Note: called with local irq disabled, but exits with local irq enabled.
6097  */
6098 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
6099 {
6100 #ifdef CONFIG_RPS
6101         struct softnet_data *remsd = sd->rps_ipi_list;
6102
6103         if (remsd) {
6104                 sd->rps_ipi_list = NULL;
6105
6106                 local_irq_enable();
6107
6108                 /* Send pending IPI's to kick RPS processing on remote cpus. */
6109                 net_rps_send_ipi(remsd);
6110         } else
6111 #endif
6112                 local_irq_enable();
6113 }
6114
6115 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
6116 {
6117 #ifdef CONFIG_RPS
6118         return sd->rps_ipi_list != NULL;
6119 #else
6120         return false;
6121 #endif
6122 }
6123
6124 static int process_backlog(struct napi_struct *napi, int quota)
6125 {
6126         struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
6127         bool again = true;
6128         int work = 0;
6129
6130         /* Check if we have pending ipi, its better to send them now,
6131          * not waiting net_rx_action() end.
6132          */
6133         if (sd_has_rps_ipi_waiting(sd)) {
6134                 local_irq_disable();
6135                 net_rps_action_and_irq_enable(sd);
6136         }
6137
6138         napi->weight = dev_rx_weight;
6139         while (again) {
6140                 struct sk_buff *skb;
6141
6142                 while ((skb = __skb_dequeue(&sd->process_queue))) {
6143                         rcu_read_lock();
6144                         __netif_receive_skb(skb);
6145                         rcu_read_unlock();
6146                         input_queue_head_incr(sd);
6147                         if (++work >= quota)
6148                                 return work;
6149
6150                 }
6151
6152                 local_irq_disable();
6153                 rps_lock(sd);
6154                 if (skb_queue_empty(&sd->input_pkt_queue)) {
6155                         /*
6156                          * Inline a custom version of __napi_complete().
6157                          * only current cpu owns and manipulates this napi,
6158                          * and NAPI_STATE_SCHED is the only possible flag set
6159                          * on backlog.
6160                          * We can use a plain write instead of clear_bit(),
6161                          * and we dont need an smp_mb() memory barrier.
6162                          */
6163                         napi->state = 0;
6164                         again = false;
6165                 } else {
6166                         skb_queue_splice_tail_init(&sd->input_pkt_queue,
6167                                                    &sd->process_queue);
6168                 }
6169                 rps_unlock(sd);
6170                 local_irq_enable();
6171         }
6172
6173         return work;
6174 }
6175
6176 /**
6177  * __napi_schedule - schedule for receive
6178  * @n: entry to schedule
6179  *
6180  * The entry's receive function will be scheduled to run.
6181  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
6182  */
6183 void __napi_schedule(struct napi_struct *n)
6184 {
6185         unsigned long flags;
6186
6187         local_irq_save(flags);
6188         ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6189         local_irq_restore(flags);
6190 }
6191 EXPORT_SYMBOL(__napi_schedule);
6192
6193 /**
6194  *      napi_schedule_prep - check if napi can be scheduled
6195  *      @n: napi context
6196  *
6197  * Test if NAPI routine is already running, and if not mark
6198  * it as running.  This is used as a condition variable
6199  * insure only one NAPI poll instance runs.  We also make
6200  * sure there is no pending NAPI disable.
6201  */
6202 bool napi_schedule_prep(struct napi_struct *n)
6203 {
6204         unsigned long val, new;
6205
6206         do {
6207                 val = READ_ONCE(n->state);
6208                 if (unlikely(val & NAPIF_STATE_DISABLE))
6209                         return false;
6210                 new = val | NAPIF_STATE_SCHED;
6211
6212                 /* Sets STATE_MISSED bit if STATE_SCHED was already set
6213                  * This was suggested by Alexander Duyck, as compiler
6214                  * emits better code than :
6215                  * if (val & NAPIF_STATE_SCHED)
6216                  *     new |= NAPIF_STATE_MISSED;
6217                  */
6218                 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6219                                                    NAPIF_STATE_MISSED;
6220         } while (cmpxchg(&n->state, val, new) != val);
6221
6222         return !(val & NAPIF_STATE_SCHED);
6223 }
6224 EXPORT_SYMBOL(napi_schedule_prep);
6225
6226 /**
6227  * __napi_schedule_irqoff - schedule for receive
6228  * @n: entry to schedule
6229  *
6230  * Variant of __napi_schedule() assuming hard irqs are masked
6231  */
6232 void __napi_schedule_irqoff(struct napi_struct *n)
6233 {
6234         ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6235 }
6236 EXPORT_SYMBOL(__napi_schedule_irqoff);
6237
6238 bool napi_complete_done(struct napi_struct *n, int work_done)
6239 {
6240         unsigned long flags, val, new;
6241
6242         /*
6243          * 1) Don't let napi dequeue from the cpu poll list
6244          *    just in case its running on a different cpu.
6245          * 2) If we are busy polling, do nothing here, we have
6246          *    the guarantee we will be called later.
6247          */
6248         if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6249                                  NAPIF_STATE_IN_BUSY_POLL)))
6250                 return false;
6251
6252         if (n->gro_bitmask) {
6253                 unsigned long timeout = 0;
6254
6255                 if (work_done)
6256                         timeout = n->dev->gro_flush_timeout;
6257
6258                 /* When the NAPI instance uses a timeout and keeps postponing
6259                  * it, we need to bound somehow the time packets are kept in
6260                  * the GRO layer
6261                  */
6262                 napi_gro_flush(n, !!timeout);
6263                 if (timeout)
6264                         hrtimer_start(&n->timer, ns_to_ktime(timeout),
6265                                       HRTIMER_MODE_REL_PINNED);
6266         }
6267
6268         gro_normal_list(n);
6269
6270         if (unlikely(!list_empty(&n->poll_list))) {
6271                 /* If n->poll_list is not empty, we need to mask irqs */
6272                 local_irq_save(flags);
6273                 list_del_init(&n->poll_list);
6274                 local_irq_restore(flags);
6275         }
6276
6277         do {
6278                 val = READ_ONCE(n->state);
6279
6280                 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6281
6282                 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED);
6283
6284                 /* If STATE_MISSED was set, leave STATE_SCHED set,
6285                  * because we will call napi->poll() one more time.
6286                  * This C code was suggested by Alexander Duyck to help gcc.
6287                  */
6288                 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6289                                                     NAPIF_STATE_SCHED;
6290         } while (cmpxchg(&n->state, val, new) != val);
6291
6292         if (unlikely(val & NAPIF_STATE_MISSED)) {
6293                 __napi_schedule(n);
6294                 return false;
6295         }
6296
6297         return true;
6298 }
6299 EXPORT_SYMBOL(napi_complete_done);
6300
6301 /* must be called under rcu_read_lock(), as we dont take a reference */
6302 static struct napi_struct *napi_by_id(unsigned int napi_id)
6303 {
6304         unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6305         struct napi_struct *napi;
6306
6307         hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6308                 if (napi->napi_id == napi_id)
6309                         return napi;
6310
6311         return NULL;
6312 }
6313
6314 #if defined(CONFIG_NET_RX_BUSY_POLL)
6315
6316 #define BUSY_POLL_BUDGET 8
6317
6318 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock)
6319 {
6320         int rc;
6321
6322         /* Busy polling means there is a high chance device driver hard irq
6323          * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6324          * set in napi_schedule_prep().
6325          * Since we are about to call napi->poll() once more, we can safely
6326          * clear NAPI_STATE_MISSED.
6327          *
6328          * Note: x86 could use a single "lock and ..." instruction
6329          * to perform these two clear_bit()
6330          */
6331         clear_bit(NAPI_STATE_MISSED, &napi->state);
6332         clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6333
6334         local_bh_disable();
6335
6336         /* All we really want here is to re-enable device interrupts.
6337          * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6338          */
6339         rc = napi->poll(napi, BUSY_POLL_BUDGET);
6340         /* We can't gro_normal_list() here, because napi->poll() might have
6341          * rearmed the napi (napi_complete_done()) in which case it could
6342          * already be running on another CPU.
6343          */
6344         trace_napi_poll(napi, rc, BUSY_POLL_BUDGET);
6345         netpoll_poll_unlock(have_poll_lock);
6346         if (rc == BUSY_POLL_BUDGET) {
6347                 /* As the whole budget was spent, we still own the napi so can
6348                  * safely handle the rx_list.
6349                  */
6350                 gro_normal_list(napi);
6351                 __napi_schedule(napi);
6352         }
6353         local_bh_enable();
6354 }
6355
6356 void napi_busy_loop(unsigned int napi_id,
6357                     bool (*loop_end)(void *, unsigned long),
6358                     void *loop_end_arg)
6359 {
6360         unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6361         int (*napi_poll)(struct napi_struct *napi, int budget);
6362         void *have_poll_lock = NULL;
6363         struct napi_struct *napi;
6364
6365 restart:
6366         napi_poll = NULL;
6367
6368         rcu_read_lock();
6369
6370         napi = napi_by_id(napi_id);
6371         if (!napi)
6372                 goto out;
6373
6374         preempt_disable();
6375         for (;;) {
6376                 int work = 0;
6377
6378                 local_bh_disable();
6379                 if (!napi_poll) {
6380                         unsigned long val = READ_ONCE(napi->state);
6381
6382                         /* If multiple threads are competing for this napi,
6383                          * we avoid dirtying napi->state as much as we can.
6384                          */
6385                         if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6386                                    NAPIF_STATE_IN_BUSY_POLL))
6387                                 goto count;
6388                         if (cmpxchg(&napi->state, val,
6389                                     val | NAPIF_STATE_IN_BUSY_POLL |
6390                                           NAPIF_STATE_SCHED) != val)
6391                                 goto count;
6392                         have_poll_lock = netpoll_poll_lock(napi);
6393                         napi_poll = napi->poll;
6394                 }
6395                 work = napi_poll(napi, BUSY_POLL_BUDGET);
6396                 trace_napi_poll(napi, work, BUSY_POLL_BUDGET);
6397                 gro_normal_list(napi);
6398 count:
6399                 if (work > 0)
6400                         __NET_ADD_STATS(dev_net(napi->dev),
6401                                         LINUX_MIB_BUSYPOLLRXPACKETS, work);
6402                 local_bh_enable();
6403
6404                 if (!loop_end || loop_end(loop_end_arg, start_time))
6405                         break;
6406
6407                 if (unlikely(need_resched())) {
6408                         if (napi_poll)
6409                                 busy_poll_stop(napi, have_poll_lock);
6410                         preempt_enable();
6411                         rcu_read_unlock();
6412                         cond_resched();
6413                         if (loop_end(loop_end_arg, start_time))
6414                                 return;
6415                         goto restart;
6416                 }
6417                 cpu_relax();
6418         }
6419         if (napi_poll)
6420                 busy_poll_stop(napi, have_poll_lock);
6421         preempt_enable();
6422 out:
6423         rcu_read_unlock();
6424 }
6425 EXPORT_SYMBOL(napi_busy_loop);
6426
6427 #endif /* CONFIG_NET_RX_BUSY_POLL */
6428
6429 static void napi_hash_add(struct napi_struct *napi)
6430 {
6431         if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
6432             test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
6433                 return;
6434
6435         spin_lock(&napi_hash_lock);
6436
6437         /* 0..NR_CPUS range is reserved for sender_cpu use */
6438         do {
6439                 if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6440                         napi_gen_id = MIN_NAPI_ID;
6441         } while (napi_by_id(napi_gen_id));
6442         napi->napi_id = napi_gen_id;
6443
6444         hlist_add_head_rcu(&napi->napi_hash_node,
6445                            &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6446
6447         spin_unlock(&napi_hash_lock);
6448 }
6449
6450 /* Warning : caller is responsible to make sure rcu grace period
6451  * is respected before freeing memory containing @napi
6452  */
6453 bool napi_hash_del(struct napi_struct *napi)
6454 {
6455         bool rcu_sync_needed = false;
6456
6457         spin_lock(&napi_hash_lock);
6458
6459         if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
6460                 rcu_sync_needed = true;
6461                 hlist_del_rcu(&napi->napi_hash_node);
6462         }
6463         spin_unlock(&napi_hash_lock);
6464         return rcu_sync_needed;
6465 }
6466 EXPORT_SYMBOL_GPL(napi_hash_del);
6467
6468 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6469 {
6470         struct napi_struct *napi;
6471
6472         napi = container_of(timer, struct napi_struct, timer);
6473
6474         /* Note : we use a relaxed variant of napi_schedule_prep() not setting
6475          * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6476          */
6477         if (napi->gro_bitmask && !napi_disable_pending(napi) &&
6478             !test_and_set_bit(NAPI_STATE_SCHED, &napi->state))
6479                 __napi_schedule_irqoff(napi);
6480
6481         return HRTIMER_NORESTART;
6482 }
6483
6484 static void init_gro_hash(struct napi_struct *napi)
6485 {
6486         int i;
6487
6488         for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6489                 INIT_LIST_HEAD(&napi->gro_hash[i].list);
6490                 napi->gro_hash[i].count = 0;
6491         }
6492         napi->gro_bitmask = 0;
6493 }
6494
6495 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
6496                     int (*poll)(struct napi_struct *, int), int weight)
6497 {
6498         INIT_LIST_HEAD(&napi->poll_list);
6499         hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6500         napi->timer.function = napi_watchdog;
6501         init_gro_hash(napi);
6502         napi->skb = NULL;
6503         INIT_LIST_HEAD(&napi->rx_list);
6504         napi->rx_count = 0;
6505         napi->poll = poll;
6506         if (weight > NAPI_POLL_WEIGHT)
6507                 netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6508                                 weight);
6509         napi->weight = weight;
6510         list_add(&napi->dev_list, &dev->napi_list);
6511         napi->dev = dev;
6512 #ifdef CONFIG_NETPOLL
6513         napi->poll_owner = -1;
6514 #endif
6515         set_bit(NAPI_STATE_SCHED, &napi->state);
6516         napi_hash_add(napi);
6517 }
6518 EXPORT_SYMBOL(netif_napi_add);
6519
6520 void napi_disable(struct napi_struct *n)
6521 {
6522         might_sleep();
6523         set_bit(NAPI_STATE_DISABLE, &n->state);
6524
6525         while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
6526                 msleep(1);
6527         while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
6528                 msleep(1);
6529
6530         hrtimer_cancel(&n->timer);
6531
6532         clear_bit(NAPI_STATE_DISABLE, &n->state);
6533 }
6534 EXPORT_SYMBOL(napi_disable);
6535
6536 static void flush_gro_hash(struct napi_struct *napi)
6537 {
6538         int i;
6539
6540         for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6541                 struct sk_buff *skb, *n;
6542
6543                 list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6544                         kfree_skb(skb);
6545                 napi->gro_hash[i].count = 0;
6546         }
6547 }
6548
6549 /* Must be called in process context */
6550 void netif_napi_del(struct napi_struct *napi)
6551 {
6552         might_sleep();
6553         if (napi_hash_del(napi))
6554                 synchronize_net();
6555         list_del_init(&napi->dev_list);
6556         napi_free_frags(napi);
6557
6558         flush_gro_hash(napi);
6559         napi->gro_bitmask = 0;
6560 }
6561 EXPORT_SYMBOL(netif_napi_del);
6562
6563 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6564 {
6565         void *have;
6566         int work, weight;
6567
6568         list_del_init(&n->poll_list);
6569
6570         have = netpoll_poll_lock(n);
6571
6572         weight = n->weight;
6573
6574         /* This NAPI_STATE_SCHED test is for avoiding a race
6575          * with netpoll's poll_napi().  Only the entity which
6576          * obtains the lock and sees NAPI_STATE_SCHED set will
6577          * actually make the ->poll() call.  Therefore we avoid
6578          * accidentally calling ->poll() when NAPI is not scheduled.
6579          */
6580         work = 0;
6581         if (test_bit(NAPI_STATE_SCHED, &n->state)) {
6582                 work = n->poll(n, weight);
6583                 trace_napi_poll(n, work, weight);
6584         }
6585
6586         WARN_ON_ONCE(work > weight);
6587
6588         if (likely(work < weight))
6589                 goto out_unlock;
6590
6591         /* Drivers must not modify the NAPI state if they
6592          * consume the entire weight.  In such cases this code
6593          * still "owns" the NAPI instance and therefore can
6594          * move the instance around on the list at-will.
6595          */
6596         if (unlikely(napi_disable_pending(n))) {
6597                 napi_complete(n);
6598                 goto out_unlock;
6599         }
6600
6601         if (n->gro_bitmask) {
6602                 /* flush too old packets
6603                  * If HZ < 1000, flush all packets.
6604                  */
6605                 napi_gro_flush(n, HZ >= 1000);
6606         }
6607
6608         gro_normal_list(n);
6609
6610         /* Some drivers may have called napi_schedule
6611          * prior to exhausting their budget.
6612          */
6613         if (unlikely(!list_empty(&n->poll_list))) {
6614                 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6615                              n->dev ? n->dev->name : "backlog");
6616                 goto out_unlock;
6617         }
6618
6619         list_add_tail(&n->poll_list, repoll);
6620
6621 out_unlock:
6622         netpoll_poll_unlock(have);
6623
6624         return work;
6625 }
6626
6627 static __latent_entropy void net_rx_action(struct softirq_action *h)
6628 {
6629         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
6630         unsigned long time_limit = jiffies +
6631                 usecs_to_jiffies(netdev_budget_usecs);
6632         int budget = netdev_budget;
6633         LIST_HEAD(list);
6634         LIST_HEAD(repoll);
6635
6636         local_irq_disable();
6637         list_splice_init(&sd->poll_list, &list);
6638         local_irq_enable();
6639
6640         for (;;) {
6641                 struct napi_struct *n;
6642
6643                 if (list_empty(&list)) {
6644                         if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
6645                                 goto out;
6646                         break;
6647                 }
6648
6649                 n = list_first_entry(&list, struct napi_struct, poll_list);
6650                 budget -= napi_poll(n, &repoll);
6651
6652                 /* If softirq window is exhausted then punt.
6653                  * Allow this to run for 2 jiffies since which will allow
6654                  * an average latency of 1.5/HZ.
6655                  */
6656                 if (unlikely(budget <= 0 ||
6657                              time_after_eq(jiffies, time_limit))) {
6658                         sd->time_squeeze++;
6659                         break;
6660                 }
6661         }
6662
6663         local_irq_disable();
6664
6665         list_splice_tail_init(&sd->poll_list, &list);
6666         list_splice_tail(&repoll, &list);
6667         list_splice(&list, &sd->poll_list);
6668         if (!list_empty(&sd->poll_list))
6669                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
6670
6671         net_rps_action_and_irq_enable(sd);
6672 out:
6673         __kfree_skb_flush();
6674 }
6675
6676 struct netdev_adjacent {
6677         struct net_device *dev;
6678
6679         /* upper master flag, there can only be one master device per list */
6680         bool master;
6681
6682         /* lookup ignore flag */
6683         bool ignore;
6684
6685         /* counter for the number of times this device was added to us */
6686         u16 ref_nr;
6687
6688         /* private field for the users */
6689         void *private;
6690
6691         struct list_head list;
6692         struct rcu_head rcu;
6693 };
6694
6695 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
6696                                                  struct list_head *adj_list)
6697 {
6698         struct netdev_adjacent *adj;
6699
6700         list_for_each_entry(adj, adj_list, list) {
6701                 if (adj->dev == adj_dev)
6702                         return adj;
6703         }
6704         return NULL;
6705 }
6706
6707 static int ____netdev_has_upper_dev(struct net_device *upper_dev, void *data)
6708 {
6709         struct net_device *dev = data;
6710
6711         return upper_dev == dev;
6712 }
6713
6714 /**
6715  * netdev_has_upper_dev - Check if device is linked to an upper device
6716  * @dev: device
6717  * @upper_dev: upper device to check
6718  *
6719  * Find out if a device is linked to specified upper device and return true
6720  * in case it is. Note that this checks only immediate upper device,
6721  * not through a complete stack of devices. The caller must hold the RTNL lock.
6722  */
6723 bool netdev_has_upper_dev(struct net_device *dev,
6724                           struct net_device *upper_dev)
6725 {
6726         ASSERT_RTNL();
6727
6728         return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6729                                              upper_dev);
6730 }
6731 EXPORT_SYMBOL(netdev_has_upper_dev);
6732
6733 /**
6734  * netdev_has_upper_dev_all - Check if device is linked to an upper device
6735  * @dev: device
6736  * @upper_dev: upper device to check
6737  *
6738  * Find out if a device is linked to specified upper device and return true
6739  * in case it is. Note that this checks the entire upper device chain.
6740  * The caller must hold rcu lock.
6741  */
6742
6743 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
6744                                   struct net_device *upper_dev)
6745 {
6746         return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6747                                                upper_dev);
6748 }
6749 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
6750
6751 /**
6752  * netdev_has_any_upper_dev - Check if device is linked to some device
6753  * @dev: device
6754  *
6755  * Find out if a device is linked to an upper device and return true in case
6756  * it is. The caller must hold the RTNL lock.
6757  */
6758 bool netdev_has_any_upper_dev(struct net_device *dev)
6759 {
6760         ASSERT_RTNL();
6761
6762         return !list_empty(&dev->adj_list.upper);
6763 }
6764 EXPORT_SYMBOL(netdev_has_any_upper_dev);
6765
6766 /**
6767  * netdev_master_upper_dev_get - Get master upper device
6768  * @dev: device
6769  *
6770  * Find a master upper device and return pointer to it or NULL in case
6771  * it's not there. The caller must hold the RTNL lock.
6772  */
6773 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
6774 {
6775         struct netdev_adjacent *upper;
6776
6777         ASSERT_RTNL();
6778
6779         if (list_empty(&dev->adj_list.upper))
6780                 return NULL;
6781
6782         upper = list_first_entry(&dev->adj_list.upper,
6783                                  struct netdev_adjacent, list);
6784         if (likely(upper->master))
6785                 return upper->dev;
6786         return NULL;
6787 }
6788 EXPORT_SYMBOL(netdev_master_upper_dev_get);
6789
6790 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
6791 {
6792         struct netdev_adjacent *upper;
6793
6794         ASSERT_RTNL();
6795
6796         if (list_empty(&dev->adj_list.upper))
6797                 return NULL;
6798
6799         upper = list_first_entry(&dev->adj_list.upper,
6800                                  struct netdev_adjacent, list);
6801         if (likely(upper->master) && !upper->ignore)
6802                 return upper->dev;
6803         return NULL;
6804 }
6805
6806 /**
6807  * netdev_has_any_lower_dev - Check if device is linked to some device
6808  * @dev: device
6809  *
6810  * Find out if a device is linked to a lower device and return true in case
6811  * it is. The caller must hold the RTNL lock.
6812  */
6813 static bool netdev_has_any_lower_dev(struct net_device *dev)
6814 {
6815         ASSERT_RTNL();
6816
6817         return !list_empty(&dev->adj_list.lower);
6818 }
6819
6820 void *netdev_adjacent_get_private(struct list_head *adj_list)
6821 {
6822         struct netdev_adjacent *adj;
6823
6824         adj = list_entry(adj_list, struct netdev_adjacent, list);
6825
6826         return adj->private;
6827 }
6828 EXPORT_SYMBOL(netdev_adjacent_get_private);
6829
6830 /**
6831  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
6832  * @dev: device
6833  * @iter: list_head ** of the current position
6834  *
6835  * Gets the next device from the dev's upper list, starting from iter
6836  * position. The caller must hold RCU read lock.
6837  */
6838 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
6839                                                  struct list_head **iter)
6840 {
6841         struct netdev_adjacent *upper;
6842
6843         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6844
6845         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6846
6847         if (&upper->list == &dev->adj_list.upper)
6848                 return NULL;
6849
6850         *iter = &upper->list;
6851
6852         return upper->dev;
6853 }
6854 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
6855
6856 static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
6857                                                   struct list_head **iter,
6858                                                   bool *ignore)
6859 {
6860         struct netdev_adjacent *upper;
6861
6862         upper = list_entry((*iter)->next, struct netdev_adjacent, list);
6863
6864         if (&upper->list == &dev->adj_list.upper)
6865                 return NULL;
6866
6867         *iter = &upper->list;
6868         *ignore = upper->ignore;
6869
6870         return upper->dev;
6871 }
6872
6873 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
6874                                                     struct list_head **iter)
6875 {
6876         struct netdev_adjacent *upper;
6877
6878         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6879
6880         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6881
6882         if (&upper->list == &dev->adj_list.upper)
6883                 return NULL;
6884
6885         *iter = &upper->list;
6886
6887         return upper->dev;
6888 }
6889
6890 static int __netdev_walk_all_upper_dev(struct net_device *dev,
6891                                        int (*fn)(struct net_device *dev,
6892                                                  void *data),
6893                                        void *data)
6894 {
6895         struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
6896         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
6897         int ret, cur = 0;
6898         bool ignore;
6899
6900         now = dev;
6901         iter = &dev->adj_list.upper;
6902
6903         while (1) {
6904                 if (now != dev) {
6905                         ret = fn(now, data);
6906                         if (ret)
6907                                 return ret;
6908                 }
6909
6910                 next = NULL;
6911                 while (1) {
6912                         udev = __netdev_next_upper_dev(now, &iter, &ignore);
6913                         if (!udev)
6914                                 break;
6915                         if (ignore)
6916                                 continue;
6917
6918                         next = udev;
6919                         niter = &udev->adj_list.upper;
6920                         dev_stack[cur] = now;
6921                         iter_stack[cur++] = iter;
6922                         break;
6923                 }
6924
6925                 if (!next) {
6926                         if (!cur)
6927                                 return 0;
6928                         next = dev_stack[--cur];
6929                         niter = iter_stack[cur];
6930                 }
6931
6932                 now = next;
6933                 iter = niter;
6934         }
6935
6936         return 0;
6937 }
6938
6939 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
6940                                   int (*fn)(struct net_device *dev,
6941                                             void *data),
6942                                   void *data)
6943 {
6944         struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
6945         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
6946         int ret, cur = 0;
6947
6948         now = dev;
6949         iter = &dev->adj_list.upper;
6950
6951         while (1) {
6952                 if (now != dev) {
6953                         ret = fn(now, data);
6954                         if (ret)
6955                                 return ret;
6956                 }
6957
6958                 next = NULL;
6959                 while (1) {
6960                         udev = netdev_next_upper_dev_rcu(now, &iter);
6961                         if (!udev)
6962                                 break;
6963
6964                         next = udev;
6965                         niter = &udev->adj_list.upper;
6966                         dev_stack[cur] = now;
6967                         iter_stack[cur++] = iter;
6968                         break;
6969                 }
6970
6971                 if (!next) {
6972                         if (!cur)
6973                                 return 0;
6974                         next = dev_stack[--cur];
6975                         niter = iter_stack[cur];
6976                 }
6977
6978                 now = next;
6979                 iter = niter;
6980         }
6981
6982         return 0;
6983 }
6984 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
6985
6986 static bool __netdev_has_upper_dev(struct net_device *dev,
6987                                    struct net_device *upper_dev)
6988 {
6989         ASSERT_RTNL();
6990
6991         return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
6992                                            upper_dev);
6993 }
6994
6995 /**
6996  * netdev_lower_get_next_private - Get the next ->private from the
6997  *                                 lower neighbour list
6998  * @dev: device
6999  * @iter: list_head ** of the current position
7000  *
7001  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7002  * list, starting from iter position. The caller must hold either hold the
7003  * RTNL lock or its own locking that guarantees that the neighbour lower
7004  * list will remain unchanged.
7005  */
7006 void *netdev_lower_get_next_private(struct net_device *dev,
7007                                     struct list_head **iter)
7008 {
7009         struct netdev_adjacent *lower;
7010
7011         lower = list_entry(*iter, struct netdev_adjacent, list);
7012
7013         if (&lower->list == &dev->adj_list.lower)
7014                 return NULL;
7015
7016         *iter = lower->list.next;
7017
7018         return lower->private;
7019 }
7020 EXPORT_SYMBOL(netdev_lower_get_next_private);
7021
7022 /**
7023  * netdev_lower_get_next_private_rcu - Get the next ->private from the
7024  *                                     lower neighbour list, RCU
7025  *                                     variant
7026  * @dev: device
7027  * @iter: list_head ** of the current position
7028  *
7029  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7030  * list, starting from iter position. The caller must hold RCU read lock.
7031  */
7032 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
7033                                         struct list_head **iter)
7034 {
7035         struct netdev_adjacent *lower;
7036
7037         WARN_ON_ONCE(!rcu_read_lock_held());
7038
7039         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7040
7041         if (&lower->list == &dev->adj_list.lower)
7042                 return NULL;
7043
7044         *iter = &lower->list;
7045
7046         return lower->private;
7047 }
7048 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
7049
7050 /**
7051  * netdev_lower_get_next - Get the next device from the lower neighbour
7052  *                         list
7053  * @dev: device
7054  * @iter: list_head ** of the current position
7055  *
7056  * Gets the next netdev_adjacent from the dev's lower neighbour
7057  * list, starting from iter position. The caller must hold RTNL lock or
7058  * its own locking that guarantees that the neighbour lower
7059  * list will remain unchanged.
7060  */
7061 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
7062 {
7063         struct netdev_adjacent *lower;
7064
7065         lower = list_entry(*iter, struct netdev_adjacent, list);
7066
7067         if (&lower->list == &dev->adj_list.lower)
7068                 return NULL;
7069
7070         *iter = lower->list.next;
7071
7072         return lower->dev;
7073 }
7074 EXPORT_SYMBOL(netdev_lower_get_next);
7075
7076 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
7077                                                 struct list_head **iter)
7078 {
7079         struct netdev_adjacent *lower;
7080
7081         lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7082
7083         if (&lower->list == &dev->adj_list.lower)
7084                 return NULL;
7085
7086         *iter = &lower->list;
7087
7088         return lower->dev;
7089 }
7090
7091 static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
7092                                                   struct list_head **iter,
7093                                                   bool *ignore)
7094 {
7095         struct netdev_adjacent *lower;
7096
7097         lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7098
7099         if (&lower->list == &dev->adj_list.lower)
7100                 return NULL;
7101
7102         *iter = &lower->list;
7103         *ignore = lower->ignore;
7104
7105         return lower->dev;
7106 }
7107
7108 int netdev_walk_all_lower_dev(struct net_device *dev,
7109                               int (*fn)(struct net_device *dev,
7110                                         void *data),
7111                               void *data)
7112 {
7113         struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7114         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7115         int ret, cur = 0;
7116
7117         now = dev;
7118         iter = &dev->adj_list.lower;
7119
7120         while (1) {
7121                 if (now != dev) {
7122                         ret = fn(now, data);
7123                         if (ret)
7124                                 return ret;
7125                 }
7126
7127                 next = NULL;
7128                 while (1) {
7129                         ldev = netdev_next_lower_dev(now, &iter);
7130                         if (!ldev)
7131                                 break;
7132
7133                         next = ldev;
7134                         niter = &ldev->adj_list.lower;
7135                         dev_stack[cur] = now;
7136                         iter_stack[cur++] = iter;
7137                         break;
7138                 }
7139
7140                 if (!next) {
7141                         if (!cur)
7142                                 return 0;
7143                         next = dev_stack[--cur];
7144                         niter = iter_stack[cur];
7145                 }
7146
7147                 now = next;
7148                 iter = niter;
7149         }
7150
7151         return 0;
7152 }
7153 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
7154
7155 static int __netdev_walk_all_lower_dev(struct net_device *dev,
7156                                        int (*fn)(struct net_device *dev,
7157                                                  void *data),
7158                                        void *data)
7159 {
7160         struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7161         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7162         int ret, cur = 0;
7163         bool ignore;
7164
7165         now = dev;
7166         iter = &dev->adj_list.lower;
7167
7168         while (1) {
7169                 if (now != dev) {
7170                         ret = fn(now, data);
7171                         if (ret)
7172                                 return ret;
7173                 }
7174
7175                 next = NULL;
7176                 while (1) {
7177                         ldev = __netdev_next_lower_dev(now, &iter, &ignore);
7178                         if (!ldev)
7179                                 break;
7180                         if (ignore)
7181                                 continue;
7182
7183                         next = ldev;
7184                         niter = &ldev->adj_list.lower;
7185                         dev_stack[cur] = now;
7186                         iter_stack[cur++] = iter;
7187                         break;
7188                 }
7189
7190                 if (!next) {
7191                         if (!cur)
7192                                 return 0;
7193                         next = dev_stack[--cur];
7194                         niter = iter_stack[cur];
7195                 }
7196
7197                 now = next;
7198                 iter = niter;
7199         }
7200
7201         return 0;
7202 }
7203
7204 static struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
7205                                                     struct list_head **iter)
7206 {
7207         struct netdev_adjacent *lower;
7208
7209         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7210         if (&lower->list == &dev->adj_list.lower)
7211                 return NULL;
7212
7213         *iter = &lower->list;
7214
7215         return lower->dev;
7216 }
7217
7218 static u8 __netdev_upper_depth(struct net_device *dev)
7219 {
7220         struct net_device *udev;
7221         struct list_head *iter;
7222         u8 max_depth = 0;
7223         bool ignore;
7224
7225         for (iter = &dev->adj_list.upper,
7226              udev = __netdev_next_upper_dev(dev, &iter, &ignore);
7227              udev;
7228              udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
7229                 if (ignore)
7230                         continue;
7231                 if (max_depth < udev->upper_level)
7232                         max_depth = udev->upper_level;
7233         }
7234
7235         return max_depth;
7236 }
7237
7238 static u8 __netdev_lower_depth(struct net_device *dev)
7239 {
7240         struct net_device *ldev;
7241         struct list_head *iter;
7242         u8 max_depth = 0;
7243         bool ignore;
7244
7245         for (iter = &dev->adj_list.lower,
7246              ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
7247              ldev;
7248              ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
7249                 if (ignore)
7250                         continue;
7251                 if (max_depth < ldev->lower_level)
7252                         max_depth = ldev->lower_level;
7253         }
7254
7255         return max_depth;
7256 }
7257
7258 static int __netdev_update_upper_level(struct net_device *dev, void *data)
7259 {
7260         dev->upper_level = __netdev_upper_depth(dev) + 1;
7261         return 0;
7262 }
7263
7264 static int __netdev_update_lower_level(struct net_device *dev, void *data)
7265 {
7266         dev->lower_level = __netdev_lower_depth(dev) + 1;
7267         return 0;
7268 }
7269
7270 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
7271                                   int (*fn)(struct net_device *dev,
7272                                             void *data),
7273                                   void *data)
7274 {
7275         struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7276         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7277         int ret, cur = 0;
7278
7279         now = dev;
7280         iter = &dev->adj_list.lower;
7281
7282         while (1) {
7283                 if (now != dev) {
7284                         ret = fn(now, data);
7285                         if (ret)
7286                                 return ret;
7287                 }
7288
7289                 next = NULL;
7290                 while (1) {
7291                         ldev = netdev_next_lower_dev_rcu(now, &iter);
7292                         if (!ldev)
7293                                 break;
7294
7295                         next = ldev;
7296                         niter = &ldev->adj_list.lower;
7297                         dev_stack[cur] = now;
7298                         iter_stack[cur++] = iter;
7299                         break;
7300                 }
7301
7302                 if (!next) {
7303                         if (!cur)
7304                                 return 0;
7305                         next = dev_stack[--cur];
7306                         niter = iter_stack[cur];
7307                 }
7308
7309                 now = next;
7310                 iter = niter;
7311         }
7312
7313         return 0;
7314 }
7315 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
7316
7317 /**
7318  * netdev_lower_get_first_private_rcu - Get the first ->private from the
7319  *                                     lower neighbour list, RCU
7320  *                                     variant
7321  * @dev: device
7322  *
7323  * Gets the first netdev_adjacent->private from the dev's lower neighbour
7324  * list. The caller must hold RCU read lock.
7325  */
7326 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
7327 {
7328         struct netdev_adjacent *lower;
7329
7330         lower = list_first_or_null_rcu(&dev->adj_list.lower,
7331                         struct netdev_adjacent, list);
7332         if (lower)
7333                 return lower->private;
7334         return NULL;
7335 }
7336 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
7337
7338 /**
7339  * netdev_master_upper_dev_get_rcu - Get master upper device
7340  * @dev: device
7341  *
7342  * Find a master upper device and return pointer to it or NULL in case
7343  * it's not there. The caller must hold the RCU read lock.
7344  */
7345 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
7346 {
7347         struct netdev_adjacent *upper;
7348
7349         upper = list_first_or_null_rcu(&dev->adj_list.upper,
7350                                        struct netdev_adjacent, list);
7351         if (upper && likely(upper->master))
7352                 return upper->dev;
7353         return NULL;
7354 }
7355 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
7356
7357 static int netdev_adjacent_sysfs_add(struct net_device *dev,
7358                               struct net_device *adj_dev,
7359                               struct list_head *dev_list)
7360 {
7361         char linkname[IFNAMSIZ+7];
7362
7363         sprintf(linkname, dev_list == &dev->adj_list.upper ?
7364                 "upper_%s" : "lower_%s", adj_dev->name);
7365         return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
7366                                  linkname);
7367 }
7368 static void netdev_adjacent_sysfs_del(struct net_device *dev,
7369                                char *name,
7370                                struct list_head *dev_list)
7371 {
7372         char linkname[IFNAMSIZ+7];
7373
7374         sprintf(linkname, dev_list == &dev->adj_list.upper ?
7375                 "upper_%s" : "lower_%s", name);
7376         sysfs_remove_link(&(dev->dev.kobj), linkname);
7377 }
7378
7379 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
7380                                                  struct net_device *adj_dev,
7381                                                  struct list_head *dev_list)
7382 {
7383         return (dev_list == &dev->adj_list.upper ||
7384                 dev_list == &dev->adj_list.lower) &&
7385                 net_eq(dev_net(dev), dev_net(adj_dev));
7386 }
7387
7388 static int __netdev_adjacent_dev_insert(struct net_device *dev,
7389                                         struct net_device *adj_dev,
7390                                         struct list_head *dev_list,
7391                                         void *private, bool master)
7392 {
7393         struct netdev_adjacent *adj;
7394         int ret;
7395
7396         adj = __netdev_find_adj(adj_dev, dev_list);
7397
7398         if (adj) {
7399                 adj->ref_nr += 1;
7400                 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
7401                          dev->name, adj_dev->name, adj->ref_nr);
7402
7403                 return 0;
7404         }
7405
7406         adj = kmalloc(sizeof(*adj), GFP_KERNEL);
7407         if (!adj)
7408                 return -ENOMEM;
7409
7410         adj->dev = adj_dev;
7411         adj->master = master;
7412         adj->ref_nr = 1;
7413         adj->private = private;
7414         adj->ignore = false;
7415         dev_hold(adj_dev);
7416
7417         pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
7418                  dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
7419
7420         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
7421                 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
7422                 if (ret)
7423                         goto free_adj;
7424         }
7425
7426         /* Ensure that master link is always the first item in list. */
7427         if (master) {
7428                 ret = sysfs_create_link(&(dev->dev.kobj),
7429                                         &(adj_dev->dev.kobj), "master");
7430                 if (ret)
7431                         goto remove_symlinks;
7432
7433                 list_add_rcu(&adj->list, dev_list);
7434         } else {
7435                 list_add_tail_rcu(&adj->list, dev_list);
7436         }
7437
7438         return 0;
7439
7440 remove_symlinks:
7441         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7442                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7443 free_adj:
7444         kfree(adj);
7445         dev_put(adj_dev);
7446
7447         return ret;
7448 }
7449
7450 static void __netdev_adjacent_dev_remove(struct net_device *dev,
7451                                          struct net_device *adj_dev,
7452                                          u16 ref_nr,
7453                                          struct list_head *dev_list)
7454 {
7455         struct netdev_adjacent *adj;
7456
7457         pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
7458                  dev->name, adj_dev->name, ref_nr);
7459
7460         adj = __netdev_find_adj(adj_dev, dev_list);
7461
7462         if (!adj) {
7463                 pr_err("Adjacency does not exist for device %s from %s\n",
7464                        dev->name, adj_dev->name);
7465                 WARN_ON(1);
7466                 return;
7467         }
7468
7469         if (adj->ref_nr > ref_nr) {
7470                 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
7471                          dev->name, adj_dev->name, ref_nr,
7472                          adj->ref_nr - ref_nr);
7473                 adj->ref_nr -= ref_nr;
7474                 return;
7475         }
7476
7477         if (adj->master)
7478                 sysfs_remove_link(&(dev->dev.kobj), "master");
7479
7480         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7481                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7482
7483         list_del_rcu(&adj->list);
7484         pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
7485                  adj_dev->name, dev->name, adj_dev->name);
7486         dev_put(adj_dev);
7487         kfree_rcu(adj, rcu);
7488 }
7489
7490 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
7491                                             struct net_device *upper_dev,
7492                                             struct list_head *up_list,
7493                                             struct list_head *down_list,
7494                                             void *private, bool master)
7495 {
7496         int ret;
7497
7498         ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
7499                                            private, master);
7500         if (ret)
7501                 return ret;
7502
7503         ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
7504                                            private, false);
7505         if (ret) {
7506                 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
7507                 return ret;
7508         }
7509
7510         return 0;
7511 }
7512
7513 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
7514                                                struct net_device *upper_dev,
7515                                                u16 ref_nr,
7516                                                struct list_head *up_list,
7517                                                struct list_head *down_list)
7518 {
7519         __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
7520         __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
7521 }
7522
7523 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
7524                                                 struct net_device *upper_dev,
7525                                                 void *private, bool master)
7526 {
7527         return __netdev_adjacent_dev_link_lists(dev, upper_dev,
7528                                                 &dev->adj_list.upper,
7529                                                 &upper_dev->adj_list.lower,
7530                                                 private, master);
7531 }
7532
7533 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
7534                                                    struct net_device *upper_dev)
7535 {
7536         __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
7537                                            &dev->adj_list.upper,
7538                                            &upper_dev->adj_list.lower);
7539 }
7540
7541 static int __netdev_upper_dev_link(struct net_device *dev,
7542                                    struct net_device *upper_dev, bool master,
7543                                    void *upper_priv, void *upper_info,
7544                                    struct netlink_ext_ack *extack)
7545 {
7546         struct netdev_notifier_changeupper_info changeupper_info = {
7547                 .info = {
7548                         .dev = dev,
7549                         .extack = extack,
7550                 },
7551                 .upper_dev = upper_dev,
7552                 .master = master,
7553                 .linking = true,
7554                 .upper_info = upper_info,
7555         };
7556         struct net_device *master_dev;
7557         int ret = 0;
7558
7559         ASSERT_RTNL();
7560
7561         if (dev == upper_dev)
7562                 return -EBUSY;
7563
7564         /* To prevent loops, check if dev is not upper device to upper_dev. */
7565         if (__netdev_has_upper_dev(upper_dev, dev))
7566                 return -EBUSY;
7567
7568         if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
7569                 return -EMLINK;
7570
7571         if (!master) {
7572                 if (__netdev_has_upper_dev(dev, upper_dev))
7573                         return -EEXIST;
7574         } else {
7575                 master_dev = __netdev_master_upper_dev_get(dev);
7576                 if (master_dev)
7577                         return master_dev == upper_dev ? -EEXIST : -EBUSY;
7578         }
7579
7580         ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7581                                             &changeupper_info.info);
7582         ret = notifier_to_errno(ret);
7583         if (ret)
7584                 return ret;
7585
7586         ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
7587                                                    master);
7588         if (ret)
7589                 return ret;
7590
7591         ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7592                                             &changeupper_info.info);
7593         ret = notifier_to_errno(ret);
7594         if (ret)
7595                 goto rollback;
7596
7597         __netdev_update_upper_level(dev, NULL);
7598         __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7599
7600         __netdev_update_lower_level(upper_dev, NULL);
7601         __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7602                                     NULL);
7603
7604         return 0;
7605
7606 rollback:
7607         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7608
7609         return ret;
7610 }
7611
7612 /**
7613  * netdev_upper_dev_link - Add a link to the upper device
7614  * @dev: device
7615  * @upper_dev: new upper device
7616  * @extack: netlink extended ack
7617  *
7618  * Adds a link to device which is upper to this one. The caller must hold
7619  * the RTNL lock. On a failure a negative errno code is returned.
7620  * On success the reference counts are adjusted and the function
7621  * returns zero.
7622  */
7623 int netdev_upper_dev_link(struct net_device *dev,
7624                           struct net_device *upper_dev,
7625                           struct netlink_ext_ack *extack)
7626 {
7627         return __netdev_upper_dev_link(dev, upper_dev, false,
7628                                        NULL, NULL, extack);
7629 }
7630 EXPORT_SYMBOL(netdev_upper_dev_link);
7631
7632 /**
7633  * netdev_master_upper_dev_link - Add a master link to the upper device
7634  * @dev: device
7635  * @upper_dev: new upper device
7636  * @upper_priv: upper device private
7637  * @upper_info: upper info to be passed down via notifier
7638  * @extack: netlink extended ack
7639  *
7640  * Adds a link to device which is upper to this one. In this case, only
7641  * one master upper device can be linked, although other non-master devices
7642  * might be linked as well. The caller must hold the RTNL lock.
7643  * On a failure a negative errno code is returned. On success the reference
7644  * counts are adjusted and the function returns zero.
7645  */
7646 int netdev_master_upper_dev_link(struct net_device *dev,
7647                                  struct net_device *upper_dev,
7648                                  void *upper_priv, void *upper_info,
7649                                  struct netlink_ext_ack *extack)
7650 {
7651         return __netdev_upper_dev_link(dev, upper_dev, true,
7652                                        upper_priv, upper_info, extack);
7653 }
7654 EXPORT_SYMBOL(netdev_master_upper_dev_link);
7655
7656 /**
7657  * netdev_upper_dev_unlink - Removes a link to upper device
7658  * @dev: device
7659  * @upper_dev: new upper device
7660  *
7661  * Removes a link to device which is upper to this one. The caller must hold
7662  * the RTNL lock.
7663  */
7664 void netdev_upper_dev_unlink(struct net_device *dev,
7665                              struct net_device *upper_dev)
7666 {
7667         struct netdev_notifier_changeupper_info changeupper_info = {
7668                 .info = {
7669                         .dev = dev,
7670                 },
7671                 .upper_dev = upper_dev,
7672                 .linking = false,
7673         };
7674
7675         ASSERT_RTNL();
7676
7677         changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
7678
7679         call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7680                                       &changeupper_info.info);
7681
7682         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7683
7684         call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7685                                       &changeupper_info.info);
7686
7687         __netdev_update_upper_level(dev, NULL);
7688         __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7689
7690         __netdev_update_lower_level(upper_dev, NULL);
7691         __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7692                                     NULL);
7693 }
7694 EXPORT_SYMBOL(netdev_upper_dev_unlink);
7695
7696 static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
7697                                       struct net_device *lower_dev,
7698                                       bool val)
7699 {
7700         struct netdev_adjacent *adj;
7701
7702         adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
7703         if (adj)
7704                 adj->ignore = val;
7705
7706         adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
7707         if (adj)
7708                 adj->ignore = val;
7709 }
7710
7711 static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
7712                                         struct net_device *lower_dev)
7713 {
7714         __netdev_adjacent_dev_set(upper_dev, lower_dev, true);
7715 }
7716
7717 static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
7718                                        struct net_device *lower_dev)
7719 {
7720         __netdev_adjacent_dev_set(upper_dev, lower_dev, false);
7721 }
7722
7723 int netdev_adjacent_change_prepare(struct net_device *old_dev,
7724                                    struct net_device *new_dev,
7725                                    struct net_device *dev,
7726                                    struct netlink_ext_ack *extack)
7727 {
7728         int err;
7729
7730         if (!new_dev)
7731                 return 0;
7732
7733         if (old_dev && new_dev != old_dev)
7734                 netdev_adjacent_dev_disable(dev, old_dev);
7735
7736         err = netdev_upper_dev_link(new_dev, dev, extack);
7737         if (err) {
7738                 if (old_dev && new_dev != old_dev)
7739                         netdev_adjacent_dev_enable(dev, old_dev);
7740                 return err;
7741         }
7742
7743         return 0;
7744 }
7745 EXPORT_SYMBOL(netdev_adjacent_change_prepare);
7746
7747 void netdev_adjacent_change_commit(struct net_device *old_dev,
7748                                    struct net_device *new_dev,
7749                                    struct net_device *dev)
7750 {
7751         if (!new_dev || !old_dev)
7752                 return;
7753
7754         if (new_dev == old_dev)
7755                 return;
7756
7757         netdev_adjacent_dev_enable(dev, old_dev);
7758         netdev_upper_dev_unlink(old_dev, dev);
7759 }
7760 EXPORT_SYMBOL(netdev_adjacent_change_commit);
7761
7762 void netdev_adjacent_change_abort(struct net_device *old_dev,
7763                                   struct net_device *new_dev,
7764                                   struct net_device *dev)
7765 {
7766         if (!new_dev)
7767                 return;
7768
7769         if (old_dev && new_dev != old_dev)
7770                 netdev_adjacent_dev_enable(dev, old_dev);
7771
7772         netdev_upper_dev_unlink(new_dev, dev);
7773 }
7774 EXPORT_SYMBOL(netdev_adjacent_change_abort);
7775
7776 /**
7777  * netdev_bonding_info_change - Dispatch event about slave change
7778  * @dev: device
7779  * @bonding_info: info to dispatch
7780  *
7781  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
7782  * The caller must hold the RTNL lock.
7783  */
7784 void netdev_bonding_info_change(struct net_device *dev,
7785                                 struct netdev_bonding_info *bonding_info)
7786 {
7787         struct netdev_notifier_bonding_info info = {
7788                 .info.dev = dev,
7789         };
7790
7791         memcpy(&info.bonding_info, bonding_info,
7792                sizeof(struct netdev_bonding_info));
7793         call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
7794                                       &info.info);
7795 }
7796 EXPORT_SYMBOL(netdev_bonding_info_change);
7797
7798 static void netdev_adjacent_add_links(struct net_device *dev)
7799 {
7800         struct netdev_adjacent *iter;
7801
7802         struct net *net = dev_net(dev);
7803
7804         list_for_each_entry(iter, &dev->adj_list.upper, list) {
7805                 if (!net_eq(net, dev_net(iter->dev)))
7806                         continue;
7807                 netdev_adjacent_sysfs_add(iter->dev, dev,
7808                                           &iter->dev->adj_list.lower);
7809                 netdev_adjacent_sysfs_add(dev, iter->dev,
7810                                           &dev->adj_list.upper);
7811         }
7812
7813         list_for_each_entry(iter, &dev->adj_list.lower, list) {
7814                 if (!net_eq(net, dev_net(iter->dev)))
7815                         continue;
7816                 netdev_adjacent_sysfs_add(iter->dev, dev,
7817                                           &iter->dev->adj_list.upper);
7818                 netdev_adjacent_sysfs_add(dev, iter->dev,
7819                                           &dev->adj_list.lower);
7820         }
7821 }
7822
7823 static void netdev_adjacent_del_links(struct net_device *dev)
7824 {
7825         struct netdev_adjacent *iter;
7826
7827         struct net *net = dev_net(dev);
7828
7829         list_for_each_entry(iter, &dev->adj_list.upper, list) {
7830                 if (!net_eq(net, dev_net(iter->dev)))
7831                         continue;
7832                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
7833                                           &iter->dev->adj_list.lower);
7834                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
7835                                           &dev->adj_list.upper);
7836         }
7837
7838         list_for_each_entry(iter, &dev->adj_list.lower, list) {
7839                 if (!net_eq(net, dev_net(iter->dev)))
7840                         continue;
7841                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
7842                                           &iter->dev->adj_list.upper);
7843                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
7844                                           &dev->adj_list.lower);
7845         }
7846 }
7847
7848 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
7849 {
7850         struct netdev_adjacent *iter;
7851
7852         struct net *net = dev_net(dev);
7853
7854         list_for_each_entry(iter, &dev->adj_list.upper, list) {
7855                 if (!net_eq(net, dev_net(iter->dev)))
7856                         continue;
7857                 netdev_adjacent_sysfs_del(iter->dev, oldname,
7858                                           &iter->dev->adj_list.lower);
7859                 netdev_adjacent_sysfs_add(iter->dev, dev,
7860                                           &iter->dev->adj_list.lower);
7861         }
7862
7863         list_for_each_entry(iter, &dev->adj_list.lower, list) {
7864                 if (!net_eq(net, dev_net(iter->dev)))
7865                         continue;
7866                 netdev_adjacent_sysfs_del(iter->dev, oldname,
7867                                           &iter->dev->adj_list.upper);
7868                 netdev_adjacent_sysfs_add(iter->dev, dev,
7869                                           &iter->dev->adj_list.upper);
7870         }
7871 }
7872
7873 void *netdev_lower_dev_get_private(struct net_device *dev,
7874                                    struct net_device *lower_dev)
7875 {
7876         struct netdev_adjacent *lower;
7877
7878         if (!lower_dev)
7879                 return NULL;
7880         lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
7881         if (!lower)
7882                 return NULL;
7883
7884         return lower->private;
7885 }
7886 EXPORT_SYMBOL(netdev_lower_dev_get_private);
7887
7888
7889 /**
7890  * netdev_lower_change - Dispatch event about lower device state change
7891  * @lower_dev: device
7892  * @lower_state_info: state to dispatch
7893  *
7894  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
7895  * The caller must hold the RTNL lock.
7896  */
7897 void netdev_lower_state_changed(struct net_device *lower_dev,
7898                                 void *lower_state_info)
7899 {
7900         struct netdev_notifier_changelowerstate_info changelowerstate_info = {
7901                 .info.dev = lower_dev,
7902         };
7903
7904         ASSERT_RTNL();
7905         changelowerstate_info.lower_state_info = lower_state_info;
7906         call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
7907                                       &changelowerstate_info.info);
7908 }
7909 EXPORT_SYMBOL(netdev_lower_state_changed);
7910
7911 static void dev_change_rx_flags(struct net_device *dev, int flags)
7912 {
7913         const struct net_device_ops *ops = dev->netdev_ops;
7914
7915         if (ops->ndo_change_rx_flags)
7916                 ops->ndo_change_rx_flags(dev, flags);
7917 }
7918
7919 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
7920 {
7921         unsigned int old_flags = dev->flags;
7922         kuid_t uid;
7923         kgid_t gid;
7924
7925         ASSERT_RTNL();
7926
7927         dev->flags |= IFF_PROMISC;
7928         dev->promiscuity += inc;
7929         if (dev->promiscuity == 0) {
7930                 /*
7931                  * Avoid overflow.
7932                  * If inc causes overflow, untouch promisc and return error.
7933                  */
7934                 if (inc < 0)
7935                         dev->flags &= ~IFF_PROMISC;
7936                 else {
7937                         dev->promiscuity -= inc;
7938                         pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
7939                                 dev->name);
7940                         return -EOVERFLOW;
7941                 }
7942         }
7943         if (dev->flags != old_flags) {
7944                 pr_info("device %s %s promiscuous mode\n",
7945                         dev->name,
7946                         dev->flags & IFF_PROMISC ? "entered" : "left");
7947                 if (audit_enabled) {
7948                         current_uid_gid(&uid, &gid);
7949                         audit_log(audit_context(), GFP_ATOMIC,
7950                                   AUDIT_ANOM_PROMISCUOUS,
7951                                   "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
7952                                   dev->name, (dev->flags & IFF_PROMISC),
7953                                   (old_flags & IFF_PROMISC),
7954                                   from_kuid(&init_user_ns, audit_get_loginuid(current)),
7955                                   from_kuid(&init_user_ns, uid),
7956                                   from_kgid(&init_user_ns, gid),
7957                                   audit_get_sessionid(current));
7958                 }
7959
7960                 dev_change_rx_flags(dev, IFF_PROMISC);
7961         }
7962         if (notify)
7963                 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
7964         return 0;
7965 }
7966
7967 /**
7968  *      dev_set_promiscuity     - update promiscuity count on a device
7969  *      @dev: device
7970  *      @inc: modifier
7971  *
7972  *      Add or remove promiscuity from a device. While the count in the device
7973  *      remains above zero the interface remains promiscuous. Once it hits zero
7974  *      the device reverts back to normal filtering operation. A negative inc
7975  *      value is used to drop promiscuity on the device.
7976  *      Return 0 if successful or a negative errno code on error.
7977  */
7978 int dev_set_promiscuity(struct net_device *dev, int inc)
7979 {
7980         unsigned int old_flags = dev->flags;
7981         int err;
7982
7983         err = __dev_set_promiscuity(dev, inc, true);
7984         if (err < 0)
7985                 return err;
7986         if (dev->flags != old_flags)
7987                 dev_set_rx_mode(dev);
7988         return err;
7989 }
7990 EXPORT_SYMBOL(dev_set_promiscuity);
7991
7992 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
7993 {
7994         unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
7995
7996         ASSERT_RTNL();
7997
7998         dev->flags |= IFF_ALLMULTI;
7999         dev->allmulti += inc;
8000         if (dev->allmulti == 0) {
8001                 /*
8002                  * Avoid overflow.
8003                  * If inc causes overflow, untouch allmulti and return error.
8004                  */
8005                 if (inc < 0)
8006                         dev->flags &= ~IFF_ALLMULTI;
8007                 else {
8008                         dev->allmulti -= inc;
8009                         pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
8010                                 dev->name);
8011                         return -EOVERFLOW;
8012                 }
8013         }
8014         if (dev->flags ^ old_flags) {
8015                 dev_change_rx_flags(dev, IFF_ALLMULTI);
8016                 dev_set_rx_mode(dev);
8017                 if (notify)
8018                         __dev_notify_flags(dev, old_flags,
8019                                            dev->gflags ^ old_gflags);
8020         }
8021         return 0;
8022 }
8023
8024 /**
8025  *      dev_set_allmulti        - update allmulti count on a device
8026  *      @dev: device
8027  *      @inc: modifier
8028  *
8029  *      Add or remove reception of all multicast frames to a device. While the
8030  *      count in the device remains above zero the interface remains listening
8031  *      to all interfaces. Once it hits zero the device reverts back to normal
8032  *      filtering operation. A negative @inc value is used to drop the counter
8033  *      when releasing a resource needing all multicasts.
8034  *      Return 0 if successful or a negative errno code on error.
8035  */
8036
8037 int dev_set_allmulti(struct net_device *dev, int inc)
8038 {
8039         return __dev_set_allmulti(dev, inc, true);
8040 }
8041 EXPORT_SYMBOL(dev_set_allmulti);
8042
8043 /*
8044  *      Upload unicast and multicast address lists to device and
8045  *      configure RX filtering. When the device doesn't support unicast
8046  *      filtering it is put in promiscuous mode while unicast addresses
8047  *      are present.
8048  */
8049 void __dev_set_rx_mode(struct net_device *dev)
8050 {
8051         const struct net_device_ops *ops = dev->netdev_ops;
8052
8053         /* dev_open will call this function so the list will stay sane. */
8054         if (!(dev->flags&IFF_UP))
8055                 return;
8056
8057         if (!netif_device_present(dev))
8058                 return;
8059
8060         if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
8061                 /* Unicast addresses changes may only happen under the rtnl,
8062                  * therefore calling __dev_set_promiscuity here is safe.
8063                  */
8064                 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
8065                         __dev_set_promiscuity(dev, 1, false);
8066                         dev->uc_promisc = true;
8067                 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
8068                         __dev_set_promiscuity(dev, -1, false);
8069                         dev->uc_promisc = false;
8070                 }
8071         }
8072
8073         if (ops->ndo_set_rx_mode)
8074                 ops->ndo_set_rx_mode(dev);
8075 }
8076
8077 void dev_set_rx_mode(struct net_device *dev)
8078 {
8079         netif_addr_lock_bh(dev);
8080         __dev_set_rx_mode(dev);
8081         netif_addr_unlock_bh(dev);
8082 }
8083
8084 /**
8085  *      dev_get_flags - get flags reported to userspace
8086  *      @dev: device
8087  *
8088  *      Get the combination of flag bits exported through APIs to userspace.
8089  */
8090 unsigned int dev_get_flags(const struct net_device *dev)
8091 {
8092         unsigned int flags;
8093
8094         flags = (dev->flags & ~(IFF_PROMISC |
8095                                 IFF_ALLMULTI |
8096                                 IFF_RUNNING |
8097                                 IFF_LOWER_UP |
8098                                 IFF_DORMANT)) |
8099                 (dev->gflags & (IFF_PROMISC |
8100                                 IFF_ALLMULTI));
8101
8102         if (netif_running(dev)) {
8103                 if (netif_oper_up(dev))
8104                         flags |= IFF_RUNNING;
8105                 if (netif_carrier_ok(dev))
8106                         flags |= IFF_LOWER_UP;
8107                 if (netif_dormant(dev))
8108                         flags |= IFF_DORMANT;
8109         }
8110
8111         return flags;
8112 }
8113 EXPORT_SYMBOL(dev_get_flags);
8114
8115 int __dev_change_flags(struct net_device *dev, unsigned int flags,
8116                        struct netlink_ext_ack *extack)
8117 {
8118         unsigned int old_flags = dev->flags;
8119         int ret;
8120
8121         ASSERT_RTNL();
8122
8123         /*
8124          *      Set the flags on our device.
8125          */
8126
8127         dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
8128                                IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
8129                                IFF_AUTOMEDIA)) |
8130                      (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
8131                                     IFF_ALLMULTI));
8132
8133         /*
8134          *      Load in the correct multicast list now the flags have changed.
8135          */
8136
8137         if ((old_flags ^ flags) & IFF_MULTICAST)
8138                 dev_change_rx_flags(dev, IFF_MULTICAST);
8139
8140         dev_set_rx_mode(dev);
8141
8142         /*
8143          *      Have we downed the interface. We handle IFF_UP ourselves
8144          *      according to user attempts to set it, rather than blindly
8145          *      setting it.
8146          */
8147
8148         ret = 0;
8149         if ((old_flags ^ flags) & IFF_UP) {
8150                 if (old_flags & IFF_UP)
8151                         __dev_close(dev);
8152                 else
8153                         ret = __dev_open(dev, extack);
8154         }
8155
8156         if ((flags ^ dev->gflags) & IFF_PROMISC) {
8157                 int inc = (flags & IFF_PROMISC) ? 1 : -1;
8158                 unsigned int old_flags = dev->flags;
8159
8160                 dev->gflags ^= IFF_PROMISC;
8161
8162                 if (__dev_set_promiscuity(dev, inc, false) >= 0)
8163                         if (dev->flags != old_flags)
8164                                 dev_set_rx_mode(dev);
8165         }
8166
8167         /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
8168          * is important. Some (broken) drivers set IFF_PROMISC, when
8169          * IFF_ALLMULTI is requested not asking us and not reporting.
8170          */
8171         if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
8172                 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
8173
8174                 dev->gflags ^= IFF_ALLMULTI;
8175                 __dev_set_allmulti(dev, inc, false);
8176         }
8177
8178         return ret;
8179 }
8180
8181 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
8182                         unsigned int gchanges)
8183 {
8184         unsigned int changes = dev->flags ^ old_flags;
8185
8186         if (gchanges)
8187                 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
8188
8189         if (changes & IFF_UP) {
8190                 if (dev->flags & IFF_UP)
8191                         call_netdevice_notifiers(NETDEV_UP, dev);
8192                 else
8193                         call_netdevice_notifiers(NETDEV_DOWN, dev);
8194         }
8195
8196         if (dev->flags & IFF_UP &&
8197             (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
8198                 struct netdev_notifier_change_info change_info = {
8199                         .info = {
8200                                 .dev = dev,
8201                         },
8202                         .flags_changed = changes,
8203                 };
8204
8205                 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
8206         }
8207 }
8208
8209 /**
8210  *      dev_change_flags - change device settings
8211  *      @dev: device
8212  *      @flags: device state flags
8213  *      @extack: netlink extended ack
8214  *
8215  *      Change settings on device based state flags. The flags are
8216  *      in the userspace exported format.
8217  */
8218 int dev_change_flags(struct net_device *dev, unsigned int flags,
8219                      struct netlink_ext_ack *extack)
8220 {
8221         int ret;
8222         unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
8223
8224         ret = __dev_change_flags(dev, flags, extack);
8225         if (ret < 0)
8226                 return ret;
8227
8228         changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
8229         __dev_notify_flags(dev, old_flags, changes);
8230         return ret;
8231 }
8232 EXPORT_SYMBOL(dev_change_flags);
8233
8234 int __dev_set_mtu(struct net_device *dev, int new_mtu)
8235 {
8236         const struct net_device_ops *ops = dev->netdev_ops;
8237
8238         if (ops->ndo_change_mtu)
8239                 return ops->ndo_change_mtu(dev, new_mtu);
8240
8241         /* Pairs with all the lockless reads of dev->mtu in the stack */
8242         WRITE_ONCE(dev->mtu, new_mtu);
8243         return 0;
8244 }
8245 EXPORT_SYMBOL(__dev_set_mtu);
8246
8247 int dev_validate_mtu(struct net_device *dev, int new_mtu,
8248                      struct netlink_ext_ack *extack)
8249 {
8250         /* MTU must be positive, and in range */
8251         if (new_mtu < 0 || new_mtu < dev->min_mtu) {
8252                 NL_SET_ERR_MSG(extack, "mtu less than device minimum");
8253                 return -EINVAL;
8254         }
8255
8256         if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
8257                 NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
8258                 return -EINVAL;
8259         }
8260         return 0;
8261 }
8262
8263 /**
8264  *      dev_set_mtu_ext - Change maximum transfer unit
8265  *      @dev: device
8266  *      @new_mtu: new transfer unit
8267  *      @extack: netlink extended ack
8268  *
8269  *      Change the maximum transfer size of the network device.
8270  */
8271 int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
8272                     struct netlink_ext_ack *extack)
8273 {
8274         int err, orig_mtu;
8275
8276         if (new_mtu == dev->mtu)
8277                 return 0;
8278
8279         err = dev_validate_mtu(dev, new_mtu, extack);
8280         if (err)
8281                 return err;
8282
8283         if (!netif_device_present(dev))
8284                 return -ENODEV;
8285
8286         err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
8287         err = notifier_to_errno(err);
8288         if (err)
8289                 return err;
8290
8291         orig_mtu = dev->mtu;
8292         err = __dev_set_mtu(dev, new_mtu);
8293
8294         if (!err) {
8295                 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8296                                                    orig_mtu);
8297                 err = notifier_to_errno(err);
8298                 if (err) {
8299                         /* setting mtu back and notifying everyone again,
8300                          * so that they have a chance to revert changes.
8301                          */
8302                         __dev_set_mtu(dev, orig_mtu);
8303                         call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8304                                                      new_mtu);
8305                 }
8306         }
8307         return err;
8308 }
8309
8310 int dev_set_mtu(struct net_device *dev, int new_mtu)
8311 {
8312         struct netlink_ext_ack extack;
8313         int err;
8314
8315         memset(&extack, 0, sizeof(extack));
8316         err = dev_set_mtu_ext(dev, new_mtu, &extack);
8317         if (err && extack._msg)
8318                 net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
8319         return err;
8320 }
8321 EXPORT_SYMBOL(dev_set_mtu);
8322
8323 /**
8324  *      dev_change_tx_queue_len - Change TX queue length of a netdevice
8325  *      @dev: device
8326  *      @new_len: new tx queue length
8327  */
8328 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
8329 {
8330         unsigned int orig_len = dev->tx_queue_len;
8331         int res;
8332
8333         if (new_len != (unsigned int)new_len)
8334                 return -ERANGE;
8335
8336         if (new_len != orig_len) {
8337                 dev->tx_queue_len = new_len;
8338                 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
8339                 res = notifier_to_errno(res);
8340                 if (res)
8341                         goto err_rollback;
8342                 res = dev_qdisc_change_tx_queue_len(dev);
8343                 if (res)
8344                         goto err_rollback;
8345         }
8346
8347         return 0;
8348
8349 err_rollback:
8350         netdev_err(dev, "refused to change device tx_queue_len\n");
8351         dev->tx_queue_len = orig_len;
8352         return res;
8353 }
8354
8355 /**
8356  *      dev_set_group - Change group this device belongs to
8357  *      @dev: device
8358  *      @new_group: group this device should belong to
8359  */
8360 void dev_set_group(struct net_device *dev, int new_group)
8361 {
8362         dev->group = new_group;
8363 }
8364 EXPORT_SYMBOL(dev_set_group);
8365
8366 /**
8367  *      dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
8368  *      @dev: device
8369  *      @addr: new address
8370  *      @extack: netlink extended ack
8371  */
8372 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
8373                               struct netlink_ext_ack *extack)
8374 {
8375         struct netdev_notifier_pre_changeaddr_info info = {
8376                 .info.dev = dev,
8377                 .info.extack = extack,
8378                 .dev_addr = addr,
8379         };
8380         int rc;
8381
8382         rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
8383         return notifier_to_errno(rc);
8384 }
8385 EXPORT_SYMBOL(dev_pre_changeaddr_notify);
8386
8387 /**
8388  *      dev_set_mac_address - Change Media Access Control Address
8389  *      @dev: device
8390  *      @sa: new address
8391  *      @extack: netlink extended ack
8392  *
8393  *      Change the hardware (MAC) address of the device
8394  */
8395 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
8396                         struct netlink_ext_ack *extack)
8397 {
8398         const struct net_device_ops *ops = dev->netdev_ops;
8399         int err;
8400
8401         if (!ops->ndo_set_mac_address)
8402                 return -EOPNOTSUPP;
8403         if (sa->sa_family != dev->type)
8404                 return -EINVAL;
8405         if (!netif_device_present(dev))
8406                 return -ENODEV;
8407         err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
8408         if (err)
8409                 return err;
8410         err = ops->ndo_set_mac_address(dev, sa);
8411         if (err)
8412                 return err;
8413         dev->addr_assign_type = NET_ADDR_SET;
8414         call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
8415         add_device_randomness(dev->dev_addr, dev->addr_len);
8416         return 0;
8417 }
8418 EXPORT_SYMBOL(dev_set_mac_address);
8419
8420 /**
8421  *      dev_change_carrier - Change device carrier
8422  *      @dev: device
8423  *      @new_carrier: new value
8424  *
8425  *      Change device carrier
8426  */
8427 int dev_change_carrier(struct net_device *dev, bool new_carrier)
8428 {
8429         const struct net_device_ops *ops = dev->netdev_ops;
8430
8431         if (!ops->ndo_change_carrier)
8432                 return -EOPNOTSUPP;
8433         if (!netif_device_present(dev))
8434                 return -ENODEV;
8435         return ops->ndo_change_carrier(dev, new_carrier);
8436 }
8437 EXPORT_SYMBOL(dev_change_carrier);
8438
8439 /**
8440  *      dev_get_phys_port_id - Get device physical port ID
8441  *      @dev: device
8442  *      @ppid: port ID
8443  *
8444  *      Get device physical port ID
8445  */
8446 int dev_get_phys_port_id(struct net_device *dev,
8447                          struct netdev_phys_item_id *ppid)
8448 {
8449         const struct net_device_ops *ops = dev->netdev_ops;
8450
8451         if (!ops->ndo_get_phys_port_id)
8452                 return -EOPNOTSUPP;
8453         return ops->ndo_get_phys_port_id(dev, ppid);
8454 }
8455 EXPORT_SYMBOL(dev_get_phys_port_id);
8456
8457 /**
8458  *      dev_get_phys_port_name - Get device physical port name
8459  *      @dev: device
8460  *      @name: port name
8461  *      @len: limit of bytes to copy to name
8462  *
8463  *      Get device physical port name
8464  */
8465 int dev_get_phys_port_name(struct net_device *dev,
8466                            char *name, size_t len)
8467 {
8468         const struct net_device_ops *ops = dev->netdev_ops;
8469         int err;
8470
8471         if (ops->ndo_get_phys_port_name) {
8472                 err = ops->ndo_get_phys_port_name(dev, name, len);
8473                 if (err != -EOPNOTSUPP)
8474                         return err;
8475         }
8476         return devlink_compat_phys_port_name_get(dev, name, len);
8477 }
8478 EXPORT_SYMBOL(dev_get_phys_port_name);
8479
8480 /**
8481  *      dev_get_port_parent_id - Get the device's port parent identifier
8482  *      @dev: network device
8483  *      @ppid: pointer to a storage for the port's parent identifier
8484  *      @recurse: allow/disallow recursion to lower devices
8485  *
8486  *      Get the devices's port parent identifier
8487  */
8488 int dev_get_port_parent_id(struct net_device *dev,
8489                            struct netdev_phys_item_id *ppid,
8490                            bool recurse)
8491 {
8492         const struct net_device_ops *ops = dev->netdev_ops;
8493         struct netdev_phys_item_id first = { };
8494         struct net_device *lower_dev;
8495         struct list_head *iter;
8496         int err;
8497
8498         if (ops->ndo_get_port_parent_id) {
8499                 err = ops->ndo_get_port_parent_id(dev, ppid);
8500                 if (err != -EOPNOTSUPP)
8501                         return err;
8502         }
8503
8504         err = devlink_compat_switch_id_get(dev, ppid);
8505         if (!err || err != -EOPNOTSUPP)
8506                 return err;
8507
8508         if (!recurse)
8509                 return -EOPNOTSUPP;
8510
8511         netdev_for_each_lower_dev(dev, lower_dev, iter) {
8512                 err = dev_get_port_parent_id(lower_dev, ppid, recurse);
8513                 if (err)
8514                         break;
8515                 if (!first.id_len)
8516                         first = *ppid;
8517                 else if (memcmp(&first, ppid, sizeof(*ppid)))
8518                         return -ENODATA;
8519         }
8520
8521         return err;
8522 }
8523 EXPORT_SYMBOL(dev_get_port_parent_id);
8524
8525 /**
8526  *      netdev_port_same_parent_id - Indicate if two network devices have
8527  *      the same port parent identifier
8528  *      @a: first network device
8529  *      @b: second network device
8530  */
8531 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
8532 {
8533         struct netdev_phys_item_id a_id = { };
8534         struct netdev_phys_item_id b_id = { };
8535
8536         if (dev_get_port_parent_id(a, &a_id, true) ||
8537             dev_get_port_parent_id(b, &b_id, true))
8538                 return false;
8539
8540         return netdev_phys_item_id_same(&a_id, &b_id);
8541 }
8542 EXPORT_SYMBOL(netdev_port_same_parent_id);
8543
8544 /**
8545  *      dev_change_proto_down - update protocol port state information
8546  *      @dev: device
8547  *      @proto_down: new value
8548  *
8549  *      This info can be used by switch drivers to set the phys state of the
8550  *      port.
8551  */
8552 int dev_change_proto_down(struct net_device *dev, bool proto_down)
8553 {
8554         const struct net_device_ops *ops = dev->netdev_ops;
8555
8556         if (!ops->ndo_change_proto_down)
8557                 return -EOPNOTSUPP;
8558         if (!netif_device_present(dev))
8559                 return -ENODEV;
8560         return ops->ndo_change_proto_down(dev, proto_down);
8561 }
8562 EXPORT_SYMBOL(dev_change_proto_down);
8563
8564 /**
8565  *      dev_change_proto_down_generic - generic implementation for
8566  *      ndo_change_proto_down that sets carrier according to
8567  *      proto_down.
8568  *
8569  *      @dev: device
8570  *      @proto_down: new value
8571  */
8572 int dev_change_proto_down_generic(struct net_device *dev, bool proto_down)
8573 {
8574         if (proto_down)
8575                 netif_carrier_off(dev);
8576         else
8577                 netif_carrier_on(dev);
8578         dev->proto_down = proto_down;
8579         return 0;
8580 }
8581 EXPORT_SYMBOL(dev_change_proto_down_generic);
8582
8583 u32 __dev_xdp_query(struct net_device *dev, bpf_op_t bpf_op,
8584                     enum bpf_netdev_command cmd)
8585 {
8586         struct netdev_bpf xdp;
8587
8588         if (!bpf_op)
8589                 return 0;
8590
8591         memset(&xdp, 0, sizeof(xdp));
8592         xdp.command = cmd;
8593
8594         /* Query must always succeed. */
8595         WARN_ON(bpf_op(dev, &xdp) < 0 && cmd == XDP_QUERY_PROG);
8596
8597         return xdp.prog_id;
8598 }
8599
8600 static int dev_xdp_install(struct net_device *dev, bpf_op_t bpf_op,
8601                            struct netlink_ext_ack *extack, u32 flags,
8602                            struct bpf_prog *prog)
8603 {
8604         bool non_hw = !(flags & XDP_FLAGS_HW_MODE);
8605         struct bpf_prog *prev_prog = NULL;
8606         struct netdev_bpf xdp;
8607         int err;
8608
8609         if (non_hw) {
8610                 prev_prog = bpf_prog_by_id(__dev_xdp_query(dev, bpf_op,
8611                                                            XDP_QUERY_PROG));
8612                 if (IS_ERR(prev_prog))
8613                         prev_prog = NULL;
8614         }
8615
8616         memset(&xdp, 0, sizeof(xdp));
8617         if (flags & XDP_FLAGS_HW_MODE)
8618                 xdp.command = XDP_SETUP_PROG_HW;
8619         else
8620                 xdp.command = XDP_SETUP_PROG;
8621         xdp.extack = extack;
8622         xdp.flags = flags;
8623         xdp.prog = prog;
8624
8625         err = bpf_op(dev, &xdp);
8626         if (!err && non_hw)
8627                 bpf_prog_change_xdp(prev_prog, prog);
8628
8629         if (prev_prog)
8630                 bpf_prog_put(prev_prog);
8631
8632         return err;
8633 }
8634
8635 static void dev_xdp_uninstall(struct net_device *dev)
8636 {
8637         struct netdev_bpf xdp;
8638         bpf_op_t ndo_bpf;
8639
8640         /* Remove generic XDP */
8641         WARN_ON(dev_xdp_install(dev, generic_xdp_install, NULL, 0, NULL));
8642
8643         /* Remove from the driver */
8644         ndo_bpf = dev->netdev_ops->ndo_bpf;
8645         if (!ndo_bpf)
8646                 return;
8647
8648         memset(&xdp, 0, sizeof(xdp));
8649         xdp.command = XDP_QUERY_PROG;
8650         WARN_ON(ndo_bpf(dev, &xdp));
8651         if (xdp.prog_id)
8652                 WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags,
8653                                         NULL));
8654
8655         /* Remove HW offload */
8656         memset(&xdp, 0, sizeof(xdp));
8657         xdp.command = XDP_QUERY_PROG_HW;
8658         if (!ndo_bpf(dev, &xdp) && xdp.prog_id)
8659                 WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags,
8660                                         NULL));
8661 }
8662
8663 /**
8664  *      dev_change_xdp_fd - set or clear a bpf program for a device rx path
8665  *      @dev: device
8666  *      @extack: netlink extended ack
8667  *      @fd: new program fd or negative value to clear
8668  *      @flags: xdp-related flags
8669  *
8670  *      Set or clear a bpf program for a device
8671  */
8672 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
8673                       int fd, u32 flags)
8674 {
8675         const struct net_device_ops *ops = dev->netdev_ops;
8676         enum bpf_netdev_command query;
8677         struct bpf_prog *prog = NULL;
8678         bpf_op_t bpf_op, bpf_chk;
8679         bool offload;
8680         int err;
8681
8682         ASSERT_RTNL();
8683
8684         offload = flags & XDP_FLAGS_HW_MODE;
8685         query = offload ? XDP_QUERY_PROG_HW : XDP_QUERY_PROG;
8686
8687         bpf_op = bpf_chk = ops->ndo_bpf;
8688         if (!bpf_op && (flags & (XDP_FLAGS_DRV_MODE | XDP_FLAGS_HW_MODE))) {
8689                 NL_SET_ERR_MSG(extack, "underlying driver does not support XDP in native mode");
8690                 return -EOPNOTSUPP;
8691         }
8692         if (!bpf_op || (flags & XDP_FLAGS_SKB_MODE))
8693                 bpf_op = generic_xdp_install;
8694         if (bpf_op == bpf_chk)
8695                 bpf_chk = generic_xdp_install;
8696
8697         if (fd >= 0) {
8698                 u32 prog_id;
8699
8700                 if (!offload && __dev_xdp_query(dev, bpf_chk, XDP_QUERY_PROG)) {
8701                         NL_SET_ERR_MSG(extack, "native and generic XDP can't be active at the same time");
8702                         return -EEXIST;
8703                 }
8704
8705                 prog_id = __dev_xdp_query(dev, bpf_op, query);
8706                 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && prog_id) {
8707                         NL_SET_ERR_MSG(extack, "XDP program already attached");
8708                         return -EBUSY;
8709                 }
8710
8711                 prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
8712                                              bpf_op == ops->ndo_bpf);
8713                 if (IS_ERR(prog))
8714                         return PTR_ERR(prog);
8715
8716                 if (!offload && bpf_prog_is_dev_bound(prog->aux)) {
8717                         NL_SET_ERR_MSG(extack, "using device-bound program without HW_MODE flag is not supported");
8718                         bpf_prog_put(prog);
8719                         return -EINVAL;
8720                 }
8721
8722                 /* prog->aux->id may be 0 for orphaned device-bound progs */
8723                 if (prog->aux->id && prog->aux->id == prog_id) {
8724                         bpf_prog_put(prog);
8725                         return 0;
8726                 }
8727         } else {
8728                 if (!__dev_xdp_query(dev, bpf_op, query))
8729                         return 0;
8730         }
8731
8732         err = dev_xdp_install(dev, bpf_op, extack, flags, prog);
8733         if (err < 0 && prog)
8734                 bpf_prog_put(prog);
8735
8736         return err;
8737 }
8738
8739 /**
8740  *      dev_new_index   -       allocate an ifindex
8741  *      @net: the applicable net namespace
8742  *
8743  *      Returns a suitable unique value for a new device interface
8744  *      number.  The caller must hold the rtnl semaphore or the
8745  *      dev_base_lock to be sure it remains unique.
8746  */
8747 static int dev_new_index(struct net *net)
8748 {
8749         int ifindex = net->ifindex;
8750
8751         for (;;) {
8752                 if (++ifindex <= 0)
8753                         ifindex = 1;
8754                 if (!__dev_get_by_index(net, ifindex))
8755                         return net->ifindex = ifindex;
8756         }
8757 }
8758
8759 /* Delayed registration/unregisteration */
8760 static LIST_HEAD(net_todo_list);
8761 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
8762
8763 static void net_set_todo(struct net_device *dev)
8764 {
8765         list_add_tail(&dev->todo_list, &net_todo_list);
8766         dev_net(dev)->dev_unreg_count++;
8767 }
8768
8769 static void rollback_registered_many(struct list_head *head)
8770 {
8771         struct net_device *dev, *tmp;
8772         LIST_HEAD(close_head);
8773
8774         BUG_ON(dev_boot_phase);
8775         ASSERT_RTNL();
8776
8777         list_for_each_entry_safe(dev, tmp, head, unreg_list) {
8778                 /* Some devices call without registering
8779                  * for initialization unwind. Remove those
8780                  * devices and proceed with the remaining.
8781                  */
8782                 if (dev->reg_state == NETREG_UNINITIALIZED) {
8783                         pr_debug("unregister_netdevice: device %s/%p never was registered\n",
8784                                  dev->name, dev);
8785
8786                         WARN_ON(1);
8787                         list_del(&dev->unreg_list);
8788                         continue;
8789                 }
8790                 dev->dismantle = true;
8791                 BUG_ON(dev->reg_state != NETREG_REGISTERED);
8792         }
8793
8794         /* If device is running, close it first. */
8795         list_for_each_entry(dev, head, unreg_list)
8796                 list_add_tail(&dev->close_list, &close_head);
8797         dev_close_many(&close_head, true);
8798
8799         list_for_each_entry(dev, head, unreg_list) {
8800                 /* And unlink it from device chain. */
8801                 unlist_netdevice(dev);
8802
8803                 dev->reg_state = NETREG_UNREGISTERING;
8804         }
8805         flush_all_backlogs();
8806
8807         synchronize_net();
8808
8809         list_for_each_entry(dev, head, unreg_list) {
8810                 struct sk_buff *skb = NULL;
8811
8812                 /* Shutdown queueing discipline. */
8813                 dev_shutdown(dev);
8814
8815                 dev_xdp_uninstall(dev);
8816
8817                 /* Notify protocols, that we are about to destroy
8818                  * this device. They should clean all the things.
8819                  */
8820                 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
8821
8822                 if (!dev->rtnl_link_ops ||
8823                     dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
8824                         skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
8825                                                      GFP_KERNEL, NULL, 0);
8826
8827                 /*
8828                  *      Flush the unicast and multicast chains
8829                  */
8830                 dev_uc_flush(dev);
8831                 dev_mc_flush(dev);
8832
8833                 netdev_name_node_alt_flush(dev);
8834                 netdev_name_node_free(dev->name_node);
8835
8836                 if (dev->netdev_ops->ndo_uninit)
8837                         dev->netdev_ops->ndo_uninit(dev);
8838
8839                 if (skb)
8840                         rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
8841
8842                 /* Notifier chain MUST detach us all upper devices. */
8843                 WARN_ON(netdev_has_any_upper_dev(dev));
8844                 WARN_ON(netdev_has_any_lower_dev(dev));
8845
8846                 /* Remove entries from kobject tree */
8847                 netdev_unregister_kobject(dev);
8848 #ifdef CONFIG_XPS
8849                 /* Remove XPS queueing entries */
8850                 netif_reset_xps_queues_gt(dev, 0);
8851 #endif
8852         }
8853
8854         synchronize_net();
8855
8856         list_for_each_entry(dev, head, unreg_list)
8857                 dev_put(dev);
8858 }
8859
8860 static void rollback_registered(struct net_device *dev)
8861 {
8862         LIST_HEAD(single);
8863
8864         list_add(&dev->unreg_list, &single);
8865         rollback_registered_many(&single);
8866         list_del(&single);
8867 }
8868
8869 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
8870         struct net_device *upper, netdev_features_t features)
8871 {
8872         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
8873         netdev_features_t feature;
8874         int feature_bit;
8875
8876         for_each_netdev_feature(upper_disables, feature_bit) {
8877                 feature = __NETIF_F_BIT(feature_bit);
8878                 if (!(upper->wanted_features & feature)
8879                     && (features & feature)) {
8880                         netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
8881                                    &feature, upper->name);
8882                         features &= ~feature;
8883                 }
8884         }
8885
8886         return features;
8887 }
8888
8889 static void netdev_sync_lower_features(struct net_device *upper,
8890         struct net_device *lower, netdev_features_t features)
8891 {
8892         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
8893         netdev_features_t feature;
8894         int feature_bit;
8895
8896         for_each_netdev_feature(upper_disables, feature_bit) {
8897                 feature = __NETIF_F_BIT(feature_bit);
8898                 if (!(features & feature) && (lower->features & feature)) {
8899                         netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
8900                                    &feature, lower->name);
8901                         lower->wanted_features &= ~feature;
8902                         netdev_update_features(lower);
8903
8904                         if (unlikely(lower->features & feature))
8905                                 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
8906                                             &feature, lower->name);
8907                 }
8908         }
8909 }
8910
8911 static netdev_features_t netdev_fix_features(struct net_device *dev,
8912         netdev_features_t features)
8913 {
8914         /* Fix illegal checksum combinations */
8915         if ((features & NETIF_F_HW_CSUM) &&
8916             (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
8917                 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
8918                 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
8919         }
8920
8921         /* TSO requires that SG is present as well. */
8922         if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
8923                 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
8924                 features &= ~NETIF_F_ALL_TSO;
8925         }
8926
8927         if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
8928                                         !(features & NETIF_F_IP_CSUM)) {
8929                 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
8930                 features &= ~NETIF_F_TSO;
8931                 features &= ~NETIF_F_TSO_ECN;
8932         }
8933
8934         if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
8935                                          !(features & NETIF_F_IPV6_CSUM)) {
8936                 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
8937                 features &= ~NETIF_F_TSO6;
8938         }
8939
8940         /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
8941         if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
8942                 features &= ~NETIF_F_TSO_MANGLEID;
8943
8944         /* TSO ECN requires that TSO is present as well. */
8945         if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
8946                 features &= ~NETIF_F_TSO_ECN;
8947
8948         /* Software GSO depends on SG. */
8949         if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
8950                 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
8951                 features &= ~NETIF_F_GSO;
8952         }
8953
8954         /* GSO partial features require GSO partial be set */
8955         if ((features & dev->gso_partial_features) &&
8956             !(features & NETIF_F_GSO_PARTIAL)) {
8957                 netdev_dbg(dev,
8958                            "Dropping partially supported GSO features since no GSO partial.\n");
8959                 features &= ~dev->gso_partial_features;
8960         }
8961
8962         if (!(features & NETIF_F_RXCSUM)) {
8963                 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet
8964                  * successfully merged by hardware must also have the
8965                  * checksum verified by hardware.  If the user does not
8966                  * want to enable RXCSUM, logically, we should disable GRO_HW.
8967                  */
8968                 if (features & NETIF_F_GRO_HW) {
8969                         netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
8970                         features &= ~NETIF_F_GRO_HW;
8971                 }
8972         }
8973
8974         /* LRO/HW-GRO features cannot be combined with RX-FCS */
8975         if (features & NETIF_F_RXFCS) {
8976                 if (features & NETIF_F_LRO) {
8977                         netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
8978                         features &= ~NETIF_F_LRO;
8979                 }
8980
8981                 if (features & NETIF_F_GRO_HW) {
8982                         netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
8983                         features &= ~NETIF_F_GRO_HW;
8984                 }
8985         }
8986
8987         return features;
8988 }
8989
8990 int __netdev_update_features(struct net_device *dev)
8991 {
8992         struct net_device *upper, *lower;
8993         netdev_features_t features;
8994         struct list_head *iter;
8995         int err = -1;
8996
8997         ASSERT_RTNL();
8998
8999         features = netdev_get_wanted_features(dev);
9000
9001         if (dev->netdev_ops->ndo_fix_features)
9002                 features = dev->netdev_ops->ndo_fix_features(dev, features);
9003
9004         /* driver might be less strict about feature dependencies */
9005         features = netdev_fix_features(dev, features);
9006
9007         /* some features can't be enabled if they're off an an upper device */
9008         netdev_for_each_upper_dev_rcu(dev, upper, iter)
9009                 features = netdev_sync_upper_features(dev, upper, features);
9010
9011         if (dev->features == features)
9012                 goto sync_lower;
9013
9014         netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
9015                 &dev->features, &features);
9016
9017         if (dev->netdev_ops->ndo_set_features)
9018                 err = dev->netdev_ops->ndo_set_features(dev, features);
9019         else
9020                 err = 0;
9021
9022         if (unlikely(err < 0)) {
9023                 netdev_err(dev,
9024                         "set_features() failed (%d); wanted %pNF, left %pNF\n",
9025                         err, &features, &dev->features);
9026                 /* return non-0 since some features might have changed and
9027                  * it's better to fire a spurious notification than miss it
9028                  */
9029                 return -1;
9030         }
9031
9032 sync_lower:
9033         /* some features must be disabled on lower devices when disabled
9034          * on an upper device (think: bonding master or bridge)
9035          */
9036         netdev_for_each_lower_dev(dev, lower, iter)
9037                 netdev_sync_lower_features(dev, lower, features);
9038
9039         if (!err) {
9040                 netdev_features_t diff = features ^ dev->features;
9041
9042                 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
9043                         /* udp_tunnel_{get,drop}_rx_info both need
9044                          * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
9045                          * device, or they won't do anything.
9046                          * Thus we need to update dev->features
9047                          * *before* calling udp_tunnel_get_rx_info,
9048                          * but *after* calling udp_tunnel_drop_rx_info.
9049                          */
9050                         if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
9051                                 dev->features = features;
9052                                 udp_tunnel_get_rx_info(dev);
9053                         } else {
9054                                 udp_tunnel_drop_rx_info(dev);
9055                         }
9056                 }
9057
9058                 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
9059                         if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
9060                                 dev->features = features;
9061                                 err |= vlan_get_rx_ctag_filter_info(dev);
9062                         } else {
9063                                 vlan_drop_rx_ctag_filter_info(dev);
9064                         }
9065                 }
9066
9067                 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
9068                         if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
9069                                 dev->features = features;
9070                                 err |= vlan_get_rx_stag_filter_info(dev);
9071                         } else {
9072                                 vlan_drop_rx_stag_filter_info(dev);
9073                         }
9074                 }
9075
9076                 dev->features = features;
9077         }
9078
9079         return err < 0 ? 0 : 1;
9080 }
9081
9082 /**
9083  *      netdev_update_features - recalculate device features
9084  *      @dev: the device to check
9085  *
9086  *      Recalculate dev->features set and send notifications if it
9087  *      has changed. Should be called after driver or hardware dependent
9088  *      conditions might have changed that influence the features.
9089  */
9090 void netdev_update_features(struct net_device *dev)
9091 {
9092         if (__netdev_update_features(dev))
9093                 netdev_features_change(dev);
9094 }
9095 EXPORT_SYMBOL(netdev_update_features);
9096
9097 /**
9098  *      netdev_change_features - recalculate device features
9099  *      @dev: the device to check
9100  *
9101  *      Recalculate dev->features set and send notifications even
9102  *      if they have not changed. Should be called instead of
9103  *      netdev_update_features() if also dev->vlan_features might
9104  *      have changed to allow the changes to be propagated to stacked
9105  *      VLAN devices.
9106  */
9107 void netdev_change_features(struct net_device *dev)
9108 {
9109         __netdev_update_features(dev);
9110         netdev_features_change(dev);
9111 }
9112 EXPORT_SYMBOL(netdev_change_features);
9113
9114 /**
9115  *      netif_stacked_transfer_operstate -      transfer operstate
9116  *      @rootdev: the root or lower level device to transfer state from
9117  *      @dev: the device to transfer operstate to
9118  *
9119  *      Transfer operational state from root to device. This is normally
9120  *      called when a stacking relationship exists between the root
9121  *      device and the device(a leaf device).
9122  */
9123 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
9124                                         struct net_device *dev)
9125 {
9126         if (rootdev->operstate == IF_OPER_DORMANT)
9127                 netif_dormant_on(dev);
9128         else
9129                 netif_dormant_off(dev);
9130
9131         if (netif_carrier_ok(rootdev))
9132                 netif_carrier_on(dev);
9133         else
9134                 netif_carrier_off(dev);
9135 }
9136 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
9137
9138 static int netif_alloc_rx_queues(struct net_device *dev)
9139 {
9140         unsigned int i, count = dev->num_rx_queues;
9141         struct netdev_rx_queue *rx;
9142         size_t sz = count * sizeof(*rx);
9143         int err = 0;
9144
9145         BUG_ON(count < 1);
9146
9147         rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
9148         if (!rx)
9149                 return -ENOMEM;
9150
9151         dev->_rx = rx;
9152
9153         for (i = 0; i < count; i++) {
9154                 rx[i].dev = dev;
9155
9156                 /* XDP RX-queue setup */
9157                 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i);
9158                 if (err < 0)
9159                         goto err_rxq_info;
9160         }
9161         return 0;
9162
9163 err_rxq_info:
9164         /* Rollback successful reg's and free other resources */
9165         while (i--)
9166                 xdp_rxq_info_unreg(&rx[i].xdp_rxq);
9167         kvfree(dev->_rx);
9168         dev->_rx = NULL;
9169         return err;
9170 }
9171
9172 static void netif_free_rx_queues(struct net_device *dev)
9173 {
9174         unsigned int i, count = dev->num_rx_queues;
9175
9176         /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
9177         if (!dev->_rx)
9178                 return;
9179
9180         for (i = 0; i < count; i++)
9181                 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
9182
9183         kvfree(dev->_rx);
9184 }
9185
9186 static void netdev_init_one_queue(struct net_device *dev,
9187                                   struct netdev_queue *queue, void *_unused)
9188 {
9189         /* Initialize queue lock */
9190         spin_lock_init(&queue->_xmit_lock);
9191         lockdep_set_class(&queue->_xmit_lock, &dev->qdisc_xmit_lock_key);
9192         queue->xmit_lock_owner = -1;
9193         netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
9194         queue->dev = dev;
9195 #ifdef CONFIG_BQL
9196         dql_init(&queue->dql, HZ);
9197 #endif
9198 }
9199
9200 static void netif_free_tx_queues(struct net_device *dev)
9201 {
9202         kvfree(dev->_tx);
9203 }
9204
9205 static int netif_alloc_netdev_queues(struct net_device *dev)
9206 {
9207         unsigned int count = dev->num_tx_queues;
9208         struct netdev_queue *tx;
9209         size_t sz = count * sizeof(*tx);
9210
9211         if (count < 1 || count > 0xffff)
9212                 return -EINVAL;
9213
9214         tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
9215         if (!tx)
9216                 return -ENOMEM;
9217
9218         dev->_tx = tx;
9219
9220         netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
9221         spin_lock_init(&dev->tx_global_lock);
9222
9223         return 0;
9224 }
9225
9226 void netif_tx_stop_all_queues(struct net_device *dev)
9227 {
9228         unsigned int i;
9229
9230         for (i = 0; i < dev->num_tx_queues; i++) {
9231                 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
9232
9233                 netif_tx_stop_queue(txq);
9234         }
9235 }
9236 EXPORT_SYMBOL(netif_tx_stop_all_queues);
9237
9238 static void netdev_register_lockdep_key(struct net_device *dev)
9239 {
9240         lockdep_register_key(&dev->qdisc_tx_busylock_key);
9241         lockdep_register_key(&dev->qdisc_running_key);
9242         lockdep_register_key(&dev->qdisc_xmit_lock_key);
9243         lockdep_register_key(&dev->addr_list_lock_key);
9244 }
9245
9246 static void netdev_unregister_lockdep_key(struct net_device *dev)
9247 {
9248         lockdep_unregister_key(&dev->qdisc_tx_busylock_key);
9249         lockdep_unregister_key(&dev->qdisc_running_key);
9250         lockdep_unregister_key(&dev->qdisc_xmit_lock_key);
9251         lockdep_unregister_key(&dev->addr_list_lock_key);
9252 }
9253
9254 void netdev_update_lockdep_key(struct net_device *dev)
9255 {
9256         lockdep_unregister_key(&dev->addr_list_lock_key);
9257         lockdep_register_key(&dev->addr_list_lock_key);
9258
9259         lockdep_set_class(&dev->addr_list_lock, &dev->addr_list_lock_key);
9260 }
9261 EXPORT_SYMBOL(netdev_update_lockdep_key);
9262
9263 /**
9264  *      register_netdevice      - register a network device
9265  *      @dev: device to register
9266  *
9267  *      Take a completed network device structure and add it to the kernel
9268  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
9269  *      chain. 0 is returned on success. A negative errno code is returned
9270  *      on a failure to set up the device, or if the name is a duplicate.
9271  *
9272  *      Callers must hold the rtnl semaphore. You may want
9273  *      register_netdev() instead of this.
9274  *
9275  *      BUGS:
9276  *      The locking appears insufficient to guarantee two parallel registers
9277  *      will not get the same name.
9278  */
9279
9280 int register_netdevice(struct net_device *dev)
9281 {
9282         int ret;
9283         struct net *net = dev_net(dev);
9284
9285         BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
9286                      NETDEV_FEATURE_COUNT);
9287         BUG_ON(dev_boot_phase);
9288         ASSERT_RTNL();
9289
9290         might_sleep();
9291
9292         /* When net_device's are persistent, this will be fatal. */
9293         BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
9294         BUG_ON(!net);
9295
9296         spin_lock_init(&dev->addr_list_lock);
9297         lockdep_set_class(&dev->addr_list_lock, &dev->addr_list_lock_key);
9298
9299         ret = dev_get_valid_name(net, dev, dev->name);
9300         if (ret < 0)
9301                 goto out;
9302
9303         ret = -ENOMEM;
9304         dev->name_node = netdev_name_node_head_alloc(dev);
9305         if (!dev->name_node)
9306                 goto out;
9307
9308         /* Init, if this function is available */
9309         if (dev->netdev_ops->ndo_init) {
9310                 ret = dev->netdev_ops->ndo_init(dev);
9311                 if (ret) {
9312                         if (ret > 0)
9313                                 ret = -EIO;
9314                         goto err_free_name;
9315                 }
9316         }
9317
9318         if (((dev->hw_features | dev->features) &
9319              NETIF_F_HW_VLAN_CTAG_FILTER) &&
9320             (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
9321              !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
9322                 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
9323                 ret = -EINVAL;
9324                 goto err_uninit;
9325         }
9326
9327         ret = -EBUSY;
9328         if (!dev->ifindex)
9329                 dev->ifindex = dev_new_index(net);
9330         else if (__dev_get_by_index(net, dev->ifindex))
9331                 goto err_uninit;
9332
9333         /* Transfer changeable features to wanted_features and enable
9334          * software offloads (GSO and GRO).
9335          */
9336         dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
9337         dev->features |= NETIF_F_SOFT_FEATURES;
9338
9339         if (dev->netdev_ops->ndo_udp_tunnel_add) {
9340                 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
9341                 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
9342         }
9343
9344         dev->wanted_features = dev->features & dev->hw_features;
9345
9346         if (!(dev->flags & IFF_LOOPBACK))
9347                 dev->hw_features |= NETIF_F_NOCACHE_COPY;
9348
9349         /* If IPv4 TCP segmentation offload is supported we should also
9350          * allow the device to enable segmenting the frame with the option
9351          * of ignoring a static IP ID value.  This doesn't enable the
9352          * feature itself but allows the user to enable it later.
9353          */
9354         if (dev->hw_features & NETIF_F_TSO)
9355                 dev->hw_features |= NETIF_F_TSO_MANGLEID;
9356         if (dev->vlan_features & NETIF_F_TSO)
9357                 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
9358         if (dev->mpls_features & NETIF_F_TSO)
9359                 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
9360         if (dev->hw_enc_features & NETIF_F_TSO)
9361                 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
9362
9363         /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
9364          */
9365         dev->vlan_features |= NETIF_F_HIGHDMA;
9366
9367         /* Make NETIF_F_SG inheritable to tunnel devices.
9368          */
9369         dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
9370
9371         /* Make NETIF_F_SG inheritable to MPLS.
9372          */
9373         dev->mpls_features |= NETIF_F_SG;
9374
9375         ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
9376         ret = notifier_to_errno(ret);
9377         if (ret)
9378                 goto err_uninit;
9379
9380         ret = netdev_register_kobject(dev);
9381         if (ret) {
9382                 dev->reg_state = NETREG_UNREGISTERED;
9383                 goto err_uninit;
9384         }
9385         dev->reg_state = NETREG_REGISTERED;
9386
9387         __netdev_update_features(dev);
9388
9389         /*
9390          *      Default initial state at registry is that the
9391          *      device is present.
9392          */
9393
9394         set_bit(__LINK_STATE_PRESENT, &dev->state);
9395
9396         linkwatch_init_dev(dev);
9397
9398         dev_init_scheduler(dev);
9399         dev_hold(dev);
9400         list_netdevice(dev);
9401         add_device_randomness(dev->dev_addr, dev->addr_len);
9402
9403         /* If the device has permanent device address, driver should
9404          * set dev_addr and also addr_assign_type should be set to
9405          * NET_ADDR_PERM (default value).
9406          */
9407         if (dev->addr_assign_type == NET_ADDR_PERM)
9408                 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
9409
9410         /* Notify protocols, that a new device appeared. */
9411         ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
9412         ret = notifier_to_errno(ret);
9413         if (ret) {
9414                 rollback_registered(dev);
9415                 rcu_barrier();
9416
9417                 dev->reg_state = NETREG_UNREGISTERED;
9418         }
9419         /*
9420          *      Prevent userspace races by waiting until the network
9421          *      device is fully setup before sending notifications.
9422          */
9423         if (!dev->rtnl_link_ops ||
9424             dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
9425                 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
9426
9427 out:
9428         return ret;
9429
9430 err_uninit:
9431         if (dev->netdev_ops->ndo_uninit)
9432                 dev->netdev_ops->ndo_uninit(dev);
9433         if (dev->priv_destructor)
9434                 dev->priv_destructor(dev);
9435 err_free_name:
9436         netdev_name_node_free(dev->name_node);
9437         goto out;
9438 }
9439 EXPORT_SYMBOL(register_netdevice);
9440
9441 /**
9442  *      init_dummy_netdev       - init a dummy network device for NAPI
9443  *      @dev: device to init
9444  *
9445  *      This takes a network device structure and initialize the minimum
9446  *      amount of fields so it can be used to schedule NAPI polls without
9447  *      registering a full blown interface. This is to be used by drivers
9448  *      that need to tie several hardware interfaces to a single NAPI
9449  *      poll scheduler due to HW limitations.
9450  */
9451 int init_dummy_netdev(struct net_device *dev)
9452 {
9453         /* Clear everything. Note we don't initialize spinlocks
9454          * are they aren't supposed to be taken by any of the
9455          * NAPI code and this dummy netdev is supposed to be
9456          * only ever used for NAPI polls
9457          */
9458         memset(dev, 0, sizeof(struct net_device));
9459
9460         /* make sure we BUG if trying to hit standard
9461          * register/unregister code path
9462          */
9463         dev->reg_state = NETREG_DUMMY;
9464
9465         /* NAPI wants this */
9466         INIT_LIST_HEAD(&dev->napi_list);
9467
9468         /* a dummy interface is started by default */
9469         set_bit(__LINK_STATE_PRESENT, &dev->state);
9470         set_bit(__LINK_STATE_START, &dev->state);
9471
9472         /* napi_busy_loop stats accounting wants this */
9473         dev_net_set(dev, &init_net);
9474
9475         /* Note : We dont allocate pcpu_refcnt for dummy devices,
9476          * because users of this 'device' dont need to change
9477          * its refcount.
9478          */
9479
9480         return 0;
9481 }
9482 EXPORT_SYMBOL_GPL(init_dummy_netdev);
9483
9484
9485 /**
9486  *      register_netdev - register a network device
9487  *      @dev: device to register
9488  *
9489  *      Take a completed network device structure and add it to the kernel
9490  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
9491  *      chain. 0 is returned on success. A negative errno code is returned
9492  *      on a failure to set up the device, or if the name is a duplicate.
9493  *
9494  *      This is a wrapper around register_netdevice that takes the rtnl semaphore
9495  *      and expands the device name if you passed a format string to
9496  *      alloc_netdev.
9497  */
9498 int register_netdev(struct net_device *dev)
9499 {
9500         int err;
9501
9502         if (rtnl_lock_killable())
9503                 return -EINTR;
9504         err = register_netdevice(dev);
9505         rtnl_unlock();
9506         return err;
9507 }
9508 EXPORT_SYMBOL(register_netdev);
9509
9510 int netdev_refcnt_read(const struct net_device *dev)
9511 {
9512         int i, refcnt = 0;
9513
9514         for_each_possible_cpu(i)
9515                 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
9516         return refcnt;
9517 }
9518 EXPORT_SYMBOL(netdev_refcnt_read);
9519
9520 /**
9521  * netdev_wait_allrefs - wait until all references are gone.
9522  * @dev: target net_device
9523  *
9524  * This is called when unregistering network devices.
9525  *
9526  * Any protocol or device that holds a reference should register
9527  * for netdevice notification, and cleanup and put back the
9528  * reference if they receive an UNREGISTER event.
9529  * We can get stuck here if buggy protocols don't correctly
9530  * call dev_put.
9531  */
9532 static void netdev_wait_allrefs(struct net_device *dev)
9533 {
9534         unsigned long rebroadcast_time, warning_time;
9535         int refcnt;
9536
9537         linkwatch_forget_dev(dev);
9538
9539         rebroadcast_time = warning_time = jiffies;
9540         refcnt = netdev_refcnt_read(dev);
9541
9542         while (refcnt != 0) {
9543                 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
9544                         rtnl_lock();
9545
9546                         /* Rebroadcast unregister notification */
9547                         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
9548
9549                         __rtnl_unlock();
9550                         rcu_barrier();
9551                         rtnl_lock();
9552
9553                         if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
9554                                      &dev->state)) {
9555                                 /* We must not have linkwatch events
9556                                  * pending on unregister. If this
9557                                  * happens, we simply run the queue
9558                                  * unscheduled, resulting in a noop
9559                                  * for this device.
9560                                  */
9561                                 linkwatch_run_queue();
9562                         }
9563
9564                         __rtnl_unlock();
9565
9566                         rebroadcast_time = jiffies;
9567                 }
9568
9569                 msleep(250);
9570
9571                 refcnt = netdev_refcnt_read(dev);
9572
9573                 if (refcnt && time_after(jiffies, warning_time + 10 * HZ)) {
9574                         pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
9575                                  dev->name, refcnt);
9576                         warning_time = jiffies;
9577                 }
9578         }
9579 }
9580
9581 /* The sequence is:
9582  *
9583  *      rtnl_lock();
9584  *      ...
9585  *      register_netdevice(x1);
9586  *      register_netdevice(x2);
9587  *      ...
9588  *      unregister_netdevice(y1);
9589  *      unregister_netdevice(y2);
9590  *      ...
9591  *      rtnl_unlock();
9592  *      free_netdev(y1);
9593  *      free_netdev(y2);
9594  *
9595  * We are invoked by rtnl_unlock().
9596  * This allows us to deal with problems:
9597  * 1) We can delete sysfs objects which invoke hotplug
9598  *    without deadlocking with linkwatch via keventd.
9599  * 2) Since we run with the RTNL semaphore not held, we can sleep
9600  *    safely in order to wait for the netdev refcnt to drop to zero.
9601  *
9602  * We must not return until all unregister events added during
9603  * the interval the lock was held have been completed.
9604  */
9605 void netdev_run_todo(void)
9606 {
9607         struct list_head list;
9608
9609         /* Snapshot list, allow later requests */
9610         list_replace_init(&net_todo_list, &list);
9611
9612         __rtnl_unlock();
9613
9614
9615         /* Wait for rcu callbacks to finish before next phase */
9616         if (!list_empty(&list))
9617                 rcu_barrier();
9618
9619         while (!list_empty(&list)) {
9620                 struct net_device *dev
9621                         = list_first_entry(&list, struct net_device, todo_list);
9622                 list_del(&dev->todo_list);
9623
9624                 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
9625                         pr_err("network todo '%s' but state %d\n",
9626                                dev->name, dev->reg_state);
9627                         dump_stack();
9628                         continue;
9629                 }
9630
9631                 dev->reg_state = NETREG_UNREGISTERED;
9632
9633                 netdev_wait_allrefs(dev);
9634
9635                 /* paranoia */
9636                 BUG_ON(netdev_refcnt_read(dev));
9637                 BUG_ON(!list_empty(&dev->ptype_all));
9638                 BUG_ON(!list_empty(&dev->ptype_specific));
9639                 WARN_ON(rcu_access_pointer(dev->ip_ptr));
9640                 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
9641 #if IS_ENABLED(CONFIG_DECNET)
9642                 WARN_ON(dev->dn_ptr);
9643 #endif
9644                 if (dev->priv_destructor)
9645                         dev->priv_destructor(dev);
9646                 if (dev->needs_free_netdev)
9647                         free_netdev(dev);
9648
9649                 /* Report a network device has been unregistered */
9650                 rtnl_lock();
9651                 dev_net(dev)->dev_unreg_count--;
9652                 __rtnl_unlock();
9653                 wake_up(&netdev_unregistering_wq);
9654
9655                 /* Free network device */
9656                 kobject_put(&dev->dev.kobj);
9657         }
9658 }
9659
9660 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
9661  * all the same fields in the same order as net_device_stats, with only
9662  * the type differing, but rtnl_link_stats64 may have additional fields
9663  * at the end for newer counters.
9664  */
9665 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
9666                              const struct net_device_stats *netdev_stats)
9667 {
9668 #if BITS_PER_LONG == 64
9669         BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
9670         memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
9671         /* zero out counters that only exist in rtnl_link_stats64 */
9672         memset((char *)stats64 + sizeof(*netdev_stats), 0,
9673                sizeof(*stats64) - sizeof(*netdev_stats));
9674 #else
9675         size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
9676         const unsigned long *src = (const unsigned long *)netdev_stats;
9677         u64 *dst = (u64 *)stats64;
9678
9679         BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
9680         for (i = 0; i < n; i++)
9681                 dst[i] = src[i];
9682         /* zero out counters that only exist in rtnl_link_stats64 */
9683         memset((char *)stats64 + n * sizeof(u64), 0,
9684                sizeof(*stats64) - n * sizeof(u64));
9685 #endif
9686 }
9687 EXPORT_SYMBOL(netdev_stats_to_stats64);
9688
9689 /**
9690  *      dev_get_stats   - get network device statistics
9691  *      @dev: device to get statistics from
9692  *      @storage: place to store stats
9693  *
9694  *      Get network statistics from device. Return @storage.
9695  *      The device driver may provide its own method by setting
9696  *      dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
9697  *      otherwise the internal statistics structure is used.
9698  */
9699 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
9700                                         struct rtnl_link_stats64 *storage)
9701 {
9702         const struct net_device_ops *ops = dev->netdev_ops;
9703
9704         if (ops->ndo_get_stats64) {
9705                 memset(storage, 0, sizeof(*storage));
9706                 ops->ndo_get_stats64(dev, storage);
9707         } else if (ops->ndo_get_stats) {
9708                 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
9709         } else {
9710                 netdev_stats_to_stats64(storage, &dev->stats);
9711         }
9712         storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
9713         storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
9714         storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
9715         return storage;
9716 }
9717 EXPORT_SYMBOL(dev_get_stats);
9718
9719 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
9720 {
9721         struct netdev_queue *queue = dev_ingress_queue(dev);
9722
9723 #ifdef CONFIG_NET_CLS_ACT
9724         if (queue)
9725                 return queue;
9726         queue = kzalloc(sizeof(*queue), GFP_KERNEL);
9727         if (!queue)
9728                 return NULL;
9729         netdev_init_one_queue(dev, queue, NULL);
9730         RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
9731         queue->qdisc_sleeping = &noop_qdisc;
9732         rcu_assign_pointer(dev->ingress_queue, queue);
9733 #endif
9734         return queue;
9735 }
9736
9737 static const struct ethtool_ops default_ethtool_ops;
9738
9739 void netdev_set_default_ethtool_ops(struct net_device *dev,
9740                                     const struct ethtool_ops *ops)
9741 {
9742         if (dev->ethtool_ops == &default_ethtool_ops)
9743                 dev->ethtool_ops = ops;
9744 }
9745 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
9746
9747 void netdev_freemem(struct net_device *dev)
9748 {
9749         char *addr = (char *)dev - dev->padded;
9750
9751         kvfree(addr);
9752 }
9753
9754 /**
9755  * alloc_netdev_mqs - allocate network device
9756  * @sizeof_priv: size of private data to allocate space for
9757  * @name: device name format string
9758  * @name_assign_type: origin of device name
9759  * @setup: callback to initialize device
9760  * @txqs: the number of TX subqueues to allocate
9761  * @rxqs: the number of RX subqueues to allocate
9762  *
9763  * Allocates a struct net_device with private data area for driver use
9764  * and performs basic initialization.  Also allocates subqueue structs
9765  * for each queue on the device.
9766  */
9767 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
9768                 unsigned char name_assign_type,
9769                 void (*setup)(struct net_device *),
9770                 unsigned int txqs, unsigned int rxqs)
9771 {
9772         struct net_device *dev;
9773         unsigned int alloc_size;
9774         struct net_device *p;
9775
9776         BUG_ON(strlen(name) >= sizeof(dev->name));
9777
9778         if (txqs < 1) {
9779                 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
9780                 return NULL;
9781         }
9782
9783         if (rxqs < 1) {
9784                 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
9785                 return NULL;
9786         }
9787
9788         alloc_size = sizeof(struct net_device);
9789         if (sizeof_priv) {
9790                 /* ensure 32-byte alignment of private area */
9791                 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
9792                 alloc_size += sizeof_priv;
9793         }
9794         /* ensure 32-byte alignment of whole construct */
9795         alloc_size += NETDEV_ALIGN - 1;
9796
9797         p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
9798         if (!p)
9799                 return NULL;
9800
9801         dev = PTR_ALIGN(p, NETDEV_ALIGN);
9802         dev->padded = (char *)dev - (char *)p;
9803
9804         dev->pcpu_refcnt = alloc_percpu(int);
9805         if (!dev->pcpu_refcnt)
9806                 goto free_dev;
9807
9808         if (dev_addr_init(dev))
9809                 goto free_pcpu;
9810
9811         dev_mc_init(dev);
9812         dev_uc_init(dev);
9813
9814         dev_net_set(dev, &init_net);
9815
9816         netdev_register_lockdep_key(dev);
9817
9818         dev->gso_max_size = GSO_MAX_SIZE;
9819         dev->gso_max_segs = GSO_MAX_SEGS;
9820         dev->upper_level = 1;
9821         dev->lower_level = 1;
9822
9823         INIT_LIST_HEAD(&dev->napi_list);
9824         INIT_LIST_HEAD(&dev->unreg_list);
9825         INIT_LIST_HEAD(&dev->close_list);
9826         INIT_LIST_HEAD(&dev->link_watch_list);
9827         INIT_LIST_HEAD(&dev->adj_list.upper);
9828         INIT_LIST_HEAD(&dev->adj_list.lower);
9829         INIT_LIST_HEAD(&dev->ptype_all);
9830         INIT_LIST_HEAD(&dev->ptype_specific);
9831         INIT_LIST_HEAD(&dev->net_notifier_list);
9832 #ifdef CONFIG_NET_SCHED
9833         hash_init(dev->qdisc_hash);
9834 #endif
9835         dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
9836         setup(dev);
9837
9838         if (!dev->tx_queue_len) {
9839                 dev->priv_flags |= IFF_NO_QUEUE;
9840                 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
9841         }
9842
9843         dev->num_tx_queues = txqs;
9844         dev->real_num_tx_queues = txqs;
9845         if (netif_alloc_netdev_queues(dev))
9846                 goto free_all;
9847
9848         dev->num_rx_queues = rxqs;
9849         dev->real_num_rx_queues = rxqs;
9850         if (netif_alloc_rx_queues(dev))
9851                 goto free_all;
9852
9853         strcpy(dev->name, name);
9854         dev->name_assign_type = name_assign_type;
9855         dev->group = INIT_NETDEV_GROUP;
9856         if (!dev->ethtool_ops)
9857                 dev->ethtool_ops = &default_ethtool_ops;
9858
9859         nf_hook_ingress_init(dev);
9860
9861         return dev;
9862
9863 free_all:
9864         free_netdev(dev);
9865         return NULL;
9866
9867 free_pcpu:
9868         free_percpu(dev->pcpu_refcnt);
9869 free_dev:
9870         netdev_freemem(dev);
9871         return NULL;
9872 }
9873 EXPORT_SYMBOL(alloc_netdev_mqs);
9874
9875 /**
9876  * free_netdev - free network device
9877  * @dev: device
9878  *
9879  * This function does the last stage of destroying an allocated device
9880  * interface. The reference to the device object is released. If this
9881  * is the last reference then it will be freed.Must be called in process
9882  * context.
9883  */
9884 void free_netdev(struct net_device *dev)
9885 {
9886         struct napi_struct *p, *n;
9887
9888         might_sleep();
9889         netif_free_tx_queues(dev);
9890         netif_free_rx_queues(dev);
9891
9892         kfree(rcu_dereference_protected(dev->ingress_queue, 1));
9893
9894         /* Flush device addresses */
9895         dev_addr_flush(dev);
9896
9897         list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
9898                 netif_napi_del(p);
9899
9900         free_percpu(dev->pcpu_refcnt);
9901         dev->pcpu_refcnt = NULL;
9902         free_percpu(dev->xdp_bulkq);
9903         dev->xdp_bulkq = NULL;
9904
9905         netdev_unregister_lockdep_key(dev);
9906
9907         /*  Compatibility with error handling in drivers */
9908         if (dev->reg_state == NETREG_UNINITIALIZED) {
9909                 netdev_freemem(dev);
9910                 return;
9911         }
9912
9913         BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
9914         dev->reg_state = NETREG_RELEASED;
9915
9916         /* will free via device release */
9917         put_device(&dev->dev);
9918 }
9919 EXPORT_SYMBOL(free_netdev);
9920
9921 /**
9922  *      synchronize_net -  Synchronize with packet receive processing
9923  *
9924  *      Wait for packets currently being received to be done.
9925  *      Does not block later packets from starting.
9926  */
9927 void synchronize_net(void)
9928 {
9929         might_sleep();
9930         if (rtnl_is_locked())
9931                 synchronize_rcu_expedited();
9932         else
9933                 synchronize_rcu();
9934 }
9935 EXPORT_SYMBOL(synchronize_net);
9936
9937 /**
9938  *      unregister_netdevice_queue - remove device from the kernel
9939  *      @dev: device
9940  *      @head: list
9941  *
9942  *      This function shuts down a device interface and removes it
9943  *      from the kernel tables.
9944  *      If head not NULL, device is queued to be unregistered later.
9945  *
9946  *      Callers must hold the rtnl semaphore.  You may want
9947  *      unregister_netdev() instead of this.
9948  */
9949
9950 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
9951 {
9952         ASSERT_RTNL();
9953
9954         if (head) {
9955                 list_move_tail(&dev->unreg_list, head);
9956         } else {
9957                 rollback_registered(dev);
9958                 /* Finish processing unregister after unlock */
9959                 net_set_todo(dev);
9960         }
9961 }
9962 EXPORT_SYMBOL(unregister_netdevice_queue);
9963
9964 /**
9965  *      unregister_netdevice_many - unregister many devices
9966  *      @head: list of devices
9967  *
9968  *  Note: As most callers use a stack allocated list_head,
9969  *  we force a list_del() to make sure stack wont be corrupted later.
9970  */
9971 void unregister_netdevice_many(struct list_head *head)
9972 {
9973         struct net_device *dev;
9974
9975         if (!list_empty(head)) {
9976                 rollback_registered_many(head);
9977                 list_for_each_entry(dev, head, unreg_list)
9978                         net_set_todo(dev);
9979                 list_del(head);
9980         }
9981 }
9982 EXPORT_SYMBOL(unregister_netdevice_many);
9983
9984 /**
9985  *      unregister_netdev - remove device from the kernel
9986  *      @dev: device
9987  *
9988  *      This function shuts down a device interface and removes it
9989  *      from the kernel tables.
9990  *
9991  *      This is just a wrapper for unregister_netdevice that takes
9992  *      the rtnl semaphore.  In general you want to use this and not
9993  *      unregister_netdevice.
9994  */
9995 void unregister_netdev(struct net_device *dev)
9996 {
9997         rtnl_lock();
9998         unregister_netdevice(dev);
9999         rtnl_unlock();
10000 }
10001 EXPORT_SYMBOL(unregister_netdev);
10002
10003 /**
10004  *      dev_change_net_namespace - move device to different nethost namespace
10005  *      @dev: device
10006  *      @net: network namespace
10007  *      @pat: If not NULL name pattern to try if the current device name
10008  *            is already taken in the destination network namespace.
10009  *
10010  *      This function shuts down a device interface and moves it
10011  *      to a new network namespace. On success 0 is returned, on
10012  *      a failure a netagive errno code is returned.
10013  *
10014  *      Callers must hold the rtnl semaphore.
10015  */
10016
10017 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
10018 {
10019         int err, new_nsid, new_ifindex;
10020
10021         ASSERT_RTNL();
10022
10023         /* Don't allow namespace local devices to be moved. */
10024         err = -EINVAL;
10025         if (dev->features & NETIF_F_NETNS_LOCAL)
10026                 goto out;
10027
10028         /* Ensure the device has been registrered */
10029         if (dev->reg_state != NETREG_REGISTERED)
10030                 goto out;
10031
10032         /* Get out if there is nothing todo */
10033         err = 0;
10034         if (net_eq(dev_net(dev), net))
10035                 goto out;
10036
10037         /* Pick the destination device name, and ensure
10038          * we can use it in the destination network namespace.
10039          */
10040         err = -EEXIST;
10041         if (__dev_get_by_name(net, dev->name)) {
10042                 /* We get here if we can't use the current device name */
10043                 if (!pat)
10044                         goto out;
10045                 err = dev_get_valid_name(net, dev, pat);
10046                 if (err < 0)
10047                         goto out;
10048         }
10049
10050         /*
10051          * And now a mini version of register_netdevice unregister_netdevice.
10052          */
10053
10054         /* If device is running close it first. */
10055         dev_close(dev);
10056
10057         /* And unlink it from device chain */
10058         unlist_netdevice(dev);
10059
10060         synchronize_net();
10061
10062         /* Shutdown queueing discipline. */
10063         dev_shutdown(dev);
10064
10065         /* Notify protocols, that we are about to destroy
10066          * this device. They should clean all the things.
10067          *
10068          * Note that dev->reg_state stays at NETREG_REGISTERED.
10069          * This is wanted because this way 8021q and macvlan know
10070          * the device is just moving and can keep their slaves up.
10071          */
10072         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10073         rcu_barrier();
10074
10075         new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
10076         /* If there is an ifindex conflict assign a new one */
10077         if (__dev_get_by_index(net, dev->ifindex))
10078                 new_ifindex = dev_new_index(net);
10079         else
10080                 new_ifindex = dev->ifindex;
10081
10082         rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
10083                             new_ifindex);
10084
10085         /*
10086          *      Flush the unicast and multicast chains
10087          */
10088         dev_uc_flush(dev);
10089         dev_mc_flush(dev);
10090
10091         /* Send a netdev-removed uevent to the old namespace */
10092         kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
10093         netdev_adjacent_del_links(dev);
10094
10095         /* Move per-net netdevice notifiers that are following the netdevice */
10096         move_netdevice_notifiers_dev_net(dev, net);
10097
10098         /* Actually switch the network namespace */
10099         dev_net_set(dev, net);
10100         dev->ifindex = new_ifindex;
10101
10102         /* Send a netdev-add uevent to the new namespace */
10103         kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
10104         netdev_adjacent_add_links(dev);
10105
10106         /* Fixup kobjects */
10107         err = device_rename(&dev->dev, dev->name);
10108         WARN_ON(err);
10109
10110         /* Add the device back in the hashes */
10111         list_netdevice(dev);
10112
10113         /* Notify protocols, that a new device appeared. */
10114         call_netdevice_notifiers(NETDEV_REGISTER, dev);
10115
10116         /*
10117          *      Prevent userspace races by waiting until the network
10118          *      device is fully setup before sending notifications.
10119          */
10120         rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
10121
10122         synchronize_net();
10123         err = 0;
10124 out:
10125         return err;
10126 }
10127 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
10128
10129 static int dev_cpu_dead(unsigned int oldcpu)
10130 {
10131         struct sk_buff **list_skb;
10132         struct sk_buff *skb;
10133         unsigned int cpu;
10134         struct softnet_data *sd, *oldsd, *remsd = NULL;
10135
10136         local_irq_disable();
10137         cpu = smp_processor_id();
10138         sd = &per_cpu(softnet_data, cpu);
10139         oldsd = &per_cpu(softnet_data, oldcpu);
10140
10141         /* Find end of our completion_queue. */
10142         list_skb = &sd->completion_queue;
10143         while (*list_skb)
10144                 list_skb = &(*list_skb)->next;
10145         /* Append completion queue from offline CPU. */
10146         *list_skb = oldsd->completion_queue;
10147         oldsd->completion_queue = NULL;
10148
10149         /* Append output queue from offline CPU. */
10150         if (oldsd->output_queue) {
10151                 *sd->output_queue_tailp = oldsd->output_queue;
10152                 sd->output_queue_tailp = oldsd->output_queue_tailp;
10153                 oldsd->output_queue = NULL;
10154                 oldsd->output_queue_tailp = &oldsd->output_queue;
10155         }
10156         /* Append NAPI poll list from offline CPU, with one exception :
10157          * process_backlog() must be called by cpu owning percpu backlog.
10158          * We properly handle process_queue & input_pkt_queue later.
10159          */
10160         while (!list_empty(&oldsd->poll_list)) {
10161                 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
10162                                                             struct napi_struct,
10163                                                             poll_list);
10164
10165                 list_del_init(&napi->poll_list);
10166                 if (napi->poll == process_backlog)
10167                         napi->state = 0;
10168                 else
10169                         ____napi_schedule(sd, napi);
10170         }
10171
10172         raise_softirq_irqoff(NET_TX_SOFTIRQ);
10173         local_irq_enable();
10174
10175 #ifdef CONFIG_RPS
10176         remsd = oldsd->rps_ipi_list;
10177         oldsd->rps_ipi_list = NULL;
10178 #endif
10179         /* send out pending IPI's on offline CPU */
10180         net_rps_send_ipi(remsd);
10181
10182         /* Process offline CPU's input_pkt_queue */
10183         while ((skb = __skb_dequeue(&oldsd->process_queue))) {
10184                 netif_rx_ni(skb);
10185                 input_queue_head_incr(oldsd);
10186         }
10187         while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
10188                 netif_rx_ni(skb);
10189                 input_queue_head_incr(oldsd);
10190         }
10191
10192         return 0;
10193 }
10194
10195 /**
10196  *      netdev_increment_features - increment feature set by one
10197  *      @all: current feature set
10198  *      @one: new feature set
10199  *      @mask: mask feature set
10200  *
10201  *      Computes a new feature set after adding a device with feature set
10202  *      @one to the master device with current feature set @all.  Will not
10203  *      enable anything that is off in @mask. Returns the new feature set.
10204  */
10205 netdev_features_t netdev_increment_features(netdev_features_t all,
10206         netdev_features_t one, netdev_features_t mask)
10207 {
10208         if (mask & NETIF_F_HW_CSUM)
10209                 mask |= NETIF_F_CSUM_MASK;
10210         mask |= NETIF_F_VLAN_CHALLENGED;
10211
10212         all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
10213         all &= one | ~NETIF_F_ALL_FOR_ALL;
10214
10215         /* If one device supports hw checksumming, set for all. */
10216         if (all & NETIF_F_HW_CSUM)
10217                 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
10218
10219         return all;
10220 }
10221 EXPORT_SYMBOL(netdev_increment_features);
10222
10223 static struct hlist_head * __net_init netdev_create_hash(void)
10224 {
10225         int i;
10226         struct hlist_head *hash;
10227
10228         hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
10229         if (hash != NULL)
10230                 for (i = 0; i < NETDEV_HASHENTRIES; i++)
10231                         INIT_HLIST_HEAD(&hash[i]);
10232
10233         return hash;
10234 }
10235
10236 /* Initialize per network namespace state */
10237 static int __net_init netdev_init(struct net *net)
10238 {
10239         BUILD_BUG_ON(GRO_HASH_BUCKETS >
10240                      8 * sizeof_field(struct napi_struct, gro_bitmask));
10241
10242         if (net != &init_net)
10243                 INIT_LIST_HEAD(&net->dev_base_head);
10244
10245         net->dev_name_head = netdev_create_hash();
10246         if (net->dev_name_head == NULL)
10247                 goto err_name;
10248
10249         net->dev_index_head = netdev_create_hash();
10250         if (net->dev_index_head == NULL)
10251                 goto err_idx;
10252
10253         RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
10254
10255         return 0;
10256
10257 err_idx:
10258         kfree(net->dev_name_head);
10259 err_name:
10260         return -ENOMEM;
10261 }
10262
10263 /**
10264  *      netdev_drivername - network driver for the device
10265  *      @dev: network device
10266  *
10267  *      Determine network driver for device.
10268  */
10269 const char *netdev_drivername(const struct net_device *dev)
10270 {
10271         const struct device_driver *driver;
10272         const struct device *parent;
10273         const char *empty = "";
10274
10275         parent = dev->dev.parent;
10276         if (!parent)
10277                 return empty;
10278
10279         driver = parent->driver;
10280         if (driver && driver->name)
10281                 return driver->name;
10282         return empty;
10283 }
10284
10285 static void __netdev_printk(const char *level, const struct net_device *dev,
10286                             struct va_format *vaf)
10287 {
10288         if (dev && dev->dev.parent) {
10289                 dev_printk_emit(level[1] - '0',
10290                                 dev->dev.parent,
10291                                 "%s %s %s%s: %pV",
10292                                 dev_driver_string(dev->dev.parent),
10293                                 dev_name(dev->dev.parent),
10294                                 netdev_name(dev), netdev_reg_state(dev),
10295                                 vaf);
10296         } else if (dev) {
10297                 printk("%s%s%s: %pV",
10298                        level, netdev_name(dev), netdev_reg_state(dev), vaf);
10299         } else {
10300                 printk("%s(NULL net_device): %pV", level, vaf);
10301         }
10302 }
10303
10304 void netdev_printk(const char *level, const struct net_device *dev,
10305                    const char *format, ...)
10306 {
10307         struct va_format vaf;
10308         va_list args;
10309
10310         va_start(args, format);
10311
10312         vaf.fmt = format;
10313         vaf.va = &args;
10314
10315         __netdev_printk(level, dev, &vaf);
10316
10317         va_end(args);
10318 }
10319 EXPORT_SYMBOL(netdev_printk);
10320
10321 #define define_netdev_printk_level(func, level)                 \
10322 void func(const struct net_device *dev, const char *fmt, ...)   \
10323 {                                                               \
10324         struct va_format vaf;                                   \
10325         va_list args;                                           \
10326                                                                 \
10327         va_start(args, fmt);                                    \
10328                                                                 \
10329         vaf.fmt = fmt;                                          \
10330         vaf.va = &args;                                         \
10331                                                                 \
10332         __netdev_printk(level, dev, &vaf);                      \
10333                                                                 \
10334         va_end(args);                                           \
10335 }                                                               \
10336 EXPORT_SYMBOL(func);
10337
10338 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
10339 define_netdev_printk_level(netdev_alert, KERN_ALERT);
10340 define_netdev_printk_level(netdev_crit, KERN_CRIT);
10341 define_netdev_printk_level(netdev_err, KERN_ERR);
10342 define_netdev_printk_level(netdev_warn, KERN_WARNING);
10343 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
10344 define_netdev_printk_level(netdev_info, KERN_INFO);
10345
10346 static void __net_exit netdev_exit(struct net *net)
10347 {
10348         kfree(net->dev_name_head);
10349         kfree(net->dev_index_head);
10350         if (net != &init_net)
10351                 WARN_ON_ONCE(!list_empty(&net->dev_base_head));
10352 }
10353
10354 static struct pernet_operations __net_initdata netdev_net_ops = {
10355         .init = netdev_init,
10356         .exit = netdev_exit,
10357 };
10358
10359 static void __net_exit default_device_exit(struct net *net)
10360 {
10361         struct net_device *dev, *aux;
10362         /*
10363          * Push all migratable network devices back to the
10364          * initial network namespace
10365          */
10366         rtnl_lock();
10367         for_each_netdev_safe(net, dev, aux) {
10368                 int err;
10369                 char fb_name[IFNAMSIZ];
10370
10371                 /* Ignore unmoveable devices (i.e. loopback) */
10372                 if (dev->features & NETIF_F_NETNS_LOCAL)
10373                         continue;
10374
10375                 /* Leave virtual devices for the generic cleanup */
10376                 if (dev->rtnl_link_ops)
10377                         continue;
10378
10379                 /* Push remaining network devices to init_net */
10380                 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
10381                 if (__dev_get_by_name(&init_net, fb_name))
10382                         snprintf(fb_name, IFNAMSIZ, "dev%%d");
10383                 err = dev_change_net_namespace(dev, &init_net, fb_name);
10384                 if (err) {
10385                         pr_emerg("%s: failed to move %s to init_net: %d\n",
10386                                  __func__, dev->name, err);
10387                         BUG();
10388                 }
10389         }
10390         rtnl_unlock();
10391 }
10392
10393 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
10394 {
10395         /* Return with the rtnl_lock held when there are no network
10396          * devices unregistering in any network namespace in net_list.
10397          */
10398         struct net *net;
10399         bool unregistering;
10400         DEFINE_WAIT_FUNC(wait, woken_wake_function);
10401
10402         add_wait_queue(&netdev_unregistering_wq, &wait);
10403         for (;;) {
10404                 unregistering = false;
10405                 rtnl_lock();
10406                 list_for_each_entry(net, net_list, exit_list) {
10407                         if (net->dev_unreg_count > 0) {
10408                                 unregistering = true;
10409                                 break;
10410                         }
10411                 }
10412                 if (!unregistering)
10413                         break;
10414                 __rtnl_unlock();
10415
10416                 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
10417         }
10418         remove_wait_queue(&netdev_unregistering_wq, &wait);
10419 }
10420
10421 static void __net_exit default_device_exit_batch(struct list_head *net_list)
10422 {
10423         /* At exit all network devices most be removed from a network
10424          * namespace.  Do this in the reverse order of registration.
10425          * Do this across as many network namespaces as possible to
10426          * improve batching efficiency.
10427          */
10428         struct net_device *dev;
10429         struct net *net;
10430         LIST_HEAD(dev_kill_list);
10431
10432         /* To prevent network device cleanup code from dereferencing
10433          * loopback devices or network devices that have been freed
10434          * wait here for all pending unregistrations to complete,
10435          * before unregistring the loopback device and allowing the
10436          * network namespace be freed.
10437          *
10438          * The netdev todo list containing all network devices
10439          * unregistrations that happen in default_device_exit_batch
10440          * will run in the rtnl_unlock() at the end of
10441          * default_device_exit_batch.
10442          */
10443         rtnl_lock_unregistering(net_list);
10444         list_for_each_entry(net, net_list, exit_list) {
10445                 for_each_netdev_reverse(net, dev) {
10446                         if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
10447                                 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
10448                         else
10449                                 unregister_netdevice_queue(dev, &dev_kill_list);
10450                 }
10451         }
10452         unregister_netdevice_many(&dev_kill_list);
10453         rtnl_unlock();
10454 }
10455
10456 static struct pernet_operations __net_initdata default_device_ops = {
10457         .exit = default_device_exit,
10458         .exit_batch = default_device_exit_batch,
10459 };
10460
10461 /*
10462  *      Initialize the DEV module. At boot time this walks the device list and
10463  *      unhooks any devices that fail to initialise (normally hardware not
10464  *      present) and leaves us with a valid list of present and active devices.
10465  *
10466  */
10467
10468 /*
10469  *       This is called single threaded during boot, so no need
10470  *       to take the rtnl semaphore.
10471  */
10472 static int __init net_dev_init(void)
10473 {
10474         int i, rc = -ENOMEM;
10475
10476         BUG_ON(!dev_boot_phase);
10477
10478         if (dev_proc_init())
10479                 goto out;
10480
10481         if (netdev_kobject_init())
10482                 goto out;
10483
10484         INIT_LIST_HEAD(&ptype_all);
10485         for (i = 0; i < PTYPE_HASH_SIZE; i++)
10486                 INIT_LIST_HEAD(&ptype_base[i]);
10487
10488         INIT_LIST_HEAD(&offload_base);
10489
10490         if (register_pernet_subsys(&netdev_net_ops))
10491                 goto out;
10492
10493         /*
10494          *      Initialise the packet receive queues.
10495          */
10496
10497         for_each_possible_cpu(i) {
10498                 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
10499                 struct softnet_data *sd = &per_cpu(softnet_data, i);
10500
10501                 INIT_WORK(flush, flush_backlog);
10502
10503                 skb_queue_head_init(&sd->input_pkt_queue);
10504                 skb_queue_head_init(&sd->process_queue);
10505 #ifdef CONFIG_XFRM_OFFLOAD
10506                 skb_queue_head_init(&sd->xfrm_backlog);
10507 #endif
10508                 INIT_LIST_HEAD(&sd->poll_list);
10509                 sd->output_queue_tailp = &sd->output_queue;
10510 #ifdef CONFIG_RPS
10511                 sd->csd.func = rps_trigger_softirq;
10512                 sd->csd.info = sd;
10513                 sd->cpu = i;
10514 #endif
10515
10516                 init_gro_hash(&sd->backlog);
10517                 sd->backlog.poll = process_backlog;
10518                 sd->backlog.weight = weight_p;
10519         }
10520
10521         dev_boot_phase = 0;
10522
10523         /* The loopback device is special if any other network devices
10524          * is present in a network namespace the loopback device must
10525          * be present. Since we now dynamically allocate and free the
10526          * loopback device ensure this invariant is maintained by
10527          * keeping the loopback device as the first device on the
10528          * list of network devices.  Ensuring the loopback devices
10529          * is the first device that appears and the last network device
10530          * that disappears.
10531          */
10532         if (register_pernet_device(&loopback_net_ops))
10533                 goto out;
10534
10535         if (register_pernet_device(&default_device_ops))
10536                 goto out;
10537
10538         open_softirq(NET_TX_SOFTIRQ, net_tx_action);
10539         open_softirq(NET_RX_SOFTIRQ, net_rx_action);
10540
10541         rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
10542                                        NULL, dev_cpu_dead);
10543         WARN_ON(rc < 0);
10544         rc = 0;
10545 out:
10546         return rc;
10547 }
10548
10549 subsys_initcall(net_dev_init);