OSDN Git Service

net: core: dev: Add extack argument to dev_change_flags()
[uclinux-h8/linux.git] / net / core / dev.c
1 /*
2  *      NET3    Protocol independent device support routines.
3  *
4  *              This program is free software; you can redistribute it and/or
5  *              modify it under the terms of the GNU General Public License
6  *              as published by the Free Software Foundation; either version
7  *              2 of the License, or (at your option) any later version.
8  *
9  *      Derived from the non IP parts of dev.c 1.0.19
10  *              Authors:        Ross Biro
11  *                              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *                              Mark Evans, <evansmp@uhura.aston.ac.uk>
13  *
14  *      Additional Authors:
15  *              Florian la Roche <rzsfl@rz.uni-sb.de>
16  *              Alan Cox <gw4pts@gw4pts.ampr.org>
17  *              David Hinds <dahinds@users.sourceforge.net>
18  *              Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19  *              Adam Sulmicki <adam@cfar.umd.edu>
20  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
21  *
22  *      Changes:
23  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
24  *                                      to 2 if register_netdev gets called
25  *                                      before net_dev_init & also removed a
26  *                                      few lines of code in the process.
27  *              Alan Cox        :       device private ioctl copies fields back.
28  *              Alan Cox        :       Transmit queue code does relevant
29  *                                      stunts to keep the queue safe.
30  *              Alan Cox        :       Fixed double lock.
31  *              Alan Cox        :       Fixed promisc NULL pointer trap
32  *              ????????        :       Support the full private ioctl range
33  *              Alan Cox        :       Moved ioctl permission check into
34  *                                      drivers
35  *              Tim Kordas      :       SIOCADDMULTI/SIOCDELMULTI
36  *              Alan Cox        :       100 backlog just doesn't cut it when
37  *                                      you start doing multicast video 8)
38  *              Alan Cox        :       Rewrote net_bh and list manager.
39  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
40  *              Alan Cox        :       Took out transmit every packet pass
41  *                                      Saved a few bytes in the ioctl handler
42  *              Alan Cox        :       Network driver sets packet type before
43  *                                      calling netif_rx. Saves a function
44  *                                      call a packet.
45  *              Alan Cox        :       Hashed net_bh()
46  *              Richard Kooijman:       Timestamp fixes.
47  *              Alan Cox        :       Wrong field in SIOCGIFDSTADDR
48  *              Alan Cox        :       Device lock protection.
49  *              Alan Cox        :       Fixed nasty side effect of device close
50  *                                      changes.
51  *              Rudi Cilibrasi  :       Pass the right thing to
52  *                                      set_mac_address()
53  *              Dave Miller     :       32bit quantity for the device lock to
54  *                                      make it work out on a Sparc.
55  *              Bjorn Ekwall    :       Added KERNELD hack.
56  *              Alan Cox        :       Cleaned up the backlog initialise.
57  *              Craig Metz      :       SIOCGIFCONF fix if space for under
58  *                                      1 device.
59  *          Thomas Bogendoerfer :       Return ENODEV for dev_open, if there
60  *                                      is no device open function.
61  *              Andi Kleen      :       Fix error reporting for SIOCGIFCONF
62  *          Michael Chastain    :       Fix signed/unsigned for SIOCGIFCONF
63  *              Cyrus Durgin    :       Cleaned for KMOD
64  *              Adam Sulmicki   :       Bug Fix : Network Device Unload
65  *                                      A network device unload needs to purge
66  *                                      the backlog queue.
67  *      Paul Rusty Russell      :       SIOCSIFNAME
68  *              Pekka Riikonen  :       Netdev boot-time settings code
69  *              Andrew Morton   :       Make unregister_netdevice wait
70  *                                      indefinitely on dev->refcnt
71  *              J Hadi Salim    :       - Backlog queue sampling
72  *                                      - netif_rx() feedback
73  */
74
75 #include <linux/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/sched/mm.h>
85 #include <linux/mutex.h>
86 #include <linux/string.h>
87 #include <linux/mm.h>
88 #include <linux/socket.h>
89 #include <linux/sockios.h>
90 #include <linux/errno.h>
91 #include <linux/interrupt.h>
92 #include <linux/if_ether.h>
93 #include <linux/netdevice.h>
94 #include <linux/etherdevice.h>
95 #include <linux/ethtool.h>
96 #include <linux/skbuff.h>
97 #include <linux/bpf.h>
98 #include <linux/bpf_trace.h>
99 #include <net/net_namespace.h>
100 #include <net/sock.h>
101 #include <net/busy_poll.h>
102 #include <linux/rtnetlink.h>
103 #include <linux/stat.h>
104 #include <net/dst.h>
105 #include <net/dst_metadata.h>
106 #include <net/pkt_sched.h>
107 #include <net/pkt_cls.h>
108 #include <net/checksum.h>
109 #include <net/xfrm.h>
110 #include <linux/highmem.h>
111 #include <linux/init.h>
112 #include <linux/module.h>
113 #include <linux/netpoll.h>
114 #include <linux/rcupdate.h>
115 #include <linux/delay.h>
116 #include <net/iw_handler.h>
117 #include <asm/current.h>
118 #include <linux/audit.h>
119 #include <linux/dmaengine.h>
120 #include <linux/err.h>
121 #include <linux/ctype.h>
122 #include <linux/if_arp.h>
123 #include <linux/if_vlan.h>
124 #include <linux/ip.h>
125 #include <net/ip.h>
126 #include <net/mpls.h>
127 #include <linux/ipv6.h>
128 #include <linux/in.h>
129 #include <linux/jhash.h>
130 #include <linux/random.h>
131 #include <trace/events/napi.h>
132 #include <trace/events/net.h>
133 #include <trace/events/skb.h>
134 #include <linux/pci.h>
135 #include <linux/inetdevice.h>
136 #include <linux/cpu_rmap.h>
137 #include <linux/static_key.h>
138 #include <linux/hashtable.h>
139 #include <linux/vmalloc.h>
140 #include <linux/if_macvlan.h>
141 #include <linux/errqueue.h>
142 #include <linux/hrtimer.h>
143 #include <linux/netfilter_ingress.h>
144 #include <linux/crash_dump.h>
145 #include <linux/sctp.h>
146 #include <net/udp_tunnel.h>
147 #include <linux/net_namespace.h>
148
149 #include "net-sysfs.h"
150
151 #define MAX_GRO_SKBS 8
152
153 /* This should be increased if a protocol with a bigger head is added. */
154 #define GRO_MAX_HEAD (MAX_HEADER + 128)
155
156 static DEFINE_SPINLOCK(ptype_lock);
157 static DEFINE_SPINLOCK(offload_lock);
158 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
159 struct list_head ptype_all __read_mostly;       /* Taps */
160 static struct list_head offload_base __read_mostly;
161
162 static int netif_rx_internal(struct sk_buff *skb);
163 static int call_netdevice_notifiers_info(unsigned long val,
164                                          struct netdev_notifier_info *info);
165 static struct napi_struct *napi_by_id(unsigned int napi_id);
166
167 /*
168  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
169  * semaphore.
170  *
171  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
172  *
173  * Writers must hold the rtnl semaphore while they loop through the
174  * dev_base_head list, and hold dev_base_lock for writing when they do the
175  * actual updates.  This allows pure readers to access the list even
176  * while a writer is preparing to update it.
177  *
178  * To put it another way, dev_base_lock is held for writing only to
179  * protect against pure readers; the rtnl semaphore provides the
180  * protection against other writers.
181  *
182  * See, for example usages, register_netdevice() and
183  * unregister_netdevice(), which must be called with the rtnl
184  * semaphore held.
185  */
186 DEFINE_RWLOCK(dev_base_lock);
187 EXPORT_SYMBOL(dev_base_lock);
188
189 static DEFINE_MUTEX(ifalias_mutex);
190
191 /* protects napi_hash addition/deletion and napi_gen_id */
192 static DEFINE_SPINLOCK(napi_hash_lock);
193
194 static unsigned int napi_gen_id = NR_CPUS;
195 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
196
197 static seqcount_t devnet_rename_seq;
198
199 static inline void dev_base_seq_inc(struct net *net)
200 {
201         while (++net->dev_base_seq == 0)
202                 ;
203 }
204
205 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
206 {
207         unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
208
209         return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
210 }
211
212 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
213 {
214         return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
215 }
216
217 static inline void rps_lock(struct softnet_data *sd)
218 {
219 #ifdef CONFIG_RPS
220         spin_lock(&sd->input_pkt_queue.lock);
221 #endif
222 }
223
224 static inline void rps_unlock(struct softnet_data *sd)
225 {
226 #ifdef CONFIG_RPS
227         spin_unlock(&sd->input_pkt_queue.lock);
228 #endif
229 }
230
231 /* Device list insertion */
232 static void list_netdevice(struct net_device *dev)
233 {
234         struct net *net = dev_net(dev);
235
236         ASSERT_RTNL();
237
238         write_lock_bh(&dev_base_lock);
239         list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
240         hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
241         hlist_add_head_rcu(&dev->index_hlist,
242                            dev_index_hash(net, dev->ifindex));
243         write_unlock_bh(&dev_base_lock);
244
245         dev_base_seq_inc(net);
246 }
247
248 /* Device list removal
249  * caller must respect a RCU grace period before freeing/reusing dev
250  */
251 static void unlist_netdevice(struct net_device *dev)
252 {
253         ASSERT_RTNL();
254
255         /* Unlink dev from the device chain */
256         write_lock_bh(&dev_base_lock);
257         list_del_rcu(&dev->dev_list);
258         hlist_del_rcu(&dev->name_hlist);
259         hlist_del_rcu(&dev->index_hlist);
260         write_unlock_bh(&dev_base_lock);
261
262         dev_base_seq_inc(dev_net(dev));
263 }
264
265 /*
266  *      Our notifier list
267  */
268
269 static RAW_NOTIFIER_HEAD(netdev_chain);
270
271 /*
272  *      Device drivers call our routines to queue packets here. We empty the
273  *      queue in the local softnet handler.
274  */
275
276 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
277 EXPORT_PER_CPU_SYMBOL(softnet_data);
278
279 #ifdef CONFIG_LOCKDEP
280 /*
281  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
282  * according to dev->type
283  */
284 static const unsigned short netdev_lock_type[] = {
285          ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
286          ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
287          ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
288          ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
289          ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
290          ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
291          ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
292          ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
293          ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
294          ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
295          ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
296          ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
297          ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
298          ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
299          ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
300
301 static const char *const netdev_lock_name[] = {
302         "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
303         "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
304         "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
305         "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
306         "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
307         "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
308         "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
309         "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
310         "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
311         "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
312         "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
313         "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
314         "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
315         "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
316         "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
317
318 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
319 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
320
321 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
322 {
323         int i;
324
325         for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
326                 if (netdev_lock_type[i] == dev_type)
327                         return i;
328         /* the last key is used by default */
329         return ARRAY_SIZE(netdev_lock_type) - 1;
330 }
331
332 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
333                                                  unsigned short dev_type)
334 {
335         int i;
336
337         i = netdev_lock_pos(dev_type);
338         lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
339                                    netdev_lock_name[i]);
340 }
341
342 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
343 {
344         int i;
345
346         i = netdev_lock_pos(dev->type);
347         lockdep_set_class_and_name(&dev->addr_list_lock,
348                                    &netdev_addr_lock_key[i],
349                                    netdev_lock_name[i]);
350 }
351 #else
352 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
353                                                  unsigned short dev_type)
354 {
355 }
356 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
357 {
358 }
359 #endif
360
361 /*******************************************************************************
362  *
363  *              Protocol management and registration routines
364  *
365  *******************************************************************************/
366
367
368 /*
369  *      Add a protocol ID to the list. Now that the input handler is
370  *      smarter we can dispense with all the messy stuff that used to be
371  *      here.
372  *
373  *      BEWARE!!! Protocol handlers, mangling input packets,
374  *      MUST BE last in hash buckets and checking protocol handlers
375  *      MUST start from promiscuous ptype_all chain in net_bh.
376  *      It is true now, do not change it.
377  *      Explanation follows: if protocol handler, mangling packet, will
378  *      be the first on list, it is not able to sense, that packet
379  *      is cloned and should be copied-on-write, so that it will
380  *      change it and subsequent readers will get broken packet.
381  *                                                      --ANK (980803)
382  */
383
384 static inline struct list_head *ptype_head(const struct packet_type *pt)
385 {
386         if (pt->type == htons(ETH_P_ALL))
387                 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
388         else
389                 return pt->dev ? &pt->dev->ptype_specific :
390                                  &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
391 }
392
393 /**
394  *      dev_add_pack - add packet handler
395  *      @pt: packet type declaration
396  *
397  *      Add a protocol handler to the networking stack. The passed &packet_type
398  *      is linked into kernel lists and may not be freed until it has been
399  *      removed from the kernel lists.
400  *
401  *      This call does not sleep therefore it can not
402  *      guarantee all CPU's that are in middle of receiving packets
403  *      will see the new packet type (until the next received packet).
404  */
405
406 void dev_add_pack(struct packet_type *pt)
407 {
408         struct list_head *head = ptype_head(pt);
409
410         spin_lock(&ptype_lock);
411         list_add_rcu(&pt->list, head);
412         spin_unlock(&ptype_lock);
413 }
414 EXPORT_SYMBOL(dev_add_pack);
415
416 /**
417  *      __dev_remove_pack        - remove packet handler
418  *      @pt: packet type declaration
419  *
420  *      Remove a protocol handler that was previously added to the kernel
421  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
422  *      from the kernel lists and can be freed or reused once this function
423  *      returns.
424  *
425  *      The packet type might still be in use by receivers
426  *      and must not be freed until after all the CPU's have gone
427  *      through a quiescent state.
428  */
429 void __dev_remove_pack(struct packet_type *pt)
430 {
431         struct list_head *head = ptype_head(pt);
432         struct packet_type *pt1;
433
434         spin_lock(&ptype_lock);
435
436         list_for_each_entry(pt1, head, list) {
437                 if (pt == pt1) {
438                         list_del_rcu(&pt->list);
439                         goto out;
440                 }
441         }
442
443         pr_warn("dev_remove_pack: %p not found\n", pt);
444 out:
445         spin_unlock(&ptype_lock);
446 }
447 EXPORT_SYMBOL(__dev_remove_pack);
448
449 /**
450  *      dev_remove_pack  - remove packet handler
451  *      @pt: packet type declaration
452  *
453  *      Remove a protocol handler that was previously added to the kernel
454  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
455  *      from the kernel lists and can be freed or reused once this function
456  *      returns.
457  *
458  *      This call sleeps to guarantee that no CPU is looking at the packet
459  *      type after return.
460  */
461 void dev_remove_pack(struct packet_type *pt)
462 {
463         __dev_remove_pack(pt);
464
465         synchronize_net();
466 }
467 EXPORT_SYMBOL(dev_remove_pack);
468
469
470 /**
471  *      dev_add_offload - register offload handlers
472  *      @po: protocol offload declaration
473  *
474  *      Add protocol offload handlers to the networking stack. The passed
475  *      &proto_offload is linked into kernel lists and may not be freed until
476  *      it has been removed from the kernel lists.
477  *
478  *      This call does not sleep therefore it can not
479  *      guarantee all CPU's that are in middle of receiving packets
480  *      will see the new offload handlers (until the next received packet).
481  */
482 void dev_add_offload(struct packet_offload *po)
483 {
484         struct packet_offload *elem;
485
486         spin_lock(&offload_lock);
487         list_for_each_entry(elem, &offload_base, list) {
488                 if (po->priority < elem->priority)
489                         break;
490         }
491         list_add_rcu(&po->list, elem->list.prev);
492         spin_unlock(&offload_lock);
493 }
494 EXPORT_SYMBOL(dev_add_offload);
495
496 /**
497  *      __dev_remove_offload     - remove offload handler
498  *      @po: packet offload declaration
499  *
500  *      Remove a protocol offload handler that was previously added to the
501  *      kernel offload handlers by dev_add_offload(). The passed &offload_type
502  *      is removed from the kernel lists and can be freed or reused once this
503  *      function returns.
504  *
505  *      The packet type might still be in use by receivers
506  *      and must not be freed until after all the CPU's have gone
507  *      through a quiescent state.
508  */
509 static void __dev_remove_offload(struct packet_offload *po)
510 {
511         struct list_head *head = &offload_base;
512         struct packet_offload *po1;
513
514         spin_lock(&offload_lock);
515
516         list_for_each_entry(po1, head, list) {
517                 if (po == po1) {
518                         list_del_rcu(&po->list);
519                         goto out;
520                 }
521         }
522
523         pr_warn("dev_remove_offload: %p not found\n", po);
524 out:
525         spin_unlock(&offload_lock);
526 }
527
528 /**
529  *      dev_remove_offload       - remove packet offload handler
530  *      @po: packet offload declaration
531  *
532  *      Remove a packet offload handler that was previously added to the kernel
533  *      offload handlers by dev_add_offload(). The passed &offload_type is
534  *      removed from the kernel lists and can be freed or reused once this
535  *      function returns.
536  *
537  *      This call sleeps to guarantee that no CPU is looking at the packet
538  *      type after return.
539  */
540 void dev_remove_offload(struct packet_offload *po)
541 {
542         __dev_remove_offload(po);
543
544         synchronize_net();
545 }
546 EXPORT_SYMBOL(dev_remove_offload);
547
548 /******************************************************************************
549  *
550  *                    Device Boot-time Settings Routines
551  *
552  ******************************************************************************/
553
554 /* Boot time configuration table */
555 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
556
557 /**
558  *      netdev_boot_setup_add   - add new setup entry
559  *      @name: name of the device
560  *      @map: configured settings for the device
561  *
562  *      Adds new setup entry to the dev_boot_setup list.  The function
563  *      returns 0 on error and 1 on success.  This is a generic routine to
564  *      all netdevices.
565  */
566 static int netdev_boot_setup_add(char *name, struct ifmap *map)
567 {
568         struct netdev_boot_setup *s;
569         int i;
570
571         s = dev_boot_setup;
572         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
573                 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
574                         memset(s[i].name, 0, sizeof(s[i].name));
575                         strlcpy(s[i].name, name, IFNAMSIZ);
576                         memcpy(&s[i].map, map, sizeof(s[i].map));
577                         break;
578                 }
579         }
580
581         return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
582 }
583
584 /**
585  * netdev_boot_setup_check      - check boot time settings
586  * @dev: the netdevice
587  *
588  * Check boot time settings for the device.
589  * The found settings are set for the device to be used
590  * later in the device probing.
591  * Returns 0 if no settings found, 1 if they are.
592  */
593 int netdev_boot_setup_check(struct net_device *dev)
594 {
595         struct netdev_boot_setup *s = dev_boot_setup;
596         int i;
597
598         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
599                 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
600                     !strcmp(dev->name, s[i].name)) {
601                         dev->irq = s[i].map.irq;
602                         dev->base_addr = s[i].map.base_addr;
603                         dev->mem_start = s[i].map.mem_start;
604                         dev->mem_end = s[i].map.mem_end;
605                         return 1;
606                 }
607         }
608         return 0;
609 }
610 EXPORT_SYMBOL(netdev_boot_setup_check);
611
612
613 /**
614  * netdev_boot_base     - get address from boot time settings
615  * @prefix: prefix for network device
616  * @unit: id for network device
617  *
618  * Check boot time settings for the base address of device.
619  * The found settings are set for the device to be used
620  * later in the device probing.
621  * Returns 0 if no settings found.
622  */
623 unsigned long netdev_boot_base(const char *prefix, int unit)
624 {
625         const struct netdev_boot_setup *s = dev_boot_setup;
626         char name[IFNAMSIZ];
627         int i;
628
629         sprintf(name, "%s%d", prefix, unit);
630
631         /*
632          * If device already registered then return base of 1
633          * to indicate not to probe for this interface
634          */
635         if (__dev_get_by_name(&init_net, name))
636                 return 1;
637
638         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
639                 if (!strcmp(name, s[i].name))
640                         return s[i].map.base_addr;
641         return 0;
642 }
643
644 /*
645  * Saves at boot time configured settings for any netdevice.
646  */
647 int __init netdev_boot_setup(char *str)
648 {
649         int ints[5];
650         struct ifmap map;
651
652         str = get_options(str, ARRAY_SIZE(ints), ints);
653         if (!str || !*str)
654                 return 0;
655
656         /* Save settings */
657         memset(&map, 0, sizeof(map));
658         if (ints[0] > 0)
659                 map.irq = ints[1];
660         if (ints[0] > 1)
661                 map.base_addr = ints[2];
662         if (ints[0] > 2)
663                 map.mem_start = ints[3];
664         if (ints[0] > 3)
665                 map.mem_end = ints[4];
666
667         /* Add new entry to the list */
668         return netdev_boot_setup_add(str, &map);
669 }
670
671 __setup("netdev=", netdev_boot_setup);
672
673 /*******************************************************************************
674  *
675  *                          Device Interface Subroutines
676  *
677  *******************************************************************************/
678
679 /**
680  *      dev_get_iflink  - get 'iflink' value of a interface
681  *      @dev: targeted interface
682  *
683  *      Indicates the ifindex the interface is linked to.
684  *      Physical interfaces have the same 'ifindex' and 'iflink' values.
685  */
686
687 int dev_get_iflink(const struct net_device *dev)
688 {
689         if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
690                 return dev->netdev_ops->ndo_get_iflink(dev);
691
692         return dev->ifindex;
693 }
694 EXPORT_SYMBOL(dev_get_iflink);
695
696 /**
697  *      dev_fill_metadata_dst - Retrieve tunnel egress information.
698  *      @dev: targeted interface
699  *      @skb: The packet.
700  *
701  *      For better visibility of tunnel traffic OVS needs to retrieve
702  *      egress tunnel information for a packet. Following API allows
703  *      user to get this info.
704  */
705 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
706 {
707         struct ip_tunnel_info *info;
708
709         if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
710                 return -EINVAL;
711
712         info = skb_tunnel_info_unclone(skb);
713         if (!info)
714                 return -ENOMEM;
715         if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
716                 return -EINVAL;
717
718         return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
719 }
720 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
721
722 /**
723  *      __dev_get_by_name       - find a device by its name
724  *      @net: the applicable net namespace
725  *      @name: name to find
726  *
727  *      Find an interface by name. Must be called under RTNL semaphore
728  *      or @dev_base_lock. If the name is found a pointer to the device
729  *      is returned. If the name is not found then %NULL is returned. The
730  *      reference counters are not incremented so the caller must be
731  *      careful with locks.
732  */
733
734 struct net_device *__dev_get_by_name(struct net *net, const char *name)
735 {
736         struct net_device *dev;
737         struct hlist_head *head = dev_name_hash(net, name);
738
739         hlist_for_each_entry(dev, head, name_hlist)
740                 if (!strncmp(dev->name, name, IFNAMSIZ))
741                         return dev;
742
743         return NULL;
744 }
745 EXPORT_SYMBOL(__dev_get_by_name);
746
747 /**
748  * dev_get_by_name_rcu  - find a device by its name
749  * @net: the applicable net namespace
750  * @name: name to find
751  *
752  * Find an interface by name.
753  * If the name is found a pointer to the device is returned.
754  * If the name is not found then %NULL is returned.
755  * The reference counters are not incremented so the caller must be
756  * careful with locks. The caller must hold RCU lock.
757  */
758
759 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
760 {
761         struct net_device *dev;
762         struct hlist_head *head = dev_name_hash(net, name);
763
764         hlist_for_each_entry_rcu(dev, head, name_hlist)
765                 if (!strncmp(dev->name, name, IFNAMSIZ))
766                         return dev;
767
768         return NULL;
769 }
770 EXPORT_SYMBOL(dev_get_by_name_rcu);
771
772 /**
773  *      dev_get_by_name         - find a device by its name
774  *      @net: the applicable net namespace
775  *      @name: name to find
776  *
777  *      Find an interface by name. This can be called from any
778  *      context and does its own locking. The returned handle has
779  *      the usage count incremented and the caller must use dev_put() to
780  *      release it when it is no longer needed. %NULL is returned if no
781  *      matching device is found.
782  */
783
784 struct net_device *dev_get_by_name(struct net *net, const char *name)
785 {
786         struct net_device *dev;
787
788         rcu_read_lock();
789         dev = dev_get_by_name_rcu(net, name);
790         if (dev)
791                 dev_hold(dev);
792         rcu_read_unlock();
793         return dev;
794 }
795 EXPORT_SYMBOL(dev_get_by_name);
796
797 /**
798  *      __dev_get_by_index - find a device by its ifindex
799  *      @net: the applicable net namespace
800  *      @ifindex: index of device
801  *
802  *      Search for an interface by index. Returns %NULL if the device
803  *      is not found or a pointer to the device. The device has not
804  *      had its reference counter increased so the caller must be careful
805  *      about locking. The caller must hold either the RTNL semaphore
806  *      or @dev_base_lock.
807  */
808
809 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
810 {
811         struct net_device *dev;
812         struct hlist_head *head = dev_index_hash(net, ifindex);
813
814         hlist_for_each_entry(dev, head, index_hlist)
815                 if (dev->ifindex == ifindex)
816                         return dev;
817
818         return NULL;
819 }
820 EXPORT_SYMBOL(__dev_get_by_index);
821
822 /**
823  *      dev_get_by_index_rcu - find a device by its ifindex
824  *      @net: the applicable net namespace
825  *      @ifindex: index of device
826  *
827  *      Search for an interface by index. Returns %NULL if the device
828  *      is not found or a pointer to the device. The device has not
829  *      had its reference counter increased so the caller must be careful
830  *      about locking. The caller must hold RCU lock.
831  */
832
833 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
834 {
835         struct net_device *dev;
836         struct hlist_head *head = dev_index_hash(net, ifindex);
837
838         hlist_for_each_entry_rcu(dev, head, index_hlist)
839                 if (dev->ifindex == ifindex)
840                         return dev;
841
842         return NULL;
843 }
844 EXPORT_SYMBOL(dev_get_by_index_rcu);
845
846
847 /**
848  *      dev_get_by_index - find a device by its ifindex
849  *      @net: the applicable net namespace
850  *      @ifindex: index of device
851  *
852  *      Search for an interface by index. Returns NULL if the device
853  *      is not found or a pointer to the device. The device returned has
854  *      had a reference added and the pointer is safe until the user calls
855  *      dev_put to indicate they have finished with it.
856  */
857
858 struct net_device *dev_get_by_index(struct net *net, int ifindex)
859 {
860         struct net_device *dev;
861
862         rcu_read_lock();
863         dev = dev_get_by_index_rcu(net, ifindex);
864         if (dev)
865                 dev_hold(dev);
866         rcu_read_unlock();
867         return dev;
868 }
869 EXPORT_SYMBOL(dev_get_by_index);
870
871 /**
872  *      dev_get_by_napi_id - find a device by napi_id
873  *      @napi_id: ID of the NAPI struct
874  *
875  *      Search for an interface by NAPI ID. Returns %NULL if the device
876  *      is not found or a pointer to the device. The device has not had
877  *      its reference counter increased so the caller must be careful
878  *      about locking. The caller must hold RCU lock.
879  */
880
881 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
882 {
883         struct napi_struct *napi;
884
885         WARN_ON_ONCE(!rcu_read_lock_held());
886
887         if (napi_id < MIN_NAPI_ID)
888                 return NULL;
889
890         napi = napi_by_id(napi_id);
891
892         return napi ? napi->dev : NULL;
893 }
894 EXPORT_SYMBOL(dev_get_by_napi_id);
895
896 /**
897  *      netdev_get_name - get a netdevice name, knowing its ifindex.
898  *      @net: network namespace
899  *      @name: a pointer to the buffer where the name will be stored.
900  *      @ifindex: the ifindex of the interface to get the name from.
901  *
902  *      The use of raw_seqcount_begin() and cond_resched() before
903  *      retrying is required as we want to give the writers a chance
904  *      to complete when CONFIG_PREEMPT is not set.
905  */
906 int netdev_get_name(struct net *net, char *name, int ifindex)
907 {
908         struct net_device *dev;
909         unsigned int seq;
910
911 retry:
912         seq = raw_seqcount_begin(&devnet_rename_seq);
913         rcu_read_lock();
914         dev = dev_get_by_index_rcu(net, ifindex);
915         if (!dev) {
916                 rcu_read_unlock();
917                 return -ENODEV;
918         }
919
920         strcpy(name, dev->name);
921         rcu_read_unlock();
922         if (read_seqcount_retry(&devnet_rename_seq, seq)) {
923                 cond_resched();
924                 goto retry;
925         }
926
927         return 0;
928 }
929
930 /**
931  *      dev_getbyhwaddr_rcu - find a device by its hardware address
932  *      @net: the applicable net namespace
933  *      @type: media type of device
934  *      @ha: hardware address
935  *
936  *      Search for an interface by MAC address. Returns NULL if the device
937  *      is not found or a pointer to the device.
938  *      The caller must hold RCU or RTNL.
939  *      The returned device has not had its ref count increased
940  *      and the caller must therefore be careful about locking
941  *
942  */
943
944 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
945                                        const char *ha)
946 {
947         struct net_device *dev;
948
949         for_each_netdev_rcu(net, dev)
950                 if (dev->type == type &&
951                     !memcmp(dev->dev_addr, ha, dev->addr_len))
952                         return dev;
953
954         return NULL;
955 }
956 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
957
958 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
959 {
960         struct net_device *dev;
961
962         ASSERT_RTNL();
963         for_each_netdev(net, dev)
964                 if (dev->type == type)
965                         return dev;
966
967         return NULL;
968 }
969 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
970
971 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
972 {
973         struct net_device *dev, *ret = NULL;
974
975         rcu_read_lock();
976         for_each_netdev_rcu(net, dev)
977                 if (dev->type == type) {
978                         dev_hold(dev);
979                         ret = dev;
980                         break;
981                 }
982         rcu_read_unlock();
983         return ret;
984 }
985 EXPORT_SYMBOL(dev_getfirstbyhwtype);
986
987 /**
988  *      __dev_get_by_flags - find any device with given flags
989  *      @net: the applicable net namespace
990  *      @if_flags: IFF_* values
991  *      @mask: bitmask of bits in if_flags to check
992  *
993  *      Search for any interface with the given flags. Returns NULL if a device
994  *      is not found or a pointer to the device. Must be called inside
995  *      rtnl_lock(), and result refcount is unchanged.
996  */
997
998 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
999                                       unsigned short mask)
1000 {
1001         struct net_device *dev, *ret;
1002
1003         ASSERT_RTNL();
1004
1005         ret = NULL;
1006         for_each_netdev(net, dev) {
1007                 if (((dev->flags ^ if_flags) & mask) == 0) {
1008                         ret = dev;
1009                         break;
1010                 }
1011         }
1012         return ret;
1013 }
1014 EXPORT_SYMBOL(__dev_get_by_flags);
1015
1016 /**
1017  *      dev_valid_name - check if name is okay for network device
1018  *      @name: name string
1019  *
1020  *      Network device names need to be valid file names to
1021  *      to allow sysfs to work.  We also disallow any kind of
1022  *      whitespace.
1023  */
1024 bool dev_valid_name(const char *name)
1025 {
1026         if (*name == '\0')
1027                 return false;
1028         if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1029                 return false;
1030         if (!strcmp(name, ".") || !strcmp(name, ".."))
1031                 return false;
1032
1033         while (*name) {
1034                 if (*name == '/' || *name == ':' || isspace(*name))
1035                         return false;
1036                 name++;
1037         }
1038         return true;
1039 }
1040 EXPORT_SYMBOL(dev_valid_name);
1041
1042 /**
1043  *      __dev_alloc_name - allocate a name for a device
1044  *      @net: network namespace to allocate the device name in
1045  *      @name: name format string
1046  *      @buf:  scratch buffer and result name string
1047  *
1048  *      Passed a format string - eg "lt%d" it will try and find a suitable
1049  *      id. It scans list of devices to build up a free map, then chooses
1050  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1051  *      while allocating the name and adding the device in order to avoid
1052  *      duplicates.
1053  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1054  *      Returns the number of the unit assigned or a negative errno code.
1055  */
1056
1057 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1058 {
1059         int i = 0;
1060         const char *p;
1061         const int max_netdevices = 8*PAGE_SIZE;
1062         unsigned long *inuse;
1063         struct net_device *d;
1064
1065         if (!dev_valid_name(name))
1066                 return -EINVAL;
1067
1068         p = strchr(name, '%');
1069         if (p) {
1070                 /*
1071                  * Verify the string as this thing may have come from
1072                  * the user.  There must be either one "%d" and no other "%"
1073                  * characters.
1074                  */
1075                 if (p[1] != 'd' || strchr(p + 2, '%'))
1076                         return -EINVAL;
1077
1078                 /* Use one page as a bit array of possible slots */
1079                 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1080                 if (!inuse)
1081                         return -ENOMEM;
1082
1083                 for_each_netdev(net, d) {
1084                         if (!sscanf(d->name, name, &i))
1085                                 continue;
1086                         if (i < 0 || i >= max_netdevices)
1087                                 continue;
1088
1089                         /*  avoid cases where sscanf is not exact inverse of printf */
1090                         snprintf(buf, IFNAMSIZ, name, i);
1091                         if (!strncmp(buf, d->name, IFNAMSIZ))
1092                                 set_bit(i, inuse);
1093                 }
1094
1095                 i = find_first_zero_bit(inuse, max_netdevices);
1096                 free_page((unsigned long) inuse);
1097         }
1098
1099         snprintf(buf, IFNAMSIZ, name, i);
1100         if (!__dev_get_by_name(net, buf))
1101                 return i;
1102
1103         /* It is possible to run out of possible slots
1104          * when the name is long and there isn't enough space left
1105          * for the digits, or if all bits are used.
1106          */
1107         return -ENFILE;
1108 }
1109
1110 static int dev_alloc_name_ns(struct net *net,
1111                              struct net_device *dev,
1112                              const char *name)
1113 {
1114         char buf[IFNAMSIZ];
1115         int ret;
1116
1117         BUG_ON(!net);
1118         ret = __dev_alloc_name(net, name, buf);
1119         if (ret >= 0)
1120                 strlcpy(dev->name, buf, IFNAMSIZ);
1121         return ret;
1122 }
1123
1124 /**
1125  *      dev_alloc_name - allocate a name for a device
1126  *      @dev: device
1127  *      @name: name format string
1128  *
1129  *      Passed a format string - eg "lt%d" it will try and find a suitable
1130  *      id. It scans list of devices to build up a free map, then chooses
1131  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1132  *      while allocating the name and adding the device in order to avoid
1133  *      duplicates.
1134  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1135  *      Returns the number of the unit assigned or a negative errno code.
1136  */
1137
1138 int dev_alloc_name(struct net_device *dev, const char *name)
1139 {
1140         return dev_alloc_name_ns(dev_net(dev), dev, name);
1141 }
1142 EXPORT_SYMBOL(dev_alloc_name);
1143
1144 int dev_get_valid_name(struct net *net, struct net_device *dev,
1145                        const char *name)
1146 {
1147         BUG_ON(!net);
1148
1149         if (!dev_valid_name(name))
1150                 return -EINVAL;
1151
1152         if (strchr(name, '%'))
1153                 return dev_alloc_name_ns(net, dev, name);
1154         else if (__dev_get_by_name(net, name))
1155                 return -EEXIST;
1156         else if (dev->name != name)
1157                 strlcpy(dev->name, name, IFNAMSIZ);
1158
1159         return 0;
1160 }
1161 EXPORT_SYMBOL(dev_get_valid_name);
1162
1163 /**
1164  *      dev_change_name - change name of a device
1165  *      @dev: device
1166  *      @newname: name (or format string) must be at least IFNAMSIZ
1167  *
1168  *      Change name of a device, can pass format strings "eth%d".
1169  *      for wildcarding.
1170  */
1171 int dev_change_name(struct net_device *dev, const char *newname)
1172 {
1173         unsigned char old_assign_type;
1174         char oldname[IFNAMSIZ];
1175         int err = 0;
1176         int ret;
1177         struct net *net;
1178
1179         ASSERT_RTNL();
1180         BUG_ON(!dev_net(dev));
1181
1182         net = dev_net(dev);
1183         if (dev->flags & IFF_UP)
1184                 return -EBUSY;
1185
1186         write_seqcount_begin(&devnet_rename_seq);
1187
1188         if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1189                 write_seqcount_end(&devnet_rename_seq);
1190                 return 0;
1191         }
1192
1193         memcpy(oldname, dev->name, IFNAMSIZ);
1194
1195         err = dev_get_valid_name(net, dev, newname);
1196         if (err < 0) {
1197                 write_seqcount_end(&devnet_rename_seq);
1198                 return err;
1199         }
1200
1201         if (oldname[0] && !strchr(oldname, '%'))
1202                 netdev_info(dev, "renamed from %s\n", oldname);
1203
1204         old_assign_type = dev->name_assign_type;
1205         dev->name_assign_type = NET_NAME_RENAMED;
1206
1207 rollback:
1208         ret = device_rename(&dev->dev, dev->name);
1209         if (ret) {
1210                 memcpy(dev->name, oldname, IFNAMSIZ);
1211                 dev->name_assign_type = old_assign_type;
1212                 write_seqcount_end(&devnet_rename_seq);
1213                 return ret;
1214         }
1215
1216         write_seqcount_end(&devnet_rename_seq);
1217
1218         netdev_adjacent_rename_links(dev, oldname);
1219
1220         write_lock_bh(&dev_base_lock);
1221         hlist_del_rcu(&dev->name_hlist);
1222         write_unlock_bh(&dev_base_lock);
1223
1224         synchronize_rcu();
1225
1226         write_lock_bh(&dev_base_lock);
1227         hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1228         write_unlock_bh(&dev_base_lock);
1229
1230         ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1231         ret = notifier_to_errno(ret);
1232
1233         if (ret) {
1234                 /* err >= 0 after dev_alloc_name() or stores the first errno */
1235                 if (err >= 0) {
1236                         err = ret;
1237                         write_seqcount_begin(&devnet_rename_seq);
1238                         memcpy(dev->name, oldname, IFNAMSIZ);
1239                         memcpy(oldname, newname, IFNAMSIZ);
1240                         dev->name_assign_type = old_assign_type;
1241                         old_assign_type = NET_NAME_RENAMED;
1242                         goto rollback;
1243                 } else {
1244                         pr_err("%s: name change rollback failed: %d\n",
1245                                dev->name, ret);
1246                 }
1247         }
1248
1249         return err;
1250 }
1251
1252 /**
1253  *      dev_set_alias - change ifalias of a device
1254  *      @dev: device
1255  *      @alias: name up to IFALIASZ
1256  *      @len: limit of bytes to copy from info
1257  *
1258  *      Set ifalias for a device,
1259  */
1260 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1261 {
1262         struct dev_ifalias *new_alias = NULL;
1263
1264         if (len >= IFALIASZ)
1265                 return -EINVAL;
1266
1267         if (len) {
1268                 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1269                 if (!new_alias)
1270                         return -ENOMEM;
1271
1272                 memcpy(new_alias->ifalias, alias, len);
1273                 new_alias->ifalias[len] = 0;
1274         }
1275
1276         mutex_lock(&ifalias_mutex);
1277         rcu_swap_protected(dev->ifalias, new_alias,
1278                            mutex_is_locked(&ifalias_mutex));
1279         mutex_unlock(&ifalias_mutex);
1280
1281         if (new_alias)
1282                 kfree_rcu(new_alias, rcuhead);
1283
1284         return len;
1285 }
1286 EXPORT_SYMBOL(dev_set_alias);
1287
1288 /**
1289  *      dev_get_alias - get ifalias of a device
1290  *      @dev: device
1291  *      @name: buffer to store name of ifalias
1292  *      @len: size of buffer
1293  *
1294  *      get ifalias for a device.  Caller must make sure dev cannot go
1295  *      away,  e.g. rcu read lock or own a reference count to device.
1296  */
1297 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1298 {
1299         const struct dev_ifalias *alias;
1300         int ret = 0;
1301
1302         rcu_read_lock();
1303         alias = rcu_dereference(dev->ifalias);
1304         if (alias)
1305                 ret = snprintf(name, len, "%s", alias->ifalias);
1306         rcu_read_unlock();
1307
1308         return ret;
1309 }
1310
1311 /**
1312  *      netdev_features_change - device changes features
1313  *      @dev: device to cause notification
1314  *
1315  *      Called to indicate a device has changed features.
1316  */
1317 void netdev_features_change(struct net_device *dev)
1318 {
1319         call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1320 }
1321 EXPORT_SYMBOL(netdev_features_change);
1322
1323 /**
1324  *      netdev_state_change - device changes state
1325  *      @dev: device to cause notification
1326  *
1327  *      Called to indicate a device has changed state. This function calls
1328  *      the notifier chains for netdev_chain and sends a NEWLINK message
1329  *      to the routing socket.
1330  */
1331 void netdev_state_change(struct net_device *dev)
1332 {
1333         if (dev->flags & IFF_UP) {
1334                 struct netdev_notifier_change_info change_info = {
1335                         .info.dev = dev,
1336                 };
1337
1338                 call_netdevice_notifiers_info(NETDEV_CHANGE,
1339                                               &change_info.info);
1340                 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1341         }
1342 }
1343 EXPORT_SYMBOL(netdev_state_change);
1344
1345 /**
1346  * netdev_notify_peers - notify network peers about existence of @dev
1347  * @dev: network device
1348  *
1349  * Generate traffic such that interested network peers are aware of
1350  * @dev, such as by generating a gratuitous ARP. This may be used when
1351  * a device wants to inform the rest of the network about some sort of
1352  * reconfiguration such as a failover event or virtual machine
1353  * migration.
1354  */
1355 void netdev_notify_peers(struct net_device *dev)
1356 {
1357         rtnl_lock();
1358         call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1359         call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1360         rtnl_unlock();
1361 }
1362 EXPORT_SYMBOL(netdev_notify_peers);
1363
1364 static int __dev_open(struct net_device *dev)
1365 {
1366         const struct net_device_ops *ops = dev->netdev_ops;
1367         int ret;
1368
1369         ASSERT_RTNL();
1370
1371         if (!netif_device_present(dev))
1372                 return -ENODEV;
1373
1374         /* Block netpoll from trying to do any rx path servicing.
1375          * If we don't do this there is a chance ndo_poll_controller
1376          * or ndo_poll may be running while we open the device
1377          */
1378         netpoll_poll_disable(dev);
1379
1380         ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1381         ret = notifier_to_errno(ret);
1382         if (ret)
1383                 return ret;
1384
1385         set_bit(__LINK_STATE_START, &dev->state);
1386
1387         if (ops->ndo_validate_addr)
1388                 ret = ops->ndo_validate_addr(dev);
1389
1390         if (!ret && ops->ndo_open)
1391                 ret = ops->ndo_open(dev);
1392
1393         netpoll_poll_enable(dev);
1394
1395         if (ret)
1396                 clear_bit(__LINK_STATE_START, &dev->state);
1397         else {
1398                 dev->flags |= IFF_UP;
1399                 dev_set_rx_mode(dev);
1400                 dev_activate(dev);
1401                 add_device_randomness(dev->dev_addr, dev->addr_len);
1402         }
1403
1404         return ret;
1405 }
1406
1407 /**
1408  *      dev_open        - prepare an interface for use.
1409  *      @dev: device to open
1410  *      @extack: netlink extended ack
1411  *
1412  *      Takes a device from down to up state. The device's private open
1413  *      function is invoked and then the multicast lists are loaded. Finally
1414  *      the device is moved into the up state and a %NETDEV_UP message is
1415  *      sent to the netdev notifier chain.
1416  *
1417  *      Calling this function on an active interface is a nop. On a failure
1418  *      a negative errno code is returned.
1419  */
1420 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1421 {
1422         int ret;
1423
1424         if (dev->flags & IFF_UP)
1425                 return 0;
1426
1427         ret = __dev_open(dev);
1428         if (ret < 0)
1429                 return ret;
1430
1431         rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1432         call_netdevice_notifiers(NETDEV_UP, dev);
1433
1434         return ret;
1435 }
1436 EXPORT_SYMBOL(dev_open);
1437
1438 static void __dev_close_many(struct list_head *head)
1439 {
1440         struct net_device *dev;
1441
1442         ASSERT_RTNL();
1443         might_sleep();
1444
1445         list_for_each_entry(dev, head, close_list) {
1446                 /* Temporarily disable netpoll until the interface is down */
1447                 netpoll_poll_disable(dev);
1448
1449                 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1450
1451                 clear_bit(__LINK_STATE_START, &dev->state);
1452
1453                 /* Synchronize to scheduled poll. We cannot touch poll list, it
1454                  * can be even on different cpu. So just clear netif_running().
1455                  *
1456                  * dev->stop() will invoke napi_disable() on all of it's
1457                  * napi_struct instances on this device.
1458                  */
1459                 smp_mb__after_atomic(); /* Commit netif_running(). */
1460         }
1461
1462         dev_deactivate_many(head);
1463
1464         list_for_each_entry(dev, head, close_list) {
1465                 const struct net_device_ops *ops = dev->netdev_ops;
1466
1467                 /*
1468                  *      Call the device specific close. This cannot fail.
1469                  *      Only if device is UP
1470                  *
1471                  *      We allow it to be called even after a DETACH hot-plug
1472                  *      event.
1473                  */
1474                 if (ops->ndo_stop)
1475                         ops->ndo_stop(dev);
1476
1477                 dev->flags &= ~IFF_UP;
1478                 netpoll_poll_enable(dev);
1479         }
1480 }
1481
1482 static void __dev_close(struct net_device *dev)
1483 {
1484         LIST_HEAD(single);
1485
1486         list_add(&dev->close_list, &single);
1487         __dev_close_many(&single);
1488         list_del(&single);
1489 }
1490
1491 void dev_close_many(struct list_head *head, bool unlink)
1492 {
1493         struct net_device *dev, *tmp;
1494
1495         /* Remove the devices that don't need to be closed */
1496         list_for_each_entry_safe(dev, tmp, head, close_list)
1497                 if (!(dev->flags & IFF_UP))
1498                         list_del_init(&dev->close_list);
1499
1500         __dev_close_many(head);
1501
1502         list_for_each_entry_safe(dev, tmp, head, close_list) {
1503                 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1504                 call_netdevice_notifiers(NETDEV_DOWN, dev);
1505                 if (unlink)
1506                         list_del_init(&dev->close_list);
1507         }
1508 }
1509 EXPORT_SYMBOL(dev_close_many);
1510
1511 /**
1512  *      dev_close - shutdown an interface.
1513  *      @dev: device to shutdown
1514  *
1515  *      This function moves an active device into down state. A
1516  *      %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1517  *      is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1518  *      chain.
1519  */
1520 void dev_close(struct net_device *dev)
1521 {
1522         if (dev->flags & IFF_UP) {
1523                 LIST_HEAD(single);
1524
1525                 list_add(&dev->close_list, &single);
1526                 dev_close_many(&single, true);
1527                 list_del(&single);
1528         }
1529 }
1530 EXPORT_SYMBOL(dev_close);
1531
1532
1533 /**
1534  *      dev_disable_lro - disable Large Receive Offload on a device
1535  *      @dev: device
1536  *
1537  *      Disable Large Receive Offload (LRO) on a net device.  Must be
1538  *      called under RTNL.  This is needed if received packets may be
1539  *      forwarded to another interface.
1540  */
1541 void dev_disable_lro(struct net_device *dev)
1542 {
1543         struct net_device *lower_dev;
1544         struct list_head *iter;
1545
1546         dev->wanted_features &= ~NETIF_F_LRO;
1547         netdev_update_features(dev);
1548
1549         if (unlikely(dev->features & NETIF_F_LRO))
1550                 netdev_WARN(dev, "failed to disable LRO!\n");
1551
1552         netdev_for_each_lower_dev(dev, lower_dev, iter)
1553                 dev_disable_lro(lower_dev);
1554 }
1555 EXPORT_SYMBOL(dev_disable_lro);
1556
1557 /**
1558  *      dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1559  *      @dev: device
1560  *
1561  *      Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
1562  *      called under RTNL.  This is needed if Generic XDP is installed on
1563  *      the device.
1564  */
1565 static void dev_disable_gro_hw(struct net_device *dev)
1566 {
1567         dev->wanted_features &= ~NETIF_F_GRO_HW;
1568         netdev_update_features(dev);
1569
1570         if (unlikely(dev->features & NETIF_F_GRO_HW))
1571                 netdev_WARN(dev, "failed to disable GRO_HW!\n");
1572 }
1573
1574 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1575 {
1576 #define N(val)                                          \
1577         case NETDEV_##val:                              \
1578                 return "NETDEV_" __stringify(val);
1579         switch (cmd) {
1580         N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1581         N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1582         N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1583         N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER)
1584         N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO)
1585         N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO)
1586         N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1587         N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1588         N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1589         }
1590 #undef N
1591         return "UNKNOWN_NETDEV_EVENT";
1592 }
1593 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1594
1595 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1596                                    struct net_device *dev)
1597 {
1598         struct netdev_notifier_info info = {
1599                 .dev = dev,
1600         };
1601
1602         return nb->notifier_call(nb, val, &info);
1603 }
1604
1605 static int dev_boot_phase = 1;
1606
1607 /**
1608  * register_netdevice_notifier - register a network notifier block
1609  * @nb: notifier
1610  *
1611  * Register a notifier to be called when network device events occur.
1612  * The notifier passed is linked into the kernel structures and must
1613  * not be reused until it has been unregistered. A negative errno code
1614  * is returned on a failure.
1615  *
1616  * When registered all registration and up events are replayed
1617  * to the new notifier to allow device to have a race free
1618  * view of the network device list.
1619  */
1620
1621 int register_netdevice_notifier(struct notifier_block *nb)
1622 {
1623         struct net_device *dev;
1624         struct net_device *last;
1625         struct net *net;
1626         int err;
1627
1628         /* Close race with setup_net() and cleanup_net() */
1629         down_write(&pernet_ops_rwsem);
1630         rtnl_lock();
1631         err = raw_notifier_chain_register(&netdev_chain, nb);
1632         if (err)
1633                 goto unlock;
1634         if (dev_boot_phase)
1635                 goto unlock;
1636         for_each_net(net) {
1637                 for_each_netdev(net, dev) {
1638                         err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1639                         err = notifier_to_errno(err);
1640                         if (err)
1641                                 goto rollback;
1642
1643                         if (!(dev->flags & IFF_UP))
1644                                 continue;
1645
1646                         call_netdevice_notifier(nb, NETDEV_UP, dev);
1647                 }
1648         }
1649
1650 unlock:
1651         rtnl_unlock();
1652         up_write(&pernet_ops_rwsem);
1653         return err;
1654
1655 rollback:
1656         last = dev;
1657         for_each_net(net) {
1658                 for_each_netdev(net, dev) {
1659                         if (dev == last)
1660                                 goto outroll;
1661
1662                         if (dev->flags & IFF_UP) {
1663                                 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1664                                                         dev);
1665                                 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1666                         }
1667                         call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1668                 }
1669         }
1670
1671 outroll:
1672         raw_notifier_chain_unregister(&netdev_chain, nb);
1673         goto unlock;
1674 }
1675 EXPORT_SYMBOL(register_netdevice_notifier);
1676
1677 /**
1678  * unregister_netdevice_notifier - unregister a network notifier block
1679  * @nb: notifier
1680  *
1681  * Unregister a notifier previously registered by
1682  * register_netdevice_notifier(). The notifier is unlinked into the
1683  * kernel structures and may then be reused. A negative errno code
1684  * is returned on a failure.
1685  *
1686  * After unregistering unregister and down device events are synthesized
1687  * for all devices on the device list to the removed notifier to remove
1688  * the need for special case cleanup code.
1689  */
1690
1691 int unregister_netdevice_notifier(struct notifier_block *nb)
1692 {
1693         struct net_device *dev;
1694         struct net *net;
1695         int err;
1696
1697         /* Close race with setup_net() and cleanup_net() */
1698         down_write(&pernet_ops_rwsem);
1699         rtnl_lock();
1700         err = raw_notifier_chain_unregister(&netdev_chain, nb);
1701         if (err)
1702                 goto unlock;
1703
1704         for_each_net(net) {
1705                 for_each_netdev(net, dev) {
1706                         if (dev->flags & IFF_UP) {
1707                                 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1708                                                         dev);
1709                                 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1710                         }
1711                         call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1712                 }
1713         }
1714 unlock:
1715         rtnl_unlock();
1716         up_write(&pernet_ops_rwsem);
1717         return err;
1718 }
1719 EXPORT_SYMBOL(unregister_netdevice_notifier);
1720
1721 /**
1722  *      call_netdevice_notifiers_info - call all network notifier blocks
1723  *      @val: value passed unmodified to notifier function
1724  *      @info: notifier information data
1725  *
1726  *      Call all network notifier blocks.  Parameters and return value
1727  *      are as for raw_notifier_call_chain().
1728  */
1729
1730 static int call_netdevice_notifiers_info(unsigned long val,
1731                                          struct netdev_notifier_info *info)
1732 {
1733         ASSERT_RTNL();
1734         return raw_notifier_call_chain(&netdev_chain, val, info);
1735 }
1736
1737 /**
1738  *      call_netdevice_notifiers - call all network notifier blocks
1739  *      @val: value passed unmodified to notifier function
1740  *      @dev: net_device pointer passed unmodified to notifier function
1741  *
1742  *      Call all network notifier blocks.  Parameters and return value
1743  *      are as for raw_notifier_call_chain().
1744  */
1745
1746 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1747 {
1748         struct netdev_notifier_info info = {
1749                 .dev = dev,
1750         };
1751
1752         return call_netdevice_notifiers_info(val, &info);
1753 }
1754 EXPORT_SYMBOL(call_netdevice_notifiers);
1755
1756 /**
1757  *      call_netdevice_notifiers_mtu - call all network notifier blocks
1758  *      @val: value passed unmodified to notifier function
1759  *      @dev: net_device pointer passed unmodified to notifier function
1760  *      @arg: additional u32 argument passed to the notifier function
1761  *
1762  *      Call all network notifier blocks.  Parameters and return value
1763  *      are as for raw_notifier_call_chain().
1764  */
1765 static int call_netdevice_notifiers_mtu(unsigned long val,
1766                                         struct net_device *dev, u32 arg)
1767 {
1768         struct netdev_notifier_info_ext info = {
1769                 .info.dev = dev,
1770                 .ext.mtu = arg,
1771         };
1772
1773         BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
1774
1775         return call_netdevice_notifiers_info(val, &info.info);
1776 }
1777
1778 #ifdef CONFIG_NET_INGRESS
1779 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
1780
1781 void net_inc_ingress_queue(void)
1782 {
1783         static_branch_inc(&ingress_needed_key);
1784 }
1785 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1786
1787 void net_dec_ingress_queue(void)
1788 {
1789         static_branch_dec(&ingress_needed_key);
1790 }
1791 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1792 #endif
1793
1794 #ifdef CONFIG_NET_EGRESS
1795 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
1796
1797 void net_inc_egress_queue(void)
1798 {
1799         static_branch_inc(&egress_needed_key);
1800 }
1801 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
1802
1803 void net_dec_egress_queue(void)
1804 {
1805         static_branch_dec(&egress_needed_key);
1806 }
1807 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
1808 #endif
1809
1810 static DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
1811 #ifdef HAVE_JUMP_LABEL
1812 static atomic_t netstamp_needed_deferred;
1813 static atomic_t netstamp_wanted;
1814 static void netstamp_clear(struct work_struct *work)
1815 {
1816         int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1817         int wanted;
1818
1819         wanted = atomic_add_return(deferred, &netstamp_wanted);
1820         if (wanted > 0)
1821                 static_branch_enable(&netstamp_needed_key);
1822         else
1823                 static_branch_disable(&netstamp_needed_key);
1824 }
1825 static DECLARE_WORK(netstamp_work, netstamp_clear);
1826 #endif
1827
1828 void net_enable_timestamp(void)
1829 {
1830 #ifdef HAVE_JUMP_LABEL
1831         int wanted;
1832
1833         while (1) {
1834                 wanted = atomic_read(&netstamp_wanted);
1835                 if (wanted <= 0)
1836                         break;
1837                 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
1838                         return;
1839         }
1840         atomic_inc(&netstamp_needed_deferred);
1841         schedule_work(&netstamp_work);
1842 #else
1843         static_branch_inc(&netstamp_needed_key);
1844 #endif
1845 }
1846 EXPORT_SYMBOL(net_enable_timestamp);
1847
1848 void net_disable_timestamp(void)
1849 {
1850 #ifdef HAVE_JUMP_LABEL
1851         int wanted;
1852
1853         while (1) {
1854                 wanted = atomic_read(&netstamp_wanted);
1855                 if (wanted <= 1)
1856                         break;
1857                 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
1858                         return;
1859         }
1860         atomic_dec(&netstamp_needed_deferred);
1861         schedule_work(&netstamp_work);
1862 #else
1863         static_branch_dec(&netstamp_needed_key);
1864 #endif
1865 }
1866 EXPORT_SYMBOL(net_disable_timestamp);
1867
1868 static inline void net_timestamp_set(struct sk_buff *skb)
1869 {
1870         skb->tstamp = 0;
1871         if (static_branch_unlikely(&netstamp_needed_key))
1872                 __net_timestamp(skb);
1873 }
1874
1875 #define net_timestamp_check(COND, SKB)                          \
1876         if (static_branch_unlikely(&netstamp_needed_key)) {     \
1877                 if ((COND) && !(SKB)->tstamp)                   \
1878                         __net_timestamp(SKB);                   \
1879         }                                                       \
1880
1881 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
1882 {
1883         unsigned int len;
1884
1885         if (!(dev->flags & IFF_UP))
1886                 return false;
1887
1888         len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1889         if (skb->len <= len)
1890                 return true;
1891
1892         /* if TSO is enabled, we don't care about the length as the packet
1893          * could be forwarded without being segmented before
1894          */
1895         if (skb_is_gso(skb))
1896                 return true;
1897
1898         return false;
1899 }
1900 EXPORT_SYMBOL_GPL(is_skb_forwardable);
1901
1902 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1903 {
1904         int ret = ____dev_forward_skb(dev, skb);
1905
1906         if (likely(!ret)) {
1907                 skb->protocol = eth_type_trans(skb, dev);
1908                 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1909         }
1910
1911         return ret;
1912 }
1913 EXPORT_SYMBOL_GPL(__dev_forward_skb);
1914
1915 /**
1916  * dev_forward_skb - loopback an skb to another netif
1917  *
1918  * @dev: destination network device
1919  * @skb: buffer to forward
1920  *
1921  * return values:
1922  *      NET_RX_SUCCESS  (no congestion)
1923  *      NET_RX_DROP     (packet was dropped, but freed)
1924  *
1925  * dev_forward_skb can be used for injecting an skb from the
1926  * start_xmit function of one device into the receive queue
1927  * of another device.
1928  *
1929  * The receiving device may be in another namespace, so
1930  * we have to clear all information in the skb that could
1931  * impact namespace isolation.
1932  */
1933 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1934 {
1935         return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1936 }
1937 EXPORT_SYMBOL_GPL(dev_forward_skb);
1938
1939 static inline int deliver_skb(struct sk_buff *skb,
1940                               struct packet_type *pt_prev,
1941                               struct net_device *orig_dev)
1942 {
1943         if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
1944                 return -ENOMEM;
1945         refcount_inc(&skb->users);
1946         return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1947 }
1948
1949 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1950                                           struct packet_type **pt,
1951                                           struct net_device *orig_dev,
1952                                           __be16 type,
1953                                           struct list_head *ptype_list)
1954 {
1955         struct packet_type *ptype, *pt_prev = *pt;
1956
1957         list_for_each_entry_rcu(ptype, ptype_list, list) {
1958                 if (ptype->type != type)
1959                         continue;
1960                 if (pt_prev)
1961                         deliver_skb(skb, pt_prev, orig_dev);
1962                 pt_prev = ptype;
1963         }
1964         *pt = pt_prev;
1965 }
1966
1967 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1968 {
1969         if (!ptype->af_packet_priv || !skb->sk)
1970                 return false;
1971
1972         if (ptype->id_match)
1973                 return ptype->id_match(ptype, skb->sk);
1974         else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1975                 return true;
1976
1977         return false;
1978 }
1979
1980 /**
1981  * dev_nit_active - return true if any network interface taps are in use
1982  *
1983  * @dev: network device to check for the presence of taps
1984  */
1985 bool dev_nit_active(struct net_device *dev)
1986 {
1987         return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
1988 }
1989 EXPORT_SYMBOL_GPL(dev_nit_active);
1990
1991 /*
1992  *      Support routine. Sends outgoing frames to any network
1993  *      taps currently in use.
1994  */
1995
1996 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1997 {
1998         struct packet_type *ptype;
1999         struct sk_buff *skb2 = NULL;
2000         struct packet_type *pt_prev = NULL;
2001         struct list_head *ptype_list = &ptype_all;
2002
2003         rcu_read_lock();
2004 again:
2005         list_for_each_entry_rcu(ptype, ptype_list, list) {
2006                 if (ptype->ignore_outgoing)
2007                         continue;
2008
2009                 /* Never send packets back to the socket
2010                  * they originated from - MvS (miquels@drinkel.ow.org)
2011                  */
2012                 if (skb_loop_sk(ptype, skb))
2013                         continue;
2014
2015                 if (pt_prev) {
2016                         deliver_skb(skb2, pt_prev, skb->dev);
2017                         pt_prev = ptype;
2018                         continue;
2019                 }
2020
2021                 /* need to clone skb, done only once */
2022                 skb2 = skb_clone(skb, GFP_ATOMIC);
2023                 if (!skb2)
2024                         goto out_unlock;
2025
2026                 net_timestamp_set(skb2);
2027
2028                 /* skb->nh should be correctly
2029                  * set by sender, so that the second statement is
2030                  * just protection against buggy protocols.
2031                  */
2032                 skb_reset_mac_header(skb2);
2033
2034                 if (skb_network_header(skb2) < skb2->data ||
2035                     skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2036                         net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2037                                              ntohs(skb2->protocol),
2038                                              dev->name);
2039                         skb_reset_network_header(skb2);
2040                 }
2041
2042                 skb2->transport_header = skb2->network_header;
2043                 skb2->pkt_type = PACKET_OUTGOING;
2044                 pt_prev = ptype;
2045         }
2046
2047         if (ptype_list == &ptype_all) {
2048                 ptype_list = &dev->ptype_all;
2049                 goto again;
2050         }
2051 out_unlock:
2052         if (pt_prev) {
2053                 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2054                         pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2055                 else
2056                         kfree_skb(skb2);
2057         }
2058         rcu_read_unlock();
2059 }
2060 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2061
2062 /**
2063  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2064  * @dev: Network device
2065  * @txq: number of queues available
2066  *
2067  * If real_num_tx_queues is changed the tc mappings may no longer be
2068  * valid. To resolve this verify the tc mapping remains valid and if
2069  * not NULL the mapping. With no priorities mapping to this
2070  * offset/count pair it will no longer be used. In the worst case TC0
2071  * is invalid nothing can be done so disable priority mappings. If is
2072  * expected that drivers will fix this mapping if they can before
2073  * calling netif_set_real_num_tx_queues.
2074  */
2075 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2076 {
2077         int i;
2078         struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2079
2080         /* If TC0 is invalidated disable TC mapping */
2081         if (tc->offset + tc->count > txq) {
2082                 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2083                 dev->num_tc = 0;
2084                 return;
2085         }
2086
2087         /* Invalidated prio to tc mappings set to TC0 */
2088         for (i = 1; i < TC_BITMASK + 1; i++) {
2089                 int q = netdev_get_prio_tc_map(dev, i);
2090
2091                 tc = &dev->tc_to_txq[q];
2092                 if (tc->offset + tc->count > txq) {
2093                         pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2094                                 i, q);
2095                         netdev_set_prio_tc_map(dev, i, 0);
2096                 }
2097         }
2098 }
2099
2100 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2101 {
2102         if (dev->num_tc) {
2103                 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2104                 int i;
2105
2106                 /* walk through the TCs and see if it falls into any of them */
2107                 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2108                         if ((txq - tc->offset) < tc->count)
2109                                 return i;
2110                 }
2111
2112                 /* didn't find it, just return -1 to indicate no match */
2113                 return -1;
2114         }
2115
2116         return 0;
2117 }
2118 EXPORT_SYMBOL(netdev_txq_to_tc);
2119
2120 #ifdef CONFIG_XPS
2121 struct static_key xps_needed __read_mostly;
2122 EXPORT_SYMBOL(xps_needed);
2123 struct static_key xps_rxqs_needed __read_mostly;
2124 EXPORT_SYMBOL(xps_rxqs_needed);
2125 static DEFINE_MUTEX(xps_map_mutex);
2126 #define xmap_dereference(P)             \
2127         rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2128
2129 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2130                              int tci, u16 index)
2131 {
2132         struct xps_map *map = NULL;
2133         int pos;
2134
2135         if (dev_maps)
2136                 map = xmap_dereference(dev_maps->attr_map[tci]);
2137         if (!map)
2138                 return false;
2139
2140         for (pos = map->len; pos--;) {
2141                 if (map->queues[pos] != index)
2142                         continue;
2143
2144                 if (map->len > 1) {
2145                         map->queues[pos] = map->queues[--map->len];
2146                         break;
2147                 }
2148
2149                 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2150                 kfree_rcu(map, rcu);
2151                 return false;
2152         }
2153
2154         return true;
2155 }
2156
2157 static bool remove_xps_queue_cpu(struct net_device *dev,
2158                                  struct xps_dev_maps *dev_maps,
2159                                  int cpu, u16 offset, u16 count)
2160 {
2161         int num_tc = dev->num_tc ? : 1;
2162         bool active = false;
2163         int tci;
2164
2165         for (tci = cpu * num_tc; num_tc--; tci++) {
2166                 int i, j;
2167
2168                 for (i = count, j = offset; i--; j++) {
2169                         if (!remove_xps_queue(dev_maps, tci, j))
2170                                 break;
2171                 }
2172
2173                 active |= i < 0;
2174         }
2175
2176         return active;
2177 }
2178
2179 static void clean_xps_maps(struct net_device *dev, const unsigned long *mask,
2180                            struct xps_dev_maps *dev_maps, unsigned int nr_ids,
2181                            u16 offset, u16 count, bool is_rxqs_map)
2182 {
2183         bool active = false;
2184         int i, j;
2185
2186         for (j = -1; j = netif_attrmask_next(j, mask, nr_ids),
2187              j < nr_ids;)
2188                 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset,
2189                                                count);
2190         if (!active) {
2191                 if (is_rxqs_map) {
2192                         RCU_INIT_POINTER(dev->xps_rxqs_map, NULL);
2193                 } else {
2194                         RCU_INIT_POINTER(dev->xps_cpus_map, NULL);
2195
2196                         for (i = offset + (count - 1); count--; i--)
2197                                 netdev_queue_numa_node_write(
2198                                         netdev_get_tx_queue(dev, i),
2199                                                         NUMA_NO_NODE);
2200                 }
2201                 kfree_rcu(dev_maps, rcu);
2202         }
2203 }
2204
2205 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2206                                    u16 count)
2207 {
2208         const unsigned long *possible_mask = NULL;
2209         struct xps_dev_maps *dev_maps;
2210         unsigned int nr_ids;
2211
2212         if (!static_key_false(&xps_needed))
2213                 return;
2214
2215         cpus_read_lock();
2216         mutex_lock(&xps_map_mutex);
2217
2218         if (static_key_false(&xps_rxqs_needed)) {
2219                 dev_maps = xmap_dereference(dev->xps_rxqs_map);
2220                 if (dev_maps) {
2221                         nr_ids = dev->num_rx_queues;
2222                         clean_xps_maps(dev, possible_mask, dev_maps, nr_ids,
2223                                        offset, count, true);
2224                 }
2225         }
2226
2227         dev_maps = xmap_dereference(dev->xps_cpus_map);
2228         if (!dev_maps)
2229                 goto out_no_maps;
2230
2231         if (num_possible_cpus() > 1)
2232                 possible_mask = cpumask_bits(cpu_possible_mask);
2233         nr_ids = nr_cpu_ids;
2234         clean_xps_maps(dev, possible_mask, dev_maps, nr_ids, offset, count,
2235                        false);
2236
2237 out_no_maps:
2238         if (static_key_enabled(&xps_rxqs_needed))
2239                 static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2240
2241         static_key_slow_dec_cpuslocked(&xps_needed);
2242         mutex_unlock(&xps_map_mutex);
2243         cpus_read_unlock();
2244 }
2245
2246 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2247 {
2248         netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2249 }
2250
2251 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2252                                       u16 index, bool is_rxqs_map)
2253 {
2254         struct xps_map *new_map;
2255         int alloc_len = XPS_MIN_MAP_ALLOC;
2256         int i, pos;
2257
2258         for (pos = 0; map && pos < map->len; pos++) {
2259                 if (map->queues[pos] != index)
2260                         continue;
2261                 return map;
2262         }
2263
2264         /* Need to add tx-queue to this CPU's/rx-queue's existing map */
2265         if (map) {
2266                 if (pos < map->alloc_len)
2267                         return map;
2268
2269                 alloc_len = map->alloc_len * 2;
2270         }
2271
2272         /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2273          *  map
2274          */
2275         if (is_rxqs_map)
2276                 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2277         else
2278                 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2279                                        cpu_to_node(attr_index));
2280         if (!new_map)
2281                 return NULL;
2282
2283         for (i = 0; i < pos; i++)
2284                 new_map->queues[i] = map->queues[i];
2285         new_map->alloc_len = alloc_len;
2286         new_map->len = pos;
2287
2288         return new_map;
2289 }
2290
2291 /* Must be called under cpus_read_lock */
2292 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2293                           u16 index, bool is_rxqs_map)
2294 {
2295         const unsigned long *online_mask = NULL, *possible_mask = NULL;
2296         struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2297         int i, j, tci, numa_node_id = -2;
2298         int maps_sz, num_tc = 1, tc = 0;
2299         struct xps_map *map, *new_map;
2300         bool active = false;
2301         unsigned int nr_ids;
2302
2303         if (dev->num_tc) {
2304                 /* Do not allow XPS on subordinate device directly */
2305                 num_tc = dev->num_tc;
2306                 if (num_tc < 0)
2307                         return -EINVAL;
2308
2309                 /* If queue belongs to subordinate dev use its map */
2310                 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2311
2312                 tc = netdev_txq_to_tc(dev, index);
2313                 if (tc < 0)
2314                         return -EINVAL;
2315         }
2316
2317         mutex_lock(&xps_map_mutex);
2318         if (is_rxqs_map) {
2319                 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2320                 dev_maps = xmap_dereference(dev->xps_rxqs_map);
2321                 nr_ids = dev->num_rx_queues;
2322         } else {
2323                 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2324                 if (num_possible_cpus() > 1) {
2325                         online_mask = cpumask_bits(cpu_online_mask);
2326                         possible_mask = cpumask_bits(cpu_possible_mask);
2327                 }
2328                 dev_maps = xmap_dereference(dev->xps_cpus_map);
2329                 nr_ids = nr_cpu_ids;
2330         }
2331
2332         if (maps_sz < L1_CACHE_BYTES)
2333                 maps_sz = L1_CACHE_BYTES;
2334
2335         /* allocate memory for queue storage */
2336         for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2337              j < nr_ids;) {
2338                 if (!new_dev_maps)
2339                         new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2340                 if (!new_dev_maps) {
2341                         mutex_unlock(&xps_map_mutex);
2342                         return -ENOMEM;
2343                 }
2344
2345                 tci = j * num_tc + tc;
2346                 map = dev_maps ? xmap_dereference(dev_maps->attr_map[tci]) :
2347                                  NULL;
2348
2349                 map = expand_xps_map(map, j, index, is_rxqs_map);
2350                 if (!map)
2351                         goto error;
2352
2353                 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2354         }
2355
2356         if (!new_dev_maps)
2357                 goto out_no_new_maps;
2358
2359         static_key_slow_inc_cpuslocked(&xps_needed);
2360         if (is_rxqs_map)
2361                 static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2362
2363         for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2364              j < nr_ids;) {
2365                 /* copy maps belonging to foreign traffic classes */
2366                 for (i = tc, tci = j * num_tc; dev_maps && i--; tci++) {
2367                         /* fill in the new device map from the old device map */
2368                         map = xmap_dereference(dev_maps->attr_map[tci]);
2369                         RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2370                 }
2371
2372                 /* We need to explicitly update tci as prevous loop
2373                  * could break out early if dev_maps is NULL.
2374                  */
2375                 tci = j * num_tc + tc;
2376
2377                 if (netif_attr_test_mask(j, mask, nr_ids) &&
2378                     netif_attr_test_online(j, online_mask, nr_ids)) {
2379                         /* add tx-queue to CPU/rx-queue maps */
2380                         int pos = 0;
2381
2382                         map = xmap_dereference(new_dev_maps->attr_map[tci]);
2383                         while ((pos < map->len) && (map->queues[pos] != index))
2384                                 pos++;
2385
2386                         if (pos == map->len)
2387                                 map->queues[map->len++] = index;
2388 #ifdef CONFIG_NUMA
2389                         if (!is_rxqs_map) {
2390                                 if (numa_node_id == -2)
2391                                         numa_node_id = cpu_to_node(j);
2392                                 else if (numa_node_id != cpu_to_node(j))
2393                                         numa_node_id = -1;
2394                         }
2395 #endif
2396                 } else if (dev_maps) {
2397                         /* fill in the new device map from the old device map */
2398                         map = xmap_dereference(dev_maps->attr_map[tci]);
2399                         RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2400                 }
2401
2402                 /* copy maps belonging to foreign traffic classes */
2403                 for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2404                         /* fill in the new device map from the old device map */
2405                         map = xmap_dereference(dev_maps->attr_map[tci]);
2406                         RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2407                 }
2408         }
2409
2410         if (is_rxqs_map)
2411                 rcu_assign_pointer(dev->xps_rxqs_map, new_dev_maps);
2412         else
2413                 rcu_assign_pointer(dev->xps_cpus_map, new_dev_maps);
2414
2415         /* Cleanup old maps */
2416         if (!dev_maps)
2417                 goto out_no_old_maps;
2418
2419         for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2420              j < nr_ids;) {
2421                 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2422                         new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2423                         map = xmap_dereference(dev_maps->attr_map[tci]);
2424                         if (map && map != new_map)
2425                                 kfree_rcu(map, rcu);
2426                 }
2427         }
2428
2429         kfree_rcu(dev_maps, rcu);
2430
2431 out_no_old_maps:
2432         dev_maps = new_dev_maps;
2433         active = true;
2434
2435 out_no_new_maps:
2436         if (!is_rxqs_map) {
2437                 /* update Tx queue numa node */
2438                 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2439                                              (numa_node_id >= 0) ?
2440                                              numa_node_id : NUMA_NO_NODE);
2441         }
2442
2443         if (!dev_maps)
2444                 goto out_no_maps;
2445
2446         /* removes tx-queue from unused CPUs/rx-queues */
2447         for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2448              j < nr_ids;) {
2449                 for (i = tc, tci = j * num_tc; i--; tci++)
2450                         active |= remove_xps_queue(dev_maps, tci, index);
2451                 if (!netif_attr_test_mask(j, mask, nr_ids) ||
2452                     !netif_attr_test_online(j, online_mask, nr_ids))
2453                         active |= remove_xps_queue(dev_maps, tci, index);
2454                 for (i = num_tc - tc, tci++; --i; tci++)
2455                         active |= remove_xps_queue(dev_maps, tci, index);
2456         }
2457
2458         /* free map if not active */
2459         if (!active) {
2460                 if (is_rxqs_map)
2461                         RCU_INIT_POINTER(dev->xps_rxqs_map, NULL);
2462                 else
2463                         RCU_INIT_POINTER(dev->xps_cpus_map, NULL);
2464                 kfree_rcu(dev_maps, rcu);
2465         }
2466
2467 out_no_maps:
2468         mutex_unlock(&xps_map_mutex);
2469
2470         return 0;
2471 error:
2472         /* remove any maps that we added */
2473         for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2474              j < nr_ids;) {
2475                 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2476                         new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2477                         map = dev_maps ?
2478                               xmap_dereference(dev_maps->attr_map[tci]) :
2479                               NULL;
2480                         if (new_map && new_map != map)
2481                                 kfree(new_map);
2482                 }
2483         }
2484
2485         mutex_unlock(&xps_map_mutex);
2486
2487         kfree(new_dev_maps);
2488         return -ENOMEM;
2489 }
2490 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2491
2492 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2493                         u16 index)
2494 {
2495         int ret;
2496
2497         cpus_read_lock();
2498         ret =  __netif_set_xps_queue(dev, cpumask_bits(mask), index, false);
2499         cpus_read_unlock();
2500
2501         return ret;
2502 }
2503 EXPORT_SYMBOL(netif_set_xps_queue);
2504
2505 #endif
2506 static void netdev_unbind_all_sb_channels(struct net_device *dev)
2507 {
2508         struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2509
2510         /* Unbind any subordinate channels */
2511         while (txq-- != &dev->_tx[0]) {
2512                 if (txq->sb_dev)
2513                         netdev_unbind_sb_channel(dev, txq->sb_dev);
2514         }
2515 }
2516
2517 void netdev_reset_tc(struct net_device *dev)
2518 {
2519 #ifdef CONFIG_XPS
2520         netif_reset_xps_queues_gt(dev, 0);
2521 #endif
2522         netdev_unbind_all_sb_channels(dev);
2523
2524         /* Reset TC configuration of device */
2525         dev->num_tc = 0;
2526         memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2527         memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2528 }
2529 EXPORT_SYMBOL(netdev_reset_tc);
2530
2531 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2532 {
2533         if (tc >= dev->num_tc)
2534                 return -EINVAL;
2535
2536 #ifdef CONFIG_XPS
2537         netif_reset_xps_queues(dev, offset, count);
2538 #endif
2539         dev->tc_to_txq[tc].count = count;
2540         dev->tc_to_txq[tc].offset = offset;
2541         return 0;
2542 }
2543 EXPORT_SYMBOL(netdev_set_tc_queue);
2544
2545 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2546 {
2547         if (num_tc > TC_MAX_QUEUE)
2548                 return -EINVAL;
2549
2550 #ifdef CONFIG_XPS
2551         netif_reset_xps_queues_gt(dev, 0);
2552 #endif
2553         netdev_unbind_all_sb_channels(dev);
2554
2555         dev->num_tc = num_tc;
2556         return 0;
2557 }
2558 EXPORT_SYMBOL(netdev_set_num_tc);
2559
2560 void netdev_unbind_sb_channel(struct net_device *dev,
2561                               struct net_device *sb_dev)
2562 {
2563         struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2564
2565 #ifdef CONFIG_XPS
2566         netif_reset_xps_queues_gt(sb_dev, 0);
2567 #endif
2568         memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2569         memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2570
2571         while (txq-- != &dev->_tx[0]) {
2572                 if (txq->sb_dev == sb_dev)
2573                         txq->sb_dev = NULL;
2574         }
2575 }
2576 EXPORT_SYMBOL(netdev_unbind_sb_channel);
2577
2578 int netdev_bind_sb_channel_queue(struct net_device *dev,
2579                                  struct net_device *sb_dev,
2580                                  u8 tc, u16 count, u16 offset)
2581 {
2582         /* Make certain the sb_dev and dev are already configured */
2583         if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2584                 return -EINVAL;
2585
2586         /* We cannot hand out queues we don't have */
2587         if ((offset + count) > dev->real_num_tx_queues)
2588                 return -EINVAL;
2589
2590         /* Record the mapping */
2591         sb_dev->tc_to_txq[tc].count = count;
2592         sb_dev->tc_to_txq[tc].offset = offset;
2593
2594         /* Provide a way for Tx queue to find the tc_to_txq map or
2595          * XPS map for itself.
2596          */
2597         while (count--)
2598                 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2599
2600         return 0;
2601 }
2602 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2603
2604 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2605 {
2606         /* Do not use a multiqueue device to represent a subordinate channel */
2607         if (netif_is_multiqueue(dev))
2608                 return -ENODEV;
2609
2610         /* We allow channels 1 - 32767 to be used for subordinate channels.
2611          * Channel 0 is meant to be "native" mode and used only to represent
2612          * the main root device. We allow writing 0 to reset the device back
2613          * to normal mode after being used as a subordinate channel.
2614          */
2615         if (channel > S16_MAX)
2616                 return -EINVAL;
2617
2618         dev->num_tc = -channel;
2619
2620         return 0;
2621 }
2622 EXPORT_SYMBOL(netdev_set_sb_channel);
2623
2624 /*
2625  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2626  * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2627  */
2628 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2629 {
2630         bool disabling;
2631         int rc;
2632
2633         disabling = txq < dev->real_num_tx_queues;
2634
2635         if (txq < 1 || txq > dev->num_tx_queues)
2636                 return -EINVAL;
2637
2638         if (dev->reg_state == NETREG_REGISTERED ||
2639             dev->reg_state == NETREG_UNREGISTERING) {
2640                 ASSERT_RTNL();
2641
2642                 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2643                                                   txq);
2644                 if (rc)
2645                         return rc;
2646
2647                 if (dev->num_tc)
2648                         netif_setup_tc(dev, txq);
2649
2650                 dev->real_num_tx_queues = txq;
2651
2652                 if (disabling) {
2653                         synchronize_net();
2654                         qdisc_reset_all_tx_gt(dev, txq);
2655 #ifdef CONFIG_XPS
2656                         netif_reset_xps_queues_gt(dev, txq);
2657 #endif
2658                 }
2659         } else {
2660                 dev->real_num_tx_queues = txq;
2661         }
2662
2663         return 0;
2664 }
2665 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2666
2667 #ifdef CONFIG_SYSFS
2668 /**
2669  *      netif_set_real_num_rx_queues - set actual number of RX queues used
2670  *      @dev: Network device
2671  *      @rxq: Actual number of RX queues
2672  *
2673  *      This must be called either with the rtnl_lock held or before
2674  *      registration of the net device.  Returns 0 on success, or a
2675  *      negative error code.  If called before registration, it always
2676  *      succeeds.
2677  */
2678 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2679 {
2680         int rc;
2681
2682         if (rxq < 1 || rxq > dev->num_rx_queues)
2683                 return -EINVAL;
2684
2685         if (dev->reg_state == NETREG_REGISTERED) {
2686                 ASSERT_RTNL();
2687
2688                 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2689                                                   rxq);
2690                 if (rc)
2691                         return rc;
2692         }
2693
2694         dev->real_num_rx_queues = rxq;
2695         return 0;
2696 }
2697 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2698 #endif
2699
2700 /**
2701  * netif_get_num_default_rss_queues - default number of RSS queues
2702  *
2703  * This routine should set an upper limit on the number of RSS queues
2704  * used by default by multiqueue devices.
2705  */
2706 int netif_get_num_default_rss_queues(void)
2707 {
2708         return is_kdump_kernel() ?
2709                 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2710 }
2711 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2712
2713 static void __netif_reschedule(struct Qdisc *q)
2714 {
2715         struct softnet_data *sd;
2716         unsigned long flags;
2717
2718         local_irq_save(flags);
2719         sd = this_cpu_ptr(&softnet_data);
2720         q->next_sched = NULL;
2721         *sd->output_queue_tailp = q;
2722         sd->output_queue_tailp = &q->next_sched;
2723         raise_softirq_irqoff(NET_TX_SOFTIRQ);
2724         local_irq_restore(flags);
2725 }
2726
2727 void __netif_schedule(struct Qdisc *q)
2728 {
2729         if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2730                 __netif_reschedule(q);
2731 }
2732 EXPORT_SYMBOL(__netif_schedule);
2733
2734 struct dev_kfree_skb_cb {
2735         enum skb_free_reason reason;
2736 };
2737
2738 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2739 {
2740         return (struct dev_kfree_skb_cb *)skb->cb;
2741 }
2742
2743 void netif_schedule_queue(struct netdev_queue *txq)
2744 {
2745         rcu_read_lock();
2746         if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2747                 struct Qdisc *q = rcu_dereference(txq->qdisc);
2748
2749                 __netif_schedule(q);
2750         }
2751         rcu_read_unlock();
2752 }
2753 EXPORT_SYMBOL(netif_schedule_queue);
2754
2755 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2756 {
2757         if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2758                 struct Qdisc *q;
2759
2760                 rcu_read_lock();
2761                 q = rcu_dereference(dev_queue->qdisc);
2762                 __netif_schedule(q);
2763                 rcu_read_unlock();
2764         }
2765 }
2766 EXPORT_SYMBOL(netif_tx_wake_queue);
2767
2768 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2769 {
2770         unsigned long flags;
2771
2772         if (unlikely(!skb))
2773                 return;
2774
2775         if (likely(refcount_read(&skb->users) == 1)) {
2776                 smp_rmb();
2777                 refcount_set(&skb->users, 0);
2778         } else if (likely(!refcount_dec_and_test(&skb->users))) {
2779                 return;
2780         }
2781         get_kfree_skb_cb(skb)->reason = reason;
2782         local_irq_save(flags);
2783         skb->next = __this_cpu_read(softnet_data.completion_queue);
2784         __this_cpu_write(softnet_data.completion_queue, skb);
2785         raise_softirq_irqoff(NET_TX_SOFTIRQ);
2786         local_irq_restore(flags);
2787 }
2788 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2789
2790 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2791 {
2792         if (in_irq() || irqs_disabled())
2793                 __dev_kfree_skb_irq(skb, reason);
2794         else
2795                 dev_kfree_skb(skb);
2796 }
2797 EXPORT_SYMBOL(__dev_kfree_skb_any);
2798
2799
2800 /**
2801  * netif_device_detach - mark device as removed
2802  * @dev: network device
2803  *
2804  * Mark device as removed from system and therefore no longer available.
2805  */
2806 void netif_device_detach(struct net_device *dev)
2807 {
2808         if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2809             netif_running(dev)) {
2810                 netif_tx_stop_all_queues(dev);
2811         }
2812 }
2813 EXPORT_SYMBOL(netif_device_detach);
2814
2815 /**
2816  * netif_device_attach - mark device as attached
2817  * @dev: network device
2818  *
2819  * Mark device as attached from system and restart if needed.
2820  */
2821 void netif_device_attach(struct net_device *dev)
2822 {
2823         if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2824             netif_running(dev)) {
2825                 netif_tx_wake_all_queues(dev);
2826                 __netdev_watchdog_up(dev);
2827         }
2828 }
2829 EXPORT_SYMBOL(netif_device_attach);
2830
2831 /*
2832  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2833  * to be used as a distribution range.
2834  */
2835 static u16 skb_tx_hash(const struct net_device *dev,
2836                        const struct net_device *sb_dev,
2837                        struct sk_buff *skb)
2838 {
2839         u32 hash;
2840         u16 qoffset = 0;
2841         u16 qcount = dev->real_num_tx_queues;
2842
2843         if (dev->num_tc) {
2844                 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2845
2846                 qoffset = sb_dev->tc_to_txq[tc].offset;
2847                 qcount = sb_dev->tc_to_txq[tc].count;
2848         }
2849
2850         if (skb_rx_queue_recorded(skb)) {
2851                 hash = skb_get_rx_queue(skb);
2852                 while (unlikely(hash >= qcount))
2853                         hash -= qcount;
2854                 return hash + qoffset;
2855         }
2856
2857         return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2858 }
2859
2860 static void skb_warn_bad_offload(const struct sk_buff *skb)
2861 {
2862         static const netdev_features_t null_features;
2863         struct net_device *dev = skb->dev;
2864         const char *name = "";
2865
2866         if (!net_ratelimit())
2867                 return;
2868
2869         if (dev) {
2870                 if (dev->dev.parent)
2871                         name = dev_driver_string(dev->dev.parent);
2872                 else
2873                         name = netdev_name(dev);
2874         }
2875         WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2876              "gso_type=%d ip_summed=%d\n",
2877              name, dev ? &dev->features : &null_features,
2878              skb->sk ? &skb->sk->sk_route_caps : &null_features,
2879              skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2880              skb_shinfo(skb)->gso_type, skb->ip_summed);
2881 }
2882
2883 /*
2884  * Invalidate hardware checksum when packet is to be mangled, and
2885  * complete checksum manually on outgoing path.
2886  */
2887 int skb_checksum_help(struct sk_buff *skb)
2888 {
2889         __wsum csum;
2890         int ret = 0, offset;
2891
2892         if (skb->ip_summed == CHECKSUM_COMPLETE)
2893                 goto out_set_summed;
2894
2895         if (unlikely(skb_shinfo(skb)->gso_size)) {
2896                 skb_warn_bad_offload(skb);
2897                 return -EINVAL;
2898         }
2899
2900         /* Before computing a checksum, we should make sure no frag could
2901          * be modified by an external entity : checksum could be wrong.
2902          */
2903         if (skb_has_shared_frag(skb)) {
2904                 ret = __skb_linearize(skb);
2905                 if (ret)
2906                         goto out;
2907         }
2908
2909         offset = skb_checksum_start_offset(skb);
2910         BUG_ON(offset >= skb_headlen(skb));
2911         csum = skb_checksum(skb, offset, skb->len - offset, 0);
2912
2913         offset += skb->csum_offset;
2914         BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2915
2916         if (skb_cloned(skb) &&
2917             !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2918                 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2919                 if (ret)
2920                         goto out;
2921         }
2922
2923         *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
2924 out_set_summed:
2925         skb->ip_summed = CHECKSUM_NONE;
2926 out:
2927         return ret;
2928 }
2929 EXPORT_SYMBOL(skb_checksum_help);
2930
2931 int skb_crc32c_csum_help(struct sk_buff *skb)
2932 {
2933         __le32 crc32c_csum;
2934         int ret = 0, offset, start;
2935
2936         if (skb->ip_summed != CHECKSUM_PARTIAL)
2937                 goto out;
2938
2939         if (unlikely(skb_is_gso(skb)))
2940                 goto out;
2941
2942         /* Before computing a checksum, we should make sure no frag could
2943          * be modified by an external entity : checksum could be wrong.
2944          */
2945         if (unlikely(skb_has_shared_frag(skb))) {
2946                 ret = __skb_linearize(skb);
2947                 if (ret)
2948                         goto out;
2949         }
2950         start = skb_checksum_start_offset(skb);
2951         offset = start + offsetof(struct sctphdr, checksum);
2952         if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
2953                 ret = -EINVAL;
2954                 goto out;
2955         }
2956         if (skb_cloned(skb) &&
2957             !skb_clone_writable(skb, offset + sizeof(__le32))) {
2958                 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2959                 if (ret)
2960                         goto out;
2961         }
2962         crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
2963                                                   skb->len - start, ~(__u32)0,
2964                                                   crc32c_csum_stub));
2965         *(__le32 *)(skb->data + offset) = crc32c_csum;
2966         skb->ip_summed = CHECKSUM_NONE;
2967         skb->csum_not_inet = 0;
2968 out:
2969         return ret;
2970 }
2971
2972 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2973 {
2974         __be16 type = skb->protocol;
2975
2976         /* Tunnel gso handlers can set protocol to ethernet. */
2977         if (type == htons(ETH_P_TEB)) {
2978                 struct ethhdr *eth;
2979
2980                 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2981                         return 0;
2982
2983                 eth = (struct ethhdr *)skb->data;
2984                 type = eth->h_proto;
2985         }
2986
2987         return __vlan_get_protocol(skb, type, depth);
2988 }
2989
2990 /**
2991  *      skb_mac_gso_segment - mac layer segmentation handler.
2992  *      @skb: buffer to segment
2993  *      @features: features for the output path (see dev->features)
2994  */
2995 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2996                                     netdev_features_t features)
2997 {
2998         struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2999         struct packet_offload *ptype;
3000         int vlan_depth = skb->mac_len;
3001         __be16 type = skb_network_protocol(skb, &vlan_depth);
3002
3003         if (unlikely(!type))
3004                 return ERR_PTR(-EINVAL);
3005
3006         __skb_pull(skb, vlan_depth);
3007
3008         rcu_read_lock();
3009         list_for_each_entry_rcu(ptype, &offload_base, list) {
3010                 if (ptype->type == type && ptype->callbacks.gso_segment) {
3011                         segs = ptype->callbacks.gso_segment(skb, features);
3012                         break;
3013                 }
3014         }
3015         rcu_read_unlock();
3016
3017         __skb_push(skb, skb->data - skb_mac_header(skb));
3018
3019         return segs;
3020 }
3021 EXPORT_SYMBOL(skb_mac_gso_segment);
3022
3023
3024 /* openvswitch calls this on rx path, so we need a different check.
3025  */
3026 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
3027 {
3028         if (tx_path)
3029                 return skb->ip_summed != CHECKSUM_PARTIAL &&
3030                        skb->ip_summed != CHECKSUM_UNNECESSARY;
3031
3032         return skb->ip_summed == CHECKSUM_NONE;
3033 }
3034
3035 /**
3036  *      __skb_gso_segment - Perform segmentation on skb.
3037  *      @skb: buffer to segment
3038  *      @features: features for the output path (see dev->features)
3039  *      @tx_path: whether it is called in TX path
3040  *
3041  *      This function segments the given skb and returns a list of segments.
3042  *
3043  *      It may return NULL if the skb requires no segmentation.  This is
3044  *      only possible when GSO is used for verifying header integrity.
3045  *
3046  *      Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
3047  */
3048 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3049                                   netdev_features_t features, bool tx_path)
3050 {
3051         struct sk_buff *segs;
3052
3053         if (unlikely(skb_needs_check(skb, tx_path))) {
3054                 int err;
3055
3056                 /* We're going to init ->check field in TCP or UDP header */
3057                 err = skb_cow_head(skb, 0);
3058                 if (err < 0)
3059                         return ERR_PTR(err);
3060         }
3061
3062         /* Only report GSO partial support if it will enable us to
3063          * support segmentation on this frame without needing additional
3064          * work.
3065          */
3066         if (features & NETIF_F_GSO_PARTIAL) {
3067                 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
3068                 struct net_device *dev = skb->dev;
3069
3070                 partial_features |= dev->features & dev->gso_partial_features;
3071                 if (!skb_gso_ok(skb, features | partial_features))
3072                         features &= ~NETIF_F_GSO_PARTIAL;
3073         }
3074
3075         BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
3076                      sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
3077
3078         SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3079         SKB_GSO_CB(skb)->encap_level = 0;
3080
3081         skb_reset_mac_header(skb);
3082         skb_reset_mac_len(skb);
3083
3084         segs = skb_mac_gso_segment(skb, features);
3085
3086         if (unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
3087                 skb_warn_bad_offload(skb);
3088
3089         return segs;
3090 }
3091 EXPORT_SYMBOL(__skb_gso_segment);
3092
3093 /* Take action when hardware reception checksum errors are detected. */
3094 #ifdef CONFIG_BUG
3095 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3096 {
3097         if (net_ratelimit()) {
3098                 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
3099                 if (dev)
3100                         pr_err("dev features: %pNF\n", &dev->features);
3101                 pr_err("skb len=%u data_len=%u pkt_type=%u gso_size=%u gso_type=%u nr_frags=%u ip_summed=%u csum=%x csum_complete_sw=%d csum_valid=%d csum_level=%u\n",
3102                        skb->len, skb->data_len, skb->pkt_type,
3103                        skb_shinfo(skb)->gso_size, skb_shinfo(skb)->gso_type,
3104                        skb_shinfo(skb)->nr_frags, skb->ip_summed, skb->csum,
3105                        skb->csum_complete_sw, skb->csum_valid, skb->csum_level);
3106                 dump_stack();
3107         }
3108 }
3109 EXPORT_SYMBOL(netdev_rx_csum_fault);
3110 #endif
3111
3112 /* XXX: check that highmem exists at all on the given machine. */
3113 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3114 {
3115 #ifdef CONFIG_HIGHMEM
3116         int i;
3117
3118         if (!(dev->features & NETIF_F_HIGHDMA)) {
3119                 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3120                         skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3121
3122                         if (PageHighMem(skb_frag_page(frag)))
3123                                 return 1;
3124                 }
3125         }
3126 #endif
3127         return 0;
3128 }
3129
3130 /* If MPLS offload request, verify we are testing hardware MPLS features
3131  * instead of standard features for the netdev.
3132  */
3133 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3134 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3135                                            netdev_features_t features,
3136                                            __be16 type)
3137 {
3138         if (eth_p_mpls(type))
3139                 features &= skb->dev->mpls_features;
3140
3141         return features;
3142 }
3143 #else
3144 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3145                                            netdev_features_t features,
3146                                            __be16 type)
3147 {
3148         return features;
3149 }
3150 #endif
3151
3152 static netdev_features_t harmonize_features(struct sk_buff *skb,
3153         netdev_features_t features)
3154 {
3155         int tmp;
3156         __be16 type;
3157
3158         type = skb_network_protocol(skb, &tmp);
3159         features = net_mpls_features(skb, features, type);
3160
3161         if (skb->ip_summed != CHECKSUM_NONE &&
3162             !can_checksum_protocol(features, type)) {
3163                 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3164         }
3165         if (illegal_highdma(skb->dev, skb))
3166                 features &= ~NETIF_F_SG;
3167
3168         return features;
3169 }
3170
3171 netdev_features_t passthru_features_check(struct sk_buff *skb,
3172                                           struct net_device *dev,
3173                                           netdev_features_t features)
3174 {
3175         return features;
3176 }
3177 EXPORT_SYMBOL(passthru_features_check);
3178
3179 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3180                                              struct net_device *dev,
3181                                              netdev_features_t features)
3182 {
3183         return vlan_features_check(skb, features);
3184 }
3185
3186 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3187                                             struct net_device *dev,
3188                                             netdev_features_t features)
3189 {
3190         u16 gso_segs = skb_shinfo(skb)->gso_segs;
3191
3192         if (gso_segs > dev->gso_max_segs)
3193                 return features & ~NETIF_F_GSO_MASK;
3194
3195         /* Support for GSO partial features requires software
3196          * intervention before we can actually process the packets
3197          * so we need to strip support for any partial features now
3198          * and we can pull them back in after we have partially
3199          * segmented the frame.
3200          */
3201         if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3202                 features &= ~dev->gso_partial_features;
3203
3204         /* Make sure to clear the IPv4 ID mangling feature if the
3205          * IPv4 header has the potential to be fragmented.
3206          */
3207         if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3208                 struct iphdr *iph = skb->encapsulation ?
3209                                     inner_ip_hdr(skb) : ip_hdr(skb);
3210
3211                 if (!(iph->frag_off & htons(IP_DF)))
3212                         features &= ~NETIF_F_TSO_MANGLEID;
3213         }
3214
3215         return features;
3216 }
3217
3218 netdev_features_t netif_skb_features(struct sk_buff *skb)
3219 {
3220         struct net_device *dev = skb->dev;
3221         netdev_features_t features = dev->features;
3222
3223         if (skb_is_gso(skb))
3224                 features = gso_features_check(skb, dev, features);
3225
3226         /* If encapsulation offload request, verify we are testing
3227          * hardware encapsulation features instead of standard
3228          * features for the netdev
3229          */
3230         if (skb->encapsulation)
3231                 features &= dev->hw_enc_features;
3232
3233         if (skb_vlan_tagged(skb))
3234                 features = netdev_intersect_features(features,
3235                                                      dev->vlan_features |
3236                                                      NETIF_F_HW_VLAN_CTAG_TX |
3237                                                      NETIF_F_HW_VLAN_STAG_TX);
3238
3239         if (dev->netdev_ops->ndo_features_check)
3240                 features &= dev->netdev_ops->ndo_features_check(skb, dev,
3241                                                                 features);
3242         else
3243                 features &= dflt_features_check(skb, dev, features);
3244
3245         return harmonize_features(skb, features);
3246 }
3247 EXPORT_SYMBOL(netif_skb_features);
3248
3249 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3250                     struct netdev_queue *txq, bool more)
3251 {
3252         unsigned int len;
3253         int rc;
3254
3255         if (dev_nit_active(dev))
3256                 dev_queue_xmit_nit(skb, dev);
3257
3258         len = skb->len;
3259         trace_net_dev_start_xmit(skb, dev);
3260         rc = netdev_start_xmit(skb, dev, txq, more);
3261         trace_net_dev_xmit(skb, rc, dev, len);
3262
3263         return rc;
3264 }
3265
3266 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3267                                     struct netdev_queue *txq, int *ret)
3268 {
3269         struct sk_buff *skb = first;
3270         int rc = NETDEV_TX_OK;
3271
3272         while (skb) {
3273                 struct sk_buff *next = skb->next;
3274
3275                 skb_mark_not_on_list(skb);
3276                 rc = xmit_one(skb, dev, txq, next != NULL);
3277                 if (unlikely(!dev_xmit_complete(rc))) {
3278                         skb->next = next;
3279                         goto out;
3280                 }
3281
3282                 skb = next;
3283                 if (netif_tx_queue_stopped(txq) && skb) {
3284                         rc = NETDEV_TX_BUSY;
3285                         break;
3286                 }
3287         }
3288
3289 out:
3290         *ret = rc;
3291         return skb;
3292 }
3293
3294 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3295                                           netdev_features_t features)
3296 {
3297         if (skb_vlan_tag_present(skb) &&
3298             !vlan_hw_offload_capable(features, skb->vlan_proto))
3299                 skb = __vlan_hwaccel_push_inside(skb);
3300         return skb;
3301 }
3302
3303 int skb_csum_hwoffload_help(struct sk_buff *skb,
3304                             const netdev_features_t features)
3305 {
3306         if (unlikely(skb->csum_not_inet))
3307                 return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3308                         skb_crc32c_csum_help(skb);
3309
3310         return !!(features & NETIF_F_CSUM_MASK) ? 0 : skb_checksum_help(skb);
3311 }
3312 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3313
3314 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3315 {
3316         netdev_features_t features;
3317
3318         features = netif_skb_features(skb);
3319         skb = validate_xmit_vlan(skb, features);
3320         if (unlikely(!skb))
3321                 goto out_null;
3322
3323         skb = sk_validate_xmit_skb(skb, dev);
3324         if (unlikely(!skb))
3325                 goto out_null;
3326
3327         if (netif_needs_gso(skb, features)) {
3328                 struct sk_buff *segs;
3329
3330                 segs = skb_gso_segment(skb, features);
3331                 if (IS_ERR(segs)) {
3332                         goto out_kfree_skb;
3333                 } else if (segs) {
3334                         consume_skb(skb);
3335                         skb = segs;
3336                 }
3337         } else {
3338                 if (skb_needs_linearize(skb, features) &&
3339                     __skb_linearize(skb))
3340                         goto out_kfree_skb;
3341
3342                 /* If packet is not checksummed and device does not
3343                  * support checksumming for this protocol, complete
3344                  * checksumming here.
3345                  */
3346                 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3347                         if (skb->encapsulation)
3348                                 skb_set_inner_transport_header(skb,
3349                                                                skb_checksum_start_offset(skb));
3350                         else
3351                                 skb_set_transport_header(skb,
3352                                                          skb_checksum_start_offset(skb));
3353                         if (skb_csum_hwoffload_help(skb, features))
3354                                 goto out_kfree_skb;
3355                 }
3356         }
3357
3358         skb = validate_xmit_xfrm(skb, features, again);
3359
3360         return skb;
3361
3362 out_kfree_skb:
3363         kfree_skb(skb);
3364 out_null:
3365         atomic_long_inc(&dev->tx_dropped);
3366         return NULL;
3367 }
3368
3369 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3370 {
3371         struct sk_buff *next, *head = NULL, *tail;
3372
3373         for (; skb != NULL; skb = next) {
3374                 next = skb->next;
3375                 skb_mark_not_on_list(skb);
3376
3377                 /* in case skb wont be segmented, point to itself */
3378                 skb->prev = skb;
3379
3380                 skb = validate_xmit_skb(skb, dev, again);
3381                 if (!skb)
3382                         continue;
3383
3384                 if (!head)
3385                         head = skb;
3386                 else
3387                         tail->next = skb;
3388                 /* If skb was segmented, skb->prev points to
3389                  * the last segment. If not, it still contains skb.
3390                  */
3391                 tail = skb->prev;
3392         }
3393         return head;
3394 }
3395 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3396
3397 static void qdisc_pkt_len_init(struct sk_buff *skb)
3398 {
3399         const struct skb_shared_info *shinfo = skb_shinfo(skb);
3400
3401         qdisc_skb_cb(skb)->pkt_len = skb->len;
3402
3403         /* To get more precise estimation of bytes sent on wire,
3404          * we add to pkt_len the headers size of all segments
3405          */
3406         if (shinfo->gso_size)  {
3407                 unsigned int hdr_len;
3408                 u16 gso_segs = shinfo->gso_segs;
3409
3410                 /* mac layer + network layer */
3411                 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3412
3413                 /* + transport layer */
3414                 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3415                         const struct tcphdr *th;
3416                         struct tcphdr _tcphdr;
3417
3418                         th = skb_header_pointer(skb, skb_transport_offset(skb),
3419                                                 sizeof(_tcphdr), &_tcphdr);
3420                         if (likely(th))
3421                                 hdr_len += __tcp_hdrlen(th);
3422                 } else {
3423                         struct udphdr _udphdr;
3424
3425                         if (skb_header_pointer(skb, skb_transport_offset(skb),
3426                                                sizeof(_udphdr), &_udphdr))
3427                                 hdr_len += sizeof(struct udphdr);
3428                 }
3429
3430                 if (shinfo->gso_type & SKB_GSO_DODGY)
3431                         gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3432                                                 shinfo->gso_size);
3433
3434                 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3435         }
3436 }
3437
3438 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3439                                  struct net_device *dev,
3440                                  struct netdev_queue *txq)
3441 {
3442         spinlock_t *root_lock = qdisc_lock(q);
3443         struct sk_buff *to_free = NULL;
3444         bool contended;
3445         int rc;
3446
3447         qdisc_calculate_pkt_len(skb, q);
3448
3449         if (q->flags & TCQ_F_NOLOCK) {
3450                 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3451                         __qdisc_drop(skb, &to_free);
3452                         rc = NET_XMIT_DROP;
3453                 } else {
3454                         rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3455                         qdisc_run(q);
3456                 }
3457
3458                 if (unlikely(to_free))
3459                         kfree_skb_list(to_free);
3460                 return rc;
3461         }
3462
3463         /*
3464          * Heuristic to force contended enqueues to serialize on a
3465          * separate lock before trying to get qdisc main lock.
3466          * This permits qdisc->running owner to get the lock more
3467          * often and dequeue packets faster.
3468          */
3469         contended = qdisc_is_running(q);
3470         if (unlikely(contended))
3471                 spin_lock(&q->busylock);
3472
3473         spin_lock(root_lock);
3474         if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3475                 __qdisc_drop(skb, &to_free);
3476                 rc = NET_XMIT_DROP;
3477         } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3478                    qdisc_run_begin(q)) {
3479                 /*
3480                  * This is a work-conserving queue; there are no old skbs
3481                  * waiting to be sent out; and the qdisc is not running -
3482                  * xmit the skb directly.
3483                  */
3484
3485                 qdisc_bstats_update(q, skb);
3486
3487                 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3488                         if (unlikely(contended)) {
3489                                 spin_unlock(&q->busylock);
3490                                 contended = false;
3491                         }
3492                         __qdisc_run(q);
3493                 }
3494
3495                 qdisc_run_end(q);
3496                 rc = NET_XMIT_SUCCESS;
3497         } else {
3498                 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3499                 if (qdisc_run_begin(q)) {
3500                         if (unlikely(contended)) {
3501                                 spin_unlock(&q->busylock);
3502                                 contended = false;
3503                         }
3504                         __qdisc_run(q);
3505                         qdisc_run_end(q);
3506                 }
3507         }
3508         spin_unlock(root_lock);
3509         if (unlikely(to_free))
3510                 kfree_skb_list(to_free);
3511         if (unlikely(contended))
3512                 spin_unlock(&q->busylock);
3513         return rc;
3514 }
3515
3516 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3517 static void skb_update_prio(struct sk_buff *skb)
3518 {
3519         const struct netprio_map *map;
3520         const struct sock *sk;
3521         unsigned int prioidx;
3522
3523         if (skb->priority)
3524                 return;
3525         map = rcu_dereference_bh(skb->dev->priomap);
3526         if (!map)
3527                 return;
3528         sk = skb_to_full_sk(skb);
3529         if (!sk)
3530                 return;
3531
3532         prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3533
3534         if (prioidx < map->priomap_len)
3535                 skb->priority = map->priomap[prioidx];
3536 }
3537 #else
3538 #define skb_update_prio(skb)
3539 #endif
3540
3541 DEFINE_PER_CPU(int, xmit_recursion);
3542 EXPORT_SYMBOL(xmit_recursion);
3543
3544 /**
3545  *      dev_loopback_xmit - loop back @skb
3546  *      @net: network namespace this loopback is happening in
3547  *      @sk:  sk needed to be a netfilter okfn
3548  *      @skb: buffer to transmit
3549  */
3550 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3551 {
3552         skb_reset_mac_header(skb);
3553         __skb_pull(skb, skb_network_offset(skb));
3554         skb->pkt_type = PACKET_LOOPBACK;
3555         skb->ip_summed = CHECKSUM_UNNECESSARY;
3556         WARN_ON(!skb_dst(skb));
3557         skb_dst_force(skb);
3558         netif_rx_ni(skb);
3559         return 0;
3560 }
3561 EXPORT_SYMBOL(dev_loopback_xmit);
3562
3563 #ifdef CONFIG_NET_EGRESS
3564 static struct sk_buff *
3565 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3566 {
3567         struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
3568         struct tcf_result cl_res;
3569
3570         if (!miniq)
3571                 return skb;
3572
3573         /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3574         mini_qdisc_bstats_cpu_update(miniq, skb);
3575
3576         switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
3577         case TC_ACT_OK:
3578         case TC_ACT_RECLASSIFY:
3579                 skb->tc_index = TC_H_MIN(cl_res.classid);
3580                 break;
3581         case TC_ACT_SHOT:
3582                 mini_qdisc_qstats_cpu_drop(miniq);
3583                 *ret = NET_XMIT_DROP;
3584                 kfree_skb(skb);
3585                 return NULL;
3586         case TC_ACT_STOLEN:
3587         case TC_ACT_QUEUED:
3588         case TC_ACT_TRAP:
3589                 *ret = NET_XMIT_SUCCESS;
3590                 consume_skb(skb);
3591                 return NULL;
3592         case TC_ACT_REDIRECT:
3593                 /* No need to push/pop skb's mac_header here on egress! */
3594                 skb_do_redirect(skb);
3595                 *ret = NET_XMIT_SUCCESS;
3596                 return NULL;
3597         default:
3598                 break;
3599         }
3600
3601         return skb;
3602 }
3603 #endif /* CONFIG_NET_EGRESS */
3604
3605 #ifdef CONFIG_XPS
3606 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
3607                                struct xps_dev_maps *dev_maps, unsigned int tci)
3608 {
3609         struct xps_map *map;
3610         int queue_index = -1;
3611
3612         if (dev->num_tc) {
3613                 tci *= dev->num_tc;
3614                 tci += netdev_get_prio_tc_map(dev, skb->priority);
3615         }
3616
3617         map = rcu_dereference(dev_maps->attr_map[tci]);
3618         if (map) {
3619                 if (map->len == 1)
3620                         queue_index = map->queues[0];
3621                 else
3622                         queue_index = map->queues[reciprocal_scale(
3623                                                 skb_get_hash(skb), map->len)];
3624                 if (unlikely(queue_index >= dev->real_num_tx_queues))
3625                         queue_index = -1;
3626         }
3627         return queue_index;
3628 }
3629 #endif
3630
3631 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
3632                          struct sk_buff *skb)
3633 {
3634 #ifdef CONFIG_XPS
3635         struct xps_dev_maps *dev_maps;
3636         struct sock *sk = skb->sk;
3637         int queue_index = -1;
3638
3639         if (!static_key_false(&xps_needed))
3640                 return -1;
3641
3642         rcu_read_lock();
3643         if (!static_key_false(&xps_rxqs_needed))
3644                 goto get_cpus_map;
3645
3646         dev_maps = rcu_dereference(sb_dev->xps_rxqs_map);
3647         if (dev_maps) {
3648                 int tci = sk_rx_queue_get(sk);
3649
3650                 if (tci >= 0 && tci < dev->num_rx_queues)
3651                         queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3652                                                           tci);
3653         }
3654
3655 get_cpus_map:
3656         if (queue_index < 0) {
3657                 dev_maps = rcu_dereference(sb_dev->xps_cpus_map);
3658                 if (dev_maps) {
3659                         unsigned int tci = skb->sender_cpu - 1;
3660
3661                         queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3662                                                           tci);
3663                 }
3664         }
3665         rcu_read_unlock();
3666
3667         return queue_index;
3668 #else
3669         return -1;
3670 #endif
3671 }
3672
3673 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
3674                      struct net_device *sb_dev,
3675                      select_queue_fallback_t fallback)
3676 {
3677         return 0;
3678 }
3679 EXPORT_SYMBOL(dev_pick_tx_zero);
3680
3681 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
3682                        struct net_device *sb_dev,
3683                        select_queue_fallback_t fallback)
3684 {
3685         return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
3686 }
3687 EXPORT_SYMBOL(dev_pick_tx_cpu_id);
3688
3689 static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
3690                             struct net_device *sb_dev)
3691 {
3692         struct sock *sk = skb->sk;
3693         int queue_index = sk_tx_queue_get(sk);
3694
3695         sb_dev = sb_dev ? : dev;
3696
3697         if (queue_index < 0 || skb->ooo_okay ||
3698             queue_index >= dev->real_num_tx_queues) {
3699                 int new_index = get_xps_queue(dev, sb_dev, skb);
3700
3701                 if (new_index < 0)
3702                         new_index = skb_tx_hash(dev, sb_dev, skb);
3703
3704                 if (queue_index != new_index && sk &&
3705                     sk_fullsock(sk) &&
3706                     rcu_access_pointer(sk->sk_dst_cache))
3707                         sk_tx_queue_set(sk, new_index);
3708
3709                 queue_index = new_index;
3710         }
3711
3712         return queue_index;
3713 }
3714
3715 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
3716                                     struct sk_buff *skb,
3717                                     struct net_device *sb_dev)
3718 {
3719         int queue_index = 0;
3720
3721 #ifdef CONFIG_XPS
3722         u32 sender_cpu = skb->sender_cpu - 1;
3723
3724         if (sender_cpu >= (u32)NR_CPUS)
3725                 skb->sender_cpu = raw_smp_processor_id() + 1;
3726 #endif
3727
3728         if (dev->real_num_tx_queues != 1) {
3729                 const struct net_device_ops *ops = dev->netdev_ops;
3730
3731                 if (ops->ndo_select_queue)
3732                         queue_index = ops->ndo_select_queue(dev, skb, sb_dev,
3733                                                             __netdev_pick_tx);
3734                 else
3735                         queue_index = __netdev_pick_tx(dev, skb, sb_dev);
3736
3737                 queue_index = netdev_cap_txqueue(dev, queue_index);
3738         }
3739
3740         skb_set_queue_mapping(skb, queue_index);
3741         return netdev_get_tx_queue(dev, queue_index);
3742 }
3743
3744 /**
3745  *      __dev_queue_xmit - transmit a buffer
3746  *      @skb: buffer to transmit
3747  *      @sb_dev: suboordinate device used for L2 forwarding offload
3748  *
3749  *      Queue a buffer for transmission to a network device. The caller must
3750  *      have set the device and priority and built the buffer before calling
3751  *      this function. The function can be called from an interrupt.
3752  *
3753  *      A negative errno code is returned on a failure. A success does not
3754  *      guarantee the frame will be transmitted as it may be dropped due
3755  *      to congestion or traffic shaping.
3756  *
3757  * -----------------------------------------------------------------------------------
3758  *      I notice this method can also return errors from the queue disciplines,
3759  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
3760  *      be positive.
3761  *
3762  *      Regardless of the return value, the skb is consumed, so it is currently
3763  *      difficult to retry a send to this method.  (You can bump the ref count
3764  *      before sending to hold a reference for retry if you are careful.)
3765  *
3766  *      When calling this method, interrupts MUST be enabled.  This is because
3767  *      the BH enable code must have IRQs enabled so that it will not deadlock.
3768  *          --BLG
3769  */
3770 static int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
3771 {
3772         struct net_device *dev = skb->dev;
3773         struct netdev_queue *txq;
3774         struct Qdisc *q;
3775         int rc = -ENOMEM;
3776         bool again = false;
3777
3778         skb_reset_mac_header(skb);
3779
3780         if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3781                 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3782
3783         /* Disable soft irqs for various locks below. Also
3784          * stops preemption for RCU.
3785          */
3786         rcu_read_lock_bh();
3787
3788         skb_update_prio(skb);
3789
3790         qdisc_pkt_len_init(skb);
3791 #ifdef CONFIG_NET_CLS_ACT
3792         skb->tc_at_ingress = 0;
3793 # ifdef CONFIG_NET_EGRESS
3794         if (static_branch_unlikely(&egress_needed_key)) {
3795                 skb = sch_handle_egress(skb, &rc, dev);
3796                 if (!skb)
3797                         goto out;
3798         }
3799 # endif
3800 #endif
3801         /* If device/qdisc don't need skb->dst, release it right now while
3802          * its hot in this cpu cache.
3803          */
3804         if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3805                 skb_dst_drop(skb);
3806         else
3807                 skb_dst_force(skb);
3808
3809         txq = netdev_pick_tx(dev, skb, sb_dev);
3810         q = rcu_dereference_bh(txq->qdisc);
3811
3812         trace_net_dev_queue(skb);
3813         if (q->enqueue) {
3814                 rc = __dev_xmit_skb(skb, q, dev, txq);
3815                 goto out;
3816         }
3817
3818         /* The device has no queue. Common case for software devices:
3819          * loopback, all the sorts of tunnels...
3820
3821          * Really, it is unlikely that netif_tx_lock protection is necessary
3822          * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
3823          * counters.)
3824          * However, it is possible, that they rely on protection
3825          * made by us here.
3826
3827          * Check this and shot the lock. It is not prone from deadlocks.
3828          *Either shot noqueue qdisc, it is even simpler 8)
3829          */
3830         if (dev->flags & IFF_UP) {
3831                 int cpu = smp_processor_id(); /* ok because BHs are off */
3832
3833                 if (txq->xmit_lock_owner != cpu) {
3834                         if (unlikely(__this_cpu_read(xmit_recursion) >
3835                                      XMIT_RECURSION_LIMIT))
3836                                 goto recursion_alert;
3837
3838                         skb = validate_xmit_skb(skb, dev, &again);
3839                         if (!skb)
3840                                 goto out;
3841
3842                         HARD_TX_LOCK(dev, txq, cpu);
3843
3844                         if (!netif_xmit_stopped(txq)) {
3845                                 __this_cpu_inc(xmit_recursion);
3846                                 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
3847                                 __this_cpu_dec(xmit_recursion);
3848                                 if (dev_xmit_complete(rc)) {
3849                                         HARD_TX_UNLOCK(dev, txq);
3850                                         goto out;
3851                                 }
3852                         }
3853                         HARD_TX_UNLOCK(dev, txq);
3854                         net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3855                                              dev->name);
3856                 } else {
3857                         /* Recursion is detected! It is possible,
3858                          * unfortunately
3859                          */
3860 recursion_alert:
3861                         net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3862                                              dev->name);
3863                 }
3864         }
3865
3866         rc = -ENETDOWN;
3867         rcu_read_unlock_bh();
3868
3869         atomic_long_inc(&dev->tx_dropped);
3870         kfree_skb_list(skb);
3871         return rc;
3872 out:
3873         rcu_read_unlock_bh();
3874         return rc;
3875 }
3876
3877 int dev_queue_xmit(struct sk_buff *skb)
3878 {
3879         return __dev_queue_xmit(skb, NULL);
3880 }
3881 EXPORT_SYMBOL(dev_queue_xmit);
3882
3883 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev)
3884 {
3885         return __dev_queue_xmit(skb, sb_dev);
3886 }
3887 EXPORT_SYMBOL(dev_queue_xmit_accel);
3888
3889 int dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
3890 {
3891         struct net_device *dev = skb->dev;
3892         struct sk_buff *orig_skb = skb;
3893         struct netdev_queue *txq;
3894         int ret = NETDEV_TX_BUSY;
3895         bool again = false;
3896
3897         if (unlikely(!netif_running(dev) ||
3898                      !netif_carrier_ok(dev)))
3899                 goto drop;
3900
3901         skb = validate_xmit_skb_list(skb, dev, &again);
3902         if (skb != orig_skb)
3903                 goto drop;
3904
3905         skb_set_queue_mapping(skb, queue_id);
3906         txq = skb_get_tx_queue(dev, skb);
3907
3908         local_bh_disable();
3909
3910         HARD_TX_LOCK(dev, txq, smp_processor_id());
3911         if (!netif_xmit_frozen_or_drv_stopped(txq))
3912                 ret = netdev_start_xmit(skb, dev, txq, false);
3913         HARD_TX_UNLOCK(dev, txq);
3914
3915         local_bh_enable();
3916
3917         if (!dev_xmit_complete(ret))
3918                 kfree_skb(skb);
3919
3920         return ret;
3921 drop:
3922         atomic_long_inc(&dev->tx_dropped);
3923         kfree_skb_list(skb);
3924         return NET_XMIT_DROP;
3925 }
3926 EXPORT_SYMBOL(dev_direct_xmit);
3927
3928 /*************************************************************************
3929  *                      Receiver routines
3930  *************************************************************************/
3931
3932 int netdev_max_backlog __read_mostly = 1000;
3933 EXPORT_SYMBOL(netdev_max_backlog);
3934
3935 int netdev_tstamp_prequeue __read_mostly = 1;
3936 int netdev_budget __read_mostly = 300;
3937 unsigned int __read_mostly netdev_budget_usecs = 2000;
3938 int weight_p __read_mostly = 64;           /* old backlog weight */
3939 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
3940 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
3941 int dev_rx_weight __read_mostly = 64;
3942 int dev_tx_weight __read_mostly = 64;
3943
3944 /* Called with irq disabled */
3945 static inline void ____napi_schedule(struct softnet_data *sd,
3946                                      struct napi_struct *napi)
3947 {
3948         list_add_tail(&napi->poll_list, &sd->poll_list);
3949         __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3950 }
3951
3952 #ifdef CONFIG_RPS
3953
3954 /* One global table that all flow-based protocols share. */
3955 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3956 EXPORT_SYMBOL(rps_sock_flow_table);
3957 u32 rps_cpu_mask __read_mostly;
3958 EXPORT_SYMBOL(rps_cpu_mask);
3959
3960 struct static_key rps_needed __read_mostly;
3961 EXPORT_SYMBOL(rps_needed);
3962 struct static_key rfs_needed __read_mostly;
3963 EXPORT_SYMBOL(rfs_needed);
3964
3965 static struct rps_dev_flow *
3966 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3967             struct rps_dev_flow *rflow, u16 next_cpu)
3968 {
3969         if (next_cpu < nr_cpu_ids) {
3970 #ifdef CONFIG_RFS_ACCEL
3971                 struct netdev_rx_queue *rxqueue;
3972                 struct rps_dev_flow_table *flow_table;
3973                 struct rps_dev_flow *old_rflow;
3974                 u32 flow_id;
3975                 u16 rxq_index;
3976                 int rc;
3977
3978                 /* Should we steer this flow to a different hardware queue? */
3979                 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3980                     !(dev->features & NETIF_F_NTUPLE))
3981                         goto out;
3982                 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3983                 if (rxq_index == skb_get_rx_queue(skb))
3984                         goto out;
3985
3986                 rxqueue = dev->_rx + rxq_index;
3987                 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3988                 if (!flow_table)
3989                         goto out;
3990                 flow_id = skb_get_hash(skb) & flow_table->mask;
3991                 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3992                                                         rxq_index, flow_id);
3993                 if (rc < 0)
3994                         goto out;
3995                 old_rflow = rflow;
3996                 rflow = &flow_table->flows[flow_id];
3997                 rflow->filter = rc;
3998                 if (old_rflow->filter == rflow->filter)
3999                         old_rflow->filter = RPS_NO_FILTER;
4000         out:
4001 #endif
4002                 rflow->last_qtail =
4003                         per_cpu(softnet_data, next_cpu).input_queue_head;
4004         }
4005
4006         rflow->cpu = next_cpu;
4007         return rflow;
4008 }
4009
4010 /*
4011  * get_rps_cpu is called from netif_receive_skb and returns the target
4012  * CPU from the RPS map of the receiving queue for a given skb.
4013  * rcu_read_lock must be held on entry.
4014  */
4015 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4016                        struct rps_dev_flow **rflowp)
4017 {
4018         const struct rps_sock_flow_table *sock_flow_table;
4019         struct netdev_rx_queue *rxqueue = dev->_rx;
4020         struct rps_dev_flow_table *flow_table;
4021         struct rps_map *map;
4022         int cpu = -1;
4023         u32 tcpu;
4024         u32 hash;
4025
4026         if (skb_rx_queue_recorded(skb)) {
4027                 u16 index = skb_get_rx_queue(skb);
4028
4029                 if (unlikely(index >= dev->real_num_rx_queues)) {
4030                         WARN_ONCE(dev->real_num_rx_queues > 1,
4031                                   "%s received packet on queue %u, but number "
4032                                   "of RX queues is %u\n",
4033                                   dev->name, index, dev->real_num_rx_queues);
4034                         goto done;
4035                 }
4036                 rxqueue += index;
4037         }
4038
4039         /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4040
4041         flow_table = rcu_dereference(rxqueue->rps_flow_table);
4042         map = rcu_dereference(rxqueue->rps_map);
4043         if (!flow_table && !map)
4044                 goto done;
4045
4046         skb_reset_network_header(skb);
4047         hash = skb_get_hash(skb);
4048         if (!hash)
4049                 goto done;
4050
4051         sock_flow_table = rcu_dereference(rps_sock_flow_table);
4052         if (flow_table && sock_flow_table) {
4053                 struct rps_dev_flow *rflow;
4054                 u32 next_cpu;
4055                 u32 ident;
4056
4057                 /* First check into global flow table if there is a match */
4058                 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
4059                 if ((ident ^ hash) & ~rps_cpu_mask)
4060                         goto try_rps;
4061
4062                 next_cpu = ident & rps_cpu_mask;
4063
4064                 /* OK, now we know there is a match,
4065                  * we can look at the local (per receive queue) flow table
4066                  */
4067                 rflow = &flow_table->flows[hash & flow_table->mask];
4068                 tcpu = rflow->cpu;
4069
4070                 /*
4071                  * If the desired CPU (where last recvmsg was done) is
4072                  * different from current CPU (one in the rx-queue flow
4073                  * table entry), switch if one of the following holds:
4074                  *   - Current CPU is unset (>= nr_cpu_ids).
4075                  *   - Current CPU is offline.
4076                  *   - The current CPU's queue tail has advanced beyond the
4077                  *     last packet that was enqueued using this table entry.
4078                  *     This guarantees that all previous packets for the flow
4079                  *     have been dequeued, thus preserving in order delivery.
4080                  */
4081                 if (unlikely(tcpu != next_cpu) &&
4082                     (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4083                      ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4084                       rflow->last_qtail)) >= 0)) {
4085                         tcpu = next_cpu;
4086                         rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4087                 }
4088
4089                 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4090                         *rflowp = rflow;
4091                         cpu = tcpu;
4092                         goto done;
4093                 }
4094         }
4095
4096 try_rps:
4097
4098         if (map) {
4099                 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4100                 if (cpu_online(tcpu)) {
4101                         cpu = tcpu;
4102                         goto done;
4103                 }
4104         }
4105
4106 done:
4107         return cpu;
4108 }
4109
4110 #ifdef CONFIG_RFS_ACCEL
4111
4112 /**
4113  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4114  * @dev: Device on which the filter was set
4115  * @rxq_index: RX queue index
4116  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4117  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4118  *
4119  * Drivers that implement ndo_rx_flow_steer() should periodically call
4120  * this function for each installed filter and remove the filters for
4121  * which it returns %true.
4122  */
4123 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4124                          u32 flow_id, u16 filter_id)
4125 {
4126         struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4127         struct rps_dev_flow_table *flow_table;
4128         struct rps_dev_flow *rflow;
4129         bool expire = true;
4130         unsigned int cpu;
4131
4132         rcu_read_lock();
4133         flow_table = rcu_dereference(rxqueue->rps_flow_table);
4134         if (flow_table && flow_id <= flow_table->mask) {
4135                 rflow = &flow_table->flows[flow_id];
4136                 cpu = READ_ONCE(rflow->cpu);
4137                 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4138                     ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4139                            rflow->last_qtail) <
4140                      (int)(10 * flow_table->mask)))
4141                         expire = false;
4142         }
4143         rcu_read_unlock();
4144         return expire;
4145 }
4146 EXPORT_SYMBOL(rps_may_expire_flow);
4147
4148 #endif /* CONFIG_RFS_ACCEL */
4149
4150 /* Called from hardirq (IPI) context */
4151 static void rps_trigger_softirq(void *data)
4152 {
4153         struct softnet_data *sd = data;
4154
4155         ____napi_schedule(sd, &sd->backlog);
4156         sd->received_rps++;
4157 }
4158
4159 #endif /* CONFIG_RPS */
4160
4161 /*
4162  * Check if this softnet_data structure is another cpu one
4163  * If yes, queue it to our IPI list and return 1
4164  * If no, return 0
4165  */
4166 static int rps_ipi_queued(struct softnet_data *sd)
4167 {
4168 #ifdef CONFIG_RPS
4169         struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4170
4171         if (sd != mysd) {
4172                 sd->rps_ipi_next = mysd->rps_ipi_list;
4173                 mysd->rps_ipi_list = sd;
4174
4175                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4176                 return 1;
4177         }
4178 #endif /* CONFIG_RPS */
4179         return 0;
4180 }
4181
4182 #ifdef CONFIG_NET_FLOW_LIMIT
4183 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4184 #endif
4185
4186 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4187 {
4188 #ifdef CONFIG_NET_FLOW_LIMIT
4189         struct sd_flow_limit *fl;
4190         struct softnet_data *sd;
4191         unsigned int old_flow, new_flow;
4192
4193         if (qlen < (netdev_max_backlog >> 1))
4194                 return false;
4195
4196         sd = this_cpu_ptr(&softnet_data);
4197
4198         rcu_read_lock();
4199         fl = rcu_dereference(sd->flow_limit);
4200         if (fl) {
4201                 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4202                 old_flow = fl->history[fl->history_head];
4203                 fl->history[fl->history_head] = new_flow;
4204
4205                 fl->history_head++;
4206                 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4207
4208                 if (likely(fl->buckets[old_flow]))
4209                         fl->buckets[old_flow]--;
4210
4211                 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4212                         fl->count++;
4213                         rcu_read_unlock();
4214                         return true;
4215                 }
4216         }
4217         rcu_read_unlock();
4218 #endif
4219         return false;
4220 }
4221
4222 /*
4223  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4224  * queue (may be a remote CPU queue).
4225  */
4226 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4227                               unsigned int *qtail)
4228 {
4229         struct softnet_data *sd;
4230         unsigned long flags;
4231         unsigned int qlen;
4232
4233         sd = &per_cpu(softnet_data, cpu);
4234
4235         local_irq_save(flags);
4236
4237         rps_lock(sd);
4238         if (!netif_running(skb->dev))
4239                 goto drop;
4240         qlen = skb_queue_len(&sd->input_pkt_queue);
4241         if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
4242                 if (qlen) {
4243 enqueue:
4244                         __skb_queue_tail(&sd->input_pkt_queue, skb);
4245                         input_queue_tail_incr_save(sd, qtail);
4246                         rps_unlock(sd);
4247                         local_irq_restore(flags);
4248                         return NET_RX_SUCCESS;
4249                 }
4250
4251                 /* Schedule NAPI for backlog device
4252                  * We can use non atomic operation since we own the queue lock
4253                  */
4254                 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
4255                         if (!rps_ipi_queued(sd))
4256                                 ____napi_schedule(sd, &sd->backlog);
4257                 }
4258                 goto enqueue;
4259         }
4260
4261 drop:
4262         sd->dropped++;
4263         rps_unlock(sd);
4264
4265         local_irq_restore(flags);
4266
4267         atomic_long_inc(&skb->dev->rx_dropped);
4268         kfree_skb(skb);
4269         return NET_RX_DROP;
4270 }
4271
4272 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4273 {
4274         struct net_device *dev = skb->dev;
4275         struct netdev_rx_queue *rxqueue;
4276
4277         rxqueue = dev->_rx;
4278
4279         if (skb_rx_queue_recorded(skb)) {
4280                 u16 index = skb_get_rx_queue(skb);
4281
4282                 if (unlikely(index >= dev->real_num_rx_queues)) {
4283                         WARN_ONCE(dev->real_num_rx_queues > 1,
4284                                   "%s received packet on queue %u, but number "
4285                                   "of RX queues is %u\n",
4286                                   dev->name, index, dev->real_num_rx_queues);
4287
4288                         return rxqueue; /* Return first rxqueue */
4289                 }
4290                 rxqueue += index;
4291         }
4292         return rxqueue;
4293 }
4294
4295 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4296                                      struct xdp_buff *xdp,
4297                                      struct bpf_prog *xdp_prog)
4298 {
4299         struct netdev_rx_queue *rxqueue;
4300         void *orig_data, *orig_data_end;
4301         u32 metalen, act = XDP_DROP;
4302         __be16 orig_eth_type;
4303         struct ethhdr *eth;
4304         bool orig_bcast;
4305         int hlen, off;
4306         u32 mac_len;
4307
4308         /* Reinjected packets coming from act_mirred or similar should
4309          * not get XDP generic processing.
4310          */
4311         if (skb_cloned(skb) || skb_is_tc_redirected(skb))
4312                 return XDP_PASS;
4313
4314         /* XDP packets must be linear and must have sufficient headroom
4315          * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4316          * native XDP provides, thus we need to do it here as well.
4317          */
4318         if (skb_is_nonlinear(skb) ||
4319             skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4320                 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4321                 int troom = skb->tail + skb->data_len - skb->end;
4322
4323                 /* In case we have to go down the path and also linearize,
4324                  * then lets do the pskb_expand_head() work just once here.
4325                  */
4326                 if (pskb_expand_head(skb,
4327                                      hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4328                                      troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4329                         goto do_drop;
4330                 if (skb_linearize(skb))
4331                         goto do_drop;
4332         }
4333
4334         /* The XDP program wants to see the packet starting at the MAC
4335          * header.
4336          */
4337         mac_len = skb->data - skb_mac_header(skb);
4338         hlen = skb_headlen(skb) + mac_len;
4339         xdp->data = skb->data - mac_len;
4340         xdp->data_meta = xdp->data;
4341         xdp->data_end = xdp->data + hlen;
4342         xdp->data_hard_start = skb->data - skb_headroom(skb);
4343         orig_data_end = xdp->data_end;
4344         orig_data = xdp->data;
4345         eth = (struct ethhdr *)xdp->data;
4346         orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4347         orig_eth_type = eth->h_proto;
4348
4349         rxqueue = netif_get_rxqueue(skb);
4350         xdp->rxq = &rxqueue->xdp_rxq;
4351
4352         act = bpf_prog_run_xdp(xdp_prog, xdp);
4353
4354         off = xdp->data - orig_data;
4355         if (off > 0)
4356                 __skb_pull(skb, off);
4357         else if (off < 0)
4358                 __skb_push(skb, -off);
4359         skb->mac_header += off;
4360
4361         /* check if bpf_xdp_adjust_tail was used. it can only "shrink"
4362          * pckt.
4363          */
4364         off = orig_data_end - xdp->data_end;
4365         if (off != 0) {
4366                 skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4367                 skb->len -= off;
4368
4369         }
4370
4371         /* check if XDP changed eth hdr such SKB needs update */
4372         eth = (struct ethhdr *)xdp->data;
4373         if ((orig_eth_type != eth->h_proto) ||
4374             (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4375                 __skb_push(skb, ETH_HLEN);
4376                 skb->protocol = eth_type_trans(skb, skb->dev);
4377         }
4378
4379         switch (act) {
4380         case XDP_REDIRECT:
4381         case XDP_TX:
4382                 __skb_push(skb, mac_len);
4383                 break;
4384         case XDP_PASS:
4385                 metalen = xdp->data - xdp->data_meta;
4386                 if (metalen)
4387                         skb_metadata_set(skb, metalen);
4388                 break;
4389         default:
4390                 bpf_warn_invalid_xdp_action(act);
4391                 /* fall through */
4392         case XDP_ABORTED:
4393                 trace_xdp_exception(skb->dev, xdp_prog, act);
4394                 /* fall through */
4395         case XDP_DROP:
4396         do_drop:
4397                 kfree_skb(skb);
4398                 break;
4399         }
4400
4401         return act;
4402 }
4403
4404 /* When doing generic XDP we have to bypass the qdisc layer and the
4405  * network taps in order to match in-driver-XDP behavior.
4406  */
4407 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4408 {
4409         struct net_device *dev = skb->dev;
4410         struct netdev_queue *txq;
4411         bool free_skb = true;
4412         int cpu, rc;
4413
4414         txq = netdev_pick_tx(dev, skb, NULL);
4415         cpu = smp_processor_id();
4416         HARD_TX_LOCK(dev, txq, cpu);
4417         if (!netif_xmit_stopped(txq)) {
4418                 rc = netdev_start_xmit(skb, dev, txq, 0);
4419                 if (dev_xmit_complete(rc))
4420                         free_skb = false;
4421         }
4422         HARD_TX_UNLOCK(dev, txq);
4423         if (free_skb) {
4424                 trace_xdp_exception(dev, xdp_prog, XDP_TX);
4425                 kfree_skb(skb);
4426         }
4427 }
4428 EXPORT_SYMBOL_GPL(generic_xdp_tx);
4429
4430 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
4431
4432 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4433 {
4434         if (xdp_prog) {
4435                 struct xdp_buff xdp;
4436                 u32 act;
4437                 int err;
4438
4439                 act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
4440                 if (act != XDP_PASS) {
4441                         switch (act) {
4442                         case XDP_REDIRECT:
4443                                 err = xdp_do_generic_redirect(skb->dev, skb,
4444                                                               &xdp, xdp_prog);
4445                                 if (err)
4446                                         goto out_redir;
4447                                 break;
4448                         case XDP_TX:
4449                                 generic_xdp_tx(skb, xdp_prog);
4450                                 break;
4451                         }
4452                         return XDP_DROP;
4453                 }
4454         }
4455         return XDP_PASS;
4456 out_redir:
4457         kfree_skb(skb);
4458         return XDP_DROP;
4459 }
4460 EXPORT_SYMBOL_GPL(do_xdp_generic);
4461
4462 static int netif_rx_internal(struct sk_buff *skb)
4463 {
4464         int ret;
4465
4466         net_timestamp_check(netdev_tstamp_prequeue, skb);
4467
4468         trace_netif_rx(skb);
4469
4470         if (static_branch_unlikely(&generic_xdp_needed_key)) {
4471                 int ret;
4472
4473                 preempt_disable();
4474                 rcu_read_lock();
4475                 ret = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
4476                 rcu_read_unlock();
4477                 preempt_enable();
4478
4479                 /* Consider XDP consuming the packet a success from
4480                  * the netdev point of view we do not want to count
4481                  * this as an error.
4482                  */
4483                 if (ret != XDP_PASS)
4484                         return NET_RX_SUCCESS;
4485         }
4486
4487 #ifdef CONFIG_RPS
4488         if (static_key_false(&rps_needed)) {
4489                 struct rps_dev_flow voidflow, *rflow = &voidflow;
4490                 int cpu;
4491
4492                 preempt_disable();
4493                 rcu_read_lock();
4494
4495                 cpu = get_rps_cpu(skb->dev, skb, &rflow);
4496                 if (cpu < 0)
4497                         cpu = smp_processor_id();
4498
4499                 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4500
4501                 rcu_read_unlock();
4502                 preempt_enable();
4503         } else
4504 #endif
4505         {
4506                 unsigned int qtail;
4507
4508                 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4509                 put_cpu();
4510         }
4511         return ret;
4512 }
4513
4514 /**
4515  *      netif_rx        -       post buffer to the network code
4516  *      @skb: buffer to post
4517  *
4518  *      This function receives a packet from a device driver and queues it for
4519  *      the upper (protocol) levels to process.  It always succeeds. The buffer
4520  *      may be dropped during processing for congestion control or by the
4521  *      protocol layers.
4522  *
4523  *      return values:
4524  *      NET_RX_SUCCESS  (no congestion)
4525  *      NET_RX_DROP     (packet was dropped)
4526  *
4527  */
4528
4529 int netif_rx(struct sk_buff *skb)
4530 {
4531         int ret;
4532
4533         trace_netif_rx_entry(skb);
4534
4535         ret = netif_rx_internal(skb);
4536         trace_netif_rx_exit(ret);
4537
4538         return ret;
4539 }
4540 EXPORT_SYMBOL(netif_rx);
4541
4542 int netif_rx_ni(struct sk_buff *skb)
4543 {
4544         int err;
4545
4546         trace_netif_rx_ni_entry(skb);
4547
4548         preempt_disable();
4549         err = netif_rx_internal(skb);
4550         if (local_softirq_pending())
4551                 do_softirq();
4552         preempt_enable();
4553         trace_netif_rx_ni_exit(err);
4554
4555         return err;
4556 }
4557 EXPORT_SYMBOL(netif_rx_ni);
4558
4559 static __latent_entropy void net_tx_action(struct softirq_action *h)
4560 {
4561         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4562
4563         if (sd->completion_queue) {
4564                 struct sk_buff *clist;
4565
4566                 local_irq_disable();
4567                 clist = sd->completion_queue;
4568                 sd->completion_queue = NULL;
4569                 local_irq_enable();
4570
4571                 while (clist) {
4572                         struct sk_buff *skb = clist;
4573
4574                         clist = clist->next;
4575
4576                         WARN_ON(refcount_read(&skb->users));
4577                         if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
4578                                 trace_consume_skb(skb);
4579                         else
4580                                 trace_kfree_skb(skb, net_tx_action);
4581
4582                         if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
4583                                 __kfree_skb(skb);
4584                         else
4585                                 __kfree_skb_defer(skb);
4586                 }
4587
4588                 __kfree_skb_flush();
4589         }
4590
4591         if (sd->output_queue) {
4592                 struct Qdisc *head;
4593
4594                 local_irq_disable();
4595                 head = sd->output_queue;
4596                 sd->output_queue = NULL;
4597                 sd->output_queue_tailp = &sd->output_queue;
4598                 local_irq_enable();
4599
4600                 while (head) {
4601                         struct Qdisc *q = head;
4602                         spinlock_t *root_lock = NULL;
4603
4604                         head = head->next_sched;
4605
4606                         if (!(q->flags & TCQ_F_NOLOCK)) {
4607                                 root_lock = qdisc_lock(q);
4608                                 spin_lock(root_lock);
4609                         }
4610                         /* We need to make sure head->next_sched is read
4611                          * before clearing __QDISC_STATE_SCHED
4612                          */
4613                         smp_mb__before_atomic();
4614                         clear_bit(__QDISC_STATE_SCHED, &q->state);
4615                         qdisc_run(q);
4616                         if (root_lock)
4617                                 spin_unlock(root_lock);
4618                 }
4619         }
4620
4621         xfrm_dev_backlog(sd);
4622 }
4623
4624 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
4625 /* This hook is defined here for ATM LANE */
4626 int (*br_fdb_test_addr_hook)(struct net_device *dev,
4627                              unsigned char *addr) __read_mostly;
4628 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
4629 #endif
4630
4631 static inline struct sk_buff *
4632 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4633                    struct net_device *orig_dev)
4634 {
4635 #ifdef CONFIG_NET_CLS_ACT
4636         struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
4637         struct tcf_result cl_res;
4638
4639         /* If there's at least one ingress present somewhere (so
4640          * we get here via enabled static key), remaining devices
4641          * that are not configured with an ingress qdisc will bail
4642          * out here.
4643          */
4644         if (!miniq)
4645                 return skb;
4646
4647         if (*pt_prev) {
4648                 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4649                 *pt_prev = NULL;
4650         }
4651
4652         qdisc_skb_cb(skb)->pkt_len = skb->len;
4653         skb->tc_at_ingress = 1;
4654         mini_qdisc_bstats_cpu_update(miniq, skb);
4655
4656         switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
4657         case TC_ACT_OK:
4658         case TC_ACT_RECLASSIFY:
4659                 skb->tc_index = TC_H_MIN(cl_res.classid);
4660                 break;
4661         case TC_ACT_SHOT:
4662                 mini_qdisc_qstats_cpu_drop(miniq);
4663                 kfree_skb(skb);
4664                 return NULL;
4665         case TC_ACT_STOLEN:
4666         case TC_ACT_QUEUED:
4667         case TC_ACT_TRAP:
4668                 consume_skb(skb);
4669                 return NULL;
4670         case TC_ACT_REDIRECT:
4671                 /* skb_mac_header check was done by cls/act_bpf, so
4672                  * we can safely push the L2 header back before
4673                  * redirecting to another netdev
4674                  */
4675                 __skb_push(skb, skb->mac_len);
4676                 skb_do_redirect(skb);
4677                 return NULL;
4678         case TC_ACT_REINSERT:
4679                 /* this does not scrub the packet, and updates stats on error */
4680                 skb_tc_reinsert(skb, &cl_res);
4681                 return NULL;
4682         default:
4683                 break;
4684         }
4685 #endif /* CONFIG_NET_CLS_ACT */
4686         return skb;
4687 }
4688
4689 /**
4690  *      netdev_is_rx_handler_busy - check if receive handler is registered
4691  *      @dev: device to check
4692  *
4693  *      Check if a receive handler is already registered for a given device.
4694  *      Return true if there one.
4695  *
4696  *      The caller must hold the rtnl_mutex.
4697  */
4698 bool netdev_is_rx_handler_busy(struct net_device *dev)
4699 {
4700         ASSERT_RTNL();
4701         return dev && rtnl_dereference(dev->rx_handler);
4702 }
4703 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
4704
4705 /**
4706  *      netdev_rx_handler_register - register receive handler
4707  *      @dev: device to register a handler for
4708  *      @rx_handler: receive handler to register
4709  *      @rx_handler_data: data pointer that is used by rx handler
4710  *
4711  *      Register a receive handler for a device. This handler will then be
4712  *      called from __netif_receive_skb. A negative errno code is returned
4713  *      on a failure.
4714  *
4715  *      The caller must hold the rtnl_mutex.
4716  *
4717  *      For a general description of rx_handler, see enum rx_handler_result.
4718  */
4719 int netdev_rx_handler_register(struct net_device *dev,
4720                                rx_handler_func_t *rx_handler,
4721                                void *rx_handler_data)
4722 {
4723         if (netdev_is_rx_handler_busy(dev))
4724                 return -EBUSY;
4725
4726         if (dev->priv_flags & IFF_NO_RX_HANDLER)
4727                 return -EINVAL;
4728
4729         /* Note: rx_handler_data must be set before rx_handler */
4730         rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
4731         rcu_assign_pointer(dev->rx_handler, rx_handler);
4732
4733         return 0;
4734 }
4735 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
4736
4737 /**
4738  *      netdev_rx_handler_unregister - unregister receive handler
4739  *      @dev: device to unregister a handler from
4740  *
4741  *      Unregister a receive handler from a device.
4742  *
4743  *      The caller must hold the rtnl_mutex.
4744  */
4745 void netdev_rx_handler_unregister(struct net_device *dev)
4746 {
4747
4748         ASSERT_RTNL();
4749         RCU_INIT_POINTER(dev->rx_handler, NULL);
4750         /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
4751          * section has a guarantee to see a non NULL rx_handler_data
4752          * as well.
4753          */
4754         synchronize_net();
4755         RCU_INIT_POINTER(dev->rx_handler_data, NULL);
4756 }
4757 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
4758
4759 /*
4760  * Limit the use of PFMEMALLOC reserves to those protocols that implement
4761  * the special handling of PFMEMALLOC skbs.
4762  */
4763 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
4764 {
4765         switch (skb->protocol) {
4766         case htons(ETH_P_ARP):
4767         case htons(ETH_P_IP):
4768         case htons(ETH_P_IPV6):
4769         case htons(ETH_P_8021Q):
4770         case htons(ETH_P_8021AD):
4771                 return true;
4772         default:
4773                 return false;
4774         }
4775 }
4776
4777 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
4778                              int *ret, struct net_device *orig_dev)
4779 {
4780 #ifdef CONFIG_NETFILTER_INGRESS
4781         if (nf_hook_ingress_active(skb)) {
4782                 int ingress_retval;
4783
4784                 if (*pt_prev) {
4785                         *ret = deliver_skb(skb, *pt_prev, orig_dev);
4786                         *pt_prev = NULL;
4787                 }
4788
4789                 rcu_read_lock();
4790                 ingress_retval = nf_hook_ingress(skb);
4791                 rcu_read_unlock();
4792                 return ingress_retval;
4793         }
4794 #endif /* CONFIG_NETFILTER_INGRESS */
4795         return 0;
4796 }
4797
4798 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc,
4799                                     struct packet_type **ppt_prev)
4800 {
4801         struct packet_type *ptype, *pt_prev;
4802         rx_handler_func_t *rx_handler;
4803         struct net_device *orig_dev;
4804         bool deliver_exact = false;
4805         int ret = NET_RX_DROP;
4806         __be16 type;
4807
4808         net_timestamp_check(!netdev_tstamp_prequeue, skb);
4809
4810         trace_netif_receive_skb(skb);
4811
4812         orig_dev = skb->dev;
4813
4814         skb_reset_network_header(skb);
4815         if (!skb_transport_header_was_set(skb))
4816                 skb_reset_transport_header(skb);
4817         skb_reset_mac_len(skb);
4818
4819         pt_prev = NULL;
4820
4821 another_round:
4822         skb->skb_iif = skb->dev->ifindex;
4823
4824         __this_cpu_inc(softnet_data.processed);
4825
4826         if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4827             skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
4828                 skb = skb_vlan_untag(skb);
4829                 if (unlikely(!skb))
4830                         goto out;
4831         }
4832
4833         if (skb_skip_tc_classify(skb))
4834                 goto skip_classify;
4835
4836         if (pfmemalloc)
4837                 goto skip_taps;
4838
4839         list_for_each_entry_rcu(ptype, &ptype_all, list) {
4840                 if (pt_prev)
4841                         ret = deliver_skb(skb, pt_prev, orig_dev);
4842                 pt_prev = ptype;
4843         }
4844
4845         list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
4846                 if (pt_prev)
4847                         ret = deliver_skb(skb, pt_prev, orig_dev);
4848                 pt_prev = ptype;
4849         }
4850
4851 skip_taps:
4852 #ifdef CONFIG_NET_INGRESS
4853         if (static_branch_unlikely(&ingress_needed_key)) {
4854                 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
4855                 if (!skb)
4856                         goto out;
4857
4858                 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
4859                         goto out;
4860         }
4861 #endif
4862         skb_reset_tc(skb);
4863 skip_classify:
4864         if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
4865                 goto drop;
4866
4867         if (skb_vlan_tag_present(skb)) {
4868                 if (pt_prev) {
4869                         ret = deliver_skb(skb, pt_prev, orig_dev);
4870                         pt_prev = NULL;
4871                 }
4872                 if (vlan_do_receive(&skb))
4873                         goto another_round;
4874                 else if (unlikely(!skb))
4875                         goto out;
4876         }
4877
4878         rx_handler = rcu_dereference(skb->dev->rx_handler);
4879         if (rx_handler) {
4880                 if (pt_prev) {
4881                         ret = deliver_skb(skb, pt_prev, orig_dev);
4882                         pt_prev = NULL;
4883                 }
4884                 switch (rx_handler(&skb)) {
4885                 case RX_HANDLER_CONSUMED:
4886                         ret = NET_RX_SUCCESS;
4887                         goto out;
4888                 case RX_HANDLER_ANOTHER:
4889                         goto another_round;
4890                 case RX_HANDLER_EXACT:
4891                         deliver_exact = true;
4892                 case RX_HANDLER_PASS:
4893                         break;
4894                 default:
4895                         BUG();
4896                 }
4897         }
4898
4899         if (unlikely(skb_vlan_tag_present(skb))) {
4900                 if (skb_vlan_tag_get_id(skb))
4901                         skb->pkt_type = PACKET_OTHERHOST;
4902                 /* Note: we might in the future use prio bits
4903                  * and set skb->priority like in vlan_do_receive()
4904                  * For the time being, just ignore Priority Code Point
4905                  */
4906                 __vlan_hwaccel_clear_tag(skb);
4907         }
4908
4909         type = skb->protocol;
4910
4911         /* deliver only exact match when indicated */
4912         if (likely(!deliver_exact)) {
4913                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4914                                        &ptype_base[ntohs(type) &
4915                                                    PTYPE_HASH_MASK]);
4916         }
4917
4918         deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4919                                &orig_dev->ptype_specific);
4920
4921         if (unlikely(skb->dev != orig_dev)) {
4922                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4923                                        &skb->dev->ptype_specific);
4924         }
4925
4926         if (pt_prev) {
4927                 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
4928                         goto drop;
4929                 *ppt_prev = pt_prev;
4930         } else {
4931 drop:
4932                 if (!deliver_exact)
4933                         atomic_long_inc(&skb->dev->rx_dropped);
4934                 else
4935                         atomic_long_inc(&skb->dev->rx_nohandler);
4936                 kfree_skb(skb);
4937                 /* Jamal, now you will not able to escape explaining
4938                  * me how you were going to use this. :-)
4939                  */
4940                 ret = NET_RX_DROP;
4941         }
4942
4943 out:
4944         return ret;
4945 }
4946
4947 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
4948 {
4949         struct net_device *orig_dev = skb->dev;
4950         struct packet_type *pt_prev = NULL;
4951         int ret;
4952
4953         ret = __netif_receive_skb_core(skb, pfmemalloc, &pt_prev);
4954         if (pt_prev)
4955                 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
4956         return ret;
4957 }
4958
4959 /**
4960  *      netif_receive_skb_core - special purpose version of netif_receive_skb
4961  *      @skb: buffer to process
4962  *
4963  *      More direct receive version of netif_receive_skb().  It should
4964  *      only be used by callers that have a need to skip RPS and Generic XDP.
4965  *      Caller must also take care of handling if (page_is_)pfmemalloc.
4966  *
4967  *      This function may only be called from softirq context and interrupts
4968  *      should be enabled.
4969  *
4970  *      Return values (usually ignored):
4971  *      NET_RX_SUCCESS: no congestion
4972  *      NET_RX_DROP: packet was dropped
4973  */
4974 int netif_receive_skb_core(struct sk_buff *skb)
4975 {
4976         int ret;
4977
4978         rcu_read_lock();
4979         ret = __netif_receive_skb_one_core(skb, false);
4980         rcu_read_unlock();
4981
4982         return ret;
4983 }
4984 EXPORT_SYMBOL(netif_receive_skb_core);
4985
4986 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
4987                                                   struct packet_type *pt_prev,
4988                                                   struct net_device *orig_dev)
4989 {
4990         struct sk_buff *skb, *next;
4991
4992         if (!pt_prev)
4993                 return;
4994         if (list_empty(head))
4995                 return;
4996         if (pt_prev->list_func != NULL)
4997                 pt_prev->list_func(head, pt_prev, orig_dev);
4998         else
4999                 list_for_each_entry_safe(skb, next, head, list)
5000                         pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5001 }
5002
5003 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5004 {
5005         /* Fast-path assumptions:
5006          * - There is no RX handler.
5007          * - Only one packet_type matches.
5008          * If either of these fails, we will end up doing some per-packet
5009          * processing in-line, then handling the 'last ptype' for the whole
5010          * sublist.  This can't cause out-of-order delivery to any single ptype,
5011          * because the 'last ptype' must be constant across the sublist, and all
5012          * other ptypes are handled per-packet.
5013          */
5014         /* Current (common) ptype of sublist */
5015         struct packet_type *pt_curr = NULL;
5016         /* Current (common) orig_dev of sublist */
5017         struct net_device *od_curr = NULL;
5018         struct list_head sublist;
5019         struct sk_buff *skb, *next;
5020
5021         INIT_LIST_HEAD(&sublist);
5022         list_for_each_entry_safe(skb, next, head, list) {
5023                 struct net_device *orig_dev = skb->dev;
5024                 struct packet_type *pt_prev = NULL;
5025
5026                 list_del(&skb->list);
5027                 __netif_receive_skb_core(skb, pfmemalloc, &pt_prev);
5028                 if (!pt_prev)
5029                         continue;
5030                 if (pt_curr != pt_prev || od_curr != orig_dev) {
5031                         /* dispatch old sublist */
5032                         __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5033                         /* start new sublist */
5034                         INIT_LIST_HEAD(&sublist);
5035                         pt_curr = pt_prev;
5036                         od_curr = orig_dev;
5037                 }
5038                 list_add_tail(&skb->list, &sublist);
5039         }
5040
5041         /* dispatch final sublist */
5042         __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5043 }
5044
5045 static int __netif_receive_skb(struct sk_buff *skb)
5046 {
5047         int ret;
5048
5049         if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5050                 unsigned int noreclaim_flag;
5051
5052                 /*
5053                  * PFMEMALLOC skbs are special, they should
5054                  * - be delivered to SOCK_MEMALLOC sockets only
5055                  * - stay away from userspace
5056                  * - have bounded memory usage
5057                  *
5058                  * Use PF_MEMALLOC as this saves us from propagating the allocation
5059                  * context down to all allocation sites.
5060                  */
5061                 noreclaim_flag = memalloc_noreclaim_save();
5062                 ret = __netif_receive_skb_one_core(skb, true);
5063                 memalloc_noreclaim_restore(noreclaim_flag);
5064         } else
5065                 ret = __netif_receive_skb_one_core(skb, false);
5066
5067         return ret;
5068 }
5069
5070 static void __netif_receive_skb_list(struct list_head *head)
5071 {
5072         unsigned long noreclaim_flag = 0;
5073         struct sk_buff *skb, *next;
5074         bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5075
5076         list_for_each_entry_safe(skb, next, head, list) {
5077                 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5078                         struct list_head sublist;
5079
5080                         /* Handle the previous sublist */
5081                         list_cut_before(&sublist, head, &skb->list);
5082                         if (!list_empty(&sublist))
5083                                 __netif_receive_skb_list_core(&sublist, pfmemalloc);
5084                         pfmemalloc = !pfmemalloc;
5085                         /* See comments in __netif_receive_skb */
5086                         if (pfmemalloc)
5087                                 noreclaim_flag = memalloc_noreclaim_save();
5088                         else
5089                                 memalloc_noreclaim_restore(noreclaim_flag);
5090                 }
5091         }
5092         /* Handle the remaining sublist */
5093         if (!list_empty(head))
5094                 __netif_receive_skb_list_core(head, pfmemalloc);
5095         /* Restore pflags */
5096         if (pfmemalloc)
5097                 memalloc_noreclaim_restore(noreclaim_flag);
5098 }
5099
5100 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5101 {
5102         struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5103         struct bpf_prog *new = xdp->prog;
5104         int ret = 0;
5105
5106         switch (xdp->command) {
5107         case XDP_SETUP_PROG:
5108                 rcu_assign_pointer(dev->xdp_prog, new);
5109                 if (old)
5110                         bpf_prog_put(old);
5111
5112                 if (old && !new) {
5113                         static_branch_dec(&generic_xdp_needed_key);
5114                 } else if (new && !old) {
5115                         static_branch_inc(&generic_xdp_needed_key);
5116                         dev_disable_lro(dev);
5117                         dev_disable_gro_hw(dev);
5118                 }
5119                 break;
5120
5121         case XDP_QUERY_PROG:
5122                 xdp->prog_id = old ? old->aux->id : 0;
5123                 break;
5124
5125         default:
5126                 ret = -EINVAL;
5127                 break;
5128         }
5129
5130         return ret;
5131 }
5132
5133 static int netif_receive_skb_internal(struct sk_buff *skb)
5134 {
5135         int ret;
5136
5137         net_timestamp_check(netdev_tstamp_prequeue, skb);
5138
5139         if (skb_defer_rx_timestamp(skb))
5140                 return NET_RX_SUCCESS;
5141
5142         if (static_branch_unlikely(&generic_xdp_needed_key)) {
5143                 int ret;
5144
5145                 preempt_disable();
5146                 rcu_read_lock();
5147                 ret = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
5148                 rcu_read_unlock();
5149                 preempt_enable();
5150
5151                 if (ret != XDP_PASS)
5152                         return NET_RX_DROP;
5153         }
5154
5155         rcu_read_lock();
5156 #ifdef CONFIG_RPS
5157         if (static_key_false(&rps_needed)) {
5158                 struct rps_dev_flow voidflow, *rflow = &voidflow;
5159                 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5160
5161                 if (cpu >= 0) {
5162                         ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5163                         rcu_read_unlock();
5164                         return ret;
5165                 }
5166         }
5167 #endif
5168         ret = __netif_receive_skb(skb);
5169         rcu_read_unlock();
5170         return ret;
5171 }
5172
5173 static void netif_receive_skb_list_internal(struct list_head *head)
5174 {
5175         struct bpf_prog *xdp_prog = NULL;
5176         struct sk_buff *skb, *next;
5177         struct list_head sublist;
5178
5179         INIT_LIST_HEAD(&sublist);
5180         list_for_each_entry_safe(skb, next, head, list) {
5181                 net_timestamp_check(netdev_tstamp_prequeue, skb);
5182                 list_del(&skb->list);
5183                 if (!skb_defer_rx_timestamp(skb))
5184                         list_add_tail(&skb->list, &sublist);
5185         }
5186         list_splice_init(&sublist, head);
5187
5188         if (static_branch_unlikely(&generic_xdp_needed_key)) {
5189                 preempt_disable();
5190                 rcu_read_lock();
5191                 list_for_each_entry_safe(skb, next, head, list) {
5192                         xdp_prog = rcu_dereference(skb->dev->xdp_prog);
5193                         list_del(&skb->list);
5194                         if (do_xdp_generic(xdp_prog, skb) == XDP_PASS)
5195                                 list_add_tail(&skb->list, &sublist);
5196                 }
5197                 rcu_read_unlock();
5198                 preempt_enable();
5199                 /* Put passed packets back on main list */
5200                 list_splice_init(&sublist, head);
5201         }
5202
5203         rcu_read_lock();
5204 #ifdef CONFIG_RPS
5205         if (static_key_false(&rps_needed)) {
5206                 list_for_each_entry_safe(skb, next, head, list) {
5207                         struct rps_dev_flow voidflow, *rflow = &voidflow;
5208                         int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5209
5210                         if (cpu >= 0) {
5211                                 /* Will be handled, remove from list */
5212                                 list_del(&skb->list);
5213                                 enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5214                         }
5215                 }
5216         }
5217 #endif
5218         __netif_receive_skb_list(head);
5219         rcu_read_unlock();
5220 }
5221
5222 /**
5223  *      netif_receive_skb - process receive buffer from network
5224  *      @skb: buffer to process
5225  *
5226  *      netif_receive_skb() is the main receive data processing function.
5227  *      It always succeeds. The buffer may be dropped during processing
5228  *      for congestion control or by the protocol layers.
5229  *
5230  *      This function may only be called from softirq context and interrupts
5231  *      should be enabled.
5232  *
5233  *      Return values (usually ignored):
5234  *      NET_RX_SUCCESS: no congestion
5235  *      NET_RX_DROP: packet was dropped
5236  */
5237 int netif_receive_skb(struct sk_buff *skb)
5238 {
5239         int ret;
5240
5241         trace_netif_receive_skb_entry(skb);
5242
5243         ret = netif_receive_skb_internal(skb);
5244         trace_netif_receive_skb_exit(ret);
5245
5246         return ret;
5247 }
5248 EXPORT_SYMBOL(netif_receive_skb);
5249
5250 /**
5251  *      netif_receive_skb_list - process many receive buffers from network
5252  *      @head: list of skbs to process.
5253  *
5254  *      Since return value of netif_receive_skb() is normally ignored, and
5255  *      wouldn't be meaningful for a list, this function returns void.
5256  *
5257  *      This function may only be called from softirq context and interrupts
5258  *      should be enabled.
5259  */
5260 void netif_receive_skb_list(struct list_head *head)
5261 {
5262         struct sk_buff *skb;
5263
5264         if (list_empty(head))
5265                 return;
5266         if (trace_netif_receive_skb_list_entry_enabled()) {
5267                 list_for_each_entry(skb, head, list)
5268                         trace_netif_receive_skb_list_entry(skb);
5269         }
5270         netif_receive_skb_list_internal(head);
5271         trace_netif_receive_skb_list_exit(0);
5272 }
5273 EXPORT_SYMBOL(netif_receive_skb_list);
5274
5275 DEFINE_PER_CPU(struct work_struct, flush_works);
5276
5277 /* Network device is going away, flush any packets still pending */
5278 static void flush_backlog(struct work_struct *work)
5279 {
5280         struct sk_buff *skb, *tmp;
5281         struct softnet_data *sd;
5282
5283         local_bh_disable();
5284         sd = this_cpu_ptr(&softnet_data);
5285
5286         local_irq_disable();
5287         rps_lock(sd);
5288         skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5289                 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5290                         __skb_unlink(skb, &sd->input_pkt_queue);
5291                         kfree_skb(skb);
5292                         input_queue_head_incr(sd);
5293                 }
5294         }
5295         rps_unlock(sd);
5296         local_irq_enable();
5297
5298         skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5299                 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5300                         __skb_unlink(skb, &sd->process_queue);
5301                         kfree_skb(skb);
5302                         input_queue_head_incr(sd);
5303                 }
5304         }
5305         local_bh_enable();
5306 }
5307
5308 static void flush_all_backlogs(void)
5309 {
5310         unsigned int cpu;
5311
5312         get_online_cpus();
5313
5314         for_each_online_cpu(cpu)
5315                 queue_work_on(cpu, system_highpri_wq,
5316                               per_cpu_ptr(&flush_works, cpu));
5317
5318         for_each_online_cpu(cpu)
5319                 flush_work(per_cpu_ptr(&flush_works, cpu));
5320
5321         put_online_cpus();
5322 }
5323
5324 static int napi_gro_complete(struct sk_buff *skb)
5325 {
5326         struct packet_offload *ptype;
5327         __be16 type = skb->protocol;
5328         struct list_head *head = &offload_base;
5329         int err = -ENOENT;
5330
5331         BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
5332
5333         if (NAPI_GRO_CB(skb)->count == 1) {
5334                 skb_shinfo(skb)->gso_size = 0;
5335                 goto out;
5336         }
5337
5338         rcu_read_lock();
5339         list_for_each_entry_rcu(ptype, head, list) {
5340                 if (ptype->type != type || !ptype->callbacks.gro_complete)
5341                         continue;
5342
5343                 err = ptype->callbacks.gro_complete(skb, 0);
5344                 break;
5345         }
5346         rcu_read_unlock();
5347
5348         if (err) {
5349                 WARN_ON(&ptype->list == head);
5350                 kfree_skb(skb);
5351                 return NET_RX_SUCCESS;
5352         }
5353
5354 out:
5355         return netif_receive_skb_internal(skb);
5356 }
5357
5358 static void __napi_gro_flush_chain(struct napi_struct *napi, u32 index,
5359                                    bool flush_old)
5360 {
5361         struct list_head *head = &napi->gro_hash[index].list;
5362         struct sk_buff *skb, *p;
5363
5364         list_for_each_entry_safe_reverse(skb, p, head, list) {
5365                 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
5366                         return;
5367                 skb_list_del_init(skb);
5368                 napi_gro_complete(skb);
5369                 napi->gro_hash[index].count--;
5370         }
5371
5372         if (!napi->gro_hash[index].count)
5373                 __clear_bit(index, &napi->gro_bitmask);
5374 }
5375
5376 /* napi->gro_hash[].list contains packets ordered by age.
5377  * youngest packets at the head of it.
5378  * Complete skbs in reverse order to reduce latencies.
5379  */
5380 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
5381 {
5382         unsigned long bitmask = napi->gro_bitmask;
5383         unsigned int i, base = ~0U;
5384
5385         while ((i = ffs(bitmask)) != 0) {
5386                 bitmask >>= i;
5387                 base += i;
5388                 __napi_gro_flush_chain(napi, base, flush_old);
5389         }
5390 }
5391 EXPORT_SYMBOL(napi_gro_flush);
5392
5393 static struct list_head *gro_list_prepare(struct napi_struct *napi,
5394                                           struct sk_buff *skb)
5395 {
5396         unsigned int maclen = skb->dev->hard_header_len;
5397         u32 hash = skb_get_hash_raw(skb);
5398         struct list_head *head;
5399         struct sk_buff *p;
5400
5401         head = &napi->gro_hash[hash & (GRO_HASH_BUCKETS - 1)].list;
5402         list_for_each_entry(p, head, list) {
5403                 unsigned long diffs;
5404
5405                 NAPI_GRO_CB(p)->flush = 0;
5406
5407                 if (hash != skb_get_hash_raw(p)) {
5408                         NAPI_GRO_CB(p)->same_flow = 0;
5409                         continue;
5410                 }
5411
5412                 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
5413                 diffs |= skb_vlan_tag_present(p) ^ skb_vlan_tag_present(skb);
5414                 if (skb_vlan_tag_present(p))
5415                         diffs |= p->vlan_tci ^ skb->vlan_tci;
5416                 diffs |= skb_metadata_dst_cmp(p, skb);
5417                 diffs |= skb_metadata_differs(p, skb);
5418                 if (maclen == ETH_HLEN)
5419                         diffs |= compare_ether_header(skb_mac_header(p),
5420                                                       skb_mac_header(skb));
5421                 else if (!diffs)
5422                         diffs = memcmp(skb_mac_header(p),
5423                                        skb_mac_header(skb),
5424                                        maclen);
5425                 NAPI_GRO_CB(p)->same_flow = !diffs;
5426         }
5427
5428         return head;
5429 }
5430
5431 static void skb_gro_reset_offset(struct sk_buff *skb)
5432 {
5433         const struct skb_shared_info *pinfo = skb_shinfo(skb);
5434         const skb_frag_t *frag0 = &pinfo->frags[0];
5435
5436         NAPI_GRO_CB(skb)->data_offset = 0;
5437         NAPI_GRO_CB(skb)->frag0 = NULL;
5438         NAPI_GRO_CB(skb)->frag0_len = 0;
5439
5440         if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
5441             pinfo->nr_frags &&
5442             !PageHighMem(skb_frag_page(frag0))) {
5443                 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
5444                 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
5445                                                     skb_frag_size(frag0),
5446                                                     skb->end - skb->tail);
5447         }
5448 }
5449
5450 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
5451 {
5452         struct skb_shared_info *pinfo = skb_shinfo(skb);
5453
5454         BUG_ON(skb->end - skb->tail < grow);
5455
5456         memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
5457
5458         skb->data_len -= grow;
5459         skb->tail += grow;
5460
5461         pinfo->frags[0].page_offset += grow;
5462         skb_frag_size_sub(&pinfo->frags[0], grow);
5463
5464         if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
5465                 skb_frag_unref(skb, 0);
5466                 memmove(pinfo->frags, pinfo->frags + 1,
5467                         --pinfo->nr_frags * sizeof(pinfo->frags[0]));
5468         }
5469 }
5470
5471 static void gro_flush_oldest(struct list_head *head)
5472 {
5473         struct sk_buff *oldest;
5474
5475         oldest = list_last_entry(head, struct sk_buff, list);
5476
5477         /* We are called with head length >= MAX_GRO_SKBS, so this is
5478          * impossible.
5479          */
5480         if (WARN_ON_ONCE(!oldest))
5481                 return;
5482
5483         /* Do not adjust napi->gro_hash[].count, caller is adding a new
5484          * SKB to the chain.
5485          */
5486         skb_list_del_init(oldest);
5487         napi_gro_complete(oldest);
5488 }
5489
5490 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5491 {
5492         u32 hash = skb_get_hash_raw(skb) & (GRO_HASH_BUCKETS - 1);
5493         struct list_head *head = &offload_base;
5494         struct packet_offload *ptype;
5495         __be16 type = skb->protocol;
5496         struct list_head *gro_head;
5497         struct sk_buff *pp = NULL;
5498         enum gro_result ret;
5499         int same_flow;
5500         int grow;
5501
5502         if (netif_elide_gro(skb->dev))
5503                 goto normal;
5504
5505         gro_head = gro_list_prepare(napi, skb);
5506
5507         rcu_read_lock();
5508         list_for_each_entry_rcu(ptype, head, list) {
5509                 if (ptype->type != type || !ptype->callbacks.gro_receive)
5510                         continue;
5511
5512                 skb_set_network_header(skb, skb_gro_offset(skb));
5513                 skb_reset_mac_len(skb);
5514                 NAPI_GRO_CB(skb)->same_flow = 0;
5515                 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
5516                 NAPI_GRO_CB(skb)->free = 0;
5517                 NAPI_GRO_CB(skb)->encap_mark = 0;
5518                 NAPI_GRO_CB(skb)->recursion_counter = 0;
5519                 NAPI_GRO_CB(skb)->is_fou = 0;
5520                 NAPI_GRO_CB(skb)->is_atomic = 1;
5521                 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
5522
5523                 /* Setup for GRO checksum validation */
5524                 switch (skb->ip_summed) {
5525                 case CHECKSUM_COMPLETE:
5526                         NAPI_GRO_CB(skb)->csum = skb->csum;
5527                         NAPI_GRO_CB(skb)->csum_valid = 1;
5528                         NAPI_GRO_CB(skb)->csum_cnt = 0;
5529                         break;
5530                 case CHECKSUM_UNNECESSARY:
5531                         NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
5532                         NAPI_GRO_CB(skb)->csum_valid = 0;
5533                         break;
5534                 default:
5535                         NAPI_GRO_CB(skb)->csum_cnt = 0;
5536                         NAPI_GRO_CB(skb)->csum_valid = 0;
5537                 }
5538
5539                 pp = ptype->callbacks.gro_receive(gro_head, skb);
5540                 break;
5541         }
5542         rcu_read_unlock();
5543
5544         if (&ptype->list == head)
5545                 goto normal;
5546
5547         if (IS_ERR(pp) && PTR_ERR(pp) == -EINPROGRESS) {
5548                 ret = GRO_CONSUMED;
5549                 goto ok;
5550         }
5551
5552         same_flow = NAPI_GRO_CB(skb)->same_flow;
5553         ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
5554
5555         if (pp) {
5556                 skb_list_del_init(pp);
5557                 napi_gro_complete(pp);
5558                 napi->gro_hash[hash].count--;
5559         }
5560
5561         if (same_flow)
5562                 goto ok;
5563
5564         if (NAPI_GRO_CB(skb)->flush)
5565                 goto normal;
5566
5567         if (unlikely(napi->gro_hash[hash].count >= MAX_GRO_SKBS)) {
5568                 gro_flush_oldest(gro_head);
5569         } else {
5570                 napi->gro_hash[hash].count++;
5571         }
5572         NAPI_GRO_CB(skb)->count = 1;
5573         NAPI_GRO_CB(skb)->age = jiffies;
5574         NAPI_GRO_CB(skb)->last = skb;
5575         skb_shinfo(skb)->gso_size = skb_gro_len(skb);
5576         list_add(&skb->list, gro_head);
5577         ret = GRO_HELD;
5578
5579 pull:
5580         grow = skb_gro_offset(skb) - skb_headlen(skb);
5581         if (grow > 0)
5582                 gro_pull_from_frag0(skb, grow);
5583 ok:
5584         if (napi->gro_hash[hash].count) {
5585                 if (!test_bit(hash, &napi->gro_bitmask))
5586                         __set_bit(hash, &napi->gro_bitmask);
5587         } else if (test_bit(hash, &napi->gro_bitmask)) {
5588                 __clear_bit(hash, &napi->gro_bitmask);
5589         }
5590
5591         return ret;
5592
5593 normal:
5594         ret = GRO_NORMAL;
5595         goto pull;
5596 }
5597
5598 struct packet_offload *gro_find_receive_by_type(__be16 type)
5599 {
5600         struct list_head *offload_head = &offload_base;
5601         struct packet_offload *ptype;
5602
5603         list_for_each_entry_rcu(ptype, offload_head, list) {
5604                 if (ptype->type != type || !ptype->callbacks.gro_receive)
5605                         continue;
5606                 return ptype;
5607         }
5608         return NULL;
5609 }
5610 EXPORT_SYMBOL(gro_find_receive_by_type);
5611
5612 struct packet_offload *gro_find_complete_by_type(__be16 type)
5613 {
5614         struct list_head *offload_head = &offload_base;
5615         struct packet_offload *ptype;
5616
5617         list_for_each_entry_rcu(ptype, offload_head, list) {
5618                 if (ptype->type != type || !ptype->callbacks.gro_complete)
5619                         continue;
5620                 return ptype;
5621         }
5622         return NULL;
5623 }
5624 EXPORT_SYMBOL(gro_find_complete_by_type);
5625
5626 static void napi_skb_free_stolen_head(struct sk_buff *skb)
5627 {
5628         skb_dst_drop(skb);
5629         secpath_reset(skb);
5630         kmem_cache_free(skbuff_head_cache, skb);
5631 }
5632
5633 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
5634 {
5635         switch (ret) {
5636         case GRO_NORMAL:
5637                 if (netif_receive_skb_internal(skb))
5638                         ret = GRO_DROP;
5639                 break;
5640
5641         case GRO_DROP:
5642                 kfree_skb(skb);
5643                 break;
5644
5645         case GRO_MERGED_FREE:
5646                 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5647                         napi_skb_free_stolen_head(skb);
5648                 else
5649                         __kfree_skb(skb);
5650                 break;
5651
5652         case GRO_HELD:
5653         case GRO_MERGED:
5654         case GRO_CONSUMED:
5655                 break;
5656         }
5657
5658         return ret;
5659 }
5660
5661 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5662 {
5663         gro_result_t ret;
5664
5665         skb_mark_napi_id(skb, napi);
5666         trace_napi_gro_receive_entry(skb);
5667
5668         skb_gro_reset_offset(skb);
5669
5670         ret = napi_skb_finish(dev_gro_receive(napi, skb), skb);
5671         trace_napi_gro_receive_exit(ret);
5672
5673         return ret;
5674 }
5675 EXPORT_SYMBOL(napi_gro_receive);
5676
5677 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
5678 {
5679         if (unlikely(skb->pfmemalloc)) {
5680                 consume_skb(skb);
5681                 return;
5682         }
5683         __skb_pull(skb, skb_headlen(skb));
5684         /* restore the reserve we had after netdev_alloc_skb_ip_align() */
5685         skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
5686         __vlan_hwaccel_clear_tag(skb);
5687         skb->dev = napi->dev;
5688         skb->skb_iif = 0;
5689
5690         /* eth_type_trans() assumes pkt_type is PACKET_HOST */
5691         skb->pkt_type = PACKET_HOST;
5692
5693         skb->encapsulation = 0;
5694         skb_shinfo(skb)->gso_type = 0;
5695         skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
5696         secpath_reset(skb);
5697
5698         napi->skb = skb;
5699 }
5700
5701 struct sk_buff *napi_get_frags(struct napi_struct *napi)
5702 {
5703         struct sk_buff *skb = napi->skb;
5704
5705         if (!skb) {
5706                 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
5707                 if (skb) {
5708                         napi->skb = skb;
5709                         skb_mark_napi_id(skb, napi);
5710                 }
5711         }
5712         return skb;
5713 }
5714 EXPORT_SYMBOL(napi_get_frags);
5715
5716 static gro_result_t napi_frags_finish(struct napi_struct *napi,
5717                                       struct sk_buff *skb,
5718                                       gro_result_t ret)
5719 {
5720         switch (ret) {
5721         case GRO_NORMAL:
5722         case GRO_HELD:
5723                 __skb_push(skb, ETH_HLEN);
5724                 skb->protocol = eth_type_trans(skb, skb->dev);
5725                 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
5726                         ret = GRO_DROP;
5727                 break;
5728
5729         case GRO_DROP:
5730                 napi_reuse_skb(napi, skb);
5731                 break;
5732
5733         case GRO_MERGED_FREE:
5734                 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5735                         napi_skb_free_stolen_head(skb);
5736                 else
5737                         napi_reuse_skb(napi, skb);
5738                 break;
5739
5740         case GRO_MERGED:
5741         case GRO_CONSUMED:
5742                 break;
5743         }
5744
5745         return ret;
5746 }
5747
5748 /* Upper GRO stack assumes network header starts at gro_offset=0
5749  * Drivers could call both napi_gro_frags() and napi_gro_receive()
5750  * We copy ethernet header into skb->data to have a common layout.
5751  */
5752 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
5753 {
5754         struct sk_buff *skb = napi->skb;
5755         const struct ethhdr *eth;
5756         unsigned int hlen = sizeof(*eth);
5757
5758         napi->skb = NULL;
5759
5760         skb_reset_mac_header(skb);
5761         skb_gro_reset_offset(skb);
5762
5763         eth = skb_gro_header_fast(skb, 0);
5764         if (unlikely(skb_gro_header_hard(skb, hlen))) {
5765                 eth = skb_gro_header_slow(skb, hlen, 0);
5766                 if (unlikely(!eth)) {
5767                         net_warn_ratelimited("%s: dropping impossible skb from %s\n",
5768                                              __func__, napi->dev->name);
5769                         napi_reuse_skb(napi, skb);
5770                         return NULL;
5771                 }
5772         } else {
5773                 gro_pull_from_frag0(skb, hlen);
5774                 NAPI_GRO_CB(skb)->frag0 += hlen;
5775                 NAPI_GRO_CB(skb)->frag0_len -= hlen;
5776         }
5777         __skb_pull(skb, hlen);
5778
5779         /*
5780          * This works because the only protocols we care about don't require
5781          * special handling.
5782          * We'll fix it up properly in napi_frags_finish()
5783          */
5784         skb->protocol = eth->h_proto;
5785
5786         return skb;
5787 }
5788
5789 gro_result_t napi_gro_frags(struct napi_struct *napi)
5790 {
5791         gro_result_t ret;
5792         struct sk_buff *skb = napi_frags_skb(napi);
5793
5794         if (!skb)
5795                 return GRO_DROP;
5796
5797         trace_napi_gro_frags_entry(skb);
5798
5799         ret = napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
5800         trace_napi_gro_frags_exit(ret);
5801
5802         return ret;
5803 }
5804 EXPORT_SYMBOL(napi_gro_frags);
5805
5806 /* Compute the checksum from gro_offset and return the folded value
5807  * after adding in any pseudo checksum.
5808  */
5809 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
5810 {
5811         __wsum wsum;
5812         __sum16 sum;
5813
5814         wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
5815
5816         /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
5817         sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
5818         /* See comments in __skb_checksum_complete(). */
5819         if (likely(!sum)) {
5820                 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
5821                     !skb->csum_complete_sw)
5822                         netdev_rx_csum_fault(skb->dev, skb);
5823         }
5824
5825         NAPI_GRO_CB(skb)->csum = wsum;
5826         NAPI_GRO_CB(skb)->csum_valid = 1;
5827
5828         return sum;
5829 }
5830 EXPORT_SYMBOL(__skb_gro_checksum_complete);
5831
5832 static void net_rps_send_ipi(struct softnet_data *remsd)
5833 {
5834 #ifdef CONFIG_RPS
5835         while (remsd) {
5836                 struct softnet_data *next = remsd->rps_ipi_next;
5837
5838                 if (cpu_online(remsd->cpu))
5839                         smp_call_function_single_async(remsd->cpu, &remsd->csd);
5840                 remsd = next;
5841         }
5842 #endif
5843 }
5844
5845 /*
5846  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
5847  * Note: called with local irq disabled, but exits with local irq enabled.
5848  */
5849 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
5850 {
5851 #ifdef CONFIG_RPS
5852         struct softnet_data *remsd = sd->rps_ipi_list;
5853
5854         if (remsd) {
5855                 sd->rps_ipi_list = NULL;
5856
5857                 local_irq_enable();
5858
5859                 /* Send pending IPI's to kick RPS processing on remote cpus. */
5860                 net_rps_send_ipi(remsd);
5861         } else
5862 #endif
5863                 local_irq_enable();
5864 }
5865
5866 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
5867 {
5868 #ifdef CONFIG_RPS
5869         return sd->rps_ipi_list != NULL;
5870 #else
5871         return false;
5872 #endif
5873 }
5874
5875 static int process_backlog(struct napi_struct *napi, int quota)
5876 {
5877         struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
5878         bool again = true;
5879         int work = 0;
5880
5881         /* Check if we have pending ipi, its better to send them now,
5882          * not waiting net_rx_action() end.
5883          */
5884         if (sd_has_rps_ipi_waiting(sd)) {
5885                 local_irq_disable();
5886                 net_rps_action_and_irq_enable(sd);
5887         }
5888
5889         napi->weight = dev_rx_weight;
5890         while (again) {
5891                 struct sk_buff *skb;
5892
5893                 while ((skb = __skb_dequeue(&sd->process_queue))) {
5894                         rcu_read_lock();
5895                         __netif_receive_skb(skb);
5896                         rcu_read_unlock();
5897                         input_queue_head_incr(sd);
5898                         if (++work >= quota)
5899                                 return work;
5900
5901                 }
5902
5903                 local_irq_disable();
5904                 rps_lock(sd);
5905                 if (skb_queue_empty(&sd->input_pkt_queue)) {
5906                         /*
5907                          * Inline a custom version of __napi_complete().
5908                          * only current cpu owns and manipulates this napi,
5909                          * and NAPI_STATE_SCHED is the only possible flag set
5910                          * on backlog.
5911                          * We can use a plain write instead of clear_bit(),
5912                          * and we dont need an smp_mb() memory barrier.
5913                          */
5914                         napi->state = 0;
5915                         again = false;
5916                 } else {
5917                         skb_queue_splice_tail_init(&sd->input_pkt_queue,
5918                                                    &sd->process_queue);
5919                 }
5920                 rps_unlock(sd);
5921                 local_irq_enable();
5922         }
5923
5924         return work;
5925 }
5926
5927 /**
5928  * __napi_schedule - schedule for receive
5929  * @n: entry to schedule
5930  *
5931  * The entry's receive function will be scheduled to run.
5932  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
5933  */
5934 void __napi_schedule(struct napi_struct *n)
5935 {
5936         unsigned long flags;
5937
5938         local_irq_save(flags);
5939         ____napi_schedule(this_cpu_ptr(&softnet_data), n);
5940         local_irq_restore(flags);
5941 }
5942 EXPORT_SYMBOL(__napi_schedule);
5943
5944 /**
5945  *      napi_schedule_prep - check if napi can be scheduled
5946  *      @n: napi context
5947  *
5948  * Test if NAPI routine is already running, and if not mark
5949  * it as running.  This is used as a condition variable
5950  * insure only one NAPI poll instance runs.  We also make
5951  * sure there is no pending NAPI disable.
5952  */
5953 bool napi_schedule_prep(struct napi_struct *n)
5954 {
5955         unsigned long val, new;
5956
5957         do {
5958                 val = READ_ONCE(n->state);
5959                 if (unlikely(val & NAPIF_STATE_DISABLE))
5960                         return false;
5961                 new = val | NAPIF_STATE_SCHED;
5962
5963                 /* Sets STATE_MISSED bit if STATE_SCHED was already set
5964                  * This was suggested by Alexander Duyck, as compiler
5965                  * emits better code than :
5966                  * if (val & NAPIF_STATE_SCHED)
5967                  *     new |= NAPIF_STATE_MISSED;
5968                  */
5969                 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
5970                                                    NAPIF_STATE_MISSED;
5971         } while (cmpxchg(&n->state, val, new) != val);
5972
5973         return !(val & NAPIF_STATE_SCHED);
5974 }
5975 EXPORT_SYMBOL(napi_schedule_prep);
5976
5977 /**
5978  * __napi_schedule_irqoff - schedule for receive
5979  * @n: entry to schedule
5980  *
5981  * Variant of __napi_schedule() assuming hard irqs are masked
5982  */
5983 void __napi_schedule_irqoff(struct napi_struct *n)
5984 {
5985         ____napi_schedule(this_cpu_ptr(&softnet_data), n);
5986 }
5987 EXPORT_SYMBOL(__napi_schedule_irqoff);
5988
5989 bool napi_complete_done(struct napi_struct *n, int work_done)
5990 {
5991         unsigned long flags, val, new;
5992
5993         /*
5994          * 1) Don't let napi dequeue from the cpu poll list
5995          *    just in case its running on a different cpu.
5996          * 2) If we are busy polling, do nothing here, we have
5997          *    the guarantee we will be called later.
5998          */
5999         if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6000                                  NAPIF_STATE_IN_BUSY_POLL)))
6001                 return false;
6002
6003         if (n->gro_bitmask) {
6004                 unsigned long timeout = 0;
6005
6006                 if (work_done)
6007                         timeout = n->dev->gro_flush_timeout;
6008
6009                 /* When the NAPI instance uses a timeout and keeps postponing
6010                  * it, we need to bound somehow the time packets are kept in
6011                  * the GRO layer
6012                  */
6013                 napi_gro_flush(n, !!timeout);
6014                 if (timeout)
6015                         hrtimer_start(&n->timer, ns_to_ktime(timeout),
6016                                       HRTIMER_MODE_REL_PINNED);
6017         }
6018         if (unlikely(!list_empty(&n->poll_list))) {
6019                 /* If n->poll_list is not empty, we need to mask irqs */
6020                 local_irq_save(flags);
6021                 list_del_init(&n->poll_list);
6022                 local_irq_restore(flags);
6023         }
6024
6025         do {
6026                 val = READ_ONCE(n->state);
6027
6028                 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6029
6030                 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED);
6031
6032                 /* If STATE_MISSED was set, leave STATE_SCHED set,
6033                  * because we will call napi->poll() one more time.
6034                  * This C code was suggested by Alexander Duyck to help gcc.
6035                  */
6036                 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6037                                                     NAPIF_STATE_SCHED;
6038         } while (cmpxchg(&n->state, val, new) != val);
6039
6040         if (unlikely(val & NAPIF_STATE_MISSED)) {
6041                 __napi_schedule(n);
6042                 return false;
6043         }
6044
6045         return true;
6046 }
6047 EXPORT_SYMBOL(napi_complete_done);
6048
6049 /* must be called under rcu_read_lock(), as we dont take a reference */
6050 static struct napi_struct *napi_by_id(unsigned int napi_id)
6051 {
6052         unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6053         struct napi_struct *napi;
6054
6055         hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6056                 if (napi->napi_id == napi_id)
6057                         return napi;
6058
6059         return NULL;
6060 }
6061
6062 #if defined(CONFIG_NET_RX_BUSY_POLL)
6063
6064 #define BUSY_POLL_BUDGET 8
6065
6066 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock)
6067 {
6068         int rc;
6069
6070         /* Busy polling means there is a high chance device driver hard irq
6071          * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6072          * set in napi_schedule_prep().
6073          * Since we are about to call napi->poll() once more, we can safely
6074          * clear NAPI_STATE_MISSED.
6075          *
6076          * Note: x86 could use a single "lock and ..." instruction
6077          * to perform these two clear_bit()
6078          */
6079         clear_bit(NAPI_STATE_MISSED, &napi->state);
6080         clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6081
6082         local_bh_disable();
6083
6084         /* All we really want here is to re-enable device interrupts.
6085          * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6086          */
6087         rc = napi->poll(napi, BUSY_POLL_BUDGET);
6088         trace_napi_poll(napi, rc, BUSY_POLL_BUDGET);
6089         netpoll_poll_unlock(have_poll_lock);
6090         if (rc == BUSY_POLL_BUDGET)
6091                 __napi_schedule(napi);
6092         local_bh_enable();
6093 }
6094
6095 void napi_busy_loop(unsigned int napi_id,
6096                     bool (*loop_end)(void *, unsigned long),
6097                     void *loop_end_arg)
6098 {
6099         unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6100         int (*napi_poll)(struct napi_struct *napi, int budget);
6101         void *have_poll_lock = NULL;
6102         struct napi_struct *napi;
6103
6104 restart:
6105         napi_poll = NULL;
6106
6107         rcu_read_lock();
6108
6109         napi = napi_by_id(napi_id);
6110         if (!napi)
6111                 goto out;
6112
6113         preempt_disable();
6114         for (;;) {
6115                 int work = 0;
6116
6117                 local_bh_disable();
6118                 if (!napi_poll) {
6119                         unsigned long val = READ_ONCE(napi->state);
6120
6121                         /* If multiple threads are competing for this napi,
6122                          * we avoid dirtying napi->state as much as we can.
6123                          */
6124                         if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6125                                    NAPIF_STATE_IN_BUSY_POLL))
6126                                 goto count;
6127                         if (cmpxchg(&napi->state, val,
6128                                     val | NAPIF_STATE_IN_BUSY_POLL |
6129                                           NAPIF_STATE_SCHED) != val)
6130                                 goto count;
6131                         have_poll_lock = netpoll_poll_lock(napi);
6132                         napi_poll = napi->poll;
6133                 }
6134                 work = napi_poll(napi, BUSY_POLL_BUDGET);
6135                 trace_napi_poll(napi, work, BUSY_POLL_BUDGET);
6136 count:
6137                 if (work > 0)
6138                         __NET_ADD_STATS(dev_net(napi->dev),
6139                                         LINUX_MIB_BUSYPOLLRXPACKETS, work);
6140                 local_bh_enable();
6141
6142                 if (!loop_end || loop_end(loop_end_arg, start_time))
6143                         break;
6144
6145                 if (unlikely(need_resched())) {
6146                         if (napi_poll)
6147                                 busy_poll_stop(napi, have_poll_lock);
6148                         preempt_enable();
6149                         rcu_read_unlock();
6150                         cond_resched();
6151                         if (loop_end(loop_end_arg, start_time))
6152                                 return;
6153                         goto restart;
6154                 }
6155                 cpu_relax();
6156         }
6157         if (napi_poll)
6158                 busy_poll_stop(napi, have_poll_lock);
6159         preempt_enable();
6160 out:
6161         rcu_read_unlock();
6162 }
6163 EXPORT_SYMBOL(napi_busy_loop);
6164
6165 #endif /* CONFIG_NET_RX_BUSY_POLL */
6166
6167 static void napi_hash_add(struct napi_struct *napi)
6168 {
6169         if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
6170             test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
6171                 return;
6172
6173         spin_lock(&napi_hash_lock);
6174
6175         /* 0..NR_CPUS range is reserved for sender_cpu use */
6176         do {
6177                 if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6178                         napi_gen_id = MIN_NAPI_ID;
6179         } while (napi_by_id(napi_gen_id));
6180         napi->napi_id = napi_gen_id;
6181
6182         hlist_add_head_rcu(&napi->napi_hash_node,
6183                            &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6184
6185         spin_unlock(&napi_hash_lock);
6186 }
6187
6188 /* Warning : caller is responsible to make sure rcu grace period
6189  * is respected before freeing memory containing @napi
6190  */
6191 bool napi_hash_del(struct napi_struct *napi)
6192 {
6193         bool rcu_sync_needed = false;
6194
6195         spin_lock(&napi_hash_lock);
6196
6197         if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
6198                 rcu_sync_needed = true;
6199                 hlist_del_rcu(&napi->napi_hash_node);
6200         }
6201         spin_unlock(&napi_hash_lock);
6202         return rcu_sync_needed;
6203 }
6204 EXPORT_SYMBOL_GPL(napi_hash_del);
6205
6206 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6207 {
6208         struct napi_struct *napi;
6209
6210         napi = container_of(timer, struct napi_struct, timer);
6211
6212         /* Note : we use a relaxed variant of napi_schedule_prep() not setting
6213          * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6214          */
6215         if (napi->gro_bitmask && !napi_disable_pending(napi) &&
6216             !test_and_set_bit(NAPI_STATE_SCHED, &napi->state))
6217                 __napi_schedule_irqoff(napi);
6218
6219         return HRTIMER_NORESTART;
6220 }
6221
6222 static void init_gro_hash(struct napi_struct *napi)
6223 {
6224         int i;
6225
6226         for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6227                 INIT_LIST_HEAD(&napi->gro_hash[i].list);
6228                 napi->gro_hash[i].count = 0;
6229         }
6230         napi->gro_bitmask = 0;
6231 }
6232
6233 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
6234                     int (*poll)(struct napi_struct *, int), int weight)
6235 {
6236         INIT_LIST_HEAD(&napi->poll_list);
6237         hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6238         napi->timer.function = napi_watchdog;
6239         init_gro_hash(napi);
6240         napi->skb = NULL;
6241         napi->poll = poll;
6242         if (weight > NAPI_POLL_WEIGHT)
6243                 pr_err_once("netif_napi_add() called with weight %d on device %s\n",
6244                             weight, dev->name);
6245         napi->weight = weight;
6246         list_add(&napi->dev_list, &dev->napi_list);
6247         napi->dev = dev;
6248 #ifdef CONFIG_NETPOLL
6249         napi->poll_owner = -1;
6250 #endif
6251         set_bit(NAPI_STATE_SCHED, &napi->state);
6252         napi_hash_add(napi);
6253 }
6254 EXPORT_SYMBOL(netif_napi_add);
6255
6256 void napi_disable(struct napi_struct *n)
6257 {
6258         might_sleep();
6259         set_bit(NAPI_STATE_DISABLE, &n->state);
6260
6261         while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
6262                 msleep(1);
6263         while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
6264                 msleep(1);
6265
6266         hrtimer_cancel(&n->timer);
6267
6268         clear_bit(NAPI_STATE_DISABLE, &n->state);
6269 }
6270 EXPORT_SYMBOL(napi_disable);
6271
6272 static void flush_gro_hash(struct napi_struct *napi)
6273 {
6274         int i;
6275
6276         for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6277                 struct sk_buff *skb, *n;
6278
6279                 list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6280                         kfree_skb(skb);
6281                 napi->gro_hash[i].count = 0;
6282         }
6283 }
6284
6285 /* Must be called in process context */
6286 void netif_napi_del(struct napi_struct *napi)
6287 {
6288         might_sleep();
6289         if (napi_hash_del(napi))
6290                 synchronize_net();
6291         list_del_init(&napi->dev_list);
6292         napi_free_frags(napi);
6293
6294         flush_gro_hash(napi);
6295         napi->gro_bitmask = 0;
6296 }
6297 EXPORT_SYMBOL(netif_napi_del);
6298
6299 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6300 {
6301         void *have;
6302         int work, weight;
6303
6304         list_del_init(&n->poll_list);
6305
6306         have = netpoll_poll_lock(n);
6307
6308         weight = n->weight;
6309
6310         /* This NAPI_STATE_SCHED test is for avoiding a race
6311          * with netpoll's poll_napi().  Only the entity which
6312          * obtains the lock and sees NAPI_STATE_SCHED set will
6313          * actually make the ->poll() call.  Therefore we avoid
6314          * accidentally calling ->poll() when NAPI is not scheduled.
6315          */
6316         work = 0;
6317         if (test_bit(NAPI_STATE_SCHED, &n->state)) {
6318                 work = n->poll(n, weight);
6319                 trace_napi_poll(n, work, weight);
6320         }
6321
6322         WARN_ON_ONCE(work > weight);
6323
6324         if (likely(work < weight))
6325                 goto out_unlock;
6326
6327         /* Drivers must not modify the NAPI state if they
6328          * consume the entire weight.  In such cases this code
6329          * still "owns" the NAPI instance and therefore can
6330          * move the instance around on the list at-will.
6331          */
6332         if (unlikely(napi_disable_pending(n))) {
6333                 napi_complete(n);
6334                 goto out_unlock;
6335         }
6336
6337         if (n->gro_bitmask) {
6338                 /* flush too old packets
6339                  * If HZ < 1000, flush all packets.
6340                  */
6341                 napi_gro_flush(n, HZ >= 1000);
6342         }
6343
6344         /* Some drivers may have called napi_schedule
6345          * prior to exhausting their budget.
6346          */
6347         if (unlikely(!list_empty(&n->poll_list))) {
6348                 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6349                              n->dev ? n->dev->name : "backlog");
6350                 goto out_unlock;
6351         }
6352
6353         list_add_tail(&n->poll_list, repoll);
6354
6355 out_unlock:
6356         netpoll_poll_unlock(have);
6357
6358         return work;
6359 }
6360
6361 static __latent_entropy void net_rx_action(struct softirq_action *h)
6362 {
6363         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
6364         unsigned long time_limit = jiffies +
6365                 usecs_to_jiffies(netdev_budget_usecs);
6366         int budget = netdev_budget;
6367         LIST_HEAD(list);
6368         LIST_HEAD(repoll);
6369
6370         local_irq_disable();
6371         list_splice_init(&sd->poll_list, &list);
6372         local_irq_enable();
6373
6374         for (;;) {
6375                 struct napi_struct *n;
6376
6377                 if (list_empty(&list)) {
6378                         if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
6379                                 goto out;
6380                         break;
6381                 }
6382
6383                 n = list_first_entry(&list, struct napi_struct, poll_list);
6384                 budget -= napi_poll(n, &repoll);
6385
6386                 /* If softirq window is exhausted then punt.
6387                  * Allow this to run for 2 jiffies since which will allow
6388                  * an average latency of 1.5/HZ.
6389                  */
6390                 if (unlikely(budget <= 0 ||
6391                              time_after_eq(jiffies, time_limit))) {
6392                         sd->time_squeeze++;
6393                         break;
6394                 }
6395         }
6396
6397         local_irq_disable();
6398
6399         list_splice_tail_init(&sd->poll_list, &list);
6400         list_splice_tail(&repoll, &list);
6401         list_splice(&list, &sd->poll_list);
6402         if (!list_empty(&sd->poll_list))
6403                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
6404
6405         net_rps_action_and_irq_enable(sd);
6406 out:
6407         __kfree_skb_flush();
6408 }
6409
6410 struct netdev_adjacent {
6411         struct net_device *dev;
6412
6413         /* upper master flag, there can only be one master device per list */
6414         bool master;
6415
6416         /* counter for the number of times this device was added to us */
6417         u16 ref_nr;
6418
6419         /* private field for the users */
6420         void *private;
6421
6422         struct list_head list;
6423         struct rcu_head rcu;
6424 };
6425
6426 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
6427                                                  struct list_head *adj_list)
6428 {
6429         struct netdev_adjacent *adj;
6430
6431         list_for_each_entry(adj, adj_list, list) {
6432                 if (adj->dev == adj_dev)
6433                         return adj;
6434         }
6435         return NULL;
6436 }
6437
6438 static int __netdev_has_upper_dev(struct net_device *upper_dev, void *data)
6439 {
6440         struct net_device *dev = data;
6441
6442         return upper_dev == dev;
6443 }
6444
6445 /**
6446  * netdev_has_upper_dev - Check if device is linked to an upper device
6447  * @dev: device
6448  * @upper_dev: upper device to check
6449  *
6450  * Find out if a device is linked to specified upper device and return true
6451  * in case it is. Note that this checks only immediate upper device,
6452  * not through a complete stack of devices. The caller must hold the RTNL lock.
6453  */
6454 bool netdev_has_upper_dev(struct net_device *dev,
6455                           struct net_device *upper_dev)
6456 {
6457         ASSERT_RTNL();
6458
6459         return netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
6460                                              upper_dev);
6461 }
6462 EXPORT_SYMBOL(netdev_has_upper_dev);
6463
6464 /**
6465  * netdev_has_upper_dev_all - Check if device is linked to an upper device
6466  * @dev: device
6467  * @upper_dev: upper device to check
6468  *
6469  * Find out if a device is linked to specified upper device and return true
6470  * in case it is. Note that this checks the entire upper device chain.
6471  * The caller must hold rcu lock.
6472  */
6473
6474 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
6475                                   struct net_device *upper_dev)
6476 {
6477         return !!netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
6478                                                upper_dev);
6479 }
6480 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
6481
6482 /**
6483  * netdev_has_any_upper_dev - Check if device is linked to some device
6484  * @dev: device
6485  *
6486  * Find out if a device is linked to an upper device and return true in case
6487  * it is. The caller must hold the RTNL lock.
6488  */
6489 bool netdev_has_any_upper_dev(struct net_device *dev)
6490 {
6491         ASSERT_RTNL();
6492
6493         return !list_empty(&dev->adj_list.upper);
6494 }
6495 EXPORT_SYMBOL(netdev_has_any_upper_dev);
6496
6497 /**
6498  * netdev_master_upper_dev_get - Get master upper device
6499  * @dev: device
6500  *
6501  * Find a master upper device and return pointer to it or NULL in case
6502  * it's not there. The caller must hold the RTNL lock.
6503  */
6504 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
6505 {
6506         struct netdev_adjacent *upper;
6507
6508         ASSERT_RTNL();
6509
6510         if (list_empty(&dev->adj_list.upper))
6511                 return NULL;
6512
6513         upper = list_first_entry(&dev->adj_list.upper,
6514                                  struct netdev_adjacent, list);
6515         if (likely(upper->master))
6516                 return upper->dev;
6517         return NULL;
6518 }
6519 EXPORT_SYMBOL(netdev_master_upper_dev_get);
6520
6521 /**
6522  * netdev_has_any_lower_dev - Check if device is linked to some device
6523  * @dev: device
6524  *
6525  * Find out if a device is linked to a lower device and return true in case
6526  * it is. The caller must hold the RTNL lock.
6527  */
6528 static bool netdev_has_any_lower_dev(struct net_device *dev)
6529 {
6530         ASSERT_RTNL();
6531
6532         return !list_empty(&dev->adj_list.lower);
6533 }
6534
6535 void *netdev_adjacent_get_private(struct list_head *adj_list)
6536 {
6537         struct netdev_adjacent *adj;
6538
6539         adj = list_entry(adj_list, struct netdev_adjacent, list);
6540
6541         return adj->private;
6542 }
6543 EXPORT_SYMBOL(netdev_adjacent_get_private);
6544
6545 /**
6546  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
6547  * @dev: device
6548  * @iter: list_head ** of the current position
6549  *
6550  * Gets the next device from the dev's upper list, starting from iter
6551  * position. The caller must hold RCU read lock.
6552  */
6553 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
6554                                                  struct list_head **iter)
6555 {
6556         struct netdev_adjacent *upper;
6557
6558         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6559
6560         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6561
6562         if (&upper->list == &dev->adj_list.upper)
6563                 return NULL;
6564
6565         *iter = &upper->list;
6566
6567         return upper->dev;
6568 }
6569 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
6570
6571 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
6572                                                     struct list_head **iter)
6573 {
6574         struct netdev_adjacent *upper;
6575
6576         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6577
6578         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6579
6580         if (&upper->list == &dev->adj_list.upper)
6581                 return NULL;
6582
6583         *iter = &upper->list;
6584
6585         return upper->dev;
6586 }
6587
6588 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
6589                                   int (*fn)(struct net_device *dev,
6590                                             void *data),
6591                                   void *data)
6592 {
6593         struct net_device *udev;
6594         struct list_head *iter;
6595         int ret;
6596
6597         for (iter = &dev->adj_list.upper,
6598              udev = netdev_next_upper_dev_rcu(dev, &iter);
6599              udev;
6600              udev = netdev_next_upper_dev_rcu(dev, &iter)) {
6601                 /* first is the upper device itself */
6602                 ret = fn(udev, data);
6603                 if (ret)
6604                         return ret;
6605
6606                 /* then look at all of its upper devices */
6607                 ret = netdev_walk_all_upper_dev_rcu(udev, fn, data);
6608                 if (ret)
6609                         return ret;
6610         }
6611
6612         return 0;
6613 }
6614 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
6615
6616 /**
6617  * netdev_lower_get_next_private - Get the next ->private from the
6618  *                                 lower neighbour list
6619  * @dev: device
6620  * @iter: list_head ** of the current position
6621  *
6622  * Gets the next netdev_adjacent->private from the dev's lower neighbour
6623  * list, starting from iter position. The caller must hold either hold the
6624  * RTNL lock or its own locking that guarantees that the neighbour lower
6625  * list will remain unchanged.
6626  */
6627 void *netdev_lower_get_next_private(struct net_device *dev,
6628                                     struct list_head **iter)
6629 {
6630         struct netdev_adjacent *lower;
6631
6632         lower = list_entry(*iter, struct netdev_adjacent, list);
6633
6634         if (&lower->list == &dev->adj_list.lower)
6635                 return NULL;
6636
6637         *iter = lower->list.next;
6638
6639         return lower->private;
6640 }
6641 EXPORT_SYMBOL(netdev_lower_get_next_private);
6642
6643 /**
6644  * netdev_lower_get_next_private_rcu - Get the next ->private from the
6645  *                                     lower neighbour list, RCU
6646  *                                     variant
6647  * @dev: device
6648  * @iter: list_head ** of the current position
6649  *
6650  * Gets the next netdev_adjacent->private from the dev's lower neighbour
6651  * list, starting from iter position. The caller must hold RCU read lock.
6652  */
6653 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
6654                                         struct list_head **iter)
6655 {
6656         struct netdev_adjacent *lower;
6657
6658         WARN_ON_ONCE(!rcu_read_lock_held());
6659
6660         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6661
6662         if (&lower->list == &dev->adj_list.lower)
6663                 return NULL;
6664
6665         *iter = &lower->list;
6666
6667         return lower->private;
6668 }
6669 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
6670
6671 /**
6672  * netdev_lower_get_next - Get the next device from the lower neighbour
6673  *                         list
6674  * @dev: device
6675  * @iter: list_head ** of the current position
6676  *
6677  * Gets the next netdev_adjacent from the dev's lower neighbour
6678  * list, starting from iter position. The caller must hold RTNL lock or
6679  * its own locking that guarantees that the neighbour lower
6680  * list will remain unchanged.
6681  */
6682 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
6683 {
6684         struct netdev_adjacent *lower;
6685
6686         lower = list_entry(*iter, struct netdev_adjacent, list);
6687
6688         if (&lower->list == &dev->adj_list.lower)
6689                 return NULL;
6690
6691         *iter = lower->list.next;
6692
6693         return lower->dev;
6694 }
6695 EXPORT_SYMBOL(netdev_lower_get_next);
6696
6697 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
6698                                                 struct list_head **iter)
6699 {
6700         struct netdev_adjacent *lower;
6701
6702         lower = list_entry((*iter)->next, struct netdev_adjacent, list);
6703
6704         if (&lower->list == &dev->adj_list.lower)
6705                 return NULL;
6706
6707         *iter = &lower->list;
6708
6709         return lower->dev;
6710 }
6711
6712 int netdev_walk_all_lower_dev(struct net_device *dev,
6713                               int (*fn)(struct net_device *dev,
6714                                         void *data),
6715                               void *data)
6716 {
6717         struct net_device *ldev;
6718         struct list_head *iter;
6719         int ret;
6720
6721         for (iter = &dev->adj_list.lower,
6722              ldev = netdev_next_lower_dev(dev, &iter);
6723              ldev;
6724              ldev = netdev_next_lower_dev(dev, &iter)) {
6725                 /* first is the lower device itself */
6726                 ret = fn(ldev, data);
6727                 if (ret)
6728                         return ret;
6729
6730                 /* then look at all of its lower devices */
6731                 ret = netdev_walk_all_lower_dev(ldev, fn, data);
6732                 if (ret)
6733                         return ret;
6734         }
6735
6736         return 0;
6737 }
6738 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
6739
6740 static struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
6741                                                     struct list_head **iter)
6742 {
6743         struct netdev_adjacent *lower;
6744
6745         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6746         if (&lower->list == &dev->adj_list.lower)
6747                 return NULL;
6748
6749         *iter = &lower->list;
6750
6751         return lower->dev;
6752 }
6753
6754 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
6755                                   int (*fn)(struct net_device *dev,
6756                                             void *data),
6757                                   void *data)
6758 {
6759         struct net_device *ldev;
6760         struct list_head *iter;
6761         int ret;
6762
6763         for (iter = &dev->adj_list.lower,
6764              ldev = netdev_next_lower_dev_rcu(dev, &iter);
6765              ldev;
6766              ldev = netdev_next_lower_dev_rcu(dev, &iter)) {
6767                 /* first is the lower device itself */
6768                 ret = fn(ldev, data);
6769                 if (ret)
6770                         return ret;
6771
6772                 /* then look at all of its lower devices */
6773                 ret = netdev_walk_all_lower_dev_rcu(ldev, fn, data);
6774                 if (ret)
6775                         return ret;
6776         }
6777
6778         return 0;
6779 }
6780 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
6781
6782 /**
6783  * netdev_lower_get_first_private_rcu - Get the first ->private from the
6784  *                                     lower neighbour list, RCU
6785  *                                     variant
6786  * @dev: device
6787  *
6788  * Gets the first netdev_adjacent->private from the dev's lower neighbour
6789  * list. The caller must hold RCU read lock.
6790  */
6791 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
6792 {
6793         struct netdev_adjacent *lower;
6794
6795         lower = list_first_or_null_rcu(&dev->adj_list.lower,
6796                         struct netdev_adjacent, list);
6797         if (lower)
6798                 return lower->private;
6799         return NULL;
6800 }
6801 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
6802
6803 /**
6804  * netdev_master_upper_dev_get_rcu - Get master upper device
6805  * @dev: device
6806  *
6807  * Find a master upper device and return pointer to it or NULL in case
6808  * it's not there. The caller must hold the RCU read lock.
6809  */
6810 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
6811 {
6812         struct netdev_adjacent *upper;
6813
6814         upper = list_first_or_null_rcu(&dev->adj_list.upper,
6815                                        struct netdev_adjacent, list);
6816         if (upper && likely(upper->master))
6817                 return upper->dev;
6818         return NULL;
6819 }
6820 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
6821
6822 static int netdev_adjacent_sysfs_add(struct net_device *dev,
6823                               struct net_device *adj_dev,
6824                               struct list_head *dev_list)
6825 {
6826         char linkname[IFNAMSIZ+7];
6827
6828         sprintf(linkname, dev_list == &dev->adj_list.upper ?
6829                 "upper_%s" : "lower_%s", adj_dev->name);
6830         return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
6831                                  linkname);
6832 }
6833 static void netdev_adjacent_sysfs_del(struct net_device *dev,
6834                                char *name,
6835                                struct list_head *dev_list)
6836 {
6837         char linkname[IFNAMSIZ+7];
6838
6839         sprintf(linkname, dev_list == &dev->adj_list.upper ?
6840                 "upper_%s" : "lower_%s", name);
6841         sysfs_remove_link(&(dev->dev.kobj), linkname);
6842 }
6843
6844 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
6845                                                  struct net_device *adj_dev,
6846                                                  struct list_head *dev_list)
6847 {
6848         return (dev_list == &dev->adj_list.upper ||
6849                 dev_list == &dev->adj_list.lower) &&
6850                 net_eq(dev_net(dev), dev_net(adj_dev));
6851 }
6852
6853 static int __netdev_adjacent_dev_insert(struct net_device *dev,
6854                                         struct net_device *adj_dev,
6855                                         struct list_head *dev_list,
6856                                         void *private, bool master)
6857 {
6858         struct netdev_adjacent *adj;
6859         int ret;
6860
6861         adj = __netdev_find_adj(adj_dev, dev_list);
6862
6863         if (adj) {
6864                 adj->ref_nr += 1;
6865                 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
6866                          dev->name, adj_dev->name, adj->ref_nr);
6867
6868                 return 0;
6869         }
6870
6871         adj = kmalloc(sizeof(*adj), GFP_KERNEL);
6872         if (!adj)
6873                 return -ENOMEM;
6874
6875         adj->dev = adj_dev;
6876         adj->master = master;
6877         adj->ref_nr = 1;
6878         adj->private = private;
6879         dev_hold(adj_dev);
6880
6881         pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
6882                  dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
6883
6884         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
6885                 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
6886                 if (ret)
6887                         goto free_adj;
6888         }
6889
6890         /* Ensure that master link is always the first item in list. */
6891         if (master) {
6892                 ret = sysfs_create_link(&(dev->dev.kobj),
6893                                         &(adj_dev->dev.kobj), "master");
6894                 if (ret)
6895                         goto remove_symlinks;
6896
6897                 list_add_rcu(&adj->list, dev_list);
6898         } else {
6899                 list_add_tail_rcu(&adj->list, dev_list);
6900         }
6901
6902         return 0;
6903
6904 remove_symlinks:
6905         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
6906                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
6907 free_adj:
6908         kfree(adj);
6909         dev_put(adj_dev);
6910
6911         return ret;
6912 }
6913
6914 static void __netdev_adjacent_dev_remove(struct net_device *dev,
6915                                          struct net_device *adj_dev,
6916                                          u16 ref_nr,
6917                                          struct list_head *dev_list)
6918 {
6919         struct netdev_adjacent *adj;
6920
6921         pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
6922                  dev->name, adj_dev->name, ref_nr);
6923
6924         adj = __netdev_find_adj(adj_dev, dev_list);
6925
6926         if (!adj) {
6927                 pr_err("Adjacency does not exist for device %s from %s\n",
6928                        dev->name, adj_dev->name);
6929                 WARN_ON(1);
6930                 return;
6931         }
6932
6933         if (adj->ref_nr > ref_nr) {
6934                 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
6935                          dev->name, adj_dev->name, ref_nr,
6936                          adj->ref_nr - ref_nr);
6937                 adj->ref_nr -= ref_nr;
6938                 return;
6939         }
6940
6941         if (adj->master)
6942                 sysfs_remove_link(&(dev->dev.kobj), "master");
6943
6944         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
6945                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
6946
6947         list_del_rcu(&adj->list);
6948         pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
6949                  adj_dev->name, dev->name, adj_dev->name);
6950         dev_put(adj_dev);
6951         kfree_rcu(adj, rcu);
6952 }
6953
6954 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
6955                                             struct net_device *upper_dev,
6956                                             struct list_head *up_list,
6957                                             struct list_head *down_list,
6958                                             void *private, bool master)
6959 {
6960         int ret;
6961
6962         ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
6963                                            private, master);
6964         if (ret)
6965                 return ret;
6966
6967         ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
6968                                            private, false);
6969         if (ret) {
6970                 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
6971                 return ret;
6972         }
6973
6974         return 0;
6975 }
6976
6977 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
6978                                                struct net_device *upper_dev,
6979                                                u16 ref_nr,
6980                                                struct list_head *up_list,
6981                                                struct list_head *down_list)
6982 {
6983         __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
6984         __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
6985 }
6986
6987 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
6988                                                 struct net_device *upper_dev,
6989                                                 void *private, bool master)
6990 {
6991         return __netdev_adjacent_dev_link_lists(dev, upper_dev,
6992                                                 &dev->adj_list.upper,
6993                                                 &upper_dev->adj_list.lower,
6994                                                 private, master);
6995 }
6996
6997 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
6998                                                    struct net_device *upper_dev)
6999 {
7000         __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
7001                                            &dev->adj_list.upper,
7002                                            &upper_dev->adj_list.lower);
7003 }
7004
7005 static int __netdev_upper_dev_link(struct net_device *dev,
7006                                    struct net_device *upper_dev, bool master,
7007                                    void *upper_priv, void *upper_info,
7008                                    struct netlink_ext_ack *extack)
7009 {
7010         struct netdev_notifier_changeupper_info changeupper_info = {
7011                 .info = {
7012                         .dev = dev,
7013                         .extack = extack,
7014                 },
7015                 .upper_dev = upper_dev,
7016                 .master = master,
7017                 .linking = true,
7018                 .upper_info = upper_info,
7019         };
7020         struct net_device *master_dev;
7021         int ret = 0;
7022
7023         ASSERT_RTNL();
7024
7025         if (dev == upper_dev)
7026                 return -EBUSY;
7027
7028         /* To prevent loops, check if dev is not upper device to upper_dev. */
7029         if (netdev_has_upper_dev(upper_dev, dev))
7030                 return -EBUSY;
7031
7032         if (!master) {
7033                 if (netdev_has_upper_dev(dev, upper_dev))
7034                         return -EEXIST;
7035         } else {
7036                 master_dev = netdev_master_upper_dev_get(dev);
7037                 if (master_dev)
7038                         return master_dev == upper_dev ? -EEXIST : -EBUSY;
7039         }
7040
7041         ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7042                                             &changeupper_info.info);
7043         ret = notifier_to_errno(ret);
7044         if (ret)
7045                 return ret;
7046
7047         ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
7048                                                    master);
7049         if (ret)
7050                 return ret;
7051
7052         ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7053                                             &changeupper_info.info);
7054         ret = notifier_to_errno(ret);
7055         if (ret)
7056                 goto rollback;
7057
7058         return 0;
7059
7060 rollback:
7061         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7062
7063         return ret;
7064 }
7065
7066 /**
7067  * netdev_upper_dev_link - Add a link to the upper device
7068  * @dev: device
7069  * @upper_dev: new upper device
7070  * @extack: netlink extended ack
7071  *
7072  * Adds a link to device which is upper to this one. The caller must hold
7073  * the RTNL lock. On a failure a negative errno code is returned.
7074  * On success the reference counts are adjusted and the function
7075  * returns zero.
7076  */
7077 int netdev_upper_dev_link(struct net_device *dev,
7078                           struct net_device *upper_dev,
7079                           struct netlink_ext_ack *extack)
7080 {
7081         return __netdev_upper_dev_link(dev, upper_dev, false,
7082                                        NULL, NULL, extack);
7083 }
7084 EXPORT_SYMBOL(netdev_upper_dev_link);
7085
7086 /**
7087  * netdev_master_upper_dev_link - Add a master link to the upper device
7088  * @dev: device
7089  * @upper_dev: new upper device
7090  * @upper_priv: upper device private
7091  * @upper_info: upper info to be passed down via notifier
7092  * @extack: netlink extended ack
7093  *
7094  * Adds a link to device which is upper to this one. In this case, only
7095  * one master upper device can be linked, although other non-master devices
7096  * might be linked as well. The caller must hold the RTNL lock.
7097  * On a failure a negative errno code is returned. On success the reference
7098  * counts are adjusted and the function returns zero.
7099  */
7100 int netdev_master_upper_dev_link(struct net_device *dev,
7101                                  struct net_device *upper_dev,
7102                                  void *upper_priv, void *upper_info,
7103                                  struct netlink_ext_ack *extack)
7104 {
7105         return __netdev_upper_dev_link(dev, upper_dev, true,
7106                                        upper_priv, upper_info, extack);
7107 }
7108 EXPORT_SYMBOL(netdev_master_upper_dev_link);
7109
7110 /**
7111  * netdev_upper_dev_unlink - Removes a link to upper device
7112  * @dev: device
7113  * @upper_dev: new upper device
7114  *
7115  * Removes a link to device which is upper to this one. The caller must hold
7116  * the RTNL lock.
7117  */
7118 void netdev_upper_dev_unlink(struct net_device *dev,
7119                              struct net_device *upper_dev)
7120 {
7121         struct netdev_notifier_changeupper_info changeupper_info = {
7122                 .info = {
7123                         .dev = dev,
7124                 },
7125                 .upper_dev = upper_dev,
7126                 .linking = false,
7127         };
7128
7129         ASSERT_RTNL();
7130
7131         changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
7132
7133         call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7134                                       &changeupper_info.info);
7135
7136         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7137
7138         call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7139                                       &changeupper_info.info);
7140 }
7141 EXPORT_SYMBOL(netdev_upper_dev_unlink);
7142
7143 /**
7144  * netdev_bonding_info_change - Dispatch event about slave change
7145  * @dev: device
7146  * @bonding_info: info to dispatch
7147  *
7148  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
7149  * The caller must hold the RTNL lock.
7150  */
7151 void netdev_bonding_info_change(struct net_device *dev,
7152                                 struct netdev_bonding_info *bonding_info)
7153 {
7154         struct netdev_notifier_bonding_info info = {
7155                 .info.dev = dev,
7156         };
7157
7158         memcpy(&info.bonding_info, bonding_info,
7159                sizeof(struct netdev_bonding_info));
7160         call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
7161                                       &info.info);
7162 }
7163 EXPORT_SYMBOL(netdev_bonding_info_change);
7164
7165 static void netdev_adjacent_add_links(struct net_device *dev)
7166 {
7167         struct netdev_adjacent *iter;
7168
7169         struct net *net = dev_net(dev);
7170
7171         list_for_each_entry(iter, &dev->adj_list.upper, list) {
7172                 if (!net_eq(net, dev_net(iter->dev)))
7173                         continue;
7174                 netdev_adjacent_sysfs_add(iter->dev, dev,
7175                                           &iter->dev->adj_list.lower);
7176                 netdev_adjacent_sysfs_add(dev, iter->dev,
7177                                           &dev->adj_list.upper);
7178         }
7179
7180         list_for_each_entry(iter, &dev->adj_list.lower, list) {
7181                 if (!net_eq(net, dev_net(iter->dev)))
7182                         continue;
7183                 netdev_adjacent_sysfs_add(iter->dev, dev,
7184                                           &iter->dev->adj_list.upper);
7185                 netdev_adjacent_sysfs_add(dev, iter->dev,
7186                                           &dev->adj_list.lower);
7187         }
7188 }
7189
7190 static void netdev_adjacent_del_links(struct net_device *dev)
7191 {
7192         struct netdev_adjacent *iter;
7193
7194         struct net *net = dev_net(dev);
7195
7196         list_for_each_entry(iter, &dev->adj_list.upper, list) {
7197                 if (!net_eq(net, dev_net(iter->dev)))
7198                         continue;
7199                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
7200                                           &iter->dev->adj_list.lower);
7201                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
7202                                           &dev->adj_list.upper);
7203         }
7204
7205         list_for_each_entry(iter, &dev->adj_list.lower, list) {
7206                 if (!net_eq(net, dev_net(iter->dev)))
7207                         continue;
7208                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
7209                                           &iter->dev->adj_list.upper);
7210                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
7211                                           &dev->adj_list.lower);
7212         }
7213 }
7214
7215 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
7216 {
7217         struct netdev_adjacent *iter;
7218
7219         struct net *net = dev_net(dev);
7220
7221         list_for_each_entry(iter, &dev->adj_list.upper, list) {
7222                 if (!net_eq(net, dev_net(iter->dev)))
7223                         continue;
7224                 netdev_adjacent_sysfs_del(iter->dev, oldname,
7225                                           &iter->dev->adj_list.lower);
7226                 netdev_adjacent_sysfs_add(iter->dev, dev,
7227                                           &iter->dev->adj_list.lower);
7228         }
7229
7230         list_for_each_entry(iter, &dev->adj_list.lower, list) {
7231                 if (!net_eq(net, dev_net(iter->dev)))
7232                         continue;
7233                 netdev_adjacent_sysfs_del(iter->dev, oldname,
7234                                           &iter->dev->adj_list.upper);
7235                 netdev_adjacent_sysfs_add(iter->dev, dev,
7236                                           &iter->dev->adj_list.upper);
7237         }
7238 }
7239
7240 void *netdev_lower_dev_get_private(struct net_device *dev,
7241                                    struct net_device *lower_dev)
7242 {
7243         struct netdev_adjacent *lower;
7244
7245         if (!lower_dev)
7246                 return NULL;
7247         lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
7248         if (!lower)
7249                 return NULL;
7250
7251         return lower->private;
7252 }
7253 EXPORT_SYMBOL(netdev_lower_dev_get_private);
7254
7255
7256 int dev_get_nest_level(struct net_device *dev)
7257 {
7258         struct net_device *lower = NULL;
7259         struct list_head *iter;
7260         int max_nest = -1;
7261         int nest;
7262
7263         ASSERT_RTNL();
7264
7265         netdev_for_each_lower_dev(dev, lower, iter) {
7266                 nest = dev_get_nest_level(lower);
7267                 if (max_nest < nest)
7268                         max_nest = nest;
7269         }
7270
7271         return max_nest + 1;
7272 }
7273 EXPORT_SYMBOL(dev_get_nest_level);
7274
7275 /**
7276  * netdev_lower_change - Dispatch event about lower device state change
7277  * @lower_dev: device
7278  * @lower_state_info: state to dispatch
7279  *
7280  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
7281  * The caller must hold the RTNL lock.
7282  */
7283 void netdev_lower_state_changed(struct net_device *lower_dev,
7284                                 void *lower_state_info)
7285 {
7286         struct netdev_notifier_changelowerstate_info changelowerstate_info = {
7287                 .info.dev = lower_dev,
7288         };
7289
7290         ASSERT_RTNL();
7291         changelowerstate_info.lower_state_info = lower_state_info;
7292         call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
7293                                       &changelowerstate_info.info);
7294 }
7295 EXPORT_SYMBOL(netdev_lower_state_changed);
7296
7297 static void dev_change_rx_flags(struct net_device *dev, int flags)
7298 {
7299         const struct net_device_ops *ops = dev->netdev_ops;
7300
7301         if (ops->ndo_change_rx_flags)
7302                 ops->ndo_change_rx_flags(dev, flags);
7303 }
7304
7305 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
7306 {
7307         unsigned int old_flags = dev->flags;
7308         kuid_t uid;
7309         kgid_t gid;
7310
7311         ASSERT_RTNL();
7312
7313         dev->flags |= IFF_PROMISC;
7314         dev->promiscuity += inc;
7315         if (dev->promiscuity == 0) {
7316                 /*
7317                  * Avoid overflow.
7318                  * If inc causes overflow, untouch promisc and return error.
7319                  */
7320                 if (inc < 0)
7321                         dev->flags &= ~IFF_PROMISC;
7322                 else {
7323                         dev->promiscuity -= inc;
7324                         pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
7325                                 dev->name);
7326                         return -EOVERFLOW;
7327                 }
7328         }
7329         if (dev->flags != old_flags) {
7330                 pr_info("device %s %s promiscuous mode\n",
7331                         dev->name,
7332                         dev->flags & IFF_PROMISC ? "entered" : "left");
7333                 if (audit_enabled) {
7334                         current_uid_gid(&uid, &gid);
7335                         audit_log(audit_context(), GFP_ATOMIC,
7336                                   AUDIT_ANOM_PROMISCUOUS,
7337                                   "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
7338                                   dev->name, (dev->flags & IFF_PROMISC),
7339                                   (old_flags & IFF_PROMISC),
7340                                   from_kuid(&init_user_ns, audit_get_loginuid(current)),
7341                                   from_kuid(&init_user_ns, uid),
7342                                   from_kgid(&init_user_ns, gid),
7343                                   audit_get_sessionid(current));
7344                 }
7345
7346                 dev_change_rx_flags(dev, IFF_PROMISC);
7347         }
7348         if (notify)
7349                 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
7350         return 0;
7351 }
7352
7353 /**
7354  *      dev_set_promiscuity     - update promiscuity count on a device
7355  *      @dev: device
7356  *      @inc: modifier
7357  *
7358  *      Add or remove promiscuity from a device. While the count in the device
7359  *      remains above zero the interface remains promiscuous. Once it hits zero
7360  *      the device reverts back to normal filtering operation. A negative inc
7361  *      value is used to drop promiscuity on the device.
7362  *      Return 0 if successful or a negative errno code on error.
7363  */
7364 int dev_set_promiscuity(struct net_device *dev, int inc)
7365 {
7366         unsigned int old_flags = dev->flags;
7367         int err;
7368
7369         err = __dev_set_promiscuity(dev, inc, true);
7370         if (err < 0)
7371                 return err;
7372         if (dev->flags != old_flags)
7373                 dev_set_rx_mode(dev);
7374         return err;
7375 }
7376 EXPORT_SYMBOL(dev_set_promiscuity);
7377
7378 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
7379 {
7380         unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
7381
7382         ASSERT_RTNL();
7383
7384         dev->flags |= IFF_ALLMULTI;
7385         dev->allmulti += inc;
7386         if (dev->allmulti == 0) {
7387                 /*
7388                  * Avoid overflow.
7389                  * If inc causes overflow, untouch allmulti and return error.
7390                  */
7391                 if (inc < 0)
7392                         dev->flags &= ~IFF_ALLMULTI;
7393                 else {
7394                         dev->allmulti -= inc;
7395                         pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
7396                                 dev->name);
7397                         return -EOVERFLOW;
7398                 }
7399         }
7400         if (dev->flags ^ old_flags) {
7401                 dev_change_rx_flags(dev, IFF_ALLMULTI);
7402                 dev_set_rx_mode(dev);
7403                 if (notify)
7404                         __dev_notify_flags(dev, old_flags,
7405                                            dev->gflags ^ old_gflags);
7406         }
7407         return 0;
7408 }
7409
7410 /**
7411  *      dev_set_allmulti        - update allmulti count on a device
7412  *      @dev: device
7413  *      @inc: modifier
7414  *
7415  *      Add or remove reception of all multicast frames to a device. While the
7416  *      count in the device remains above zero the interface remains listening
7417  *      to all interfaces. Once it hits zero the device reverts back to normal
7418  *      filtering operation. A negative @inc value is used to drop the counter
7419  *      when releasing a resource needing all multicasts.
7420  *      Return 0 if successful or a negative errno code on error.
7421  */
7422
7423 int dev_set_allmulti(struct net_device *dev, int inc)
7424 {
7425         return __dev_set_allmulti(dev, inc, true);
7426 }
7427 EXPORT_SYMBOL(dev_set_allmulti);
7428
7429 /*
7430  *      Upload unicast and multicast address lists to device and
7431  *      configure RX filtering. When the device doesn't support unicast
7432  *      filtering it is put in promiscuous mode while unicast addresses
7433  *      are present.
7434  */
7435 void __dev_set_rx_mode(struct net_device *dev)
7436 {
7437         const struct net_device_ops *ops = dev->netdev_ops;
7438
7439         /* dev_open will call this function so the list will stay sane. */
7440         if (!(dev->flags&IFF_UP))
7441                 return;
7442
7443         if (!netif_device_present(dev))
7444                 return;
7445
7446         if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
7447                 /* Unicast addresses changes may only happen under the rtnl,
7448                  * therefore calling __dev_set_promiscuity here is safe.
7449                  */
7450                 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
7451                         __dev_set_promiscuity(dev, 1, false);
7452                         dev->uc_promisc = true;
7453                 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
7454                         __dev_set_promiscuity(dev, -1, false);
7455                         dev->uc_promisc = false;
7456                 }
7457         }
7458
7459         if (ops->ndo_set_rx_mode)
7460                 ops->ndo_set_rx_mode(dev);
7461 }
7462
7463 void dev_set_rx_mode(struct net_device *dev)
7464 {
7465         netif_addr_lock_bh(dev);
7466         __dev_set_rx_mode(dev);
7467         netif_addr_unlock_bh(dev);
7468 }
7469
7470 /**
7471  *      dev_get_flags - get flags reported to userspace
7472  *      @dev: device
7473  *
7474  *      Get the combination of flag bits exported through APIs to userspace.
7475  */
7476 unsigned int dev_get_flags(const struct net_device *dev)
7477 {
7478         unsigned int flags;
7479
7480         flags = (dev->flags & ~(IFF_PROMISC |
7481                                 IFF_ALLMULTI |
7482                                 IFF_RUNNING |
7483                                 IFF_LOWER_UP |
7484                                 IFF_DORMANT)) |
7485                 (dev->gflags & (IFF_PROMISC |
7486                                 IFF_ALLMULTI));
7487
7488         if (netif_running(dev)) {
7489                 if (netif_oper_up(dev))
7490                         flags |= IFF_RUNNING;
7491                 if (netif_carrier_ok(dev))
7492                         flags |= IFF_LOWER_UP;
7493                 if (netif_dormant(dev))
7494                         flags |= IFF_DORMANT;
7495         }
7496
7497         return flags;
7498 }
7499 EXPORT_SYMBOL(dev_get_flags);
7500
7501 int __dev_change_flags(struct net_device *dev, unsigned int flags)
7502 {
7503         unsigned int old_flags = dev->flags;
7504         int ret;
7505
7506         ASSERT_RTNL();
7507
7508         /*
7509          *      Set the flags on our device.
7510          */
7511
7512         dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
7513                                IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
7514                                IFF_AUTOMEDIA)) |
7515                      (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
7516                                     IFF_ALLMULTI));
7517
7518         /*
7519          *      Load in the correct multicast list now the flags have changed.
7520          */
7521
7522         if ((old_flags ^ flags) & IFF_MULTICAST)
7523                 dev_change_rx_flags(dev, IFF_MULTICAST);
7524
7525         dev_set_rx_mode(dev);
7526
7527         /*
7528          *      Have we downed the interface. We handle IFF_UP ourselves
7529          *      according to user attempts to set it, rather than blindly
7530          *      setting it.
7531          */
7532
7533         ret = 0;
7534         if ((old_flags ^ flags) & IFF_UP) {
7535                 if (old_flags & IFF_UP)
7536                         __dev_close(dev);
7537                 else
7538                         ret = __dev_open(dev);
7539         }
7540
7541         if ((flags ^ dev->gflags) & IFF_PROMISC) {
7542                 int inc = (flags & IFF_PROMISC) ? 1 : -1;
7543                 unsigned int old_flags = dev->flags;
7544
7545                 dev->gflags ^= IFF_PROMISC;
7546
7547                 if (__dev_set_promiscuity(dev, inc, false) >= 0)
7548                         if (dev->flags != old_flags)
7549                                 dev_set_rx_mode(dev);
7550         }
7551
7552         /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
7553          * is important. Some (broken) drivers set IFF_PROMISC, when
7554          * IFF_ALLMULTI is requested not asking us and not reporting.
7555          */
7556         if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
7557                 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
7558
7559                 dev->gflags ^= IFF_ALLMULTI;
7560                 __dev_set_allmulti(dev, inc, false);
7561         }
7562
7563         return ret;
7564 }
7565
7566 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
7567                         unsigned int gchanges)
7568 {
7569         unsigned int changes = dev->flags ^ old_flags;
7570
7571         if (gchanges)
7572                 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
7573
7574         if (changes & IFF_UP) {
7575                 if (dev->flags & IFF_UP)
7576                         call_netdevice_notifiers(NETDEV_UP, dev);
7577                 else
7578                         call_netdevice_notifiers(NETDEV_DOWN, dev);
7579         }
7580
7581         if (dev->flags & IFF_UP &&
7582             (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
7583                 struct netdev_notifier_change_info change_info = {
7584                         .info = {
7585                                 .dev = dev,
7586                         },
7587                         .flags_changed = changes,
7588                 };
7589
7590                 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
7591         }
7592 }
7593
7594 /**
7595  *      dev_change_flags - change device settings
7596  *      @dev: device
7597  *      @flags: device state flags
7598  *      @extack: netlink extended ack
7599  *
7600  *      Change settings on device based state flags. The flags are
7601  *      in the userspace exported format.
7602  */
7603 int dev_change_flags(struct net_device *dev, unsigned int flags,
7604                      struct netlink_ext_ack *extack)
7605 {
7606         int ret;
7607         unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
7608
7609         ret = __dev_change_flags(dev, flags);
7610         if (ret < 0)
7611                 return ret;
7612
7613         changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
7614         __dev_notify_flags(dev, old_flags, changes);
7615         return ret;
7616 }
7617 EXPORT_SYMBOL(dev_change_flags);
7618
7619 int __dev_set_mtu(struct net_device *dev, int new_mtu)
7620 {
7621         const struct net_device_ops *ops = dev->netdev_ops;
7622
7623         if (ops->ndo_change_mtu)
7624                 return ops->ndo_change_mtu(dev, new_mtu);
7625
7626         dev->mtu = new_mtu;
7627         return 0;
7628 }
7629 EXPORT_SYMBOL(__dev_set_mtu);
7630
7631 /**
7632  *      dev_set_mtu_ext - Change maximum transfer unit
7633  *      @dev: device
7634  *      @new_mtu: new transfer unit
7635  *      @extack: netlink extended ack
7636  *
7637  *      Change the maximum transfer size of the network device.
7638  */
7639 int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
7640                     struct netlink_ext_ack *extack)
7641 {
7642         int err, orig_mtu;
7643
7644         if (new_mtu == dev->mtu)
7645                 return 0;
7646
7647         /* MTU must be positive, and in range */
7648         if (new_mtu < 0 || new_mtu < dev->min_mtu) {
7649                 NL_SET_ERR_MSG(extack, "mtu less than device minimum");
7650                 return -EINVAL;
7651         }
7652
7653         if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
7654                 NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
7655                 return -EINVAL;
7656         }
7657
7658         if (!netif_device_present(dev))
7659                 return -ENODEV;
7660
7661         err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
7662         err = notifier_to_errno(err);
7663         if (err)
7664                 return err;
7665
7666         orig_mtu = dev->mtu;
7667         err = __dev_set_mtu(dev, new_mtu);
7668
7669         if (!err) {
7670                 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
7671                                                    orig_mtu);
7672                 err = notifier_to_errno(err);
7673                 if (err) {
7674                         /* setting mtu back and notifying everyone again,
7675                          * so that they have a chance to revert changes.
7676                          */
7677                         __dev_set_mtu(dev, orig_mtu);
7678                         call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
7679                                                      new_mtu);
7680                 }
7681         }
7682         return err;
7683 }
7684
7685 int dev_set_mtu(struct net_device *dev, int new_mtu)
7686 {
7687         struct netlink_ext_ack extack;
7688         int err;
7689
7690         memset(&extack, 0, sizeof(extack));
7691         err = dev_set_mtu_ext(dev, new_mtu, &extack);
7692         if (err && extack._msg)
7693                 net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
7694         return err;
7695 }
7696 EXPORT_SYMBOL(dev_set_mtu);
7697
7698 /**
7699  *      dev_change_tx_queue_len - Change TX queue length of a netdevice
7700  *      @dev: device
7701  *      @new_len: new tx queue length
7702  */
7703 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
7704 {
7705         unsigned int orig_len = dev->tx_queue_len;
7706         int res;
7707
7708         if (new_len != (unsigned int)new_len)
7709                 return -ERANGE;
7710
7711         if (new_len != orig_len) {
7712                 dev->tx_queue_len = new_len;
7713                 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
7714                 res = notifier_to_errno(res);
7715                 if (res)
7716                         goto err_rollback;
7717                 res = dev_qdisc_change_tx_queue_len(dev);
7718                 if (res)
7719                         goto err_rollback;
7720         }
7721
7722         return 0;
7723
7724 err_rollback:
7725         netdev_err(dev, "refused to change device tx_queue_len\n");
7726         dev->tx_queue_len = orig_len;
7727         return res;
7728 }
7729
7730 /**
7731  *      dev_set_group - Change group this device belongs to
7732  *      @dev: device
7733  *      @new_group: group this device should belong to
7734  */
7735 void dev_set_group(struct net_device *dev, int new_group)
7736 {
7737         dev->group = new_group;
7738 }
7739 EXPORT_SYMBOL(dev_set_group);
7740
7741 /**
7742  *      dev_set_mac_address - Change Media Access Control Address
7743  *      @dev: device
7744  *      @sa: new address
7745  *
7746  *      Change the hardware (MAC) address of the device
7747  */
7748 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
7749 {
7750         const struct net_device_ops *ops = dev->netdev_ops;
7751         int err;
7752
7753         if (!ops->ndo_set_mac_address)
7754                 return -EOPNOTSUPP;
7755         if (sa->sa_family != dev->type)
7756                 return -EINVAL;
7757         if (!netif_device_present(dev))
7758                 return -ENODEV;
7759         err = ops->ndo_set_mac_address(dev, sa);
7760         if (err)
7761                 return err;
7762         dev->addr_assign_type = NET_ADDR_SET;
7763         call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
7764         add_device_randomness(dev->dev_addr, dev->addr_len);
7765         return 0;
7766 }
7767 EXPORT_SYMBOL(dev_set_mac_address);
7768
7769 /**
7770  *      dev_change_carrier - Change device carrier
7771  *      @dev: device
7772  *      @new_carrier: new value
7773  *
7774  *      Change device carrier
7775  */
7776 int dev_change_carrier(struct net_device *dev, bool new_carrier)
7777 {
7778         const struct net_device_ops *ops = dev->netdev_ops;
7779
7780         if (!ops->ndo_change_carrier)
7781                 return -EOPNOTSUPP;
7782         if (!netif_device_present(dev))
7783                 return -ENODEV;
7784         return ops->ndo_change_carrier(dev, new_carrier);
7785 }
7786 EXPORT_SYMBOL(dev_change_carrier);
7787
7788 /**
7789  *      dev_get_phys_port_id - Get device physical port ID
7790  *      @dev: device
7791  *      @ppid: port ID
7792  *
7793  *      Get device physical port ID
7794  */
7795 int dev_get_phys_port_id(struct net_device *dev,
7796                          struct netdev_phys_item_id *ppid)
7797 {
7798         const struct net_device_ops *ops = dev->netdev_ops;
7799
7800         if (!ops->ndo_get_phys_port_id)
7801                 return -EOPNOTSUPP;
7802         return ops->ndo_get_phys_port_id(dev, ppid);
7803 }
7804 EXPORT_SYMBOL(dev_get_phys_port_id);
7805
7806 /**
7807  *      dev_get_phys_port_name - Get device physical port name
7808  *      @dev: device
7809  *      @name: port name
7810  *      @len: limit of bytes to copy to name
7811  *
7812  *      Get device physical port name
7813  */
7814 int dev_get_phys_port_name(struct net_device *dev,
7815                            char *name, size_t len)
7816 {
7817         const struct net_device_ops *ops = dev->netdev_ops;
7818
7819         if (!ops->ndo_get_phys_port_name)
7820                 return -EOPNOTSUPP;
7821         return ops->ndo_get_phys_port_name(dev, name, len);
7822 }
7823 EXPORT_SYMBOL(dev_get_phys_port_name);
7824
7825 /**
7826  *      dev_change_proto_down - update protocol port state information
7827  *      @dev: device
7828  *      @proto_down: new value
7829  *
7830  *      This info can be used by switch drivers to set the phys state of the
7831  *      port.
7832  */
7833 int dev_change_proto_down(struct net_device *dev, bool proto_down)
7834 {
7835         const struct net_device_ops *ops = dev->netdev_ops;
7836
7837         if (!ops->ndo_change_proto_down)
7838                 return -EOPNOTSUPP;
7839         if (!netif_device_present(dev))
7840                 return -ENODEV;
7841         return ops->ndo_change_proto_down(dev, proto_down);
7842 }
7843 EXPORT_SYMBOL(dev_change_proto_down);
7844
7845 u32 __dev_xdp_query(struct net_device *dev, bpf_op_t bpf_op,
7846                     enum bpf_netdev_command cmd)
7847 {
7848         struct netdev_bpf xdp;
7849
7850         if (!bpf_op)
7851                 return 0;
7852
7853         memset(&xdp, 0, sizeof(xdp));
7854         xdp.command = cmd;
7855
7856         /* Query must always succeed. */
7857         WARN_ON(bpf_op(dev, &xdp) < 0 && cmd == XDP_QUERY_PROG);
7858
7859         return xdp.prog_id;
7860 }
7861
7862 static int dev_xdp_install(struct net_device *dev, bpf_op_t bpf_op,
7863                            struct netlink_ext_ack *extack, u32 flags,
7864                            struct bpf_prog *prog)
7865 {
7866         struct netdev_bpf xdp;
7867
7868         memset(&xdp, 0, sizeof(xdp));
7869         if (flags & XDP_FLAGS_HW_MODE)
7870                 xdp.command = XDP_SETUP_PROG_HW;
7871         else
7872                 xdp.command = XDP_SETUP_PROG;
7873         xdp.extack = extack;
7874         xdp.flags = flags;
7875         xdp.prog = prog;
7876
7877         return bpf_op(dev, &xdp);
7878 }
7879
7880 static void dev_xdp_uninstall(struct net_device *dev)
7881 {
7882         struct netdev_bpf xdp;
7883         bpf_op_t ndo_bpf;
7884
7885         /* Remove generic XDP */
7886         WARN_ON(dev_xdp_install(dev, generic_xdp_install, NULL, 0, NULL));
7887
7888         /* Remove from the driver */
7889         ndo_bpf = dev->netdev_ops->ndo_bpf;
7890         if (!ndo_bpf)
7891                 return;
7892
7893         memset(&xdp, 0, sizeof(xdp));
7894         xdp.command = XDP_QUERY_PROG;
7895         WARN_ON(ndo_bpf(dev, &xdp));
7896         if (xdp.prog_id)
7897                 WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags,
7898                                         NULL));
7899
7900         /* Remove HW offload */
7901         memset(&xdp, 0, sizeof(xdp));
7902         xdp.command = XDP_QUERY_PROG_HW;
7903         if (!ndo_bpf(dev, &xdp) && xdp.prog_id)
7904                 WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags,
7905                                         NULL));
7906 }
7907
7908 /**
7909  *      dev_change_xdp_fd - set or clear a bpf program for a device rx path
7910  *      @dev: device
7911  *      @extack: netlink extended ack
7912  *      @fd: new program fd or negative value to clear
7913  *      @flags: xdp-related flags
7914  *
7915  *      Set or clear a bpf program for a device
7916  */
7917 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
7918                       int fd, u32 flags)
7919 {
7920         const struct net_device_ops *ops = dev->netdev_ops;
7921         enum bpf_netdev_command query;
7922         struct bpf_prog *prog = NULL;
7923         bpf_op_t bpf_op, bpf_chk;
7924         int err;
7925
7926         ASSERT_RTNL();
7927
7928         query = flags & XDP_FLAGS_HW_MODE ? XDP_QUERY_PROG_HW : XDP_QUERY_PROG;
7929
7930         bpf_op = bpf_chk = ops->ndo_bpf;
7931         if (!bpf_op && (flags & (XDP_FLAGS_DRV_MODE | XDP_FLAGS_HW_MODE)))
7932                 return -EOPNOTSUPP;
7933         if (!bpf_op || (flags & XDP_FLAGS_SKB_MODE))
7934                 bpf_op = generic_xdp_install;
7935         if (bpf_op == bpf_chk)
7936                 bpf_chk = generic_xdp_install;
7937
7938         if (fd >= 0) {
7939                 if (__dev_xdp_query(dev, bpf_chk, XDP_QUERY_PROG) ||
7940                     __dev_xdp_query(dev, bpf_chk, XDP_QUERY_PROG_HW))
7941                         return -EEXIST;
7942                 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) &&
7943                     __dev_xdp_query(dev, bpf_op, query))
7944                         return -EBUSY;
7945
7946                 prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
7947                                              bpf_op == ops->ndo_bpf);
7948                 if (IS_ERR(prog))
7949                         return PTR_ERR(prog);
7950
7951                 if (!(flags & XDP_FLAGS_HW_MODE) &&
7952                     bpf_prog_is_dev_bound(prog->aux)) {
7953                         NL_SET_ERR_MSG(extack, "using device-bound program without HW_MODE flag is not supported");
7954                         bpf_prog_put(prog);
7955                         return -EINVAL;
7956                 }
7957         }
7958
7959         err = dev_xdp_install(dev, bpf_op, extack, flags, prog);
7960         if (err < 0 && prog)
7961                 bpf_prog_put(prog);
7962
7963         return err;
7964 }
7965
7966 /**
7967  *      dev_new_index   -       allocate an ifindex
7968  *      @net: the applicable net namespace
7969  *
7970  *      Returns a suitable unique value for a new device interface
7971  *      number.  The caller must hold the rtnl semaphore or the
7972  *      dev_base_lock to be sure it remains unique.
7973  */
7974 static int dev_new_index(struct net *net)
7975 {
7976         int ifindex = net->ifindex;
7977
7978         for (;;) {
7979                 if (++ifindex <= 0)
7980                         ifindex = 1;
7981                 if (!__dev_get_by_index(net, ifindex))
7982                         return net->ifindex = ifindex;
7983         }
7984 }
7985
7986 /* Delayed registration/unregisteration */
7987 static LIST_HEAD(net_todo_list);
7988 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
7989
7990 static void net_set_todo(struct net_device *dev)
7991 {
7992         list_add_tail(&dev->todo_list, &net_todo_list);
7993         dev_net(dev)->dev_unreg_count++;
7994 }
7995
7996 static void rollback_registered_many(struct list_head *head)
7997 {
7998         struct net_device *dev, *tmp;
7999         LIST_HEAD(close_head);
8000
8001         BUG_ON(dev_boot_phase);
8002         ASSERT_RTNL();
8003
8004         list_for_each_entry_safe(dev, tmp, head, unreg_list) {
8005                 /* Some devices call without registering
8006                  * for initialization unwind. Remove those
8007                  * devices and proceed with the remaining.
8008                  */
8009                 if (dev->reg_state == NETREG_UNINITIALIZED) {
8010                         pr_debug("unregister_netdevice: device %s/%p never was registered\n",
8011                                  dev->name, dev);
8012
8013                         WARN_ON(1);
8014                         list_del(&dev->unreg_list);
8015                         continue;
8016                 }
8017                 dev->dismantle = true;
8018                 BUG_ON(dev->reg_state != NETREG_REGISTERED);
8019         }
8020
8021         /* If device is running, close it first. */
8022         list_for_each_entry(dev, head, unreg_list)
8023                 list_add_tail(&dev->close_list, &close_head);
8024         dev_close_many(&close_head, true);
8025
8026         list_for_each_entry(dev, head, unreg_list) {
8027                 /* And unlink it from device chain. */
8028                 unlist_netdevice(dev);
8029
8030                 dev->reg_state = NETREG_UNREGISTERING;
8031         }
8032         flush_all_backlogs();
8033
8034         synchronize_net();
8035
8036         list_for_each_entry(dev, head, unreg_list) {
8037                 struct sk_buff *skb = NULL;
8038
8039                 /* Shutdown queueing discipline. */
8040                 dev_shutdown(dev);
8041
8042                 dev_xdp_uninstall(dev);
8043
8044                 /* Notify protocols, that we are about to destroy
8045                  * this device. They should clean all the things.
8046                  */
8047                 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
8048
8049                 if (!dev->rtnl_link_ops ||
8050                     dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
8051                         skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
8052                                                      GFP_KERNEL, NULL, 0);
8053
8054                 /*
8055                  *      Flush the unicast and multicast chains
8056                  */
8057                 dev_uc_flush(dev);
8058                 dev_mc_flush(dev);
8059
8060                 if (dev->netdev_ops->ndo_uninit)
8061                         dev->netdev_ops->ndo_uninit(dev);
8062
8063                 if (skb)
8064                         rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
8065
8066                 /* Notifier chain MUST detach us all upper devices. */
8067                 WARN_ON(netdev_has_any_upper_dev(dev));
8068                 WARN_ON(netdev_has_any_lower_dev(dev));
8069
8070                 /* Remove entries from kobject tree */
8071                 netdev_unregister_kobject(dev);
8072 #ifdef CONFIG_XPS
8073                 /* Remove XPS queueing entries */
8074                 netif_reset_xps_queues_gt(dev, 0);
8075 #endif
8076         }
8077
8078         synchronize_net();
8079
8080         list_for_each_entry(dev, head, unreg_list)
8081                 dev_put(dev);
8082 }
8083
8084 static void rollback_registered(struct net_device *dev)
8085 {
8086         LIST_HEAD(single);
8087
8088         list_add(&dev->unreg_list, &single);
8089         rollback_registered_many(&single);
8090         list_del(&single);
8091 }
8092
8093 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
8094         struct net_device *upper, netdev_features_t features)
8095 {
8096         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
8097         netdev_features_t feature;
8098         int feature_bit;
8099
8100         for_each_netdev_feature(&upper_disables, feature_bit) {
8101                 feature = __NETIF_F_BIT(feature_bit);
8102                 if (!(upper->wanted_features & feature)
8103                     && (features & feature)) {
8104                         netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
8105                                    &feature, upper->name);
8106                         features &= ~feature;
8107                 }
8108         }
8109
8110         return features;
8111 }
8112
8113 static void netdev_sync_lower_features(struct net_device *upper,
8114         struct net_device *lower, netdev_features_t features)
8115 {
8116         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
8117         netdev_features_t feature;
8118         int feature_bit;
8119
8120         for_each_netdev_feature(&upper_disables, feature_bit) {
8121                 feature = __NETIF_F_BIT(feature_bit);
8122                 if (!(features & feature) && (lower->features & feature)) {
8123                         netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
8124                                    &feature, lower->name);
8125                         lower->wanted_features &= ~feature;
8126                         netdev_update_features(lower);
8127
8128                         if (unlikely(lower->features & feature))
8129                                 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
8130                                             &feature, lower->name);
8131                 }
8132         }
8133 }
8134
8135 static netdev_features_t netdev_fix_features(struct net_device *dev,
8136         netdev_features_t features)
8137 {
8138         /* Fix illegal checksum combinations */
8139         if ((features & NETIF_F_HW_CSUM) &&
8140             (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
8141                 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
8142                 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
8143         }
8144
8145         /* TSO requires that SG is present as well. */
8146         if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
8147                 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
8148                 features &= ~NETIF_F_ALL_TSO;
8149         }
8150
8151         if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
8152                                         !(features & NETIF_F_IP_CSUM)) {
8153                 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
8154                 features &= ~NETIF_F_TSO;
8155                 features &= ~NETIF_F_TSO_ECN;
8156         }
8157
8158         if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
8159                                          !(features & NETIF_F_IPV6_CSUM)) {
8160                 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
8161                 features &= ~NETIF_F_TSO6;
8162         }
8163
8164         /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
8165         if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
8166                 features &= ~NETIF_F_TSO_MANGLEID;
8167
8168         /* TSO ECN requires that TSO is present as well. */
8169         if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
8170                 features &= ~NETIF_F_TSO_ECN;
8171
8172         /* Software GSO depends on SG. */
8173         if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
8174                 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
8175                 features &= ~NETIF_F_GSO;
8176         }
8177
8178         /* GSO partial features require GSO partial be set */
8179         if ((features & dev->gso_partial_features) &&
8180             !(features & NETIF_F_GSO_PARTIAL)) {
8181                 netdev_dbg(dev,
8182                            "Dropping partially supported GSO features since no GSO partial.\n");
8183                 features &= ~dev->gso_partial_features;
8184         }
8185
8186         if (!(features & NETIF_F_RXCSUM)) {
8187                 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet
8188                  * successfully merged by hardware must also have the
8189                  * checksum verified by hardware.  If the user does not
8190                  * want to enable RXCSUM, logically, we should disable GRO_HW.
8191                  */
8192                 if (features & NETIF_F_GRO_HW) {
8193                         netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
8194                         features &= ~NETIF_F_GRO_HW;
8195                 }
8196         }
8197
8198         /* LRO/HW-GRO features cannot be combined with RX-FCS */
8199         if (features & NETIF_F_RXFCS) {
8200                 if (features & NETIF_F_LRO) {
8201                         netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
8202                         features &= ~NETIF_F_LRO;
8203                 }
8204
8205                 if (features & NETIF_F_GRO_HW) {
8206                         netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
8207                         features &= ~NETIF_F_GRO_HW;
8208                 }
8209         }
8210
8211         return features;
8212 }
8213
8214 int __netdev_update_features(struct net_device *dev)
8215 {
8216         struct net_device *upper, *lower;
8217         netdev_features_t features;
8218         struct list_head *iter;
8219         int err = -1;
8220
8221         ASSERT_RTNL();
8222
8223         features = netdev_get_wanted_features(dev);
8224
8225         if (dev->netdev_ops->ndo_fix_features)
8226                 features = dev->netdev_ops->ndo_fix_features(dev, features);
8227
8228         /* driver might be less strict about feature dependencies */
8229         features = netdev_fix_features(dev, features);
8230
8231         /* some features can't be enabled if they're off an an upper device */
8232         netdev_for_each_upper_dev_rcu(dev, upper, iter)
8233                 features = netdev_sync_upper_features(dev, upper, features);
8234
8235         if (dev->features == features)
8236                 goto sync_lower;
8237
8238         netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
8239                 &dev->features, &features);
8240
8241         if (dev->netdev_ops->ndo_set_features)
8242                 err = dev->netdev_ops->ndo_set_features(dev, features);
8243         else
8244                 err = 0;
8245
8246         if (unlikely(err < 0)) {
8247                 netdev_err(dev,
8248                         "set_features() failed (%d); wanted %pNF, left %pNF\n",
8249                         err, &features, &dev->features);
8250                 /* return non-0 since some features might have changed and
8251                  * it's better to fire a spurious notification than miss it
8252                  */
8253                 return -1;
8254         }
8255
8256 sync_lower:
8257         /* some features must be disabled on lower devices when disabled
8258          * on an upper device (think: bonding master or bridge)
8259          */
8260         netdev_for_each_lower_dev(dev, lower, iter)
8261                 netdev_sync_lower_features(dev, lower, features);
8262
8263         if (!err) {
8264                 netdev_features_t diff = features ^ dev->features;
8265
8266                 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
8267                         /* udp_tunnel_{get,drop}_rx_info both need
8268                          * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
8269                          * device, or they won't do anything.
8270                          * Thus we need to update dev->features
8271                          * *before* calling udp_tunnel_get_rx_info,
8272                          * but *after* calling udp_tunnel_drop_rx_info.
8273                          */
8274                         if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
8275                                 dev->features = features;
8276                                 udp_tunnel_get_rx_info(dev);
8277                         } else {
8278                                 udp_tunnel_drop_rx_info(dev);
8279                         }
8280                 }
8281
8282                 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
8283                         if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
8284                                 dev->features = features;
8285                                 err |= vlan_get_rx_ctag_filter_info(dev);
8286                         } else {
8287                                 vlan_drop_rx_ctag_filter_info(dev);
8288                         }
8289                 }
8290
8291                 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
8292                         if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
8293                                 dev->features = features;
8294                                 err |= vlan_get_rx_stag_filter_info(dev);
8295                         } else {
8296                                 vlan_drop_rx_stag_filter_info(dev);
8297                         }
8298                 }
8299
8300                 dev->features = features;
8301         }
8302
8303         return err < 0 ? 0 : 1;
8304 }
8305
8306 /**
8307  *      netdev_update_features - recalculate device features
8308  *      @dev: the device to check
8309  *
8310  *      Recalculate dev->features set and send notifications if it
8311  *      has changed. Should be called after driver or hardware dependent
8312  *      conditions might have changed that influence the features.
8313  */
8314 void netdev_update_features(struct net_device *dev)
8315 {
8316         if (__netdev_update_features(dev))
8317                 netdev_features_change(dev);
8318 }
8319 EXPORT_SYMBOL(netdev_update_features);
8320
8321 /**
8322  *      netdev_change_features - recalculate device features
8323  *      @dev: the device to check
8324  *
8325  *      Recalculate dev->features set and send notifications even
8326  *      if they have not changed. Should be called instead of
8327  *      netdev_update_features() if also dev->vlan_features might
8328  *      have changed to allow the changes to be propagated to stacked
8329  *      VLAN devices.
8330  */
8331 void netdev_change_features(struct net_device *dev)
8332 {
8333         __netdev_update_features(dev);
8334         netdev_features_change(dev);
8335 }
8336 EXPORT_SYMBOL(netdev_change_features);
8337
8338 /**
8339  *      netif_stacked_transfer_operstate -      transfer operstate
8340  *      @rootdev: the root or lower level device to transfer state from
8341  *      @dev: the device to transfer operstate to
8342  *
8343  *      Transfer operational state from root to device. This is normally
8344  *      called when a stacking relationship exists between the root
8345  *      device and the device(a leaf device).
8346  */
8347 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
8348                                         struct net_device *dev)
8349 {
8350         if (rootdev->operstate == IF_OPER_DORMANT)
8351                 netif_dormant_on(dev);
8352         else
8353                 netif_dormant_off(dev);
8354
8355         if (netif_carrier_ok(rootdev))
8356                 netif_carrier_on(dev);
8357         else
8358                 netif_carrier_off(dev);
8359 }
8360 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
8361
8362 static int netif_alloc_rx_queues(struct net_device *dev)
8363 {
8364         unsigned int i, count = dev->num_rx_queues;
8365         struct netdev_rx_queue *rx;
8366         size_t sz = count * sizeof(*rx);
8367         int err = 0;
8368
8369         BUG_ON(count < 1);
8370
8371         rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
8372         if (!rx)
8373                 return -ENOMEM;
8374
8375         dev->_rx = rx;
8376
8377         for (i = 0; i < count; i++) {
8378                 rx[i].dev = dev;
8379
8380                 /* XDP RX-queue setup */
8381                 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i);
8382                 if (err < 0)
8383                         goto err_rxq_info;
8384         }
8385         return 0;
8386
8387 err_rxq_info:
8388         /* Rollback successful reg's and free other resources */
8389         while (i--)
8390                 xdp_rxq_info_unreg(&rx[i].xdp_rxq);
8391         kvfree(dev->_rx);
8392         dev->_rx = NULL;
8393         return err;
8394 }
8395
8396 static void netif_free_rx_queues(struct net_device *dev)
8397 {
8398         unsigned int i, count = dev->num_rx_queues;
8399
8400         /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
8401         if (!dev->_rx)
8402                 return;
8403
8404         for (i = 0; i < count; i++)
8405                 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
8406
8407         kvfree(dev->_rx);
8408 }
8409
8410 static void netdev_init_one_queue(struct net_device *dev,
8411                                   struct netdev_queue *queue, void *_unused)
8412 {
8413         /* Initialize queue lock */
8414         spin_lock_init(&queue->_xmit_lock);
8415         netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
8416         queue->xmit_lock_owner = -1;
8417         netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
8418         queue->dev = dev;
8419 #ifdef CONFIG_BQL
8420         dql_init(&queue->dql, HZ);
8421 #endif
8422 }
8423
8424 static void netif_free_tx_queues(struct net_device *dev)
8425 {
8426         kvfree(dev->_tx);
8427 }
8428
8429 static int netif_alloc_netdev_queues(struct net_device *dev)
8430 {
8431         unsigned int count = dev->num_tx_queues;
8432         struct netdev_queue *tx;
8433         size_t sz = count * sizeof(*tx);
8434
8435         if (count < 1 || count > 0xffff)
8436                 return -EINVAL;
8437
8438         tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
8439         if (!tx)
8440                 return -ENOMEM;
8441
8442         dev->_tx = tx;
8443
8444         netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
8445         spin_lock_init(&dev->tx_global_lock);
8446
8447         return 0;
8448 }
8449
8450 void netif_tx_stop_all_queues(struct net_device *dev)
8451 {
8452         unsigned int i;
8453
8454         for (i = 0; i < dev->num_tx_queues; i++) {
8455                 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
8456
8457                 netif_tx_stop_queue(txq);
8458         }
8459 }
8460 EXPORT_SYMBOL(netif_tx_stop_all_queues);
8461
8462 /**
8463  *      register_netdevice      - register a network device
8464  *      @dev: device to register
8465  *
8466  *      Take a completed network device structure and add it to the kernel
8467  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
8468  *      chain. 0 is returned on success. A negative errno code is returned
8469  *      on a failure to set up the device, or if the name is a duplicate.
8470  *
8471  *      Callers must hold the rtnl semaphore. You may want
8472  *      register_netdev() instead of this.
8473  *
8474  *      BUGS:
8475  *      The locking appears insufficient to guarantee two parallel registers
8476  *      will not get the same name.
8477  */
8478
8479 int register_netdevice(struct net_device *dev)
8480 {
8481         int ret;
8482         struct net *net = dev_net(dev);
8483
8484         BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
8485                      NETDEV_FEATURE_COUNT);
8486         BUG_ON(dev_boot_phase);
8487         ASSERT_RTNL();
8488
8489         might_sleep();
8490
8491         /* When net_device's are persistent, this will be fatal. */
8492         BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
8493         BUG_ON(!net);
8494
8495         spin_lock_init(&dev->addr_list_lock);
8496         netdev_set_addr_lockdep_class(dev);
8497
8498         ret = dev_get_valid_name(net, dev, dev->name);
8499         if (ret < 0)
8500                 goto out;
8501
8502         /* Init, if this function is available */
8503         if (dev->netdev_ops->ndo_init) {
8504                 ret = dev->netdev_ops->ndo_init(dev);
8505                 if (ret) {
8506                         if (ret > 0)
8507                                 ret = -EIO;
8508                         goto out;
8509                 }
8510         }
8511
8512         if (((dev->hw_features | dev->features) &
8513              NETIF_F_HW_VLAN_CTAG_FILTER) &&
8514             (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
8515              !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
8516                 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
8517                 ret = -EINVAL;
8518                 goto err_uninit;
8519         }
8520
8521         ret = -EBUSY;
8522         if (!dev->ifindex)
8523                 dev->ifindex = dev_new_index(net);
8524         else if (__dev_get_by_index(net, dev->ifindex))
8525                 goto err_uninit;
8526
8527         /* Transfer changeable features to wanted_features and enable
8528          * software offloads (GSO and GRO).
8529          */
8530         dev->hw_features |= NETIF_F_SOFT_FEATURES;
8531         dev->features |= NETIF_F_SOFT_FEATURES;
8532
8533         if (dev->netdev_ops->ndo_udp_tunnel_add) {
8534                 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
8535                 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
8536         }
8537
8538         dev->wanted_features = dev->features & dev->hw_features;
8539
8540         if (!(dev->flags & IFF_LOOPBACK))
8541                 dev->hw_features |= NETIF_F_NOCACHE_COPY;
8542
8543         /* If IPv4 TCP segmentation offload is supported we should also
8544          * allow the device to enable segmenting the frame with the option
8545          * of ignoring a static IP ID value.  This doesn't enable the
8546          * feature itself but allows the user to enable it later.
8547          */
8548         if (dev->hw_features & NETIF_F_TSO)
8549                 dev->hw_features |= NETIF_F_TSO_MANGLEID;
8550         if (dev->vlan_features & NETIF_F_TSO)
8551                 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
8552         if (dev->mpls_features & NETIF_F_TSO)
8553                 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
8554         if (dev->hw_enc_features & NETIF_F_TSO)
8555                 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
8556
8557         /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
8558          */
8559         dev->vlan_features |= NETIF_F_HIGHDMA;
8560
8561         /* Make NETIF_F_SG inheritable to tunnel devices.
8562          */
8563         dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
8564
8565         /* Make NETIF_F_SG inheritable to MPLS.
8566          */
8567         dev->mpls_features |= NETIF_F_SG;
8568
8569         ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
8570         ret = notifier_to_errno(ret);
8571         if (ret)
8572                 goto err_uninit;
8573
8574         ret = netdev_register_kobject(dev);
8575         if (ret)
8576                 goto err_uninit;
8577         dev->reg_state = NETREG_REGISTERED;
8578
8579         __netdev_update_features(dev);
8580
8581         /*
8582          *      Default initial state at registry is that the
8583          *      device is present.
8584          */
8585
8586         set_bit(__LINK_STATE_PRESENT, &dev->state);
8587
8588         linkwatch_init_dev(dev);
8589
8590         dev_init_scheduler(dev);
8591         dev_hold(dev);
8592         list_netdevice(dev);
8593         add_device_randomness(dev->dev_addr, dev->addr_len);
8594
8595         /* If the device has permanent device address, driver should
8596          * set dev_addr and also addr_assign_type should be set to
8597          * NET_ADDR_PERM (default value).
8598          */
8599         if (dev->addr_assign_type == NET_ADDR_PERM)
8600                 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
8601
8602         /* Notify protocols, that a new device appeared. */
8603         ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
8604         ret = notifier_to_errno(ret);
8605         if (ret) {
8606                 rollback_registered(dev);
8607                 dev->reg_state = NETREG_UNREGISTERED;
8608         }
8609         /*
8610          *      Prevent userspace races by waiting until the network
8611          *      device is fully setup before sending notifications.
8612          */
8613         if (!dev->rtnl_link_ops ||
8614             dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
8615                 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
8616
8617 out:
8618         return ret;
8619
8620 err_uninit:
8621         if (dev->netdev_ops->ndo_uninit)
8622                 dev->netdev_ops->ndo_uninit(dev);
8623         if (dev->priv_destructor)
8624                 dev->priv_destructor(dev);
8625         goto out;
8626 }
8627 EXPORT_SYMBOL(register_netdevice);
8628
8629 /**
8630  *      init_dummy_netdev       - init a dummy network device for NAPI
8631  *      @dev: device to init
8632  *
8633  *      This takes a network device structure and initialize the minimum
8634  *      amount of fields so it can be used to schedule NAPI polls without
8635  *      registering a full blown interface. This is to be used by drivers
8636  *      that need to tie several hardware interfaces to a single NAPI
8637  *      poll scheduler due to HW limitations.
8638  */
8639 int init_dummy_netdev(struct net_device *dev)
8640 {
8641         /* Clear everything. Note we don't initialize spinlocks
8642          * are they aren't supposed to be taken by any of the
8643          * NAPI code and this dummy netdev is supposed to be
8644          * only ever used for NAPI polls
8645          */
8646         memset(dev, 0, sizeof(struct net_device));
8647
8648         /* make sure we BUG if trying to hit standard
8649          * register/unregister code path
8650          */
8651         dev->reg_state = NETREG_DUMMY;
8652
8653         /* NAPI wants this */
8654         INIT_LIST_HEAD(&dev->napi_list);
8655
8656         /* a dummy interface is started by default */
8657         set_bit(__LINK_STATE_PRESENT, &dev->state);
8658         set_bit(__LINK_STATE_START, &dev->state);
8659
8660         /* Note : We dont allocate pcpu_refcnt for dummy devices,
8661          * because users of this 'device' dont need to change
8662          * its refcount.
8663          */
8664
8665         return 0;
8666 }
8667 EXPORT_SYMBOL_GPL(init_dummy_netdev);
8668
8669
8670 /**
8671  *      register_netdev - register a network device
8672  *      @dev: device to register
8673  *
8674  *      Take a completed network device structure and add it to the kernel
8675  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
8676  *      chain. 0 is returned on success. A negative errno code is returned
8677  *      on a failure to set up the device, or if the name is a duplicate.
8678  *
8679  *      This is a wrapper around register_netdevice that takes the rtnl semaphore
8680  *      and expands the device name if you passed a format string to
8681  *      alloc_netdev.
8682  */
8683 int register_netdev(struct net_device *dev)
8684 {
8685         int err;
8686
8687         if (rtnl_lock_killable())
8688                 return -EINTR;
8689         err = register_netdevice(dev);
8690         rtnl_unlock();
8691         return err;
8692 }
8693 EXPORT_SYMBOL(register_netdev);
8694
8695 int netdev_refcnt_read(const struct net_device *dev)
8696 {
8697         int i, refcnt = 0;
8698
8699         for_each_possible_cpu(i)
8700                 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
8701         return refcnt;
8702 }
8703 EXPORT_SYMBOL(netdev_refcnt_read);
8704
8705 /**
8706  * netdev_wait_allrefs - wait until all references are gone.
8707  * @dev: target net_device
8708  *
8709  * This is called when unregistering network devices.
8710  *
8711  * Any protocol or device that holds a reference should register
8712  * for netdevice notification, and cleanup and put back the
8713  * reference if they receive an UNREGISTER event.
8714  * We can get stuck here if buggy protocols don't correctly
8715  * call dev_put.
8716  */
8717 static void netdev_wait_allrefs(struct net_device *dev)
8718 {
8719         unsigned long rebroadcast_time, warning_time;
8720         int refcnt;
8721
8722         linkwatch_forget_dev(dev);
8723
8724         rebroadcast_time = warning_time = jiffies;
8725         refcnt = netdev_refcnt_read(dev);
8726
8727         while (refcnt != 0) {
8728                 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
8729                         rtnl_lock();
8730
8731                         /* Rebroadcast unregister notification */
8732                         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
8733
8734                         __rtnl_unlock();
8735                         rcu_barrier();
8736                         rtnl_lock();
8737
8738                         if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
8739                                      &dev->state)) {
8740                                 /* We must not have linkwatch events
8741                                  * pending on unregister. If this
8742                                  * happens, we simply run the queue
8743                                  * unscheduled, resulting in a noop
8744                                  * for this device.
8745                                  */
8746                                 linkwatch_run_queue();
8747                         }
8748
8749                         __rtnl_unlock();
8750
8751                         rebroadcast_time = jiffies;
8752                 }
8753
8754                 msleep(250);
8755
8756                 refcnt = netdev_refcnt_read(dev);
8757
8758                 if (time_after(jiffies, warning_time + 10 * HZ)) {
8759                         pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
8760                                  dev->name, refcnt);
8761                         warning_time = jiffies;
8762                 }
8763         }
8764 }
8765
8766 /* The sequence is:
8767  *
8768  *      rtnl_lock();
8769  *      ...
8770  *      register_netdevice(x1);
8771  *      register_netdevice(x2);
8772  *      ...
8773  *      unregister_netdevice(y1);
8774  *      unregister_netdevice(y2);
8775  *      ...
8776  *      rtnl_unlock();
8777  *      free_netdev(y1);
8778  *      free_netdev(y2);
8779  *
8780  * We are invoked by rtnl_unlock().
8781  * This allows us to deal with problems:
8782  * 1) We can delete sysfs objects which invoke hotplug
8783  *    without deadlocking with linkwatch via keventd.
8784  * 2) Since we run with the RTNL semaphore not held, we can sleep
8785  *    safely in order to wait for the netdev refcnt to drop to zero.
8786  *
8787  * We must not return until all unregister events added during
8788  * the interval the lock was held have been completed.
8789  */
8790 void netdev_run_todo(void)
8791 {
8792         struct list_head list;
8793
8794         /* Snapshot list, allow later requests */
8795         list_replace_init(&net_todo_list, &list);
8796
8797         __rtnl_unlock();
8798
8799
8800         /* Wait for rcu callbacks to finish before next phase */
8801         if (!list_empty(&list))
8802                 rcu_barrier();
8803
8804         while (!list_empty(&list)) {
8805                 struct net_device *dev
8806                         = list_first_entry(&list, struct net_device, todo_list);
8807                 list_del(&dev->todo_list);
8808
8809                 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
8810                         pr_err("network todo '%s' but state %d\n",
8811                                dev->name, dev->reg_state);
8812                         dump_stack();
8813                         continue;
8814                 }
8815
8816                 dev->reg_state = NETREG_UNREGISTERED;
8817
8818                 netdev_wait_allrefs(dev);
8819
8820                 /* paranoia */
8821                 BUG_ON(netdev_refcnt_read(dev));
8822                 BUG_ON(!list_empty(&dev->ptype_all));
8823                 BUG_ON(!list_empty(&dev->ptype_specific));
8824                 WARN_ON(rcu_access_pointer(dev->ip_ptr));
8825                 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
8826 #if IS_ENABLED(CONFIG_DECNET)
8827                 WARN_ON(dev->dn_ptr);
8828 #endif
8829                 if (dev->priv_destructor)
8830                         dev->priv_destructor(dev);
8831                 if (dev->needs_free_netdev)
8832                         free_netdev(dev);
8833
8834                 /* Report a network device has been unregistered */
8835                 rtnl_lock();
8836                 dev_net(dev)->dev_unreg_count--;
8837                 __rtnl_unlock();
8838                 wake_up(&netdev_unregistering_wq);
8839
8840                 /* Free network device */
8841                 kobject_put(&dev->dev.kobj);
8842         }
8843 }
8844
8845 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
8846  * all the same fields in the same order as net_device_stats, with only
8847  * the type differing, but rtnl_link_stats64 may have additional fields
8848  * at the end for newer counters.
8849  */
8850 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
8851                              const struct net_device_stats *netdev_stats)
8852 {
8853 #if BITS_PER_LONG == 64
8854         BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
8855         memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
8856         /* zero out counters that only exist in rtnl_link_stats64 */
8857         memset((char *)stats64 + sizeof(*netdev_stats), 0,
8858                sizeof(*stats64) - sizeof(*netdev_stats));
8859 #else
8860         size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
8861         const unsigned long *src = (const unsigned long *)netdev_stats;
8862         u64 *dst = (u64 *)stats64;
8863
8864         BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
8865         for (i = 0; i < n; i++)
8866                 dst[i] = src[i];
8867         /* zero out counters that only exist in rtnl_link_stats64 */
8868         memset((char *)stats64 + n * sizeof(u64), 0,
8869                sizeof(*stats64) - n * sizeof(u64));
8870 #endif
8871 }
8872 EXPORT_SYMBOL(netdev_stats_to_stats64);
8873
8874 /**
8875  *      dev_get_stats   - get network device statistics
8876  *      @dev: device to get statistics from
8877  *      @storage: place to store stats
8878  *
8879  *      Get network statistics from device. Return @storage.
8880  *      The device driver may provide its own method by setting
8881  *      dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
8882  *      otherwise the internal statistics structure is used.
8883  */
8884 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
8885                                         struct rtnl_link_stats64 *storage)
8886 {
8887         const struct net_device_ops *ops = dev->netdev_ops;
8888
8889         if (ops->ndo_get_stats64) {
8890                 memset(storage, 0, sizeof(*storage));
8891                 ops->ndo_get_stats64(dev, storage);
8892         } else if (ops->ndo_get_stats) {
8893                 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
8894         } else {
8895                 netdev_stats_to_stats64(storage, &dev->stats);
8896         }
8897         storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
8898         storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
8899         storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
8900         return storage;
8901 }
8902 EXPORT_SYMBOL(dev_get_stats);
8903
8904 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
8905 {
8906         struct netdev_queue *queue = dev_ingress_queue(dev);
8907
8908 #ifdef CONFIG_NET_CLS_ACT
8909         if (queue)
8910                 return queue;
8911         queue = kzalloc(sizeof(*queue), GFP_KERNEL);
8912         if (!queue)
8913                 return NULL;
8914         netdev_init_one_queue(dev, queue, NULL);
8915         RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
8916         queue->qdisc_sleeping = &noop_qdisc;
8917         rcu_assign_pointer(dev->ingress_queue, queue);
8918 #endif
8919         return queue;
8920 }
8921
8922 static const struct ethtool_ops default_ethtool_ops;
8923
8924 void netdev_set_default_ethtool_ops(struct net_device *dev,
8925                                     const struct ethtool_ops *ops)
8926 {
8927         if (dev->ethtool_ops == &default_ethtool_ops)
8928                 dev->ethtool_ops = ops;
8929 }
8930 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
8931
8932 void netdev_freemem(struct net_device *dev)
8933 {
8934         char *addr = (char *)dev - dev->padded;
8935
8936         kvfree(addr);
8937 }
8938
8939 /**
8940  * alloc_netdev_mqs - allocate network device
8941  * @sizeof_priv: size of private data to allocate space for
8942  * @name: device name format string
8943  * @name_assign_type: origin of device name
8944  * @setup: callback to initialize device
8945  * @txqs: the number of TX subqueues to allocate
8946  * @rxqs: the number of RX subqueues to allocate
8947  *
8948  * Allocates a struct net_device with private data area for driver use
8949  * and performs basic initialization.  Also allocates subqueue structs
8950  * for each queue on the device.
8951  */
8952 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
8953                 unsigned char name_assign_type,
8954                 void (*setup)(struct net_device *),
8955                 unsigned int txqs, unsigned int rxqs)
8956 {
8957         struct net_device *dev;
8958         unsigned int alloc_size;
8959         struct net_device *p;
8960
8961         BUG_ON(strlen(name) >= sizeof(dev->name));
8962
8963         if (txqs < 1) {
8964                 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
8965                 return NULL;
8966         }
8967
8968         if (rxqs < 1) {
8969                 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
8970                 return NULL;
8971         }
8972
8973         alloc_size = sizeof(struct net_device);
8974         if (sizeof_priv) {
8975                 /* ensure 32-byte alignment of private area */
8976                 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
8977                 alloc_size += sizeof_priv;
8978         }
8979         /* ensure 32-byte alignment of whole construct */
8980         alloc_size += NETDEV_ALIGN - 1;
8981
8982         p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
8983         if (!p)
8984                 return NULL;
8985
8986         dev = PTR_ALIGN(p, NETDEV_ALIGN);
8987         dev->padded = (char *)dev - (char *)p;
8988
8989         dev->pcpu_refcnt = alloc_percpu(int);
8990         if (!dev->pcpu_refcnt)
8991                 goto free_dev;
8992
8993         if (dev_addr_init(dev))
8994                 goto free_pcpu;
8995
8996         dev_mc_init(dev);
8997         dev_uc_init(dev);
8998
8999         dev_net_set(dev, &init_net);
9000
9001         dev->gso_max_size = GSO_MAX_SIZE;
9002         dev->gso_max_segs = GSO_MAX_SEGS;
9003
9004         INIT_LIST_HEAD(&dev->napi_list);
9005         INIT_LIST_HEAD(&dev->unreg_list);
9006         INIT_LIST_HEAD(&dev->close_list);
9007         INIT_LIST_HEAD(&dev->link_watch_list);
9008         INIT_LIST_HEAD(&dev->adj_list.upper);
9009         INIT_LIST_HEAD(&dev->adj_list.lower);
9010         INIT_LIST_HEAD(&dev->ptype_all);
9011         INIT_LIST_HEAD(&dev->ptype_specific);
9012 #ifdef CONFIG_NET_SCHED
9013         hash_init(dev->qdisc_hash);
9014 #endif
9015         dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
9016         setup(dev);
9017
9018         if (!dev->tx_queue_len) {
9019                 dev->priv_flags |= IFF_NO_QUEUE;
9020                 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
9021         }
9022
9023         dev->num_tx_queues = txqs;
9024         dev->real_num_tx_queues = txqs;
9025         if (netif_alloc_netdev_queues(dev))
9026                 goto free_all;
9027
9028         dev->num_rx_queues = rxqs;
9029         dev->real_num_rx_queues = rxqs;
9030         if (netif_alloc_rx_queues(dev))
9031                 goto free_all;
9032
9033         strcpy(dev->name, name);
9034         dev->name_assign_type = name_assign_type;
9035         dev->group = INIT_NETDEV_GROUP;
9036         if (!dev->ethtool_ops)
9037                 dev->ethtool_ops = &default_ethtool_ops;
9038
9039         nf_hook_ingress_init(dev);
9040
9041         return dev;
9042
9043 free_all:
9044         free_netdev(dev);
9045         return NULL;
9046
9047 free_pcpu:
9048         free_percpu(dev->pcpu_refcnt);
9049 free_dev:
9050         netdev_freemem(dev);
9051         return NULL;
9052 }
9053 EXPORT_SYMBOL(alloc_netdev_mqs);
9054
9055 /**
9056  * free_netdev - free network device
9057  * @dev: device
9058  *
9059  * This function does the last stage of destroying an allocated device
9060  * interface. The reference to the device object is released. If this
9061  * is the last reference then it will be freed.Must be called in process
9062  * context.
9063  */
9064 void free_netdev(struct net_device *dev)
9065 {
9066         struct napi_struct *p, *n;
9067
9068         might_sleep();
9069         netif_free_tx_queues(dev);
9070         netif_free_rx_queues(dev);
9071
9072         kfree(rcu_dereference_protected(dev->ingress_queue, 1));
9073
9074         /* Flush device addresses */
9075         dev_addr_flush(dev);
9076
9077         list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
9078                 netif_napi_del(p);
9079
9080         free_percpu(dev->pcpu_refcnt);
9081         dev->pcpu_refcnt = NULL;
9082
9083         /*  Compatibility with error handling in drivers */
9084         if (dev->reg_state == NETREG_UNINITIALIZED) {
9085                 netdev_freemem(dev);
9086                 return;
9087         }
9088
9089         BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
9090         dev->reg_state = NETREG_RELEASED;
9091
9092         /* will free via device release */
9093         put_device(&dev->dev);
9094 }
9095 EXPORT_SYMBOL(free_netdev);
9096
9097 /**
9098  *      synchronize_net -  Synchronize with packet receive processing
9099  *
9100  *      Wait for packets currently being received to be done.
9101  *      Does not block later packets from starting.
9102  */
9103 void synchronize_net(void)
9104 {
9105         might_sleep();
9106         if (rtnl_is_locked())
9107                 synchronize_rcu_expedited();
9108         else
9109                 synchronize_rcu();
9110 }
9111 EXPORT_SYMBOL(synchronize_net);
9112
9113 /**
9114  *      unregister_netdevice_queue - remove device from the kernel
9115  *      @dev: device
9116  *      @head: list
9117  *
9118  *      This function shuts down a device interface and removes it
9119  *      from the kernel tables.
9120  *      If head not NULL, device is queued to be unregistered later.
9121  *
9122  *      Callers must hold the rtnl semaphore.  You may want
9123  *      unregister_netdev() instead of this.
9124  */
9125
9126 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
9127 {
9128         ASSERT_RTNL();
9129
9130         if (head) {
9131                 list_move_tail(&dev->unreg_list, head);
9132         } else {
9133                 rollback_registered(dev);
9134                 /* Finish processing unregister after unlock */
9135                 net_set_todo(dev);
9136         }
9137 }
9138 EXPORT_SYMBOL(unregister_netdevice_queue);
9139
9140 /**
9141  *      unregister_netdevice_many - unregister many devices
9142  *      @head: list of devices
9143  *
9144  *  Note: As most callers use a stack allocated list_head,
9145  *  we force a list_del() to make sure stack wont be corrupted later.
9146  */
9147 void unregister_netdevice_many(struct list_head *head)
9148 {
9149         struct net_device *dev;
9150
9151         if (!list_empty(head)) {
9152                 rollback_registered_many(head);
9153                 list_for_each_entry(dev, head, unreg_list)
9154                         net_set_todo(dev);
9155                 list_del(head);
9156         }
9157 }
9158 EXPORT_SYMBOL(unregister_netdevice_many);
9159
9160 /**
9161  *      unregister_netdev - remove device from the kernel
9162  *      @dev: device
9163  *
9164  *      This function shuts down a device interface and removes it
9165  *      from the kernel tables.
9166  *
9167  *      This is just a wrapper for unregister_netdevice that takes
9168  *      the rtnl semaphore.  In general you want to use this and not
9169  *      unregister_netdevice.
9170  */
9171 void unregister_netdev(struct net_device *dev)
9172 {
9173         rtnl_lock();
9174         unregister_netdevice(dev);
9175         rtnl_unlock();
9176 }
9177 EXPORT_SYMBOL(unregister_netdev);
9178
9179 /**
9180  *      dev_change_net_namespace - move device to different nethost namespace
9181  *      @dev: device
9182  *      @net: network namespace
9183  *      @pat: If not NULL name pattern to try if the current device name
9184  *            is already taken in the destination network namespace.
9185  *
9186  *      This function shuts down a device interface and moves it
9187  *      to a new network namespace. On success 0 is returned, on
9188  *      a failure a netagive errno code is returned.
9189  *
9190  *      Callers must hold the rtnl semaphore.
9191  */
9192
9193 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
9194 {
9195         int err, new_nsid, new_ifindex;
9196
9197         ASSERT_RTNL();
9198
9199         /* Don't allow namespace local devices to be moved. */
9200         err = -EINVAL;
9201         if (dev->features & NETIF_F_NETNS_LOCAL)
9202                 goto out;
9203
9204         /* Ensure the device has been registrered */
9205         if (dev->reg_state != NETREG_REGISTERED)
9206                 goto out;
9207
9208         /* Get out if there is nothing todo */
9209         err = 0;
9210         if (net_eq(dev_net(dev), net))
9211                 goto out;
9212
9213         /* Pick the destination device name, and ensure
9214          * we can use it in the destination network namespace.
9215          */
9216         err = -EEXIST;
9217         if (__dev_get_by_name(net, dev->name)) {
9218                 /* We get here if we can't use the current device name */
9219                 if (!pat)
9220                         goto out;
9221                 err = dev_get_valid_name(net, dev, pat);
9222                 if (err < 0)
9223                         goto out;
9224         }
9225
9226         /*
9227          * And now a mini version of register_netdevice unregister_netdevice.
9228          */
9229
9230         /* If device is running close it first. */
9231         dev_close(dev);
9232
9233         /* And unlink it from device chain */
9234         unlist_netdevice(dev);
9235
9236         synchronize_net();
9237
9238         /* Shutdown queueing discipline. */
9239         dev_shutdown(dev);
9240
9241         /* Notify protocols, that we are about to destroy
9242          * this device. They should clean all the things.
9243          *
9244          * Note that dev->reg_state stays at NETREG_REGISTERED.
9245          * This is wanted because this way 8021q and macvlan know
9246          * the device is just moving and can keep their slaves up.
9247          */
9248         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
9249         rcu_barrier();
9250
9251         new_nsid = peernet2id_alloc(dev_net(dev), net);
9252         /* If there is an ifindex conflict assign a new one */
9253         if (__dev_get_by_index(net, dev->ifindex))
9254                 new_ifindex = dev_new_index(net);
9255         else
9256                 new_ifindex = dev->ifindex;
9257
9258         rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
9259                             new_ifindex);
9260
9261         /*
9262          *      Flush the unicast and multicast chains
9263          */
9264         dev_uc_flush(dev);
9265         dev_mc_flush(dev);
9266
9267         /* Send a netdev-removed uevent to the old namespace */
9268         kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
9269         netdev_adjacent_del_links(dev);
9270
9271         /* Actually switch the network namespace */
9272         dev_net_set(dev, net);
9273         dev->ifindex = new_ifindex;
9274
9275         /* Send a netdev-add uevent to the new namespace */
9276         kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
9277         netdev_adjacent_add_links(dev);
9278
9279         /* Fixup kobjects */
9280         err = device_rename(&dev->dev, dev->name);
9281         WARN_ON(err);
9282
9283         /* Add the device back in the hashes */
9284         list_netdevice(dev);
9285
9286         /* Notify protocols, that a new device appeared. */
9287         call_netdevice_notifiers(NETDEV_REGISTER, dev);
9288
9289         /*
9290          *      Prevent userspace races by waiting until the network
9291          *      device is fully setup before sending notifications.
9292          */
9293         rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
9294
9295         synchronize_net();
9296         err = 0;
9297 out:
9298         return err;
9299 }
9300 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
9301
9302 static int dev_cpu_dead(unsigned int oldcpu)
9303 {
9304         struct sk_buff **list_skb;
9305         struct sk_buff *skb;
9306         unsigned int cpu;
9307         struct softnet_data *sd, *oldsd, *remsd = NULL;
9308
9309         local_irq_disable();
9310         cpu = smp_processor_id();
9311         sd = &per_cpu(softnet_data, cpu);
9312         oldsd = &per_cpu(softnet_data, oldcpu);
9313
9314         /* Find end of our completion_queue. */
9315         list_skb = &sd->completion_queue;
9316         while (*list_skb)
9317                 list_skb = &(*list_skb)->next;
9318         /* Append completion queue from offline CPU. */
9319         *list_skb = oldsd->completion_queue;
9320         oldsd->completion_queue = NULL;
9321
9322         /* Append output queue from offline CPU. */
9323         if (oldsd->output_queue) {
9324                 *sd->output_queue_tailp = oldsd->output_queue;
9325                 sd->output_queue_tailp = oldsd->output_queue_tailp;
9326                 oldsd->output_queue = NULL;
9327                 oldsd->output_queue_tailp = &oldsd->output_queue;
9328         }
9329         /* Append NAPI poll list from offline CPU, with one exception :
9330          * process_backlog() must be called by cpu owning percpu backlog.
9331          * We properly handle process_queue & input_pkt_queue later.
9332          */
9333         while (!list_empty(&oldsd->poll_list)) {
9334                 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
9335                                                             struct napi_struct,
9336                                                             poll_list);
9337
9338                 list_del_init(&napi->poll_list);
9339                 if (napi->poll == process_backlog)
9340                         napi->state = 0;
9341                 else
9342                         ____napi_schedule(sd, napi);
9343         }
9344
9345         raise_softirq_irqoff(NET_TX_SOFTIRQ);
9346         local_irq_enable();
9347
9348 #ifdef CONFIG_RPS
9349         remsd = oldsd->rps_ipi_list;
9350         oldsd->rps_ipi_list = NULL;
9351 #endif
9352         /* send out pending IPI's on offline CPU */
9353         net_rps_send_ipi(remsd);
9354
9355         /* Process offline CPU's input_pkt_queue */
9356         while ((skb = __skb_dequeue(&oldsd->process_queue))) {
9357                 netif_rx_ni(skb);
9358                 input_queue_head_incr(oldsd);
9359         }
9360         while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
9361                 netif_rx_ni(skb);
9362                 input_queue_head_incr(oldsd);
9363         }
9364
9365         return 0;
9366 }
9367
9368 /**
9369  *      netdev_increment_features - increment feature set by one
9370  *      @all: current feature set
9371  *      @one: new feature set
9372  *      @mask: mask feature set
9373  *
9374  *      Computes a new feature set after adding a device with feature set
9375  *      @one to the master device with current feature set @all.  Will not
9376  *      enable anything that is off in @mask. Returns the new feature set.
9377  */
9378 netdev_features_t netdev_increment_features(netdev_features_t all,
9379         netdev_features_t one, netdev_features_t mask)
9380 {
9381         if (mask & NETIF_F_HW_CSUM)
9382                 mask |= NETIF_F_CSUM_MASK;
9383         mask |= NETIF_F_VLAN_CHALLENGED;
9384
9385         all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
9386         all &= one | ~NETIF_F_ALL_FOR_ALL;
9387
9388         /* If one device supports hw checksumming, set for all. */
9389         if (all & NETIF_F_HW_CSUM)
9390                 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
9391
9392         return all;
9393 }
9394 EXPORT_SYMBOL(netdev_increment_features);
9395
9396 static struct hlist_head * __net_init netdev_create_hash(void)
9397 {
9398         int i;
9399         struct hlist_head *hash;
9400
9401         hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
9402         if (hash != NULL)
9403                 for (i = 0; i < NETDEV_HASHENTRIES; i++)
9404                         INIT_HLIST_HEAD(&hash[i]);
9405
9406         return hash;
9407 }
9408
9409 /* Initialize per network namespace state */
9410 static int __net_init netdev_init(struct net *net)
9411 {
9412         BUILD_BUG_ON(GRO_HASH_BUCKETS >
9413                      8 * FIELD_SIZEOF(struct napi_struct, gro_bitmask));
9414
9415         if (net != &init_net)
9416                 INIT_LIST_HEAD(&net->dev_base_head);
9417
9418         net->dev_name_head = netdev_create_hash();
9419         if (net->dev_name_head == NULL)
9420                 goto err_name;
9421
9422         net->dev_index_head = netdev_create_hash();
9423         if (net->dev_index_head == NULL)
9424                 goto err_idx;
9425
9426         return 0;
9427
9428 err_idx:
9429         kfree(net->dev_name_head);
9430 err_name:
9431         return -ENOMEM;
9432 }
9433
9434 /**
9435  *      netdev_drivername - network driver for the device
9436  *      @dev: network device
9437  *
9438  *      Determine network driver for device.
9439  */
9440 const char *netdev_drivername(const struct net_device *dev)
9441 {
9442         const struct device_driver *driver;
9443         const struct device *parent;
9444         const char *empty = "";
9445
9446         parent = dev->dev.parent;
9447         if (!parent)
9448                 return empty;
9449
9450         driver = parent->driver;
9451         if (driver && driver->name)
9452                 return driver->name;
9453         return empty;
9454 }
9455
9456 static void __netdev_printk(const char *level, const struct net_device *dev,
9457                             struct va_format *vaf)
9458 {
9459         if (dev && dev->dev.parent) {
9460                 dev_printk_emit(level[1] - '0',
9461                                 dev->dev.parent,
9462                                 "%s %s %s%s: %pV",
9463                                 dev_driver_string(dev->dev.parent),
9464                                 dev_name(dev->dev.parent),
9465                                 netdev_name(dev), netdev_reg_state(dev),
9466                                 vaf);
9467         } else if (dev) {
9468                 printk("%s%s%s: %pV",
9469                        level, netdev_name(dev), netdev_reg_state(dev), vaf);
9470         } else {
9471                 printk("%s(NULL net_device): %pV", level, vaf);
9472         }
9473 }
9474
9475 void netdev_printk(const char *level, const struct net_device *dev,
9476                    const char *format, ...)
9477 {
9478         struct va_format vaf;
9479         va_list args;
9480
9481         va_start(args, format);
9482
9483         vaf.fmt = format;
9484         vaf.va = &args;
9485
9486         __netdev_printk(level, dev, &vaf);
9487
9488         va_end(args);
9489 }
9490 EXPORT_SYMBOL(netdev_printk);
9491
9492 #define define_netdev_printk_level(func, level)                 \
9493 void func(const struct net_device *dev, const char *fmt, ...)   \
9494 {                                                               \
9495         struct va_format vaf;                                   \
9496         va_list args;                                           \
9497                                                                 \
9498         va_start(args, fmt);                                    \
9499                                                                 \
9500         vaf.fmt = fmt;                                          \
9501         vaf.va = &args;                                         \
9502                                                                 \
9503         __netdev_printk(level, dev, &vaf);                      \
9504                                                                 \
9505         va_end(args);                                           \
9506 }                                                               \
9507 EXPORT_SYMBOL(func);
9508
9509 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
9510 define_netdev_printk_level(netdev_alert, KERN_ALERT);
9511 define_netdev_printk_level(netdev_crit, KERN_CRIT);
9512 define_netdev_printk_level(netdev_err, KERN_ERR);
9513 define_netdev_printk_level(netdev_warn, KERN_WARNING);
9514 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
9515 define_netdev_printk_level(netdev_info, KERN_INFO);
9516
9517 static void __net_exit netdev_exit(struct net *net)
9518 {
9519         kfree(net->dev_name_head);
9520         kfree(net->dev_index_head);
9521         if (net != &init_net)
9522                 WARN_ON_ONCE(!list_empty(&net->dev_base_head));
9523 }
9524
9525 static struct pernet_operations __net_initdata netdev_net_ops = {
9526         .init = netdev_init,
9527         .exit = netdev_exit,
9528 };
9529
9530 static void __net_exit default_device_exit(struct net *net)
9531 {
9532         struct net_device *dev, *aux;
9533         /*
9534          * Push all migratable network devices back to the
9535          * initial network namespace
9536          */
9537         rtnl_lock();
9538         for_each_netdev_safe(net, dev, aux) {
9539                 int err;
9540                 char fb_name[IFNAMSIZ];
9541
9542                 /* Ignore unmoveable devices (i.e. loopback) */
9543                 if (dev->features & NETIF_F_NETNS_LOCAL)
9544                         continue;
9545
9546                 /* Leave virtual devices for the generic cleanup */
9547                 if (dev->rtnl_link_ops)
9548                         continue;
9549
9550                 /* Push remaining network devices to init_net */
9551                 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
9552                 err = dev_change_net_namespace(dev, &init_net, fb_name);
9553                 if (err) {
9554                         pr_emerg("%s: failed to move %s to init_net: %d\n",
9555                                  __func__, dev->name, err);
9556                         BUG();
9557                 }
9558         }
9559         rtnl_unlock();
9560 }
9561
9562 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
9563 {
9564         /* Return with the rtnl_lock held when there are no network
9565          * devices unregistering in any network namespace in net_list.
9566          */
9567         struct net *net;
9568         bool unregistering;
9569         DEFINE_WAIT_FUNC(wait, woken_wake_function);
9570
9571         add_wait_queue(&netdev_unregistering_wq, &wait);
9572         for (;;) {
9573                 unregistering = false;
9574                 rtnl_lock();
9575                 list_for_each_entry(net, net_list, exit_list) {
9576                         if (net->dev_unreg_count > 0) {
9577                                 unregistering = true;
9578                                 break;
9579                         }
9580                 }
9581                 if (!unregistering)
9582                         break;
9583                 __rtnl_unlock();
9584
9585                 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
9586         }
9587         remove_wait_queue(&netdev_unregistering_wq, &wait);
9588 }
9589
9590 static void __net_exit default_device_exit_batch(struct list_head *net_list)
9591 {
9592         /* At exit all network devices most be removed from a network
9593          * namespace.  Do this in the reverse order of registration.
9594          * Do this across as many network namespaces as possible to
9595          * improve batching efficiency.
9596          */
9597         struct net_device *dev;
9598         struct net *net;
9599         LIST_HEAD(dev_kill_list);
9600
9601         /* To prevent network device cleanup code from dereferencing
9602          * loopback devices or network devices that have been freed
9603          * wait here for all pending unregistrations to complete,
9604          * before unregistring the loopback device and allowing the
9605          * network namespace be freed.
9606          *
9607          * The netdev todo list containing all network devices
9608          * unregistrations that happen in default_device_exit_batch
9609          * will run in the rtnl_unlock() at the end of
9610          * default_device_exit_batch.
9611          */
9612         rtnl_lock_unregistering(net_list);
9613         list_for_each_entry(net, net_list, exit_list) {
9614                 for_each_netdev_reverse(net, dev) {
9615                         if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
9616                                 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
9617                         else
9618                                 unregister_netdevice_queue(dev, &dev_kill_list);
9619                 }
9620         }
9621         unregister_netdevice_many(&dev_kill_list);
9622         rtnl_unlock();
9623 }
9624
9625 static struct pernet_operations __net_initdata default_device_ops = {
9626         .exit = default_device_exit,
9627         .exit_batch = default_device_exit_batch,
9628 };
9629
9630 /*
9631  *      Initialize the DEV module. At boot time this walks the device list and
9632  *      unhooks any devices that fail to initialise (normally hardware not
9633  *      present) and leaves us with a valid list of present and active devices.
9634  *
9635  */
9636
9637 /*
9638  *       This is called single threaded during boot, so no need
9639  *       to take the rtnl semaphore.
9640  */
9641 static int __init net_dev_init(void)
9642 {
9643         int i, rc = -ENOMEM;
9644
9645         BUG_ON(!dev_boot_phase);
9646
9647         if (dev_proc_init())
9648                 goto out;
9649
9650         if (netdev_kobject_init())
9651                 goto out;
9652
9653         INIT_LIST_HEAD(&ptype_all);
9654         for (i = 0; i < PTYPE_HASH_SIZE; i++)
9655                 INIT_LIST_HEAD(&ptype_base[i]);
9656
9657         INIT_LIST_HEAD(&offload_base);
9658
9659         if (register_pernet_subsys(&netdev_net_ops))
9660                 goto out;
9661
9662         /*
9663          *      Initialise the packet receive queues.
9664          */
9665
9666         for_each_possible_cpu(i) {
9667                 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
9668                 struct softnet_data *sd = &per_cpu(softnet_data, i);
9669
9670                 INIT_WORK(flush, flush_backlog);
9671
9672                 skb_queue_head_init(&sd->input_pkt_queue);
9673                 skb_queue_head_init(&sd->process_queue);
9674 #ifdef CONFIG_XFRM_OFFLOAD
9675                 skb_queue_head_init(&sd->xfrm_backlog);
9676 #endif
9677                 INIT_LIST_HEAD(&sd->poll_list);
9678                 sd->output_queue_tailp = &sd->output_queue;
9679 #ifdef CONFIG_RPS
9680                 sd->csd.func = rps_trigger_softirq;
9681                 sd->csd.info = sd;
9682                 sd->cpu = i;
9683 #endif
9684
9685                 init_gro_hash(&sd->backlog);
9686                 sd->backlog.poll = process_backlog;
9687                 sd->backlog.weight = weight_p;
9688         }
9689
9690         dev_boot_phase = 0;
9691
9692         /* The loopback device is special if any other network devices
9693          * is present in a network namespace the loopback device must
9694          * be present. Since we now dynamically allocate and free the
9695          * loopback device ensure this invariant is maintained by
9696          * keeping the loopback device as the first device on the
9697          * list of network devices.  Ensuring the loopback devices
9698          * is the first device that appears and the last network device
9699          * that disappears.
9700          */
9701         if (register_pernet_device(&loopback_net_ops))
9702                 goto out;
9703
9704         if (register_pernet_device(&default_device_ops))
9705                 goto out;
9706
9707         open_softirq(NET_TX_SOFTIRQ, net_tx_action);
9708         open_softirq(NET_RX_SOFTIRQ, net_rx_action);
9709
9710         rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
9711                                        NULL, dev_cpu_dead);
9712         WARN_ON(rc < 0);
9713         rc = 0;
9714 out:
9715         return rc;
9716 }
9717
9718 subsys_initcall(net_dev_init);