OSDN Git Service

net: accept UFO datagrams from tuntap and packet
[uclinux-h8/linux.git] / net / core / dev.c
1 /*
2  *      NET3    Protocol independent device support routines.
3  *
4  *              This program is free software; you can redistribute it and/or
5  *              modify it under the terms of the GNU General Public License
6  *              as published by the Free Software Foundation; either version
7  *              2 of the License, or (at your option) any later version.
8  *
9  *      Derived from the non IP parts of dev.c 1.0.19
10  *              Authors:        Ross Biro
11  *                              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *                              Mark Evans, <evansmp@uhura.aston.ac.uk>
13  *
14  *      Additional Authors:
15  *              Florian la Roche <rzsfl@rz.uni-sb.de>
16  *              Alan Cox <gw4pts@gw4pts.ampr.org>
17  *              David Hinds <dahinds@users.sourceforge.net>
18  *              Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19  *              Adam Sulmicki <adam@cfar.umd.edu>
20  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
21  *
22  *      Changes:
23  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
24  *                                      to 2 if register_netdev gets called
25  *                                      before net_dev_init & also removed a
26  *                                      few lines of code in the process.
27  *              Alan Cox        :       device private ioctl copies fields back.
28  *              Alan Cox        :       Transmit queue code does relevant
29  *                                      stunts to keep the queue safe.
30  *              Alan Cox        :       Fixed double lock.
31  *              Alan Cox        :       Fixed promisc NULL pointer trap
32  *              ????????        :       Support the full private ioctl range
33  *              Alan Cox        :       Moved ioctl permission check into
34  *                                      drivers
35  *              Tim Kordas      :       SIOCADDMULTI/SIOCDELMULTI
36  *              Alan Cox        :       100 backlog just doesn't cut it when
37  *                                      you start doing multicast video 8)
38  *              Alan Cox        :       Rewrote net_bh and list manager.
39  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
40  *              Alan Cox        :       Took out transmit every packet pass
41  *                                      Saved a few bytes in the ioctl handler
42  *              Alan Cox        :       Network driver sets packet type before
43  *                                      calling netif_rx. Saves a function
44  *                                      call a packet.
45  *              Alan Cox        :       Hashed net_bh()
46  *              Richard Kooijman:       Timestamp fixes.
47  *              Alan Cox        :       Wrong field in SIOCGIFDSTADDR
48  *              Alan Cox        :       Device lock protection.
49  *              Alan Cox        :       Fixed nasty side effect of device close
50  *                                      changes.
51  *              Rudi Cilibrasi  :       Pass the right thing to
52  *                                      set_mac_address()
53  *              Dave Miller     :       32bit quantity for the device lock to
54  *                                      make it work out on a Sparc.
55  *              Bjorn Ekwall    :       Added KERNELD hack.
56  *              Alan Cox        :       Cleaned up the backlog initialise.
57  *              Craig Metz      :       SIOCGIFCONF fix if space for under
58  *                                      1 device.
59  *          Thomas Bogendoerfer :       Return ENODEV for dev_open, if there
60  *                                      is no device open function.
61  *              Andi Kleen      :       Fix error reporting for SIOCGIFCONF
62  *          Michael Chastain    :       Fix signed/unsigned for SIOCGIFCONF
63  *              Cyrus Durgin    :       Cleaned for KMOD
64  *              Adam Sulmicki   :       Bug Fix : Network Device Unload
65  *                                      A network device unload needs to purge
66  *                                      the backlog queue.
67  *      Paul Rusty Russell      :       SIOCSIFNAME
68  *              Pekka Riikonen  :       Netdev boot-time settings code
69  *              Andrew Morton   :       Make unregister_netdevice wait
70  *                                      indefinitely on dev->refcnt
71  *              J Hadi Salim    :       - Backlog queue sampling
72  *                                      - netif_rx() feedback
73  */
74
75 #include <linux/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/sched/mm.h>
85 #include <linux/mutex.h>
86 #include <linux/string.h>
87 #include <linux/mm.h>
88 #include <linux/socket.h>
89 #include <linux/sockios.h>
90 #include <linux/errno.h>
91 #include <linux/interrupt.h>
92 #include <linux/if_ether.h>
93 #include <linux/netdevice.h>
94 #include <linux/etherdevice.h>
95 #include <linux/ethtool.h>
96 #include <linux/notifier.h>
97 #include <linux/skbuff.h>
98 #include <linux/bpf.h>
99 #include <linux/bpf_trace.h>
100 #include <net/net_namespace.h>
101 #include <net/sock.h>
102 #include <net/busy_poll.h>
103 #include <linux/rtnetlink.h>
104 #include <linux/stat.h>
105 #include <net/dst.h>
106 #include <net/dst_metadata.h>
107 #include <net/pkt_sched.h>
108 #include <net/pkt_cls.h>
109 #include <net/checksum.h>
110 #include <net/xfrm.h>
111 #include <linux/highmem.h>
112 #include <linux/init.h>
113 #include <linux/module.h>
114 #include <linux/netpoll.h>
115 #include <linux/rcupdate.h>
116 #include <linux/delay.h>
117 #include <net/iw_handler.h>
118 #include <asm/current.h>
119 #include <linux/audit.h>
120 #include <linux/dmaengine.h>
121 #include <linux/err.h>
122 #include <linux/ctype.h>
123 #include <linux/if_arp.h>
124 #include <linux/if_vlan.h>
125 #include <linux/ip.h>
126 #include <net/ip.h>
127 #include <net/mpls.h>
128 #include <linux/ipv6.h>
129 #include <linux/in.h>
130 #include <linux/jhash.h>
131 #include <linux/random.h>
132 #include <trace/events/napi.h>
133 #include <trace/events/net.h>
134 #include <trace/events/skb.h>
135 #include <linux/pci.h>
136 #include <linux/inetdevice.h>
137 #include <linux/cpu_rmap.h>
138 #include <linux/static_key.h>
139 #include <linux/hashtable.h>
140 #include <linux/vmalloc.h>
141 #include <linux/if_macvlan.h>
142 #include <linux/errqueue.h>
143 #include <linux/hrtimer.h>
144 #include <linux/netfilter_ingress.h>
145 #include <linux/crash_dump.h>
146 #include <linux/sctp.h>
147 #include <net/udp_tunnel.h>
148 #include <linux/net_namespace.h>
149
150 #include "net-sysfs.h"
151
152 /* Instead of increasing this, you should create a hash table. */
153 #define MAX_GRO_SKBS 8
154
155 /* This should be increased if a protocol with a bigger head is added. */
156 #define GRO_MAX_HEAD (MAX_HEADER + 128)
157
158 static DEFINE_SPINLOCK(ptype_lock);
159 static DEFINE_SPINLOCK(offload_lock);
160 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
161 struct list_head ptype_all __read_mostly;       /* Taps */
162 static struct list_head offload_base __read_mostly;
163
164 static int netif_rx_internal(struct sk_buff *skb);
165 static int call_netdevice_notifiers_info(unsigned long val,
166                                          struct netdev_notifier_info *info);
167 static struct napi_struct *napi_by_id(unsigned int napi_id);
168
169 /*
170  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
171  * semaphore.
172  *
173  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
174  *
175  * Writers must hold the rtnl semaphore while they loop through the
176  * dev_base_head list, and hold dev_base_lock for writing when they do the
177  * actual updates.  This allows pure readers to access the list even
178  * while a writer is preparing to update it.
179  *
180  * To put it another way, dev_base_lock is held for writing only to
181  * protect against pure readers; the rtnl semaphore provides the
182  * protection against other writers.
183  *
184  * See, for example usages, register_netdevice() and
185  * unregister_netdevice(), which must be called with the rtnl
186  * semaphore held.
187  */
188 DEFINE_RWLOCK(dev_base_lock);
189 EXPORT_SYMBOL(dev_base_lock);
190
191 static DEFINE_MUTEX(ifalias_mutex);
192
193 /* protects napi_hash addition/deletion and napi_gen_id */
194 static DEFINE_SPINLOCK(napi_hash_lock);
195
196 static unsigned int napi_gen_id = NR_CPUS;
197 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
198
199 static seqcount_t devnet_rename_seq;
200
201 static inline void dev_base_seq_inc(struct net *net)
202 {
203         while (++net->dev_base_seq == 0)
204                 ;
205 }
206
207 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
208 {
209         unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
210
211         return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
212 }
213
214 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
215 {
216         return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
217 }
218
219 static inline void rps_lock(struct softnet_data *sd)
220 {
221 #ifdef CONFIG_RPS
222         spin_lock(&sd->input_pkt_queue.lock);
223 #endif
224 }
225
226 static inline void rps_unlock(struct softnet_data *sd)
227 {
228 #ifdef CONFIG_RPS
229         spin_unlock(&sd->input_pkt_queue.lock);
230 #endif
231 }
232
233 /* Device list insertion */
234 static void list_netdevice(struct net_device *dev)
235 {
236         struct net *net = dev_net(dev);
237
238         ASSERT_RTNL();
239
240         write_lock_bh(&dev_base_lock);
241         list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
242         hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
243         hlist_add_head_rcu(&dev->index_hlist,
244                            dev_index_hash(net, dev->ifindex));
245         write_unlock_bh(&dev_base_lock);
246
247         dev_base_seq_inc(net);
248 }
249
250 /* Device list removal
251  * caller must respect a RCU grace period before freeing/reusing dev
252  */
253 static void unlist_netdevice(struct net_device *dev)
254 {
255         ASSERT_RTNL();
256
257         /* Unlink dev from the device chain */
258         write_lock_bh(&dev_base_lock);
259         list_del_rcu(&dev->dev_list);
260         hlist_del_rcu(&dev->name_hlist);
261         hlist_del_rcu(&dev->index_hlist);
262         write_unlock_bh(&dev_base_lock);
263
264         dev_base_seq_inc(dev_net(dev));
265 }
266
267 /*
268  *      Our notifier list
269  */
270
271 static RAW_NOTIFIER_HEAD(netdev_chain);
272
273 /*
274  *      Device drivers call our routines to queue packets here. We empty the
275  *      queue in the local softnet handler.
276  */
277
278 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
279 EXPORT_PER_CPU_SYMBOL(softnet_data);
280
281 #ifdef CONFIG_LOCKDEP
282 /*
283  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
284  * according to dev->type
285  */
286 static const unsigned short netdev_lock_type[] = {
287          ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
288          ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
289          ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
290          ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
291          ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
292          ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
293          ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
294          ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
295          ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
296          ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
297          ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
298          ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
299          ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
300          ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
301          ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
302
303 static const char *const netdev_lock_name[] = {
304         "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
305         "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
306         "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
307         "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
308         "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
309         "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
310         "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
311         "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
312         "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
313         "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
314         "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
315         "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
316         "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
317         "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
318         "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
319
320 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
321 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
322
323 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
324 {
325         int i;
326
327         for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
328                 if (netdev_lock_type[i] == dev_type)
329                         return i;
330         /* the last key is used by default */
331         return ARRAY_SIZE(netdev_lock_type) - 1;
332 }
333
334 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
335                                                  unsigned short dev_type)
336 {
337         int i;
338
339         i = netdev_lock_pos(dev_type);
340         lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
341                                    netdev_lock_name[i]);
342 }
343
344 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
345 {
346         int i;
347
348         i = netdev_lock_pos(dev->type);
349         lockdep_set_class_and_name(&dev->addr_list_lock,
350                                    &netdev_addr_lock_key[i],
351                                    netdev_lock_name[i]);
352 }
353 #else
354 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
355                                                  unsigned short dev_type)
356 {
357 }
358 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
359 {
360 }
361 #endif
362
363 /*******************************************************************************
364  *
365  *              Protocol management and registration routines
366  *
367  *******************************************************************************/
368
369
370 /*
371  *      Add a protocol ID to the list. Now that the input handler is
372  *      smarter we can dispense with all the messy stuff that used to be
373  *      here.
374  *
375  *      BEWARE!!! Protocol handlers, mangling input packets,
376  *      MUST BE last in hash buckets and checking protocol handlers
377  *      MUST start from promiscuous ptype_all chain in net_bh.
378  *      It is true now, do not change it.
379  *      Explanation follows: if protocol handler, mangling packet, will
380  *      be the first on list, it is not able to sense, that packet
381  *      is cloned and should be copied-on-write, so that it will
382  *      change it and subsequent readers will get broken packet.
383  *                                                      --ANK (980803)
384  */
385
386 static inline struct list_head *ptype_head(const struct packet_type *pt)
387 {
388         if (pt->type == htons(ETH_P_ALL))
389                 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
390         else
391                 return pt->dev ? &pt->dev->ptype_specific :
392                                  &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
393 }
394
395 /**
396  *      dev_add_pack - add packet handler
397  *      @pt: packet type declaration
398  *
399  *      Add a protocol handler to the networking stack. The passed &packet_type
400  *      is linked into kernel lists and may not be freed until it has been
401  *      removed from the kernel lists.
402  *
403  *      This call does not sleep therefore it can not
404  *      guarantee all CPU's that are in middle of receiving packets
405  *      will see the new packet type (until the next received packet).
406  */
407
408 void dev_add_pack(struct packet_type *pt)
409 {
410         struct list_head *head = ptype_head(pt);
411
412         spin_lock(&ptype_lock);
413         list_add_rcu(&pt->list, head);
414         spin_unlock(&ptype_lock);
415 }
416 EXPORT_SYMBOL(dev_add_pack);
417
418 /**
419  *      __dev_remove_pack        - remove packet handler
420  *      @pt: packet type declaration
421  *
422  *      Remove a protocol handler that was previously added to the kernel
423  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
424  *      from the kernel lists and can be freed or reused once this function
425  *      returns.
426  *
427  *      The packet type might still be in use by receivers
428  *      and must not be freed until after all the CPU's have gone
429  *      through a quiescent state.
430  */
431 void __dev_remove_pack(struct packet_type *pt)
432 {
433         struct list_head *head = ptype_head(pt);
434         struct packet_type *pt1;
435
436         spin_lock(&ptype_lock);
437
438         list_for_each_entry(pt1, head, list) {
439                 if (pt == pt1) {
440                         list_del_rcu(&pt->list);
441                         goto out;
442                 }
443         }
444
445         pr_warn("dev_remove_pack: %p not found\n", pt);
446 out:
447         spin_unlock(&ptype_lock);
448 }
449 EXPORT_SYMBOL(__dev_remove_pack);
450
451 /**
452  *      dev_remove_pack  - remove packet handler
453  *      @pt: packet type declaration
454  *
455  *      Remove a protocol handler that was previously added to the kernel
456  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
457  *      from the kernel lists and can be freed or reused once this function
458  *      returns.
459  *
460  *      This call sleeps to guarantee that no CPU is looking at the packet
461  *      type after return.
462  */
463 void dev_remove_pack(struct packet_type *pt)
464 {
465         __dev_remove_pack(pt);
466
467         synchronize_net();
468 }
469 EXPORT_SYMBOL(dev_remove_pack);
470
471
472 /**
473  *      dev_add_offload - register offload handlers
474  *      @po: protocol offload declaration
475  *
476  *      Add protocol offload handlers to the networking stack. The passed
477  *      &proto_offload is linked into kernel lists and may not be freed until
478  *      it has been removed from the kernel lists.
479  *
480  *      This call does not sleep therefore it can not
481  *      guarantee all CPU's that are in middle of receiving packets
482  *      will see the new offload handlers (until the next received packet).
483  */
484 void dev_add_offload(struct packet_offload *po)
485 {
486         struct packet_offload *elem;
487
488         spin_lock(&offload_lock);
489         list_for_each_entry(elem, &offload_base, list) {
490                 if (po->priority < elem->priority)
491                         break;
492         }
493         list_add_rcu(&po->list, elem->list.prev);
494         spin_unlock(&offload_lock);
495 }
496 EXPORT_SYMBOL(dev_add_offload);
497
498 /**
499  *      __dev_remove_offload     - remove offload handler
500  *      @po: packet offload declaration
501  *
502  *      Remove a protocol offload handler that was previously added to the
503  *      kernel offload handlers by dev_add_offload(). The passed &offload_type
504  *      is removed from the kernel lists and can be freed or reused once this
505  *      function returns.
506  *
507  *      The packet type might still be in use by receivers
508  *      and must not be freed until after all the CPU's have gone
509  *      through a quiescent state.
510  */
511 static void __dev_remove_offload(struct packet_offload *po)
512 {
513         struct list_head *head = &offload_base;
514         struct packet_offload *po1;
515
516         spin_lock(&offload_lock);
517
518         list_for_each_entry(po1, head, list) {
519                 if (po == po1) {
520                         list_del_rcu(&po->list);
521                         goto out;
522                 }
523         }
524
525         pr_warn("dev_remove_offload: %p not found\n", po);
526 out:
527         spin_unlock(&offload_lock);
528 }
529
530 /**
531  *      dev_remove_offload       - remove packet offload handler
532  *      @po: packet offload declaration
533  *
534  *      Remove a packet offload handler that was previously added to the kernel
535  *      offload handlers by dev_add_offload(). The passed &offload_type is
536  *      removed from the kernel lists and can be freed or reused once this
537  *      function returns.
538  *
539  *      This call sleeps to guarantee that no CPU is looking at the packet
540  *      type after return.
541  */
542 void dev_remove_offload(struct packet_offload *po)
543 {
544         __dev_remove_offload(po);
545
546         synchronize_net();
547 }
548 EXPORT_SYMBOL(dev_remove_offload);
549
550 /******************************************************************************
551  *
552  *                    Device Boot-time Settings Routines
553  *
554  ******************************************************************************/
555
556 /* Boot time configuration table */
557 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
558
559 /**
560  *      netdev_boot_setup_add   - add new setup entry
561  *      @name: name of the device
562  *      @map: configured settings for the device
563  *
564  *      Adds new setup entry to the dev_boot_setup list.  The function
565  *      returns 0 on error and 1 on success.  This is a generic routine to
566  *      all netdevices.
567  */
568 static int netdev_boot_setup_add(char *name, struct ifmap *map)
569 {
570         struct netdev_boot_setup *s;
571         int i;
572
573         s = dev_boot_setup;
574         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
575                 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
576                         memset(s[i].name, 0, sizeof(s[i].name));
577                         strlcpy(s[i].name, name, IFNAMSIZ);
578                         memcpy(&s[i].map, map, sizeof(s[i].map));
579                         break;
580                 }
581         }
582
583         return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
584 }
585
586 /**
587  * netdev_boot_setup_check      - check boot time settings
588  * @dev: the netdevice
589  *
590  * Check boot time settings for the device.
591  * The found settings are set for the device to be used
592  * later in the device probing.
593  * Returns 0 if no settings found, 1 if they are.
594  */
595 int netdev_boot_setup_check(struct net_device *dev)
596 {
597         struct netdev_boot_setup *s = dev_boot_setup;
598         int i;
599
600         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
601                 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
602                     !strcmp(dev->name, s[i].name)) {
603                         dev->irq = s[i].map.irq;
604                         dev->base_addr = s[i].map.base_addr;
605                         dev->mem_start = s[i].map.mem_start;
606                         dev->mem_end = s[i].map.mem_end;
607                         return 1;
608                 }
609         }
610         return 0;
611 }
612 EXPORT_SYMBOL(netdev_boot_setup_check);
613
614
615 /**
616  * netdev_boot_base     - get address from boot time settings
617  * @prefix: prefix for network device
618  * @unit: id for network device
619  *
620  * Check boot time settings for the base address of device.
621  * The found settings are set for the device to be used
622  * later in the device probing.
623  * Returns 0 if no settings found.
624  */
625 unsigned long netdev_boot_base(const char *prefix, int unit)
626 {
627         const struct netdev_boot_setup *s = dev_boot_setup;
628         char name[IFNAMSIZ];
629         int i;
630
631         sprintf(name, "%s%d", prefix, unit);
632
633         /*
634          * If device already registered then return base of 1
635          * to indicate not to probe for this interface
636          */
637         if (__dev_get_by_name(&init_net, name))
638                 return 1;
639
640         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
641                 if (!strcmp(name, s[i].name))
642                         return s[i].map.base_addr;
643         return 0;
644 }
645
646 /*
647  * Saves at boot time configured settings for any netdevice.
648  */
649 int __init netdev_boot_setup(char *str)
650 {
651         int ints[5];
652         struct ifmap map;
653
654         str = get_options(str, ARRAY_SIZE(ints), ints);
655         if (!str || !*str)
656                 return 0;
657
658         /* Save settings */
659         memset(&map, 0, sizeof(map));
660         if (ints[0] > 0)
661                 map.irq = ints[1];
662         if (ints[0] > 1)
663                 map.base_addr = ints[2];
664         if (ints[0] > 2)
665                 map.mem_start = ints[3];
666         if (ints[0] > 3)
667                 map.mem_end = ints[4];
668
669         /* Add new entry to the list */
670         return netdev_boot_setup_add(str, &map);
671 }
672
673 __setup("netdev=", netdev_boot_setup);
674
675 /*******************************************************************************
676  *
677  *                          Device Interface Subroutines
678  *
679  *******************************************************************************/
680
681 /**
682  *      dev_get_iflink  - get 'iflink' value of a interface
683  *      @dev: targeted interface
684  *
685  *      Indicates the ifindex the interface is linked to.
686  *      Physical interfaces have the same 'ifindex' and 'iflink' values.
687  */
688
689 int dev_get_iflink(const struct net_device *dev)
690 {
691         if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
692                 return dev->netdev_ops->ndo_get_iflink(dev);
693
694         return dev->ifindex;
695 }
696 EXPORT_SYMBOL(dev_get_iflink);
697
698 /**
699  *      dev_fill_metadata_dst - Retrieve tunnel egress information.
700  *      @dev: targeted interface
701  *      @skb: The packet.
702  *
703  *      For better visibility of tunnel traffic OVS needs to retrieve
704  *      egress tunnel information for a packet. Following API allows
705  *      user to get this info.
706  */
707 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
708 {
709         struct ip_tunnel_info *info;
710
711         if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
712                 return -EINVAL;
713
714         info = skb_tunnel_info_unclone(skb);
715         if (!info)
716                 return -ENOMEM;
717         if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
718                 return -EINVAL;
719
720         return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
721 }
722 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
723
724 /**
725  *      __dev_get_by_name       - find a device by its name
726  *      @net: the applicable net namespace
727  *      @name: name to find
728  *
729  *      Find an interface by name. Must be called under RTNL semaphore
730  *      or @dev_base_lock. If the name is found a pointer to the device
731  *      is returned. If the name is not found then %NULL is returned. The
732  *      reference counters are not incremented so the caller must be
733  *      careful with locks.
734  */
735
736 struct net_device *__dev_get_by_name(struct net *net, const char *name)
737 {
738         struct net_device *dev;
739         struct hlist_head *head = dev_name_hash(net, name);
740
741         hlist_for_each_entry(dev, head, name_hlist)
742                 if (!strncmp(dev->name, name, IFNAMSIZ))
743                         return dev;
744
745         return NULL;
746 }
747 EXPORT_SYMBOL(__dev_get_by_name);
748
749 /**
750  * dev_get_by_name_rcu  - find a device by its name
751  * @net: the applicable net namespace
752  * @name: name to find
753  *
754  * Find an interface by name.
755  * If the name is found a pointer to the device is returned.
756  * If the name is not found then %NULL is returned.
757  * The reference counters are not incremented so the caller must be
758  * careful with locks. The caller must hold RCU lock.
759  */
760
761 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
762 {
763         struct net_device *dev;
764         struct hlist_head *head = dev_name_hash(net, name);
765
766         hlist_for_each_entry_rcu(dev, head, name_hlist)
767                 if (!strncmp(dev->name, name, IFNAMSIZ))
768                         return dev;
769
770         return NULL;
771 }
772 EXPORT_SYMBOL(dev_get_by_name_rcu);
773
774 /**
775  *      dev_get_by_name         - find a device by its name
776  *      @net: the applicable net namespace
777  *      @name: name to find
778  *
779  *      Find an interface by name. This can be called from any
780  *      context and does its own locking. The returned handle has
781  *      the usage count incremented and the caller must use dev_put() to
782  *      release it when it is no longer needed. %NULL is returned if no
783  *      matching device is found.
784  */
785
786 struct net_device *dev_get_by_name(struct net *net, const char *name)
787 {
788         struct net_device *dev;
789
790         rcu_read_lock();
791         dev = dev_get_by_name_rcu(net, name);
792         if (dev)
793                 dev_hold(dev);
794         rcu_read_unlock();
795         return dev;
796 }
797 EXPORT_SYMBOL(dev_get_by_name);
798
799 /**
800  *      __dev_get_by_index - find a device by its ifindex
801  *      @net: the applicable net namespace
802  *      @ifindex: index of device
803  *
804  *      Search for an interface by index. Returns %NULL if the device
805  *      is not found or a pointer to the device. The device has not
806  *      had its reference counter increased so the caller must be careful
807  *      about locking. The caller must hold either the RTNL semaphore
808  *      or @dev_base_lock.
809  */
810
811 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
812 {
813         struct net_device *dev;
814         struct hlist_head *head = dev_index_hash(net, ifindex);
815
816         hlist_for_each_entry(dev, head, index_hlist)
817                 if (dev->ifindex == ifindex)
818                         return dev;
819
820         return NULL;
821 }
822 EXPORT_SYMBOL(__dev_get_by_index);
823
824 /**
825  *      dev_get_by_index_rcu - find a device by its ifindex
826  *      @net: the applicable net namespace
827  *      @ifindex: index of device
828  *
829  *      Search for an interface by index. Returns %NULL if the device
830  *      is not found or a pointer to the device. The device has not
831  *      had its reference counter increased so the caller must be careful
832  *      about locking. The caller must hold RCU lock.
833  */
834
835 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
836 {
837         struct net_device *dev;
838         struct hlist_head *head = dev_index_hash(net, ifindex);
839
840         hlist_for_each_entry_rcu(dev, head, index_hlist)
841                 if (dev->ifindex == ifindex)
842                         return dev;
843
844         return NULL;
845 }
846 EXPORT_SYMBOL(dev_get_by_index_rcu);
847
848
849 /**
850  *      dev_get_by_index - find a device by its ifindex
851  *      @net: the applicable net namespace
852  *      @ifindex: index of device
853  *
854  *      Search for an interface by index. Returns NULL if the device
855  *      is not found or a pointer to the device. The device returned has
856  *      had a reference added and the pointer is safe until the user calls
857  *      dev_put to indicate they have finished with it.
858  */
859
860 struct net_device *dev_get_by_index(struct net *net, int ifindex)
861 {
862         struct net_device *dev;
863
864         rcu_read_lock();
865         dev = dev_get_by_index_rcu(net, ifindex);
866         if (dev)
867                 dev_hold(dev);
868         rcu_read_unlock();
869         return dev;
870 }
871 EXPORT_SYMBOL(dev_get_by_index);
872
873 /**
874  *      dev_get_by_napi_id - find a device by napi_id
875  *      @napi_id: ID of the NAPI struct
876  *
877  *      Search for an interface by NAPI ID. Returns %NULL if the device
878  *      is not found or a pointer to the device. The device has not had
879  *      its reference counter increased so the caller must be careful
880  *      about locking. The caller must hold RCU lock.
881  */
882
883 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
884 {
885         struct napi_struct *napi;
886
887         WARN_ON_ONCE(!rcu_read_lock_held());
888
889         if (napi_id < MIN_NAPI_ID)
890                 return NULL;
891
892         napi = napi_by_id(napi_id);
893
894         return napi ? napi->dev : NULL;
895 }
896 EXPORT_SYMBOL(dev_get_by_napi_id);
897
898 /**
899  *      netdev_get_name - get a netdevice name, knowing its ifindex.
900  *      @net: network namespace
901  *      @name: a pointer to the buffer where the name will be stored.
902  *      @ifindex: the ifindex of the interface to get the name from.
903  *
904  *      The use of raw_seqcount_begin() and cond_resched() before
905  *      retrying is required as we want to give the writers a chance
906  *      to complete when CONFIG_PREEMPT is not set.
907  */
908 int netdev_get_name(struct net *net, char *name, int ifindex)
909 {
910         struct net_device *dev;
911         unsigned int seq;
912
913 retry:
914         seq = raw_seqcount_begin(&devnet_rename_seq);
915         rcu_read_lock();
916         dev = dev_get_by_index_rcu(net, ifindex);
917         if (!dev) {
918                 rcu_read_unlock();
919                 return -ENODEV;
920         }
921
922         strcpy(name, dev->name);
923         rcu_read_unlock();
924         if (read_seqcount_retry(&devnet_rename_seq, seq)) {
925                 cond_resched();
926                 goto retry;
927         }
928
929         return 0;
930 }
931
932 /**
933  *      dev_getbyhwaddr_rcu - find a device by its hardware address
934  *      @net: the applicable net namespace
935  *      @type: media type of device
936  *      @ha: hardware address
937  *
938  *      Search for an interface by MAC address. Returns NULL if the device
939  *      is not found or a pointer to the device.
940  *      The caller must hold RCU or RTNL.
941  *      The returned device has not had its ref count increased
942  *      and the caller must therefore be careful about locking
943  *
944  */
945
946 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
947                                        const char *ha)
948 {
949         struct net_device *dev;
950
951         for_each_netdev_rcu(net, dev)
952                 if (dev->type == type &&
953                     !memcmp(dev->dev_addr, ha, dev->addr_len))
954                         return dev;
955
956         return NULL;
957 }
958 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
959
960 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
961 {
962         struct net_device *dev;
963
964         ASSERT_RTNL();
965         for_each_netdev(net, dev)
966                 if (dev->type == type)
967                         return dev;
968
969         return NULL;
970 }
971 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
972
973 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
974 {
975         struct net_device *dev, *ret = NULL;
976
977         rcu_read_lock();
978         for_each_netdev_rcu(net, dev)
979                 if (dev->type == type) {
980                         dev_hold(dev);
981                         ret = dev;
982                         break;
983                 }
984         rcu_read_unlock();
985         return ret;
986 }
987 EXPORT_SYMBOL(dev_getfirstbyhwtype);
988
989 /**
990  *      __dev_get_by_flags - find any device with given flags
991  *      @net: the applicable net namespace
992  *      @if_flags: IFF_* values
993  *      @mask: bitmask of bits in if_flags to check
994  *
995  *      Search for any interface with the given flags. Returns NULL if a device
996  *      is not found or a pointer to the device. Must be called inside
997  *      rtnl_lock(), and result refcount is unchanged.
998  */
999
1000 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1001                                       unsigned short mask)
1002 {
1003         struct net_device *dev, *ret;
1004
1005         ASSERT_RTNL();
1006
1007         ret = NULL;
1008         for_each_netdev(net, dev) {
1009                 if (((dev->flags ^ if_flags) & mask) == 0) {
1010                         ret = dev;
1011                         break;
1012                 }
1013         }
1014         return ret;
1015 }
1016 EXPORT_SYMBOL(__dev_get_by_flags);
1017
1018 /**
1019  *      dev_valid_name - check if name is okay for network device
1020  *      @name: name string
1021  *
1022  *      Network device names need to be valid file names to
1023  *      to allow sysfs to work.  We also disallow any kind of
1024  *      whitespace.
1025  */
1026 bool dev_valid_name(const char *name)
1027 {
1028         if (*name == '\0')
1029                 return false;
1030         if (strlen(name) >= IFNAMSIZ)
1031                 return false;
1032         if (!strcmp(name, ".") || !strcmp(name, ".."))
1033                 return false;
1034
1035         while (*name) {
1036                 if (*name == '/' || *name == ':' || isspace(*name))
1037                         return false;
1038                 name++;
1039         }
1040         return true;
1041 }
1042 EXPORT_SYMBOL(dev_valid_name);
1043
1044 /**
1045  *      __dev_alloc_name - allocate a name for a device
1046  *      @net: network namespace to allocate the device name in
1047  *      @name: name format string
1048  *      @buf:  scratch buffer and result name string
1049  *
1050  *      Passed a format string - eg "lt%d" it will try and find a suitable
1051  *      id. It scans list of devices to build up a free map, then chooses
1052  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1053  *      while allocating the name and adding the device in order to avoid
1054  *      duplicates.
1055  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1056  *      Returns the number of the unit assigned or a negative errno code.
1057  */
1058
1059 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1060 {
1061         int i = 0;
1062         const char *p;
1063         const int max_netdevices = 8*PAGE_SIZE;
1064         unsigned long *inuse;
1065         struct net_device *d;
1066
1067         if (!dev_valid_name(name))
1068                 return -EINVAL;
1069
1070         p = strchr(name, '%');
1071         if (p) {
1072                 /*
1073                  * Verify the string as this thing may have come from
1074                  * the user.  There must be either one "%d" and no other "%"
1075                  * characters.
1076                  */
1077                 if (p[1] != 'd' || strchr(p + 2, '%'))
1078                         return -EINVAL;
1079
1080                 /* Use one page as a bit array of possible slots */
1081                 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1082                 if (!inuse)
1083                         return -ENOMEM;
1084
1085                 for_each_netdev(net, d) {
1086                         if (!sscanf(d->name, name, &i))
1087                                 continue;
1088                         if (i < 0 || i >= max_netdevices)
1089                                 continue;
1090
1091                         /*  avoid cases where sscanf is not exact inverse of printf */
1092                         snprintf(buf, IFNAMSIZ, name, i);
1093                         if (!strncmp(buf, d->name, IFNAMSIZ))
1094                                 set_bit(i, inuse);
1095                 }
1096
1097                 i = find_first_zero_bit(inuse, max_netdevices);
1098                 free_page((unsigned long) inuse);
1099         }
1100
1101         snprintf(buf, IFNAMSIZ, name, i);
1102         if (!__dev_get_by_name(net, buf))
1103                 return i;
1104
1105         /* It is possible to run out of possible slots
1106          * when the name is long and there isn't enough space left
1107          * for the digits, or if all bits are used.
1108          */
1109         return p ? -ENFILE : -EEXIST;
1110 }
1111
1112 static int dev_alloc_name_ns(struct net *net,
1113                              struct net_device *dev,
1114                              const char *name)
1115 {
1116         char buf[IFNAMSIZ];
1117         int ret;
1118
1119         BUG_ON(!net);
1120         ret = __dev_alloc_name(net, name, buf);
1121         if (ret >= 0)
1122                 strlcpy(dev->name, buf, IFNAMSIZ);
1123         return ret;
1124 }
1125
1126 /**
1127  *      dev_alloc_name - allocate a name for a device
1128  *      @dev: device
1129  *      @name: name format string
1130  *
1131  *      Passed a format string - eg "lt%d" it will try and find a suitable
1132  *      id. It scans list of devices to build up a free map, then chooses
1133  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1134  *      while allocating the name and adding the device in order to avoid
1135  *      duplicates.
1136  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1137  *      Returns the number of the unit assigned or a negative errno code.
1138  */
1139
1140 int dev_alloc_name(struct net_device *dev, const char *name)
1141 {
1142         return dev_alloc_name_ns(dev_net(dev), dev, name);
1143 }
1144 EXPORT_SYMBOL(dev_alloc_name);
1145
1146 int dev_get_valid_name(struct net *net, struct net_device *dev,
1147                        const char *name)
1148 {
1149         return dev_alloc_name_ns(net, dev, name);
1150 }
1151 EXPORT_SYMBOL(dev_get_valid_name);
1152
1153 /**
1154  *      dev_change_name - change name of a device
1155  *      @dev: device
1156  *      @newname: name (or format string) must be at least IFNAMSIZ
1157  *
1158  *      Change name of a device, can pass format strings "eth%d".
1159  *      for wildcarding.
1160  */
1161 int dev_change_name(struct net_device *dev, const char *newname)
1162 {
1163         unsigned char old_assign_type;
1164         char oldname[IFNAMSIZ];
1165         int err = 0;
1166         int ret;
1167         struct net *net;
1168
1169         ASSERT_RTNL();
1170         BUG_ON(!dev_net(dev));
1171
1172         net = dev_net(dev);
1173         if (dev->flags & IFF_UP)
1174                 return -EBUSY;
1175
1176         write_seqcount_begin(&devnet_rename_seq);
1177
1178         if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1179                 write_seqcount_end(&devnet_rename_seq);
1180                 return 0;
1181         }
1182
1183         memcpy(oldname, dev->name, IFNAMSIZ);
1184
1185         err = dev_get_valid_name(net, dev, newname);
1186         if (err < 0) {
1187                 write_seqcount_end(&devnet_rename_seq);
1188                 return err;
1189         }
1190
1191         if (oldname[0] && !strchr(oldname, '%'))
1192                 netdev_info(dev, "renamed from %s\n", oldname);
1193
1194         old_assign_type = dev->name_assign_type;
1195         dev->name_assign_type = NET_NAME_RENAMED;
1196
1197 rollback:
1198         ret = device_rename(&dev->dev, dev->name);
1199         if (ret) {
1200                 memcpy(dev->name, oldname, IFNAMSIZ);
1201                 dev->name_assign_type = old_assign_type;
1202                 write_seqcount_end(&devnet_rename_seq);
1203                 return ret;
1204         }
1205
1206         write_seqcount_end(&devnet_rename_seq);
1207
1208         netdev_adjacent_rename_links(dev, oldname);
1209
1210         write_lock_bh(&dev_base_lock);
1211         hlist_del_rcu(&dev->name_hlist);
1212         write_unlock_bh(&dev_base_lock);
1213
1214         synchronize_rcu();
1215
1216         write_lock_bh(&dev_base_lock);
1217         hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1218         write_unlock_bh(&dev_base_lock);
1219
1220         ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1221         ret = notifier_to_errno(ret);
1222
1223         if (ret) {
1224                 /* err >= 0 after dev_alloc_name() or stores the first errno */
1225                 if (err >= 0) {
1226                         err = ret;
1227                         write_seqcount_begin(&devnet_rename_seq);
1228                         memcpy(dev->name, oldname, IFNAMSIZ);
1229                         memcpy(oldname, newname, IFNAMSIZ);
1230                         dev->name_assign_type = old_assign_type;
1231                         old_assign_type = NET_NAME_RENAMED;
1232                         goto rollback;
1233                 } else {
1234                         pr_err("%s: name change rollback failed: %d\n",
1235                                dev->name, ret);
1236                 }
1237         }
1238
1239         return err;
1240 }
1241
1242 /**
1243  *      dev_set_alias - change ifalias of a device
1244  *      @dev: device
1245  *      @alias: name up to IFALIASZ
1246  *      @len: limit of bytes to copy from info
1247  *
1248  *      Set ifalias for a device,
1249  */
1250 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1251 {
1252         struct dev_ifalias *new_alias = NULL;
1253
1254         if (len >= IFALIASZ)
1255                 return -EINVAL;
1256
1257         if (len) {
1258                 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1259                 if (!new_alias)
1260                         return -ENOMEM;
1261
1262                 memcpy(new_alias->ifalias, alias, len);
1263                 new_alias->ifalias[len] = 0;
1264         }
1265
1266         mutex_lock(&ifalias_mutex);
1267         rcu_swap_protected(dev->ifalias, new_alias,
1268                            mutex_is_locked(&ifalias_mutex));
1269         mutex_unlock(&ifalias_mutex);
1270
1271         if (new_alias)
1272                 kfree_rcu(new_alias, rcuhead);
1273
1274         return len;
1275 }
1276
1277 /**
1278  *      dev_get_alias - get ifalias of a device
1279  *      @dev: device
1280  *      @name: buffer to store name of ifalias
1281  *      @len: size of buffer
1282  *
1283  *      get ifalias for a device.  Caller must make sure dev cannot go
1284  *      away,  e.g. rcu read lock or own a reference count to device.
1285  */
1286 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1287 {
1288         const struct dev_ifalias *alias;
1289         int ret = 0;
1290
1291         rcu_read_lock();
1292         alias = rcu_dereference(dev->ifalias);
1293         if (alias)
1294                 ret = snprintf(name, len, "%s", alias->ifalias);
1295         rcu_read_unlock();
1296
1297         return ret;
1298 }
1299
1300 /**
1301  *      netdev_features_change - device changes features
1302  *      @dev: device to cause notification
1303  *
1304  *      Called to indicate a device has changed features.
1305  */
1306 void netdev_features_change(struct net_device *dev)
1307 {
1308         call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1309 }
1310 EXPORT_SYMBOL(netdev_features_change);
1311
1312 /**
1313  *      netdev_state_change - device changes state
1314  *      @dev: device to cause notification
1315  *
1316  *      Called to indicate a device has changed state. This function calls
1317  *      the notifier chains for netdev_chain and sends a NEWLINK message
1318  *      to the routing socket.
1319  */
1320 void netdev_state_change(struct net_device *dev)
1321 {
1322         if (dev->flags & IFF_UP) {
1323                 struct netdev_notifier_change_info change_info = {
1324                         .info.dev = dev,
1325                 };
1326
1327                 call_netdevice_notifiers_info(NETDEV_CHANGE,
1328                                               &change_info.info);
1329                 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1330         }
1331 }
1332 EXPORT_SYMBOL(netdev_state_change);
1333
1334 /**
1335  * netdev_notify_peers - notify network peers about existence of @dev
1336  * @dev: network device
1337  *
1338  * Generate traffic such that interested network peers are aware of
1339  * @dev, such as by generating a gratuitous ARP. This may be used when
1340  * a device wants to inform the rest of the network about some sort of
1341  * reconfiguration such as a failover event or virtual machine
1342  * migration.
1343  */
1344 void netdev_notify_peers(struct net_device *dev)
1345 {
1346         rtnl_lock();
1347         call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1348         call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1349         rtnl_unlock();
1350 }
1351 EXPORT_SYMBOL(netdev_notify_peers);
1352
1353 static int __dev_open(struct net_device *dev)
1354 {
1355         const struct net_device_ops *ops = dev->netdev_ops;
1356         int ret;
1357
1358         ASSERT_RTNL();
1359
1360         if (!netif_device_present(dev))
1361                 return -ENODEV;
1362
1363         /* Block netpoll from trying to do any rx path servicing.
1364          * If we don't do this there is a chance ndo_poll_controller
1365          * or ndo_poll may be running while we open the device
1366          */
1367         netpoll_poll_disable(dev);
1368
1369         ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1370         ret = notifier_to_errno(ret);
1371         if (ret)
1372                 return ret;
1373
1374         set_bit(__LINK_STATE_START, &dev->state);
1375
1376         if (ops->ndo_validate_addr)
1377                 ret = ops->ndo_validate_addr(dev);
1378
1379         if (!ret && ops->ndo_open)
1380                 ret = ops->ndo_open(dev);
1381
1382         netpoll_poll_enable(dev);
1383
1384         if (ret)
1385                 clear_bit(__LINK_STATE_START, &dev->state);
1386         else {
1387                 dev->flags |= IFF_UP;
1388                 dev_set_rx_mode(dev);
1389                 dev_activate(dev);
1390                 add_device_randomness(dev->dev_addr, dev->addr_len);
1391         }
1392
1393         return ret;
1394 }
1395
1396 /**
1397  *      dev_open        - prepare an interface for use.
1398  *      @dev:   device to open
1399  *
1400  *      Takes a device from down to up state. The device's private open
1401  *      function is invoked and then the multicast lists are loaded. Finally
1402  *      the device is moved into the up state and a %NETDEV_UP message is
1403  *      sent to the netdev notifier chain.
1404  *
1405  *      Calling this function on an active interface is a nop. On a failure
1406  *      a negative errno code is returned.
1407  */
1408 int dev_open(struct net_device *dev)
1409 {
1410         int ret;
1411
1412         if (dev->flags & IFF_UP)
1413                 return 0;
1414
1415         ret = __dev_open(dev);
1416         if (ret < 0)
1417                 return ret;
1418
1419         rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1420         call_netdevice_notifiers(NETDEV_UP, dev);
1421
1422         return ret;
1423 }
1424 EXPORT_SYMBOL(dev_open);
1425
1426 static void __dev_close_many(struct list_head *head)
1427 {
1428         struct net_device *dev;
1429
1430         ASSERT_RTNL();
1431         might_sleep();
1432
1433         list_for_each_entry(dev, head, close_list) {
1434                 /* Temporarily disable netpoll until the interface is down */
1435                 netpoll_poll_disable(dev);
1436
1437                 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1438
1439                 clear_bit(__LINK_STATE_START, &dev->state);
1440
1441                 /* Synchronize to scheduled poll. We cannot touch poll list, it
1442                  * can be even on different cpu. So just clear netif_running().
1443                  *
1444                  * dev->stop() will invoke napi_disable() on all of it's
1445                  * napi_struct instances on this device.
1446                  */
1447                 smp_mb__after_atomic(); /* Commit netif_running(). */
1448         }
1449
1450         dev_deactivate_many(head);
1451
1452         list_for_each_entry(dev, head, close_list) {
1453                 const struct net_device_ops *ops = dev->netdev_ops;
1454
1455                 /*
1456                  *      Call the device specific close. This cannot fail.
1457                  *      Only if device is UP
1458                  *
1459                  *      We allow it to be called even after a DETACH hot-plug
1460                  *      event.
1461                  */
1462                 if (ops->ndo_stop)
1463                         ops->ndo_stop(dev);
1464
1465                 dev->flags &= ~IFF_UP;
1466                 netpoll_poll_enable(dev);
1467         }
1468 }
1469
1470 static void __dev_close(struct net_device *dev)
1471 {
1472         LIST_HEAD(single);
1473
1474         list_add(&dev->close_list, &single);
1475         __dev_close_many(&single);
1476         list_del(&single);
1477 }
1478
1479 void dev_close_many(struct list_head *head, bool unlink)
1480 {
1481         struct net_device *dev, *tmp;
1482
1483         /* Remove the devices that don't need to be closed */
1484         list_for_each_entry_safe(dev, tmp, head, close_list)
1485                 if (!(dev->flags & IFF_UP))
1486                         list_del_init(&dev->close_list);
1487
1488         __dev_close_many(head);
1489
1490         list_for_each_entry_safe(dev, tmp, head, close_list) {
1491                 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1492                 call_netdevice_notifiers(NETDEV_DOWN, dev);
1493                 if (unlink)
1494                         list_del_init(&dev->close_list);
1495         }
1496 }
1497 EXPORT_SYMBOL(dev_close_many);
1498
1499 /**
1500  *      dev_close - shutdown an interface.
1501  *      @dev: device to shutdown
1502  *
1503  *      This function moves an active device into down state. A
1504  *      %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1505  *      is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1506  *      chain.
1507  */
1508 void dev_close(struct net_device *dev)
1509 {
1510         if (dev->flags & IFF_UP) {
1511                 LIST_HEAD(single);
1512
1513                 list_add(&dev->close_list, &single);
1514                 dev_close_many(&single, true);
1515                 list_del(&single);
1516         }
1517 }
1518 EXPORT_SYMBOL(dev_close);
1519
1520
1521 /**
1522  *      dev_disable_lro - disable Large Receive Offload on a device
1523  *      @dev: device
1524  *
1525  *      Disable Large Receive Offload (LRO) on a net device.  Must be
1526  *      called under RTNL.  This is needed if received packets may be
1527  *      forwarded to another interface.
1528  */
1529 void dev_disable_lro(struct net_device *dev)
1530 {
1531         struct net_device *lower_dev;
1532         struct list_head *iter;
1533
1534         dev->wanted_features &= ~NETIF_F_LRO;
1535         netdev_update_features(dev);
1536
1537         if (unlikely(dev->features & NETIF_F_LRO))
1538                 netdev_WARN(dev, "failed to disable LRO!\n");
1539
1540         netdev_for_each_lower_dev(dev, lower_dev, iter)
1541                 dev_disable_lro(lower_dev);
1542 }
1543 EXPORT_SYMBOL(dev_disable_lro);
1544
1545 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1546                                    struct net_device *dev)
1547 {
1548         struct netdev_notifier_info info = {
1549                 .dev = dev,
1550         };
1551
1552         return nb->notifier_call(nb, val, &info);
1553 }
1554
1555 static int dev_boot_phase = 1;
1556
1557 /**
1558  * register_netdevice_notifier - register a network notifier block
1559  * @nb: notifier
1560  *
1561  * Register a notifier to be called when network device events occur.
1562  * The notifier passed is linked into the kernel structures and must
1563  * not be reused until it has been unregistered. A negative errno code
1564  * is returned on a failure.
1565  *
1566  * When registered all registration and up events are replayed
1567  * to the new notifier to allow device to have a race free
1568  * view of the network device list.
1569  */
1570
1571 int register_netdevice_notifier(struct notifier_block *nb)
1572 {
1573         struct net_device *dev;
1574         struct net_device *last;
1575         struct net *net;
1576         int err;
1577
1578         rtnl_lock();
1579         err = raw_notifier_chain_register(&netdev_chain, nb);
1580         if (err)
1581                 goto unlock;
1582         if (dev_boot_phase)
1583                 goto unlock;
1584         for_each_net(net) {
1585                 for_each_netdev(net, dev) {
1586                         err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1587                         err = notifier_to_errno(err);
1588                         if (err)
1589                                 goto rollback;
1590
1591                         if (!(dev->flags & IFF_UP))
1592                                 continue;
1593
1594                         call_netdevice_notifier(nb, NETDEV_UP, dev);
1595                 }
1596         }
1597
1598 unlock:
1599         rtnl_unlock();
1600         return err;
1601
1602 rollback:
1603         last = dev;
1604         for_each_net(net) {
1605                 for_each_netdev(net, dev) {
1606                         if (dev == last)
1607                                 goto outroll;
1608
1609                         if (dev->flags & IFF_UP) {
1610                                 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1611                                                         dev);
1612                                 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1613                         }
1614                         call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1615                 }
1616         }
1617
1618 outroll:
1619         raw_notifier_chain_unregister(&netdev_chain, nb);
1620         goto unlock;
1621 }
1622 EXPORT_SYMBOL(register_netdevice_notifier);
1623
1624 /**
1625  * unregister_netdevice_notifier - unregister a network notifier block
1626  * @nb: notifier
1627  *
1628  * Unregister a notifier previously registered by
1629  * register_netdevice_notifier(). The notifier is unlinked into the
1630  * kernel structures and may then be reused. A negative errno code
1631  * is returned on a failure.
1632  *
1633  * After unregistering unregister and down device events are synthesized
1634  * for all devices on the device list to the removed notifier to remove
1635  * the need for special case cleanup code.
1636  */
1637
1638 int unregister_netdevice_notifier(struct notifier_block *nb)
1639 {
1640         struct net_device *dev;
1641         struct net *net;
1642         int err;
1643
1644         rtnl_lock();
1645         err = raw_notifier_chain_unregister(&netdev_chain, nb);
1646         if (err)
1647                 goto unlock;
1648
1649         for_each_net(net) {
1650                 for_each_netdev(net, dev) {
1651                         if (dev->flags & IFF_UP) {
1652                                 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1653                                                         dev);
1654                                 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1655                         }
1656                         call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1657                 }
1658         }
1659 unlock:
1660         rtnl_unlock();
1661         return err;
1662 }
1663 EXPORT_SYMBOL(unregister_netdevice_notifier);
1664
1665 /**
1666  *      call_netdevice_notifiers_info - call all network notifier blocks
1667  *      @val: value passed unmodified to notifier function
1668  *      @dev: net_device pointer passed unmodified to notifier function
1669  *      @info: notifier information data
1670  *
1671  *      Call all network notifier blocks.  Parameters and return value
1672  *      are as for raw_notifier_call_chain().
1673  */
1674
1675 static int call_netdevice_notifiers_info(unsigned long val,
1676                                          struct netdev_notifier_info *info)
1677 {
1678         ASSERT_RTNL();
1679         return raw_notifier_call_chain(&netdev_chain, val, info);
1680 }
1681
1682 /**
1683  *      call_netdevice_notifiers - call all network notifier blocks
1684  *      @val: value passed unmodified to notifier function
1685  *      @dev: net_device pointer passed unmodified to notifier function
1686  *
1687  *      Call all network notifier blocks.  Parameters and return value
1688  *      are as for raw_notifier_call_chain().
1689  */
1690
1691 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1692 {
1693         struct netdev_notifier_info info = {
1694                 .dev = dev,
1695         };
1696
1697         return call_netdevice_notifiers_info(val, &info);
1698 }
1699 EXPORT_SYMBOL(call_netdevice_notifiers);
1700
1701 #ifdef CONFIG_NET_INGRESS
1702 static struct static_key ingress_needed __read_mostly;
1703
1704 void net_inc_ingress_queue(void)
1705 {
1706         static_key_slow_inc(&ingress_needed);
1707 }
1708 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1709
1710 void net_dec_ingress_queue(void)
1711 {
1712         static_key_slow_dec(&ingress_needed);
1713 }
1714 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1715 #endif
1716
1717 #ifdef CONFIG_NET_EGRESS
1718 static struct static_key egress_needed __read_mostly;
1719
1720 void net_inc_egress_queue(void)
1721 {
1722         static_key_slow_inc(&egress_needed);
1723 }
1724 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
1725
1726 void net_dec_egress_queue(void)
1727 {
1728         static_key_slow_dec(&egress_needed);
1729 }
1730 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
1731 #endif
1732
1733 static struct static_key netstamp_needed __read_mostly;
1734 #ifdef HAVE_JUMP_LABEL
1735 static atomic_t netstamp_needed_deferred;
1736 static atomic_t netstamp_wanted;
1737 static void netstamp_clear(struct work_struct *work)
1738 {
1739         int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1740         int wanted;
1741
1742         wanted = atomic_add_return(deferred, &netstamp_wanted);
1743         if (wanted > 0)
1744                 static_key_enable(&netstamp_needed);
1745         else
1746                 static_key_disable(&netstamp_needed);
1747 }
1748 static DECLARE_WORK(netstamp_work, netstamp_clear);
1749 #endif
1750
1751 void net_enable_timestamp(void)
1752 {
1753 #ifdef HAVE_JUMP_LABEL
1754         int wanted;
1755
1756         while (1) {
1757                 wanted = atomic_read(&netstamp_wanted);
1758                 if (wanted <= 0)
1759                         break;
1760                 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
1761                         return;
1762         }
1763         atomic_inc(&netstamp_needed_deferred);
1764         schedule_work(&netstamp_work);
1765 #else
1766         static_key_slow_inc(&netstamp_needed);
1767 #endif
1768 }
1769 EXPORT_SYMBOL(net_enable_timestamp);
1770
1771 void net_disable_timestamp(void)
1772 {
1773 #ifdef HAVE_JUMP_LABEL
1774         int wanted;
1775
1776         while (1) {
1777                 wanted = atomic_read(&netstamp_wanted);
1778                 if (wanted <= 1)
1779                         break;
1780                 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
1781                         return;
1782         }
1783         atomic_dec(&netstamp_needed_deferred);
1784         schedule_work(&netstamp_work);
1785 #else
1786         static_key_slow_dec(&netstamp_needed);
1787 #endif
1788 }
1789 EXPORT_SYMBOL(net_disable_timestamp);
1790
1791 static inline void net_timestamp_set(struct sk_buff *skb)
1792 {
1793         skb->tstamp = 0;
1794         if (static_key_false(&netstamp_needed))
1795                 __net_timestamp(skb);
1796 }
1797
1798 #define net_timestamp_check(COND, SKB)                  \
1799         if (static_key_false(&netstamp_needed)) {               \
1800                 if ((COND) && !(SKB)->tstamp)   \
1801                         __net_timestamp(SKB);           \
1802         }                                               \
1803
1804 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
1805 {
1806         unsigned int len;
1807
1808         if (!(dev->flags & IFF_UP))
1809                 return false;
1810
1811         len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1812         if (skb->len <= len)
1813                 return true;
1814
1815         /* if TSO is enabled, we don't care about the length as the packet
1816          * could be forwarded without being segmented before
1817          */
1818         if (skb_is_gso(skb))
1819                 return true;
1820
1821         return false;
1822 }
1823 EXPORT_SYMBOL_GPL(is_skb_forwardable);
1824
1825 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1826 {
1827         int ret = ____dev_forward_skb(dev, skb);
1828
1829         if (likely(!ret)) {
1830                 skb->protocol = eth_type_trans(skb, dev);
1831                 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1832         }
1833
1834         return ret;
1835 }
1836 EXPORT_SYMBOL_GPL(__dev_forward_skb);
1837
1838 /**
1839  * dev_forward_skb - loopback an skb to another netif
1840  *
1841  * @dev: destination network device
1842  * @skb: buffer to forward
1843  *
1844  * return values:
1845  *      NET_RX_SUCCESS  (no congestion)
1846  *      NET_RX_DROP     (packet was dropped, but freed)
1847  *
1848  * dev_forward_skb can be used for injecting an skb from the
1849  * start_xmit function of one device into the receive queue
1850  * of another device.
1851  *
1852  * The receiving device may be in another namespace, so
1853  * we have to clear all information in the skb that could
1854  * impact namespace isolation.
1855  */
1856 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1857 {
1858         return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1859 }
1860 EXPORT_SYMBOL_GPL(dev_forward_skb);
1861
1862 static inline int deliver_skb(struct sk_buff *skb,
1863                               struct packet_type *pt_prev,
1864                               struct net_device *orig_dev)
1865 {
1866         if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
1867                 return -ENOMEM;
1868         refcount_inc(&skb->users);
1869         return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1870 }
1871
1872 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1873                                           struct packet_type **pt,
1874                                           struct net_device *orig_dev,
1875                                           __be16 type,
1876                                           struct list_head *ptype_list)
1877 {
1878         struct packet_type *ptype, *pt_prev = *pt;
1879
1880         list_for_each_entry_rcu(ptype, ptype_list, list) {
1881                 if (ptype->type != type)
1882                         continue;
1883                 if (pt_prev)
1884                         deliver_skb(skb, pt_prev, orig_dev);
1885                 pt_prev = ptype;
1886         }
1887         *pt = pt_prev;
1888 }
1889
1890 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1891 {
1892         if (!ptype->af_packet_priv || !skb->sk)
1893                 return false;
1894
1895         if (ptype->id_match)
1896                 return ptype->id_match(ptype, skb->sk);
1897         else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1898                 return true;
1899
1900         return false;
1901 }
1902
1903 /*
1904  *      Support routine. Sends outgoing frames to any network
1905  *      taps currently in use.
1906  */
1907
1908 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1909 {
1910         struct packet_type *ptype;
1911         struct sk_buff *skb2 = NULL;
1912         struct packet_type *pt_prev = NULL;
1913         struct list_head *ptype_list = &ptype_all;
1914
1915         rcu_read_lock();
1916 again:
1917         list_for_each_entry_rcu(ptype, ptype_list, list) {
1918                 /* Never send packets back to the socket
1919                  * they originated from - MvS (miquels@drinkel.ow.org)
1920                  */
1921                 if (skb_loop_sk(ptype, skb))
1922                         continue;
1923
1924                 if (pt_prev) {
1925                         deliver_skb(skb2, pt_prev, skb->dev);
1926                         pt_prev = ptype;
1927                         continue;
1928                 }
1929
1930                 /* need to clone skb, done only once */
1931                 skb2 = skb_clone(skb, GFP_ATOMIC);
1932                 if (!skb2)
1933                         goto out_unlock;
1934
1935                 net_timestamp_set(skb2);
1936
1937                 /* skb->nh should be correctly
1938                  * set by sender, so that the second statement is
1939                  * just protection against buggy protocols.
1940                  */
1941                 skb_reset_mac_header(skb2);
1942
1943                 if (skb_network_header(skb2) < skb2->data ||
1944                     skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1945                         net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1946                                              ntohs(skb2->protocol),
1947                                              dev->name);
1948                         skb_reset_network_header(skb2);
1949                 }
1950
1951                 skb2->transport_header = skb2->network_header;
1952                 skb2->pkt_type = PACKET_OUTGOING;
1953                 pt_prev = ptype;
1954         }
1955
1956         if (ptype_list == &ptype_all) {
1957                 ptype_list = &dev->ptype_all;
1958                 goto again;
1959         }
1960 out_unlock:
1961         if (pt_prev) {
1962                 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
1963                         pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1964                 else
1965                         kfree_skb(skb2);
1966         }
1967         rcu_read_unlock();
1968 }
1969 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
1970
1971 /**
1972  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1973  * @dev: Network device
1974  * @txq: number of queues available
1975  *
1976  * If real_num_tx_queues is changed the tc mappings may no longer be
1977  * valid. To resolve this verify the tc mapping remains valid and if
1978  * not NULL the mapping. With no priorities mapping to this
1979  * offset/count pair it will no longer be used. In the worst case TC0
1980  * is invalid nothing can be done so disable priority mappings. If is
1981  * expected that drivers will fix this mapping if they can before
1982  * calling netif_set_real_num_tx_queues.
1983  */
1984 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1985 {
1986         int i;
1987         struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1988
1989         /* If TC0 is invalidated disable TC mapping */
1990         if (tc->offset + tc->count > txq) {
1991                 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1992                 dev->num_tc = 0;
1993                 return;
1994         }
1995
1996         /* Invalidated prio to tc mappings set to TC0 */
1997         for (i = 1; i < TC_BITMASK + 1; i++) {
1998                 int q = netdev_get_prio_tc_map(dev, i);
1999
2000                 tc = &dev->tc_to_txq[q];
2001                 if (tc->offset + tc->count > txq) {
2002                         pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2003                                 i, q);
2004                         netdev_set_prio_tc_map(dev, i, 0);
2005                 }
2006         }
2007 }
2008
2009 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2010 {
2011         if (dev->num_tc) {
2012                 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2013                 int i;
2014
2015                 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2016                         if ((txq - tc->offset) < tc->count)
2017                                 return i;
2018                 }
2019
2020                 return -1;
2021         }
2022
2023         return 0;
2024 }
2025 EXPORT_SYMBOL(netdev_txq_to_tc);
2026
2027 #ifdef CONFIG_XPS
2028 static DEFINE_MUTEX(xps_map_mutex);
2029 #define xmap_dereference(P)             \
2030         rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2031
2032 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2033                              int tci, u16 index)
2034 {
2035         struct xps_map *map = NULL;
2036         int pos;
2037
2038         if (dev_maps)
2039                 map = xmap_dereference(dev_maps->cpu_map[tci]);
2040         if (!map)
2041                 return false;
2042
2043         for (pos = map->len; pos--;) {
2044                 if (map->queues[pos] != index)
2045                         continue;
2046
2047                 if (map->len > 1) {
2048                         map->queues[pos] = map->queues[--map->len];
2049                         break;
2050                 }
2051
2052                 RCU_INIT_POINTER(dev_maps->cpu_map[tci], NULL);
2053                 kfree_rcu(map, rcu);
2054                 return false;
2055         }
2056
2057         return true;
2058 }
2059
2060 static bool remove_xps_queue_cpu(struct net_device *dev,
2061                                  struct xps_dev_maps *dev_maps,
2062                                  int cpu, u16 offset, u16 count)
2063 {
2064         int num_tc = dev->num_tc ? : 1;
2065         bool active = false;
2066         int tci;
2067
2068         for (tci = cpu * num_tc; num_tc--; tci++) {
2069                 int i, j;
2070
2071                 for (i = count, j = offset; i--; j++) {
2072                         if (!remove_xps_queue(dev_maps, cpu, j))
2073                                 break;
2074                 }
2075
2076                 active |= i < 0;
2077         }
2078
2079         return active;
2080 }
2081
2082 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2083                                    u16 count)
2084 {
2085         struct xps_dev_maps *dev_maps;
2086         int cpu, i;
2087         bool active = false;
2088
2089         mutex_lock(&xps_map_mutex);
2090         dev_maps = xmap_dereference(dev->xps_maps);
2091
2092         if (!dev_maps)
2093                 goto out_no_maps;
2094
2095         for_each_possible_cpu(cpu)
2096                 active |= remove_xps_queue_cpu(dev, dev_maps, cpu,
2097                                                offset, count);
2098
2099         if (!active) {
2100                 RCU_INIT_POINTER(dev->xps_maps, NULL);
2101                 kfree_rcu(dev_maps, rcu);
2102         }
2103
2104         for (i = offset + (count - 1); count--; i--)
2105                 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
2106                                              NUMA_NO_NODE);
2107
2108 out_no_maps:
2109         mutex_unlock(&xps_map_mutex);
2110 }
2111
2112 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2113 {
2114         netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2115 }
2116
2117 static struct xps_map *expand_xps_map(struct xps_map *map,
2118                                       int cpu, u16 index)
2119 {
2120         struct xps_map *new_map;
2121         int alloc_len = XPS_MIN_MAP_ALLOC;
2122         int i, pos;
2123
2124         for (pos = 0; map && pos < map->len; pos++) {
2125                 if (map->queues[pos] != index)
2126                         continue;
2127                 return map;
2128         }
2129
2130         /* Need to add queue to this CPU's existing map */
2131         if (map) {
2132                 if (pos < map->alloc_len)
2133                         return map;
2134
2135                 alloc_len = map->alloc_len * 2;
2136         }
2137
2138         /* Need to allocate new map to store queue on this CPU's map */
2139         new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2140                                cpu_to_node(cpu));
2141         if (!new_map)
2142                 return NULL;
2143
2144         for (i = 0; i < pos; i++)
2145                 new_map->queues[i] = map->queues[i];
2146         new_map->alloc_len = alloc_len;
2147         new_map->len = pos;
2148
2149         return new_map;
2150 }
2151
2152 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2153                         u16 index)
2154 {
2155         struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2156         int i, cpu, tci, numa_node_id = -2;
2157         int maps_sz, num_tc = 1, tc = 0;
2158         struct xps_map *map, *new_map;
2159         bool active = false;
2160
2161         if (dev->num_tc) {
2162                 num_tc = dev->num_tc;
2163                 tc = netdev_txq_to_tc(dev, index);
2164                 if (tc < 0)
2165                         return -EINVAL;
2166         }
2167
2168         maps_sz = XPS_DEV_MAPS_SIZE(num_tc);
2169         if (maps_sz < L1_CACHE_BYTES)
2170                 maps_sz = L1_CACHE_BYTES;
2171
2172         mutex_lock(&xps_map_mutex);
2173
2174         dev_maps = xmap_dereference(dev->xps_maps);
2175
2176         /* allocate memory for queue storage */
2177         for_each_cpu_and(cpu, cpu_online_mask, mask) {
2178                 if (!new_dev_maps)
2179                         new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2180                 if (!new_dev_maps) {
2181                         mutex_unlock(&xps_map_mutex);
2182                         return -ENOMEM;
2183                 }
2184
2185                 tci = cpu * num_tc + tc;
2186                 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[tci]) :
2187                                  NULL;
2188
2189                 map = expand_xps_map(map, cpu, index);
2190                 if (!map)
2191                         goto error;
2192
2193                 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2194         }
2195
2196         if (!new_dev_maps)
2197                 goto out_no_new_maps;
2198
2199         for_each_possible_cpu(cpu) {
2200                 /* copy maps belonging to foreign traffic classes */
2201                 for (i = tc, tci = cpu * num_tc; dev_maps && i--; tci++) {
2202                         /* fill in the new device map from the old device map */
2203                         map = xmap_dereference(dev_maps->cpu_map[tci]);
2204                         RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2205                 }
2206
2207                 /* We need to explicitly update tci as prevous loop
2208                  * could break out early if dev_maps is NULL.
2209                  */
2210                 tci = cpu * num_tc + tc;
2211
2212                 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
2213                         /* add queue to CPU maps */
2214                         int pos = 0;
2215
2216                         map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2217                         while ((pos < map->len) && (map->queues[pos] != index))
2218                                 pos++;
2219
2220                         if (pos == map->len)
2221                                 map->queues[map->len++] = index;
2222 #ifdef CONFIG_NUMA
2223                         if (numa_node_id == -2)
2224                                 numa_node_id = cpu_to_node(cpu);
2225                         else if (numa_node_id != cpu_to_node(cpu))
2226                                 numa_node_id = -1;
2227 #endif
2228                 } else if (dev_maps) {
2229                         /* fill in the new device map from the old device map */
2230                         map = xmap_dereference(dev_maps->cpu_map[tci]);
2231                         RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2232                 }
2233
2234                 /* copy maps belonging to foreign traffic classes */
2235                 for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2236                         /* fill in the new device map from the old device map */
2237                         map = xmap_dereference(dev_maps->cpu_map[tci]);
2238                         RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2239                 }
2240         }
2241
2242         rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2243
2244         /* Cleanup old maps */
2245         if (!dev_maps)
2246                 goto out_no_old_maps;
2247
2248         for_each_possible_cpu(cpu) {
2249                 for (i = num_tc, tci = cpu * num_tc; i--; tci++) {
2250                         new_map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2251                         map = xmap_dereference(dev_maps->cpu_map[tci]);
2252                         if (map && map != new_map)
2253                                 kfree_rcu(map, rcu);
2254                 }
2255         }
2256
2257         kfree_rcu(dev_maps, rcu);
2258
2259 out_no_old_maps:
2260         dev_maps = new_dev_maps;
2261         active = true;
2262
2263 out_no_new_maps:
2264         /* update Tx queue numa node */
2265         netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2266                                      (numa_node_id >= 0) ? numa_node_id :
2267                                      NUMA_NO_NODE);
2268
2269         if (!dev_maps)
2270                 goto out_no_maps;
2271
2272         /* removes queue from unused CPUs */
2273         for_each_possible_cpu(cpu) {
2274                 for (i = tc, tci = cpu * num_tc; i--; tci++)
2275                         active |= remove_xps_queue(dev_maps, tci, index);
2276                 if (!cpumask_test_cpu(cpu, mask) || !cpu_online(cpu))
2277                         active |= remove_xps_queue(dev_maps, tci, index);
2278                 for (i = num_tc - tc, tci++; --i; tci++)
2279                         active |= remove_xps_queue(dev_maps, tci, index);
2280         }
2281
2282         /* free map if not active */
2283         if (!active) {
2284                 RCU_INIT_POINTER(dev->xps_maps, NULL);
2285                 kfree_rcu(dev_maps, rcu);
2286         }
2287
2288 out_no_maps:
2289         mutex_unlock(&xps_map_mutex);
2290
2291         return 0;
2292 error:
2293         /* remove any maps that we added */
2294         for_each_possible_cpu(cpu) {
2295                 for (i = num_tc, tci = cpu * num_tc; i--; tci++) {
2296                         new_map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2297                         map = dev_maps ?
2298                               xmap_dereference(dev_maps->cpu_map[tci]) :
2299                               NULL;
2300                         if (new_map && new_map != map)
2301                                 kfree(new_map);
2302                 }
2303         }
2304
2305         mutex_unlock(&xps_map_mutex);
2306
2307         kfree(new_dev_maps);
2308         return -ENOMEM;
2309 }
2310 EXPORT_SYMBOL(netif_set_xps_queue);
2311
2312 #endif
2313 void netdev_reset_tc(struct net_device *dev)
2314 {
2315 #ifdef CONFIG_XPS
2316         netif_reset_xps_queues_gt(dev, 0);
2317 #endif
2318         dev->num_tc = 0;
2319         memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2320         memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2321 }
2322 EXPORT_SYMBOL(netdev_reset_tc);
2323
2324 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2325 {
2326         if (tc >= dev->num_tc)
2327                 return -EINVAL;
2328
2329 #ifdef CONFIG_XPS
2330         netif_reset_xps_queues(dev, offset, count);
2331 #endif
2332         dev->tc_to_txq[tc].count = count;
2333         dev->tc_to_txq[tc].offset = offset;
2334         return 0;
2335 }
2336 EXPORT_SYMBOL(netdev_set_tc_queue);
2337
2338 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2339 {
2340         if (num_tc > TC_MAX_QUEUE)
2341                 return -EINVAL;
2342
2343 #ifdef CONFIG_XPS
2344         netif_reset_xps_queues_gt(dev, 0);
2345 #endif
2346         dev->num_tc = num_tc;
2347         return 0;
2348 }
2349 EXPORT_SYMBOL(netdev_set_num_tc);
2350
2351 /*
2352  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2353  * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2354  */
2355 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2356 {
2357         int rc;
2358
2359         if (txq < 1 || txq > dev->num_tx_queues)
2360                 return -EINVAL;
2361
2362         if (dev->reg_state == NETREG_REGISTERED ||
2363             dev->reg_state == NETREG_UNREGISTERING) {
2364                 ASSERT_RTNL();
2365
2366                 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2367                                                   txq);
2368                 if (rc)
2369                         return rc;
2370
2371                 if (dev->num_tc)
2372                         netif_setup_tc(dev, txq);
2373
2374                 if (txq < dev->real_num_tx_queues) {
2375                         qdisc_reset_all_tx_gt(dev, txq);
2376 #ifdef CONFIG_XPS
2377                         netif_reset_xps_queues_gt(dev, txq);
2378 #endif
2379                 }
2380         }
2381
2382         dev->real_num_tx_queues = txq;
2383         return 0;
2384 }
2385 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2386
2387 #ifdef CONFIG_SYSFS
2388 /**
2389  *      netif_set_real_num_rx_queues - set actual number of RX queues used
2390  *      @dev: Network device
2391  *      @rxq: Actual number of RX queues
2392  *
2393  *      This must be called either with the rtnl_lock held or before
2394  *      registration of the net device.  Returns 0 on success, or a
2395  *      negative error code.  If called before registration, it always
2396  *      succeeds.
2397  */
2398 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2399 {
2400         int rc;
2401
2402         if (rxq < 1 || rxq > dev->num_rx_queues)
2403                 return -EINVAL;
2404
2405         if (dev->reg_state == NETREG_REGISTERED) {
2406                 ASSERT_RTNL();
2407
2408                 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2409                                                   rxq);
2410                 if (rc)
2411                         return rc;
2412         }
2413
2414         dev->real_num_rx_queues = rxq;
2415         return 0;
2416 }
2417 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2418 #endif
2419
2420 /**
2421  * netif_get_num_default_rss_queues - default number of RSS queues
2422  *
2423  * This routine should set an upper limit on the number of RSS queues
2424  * used by default by multiqueue devices.
2425  */
2426 int netif_get_num_default_rss_queues(void)
2427 {
2428         return is_kdump_kernel() ?
2429                 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2430 }
2431 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2432
2433 static void __netif_reschedule(struct Qdisc *q)
2434 {
2435         struct softnet_data *sd;
2436         unsigned long flags;
2437
2438         local_irq_save(flags);
2439         sd = this_cpu_ptr(&softnet_data);
2440         q->next_sched = NULL;
2441         *sd->output_queue_tailp = q;
2442         sd->output_queue_tailp = &q->next_sched;
2443         raise_softirq_irqoff(NET_TX_SOFTIRQ);
2444         local_irq_restore(flags);
2445 }
2446
2447 void __netif_schedule(struct Qdisc *q)
2448 {
2449         if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2450                 __netif_reschedule(q);
2451 }
2452 EXPORT_SYMBOL(__netif_schedule);
2453
2454 struct dev_kfree_skb_cb {
2455         enum skb_free_reason reason;
2456 };
2457
2458 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2459 {
2460         return (struct dev_kfree_skb_cb *)skb->cb;
2461 }
2462
2463 void netif_schedule_queue(struct netdev_queue *txq)
2464 {
2465         rcu_read_lock();
2466         if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2467                 struct Qdisc *q = rcu_dereference(txq->qdisc);
2468
2469                 __netif_schedule(q);
2470         }
2471         rcu_read_unlock();
2472 }
2473 EXPORT_SYMBOL(netif_schedule_queue);
2474
2475 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2476 {
2477         if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2478                 struct Qdisc *q;
2479
2480                 rcu_read_lock();
2481                 q = rcu_dereference(dev_queue->qdisc);
2482                 __netif_schedule(q);
2483                 rcu_read_unlock();
2484         }
2485 }
2486 EXPORT_SYMBOL(netif_tx_wake_queue);
2487
2488 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2489 {
2490         unsigned long flags;
2491
2492         if (unlikely(!skb))
2493                 return;
2494
2495         if (likely(refcount_read(&skb->users) == 1)) {
2496                 smp_rmb();
2497                 refcount_set(&skb->users, 0);
2498         } else if (likely(!refcount_dec_and_test(&skb->users))) {
2499                 return;
2500         }
2501         get_kfree_skb_cb(skb)->reason = reason;
2502         local_irq_save(flags);
2503         skb->next = __this_cpu_read(softnet_data.completion_queue);
2504         __this_cpu_write(softnet_data.completion_queue, skb);
2505         raise_softirq_irqoff(NET_TX_SOFTIRQ);
2506         local_irq_restore(flags);
2507 }
2508 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2509
2510 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2511 {
2512         if (in_irq() || irqs_disabled())
2513                 __dev_kfree_skb_irq(skb, reason);
2514         else
2515                 dev_kfree_skb(skb);
2516 }
2517 EXPORT_SYMBOL(__dev_kfree_skb_any);
2518
2519
2520 /**
2521  * netif_device_detach - mark device as removed
2522  * @dev: network device
2523  *
2524  * Mark device as removed from system and therefore no longer available.
2525  */
2526 void netif_device_detach(struct net_device *dev)
2527 {
2528         if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2529             netif_running(dev)) {
2530                 netif_tx_stop_all_queues(dev);
2531         }
2532 }
2533 EXPORT_SYMBOL(netif_device_detach);
2534
2535 /**
2536  * netif_device_attach - mark device as attached
2537  * @dev: network device
2538  *
2539  * Mark device as attached from system and restart if needed.
2540  */
2541 void netif_device_attach(struct net_device *dev)
2542 {
2543         if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2544             netif_running(dev)) {
2545                 netif_tx_wake_all_queues(dev);
2546                 __netdev_watchdog_up(dev);
2547         }
2548 }
2549 EXPORT_SYMBOL(netif_device_attach);
2550
2551 /*
2552  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2553  * to be used as a distribution range.
2554  */
2555 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
2556                   unsigned int num_tx_queues)
2557 {
2558         u32 hash;
2559         u16 qoffset = 0;
2560         u16 qcount = num_tx_queues;
2561
2562         if (skb_rx_queue_recorded(skb)) {
2563                 hash = skb_get_rx_queue(skb);
2564                 while (unlikely(hash >= num_tx_queues))
2565                         hash -= num_tx_queues;
2566                 return hash;
2567         }
2568
2569         if (dev->num_tc) {
2570                 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2571
2572                 qoffset = dev->tc_to_txq[tc].offset;
2573                 qcount = dev->tc_to_txq[tc].count;
2574         }
2575
2576         return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2577 }
2578 EXPORT_SYMBOL(__skb_tx_hash);
2579
2580 static void skb_warn_bad_offload(const struct sk_buff *skb)
2581 {
2582         static const netdev_features_t null_features;
2583         struct net_device *dev = skb->dev;
2584         const char *name = "";
2585
2586         if (!net_ratelimit())
2587                 return;
2588
2589         if (dev) {
2590                 if (dev->dev.parent)
2591                         name = dev_driver_string(dev->dev.parent);
2592                 else
2593                         name = netdev_name(dev);
2594         }
2595         WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2596              "gso_type=%d ip_summed=%d\n",
2597              name, dev ? &dev->features : &null_features,
2598              skb->sk ? &skb->sk->sk_route_caps : &null_features,
2599              skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2600              skb_shinfo(skb)->gso_type, skb->ip_summed);
2601 }
2602
2603 /*
2604  * Invalidate hardware checksum when packet is to be mangled, and
2605  * complete checksum manually on outgoing path.
2606  */
2607 int skb_checksum_help(struct sk_buff *skb)
2608 {
2609         __wsum csum;
2610         int ret = 0, offset;
2611
2612         if (skb->ip_summed == CHECKSUM_COMPLETE)
2613                 goto out_set_summed;
2614
2615         if (unlikely(skb_shinfo(skb)->gso_size)) {
2616                 skb_warn_bad_offload(skb);
2617                 return -EINVAL;
2618         }
2619
2620         /* Before computing a checksum, we should make sure no frag could
2621          * be modified by an external entity : checksum could be wrong.
2622          */
2623         if (skb_has_shared_frag(skb)) {
2624                 ret = __skb_linearize(skb);
2625                 if (ret)
2626                         goto out;
2627         }
2628
2629         offset = skb_checksum_start_offset(skb);
2630         BUG_ON(offset >= skb_headlen(skb));
2631         csum = skb_checksum(skb, offset, skb->len - offset, 0);
2632
2633         offset += skb->csum_offset;
2634         BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2635
2636         if (skb_cloned(skb) &&
2637             !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2638                 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2639                 if (ret)
2640                         goto out;
2641         }
2642
2643         *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
2644 out_set_summed:
2645         skb->ip_summed = CHECKSUM_NONE;
2646 out:
2647         return ret;
2648 }
2649 EXPORT_SYMBOL(skb_checksum_help);
2650
2651 int skb_crc32c_csum_help(struct sk_buff *skb)
2652 {
2653         __le32 crc32c_csum;
2654         int ret = 0, offset, start;
2655
2656         if (skb->ip_summed != CHECKSUM_PARTIAL)
2657                 goto out;
2658
2659         if (unlikely(skb_is_gso(skb)))
2660                 goto out;
2661
2662         /* Before computing a checksum, we should make sure no frag could
2663          * be modified by an external entity : checksum could be wrong.
2664          */
2665         if (unlikely(skb_has_shared_frag(skb))) {
2666                 ret = __skb_linearize(skb);
2667                 if (ret)
2668                         goto out;
2669         }
2670         start = skb_checksum_start_offset(skb);
2671         offset = start + offsetof(struct sctphdr, checksum);
2672         if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
2673                 ret = -EINVAL;
2674                 goto out;
2675         }
2676         if (skb_cloned(skb) &&
2677             !skb_clone_writable(skb, offset + sizeof(__le32))) {
2678                 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2679                 if (ret)
2680                         goto out;
2681         }
2682         crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
2683                                                   skb->len - start, ~(__u32)0,
2684                                                   crc32c_csum_stub));
2685         *(__le32 *)(skb->data + offset) = crc32c_csum;
2686         skb->ip_summed = CHECKSUM_NONE;
2687         skb->csum_not_inet = 0;
2688 out:
2689         return ret;
2690 }
2691
2692 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2693 {
2694         __be16 type = skb->protocol;
2695
2696         /* Tunnel gso handlers can set protocol to ethernet. */
2697         if (type == htons(ETH_P_TEB)) {
2698                 struct ethhdr *eth;
2699
2700                 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2701                         return 0;
2702
2703                 eth = (struct ethhdr *)skb_mac_header(skb);
2704                 type = eth->h_proto;
2705         }
2706
2707         return __vlan_get_protocol(skb, type, depth);
2708 }
2709
2710 /**
2711  *      skb_mac_gso_segment - mac layer segmentation handler.
2712  *      @skb: buffer to segment
2713  *      @features: features for the output path (see dev->features)
2714  */
2715 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2716                                     netdev_features_t features)
2717 {
2718         struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2719         struct packet_offload *ptype;
2720         int vlan_depth = skb->mac_len;
2721         __be16 type = skb_network_protocol(skb, &vlan_depth);
2722
2723         if (unlikely(!type))
2724                 return ERR_PTR(-EINVAL);
2725
2726         __skb_pull(skb, vlan_depth);
2727
2728         rcu_read_lock();
2729         list_for_each_entry_rcu(ptype, &offload_base, list) {
2730                 if (ptype->type == type && ptype->callbacks.gso_segment) {
2731                         segs = ptype->callbacks.gso_segment(skb, features);
2732                         break;
2733                 }
2734         }
2735         rcu_read_unlock();
2736
2737         __skb_push(skb, skb->data - skb_mac_header(skb));
2738
2739         return segs;
2740 }
2741 EXPORT_SYMBOL(skb_mac_gso_segment);
2742
2743
2744 /* openvswitch calls this on rx path, so we need a different check.
2745  */
2746 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2747 {
2748         if (tx_path)
2749                 return skb->ip_summed != CHECKSUM_PARTIAL &&
2750                        skb->ip_summed != CHECKSUM_UNNECESSARY;
2751
2752         return skb->ip_summed == CHECKSUM_NONE;
2753 }
2754
2755 /**
2756  *      __skb_gso_segment - Perform segmentation on skb.
2757  *      @skb: buffer to segment
2758  *      @features: features for the output path (see dev->features)
2759  *      @tx_path: whether it is called in TX path
2760  *
2761  *      This function segments the given skb and returns a list of segments.
2762  *
2763  *      It may return NULL if the skb requires no segmentation.  This is
2764  *      only possible when GSO is used for verifying header integrity.
2765  *
2766  *      Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
2767  */
2768 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2769                                   netdev_features_t features, bool tx_path)
2770 {
2771         struct sk_buff *segs;
2772
2773         if (unlikely(skb_needs_check(skb, tx_path))) {
2774                 int err;
2775
2776                 /* We're going to init ->check field in TCP or UDP header */
2777                 err = skb_cow_head(skb, 0);
2778                 if (err < 0)
2779                         return ERR_PTR(err);
2780         }
2781
2782         /* Only report GSO partial support if it will enable us to
2783          * support segmentation on this frame without needing additional
2784          * work.
2785          */
2786         if (features & NETIF_F_GSO_PARTIAL) {
2787                 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
2788                 struct net_device *dev = skb->dev;
2789
2790                 partial_features |= dev->features & dev->gso_partial_features;
2791                 if (!skb_gso_ok(skb, features | partial_features))
2792                         features &= ~NETIF_F_GSO_PARTIAL;
2793         }
2794
2795         BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
2796                      sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
2797
2798         SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2799         SKB_GSO_CB(skb)->encap_level = 0;
2800
2801         skb_reset_mac_header(skb);
2802         skb_reset_mac_len(skb);
2803
2804         segs = skb_mac_gso_segment(skb, features);
2805
2806         if (unlikely(skb_needs_check(skb, tx_path)))
2807                 skb_warn_bad_offload(skb);
2808
2809         return segs;
2810 }
2811 EXPORT_SYMBOL(__skb_gso_segment);
2812
2813 /* Take action when hardware reception checksum errors are detected. */
2814 #ifdef CONFIG_BUG
2815 void netdev_rx_csum_fault(struct net_device *dev)
2816 {
2817         if (net_ratelimit()) {
2818                 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2819                 dump_stack();
2820         }
2821 }
2822 EXPORT_SYMBOL(netdev_rx_csum_fault);
2823 #endif
2824
2825 /* Actually, we should eliminate this check as soon as we know, that:
2826  * 1. IOMMU is present and allows to map all the memory.
2827  * 2. No high memory really exists on this machine.
2828  */
2829
2830 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2831 {
2832 #ifdef CONFIG_HIGHMEM
2833         int i;
2834
2835         if (!(dev->features & NETIF_F_HIGHDMA)) {
2836                 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2837                         skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2838
2839                         if (PageHighMem(skb_frag_page(frag)))
2840                                 return 1;
2841                 }
2842         }
2843
2844         if (PCI_DMA_BUS_IS_PHYS) {
2845                 struct device *pdev = dev->dev.parent;
2846
2847                 if (!pdev)
2848                         return 0;
2849                 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2850                         skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2851                         dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2852
2853                         if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2854                                 return 1;
2855                 }
2856         }
2857 #endif
2858         return 0;
2859 }
2860
2861 /* If MPLS offload request, verify we are testing hardware MPLS features
2862  * instead of standard features for the netdev.
2863  */
2864 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
2865 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2866                                            netdev_features_t features,
2867                                            __be16 type)
2868 {
2869         if (eth_p_mpls(type))
2870                 features &= skb->dev->mpls_features;
2871
2872         return features;
2873 }
2874 #else
2875 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2876                                            netdev_features_t features,
2877                                            __be16 type)
2878 {
2879         return features;
2880 }
2881 #endif
2882
2883 static netdev_features_t harmonize_features(struct sk_buff *skb,
2884         netdev_features_t features)
2885 {
2886         int tmp;
2887         __be16 type;
2888
2889         type = skb_network_protocol(skb, &tmp);
2890         features = net_mpls_features(skb, features, type);
2891
2892         if (skb->ip_summed != CHECKSUM_NONE &&
2893             !can_checksum_protocol(features, type)) {
2894                 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
2895         }
2896         if (illegal_highdma(skb->dev, skb))
2897                 features &= ~NETIF_F_SG;
2898
2899         return features;
2900 }
2901
2902 netdev_features_t passthru_features_check(struct sk_buff *skb,
2903                                           struct net_device *dev,
2904                                           netdev_features_t features)
2905 {
2906         return features;
2907 }
2908 EXPORT_SYMBOL(passthru_features_check);
2909
2910 static netdev_features_t dflt_features_check(const struct sk_buff *skb,
2911                                              struct net_device *dev,
2912                                              netdev_features_t features)
2913 {
2914         return vlan_features_check(skb, features);
2915 }
2916
2917 static netdev_features_t gso_features_check(const struct sk_buff *skb,
2918                                             struct net_device *dev,
2919                                             netdev_features_t features)
2920 {
2921         u16 gso_segs = skb_shinfo(skb)->gso_segs;
2922
2923         if (gso_segs > dev->gso_max_segs)
2924                 return features & ~NETIF_F_GSO_MASK;
2925
2926         /* Support for GSO partial features requires software
2927          * intervention before we can actually process the packets
2928          * so we need to strip support for any partial features now
2929          * and we can pull them back in after we have partially
2930          * segmented the frame.
2931          */
2932         if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
2933                 features &= ~dev->gso_partial_features;
2934
2935         /* Make sure to clear the IPv4 ID mangling feature if the
2936          * IPv4 header has the potential to be fragmented.
2937          */
2938         if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
2939                 struct iphdr *iph = skb->encapsulation ?
2940                                     inner_ip_hdr(skb) : ip_hdr(skb);
2941
2942                 if (!(iph->frag_off & htons(IP_DF)))
2943                         features &= ~NETIF_F_TSO_MANGLEID;
2944         }
2945
2946         return features;
2947 }
2948
2949 netdev_features_t netif_skb_features(struct sk_buff *skb)
2950 {
2951         struct net_device *dev = skb->dev;
2952         netdev_features_t features = dev->features;
2953
2954         if (skb_is_gso(skb))
2955                 features = gso_features_check(skb, dev, features);
2956
2957         /* If encapsulation offload request, verify we are testing
2958          * hardware encapsulation features instead of standard
2959          * features for the netdev
2960          */
2961         if (skb->encapsulation)
2962                 features &= dev->hw_enc_features;
2963
2964         if (skb_vlan_tagged(skb))
2965                 features = netdev_intersect_features(features,
2966                                                      dev->vlan_features |
2967                                                      NETIF_F_HW_VLAN_CTAG_TX |
2968                                                      NETIF_F_HW_VLAN_STAG_TX);
2969
2970         if (dev->netdev_ops->ndo_features_check)
2971                 features &= dev->netdev_ops->ndo_features_check(skb, dev,
2972                                                                 features);
2973         else
2974                 features &= dflt_features_check(skb, dev, features);
2975
2976         return harmonize_features(skb, features);
2977 }
2978 EXPORT_SYMBOL(netif_skb_features);
2979
2980 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
2981                     struct netdev_queue *txq, bool more)
2982 {
2983         unsigned int len;
2984         int rc;
2985
2986         if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all))
2987                 dev_queue_xmit_nit(skb, dev);
2988
2989         len = skb->len;
2990         trace_net_dev_start_xmit(skb, dev);
2991         rc = netdev_start_xmit(skb, dev, txq, more);
2992         trace_net_dev_xmit(skb, rc, dev, len);
2993
2994         return rc;
2995 }
2996
2997 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
2998                                     struct netdev_queue *txq, int *ret)
2999 {
3000         struct sk_buff *skb = first;
3001         int rc = NETDEV_TX_OK;
3002
3003         while (skb) {
3004                 struct sk_buff *next = skb->next;
3005
3006                 skb->next = NULL;
3007                 rc = xmit_one(skb, dev, txq, next != NULL);
3008                 if (unlikely(!dev_xmit_complete(rc))) {
3009                         skb->next = next;
3010                         goto out;
3011                 }
3012
3013                 skb = next;
3014                 if (netif_xmit_stopped(txq) && skb) {
3015                         rc = NETDEV_TX_BUSY;
3016                         break;
3017                 }
3018         }
3019
3020 out:
3021         *ret = rc;
3022         return skb;
3023 }
3024
3025 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3026                                           netdev_features_t features)
3027 {
3028         if (skb_vlan_tag_present(skb) &&
3029             !vlan_hw_offload_capable(features, skb->vlan_proto))
3030                 skb = __vlan_hwaccel_push_inside(skb);
3031         return skb;
3032 }
3033
3034 int skb_csum_hwoffload_help(struct sk_buff *skb,
3035                             const netdev_features_t features)
3036 {
3037         if (unlikely(skb->csum_not_inet))
3038                 return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3039                         skb_crc32c_csum_help(skb);
3040
3041         return !!(features & NETIF_F_CSUM_MASK) ? 0 : skb_checksum_help(skb);
3042 }
3043 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3044
3045 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev)
3046 {
3047         netdev_features_t features;
3048
3049         features = netif_skb_features(skb);
3050         skb = validate_xmit_vlan(skb, features);
3051         if (unlikely(!skb))
3052                 goto out_null;
3053
3054         if (netif_needs_gso(skb, features)) {
3055                 struct sk_buff *segs;
3056
3057                 segs = skb_gso_segment(skb, features);
3058                 if (IS_ERR(segs)) {
3059                         goto out_kfree_skb;
3060                 } else if (segs) {
3061                         consume_skb(skb);
3062                         skb = segs;
3063                 }
3064         } else {
3065                 if (skb_needs_linearize(skb, features) &&
3066                     __skb_linearize(skb))
3067                         goto out_kfree_skb;
3068
3069                 if (validate_xmit_xfrm(skb, features))
3070                         goto out_kfree_skb;
3071
3072                 /* If packet is not checksummed and device does not
3073                  * support checksumming for this protocol, complete
3074                  * checksumming here.
3075                  */
3076                 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3077                         if (skb->encapsulation)
3078                                 skb_set_inner_transport_header(skb,
3079                                                                skb_checksum_start_offset(skb));
3080                         else
3081                                 skb_set_transport_header(skb,
3082                                                          skb_checksum_start_offset(skb));
3083                         if (skb_csum_hwoffload_help(skb, features))
3084                                 goto out_kfree_skb;
3085                 }
3086         }
3087
3088         return skb;
3089
3090 out_kfree_skb:
3091         kfree_skb(skb);
3092 out_null:
3093         atomic_long_inc(&dev->tx_dropped);
3094         return NULL;
3095 }
3096
3097 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev)
3098 {
3099         struct sk_buff *next, *head = NULL, *tail;
3100
3101         for (; skb != NULL; skb = next) {
3102                 next = skb->next;
3103                 skb->next = NULL;
3104
3105                 /* in case skb wont be segmented, point to itself */
3106                 skb->prev = skb;
3107
3108                 skb = validate_xmit_skb(skb, dev);
3109                 if (!skb)
3110                         continue;
3111
3112                 if (!head)
3113                         head = skb;
3114                 else
3115                         tail->next = skb;
3116                 /* If skb was segmented, skb->prev points to
3117                  * the last segment. If not, it still contains skb.
3118                  */
3119                 tail = skb->prev;
3120         }
3121         return head;
3122 }
3123 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3124
3125 static void qdisc_pkt_len_init(struct sk_buff *skb)
3126 {
3127         const struct skb_shared_info *shinfo = skb_shinfo(skb);
3128
3129         qdisc_skb_cb(skb)->pkt_len = skb->len;
3130
3131         /* To get more precise estimation of bytes sent on wire,
3132          * we add to pkt_len the headers size of all segments
3133          */
3134         if (shinfo->gso_size)  {
3135                 unsigned int hdr_len;
3136                 u16 gso_segs = shinfo->gso_segs;
3137
3138                 /* mac layer + network layer */
3139                 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3140
3141                 /* + transport layer */
3142                 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
3143                         hdr_len += tcp_hdrlen(skb);
3144                 else
3145                         hdr_len += sizeof(struct udphdr);
3146
3147                 if (shinfo->gso_type & SKB_GSO_DODGY)
3148                         gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3149                                                 shinfo->gso_size);
3150
3151                 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3152         }
3153 }
3154
3155 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3156                                  struct net_device *dev,
3157                                  struct netdev_queue *txq)
3158 {
3159         spinlock_t *root_lock = qdisc_lock(q);
3160         struct sk_buff *to_free = NULL;
3161         bool contended;
3162         int rc;
3163
3164         qdisc_calculate_pkt_len(skb, q);
3165         /*
3166          * Heuristic to force contended enqueues to serialize on a
3167          * separate lock before trying to get qdisc main lock.
3168          * This permits qdisc->running owner to get the lock more
3169          * often and dequeue packets faster.
3170          */
3171         contended = qdisc_is_running(q);
3172         if (unlikely(contended))
3173                 spin_lock(&q->busylock);
3174
3175         spin_lock(root_lock);
3176         if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3177                 __qdisc_drop(skb, &to_free);
3178                 rc = NET_XMIT_DROP;
3179         } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3180                    qdisc_run_begin(q)) {
3181                 /*
3182                  * This is a work-conserving queue; there are no old skbs
3183                  * waiting to be sent out; and the qdisc is not running -
3184                  * xmit the skb directly.
3185                  */
3186
3187                 qdisc_bstats_update(q, skb);
3188
3189                 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3190                         if (unlikely(contended)) {
3191                                 spin_unlock(&q->busylock);
3192                                 contended = false;
3193                         }
3194                         __qdisc_run(q);
3195                 } else
3196                         qdisc_run_end(q);
3197
3198                 rc = NET_XMIT_SUCCESS;
3199         } else {
3200                 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3201                 if (qdisc_run_begin(q)) {
3202                         if (unlikely(contended)) {
3203                                 spin_unlock(&q->busylock);
3204                                 contended = false;
3205                         }
3206                         __qdisc_run(q);
3207                 }
3208         }
3209         spin_unlock(root_lock);
3210         if (unlikely(to_free))
3211                 kfree_skb_list(to_free);
3212         if (unlikely(contended))
3213                 spin_unlock(&q->busylock);
3214         return rc;
3215 }
3216
3217 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3218 static void skb_update_prio(struct sk_buff *skb)
3219 {
3220         struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
3221
3222         if (!skb->priority && skb->sk && map) {
3223                 unsigned int prioidx =
3224                         sock_cgroup_prioidx(&skb->sk->sk_cgrp_data);
3225
3226                 if (prioidx < map->priomap_len)
3227                         skb->priority = map->priomap[prioidx];
3228         }
3229 }
3230 #else
3231 #define skb_update_prio(skb)
3232 #endif
3233
3234 DEFINE_PER_CPU(int, xmit_recursion);
3235 EXPORT_SYMBOL(xmit_recursion);
3236
3237 /**
3238  *      dev_loopback_xmit - loop back @skb
3239  *      @net: network namespace this loopback is happening in
3240  *      @sk:  sk needed to be a netfilter okfn
3241  *      @skb: buffer to transmit
3242  */
3243 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3244 {
3245         skb_reset_mac_header(skb);
3246         __skb_pull(skb, skb_network_offset(skb));
3247         skb->pkt_type = PACKET_LOOPBACK;
3248         skb->ip_summed = CHECKSUM_UNNECESSARY;
3249         WARN_ON(!skb_dst(skb));
3250         skb_dst_force(skb);
3251         netif_rx_ni(skb);
3252         return 0;
3253 }
3254 EXPORT_SYMBOL(dev_loopback_xmit);
3255
3256 #ifdef CONFIG_NET_EGRESS
3257 static struct sk_buff *
3258 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3259 {
3260         struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
3261         struct tcf_result cl_res;
3262
3263         if (!miniq)
3264                 return skb;
3265
3266         /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3267         mini_qdisc_bstats_cpu_update(miniq, skb);
3268
3269         switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
3270         case TC_ACT_OK:
3271         case TC_ACT_RECLASSIFY:
3272                 skb->tc_index = TC_H_MIN(cl_res.classid);
3273                 break;
3274         case TC_ACT_SHOT:
3275                 mini_qdisc_qstats_cpu_drop(miniq);
3276                 *ret = NET_XMIT_DROP;
3277                 kfree_skb(skb);
3278                 return NULL;
3279         case TC_ACT_STOLEN:
3280         case TC_ACT_QUEUED:
3281         case TC_ACT_TRAP:
3282                 *ret = NET_XMIT_SUCCESS;
3283                 consume_skb(skb);
3284                 return NULL;
3285         case TC_ACT_REDIRECT:
3286                 /* No need to push/pop skb's mac_header here on egress! */
3287                 skb_do_redirect(skb);
3288                 *ret = NET_XMIT_SUCCESS;
3289                 return NULL;
3290         default:
3291                 break;
3292         }
3293
3294         return skb;
3295 }
3296 #endif /* CONFIG_NET_EGRESS */
3297
3298 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
3299 {
3300 #ifdef CONFIG_XPS
3301         struct xps_dev_maps *dev_maps;
3302         struct xps_map *map;
3303         int queue_index = -1;
3304
3305         rcu_read_lock();
3306         dev_maps = rcu_dereference(dev->xps_maps);
3307         if (dev_maps) {
3308                 unsigned int tci = skb->sender_cpu - 1;
3309
3310                 if (dev->num_tc) {
3311                         tci *= dev->num_tc;
3312                         tci += netdev_get_prio_tc_map(dev, skb->priority);
3313                 }
3314
3315                 map = rcu_dereference(dev_maps->cpu_map[tci]);
3316                 if (map) {
3317                         if (map->len == 1)
3318                                 queue_index = map->queues[0];
3319                         else
3320                                 queue_index = map->queues[reciprocal_scale(skb_get_hash(skb),
3321                                                                            map->len)];
3322                         if (unlikely(queue_index >= dev->real_num_tx_queues))
3323                                 queue_index = -1;
3324                 }
3325         }
3326         rcu_read_unlock();
3327
3328         return queue_index;
3329 #else
3330         return -1;
3331 #endif
3332 }
3333
3334 static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb)
3335 {
3336         struct sock *sk = skb->sk;
3337         int queue_index = sk_tx_queue_get(sk);
3338
3339         if (queue_index < 0 || skb->ooo_okay ||
3340             queue_index >= dev->real_num_tx_queues) {
3341                 int new_index = get_xps_queue(dev, skb);
3342
3343                 if (new_index < 0)
3344                         new_index = skb_tx_hash(dev, skb);
3345
3346                 if (queue_index != new_index && sk &&
3347                     sk_fullsock(sk) &&
3348                     rcu_access_pointer(sk->sk_dst_cache))
3349                         sk_tx_queue_set(sk, new_index);
3350
3351                 queue_index = new_index;
3352         }
3353
3354         return queue_index;
3355 }
3356
3357 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
3358                                     struct sk_buff *skb,
3359                                     void *accel_priv)
3360 {
3361         int queue_index = 0;
3362
3363 #ifdef CONFIG_XPS
3364         u32 sender_cpu = skb->sender_cpu - 1;
3365
3366         if (sender_cpu >= (u32)NR_CPUS)
3367                 skb->sender_cpu = raw_smp_processor_id() + 1;
3368 #endif
3369
3370         if (dev->real_num_tx_queues != 1) {
3371                 const struct net_device_ops *ops = dev->netdev_ops;
3372
3373                 if (ops->ndo_select_queue)
3374                         queue_index = ops->ndo_select_queue(dev, skb, accel_priv,
3375                                                             __netdev_pick_tx);
3376                 else
3377                         queue_index = __netdev_pick_tx(dev, skb);
3378
3379                 if (!accel_priv)
3380                         queue_index = netdev_cap_txqueue(dev, queue_index);
3381         }
3382
3383         skb_set_queue_mapping(skb, queue_index);
3384         return netdev_get_tx_queue(dev, queue_index);
3385 }
3386
3387 /**
3388  *      __dev_queue_xmit - transmit a buffer
3389  *      @skb: buffer to transmit
3390  *      @accel_priv: private data used for L2 forwarding offload
3391  *
3392  *      Queue a buffer for transmission to a network device. The caller must
3393  *      have set the device and priority and built the buffer before calling
3394  *      this function. The function can be called from an interrupt.
3395  *
3396  *      A negative errno code is returned on a failure. A success does not
3397  *      guarantee the frame will be transmitted as it may be dropped due
3398  *      to congestion or traffic shaping.
3399  *
3400  * -----------------------------------------------------------------------------------
3401  *      I notice this method can also return errors from the queue disciplines,
3402  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
3403  *      be positive.
3404  *
3405  *      Regardless of the return value, the skb is consumed, so it is currently
3406  *      difficult to retry a send to this method.  (You can bump the ref count
3407  *      before sending to hold a reference for retry if you are careful.)
3408  *
3409  *      When calling this method, interrupts MUST be enabled.  This is because
3410  *      the BH enable code must have IRQs enabled so that it will not deadlock.
3411  *          --BLG
3412  */
3413 static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
3414 {
3415         struct net_device *dev = skb->dev;
3416         struct netdev_queue *txq;
3417         struct Qdisc *q;
3418         int rc = -ENOMEM;
3419
3420         skb_reset_mac_header(skb);
3421
3422         if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3423                 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3424
3425         /* Disable soft irqs for various locks below. Also
3426          * stops preemption for RCU.
3427          */
3428         rcu_read_lock_bh();
3429
3430         skb_update_prio(skb);
3431
3432         qdisc_pkt_len_init(skb);
3433 #ifdef CONFIG_NET_CLS_ACT
3434         skb->tc_at_ingress = 0;
3435 # ifdef CONFIG_NET_EGRESS
3436         if (static_key_false(&egress_needed)) {
3437                 skb = sch_handle_egress(skb, &rc, dev);
3438                 if (!skb)
3439                         goto out;
3440         }
3441 # endif
3442 #endif
3443         /* If device/qdisc don't need skb->dst, release it right now while
3444          * its hot in this cpu cache.
3445          */
3446         if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3447                 skb_dst_drop(skb);
3448         else
3449                 skb_dst_force(skb);
3450
3451         txq = netdev_pick_tx(dev, skb, accel_priv);
3452         q = rcu_dereference_bh(txq->qdisc);
3453
3454         trace_net_dev_queue(skb);
3455         if (q->enqueue) {
3456                 rc = __dev_xmit_skb(skb, q, dev, txq);
3457                 goto out;
3458         }
3459
3460         /* The device has no queue. Common case for software devices:
3461          * loopback, all the sorts of tunnels...
3462
3463          * Really, it is unlikely that netif_tx_lock protection is necessary
3464          * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
3465          * counters.)
3466          * However, it is possible, that they rely on protection
3467          * made by us here.
3468
3469          * Check this and shot the lock. It is not prone from deadlocks.
3470          *Either shot noqueue qdisc, it is even simpler 8)
3471          */
3472         if (dev->flags & IFF_UP) {
3473                 int cpu = smp_processor_id(); /* ok because BHs are off */
3474
3475                 if (txq->xmit_lock_owner != cpu) {
3476                         if (unlikely(__this_cpu_read(xmit_recursion) >
3477                                      XMIT_RECURSION_LIMIT))
3478                                 goto recursion_alert;
3479
3480                         skb = validate_xmit_skb(skb, dev);
3481                         if (!skb)
3482                                 goto out;
3483
3484                         HARD_TX_LOCK(dev, txq, cpu);
3485
3486                         if (!netif_xmit_stopped(txq)) {
3487                                 __this_cpu_inc(xmit_recursion);
3488                                 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
3489                                 __this_cpu_dec(xmit_recursion);
3490                                 if (dev_xmit_complete(rc)) {
3491                                         HARD_TX_UNLOCK(dev, txq);
3492                                         goto out;
3493                                 }
3494                         }
3495                         HARD_TX_UNLOCK(dev, txq);
3496                         net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3497                                              dev->name);
3498                 } else {
3499                         /* Recursion is detected! It is possible,
3500                          * unfortunately
3501                          */
3502 recursion_alert:
3503                         net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3504                                              dev->name);
3505                 }
3506         }
3507
3508         rc = -ENETDOWN;
3509         rcu_read_unlock_bh();
3510
3511         atomic_long_inc(&dev->tx_dropped);
3512         kfree_skb_list(skb);
3513         return rc;
3514 out:
3515         rcu_read_unlock_bh();
3516         return rc;
3517 }
3518
3519 int dev_queue_xmit(struct sk_buff *skb)
3520 {
3521         return __dev_queue_xmit(skb, NULL);
3522 }
3523 EXPORT_SYMBOL(dev_queue_xmit);
3524
3525 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
3526 {
3527         return __dev_queue_xmit(skb, accel_priv);
3528 }
3529 EXPORT_SYMBOL(dev_queue_xmit_accel);
3530
3531
3532 /*************************************************************************
3533  *                      Receiver routines
3534  *************************************************************************/
3535
3536 int netdev_max_backlog __read_mostly = 1000;
3537 EXPORT_SYMBOL(netdev_max_backlog);
3538
3539 int netdev_tstamp_prequeue __read_mostly = 1;
3540 int netdev_budget __read_mostly = 300;
3541 unsigned int __read_mostly netdev_budget_usecs = 2000;
3542 int weight_p __read_mostly = 64;           /* old backlog weight */
3543 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
3544 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
3545 int dev_rx_weight __read_mostly = 64;
3546 int dev_tx_weight __read_mostly = 64;
3547
3548 /* Called with irq disabled */
3549 static inline void ____napi_schedule(struct softnet_data *sd,
3550                                      struct napi_struct *napi)
3551 {
3552         list_add_tail(&napi->poll_list, &sd->poll_list);
3553         __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3554 }
3555
3556 #ifdef CONFIG_RPS
3557
3558 /* One global table that all flow-based protocols share. */
3559 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3560 EXPORT_SYMBOL(rps_sock_flow_table);
3561 u32 rps_cpu_mask __read_mostly;
3562 EXPORT_SYMBOL(rps_cpu_mask);
3563
3564 struct static_key rps_needed __read_mostly;
3565 EXPORT_SYMBOL(rps_needed);
3566 struct static_key rfs_needed __read_mostly;
3567 EXPORT_SYMBOL(rfs_needed);
3568
3569 static struct rps_dev_flow *
3570 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3571             struct rps_dev_flow *rflow, u16 next_cpu)
3572 {
3573         if (next_cpu < nr_cpu_ids) {
3574 #ifdef CONFIG_RFS_ACCEL
3575                 struct netdev_rx_queue *rxqueue;
3576                 struct rps_dev_flow_table *flow_table;
3577                 struct rps_dev_flow *old_rflow;
3578                 u32 flow_id;
3579                 u16 rxq_index;
3580                 int rc;
3581
3582                 /* Should we steer this flow to a different hardware queue? */
3583                 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3584                     !(dev->features & NETIF_F_NTUPLE))
3585                         goto out;
3586                 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3587                 if (rxq_index == skb_get_rx_queue(skb))
3588                         goto out;
3589
3590                 rxqueue = dev->_rx + rxq_index;
3591                 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3592                 if (!flow_table)
3593                         goto out;
3594                 flow_id = skb_get_hash(skb) & flow_table->mask;
3595                 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3596                                                         rxq_index, flow_id);
3597                 if (rc < 0)
3598                         goto out;
3599                 old_rflow = rflow;
3600                 rflow = &flow_table->flows[flow_id];
3601                 rflow->filter = rc;
3602                 if (old_rflow->filter == rflow->filter)
3603                         old_rflow->filter = RPS_NO_FILTER;
3604         out:
3605 #endif
3606                 rflow->last_qtail =
3607                         per_cpu(softnet_data, next_cpu).input_queue_head;
3608         }
3609
3610         rflow->cpu = next_cpu;
3611         return rflow;
3612 }
3613
3614 /*
3615  * get_rps_cpu is called from netif_receive_skb and returns the target
3616  * CPU from the RPS map of the receiving queue for a given skb.
3617  * rcu_read_lock must be held on entry.
3618  */
3619 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3620                        struct rps_dev_flow **rflowp)
3621 {
3622         const struct rps_sock_flow_table *sock_flow_table;
3623         struct netdev_rx_queue *rxqueue = dev->_rx;
3624         struct rps_dev_flow_table *flow_table;
3625         struct rps_map *map;
3626         int cpu = -1;
3627         u32 tcpu;
3628         u32 hash;
3629
3630         if (skb_rx_queue_recorded(skb)) {
3631                 u16 index = skb_get_rx_queue(skb);
3632
3633                 if (unlikely(index >= dev->real_num_rx_queues)) {
3634                         WARN_ONCE(dev->real_num_rx_queues > 1,
3635                                   "%s received packet on queue %u, but number "
3636                                   "of RX queues is %u\n",
3637                                   dev->name, index, dev->real_num_rx_queues);
3638                         goto done;
3639                 }
3640                 rxqueue += index;
3641         }
3642
3643         /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
3644
3645         flow_table = rcu_dereference(rxqueue->rps_flow_table);
3646         map = rcu_dereference(rxqueue->rps_map);
3647         if (!flow_table && !map)
3648                 goto done;
3649
3650         skb_reset_network_header(skb);
3651         hash = skb_get_hash(skb);
3652         if (!hash)
3653                 goto done;
3654
3655         sock_flow_table = rcu_dereference(rps_sock_flow_table);
3656         if (flow_table && sock_flow_table) {
3657                 struct rps_dev_flow *rflow;
3658                 u32 next_cpu;
3659                 u32 ident;
3660
3661                 /* First check into global flow table if there is a match */
3662                 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
3663                 if ((ident ^ hash) & ~rps_cpu_mask)
3664                         goto try_rps;
3665
3666                 next_cpu = ident & rps_cpu_mask;
3667
3668                 /* OK, now we know there is a match,
3669                  * we can look at the local (per receive queue) flow table
3670                  */
3671                 rflow = &flow_table->flows[hash & flow_table->mask];
3672                 tcpu = rflow->cpu;
3673
3674                 /*
3675                  * If the desired CPU (where last recvmsg was done) is
3676                  * different from current CPU (one in the rx-queue flow
3677                  * table entry), switch if one of the following holds:
3678                  *   - Current CPU is unset (>= nr_cpu_ids).
3679                  *   - Current CPU is offline.
3680                  *   - The current CPU's queue tail has advanced beyond the
3681                  *     last packet that was enqueued using this table entry.
3682                  *     This guarantees that all previous packets for the flow
3683                  *     have been dequeued, thus preserving in order delivery.
3684                  */
3685                 if (unlikely(tcpu != next_cpu) &&
3686                     (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
3687                      ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
3688                       rflow->last_qtail)) >= 0)) {
3689                         tcpu = next_cpu;
3690                         rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
3691                 }
3692
3693                 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
3694                         *rflowp = rflow;
3695                         cpu = tcpu;
3696                         goto done;
3697                 }
3698         }
3699
3700 try_rps:
3701
3702         if (map) {
3703                 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
3704                 if (cpu_online(tcpu)) {
3705                         cpu = tcpu;
3706                         goto done;
3707                 }
3708         }
3709
3710 done:
3711         return cpu;
3712 }
3713
3714 #ifdef CONFIG_RFS_ACCEL
3715
3716 /**
3717  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3718  * @dev: Device on which the filter was set
3719  * @rxq_index: RX queue index
3720  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3721  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3722  *
3723  * Drivers that implement ndo_rx_flow_steer() should periodically call
3724  * this function for each installed filter and remove the filters for
3725  * which it returns %true.
3726  */
3727 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3728                          u32 flow_id, u16 filter_id)
3729 {
3730         struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3731         struct rps_dev_flow_table *flow_table;
3732         struct rps_dev_flow *rflow;
3733         bool expire = true;
3734         unsigned int cpu;
3735
3736         rcu_read_lock();
3737         flow_table = rcu_dereference(rxqueue->rps_flow_table);
3738         if (flow_table && flow_id <= flow_table->mask) {
3739                 rflow = &flow_table->flows[flow_id];
3740                 cpu = READ_ONCE(rflow->cpu);
3741                 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
3742                     ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3743                            rflow->last_qtail) <
3744                      (int)(10 * flow_table->mask)))
3745                         expire = false;
3746         }
3747         rcu_read_unlock();
3748         return expire;
3749 }
3750 EXPORT_SYMBOL(rps_may_expire_flow);
3751
3752 #endif /* CONFIG_RFS_ACCEL */
3753
3754 /* Called from hardirq (IPI) context */
3755 static void rps_trigger_softirq(void *data)
3756 {
3757         struct softnet_data *sd = data;
3758
3759         ____napi_schedule(sd, &sd->backlog);
3760         sd->received_rps++;
3761 }
3762
3763 #endif /* CONFIG_RPS */
3764
3765 /*
3766  * Check if this softnet_data structure is another cpu one
3767  * If yes, queue it to our IPI list and return 1
3768  * If no, return 0
3769  */
3770 static int rps_ipi_queued(struct softnet_data *sd)
3771 {
3772 #ifdef CONFIG_RPS
3773         struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
3774
3775         if (sd != mysd) {
3776                 sd->rps_ipi_next = mysd->rps_ipi_list;
3777                 mysd->rps_ipi_list = sd;
3778
3779                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3780                 return 1;
3781         }
3782 #endif /* CONFIG_RPS */
3783         return 0;
3784 }
3785
3786 #ifdef CONFIG_NET_FLOW_LIMIT
3787 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3788 #endif
3789
3790 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3791 {
3792 #ifdef CONFIG_NET_FLOW_LIMIT
3793         struct sd_flow_limit *fl;
3794         struct softnet_data *sd;
3795         unsigned int old_flow, new_flow;
3796
3797         if (qlen < (netdev_max_backlog >> 1))
3798                 return false;
3799
3800         sd = this_cpu_ptr(&softnet_data);
3801
3802         rcu_read_lock();
3803         fl = rcu_dereference(sd->flow_limit);
3804         if (fl) {
3805                 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
3806                 old_flow = fl->history[fl->history_head];
3807                 fl->history[fl->history_head] = new_flow;
3808
3809                 fl->history_head++;
3810                 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3811
3812                 if (likely(fl->buckets[old_flow]))
3813                         fl->buckets[old_flow]--;
3814
3815                 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3816                         fl->count++;
3817                         rcu_read_unlock();
3818                         return true;
3819                 }
3820         }
3821         rcu_read_unlock();
3822 #endif
3823         return false;
3824 }
3825
3826 /*
3827  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3828  * queue (may be a remote CPU queue).
3829  */
3830 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3831                               unsigned int *qtail)
3832 {
3833         struct softnet_data *sd;
3834         unsigned long flags;
3835         unsigned int qlen;
3836
3837         sd = &per_cpu(softnet_data, cpu);
3838
3839         local_irq_save(flags);
3840
3841         rps_lock(sd);
3842         if (!netif_running(skb->dev))
3843                 goto drop;
3844         qlen = skb_queue_len(&sd->input_pkt_queue);
3845         if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
3846                 if (qlen) {
3847 enqueue:
3848                         __skb_queue_tail(&sd->input_pkt_queue, skb);
3849                         input_queue_tail_incr_save(sd, qtail);
3850                         rps_unlock(sd);
3851                         local_irq_restore(flags);
3852                         return NET_RX_SUCCESS;
3853                 }
3854
3855                 /* Schedule NAPI for backlog device
3856                  * We can use non atomic operation since we own the queue lock
3857                  */
3858                 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3859                         if (!rps_ipi_queued(sd))
3860                                 ____napi_schedule(sd, &sd->backlog);
3861                 }
3862                 goto enqueue;
3863         }
3864
3865 drop:
3866         sd->dropped++;
3867         rps_unlock(sd);
3868
3869         local_irq_restore(flags);
3870
3871         atomic_long_inc(&skb->dev->rx_dropped);
3872         kfree_skb(skb);
3873         return NET_RX_DROP;
3874 }
3875
3876 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
3877                                      struct bpf_prog *xdp_prog)
3878 {
3879         u32 metalen, act = XDP_DROP;
3880         struct xdp_buff xdp;
3881         void *orig_data;
3882         int hlen, off;
3883         u32 mac_len;
3884
3885         /* Reinjected packets coming from act_mirred or similar should
3886          * not get XDP generic processing.
3887          */
3888         if (skb_cloned(skb))
3889                 return XDP_PASS;
3890
3891         /* XDP packets must be linear and must have sufficient headroom
3892          * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
3893          * native XDP provides, thus we need to do it here as well.
3894          */
3895         if (skb_is_nonlinear(skb) ||
3896             skb_headroom(skb) < XDP_PACKET_HEADROOM) {
3897                 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
3898                 int troom = skb->tail + skb->data_len - skb->end;
3899
3900                 /* In case we have to go down the path and also linearize,
3901                  * then lets do the pskb_expand_head() work just once here.
3902                  */
3903                 if (pskb_expand_head(skb,
3904                                      hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
3905                                      troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
3906                         goto do_drop;
3907                 if (troom > 0 && __skb_linearize(skb))
3908                         goto do_drop;
3909         }
3910
3911         /* The XDP program wants to see the packet starting at the MAC
3912          * header.
3913          */
3914         mac_len = skb->data - skb_mac_header(skb);
3915         hlen = skb_headlen(skb) + mac_len;
3916         xdp.data = skb->data - mac_len;
3917         xdp.data_meta = xdp.data;
3918         xdp.data_end = xdp.data + hlen;
3919         xdp.data_hard_start = skb->data - skb_headroom(skb);
3920         orig_data = xdp.data;
3921
3922         act = bpf_prog_run_xdp(xdp_prog, &xdp);
3923
3924         off = xdp.data - orig_data;
3925         if (off > 0)
3926                 __skb_pull(skb, off);
3927         else if (off < 0)
3928                 __skb_push(skb, -off);
3929         skb->mac_header += off;
3930
3931         switch (act) {
3932         case XDP_REDIRECT:
3933         case XDP_TX:
3934                 __skb_push(skb, mac_len);
3935                 break;
3936         case XDP_PASS:
3937                 metalen = xdp.data - xdp.data_meta;
3938                 if (metalen)
3939                         skb_metadata_set(skb, metalen);
3940                 break;
3941         default:
3942                 bpf_warn_invalid_xdp_action(act);
3943                 /* fall through */
3944         case XDP_ABORTED:
3945                 trace_xdp_exception(skb->dev, xdp_prog, act);
3946                 /* fall through */
3947         case XDP_DROP:
3948         do_drop:
3949                 kfree_skb(skb);
3950                 break;
3951         }
3952
3953         return act;
3954 }
3955
3956 /* When doing generic XDP we have to bypass the qdisc layer and the
3957  * network taps in order to match in-driver-XDP behavior.
3958  */
3959 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
3960 {
3961         struct net_device *dev = skb->dev;
3962         struct netdev_queue *txq;
3963         bool free_skb = true;
3964         int cpu, rc;
3965
3966         txq = netdev_pick_tx(dev, skb, NULL);
3967         cpu = smp_processor_id();
3968         HARD_TX_LOCK(dev, txq, cpu);
3969         if (!netif_xmit_stopped(txq)) {
3970                 rc = netdev_start_xmit(skb, dev, txq, 0);
3971                 if (dev_xmit_complete(rc))
3972                         free_skb = false;
3973         }
3974         HARD_TX_UNLOCK(dev, txq);
3975         if (free_skb) {
3976                 trace_xdp_exception(dev, xdp_prog, XDP_TX);
3977                 kfree_skb(skb);
3978         }
3979 }
3980 EXPORT_SYMBOL_GPL(generic_xdp_tx);
3981
3982 static struct static_key generic_xdp_needed __read_mostly;
3983
3984 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
3985 {
3986         if (xdp_prog) {
3987                 u32 act = netif_receive_generic_xdp(skb, xdp_prog);
3988                 int err;
3989
3990                 if (act != XDP_PASS) {
3991                         switch (act) {
3992                         case XDP_REDIRECT:
3993                                 err = xdp_do_generic_redirect(skb->dev, skb,
3994                                                               xdp_prog);
3995                                 if (err)
3996                                         goto out_redir;
3997                         /* fallthru to submit skb */
3998                         case XDP_TX:
3999                                 generic_xdp_tx(skb, xdp_prog);
4000                                 break;
4001                         }
4002                         return XDP_DROP;
4003                 }
4004         }
4005         return XDP_PASS;
4006 out_redir:
4007         kfree_skb(skb);
4008         return XDP_DROP;
4009 }
4010 EXPORT_SYMBOL_GPL(do_xdp_generic);
4011
4012 static int netif_rx_internal(struct sk_buff *skb)
4013 {
4014         int ret;
4015
4016         net_timestamp_check(netdev_tstamp_prequeue, skb);
4017
4018         trace_netif_rx(skb);
4019
4020         if (static_key_false(&generic_xdp_needed)) {
4021                 int ret;
4022
4023                 preempt_disable();
4024                 rcu_read_lock();
4025                 ret = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
4026                 rcu_read_unlock();
4027                 preempt_enable();
4028
4029                 /* Consider XDP consuming the packet a success from
4030                  * the netdev point of view we do not want to count
4031                  * this as an error.
4032                  */
4033                 if (ret != XDP_PASS)
4034                         return NET_RX_SUCCESS;
4035         }
4036
4037 #ifdef CONFIG_RPS
4038         if (static_key_false(&rps_needed)) {
4039                 struct rps_dev_flow voidflow, *rflow = &voidflow;
4040                 int cpu;
4041
4042                 preempt_disable();
4043                 rcu_read_lock();
4044
4045                 cpu = get_rps_cpu(skb->dev, skb, &rflow);
4046                 if (cpu < 0)
4047                         cpu = smp_processor_id();
4048
4049                 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4050
4051                 rcu_read_unlock();
4052                 preempt_enable();
4053         } else
4054 #endif
4055         {
4056                 unsigned int qtail;
4057
4058                 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4059                 put_cpu();
4060         }
4061         return ret;
4062 }
4063
4064 /**
4065  *      netif_rx        -       post buffer to the network code
4066  *      @skb: buffer to post
4067  *
4068  *      This function receives a packet from a device driver and queues it for
4069  *      the upper (protocol) levels to process.  It always succeeds. The buffer
4070  *      may be dropped during processing for congestion control or by the
4071  *      protocol layers.
4072  *
4073  *      return values:
4074  *      NET_RX_SUCCESS  (no congestion)
4075  *      NET_RX_DROP     (packet was dropped)
4076  *
4077  */
4078
4079 int netif_rx(struct sk_buff *skb)
4080 {
4081         trace_netif_rx_entry(skb);
4082
4083         return netif_rx_internal(skb);
4084 }
4085 EXPORT_SYMBOL(netif_rx);
4086
4087 int netif_rx_ni(struct sk_buff *skb)
4088 {
4089         int err;
4090
4091         trace_netif_rx_ni_entry(skb);
4092
4093         preempt_disable();
4094         err = netif_rx_internal(skb);
4095         if (local_softirq_pending())
4096                 do_softirq();
4097         preempt_enable();
4098
4099         return err;
4100 }
4101 EXPORT_SYMBOL(netif_rx_ni);
4102
4103 static __latent_entropy void net_tx_action(struct softirq_action *h)
4104 {
4105         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4106
4107         if (sd->completion_queue) {
4108                 struct sk_buff *clist;
4109
4110                 local_irq_disable();
4111                 clist = sd->completion_queue;
4112                 sd->completion_queue = NULL;
4113                 local_irq_enable();
4114
4115                 while (clist) {
4116                         struct sk_buff *skb = clist;
4117
4118                         clist = clist->next;
4119
4120                         WARN_ON(refcount_read(&skb->users));
4121                         if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
4122                                 trace_consume_skb(skb);
4123                         else
4124                                 trace_kfree_skb(skb, net_tx_action);
4125
4126                         if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
4127                                 __kfree_skb(skb);
4128                         else
4129                                 __kfree_skb_defer(skb);
4130                 }
4131
4132                 __kfree_skb_flush();
4133         }
4134
4135         if (sd->output_queue) {
4136                 struct Qdisc *head;
4137
4138                 local_irq_disable();
4139                 head = sd->output_queue;
4140                 sd->output_queue = NULL;
4141                 sd->output_queue_tailp = &sd->output_queue;
4142                 local_irq_enable();
4143
4144                 while (head) {
4145                         struct Qdisc *q = head;
4146                         spinlock_t *root_lock;
4147
4148                         head = head->next_sched;
4149
4150                         root_lock = qdisc_lock(q);
4151                         spin_lock(root_lock);
4152                         /* We need to make sure head->next_sched is read
4153                          * before clearing __QDISC_STATE_SCHED
4154                          */
4155                         smp_mb__before_atomic();
4156                         clear_bit(__QDISC_STATE_SCHED, &q->state);
4157                         qdisc_run(q);
4158                         spin_unlock(root_lock);
4159                 }
4160         }
4161 }
4162
4163 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
4164 /* This hook is defined here for ATM LANE */
4165 int (*br_fdb_test_addr_hook)(struct net_device *dev,
4166                              unsigned char *addr) __read_mostly;
4167 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
4168 #endif
4169
4170 static inline struct sk_buff *
4171 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4172                    struct net_device *orig_dev)
4173 {
4174 #ifdef CONFIG_NET_CLS_ACT
4175         struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
4176         struct tcf_result cl_res;
4177
4178         /* If there's at least one ingress present somewhere (so
4179          * we get here via enabled static key), remaining devices
4180          * that are not configured with an ingress qdisc will bail
4181          * out here.
4182          */
4183         if (!miniq)
4184                 return skb;
4185
4186         if (*pt_prev) {
4187                 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4188                 *pt_prev = NULL;
4189         }
4190
4191         qdisc_skb_cb(skb)->pkt_len = skb->len;
4192         skb->tc_at_ingress = 1;
4193         mini_qdisc_bstats_cpu_update(miniq, skb);
4194
4195         switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
4196         case TC_ACT_OK:
4197         case TC_ACT_RECLASSIFY:
4198                 skb->tc_index = TC_H_MIN(cl_res.classid);
4199                 break;
4200         case TC_ACT_SHOT:
4201                 mini_qdisc_qstats_cpu_drop(miniq);
4202                 kfree_skb(skb);
4203                 return NULL;
4204         case TC_ACT_STOLEN:
4205         case TC_ACT_QUEUED:
4206         case TC_ACT_TRAP:
4207                 consume_skb(skb);
4208                 return NULL;
4209         case TC_ACT_REDIRECT:
4210                 /* skb_mac_header check was done by cls/act_bpf, so
4211                  * we can safely push the L2 header back before
4212                  * redirecting to another netdev
4213                  */
4214                 __skb_push(skb, skb->mac_len);
4215                 skb_do_redirect(skb);
4216                 return NULL;
4217         default:
4218                 break;
4219         }
4220 #endif /* CONFIG_NET_CLS_ACT */
4221         return skb;
4222 }
4223
4224 /**
4225  *      netdev_is_rx_handler_busy - check if receive handler is registered
4226  *      @dev: device to check
4227  *
4228  *      Check if a receive handler is already registered for a given device.
4229  *      Return true if there one.
4230  *
4231  *      The caller must hold the rtnl_mutex.
4232  */
4233 bool netdev_is_rx_handler_busy(struct net_device *dev)
4234 {
4235         ASSERT_RTNL();
4236         return dev && rtnl_dereference(dev->rx_handler);
4237 }
4238 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
4239
4240 /**
4241  *      netdev_rx_handler_register - register receive handler
4242  *      @dev: device to register a handler for
4243  *      @rx_handler: receive handler to register
4244  *      @rx_handler_data: data pointer that is used by rx handler
4245  *
4246  *      Register a receive handler for a device. This handler will then be
4247  *      called from __netif_receive_skb. A negative errno code is returned
4248  *      on a failure.
4249  *
4250  *      The caller must hold the rtnl_mutex.
4251  *
4252  *      For a general description of rx_handler, see enum rx_handler_result.
4253  */
4254 int netdev_rx_handler_register(struct net_device *dev,
4255                                rx_handler_func_t *rx_handler,
4256                                void *rx_handler_data)
4257 {
4258         if (netdev_is_rx_handler_busy(dev))
4259                 return -EBUSY;
4260
4261         /* Note: rx_handler_data must be set before rx_handler */
4262         rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
4263         rcu_assign_pointer(dev->rx_handler, rx_handler);
4264
4265         return 0;
4266 }
4267 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
4268
4269 /**
4270  *      netdev_rx_handler_unregister - unregister receive handler
4271  *      @dev: device to unregister a handler from
4272  *
4273  *      Unregister a receive handler from a device.
4274  *
4275  *      The caller must hold the rtnl_mutex.
4276  */
4277 void netdev_rx_handler_unregister(struct net_device *dev)
4278 {
4279
4280         ASSERT_RTNL();
4281         RCU_INIT_POINTER(dev->rx_handler, NULL);
4282         /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
4283          * section has a guarantee to see a non NULL rx_handler_data
4284          * as well.
4285          */
4286         synchronize_net();
4287         RCU_INIT_POINTER(dev->rx_handler_data, NULL);
4288 }
4289 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
4290
4291 /*
4292  * Limit the use of PFMEMALLOC reserves to those protocols that implement
4293  * the special handling of PFMEMALLOC skbs.
4294  */
4295 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
4296 {
4297         switch (skb->protocol) {
4298         case htons(ETH_P_ARP):
4299         case htons(ETH_P_IP):
4300         case htons(ETH_P_IPV6):
4301         case htons(ETH_P_8021Q):
4302         case htons(ETH_P_8021AD):
4303                 return true;
4304         default:
4305                 return false;
4306         }
4307 }
4308
4309 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
4310                              int *ret, struct net_device *orig_dev)
4311 {
4312 #ifdef CONFIG_NETFILTER_INGRESS
4313         if (nf_hook_ingress_active(skb)) {
4314                 int ingress_retval;
4315
4316                 if (*pt_prev) {
4317                         *ret = deliver_skb(skb, *pt_prev, orig_dev);
4318                         *pt_prev = NULL;
4319                 }
4320
4321                 rcu_read_lock();
4322                 ingress_retval = nf_hook_ingress(skb);
4323                 rcu_read_unlock();
4324                 return ingress_retval;
4325         }
4326 #endif /* CONFIG_NETFILTER_INGRESS */
4327         return 0;
4328 }
4329
4330 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
4331 {
4332         struct packet_type *ptype, *pt_prev;
4333         rx_handler_func_t *rx_handler;
4334         struct net_device *orig_dev;
4335         bool deliver_exact = false;
4336         int ret = NET_RX_DROP;
4337         __be16 type;
4338
4339         net_timestamp_check(!netdev_tstamp_prequeue, skb);
4340
4341         trace_netif_receive_skb(skb);
4342
4343         orig_dev = skb->dev;
4344
4345         skb_reset_network_header(skb);
4346         if (!skb_transport_header_was_set(skb))
4347                 skb_reset_transport_header(skb);
4348         skb_reset_mac_len(skb);
4349
4350         pt_prev = NULL;
4351
4352 another_round:
4353         skb->skb_iif = skb->dev->ifindex;
4354
4355         __this_cpu_inc(softnet_data.processed);
4356
4357         if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4358             skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
4359                 skb = skb_vlan_untag(skb);
4360                 if (unlikely(!skb))
4361                         goto out;
4362         }
4363
4364         if (skb_skip_tc_classify(skb))
4365                 goto skip_classify;
4366
4367         if (pfmemalloc)
4368                 goto skip_taps;
4369
4370         list_for_each_entry_rcu(ptype, &ptype_all, list) {
4371                 if (pt_prev)
4372                         ret = deliver_skb(skb, pt_prev, orig_dev);
4373                 pt_prev = ptype;
4374         }
4375
4376         list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
4377                 if (pt_prev)
4378                         ret = deliver_skb(skb, pt_prev, orig_dev);
4379                 pt_prev = ptype;
4380         }
4381
4382 skip_taps:
4383 #ifdef CONFIG_NET_INGRESS
4384         if (static_key_false(&ingress_needed)) {
4385                 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
4386                 if (!skb)
4387                         goto out;
4388
4389                 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
4390                         goto out;
4391         }
4392 #endif
4393         skb_reset_tc(skb);
4394 skip_classify:
4395         if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
4396                 goto drop;
4397
4398         if (skb_vlan_tag_present(skb)) {
4399                 if (pt_prev) {
4400                         ret = deliver_skb(skb, pt_prev, orig_dev);
4401                         pt_prev = NULL;
4402                 }
4403                 if (vlan_do_receive(&skb))
4404                         goto another_round;
4405                 else if (unlikely(!skb))
4406                         goto out;
4407         }
4408
4409         rx_handler = rcu_dereference(skb->dev->rx_handler);
4410         if (rx_handler) {
4411                 if (pt_prev) {
4412                         ret = deliver_skb(skb, pt_prev, orig_dev);
4413                         pt_prev = NULL;
4414                 }
4415                 switch (rx_handler(&skb)) {
4416                 case RX_HANDLER_CONSUMED:
4417                         ret = NET_RX_SUCCESS;
4418                         goto out;
4419                 case RX_HANDLER_ANOTHER:
4420                         goto another_round;
4421                 case RX_HANDLER_EXACT:
4422                         deliver_exact = true;
4423                 case RX_HANDLER_PASS:
4424                         break;
4425                 default:
4426                         BUG();
4427                 }
4428         }
4429
4430         if (unlikely(skb_vlan_tag_present(skb))) {
4431                 if (skb_vlan_tag_get_id(skb))
4432                         skb->pkt_type = PACKET_OTHERHOST;
4433                 /* Note: we might in the future use prio bits
4434                  * and set skb->priority like in vlan_do_receive()
4435                  * For the time being, just ignore Priority Code Point
4436                  */
4437                 skb->vlan_tci = 0;
4438         }
4439
4440         type = skb->protocol;
4441
4442         /* deliver only exact match when indicated */
4443         if (likely(!deliver_exact)) {
4444                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4445                                        &ptype_base[ntohs(type) &
4446                                                    PTYPE_HASH_MASK]);
4447         }
4448
4449         deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4450                                &orig_dev->ptype_specific);
4451
4452         if (unlikely(skb->dev != orig_dev)) {
4453                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4454                                        &skb->dev->ptype_specific);
4455         }
4456
4457         if (pt_prev) {
4458                 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
4459                         goto drop;
4460                 else
4461                         ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
4462         } else {
4463 drop:
4464                 if (!deliver_exact)
4465                         atomic_long_inc(&skb->dev->rx_dropped);
4466                 else
4467                         atomic_long_inc(&skb->dev->rx_nohandler);
4468                 kfree_skb(skb);
4469                 /* Jamal, now you will not able to escape explaining
4470                  * me how you were going to use this. :-)
4471                  */
4472                 ret = NET_RX_DROP;
4473         }
4474
4475 out:
4476         return ret;
4477 }
4478
4479 /**
4480  *      netif_receive_skb_core - special purpose version of netif_receive_skb
4481  *      @skb: buffer to process
4482  *
4483  *      More direct receive version of netif_receive_skb().  It should
4484  *      only be used by callers that have a need to skip RPS and Generic XDP.
4485  *      Caller must also take care of handling if (page_is_)pfmemalloc.
4486  *
4487  *      This function may only be called from softirq context and interrupts
4488  *      should be enabled.
4489  *
4490  *      Return values (usually ignored):
4491  *      NET_RX_SUCCESS: no congestion
4492  *      NET_RX_DROP: packet was dropped
4493  */
4494 int netif_receive_skb_core(struct sk_buff *skb)
4495 {
4496         int ret;
4497
4498         rcu_read_lock();
4499         ret = __netif_receive_skb_core(skb, false);
4500         rcu_read_unlock();
4501
4502         return ret;
4503 }
4504 EXPORT_SYMBOL(netif_receive_skb_core);
4505
4506 static int __netif_receive_skb(struct sk_buff *skb)
4507 {
4508         int ret;
4509
4510         if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
4511                 unsigned int noreclaim_flag;
4512
4513                 /*
4514                  * PFMEMALLOC skbs are special, they should
4515                  * - be delivered to SOCK_MEMALLOC sockets only
4516                  * - stay away from userspace
4517                  * - have bounded memory usage
4518                  *
4519                  * Use PF_MEMALLOC as this saves us from propagating the allocation
4520                  * context down to all allocation sites.
4521                  */
4522                 noreclaim_flag = memalloc_noreclaim_save();
4523                 ret = __netif_receive_skb_core(skb, true);
4524                 memalloc_noreclaim_restore(noreclaim_flag);
4525         } else
4526                 ret = __netif_receive_skb_core(skb, false);
4527
4528         return ret;
4529 }
4530
4531 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
4532 {
4533         struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
4534         struct bpf_prog *new = xdp->prog;
4535         int ret = 0;
4536
4537         switch (xdp->command) {
4538         case XDP_SETUP_PROG:
4539                 rcu_assign_pointer(dev->xdp_prog, new);
4540                 if (old)
4541                         bpf_prog_put(old);
4542
4543                 if (old && !new) {
4544                         static_key_slow_dec(&generic_xdp_needed);
4545                 } else if (new && !old) {
4546                         static_key_slow_inc(&generic_xdp_needed);
4547                         dev_disable_lro(dev);
4548                 }
4549                 break;
4550
4551         case XDP_QUERY_PROG:
4552                 xdp->prog_attached = !!old;
4553                 xdp->prog_id = old ? old->aux->id : 0;
4554                 break;
4555
4556         default:
4557                 ret = -EINVAL;
4558                 break;
4559         }
4560
4561         return ret;
4562 }
4563
4564 static int netif_receive_skb_internal(struct sk_buff *skb)
4565 {
4566         int ret;
4567
4568         net_timestamp_check(netdev_tstamp_prequeue, skb);
4569
4570         if (skb_defer_rx_timestamp(skb))
4571                 return NET_RX_SUCCESS;
4572
4573         if (static_key_false(&generic_xdp_needed)) {
4574                 int ret;
4575
4576                 preempt_disable();
4577                 rcu_read_lock();
4578                 ret = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
4579                 rcu_read_unlock();
4580                 preempt_enable();
4581
4582                 if (ret != XDP_PASS)
4583                         return NET_RX_DROP;
4584         }
4585
4586         rcu_read_lock();
4587 #ifdef CONFIG_RPS
4588         if (static_key_false(&rps_needed)) {
4589                 struct rps_dev_flow voidflow, *rflow = &voidflow;
4590                 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
4591
4592                 if (cpu >= 0) {
4593                         ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4594                         rcu_read_unlock();
4595                         return ret;
4596                 }
4597         }
4598 #endif
4599         ret = __netif_receive_skb(skb);
4600         rcu_read_unlock();
4601         return ret;
4602 }
4603
4604 /**
4605  *      netif_receive_skb - process receive buffer from network
4606  *      @skb: buffer to process
4607  *
4608  *      netif_receive_skb() is the main receive data processing function.
4609  *      It always succeeds. The buffer may be dropped during processing
4610  *      for congestion control or by the protocol layers.
4611  *
4612  *      This function may only be called from softirq context and interrupts
4613  *      should be enabled.
4614  *
4615  *      Return values (usually ignored):
4616  *      NET_RX_SUCCESS: no congestion
4617  *      NET_RX_DROP: packet was dropped
4618  */
4619 int netif_receive_skb(struct sk_buff *skb)
4620 {
4621         trace_netif_receive_skb_entry(skb);
4622
4623         return netif_receive_skb_internal(skb);
4624 }
4625 EXPORT_SYMBOL(netif_receive_skb);
4626
4627 DEFINE_PER_CPU(struct work_struct, flush_works);
4628
4629 /* Network device is going away, flush any packets still pending */
4630 static void flush_backlog(struct work_struct *work)
4631 {
4632         struct sk_buff *skb, *tmp;
4633         struct softnet_data *sd;
4634
4635         local_bh_disable();
4636         sd = this_cpu_ptr(&softnet_data);
4637
4638         local_irq_disable();
4639         rps_lock(sd);
4640         skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
4641                 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
4642                         __skb_unlink(skb, &sd->input_pkt_queue);
4643                         kfree_skb(skb);
4644                         input_queue_head_incr(sd);
4645                 }
4646         }
4647         rps_unlock(sd);
4648         local_irq_enable();
4649
4650         skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
4651                 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
4652                         __skb_unlink(skb, &sd->process_queue);
4653                         kfree_skb(skb);
4654                         input_queue_head_incr(sd);
4655                 }
4656         }
4657         local_bh_enable();
4658 }
4659
4660 static void flush_all_backlogs(void)
4661 {
4662         unsigned int cpu;
4663
4664         get_online_cpus();
4665
4666         for_each_online_cpu(cpu)
4667                 queue_work_on(cpu, system_highpri_wq,
4668                               per_cpu_ptr(&flush_works, cpu));
4669
4670         for_each_online_cpu(cpu)
4671                 flush_work(per_cpu_ptr(&flush_works, cpu));
4672
4673         put_online_cpus();
4674 }
4675
4676 static int napi_gro_complete(struct sk_buff *skb)
4677 {
4678         struct packet_offload *ptype;
4679         __be16 type = skb->protocol;
4680         struct list_head *head = &offload_base;
4681         int err = -ENOENT;
4682
4683         BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
4684
4685         if (NAPI_GRO_CB(skb)->count == 1) {
4686                 skb_shinfo(skb)->gso_size = 0;
4687                 goto out;
4688         }
4689
4690         rcu_read_lock();
4691         list_for_each_entry_rcu(ptype, head, list) {
4692                 if (ptype->type != type || !ptype->callbacks.gro_complete)
4693                         continue;
4694
4695                 err = ptype->callbacks.gro_complete(skb, 0);
4696                 break;
4697         }
4698         rcu_read_unlock();
4699
4700         if (err) {
4701                 WARN_ON(&ptype->list == head);
4702                 kfree_skb(skb);
4703                 return NET_RX_SUCCESS;
4704         }
4705
4706 out:
4707         return netif_receive_skb_internal(skb);
4708 }
4709
4710 /* napi->gro_list contains packets ordered by age.
4711  * youngest packets at the head of it.
4712  * Complete skbs in reverse order to reduce latencies.
4713  */
4714 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
4715 {
4716         struct sk_buff *skb, *prev = NULL;
4717
4718         /* scan list and build reverse chain */
4719         for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
4720                 skb->prev = prev;
4721                 prev = skb;
4722         }
4723
4724         for (skb = prev; skb; skb = prev) {
4725                 skb->next = NULL;
4726
4727                 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
4728                         return;
4729
4730                 prev = skb->prev;
4731                 napi_gro_complete(skb);
4732                 napi->gro_count--;
4733         }
4734
4735         napi->gro_list = NULL;
4736 }
4737 EXPORT_SYMBOL(napi_gro_flush);
4738
4739 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
4740 {
4741         struct sk_buff *p;
4742         unsigned int maclen = skb->dev->hard_header_len;
4743         u32 hash = skb_get_hash_raw(skb);
4744
4745         for (p = napi->gro_list; p; p = p->next) {
4746                 unsigned long diffs;
4747
4748                 NAPI_GRO_CB(p)->flush = 0;
4749
4750                 if (hash != skb_get_hash_raw(p)) {
4751                         NAPI_GRO_CB(p)->same_flow = 0;
4752                         continue;
4753                 }
4754
4755                 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
4756                 diffs |= p->vlan_tci ^ skb->vlan_tci;
4757                 diffs |= skb_metadata_dst_cmp(p, skb);
4758                 diffs |= skb_metadata_differs(p, skb);
4759                 if (maclen == ETH_HLEN)
4760                         diffs |= compare_ether_header(skb_mac_header(p),
4761                                                       skb_mac_header(skb));
4762                 else if (!diffs)
4763                         diffs = memcmp(skb_mac_header(p),
4764                                        skb_mac_header(skb),
4765                                        maclen);
4766                 NAPI_GRO_CB(p)->same_flow = !diffs;
4767         }
4768 }
4769
4770 static void skb_gro_reset_offset(struct sk_buff *skb)
4771 {
4772         const struct skb_shared_info *pinfo = skb_shinfo(skb);
4773         const skb_frag_t *frag0 = &pinfo->frags[0];
4774
4775         NAPI_GRO_CB(skb)->data_offset = 0;
4776         NAPI_GRO_CB(skb)->frag0 = NULL;
4777         NAPI_GRO_CB(skb)->frag0_len = 0;
4778
4779         if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
4780             pinfo->nr_frags &&
4781             !PageHighMem(skb_frag_page(frag0))) {
4782                 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
4783                 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
4784                                                     skb_frag_size(frag0),
4785                                                     skb->end - skb->tail);
4786         }
4787 }
4788
4789 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
4790 {
4791         struct skb_shared_info *pinfo = skb_shinfo(skb);
4792
4793         BUG_ON(skb->end - skb->tail < grow);
4794
4795         memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
4796
4797         skb->data_len -= grow;
4798         skb->tail += grow;
4799
4800         pinfo->frags[0].page_offset += grow;
4801         skb_frag_size_sub(&pinfo->frags[0], grow);
4802
4803         if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
4804                 skb_frag_unref(skb, 0);
4805                 memmove(pinfo->frags, pinfo->frags + 1,
4806                         --pinfo->nr_frags * sizeof(pinfo->frags[0]));
4807         }
4808 }
4809
4810 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4811 {
4812         struct sk_buff **pp = NULL;
4813         struct packet_offload *ptype;
4814         __be16 type = skb->protocol;
4815         struct list_head *head = &offload_base;
4816         int same_flow;
4817         enum gro_result ret;
4818         int grow;
4819
4820         if (netif_elide_gro(skb->dev))
4821                 goto normal;
4822
4823         gro_list_prepare(napi, skb);
4824
4825         rcu_read_lock();
4826         list_for_each_entry_rcu(ptype, head, list) {
4827                 if (ptype->type != type || !ptype->callbacks.gro_receive)
4828                         continue;
4829
4830                 skb_set_network_header(skb, skb_gro_offset(skb));
4831                 skb_reset_mac_len(skb);
4832                 NAPI_GRO_CB(skb)->same_flow = 0;
4833                 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
4834                 NAPI_GRO_CB(skb)->free = 0;
4835                 NAPI_GRO_CB(skb)->encap_mark = 0;
4836                 NAPI_GRO_CB(skb)->recursion_counter = 0;
4837                 NAPI_GRO_CB(skb)->is_fou = 0;
4838                 NAPI_GRO_CB(skb)->is_atomic = 1;
4839                 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
4840
4841                 /* Setup for GRO checksum validation */
4842                 switch (skb->ip_summed) {
4843                 case CHECKSUM_COMPLETE:
4844                         NAPI_GRO_CB(skb)->csum = skb->csum;
4845                         NAPI_GRO_CB(skb)->csum_valid = 1;
4846                         NAPI_GRO_CB(skb)->csum_cnt = 0;
4847                         break;
4848                 case CHECKSUM_UNNECESSARY:
4849                         NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
4850                         NAPI_GRO_CB(skb)->csum_valid = 0;
4851                         break;
4852                 default:
4853                         NAPI_GRO_CB(skb)->csum_cnt = 0;
4854                         NAPI_GRO_CB(skb)->csum_valid = 0;
4855                 }
4856
4857                 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
4858                 break;
4859         }
4860         rcu_read_unlock();
4861
4862         if (&ptype->list == head)
4863                 goto normal;
4864
4865         if (IS_ERR(pp) && PTR_ERR(pp) == -EINPROGRESS) {
4866                 ret = GRO_CONSUMED;
4867                 goto ok;
4868         }
4869
4870         same_flow = NAPI_GRO_CB(skb)->same_flow;
4871         ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
4872
4873         if (pp) {
4874                 struct sk_buff *nskb = *pp;
4875
4876                 *pp = nskb->next;
4877                 nskb->next = NULL;
4878                 napi_gro_complete(nskb);
4879                 napi->gro_count--;
4880         }
4881
4882         if (same_flow)
4883                 goto ok;
4884
4885         if (NAPI_GRO_CB(skb)->flush)
4886                 goto normal;
4887
4888         if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
4889                 struct sk_buff *nskb = napi->gro_list;
4890
4891                 /* locate the end of the list to select the 'oldest' flow */
4892                 while (nskb->next) {
4893                         pp = &nskb->next;
4894                         nskb = *pp;
4895                 }
4896                 *pp = NULL;
4897                 nskb->next = NULL;
4898                 napi_gro_complete(nskb);
4899         } else {
4900                 napi->gro_count++;
4901         }
4902         NAPI_GRO_CB(skb)->count = 1;
4903         NAPI_GRO_CB(skb)->age = jiffies;
4904         NAPI_GRO_CB(skb)->last = skb;
4905         skb_shinfo(skb)->gso_size = skb_gro_len(skb);
4906         skb->next = napi->gro_list;
4907         napi->gro_list = skb;
4908         ret = GRO_HELD;
4909
4910 pull:
4911         grow = skb_gro_offset(skb) - skb_headlen(skb);
4912         if (grow > 0)
4913                 gro_pull_from_frag0(skb, grow);
4914 ok:
4915         return ret;
4916
4917 normal:
4918         ret = GRO_NORMAL;
4919         goto pull;
4920 }
4921
4922 struct packet_offload *gro_find_receive_by_type(__be16 type)
4923 {
4924         struct list_head *offload_head = &offload_base;
4925         struct packet_offload *ptype;
4926
4927         list_for_each_entry_rcu(ptype, offload_head, list) {
4928                 if (ptype->type != type || !ptype->callbacks.gro_receive)
4929                         continue;
4930                 return ptype;
4931         }
4932         return NULL;
4933 }
4934 EXPORT_SYMBOL(gro_find_receive_by_type);
4935
4936 struct packet_offload *gro_find_complete_by_type(__be16 type)
4937 {
4938         struct list_head *offload_head = &offload_base;
4939         struct packet_offload *ptype;
4940
4941         list_for_each_entry_rcu(ptype, offload_head, list) {
4942                 if (ptype->type != type || !ptype->callbacks.gro_complete)
4943                         continue;
4944                 return ptype;
4945         }
4946         return NULL;
4947 }
4948 EXPORT_SYMBOL(gro_find_complete_by_type);
4949
4950 static void napi_skb_free_stolen_head(struct sk_buff *skb)
4951 {
4952         skb_dst_drop(skb);
4953         secpath_reset(skb);
4954         kmem_cache_free(skbuff_head_cache, skb);
4955 }
4956
4957 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
4958 {
4959         switch (ret) {
4960         case GRO_NORMAL:
4961                 if (netif_receive_skb_internal(skb))
4962                         ret = GRO_DROP;
4963                 break;
4964
4965         case GRO_DROP:
4966                 kfree_skb(skb);
4967                 break;
4968
4969         case GRO_MERGED_FREE:
4970                 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
4971                         napi_skb_free_stolen_head(skb);
4972                 else
4973                         __kfree_skb(skb);
4974                 break;
4975
4976         case GRO_HELD:
4977         case GRO_MERGED:
4978         case GRO_CONSUMED:
4979                 break;
4980         }
4981
4982         return ret;
4983 }
4984
4985 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4986 {
4987         skb_mark_napi_id(skb, napi);
4988         trace_napi_gro_receive_entry(skb);
4989
4990         skb_gro_reset_offset(skb);
4991
4992         return napi_skb_finish(dev_gro_receive(napi, skb), skb);
4993 }
4994 EXPORT_SYMBOL(napi_gro_receive);
4995
4996 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
4997 {
4998         if (unlikely(skb->pfmemalloc)) {
4999                 consume_skb(skb);
5000                 return;
5001         }
5002         __skb_pull(skb, skb_headlen(skb));
5003         /* restore the reserve we had after netdev_alloc_skb_ip_align() */
5004         skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
5005         skb->vlan_tci = 0;
5006         skb->dev = napi->dev;
5007         skb->skb_iif = 0;
5008         skb->encapsulation = 0;
5009         skb_shinfo(skb)->gso_type = 0;
5010         skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
5011         secpath_reset(skb);
5012
5013         napi->skb = skb;
5014 }
5015
5016 struct sk_buff *napi_get_frags(struct napi_struct *napi)
5017 {
5018         struct sk_buff *skb = napi->skb;
5019
5020         if (!skb) {
5021                 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
5022                 if (skb) {
5023                         napi->skb = skb;
5024                         skb_mark_napi_id(skb, napi);
5025                 }
5026         }
5027         return skb;
5028 }
5029 EXPORT_SYMBOL(napi_get_frags);
5030
5031 static gro_result_t napi_frags_finish(struct napi_struct *napi,
5032                                       struct sk_buff *skb,
5033                                       gro_result_t ret)
5034 {
5035         switch (ret) {
5036         case GRO_NORMAL:
5037         case GRO_HELD:
5038                 __skb_push(skb, ETH_HLEN);
5039                 skb->protocol = eth_type_trans(skb, skb->dev);
5040                 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
5041                         ret = GRO_DROP;
5042                 break;
5043
5044         case GRO_DROP:
5045                 napi_reuse_skb(napi, skb);
5046                 break;
5047
5048         case GRO_MERGED_FREE:
5049                 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5050                         napi_skb_free_stolen_head(skb);
5051                 else
5052                         napi_reuse_skb(napi, skb);
5053                 break;
5054
5055         case GRO_MERGED:
5056         case GRO_CONSUMED:
5057                 break;
5058         }
5059
5060         return ret;
5061 }
5062
5063 /* Upper GRO stack assumes network header starts at gro_offset=0
5064  * Drivers could call both napi_gro_frags() and napi_gro_receive()
5065  * We copy ethernet header into skb->data to have a common layout.
5066  */
5067 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
5068 {
5069         struct sk_buff *skb = napi->skb;
5070         const struct ethhdr *eth;
5071         unsigned int hlen = sizeof(*eth);
5072
5073         napi->skb = NULL;
5074
5075         skb_reset_mac_header(skb);
5076         skb_gro_reset_offset(skb);
5077
5078         eth = skb_gro_header_fast(skb, 0);
5079         if (unlikely(skb_gro_header_hard(skb, hlen))) {
5080                 eth = skb_gro_header_slow(skb, hlen, 0);
5081                 if (unlikely(!eth)) {
5082                         net_warn_ratelimited("%s: dropping impossible skb from %s\n",
5083                                              __func__, napi->dev->name);
5084                         napi_reuse_skb(napi, skb);
5085                         return NULL;
5086                 }
5087         } else {
5088                 gro_pull_from_frag0(skb, hlen);
5089                 NAPI_GRO_CB(skb)->frag0 += hlen;
5090                 NAPI_GRO_CB(skb)->frag0_len -= hlen;
5091         }
5092         __skb_pull(skb, hlen);
5093
5094         /*
5095          * This works because the only protocols we care about don't require
5096          * special handling.
5097          * We'll fix it up properly in napi_frags_finish()
5098          */
5099         skb->protocol = eth->h_proto;
5100
5101         return skb;
5102 }
5103
5104 gro_result_t napi_gro_frags(struct napi_struct *napi)
5105 {
5106         struct sk_buff *skb = napi_frags_skb(napi);
5107
5108         if (!skb)
5109                 return GRO_DROP;
5110
5111         trace_napi_gro_frags_entry(skb);
5112
5113         return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
5114 }
5115 EXPORT_SYMBOL(napi_gro_frags);
5116
5117 /* Compute the checksum from gro_offset and return the folded value
5118  * after adding in any pseudo checksum.
5119  */
5120 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
5121 {
5122         __wsum wsum;
5123         __sum16 sum;
5124
5125         wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
5126
5127         /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
5128         sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
5129         if (likely(!sum)) {
5130                 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
5131                     !skb->csum_complete_sw)
5132                         netdev_rx_csum_fault(skb->dev);
5133         }
5134
5135         NAPI_GRO_CB(skb)->csum = wsum;
5136         NAPI_GRO_CB(skb)->csum_valid = 1;
5137
5138         return sum;
5139 }
5140 EXPORT_SYMBOL(__skb_gro_checksum_complete);
5141
5142 static void net_rps_send_ipi(struct softnet_data *remsd)
5143 {
5144 #ifdef CONFIG_RPS
5145         while (remsd) {
5146                 struct softnet_data *next = remsd->rps_ipi_next;
5147
5148                 if (cpu_online(remsd->cpu))
5149                         smp_call_function_single_async(remsd->cpu, &remsd->csd);
5150                 remsd = next;
5151         }
5152 #endif
5153 }
5154
5155 /*
5156  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
5157  * Note: called with local irq disabled, but exits with local irq enabled.
5158  */
5159 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
5160 {
5161 #ifdef CONFIG_RPS
5162         struct softnet_data *remsd = sd->rps_ipi_list;
5163
5164         if (remsd) {
5165                 sd->rps_ipi_list = NULL;
5166
5167                 local_irq_enable();
5168
5169                 /* Send pending IPI's to kick RPS processing on remote cpus. */
5170                 net_rps_send_ipi(remsd);
5171         } else
5172 #endif
5173                 local_irq_enable();
5174 }
5175
5176 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
5177 {
5178 #ifdef CONFIG_RPS
5179         return sd->rps_ipi_list != NULL;
5180 #else
5181         return false;
5182 #endif
5183 }
5184
5185 static int process_backlog(struct napi_struct *napi, int quota)
5186 {
5187         struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
5188         bool again = true;
5189         int work = 0;
5190
5191         /* Check if we have pending ipi, its better to send them now,
5192          * not waiting net_rx_action() end.
5193          */
5194         if (sd_has_rps_ipi_waiting(sd)) {
5195                 local_irq_disable();
5196                 net_rps_action_and_irq_enable(sd);
5197         }
5198
5199         napi->weight = dev_rx_weight;
5200         while (again) {
5201                 struct sk_buff *skb;
5202
5203                 while ((skb = __skb_dequeue(&sd->process_queue))) {
5204                         rcu_read_lock();
5205                         __netif_receive_skb(skb);
5206                         rcu_read_unlock();
5207                         input_queue_head_incr(sd);
5208                         if (++work >= quota)
5209                                 return work;
5210
5211                 }
5212
5213                 local_irq_disable();
5214                 rps_lock(sd);
5215                 if (skb_queue_empty(&sd->input_pkt_queue)) {
5216                         /*
5217                          * Inline a custom version of __napi_complete().
5218                          * only current cpu owns and manipulates this napi,
5219                          * and NAPI_STATE_SCHED is the only possible flag set
5220                          * on backlog.
5221                          * We can use a plain write instead of clear_bit(),
5222                          * and we dont need an smp_mb() memory barrier.
5223                          */
5224                         napi->state = 0;
5225                         again = false;
5226                 } else {
5227                         skb_queue_splice_tail_init(&sd->input_pkt_queue,
5228                                                    &sd->process_queue);
5229                 }
5230                 rps_unlock(sd);
5231                 local_irq_enable();
5232         }
5233
5234         return work;
5235 }
5236
5237 /**
5238  * __napi_schedule - schedule for receive
5239  * @n: entry to schedule
5240  *
5241  * The entry's receive function will be scheduled to run.
5242  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
5243  */
5244 void __napi_schedule(struct napi_struct *n)
5245 {
5246         unsigned long flags;
5247
5248         local_irq_save(flags);
5249         ____napi_schedule(this_cpu_ptr(&softnet_data), n);
5250         local_irq_restore(flags);
5251 }
5252 EXPORT_SYMBOL(__napi_schedule);
5253
5254 /**
5255  *      napi_schedule_prep - check if napi can be scheduled
5256  *      @n: napi context
5257  *
5258  * Test if NAPI routine is already running, and if not mark
5259  * it as running.  This is used as a condition variable
5260  * insure only one NAPI poll instance runs.  We also make
5261  * sure there is no pending NAPI disable.
5262  */
5263 bool napi_schedule_prep(struct napi_struct *n)
5264 {
5265         unsigned long val, new;
5266
5267         do {
5268                 val = READ_ONCE(n->state);
5269                 if (unlikely(val & NAPIF_STATE_DISABLE))
5270                         return false;
5271                 new = val | NAPIF_STATE_SCHED;
5272
5273                 /* Sets STATE_MISSED bit if STATE_SCHED was already set
5274                  * This was suggested by Alexander Duyck, as compiler
5275                  * emits better code than :
5276                  * if (val & NAPIF_STATE_SCHED)
5277                  *     new |= NAPIF_STATE_MISSED;
5278                  */
5279                 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
5280                                                    NAPIF_STATE_MISSED;
5281         } while (cmpxchg(&n->state, val, new) != val);
5282
5283         return !(val & NAPIF_STATE_SCHED);
5284 }
5285 EXPORT_SYMBOL(napi_schedule_prep);
5286
5287 /**
5288  * __napi_schedule_irqoff - schedule for receive
5289  * @n: entry to schedule
5290  *
5291  * Variant of __napi_schedule() assuming hard irqs are masked
5292  */
5293 void __napi_schedule_irqoff(struct napi_struct *n)
5294 {
5295         ____napi_schedule(this_cpu_ptr(&softnet_data), n);
5296 }
5297 EXPORT_SYMBOL(__napi_schedule_irqoff);
5298
5299 bool napi_complete_done(struct napi_struct *n, int work_done)
5300 {
5301         unsigned long flags, val, new;
5302
5303         /*
5304          * 1) Don't let napi dequeue from the cpu poll list
5305          *    just in case its running on a different cpu.
5306          * 2) If we are busy polling, do nothing here, we have
5307          *    the guarantee we will be called later.
5308          */
5309         if (unlikely(n->state & (NAPIF_STATE_NPSVC |
5310                                  NAPIF_STATE_IN_BUSY_POLL)))
5311                 return false;
5312
5313         if (n->gro_list) {
5314                 unsigned long timeout = 0;
5315
5316                 if (work_done)
5317                         timeout = n->dev->gro_flush_timeout;
5318
5319                 if (timeout)
5320                         hrtimer_start(&n->timer, ns_to_ktime(timeout),
5321                                       HRTIMER_MODE_REL_PINNED);
5322                 else
5323                         napi_gro_flush(n, false);
5324         }
5325         if (unlikely(!list_empty(&n->poll_list))) {
5326                 /* If n->poll_list is not empty, we need to mask irqs */
5327                 local_irq_save(flags);
5328                 list_del_init(&n->poll_list);
5329                 local_irq_restore(flags);
5330         }
5331
5332         do {
5333                 val = READ_ONCE(n->state);
5334
5335                 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
5336
5337                 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED);
5338
5339                 /* If STATE_MISSED was set, leave STATE_SCHED set,
5340                  * because we will call napi->poll() one more time.
5341                  * This C code was suggested by Alexander Duyck to help gcc.
5342                  */
5343                 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
5344                                                     NAPIF_STATE_SCHED;
5345         } while (cmpxchg(&n->state, val, new) != val);
5346
5347         if (unlikely(val & NAPIF_STATE_MISSED)) {
5348                 __napi_schedule(n);
5349                 return false;
5350         }
5351
5352         return true;
5353 }
5354 EXPORT_SYMBOL(napi_complete_done);
5355
5356 /* must be called under rcu_read_lock(), as we dont take a reference */
5357 static struct napi_struct *napi_by_id(unsigned int napi_id)
5358 {
5359         unsigned int hash = napi_id % HASH_SIZE(napi_hash);
5360         struct napi_struct *napi;
5361
5362         hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
5363                 if (napi->napi_id == napi_id)
5364                         return napi;
5365
5366         return NULL;
5367 }
5368
5369 #if defined(CONFIG_NET_RX_BUSY_POLL)
5370
5371 #define BUSY_POLL_BUDGET 8
5372
5373 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock)
5374 {
5375         int rc;
5376
5377         /* Busy polling means there is a high chance device driver hard irq
5378          * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
5379          * set in napi_schedule_prep().
5380          * Since we are about to call napi->poll() once more, we can safely
5381          * clear NAPI_STATE_MISSED.
5382          *
5383          * Note: x86 could use a single "lock and ..." instruction
5384          * to perform these two clear_bit()
5385          */
5386         clear_bit(NAPI_STATE_MISSED, &napi->state);
5387         clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
5388
5389         local_bh_disable();
5390
5391         /* All we really want here is to re-enable device interrupts.
5392          * Ideally, a new ndo_busy_poll_stop() could avoid another round.
5393          */
5394         rc = napi->poll(napi, BUSY_POLL_BUDGET);
5395         trace_napi_poll(napi, rc, BUSY_POLL_BUDGET);
5396         netpoll_poll_unlock(have_poll_lock);
5397         if (rc == BUSY_POLL_BUDGET)
5398                 __napi_schedule(napi);
5399         local_bh_enable();
5400 }
5401
5402 void napi_busy_loop(unsigned int napi_id,
5403                     bool (*loop_end)(void *, unsigned long),
5404                     void *loop_end_arg)
5405 {
5406         unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
5407         int (*napi_poll)(struct napi_struct *napi, int budget);
5408         void *have_poll_lock = NULL;
5409         struct napi_struct *napi;
5410
5411 restart:
5412         napi_poll = NULL;
5413
5414         rcu_read_lock();
5415
5416         napi = napi_by_id(napi_id);
5417         if (!napi)
5418                 goto out;
5419
5420         preempt_disable();
5421         for (;;) {
5422                 int work = 0;
5423
5424                 local_bh_disable();
5425                 if (!napi_poll) {
5426                         unsigned long val = READ_ONCE(napi->state);
5427
5428                         /* If multiple threads are competing for this napi,
5429                          * we avoid dirtying napi->state as much as we can.
5430                          */
5431                         if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
5432                                    NAPIF_STATE_IN_BUSY_POLL))
5433                                 goto count;
5434                         if (cmpxchg(&napi->state, val,
5435                                     val | NAPIF_STATE_IN_BUSY_POLL |
5436                                           NAPIF_STATE_SCHED) != val)
5437                                 goto count;
5438                         have_poll_lock = netpoll_poll_lock(napi);
5439                         napi_poll = napi->poll;
5440                 }
5441                 work = napi_poll(napi, BUSY_POLL_BUDGET);
5442                 trace_napi_poll(napi, work, BUSY_POLL_BUDGET);
5443 count:
5444                 if (work > 0)
5445                         __NET_ADD_STATS(dev_net(napi->dev),
5446                                         LINUX_MIB_BUSYPOLLRXPACKETS, work);
5447                 local_bh_enable();
5448
5449                 if (!loop_end || loop_end(loop_end_arg, start_time))
5450                         break;
5451
5452                 if (unlikely(need_resched())) {
5453                         if (napi_poll)
5454                                 busy_poll_stop(napi, have_poll_lock);
5455                         preempt_enable();
5456                         rcu_read_unlock();
5457                         cond_resched();
5458                         if (loop_end(loop_end_arg, start_time))
5459                                 return;
5460                         goto restart;
5461                 }
5462                 cpu_relax();
5463         }
5464         if (napi_poll)
5465                 busy_poll_stop(napi, have_poll_lock);
5466         preempt_enable();
5467 out:
5468         rcu_read_unlock();
5469 }
5470 EXPORT_SYMBOL(napi_busy_loop);
5471
5472 #endif /* CONFIG_NET_RX_BUSY_POLL */
5473
5474 static void napi_hash_add(struct napi_struct *napi)
5475 {
5476         if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
5477             test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
5478                 return;
5479
5480         spin_lock(&napi_hash_lock);
5481
5482         /* 0..NR_CPUS range is reserved for sender_cpu use */
5483         do {
5484                 if (unlikely(++napi_gen_id < MIN_NAPI_ID))
5485                         napi_gen_id = MIN_NAPI_ID;
5486         } while (napi_by_id(napi_gen_id));
5487         napi->napi_id = napi_gen_id;
5488
5489         hlist_add_head_rcu(&napi->napi_hash_node,
5490                            &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
5491
5492         spin_unlock(&napi_hash_lock);
5493 }
5494
5495 /* Warning : caller is responsible to make sure rcu grace period
5496  * is respected before freeing memory containing @napi
5497  */
5498 bool napi_hash_del(struct napi_struct *napi)
5499 {
5500         bool rcu_sync_needed = false;
5501
5502         spin_lock(&napi_hash_lock);
5503
5504         if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
5505                 rcu_sync_needed = true;
5506                 hlist_del_rcu(&napi->napi_hash_node);
5507         }
5508         spin_unlock(&napi_hash_lock);
5509         return rcu_sync_needed;
5510 }
5511 EXPORT_SYMBOL_GPL(napi_hash_del);
5512
5513 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
5514 {
5515         struct napi_struct *napi;
5516
5517         napi = container_of(timer, struct napi_struct, timer);
5518
5519         /* Note : we use a relaxed variant of napi_schedule_prep() not setting
5520          * NAPI_STATE_MISSED, since we do not react to a device IRQ.
5521          */
5522         if (napi->gro_list && !napi_disable_pending(napi) &&
5523             !test_and_set_bit(NAPI_STATE_SCHED, &napi->state))
5524                 __napi_schedule_irqoff(napi);
5525
5526         return HRTIMER_NORESTART;
5527 }
5528
5529 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
5530                     int (*poll)(struct napi_struct *, int), int weight)
5531 {
5532         INIT_LIST_HEAD(&napi->poll_list);
5533         hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
5534         napi->timer.function = napi_watchdog;
5535         napi->gro_count = 0;
5536         napi->gro_list = NULL;
5537         napi->skb = NULL;
5538         napi->poll = poll;
5539         if (weight > NAPI_POLL_WEIGHT)
5540                 pr_err_once("netif_napi_add() called with weight %d on device %s\n",
5541                             weight, dev->name);
5542         napi->weight = weight;
5543         list_add(&napi->dev_list, &dev->napi_list);
5544         napi->dev = dev;
5545 #ifdef CONFIG_NETPOLL
5546         napi->poll_owner = -1;
5547 #endif
5548         set_bit(NAPI_STATE_SCHED, &napi->state);
5549         napi_hash_add(napi);
5550 }
5551 EXPORT_SYMBOL(netif_napi_add);
5552
5553 void napi_disable(struct napi_struct *n)
5554 {
5555         might_sleep();
5556         set_bit(NAPI_STATE_DISABLE, &n->state);
5557
5558         while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
5559                 msleep(1);
5560         while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
5561                 msleep(1);
5562
5563         hrtimer_cancel(&n->timer);
5564
5565         clear_bit(NAPI_STATE_DISABLE, &n->state);
5566 }
5567 EXPORT_SYMBOL(napi_disable);
5568
5569 /* Must be called in process context */
5570 void netif_napi_del(struct napi_struct *napi)
5571 {
5572         might_sleep();
5573         if (napi_hash_del(napi))
5574                 synchronize_net();
5575         list_del_init(&napi->dev_list);
5576         napi_free_frags(napi);
5577
5578         kfree_skb_list(napi->gro_list);
5579         napi->gro_list = NULL;
5580         napi->gro_count = 0;
5581 }
5582 EXPORT_SYMBOL(netif_napi_del);
5583
5584 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
5585 {
5586         void *have;
5587         int work, weight;
5588
5589         list_del_init(&n->poll_list);
5590
5591         have = netpoll_poll_lock(n);
5592
5593         weight = n->weight;
5594
5595         /* This NAPI_STATE_SCHED test is for avoiding a race
5596          * with netpoll's poll_napi().  Only the entity which
5597          * obtains the lock and sees NAPI_STATE_SCHED set will
5598          * actually make the ->poll() call.  Therefore we avoid
5599          * accidentally calling ->poll() when NAPI is not scheduled.
5600          */
5601         work = 0;
5602         if (test_bit(NAPI_STATE_SCHED, &n->state)) {
5603                 work = n->poll(n, weight);
5604                 trace_napi_poll(n, work, weight);
5605         }
5606
5607         WARN_ON_ONCE(work > weight);
5608
5609         if (likely(work < weight))
5610                 goto out_unlock;
5611
5612         /* Drivers must not modify the NAPI state if they
5613          * consume the entire weight.  In such cases this code
5614          * still "owns" the NAPI instance and therefore can
5615          * move the instance around on the list at-will.
5616          */
5617         if (unlikely(napi_disable_pending(n))) {
5618                 napi_complete(n);
5619                 goto out_unlock;
5620         }
5621
5622         if (n->gro_list) {
5623                 /* flush too old packets
5624                  * If HZ < 1000, flush all packets.
5625                  */
5626                 napi_gro_flush(n, HZ >= 1000);
5627         }
5628
5629         /* Some drivers may have called napi_schedule
5630          * prior to exhausting their budget.
5631          */
5632         if (unlikely(!list_empty(&n->poll_list))) {
5633                 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
5634                              n->dev ? n->dev->name : "backlog");
5635                 goto out_unlock;
5636         }
5637
5638         list_add_tail(&n->poll_list, repoll);
5639
5640 out_unlock:
5641         netpoll_poll_unlock(have);
5642
5643         return work;
5644 }
5645
5646 static __latent_entropy void net_rx_action(struct softirq_action *h)
5647 {
5648         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5649         unsigned long time_limit = jiffies +
5650                 usecs_to_jiffies(netdev_budget_usecs);
5651         int budget = netdev_budget;
5652         LIST_HEAD(list);
5653         LIST_HEAD(repoll);
5654
5655         local_irq_disable();
5656         list_splice_init(&sd->poll_list, &list);
5657         local_irq_enable();
5658
5659         for (;;) {
5660                 struct napi_struct *n;
5661
5662                 if (list_empty(&list)) {
5663                         if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
5664                                 goto out;
5665                         break;
5666                 }
5667
5668                 n = list_first_entry(&list, struct napi_struct, poll_list);
5669                 budget -= napi_poll(n, &repoll);
5670
5671                 /* If softirq window is exhausted then punt.
5672                  * Allow this to run for 2 jiffies since which will allow
5673                  * an average latency of 1.5/HZ.
5674                  */
5675                 if (unlikely(budget <= 0 ||
5676                              time_after_eq(jiffies, time_limit))) {
5677                         sd->time_squeeze++;
5678                         break;
5679                 }
5680         }
5681
5682         local_irq_disable();
5683
5684         list_splice_tail_init(&sd->poll_list, &list);
5685         list_splice_tail(&repoll, &list);
5686         list_splice(&list, &sd->poll_list);
5687         if (!list_empty(&sd->poll_list))
5688                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
5689
5690         net_rps_action_and_irq_enable(sd);
5691 out:
5692         __kfree_skb_flush();
5693 }
5694
5695 struct netdev_adjacent {
5696         struct net_device *dev;
5697
5698         /* upper master flag, there can only be one master device per list */
5699         bool master;
5700
5701         /* counter for the number of times this device was added to us */
5702         u16 ref_nr;
5703
5704         /* private field for the users */
5705         void *private;
5706
5707         struct list_head list;
5708         struct rcu_head rcu;
5709 };
5710
5711 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
5712                                                  struct list_head *adj_list)
5713 {
5714         struct netdev_adjacent *adj;
5715
5716         list_for_each_entry(adj, adj_list, list) {
5717                 if (adj->dev == adj_dev)
5718                         return adj;
5719         }
5720         return NULL;
5721 }
5722
5723 static int __netdev_has_upper_dev(struct net_device *upper_dev, void *data)
5724 {
5725         struct net_device *dev = data;
5726
5727         return upper_dev == dev;
5728 }
5729
5730 /**
5731  * netdev_has_upper_dev - Check if device is linked to an upper device
5732  * @dev: device
5733  * @upper_dev: upper device to check
5734  *
5735  * Find out if a device is linked to specified upper device and return true
5736  * in case it is. Note that this checks only immediate upper device,
5737  * not through a complete stack of devices. The caller must hold the RTNL lock.
5738  */
5739 bool netdev_has_upper_dev(struct net_device *dev,
5740                           struct net_device *upper_dev)
5741 {
5742         ASSERT_RTNL();
5743
5744         return netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
5745                                              upper_dev);
5746 }
5747 EXPORT_SYMBOL(netdev_has_upper_dev);
5748
5749 /**
5750  * netdev_has_upper_dev_all - Check if device is linked to an upper device
5751  * @dev: device
5752  * @upper_dev: upper device to check
5753  *
5754  * Find out if a device is linked to specified upper device and return true
5755  * in case it is. Note that this checks the entire upper device chain.
5756  * The caller must hold rcu lock.
5757  */
5758
5759 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
5760                                   struct net_device *upper_dev)
5761 {
5762         return !!netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
5763                                                upper_dev);
5764 }
5765 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
5766
5767 /**
5768  * netdev_has_any_upper_dev - Check if device is linked to some device
5769  * @dev: device
5770  *
5771  * Find out if a device is linked to an upper device and return true in case
5772  * it is. The caller must hold the RTNL lock.
5773  */
5774 bool netdev_has_any_upper_dev(struct net_device *dev)
5775 {
5776         ASSERT_RTNL();
5777
5778         return !list_empty(&dev->adj_list.upper);
5779 }
5780 EXPORT_SYMBOL(netdev_has_any_upper_dev);
5781
5782 /**
5783  * netdev_master_upper_dev_get - Get master upper device
5784  * @dev: device
5785  *
5786  * Find a master upper device and return pointer to it or NULL in case
5787  * it's not there. The caller must hold the RTNL lock.
5788  */
5789 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
5790 {
5791         struct netdev_adjacent *upper;
5792
5793         ASSERT_RTNL();
5794
5795         if (list_empty(&dev->adj_list.upper))
5796                 return NULL;
5797
5798         upper = list_first_entry(&dev->adj_list.upper,
5799                                  struct netdev_adjacent, list);
5800         if (likely(upper->master))
5801                 return upper->dev;
5802         return NULL;
5803 }
5804 EXPORT_SYMBOL(netdev_master_upper_dev_get);
5805
5806 /**
5807  * netdev_has_any_lower_dev - Check if device is linked to some device
5808  * @dev: device
5809  *
5810  * Find out if a device is linked to a lower device and return true in case
5811  * it is. The caller must hold the RTNL lock.
5812  */
5813 static bool netdev_has_any_lower_dev(struct net_device *dev)
5814 {
5815         ASSERT_RTNL();
5816
5817         return !list_empty(&dev->adj_list.lower);
5818 }
5819
5820 void *netdev_adjacent_get_private(struct list_head *adj_list)
5821 {
5822         struct netdev_adjacent *adj;
5823
5824         adj = list_entry(adj_list, struct netdev_adjacent, list);
5825
5826         return adj->private;
5827 }
5828 EXPORT_SYMBOL(netdev_adjacent_get_private);
5829
5830 /**
5831  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
5832  * @dev: device
5833  * @iter: list_head ** of the current position
5834  *
5835  * Gets the next device from the dev's upper list, starting from iter
5836  * position. The caller must hold RCU read lock.
5837  */
5838 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
5839                                                  struct list_head **iter)
5840 {
5841         struct netdev_adjacent *upper;
5842
5843         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5844
5845         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5846
5847         if (&upper->list == &dev->adj_list.upper)
5848                 return NULL;
5849
5850         *iter = &upper->list;
5851
5852         return upper->dev;
5853 }
5854 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
5855
5856 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
5857                                                     struct list_head **iter)
5858 {
5859         struct netdev_adjacent *upper;
5860
5861         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5862
5863         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5864
5865         if (&upper->list == &dev->adj_list.upper)
5866                 return NULL;
5867
5868         *iter = &upper->list;
5869
5870         return upper->dev;
5871 }
5872
5873 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
5874                                   int (*fn)(struct net_device *dev,
5875                                             void *data),
5876                                   void *data)
5877 {
5878         struct net_device *udev;
5879         struct list_head *iter;
5880         int ret;
5881
5882         for (iter = &dev->adj_list.upper,
5883              udev = netdev_next_upper_dev_rcu(dev, &iter);
5884              udev;
5885              udev = netdev_next_upper_dev_rcu(dev, &iter)) {
5886                 /* first is the upper device itself */
5887                 ret = fn(udev, data);
5888                 if (ret)
5889                         return ret;
5890
5891                 /* then look at all of its upper devices */
5892                 ret = netdev_walk_all_upper_dev_rcu(udev, fn, data);
5893                 if (ret)
5894                         return ret;
5895         }
5896
5897         return 0;
5898 }
5899 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
5900
5901 /**
5902  * netdev_lower_get_next_private - Get the next ->private from the
5903  *                                 lower neighbour list
5904  * @dev: device
5905  * @iter: list_head ** of the current position
5906  *
5907  * Gets the next netdev_adjacent->private from the dev's lower neighbour
5908  * list, starting from iter position. The caller must hold either hold the
5909  * RTNL lock or its own locking that guarantees that the neighbour lower
5910  * list will remain unchanged.
5911  */
5912 void *netdev_lower_get_next_private(struct net_device *dev,
5913                                     struct list_head **iter)
5914 {
5915         struct netdev_adjacent *lower;
5916
5917         lower = list_entry(*iter, struct netdev_adjacent, list);
5918
5919         if (&lower->list == &dev->adj_list.lower)
5920                 return NULL;
5921
5922         *iter = lower->list.next;
5923
5924         return lower->private;
5925 }
5926 EXPORT_SYMBOL(netdev_lower_get_next_private);
5927
5928 /**
5929  * netdev_lower_get_next_private_rcu - Get the next ->private from the
5930  *                                     lower neighbour list, RCU
5931  *                                     variant
5932  * @dev: device
5933  * @iter: list_head ** of the current position
5934  *
5935  * Gets the next netdev_adjacent->private from the dev's lower neighbour
5936  * list, starting from iter position. The caller must hold RCU read lock.
5937  */
5938 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
5939                                         struct list_head **iter)
5940 {
5941         struct netdev_adjacent *lower;
5942
5943         WARN_ON_ONCE(!rcu_read_lock_held());
5944
5945         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5946
5947         if (&lower->list == &dev->adj_list.lower)
5948                 return NULL;
5949
5950         *iter = &lower->list;
5951
5952         return lower->private;
5953 }
5954 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
5955
5956 /**
5957  * netdev_lower_get_next - Get the next device from the lower neighbour
5958  *                         list
5959  * @dev: device
5960  * @iter: list_head ** of the current position
5961  *
5962  * Gets the next netdev_adjacent from the dev's lower neighbour
5963  * list, starting from iter position. The caller must hold RTNL lock or
5964  * its own locking that guarantees that the neighbour lower
5965  * list will remain unchanged.
5966  */
5967 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
5968 {
5969         struct netdev_adjacent *lower;
5970
5971         lower = list_entry(*iter, struct netdev_adjacent, list);
5972
5973         if (&lower->list == &dev->adj_list.lower)
5974                 return NULL;
5975
5976         *iter = lower->list.next;
5977
5978         return lower->dev;
5979 }
5980 EXPORT_SYMBOL(netdev_lower_get_next);
5981
5982 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
5983                                                 struct list_head **iter)
5984 {
5985         struct netdev_adjacent *lower;
5986
5987         lower = list_entry((*iter)->next, struct netdev_adjacent, list);
5988
5989         if (&lower->list == &dev->adj_list.lower)
5990                 return NULL;
5991
5992         *iter = &lower->list;
5993
5994         return lower->dev;
5995 }
5996
5997 int netdev_walk_all_lower_dev(struct net_device *dev,
5998                               int (*fn)(struct net_device *dev,
5999                                         void *data),
6000                               void *data)
6001 {
6002         struct net_device *ldev;
6003         struct list_head *iter;
6004         int ret;
6005
6006         for (iter = &dev->adj_list.lower,
6007              ldev = netdev_next_lower_dev(dev, &iter);
6008              ldev;
6009              ldev = netdev_next_lower_dev(dev, &iter)) {
6010                 /* first is the lower device itself */
6011                 ret = fn(ldev, data);
6012                 if (ret)
6013                         return ret;
6014
6015                 /* then look at all of its lower devices */
6016                 ret = netdev_walk_all_lower_dev(ldev, fn, data);
6017                 if (ret)
6018                         return ret;
6019         }
6020
6021         return 0;
6022 }
6023 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
6024
6025 static struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
6026                                                     struct list_head **iter)
6027 {
6028         struct netdev_adjacent *lower;
6029
6030         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6031         if (&lower->list == &dev->adj_list.lower)
6032                 return NULL;
6033
6034         *iter = &lower->list;
6035
6036         return lower->dev;
6037 }
6038
6039 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
6040                                   int (*fn)(struct net_device *dev,
6041                                             void *data),
6042                                   void *data)
6043 {
6044         struct net_device *ldev;
6045         struct list_head *iter;
6046         int ret;
6047
6048         for (iter = &dev->adj_list.lower,
6049              ldev = netdev_next_lower_dev_rcu(dev, &iter);
6050              ldev;
6051              ldev = netdev_next_lower_dev_rcu(dev, &iter)) {
6052                 /* first is the lower device itself */
6053                 ret = fn(ldev, data);
6054                 if (ret)
6055                         return ret;
6056
6057                 /* then look at all of its lower devices */
6058                 ret = netdev_walk_all_lower_dev_rcu(ldev, fn, data);
6059                 if (ret)
6060                         return ret;
6061         }
6062
6063         return 0;
6064 }
6065 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
6066
6067 /**
6068  * netdev_lower_get_first_private_rcu - Get the first ->private from the
6069  *                                     lower neighbour list, RCU
6070  *                                     variant
6071  * @dev: device
6072  *
6073  * Gets the first netdev_adjacent->private from the dev's lower neighbour
6074  * list. The caller must hold RCU read lock.
6075  */
6076 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
6077 {
6078         struct netdev_adjacent *lower;
6079
6080         lower = list_first_or_null_rcu(&dev->adj_list.lower,
6081                         struct netdev_adjacent, list);
6082         if (lower)
6083                 return lower->private;
6084         return NULL;
6085 }
6086 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
6087
6088 /**
6089  * netdev_master_upper_dev_get_rcu - Get master upper device
6090  * @dev: device
6091  *
6092  * Find a master upper device and return pointer to it or NULL in case
6093  * it's not there. The caller must hold the RCU read lock.
6094  */
6095 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
6096 {
6097         struct netdev_adjacent *upper;
6098
6099         upper = list_first_or_null_rcu(&dev->adj_list.upper,
6100                                        struct netdev_adjacent, list);
6101         if (upper && likely(upper->master))
6102                 return upper->dev;
6103         return NULL;
6104 }
6105 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
6106
6107 static int netdev_adjacent_sysfs_add(struct net_device *dev,
6108                               struct net_device *adj_dev,
6109                               struct list_head *dev_list)
6110 {
6111         char linkname[IFNAMSIZ+7];
6112
6113         sprintf(linkname, dev_list == &dev->adj_list.upper ?
6114                 "upper_%s" : "lower_%s", adj_dev->name);
6115         return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
6116                                  linkname);
6117 }
6118 static void netdev_adjacent_sysfs_del(struct net_device *dev,
6119                                char *name,
6120                                struct list_head *dev_list)
6121 {
6122         char linkname[IFNAMSIZ+7];
6123
6124         sprintf(linkname, dev_list == &dev->adj_list.upper ?
6125                 "upper_%s" : "lower_%s", name);
6126         sysfs_remove_link(&(dev->dev.kobj), linkname);
6127 }
6128
6129 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
6130                                                  struct net_device *adj_dev,
6131                                                  struct list_head *dev_list)
6132 {
6133         return (dev_list == &dev->adj_list.upper ||
6134                 dev_list == &dev->adj_list.lower) &&
6135                 net_eq(dev_net(dev), dev_net(adj_dev));
6136 }
6137
6138 static int __netdev_adjacent_dev_insert(struct net_device *dev,
6139                                         struct net_device *adj_dev,
6140                                         struct list_head *dev_list,
6141                                         void *private, bool master)
6142 {
6143         struct netdev_adjacent *adj;
6144         int ret;
6145
6146         adj = __netdev_find_adj(adj_dev, dev_list);
6147
6148         if (adj) {
6149                 adj->ref_nr += 1;
6150                 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
6151                          dev->name, adj_dev->name, adj->ref_nr);
6152
6153                 return 0;
6154         }
6155
6156         adj = kmalloc(sizeof(*adj), GFP_KERNEL);
6157         if (!adj)
6158                 return -ENOMEM;
6159
6160         adj->dev = adj_dev;
6161         adj->master = master;
6162         adj->ref_nr = 1;
6163         adj->private = private;
6164         dev_hold(adj_dev);
6165
6166         pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
6167                  dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
6168
6169         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
6170                 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
6171                 if (ret)
6172                         goto free_adj;
6173         }
6174
6175         /* Ensure that master link is always the first item in list. */
6176         if (master) {
6177                 ret = sysfs_create_link(&(dev->dev.kobj),
6178                                         &(adj_dev->dev.kobj), "master");
6179                 if (ret)
6180                         goto remove_symlinks;
6181
6182                 list_add_rcu(&adj->list, dev_list);
6183         } else {
6184                 list_add_tail_rcu(&adj->list, dev_list);
6185         }
6186
6187         return 0;
6188
6189 remove_symlinks:
6190         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
6191                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
6192 free_adj:
6193         kfree(adj);
6194         dev_put(adj_dev);
6195
6196         return ret;
6197 }
6198
6199 static void __netdev_adjacent_dev_remove(struct net_device *dev,
6200                                          struct net_device *adj_dev,
6201                                          u16 ref_nr,
6202                                          struct list_head *dev_list)
6203 {
6204         struct netdev_adjacent *adj;
6205
6206         pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
6207                  dev->name, adj_dev->name, ref_nr);
6208
6209         adj = __netdev_find_adj(adj_dev, dev_list);
6210
6211         if (!adj) {
6212                 pr_err("Adjacency does not exist for device %s from %s\n",
6213                        dev->name, adj_dev->name);
6214                 WARN_ON(1);
6215                 return;
6216         }
6217
6218         if (adj->ref_nr > ref_nr) {
6219                 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
6220                          dev->name, adj_dev->name, ref_nr,
6221                          adj->ref_nr - ref_nr);
6222                 adj->ref_nr -= ref_nr;
6223                 return;
6224         }
6225
6226         if (adj->master)
6227                 sysfs_remove_link(&(dev->dev.kobj), "master");
6228
6229         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
6230                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
6231
6232         list_del_rcu(&adj->list);
6233         pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
6234                  adj_dev->name, dev->name, adj_dev->name);
6235         dev_put(adj_dev);
6236         kfree_rcu(adj, rcu);
6237 }
6238
6239 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
6240                                             struct net_device *upper_dev,
6241                                             struct list_head *up_list,
6242                                             struct list_head *down_list,
6243                                             void *private, bool master)
6244 {
6245         int ret;
6246
6247         ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
6248                                            private, master);
6249         if (ret)
6250                 return ret;
6251
6252         ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
6253                                            private, false);
6254         if (ret) {
6255                 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
6256                 return ret;
6257         }
6258
6259         return 0;
6260 }
6261
6262 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
6263                                                struct net_device *upper_dev,
6264                                                u16 ref_nr,
6265                                                struct list_head *up_list,
6266                                                struct list_head *down_list)
6267 {
6268         __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
6269         __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
6270 }
6271
6272 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
6273                                                 struct net_device *upper_dev,
6274                                                 void *private, bool master)
6275 {
6276         return __netdev_adjacent_dev_link_lists(dev, upper_dev,
6277                                                 &dev->adj_list.upper,
6278                                                 &upper_dev->adj_list.lower,
6279                                                 private, master);
6280 }
6281
6282 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
6283                                                    struct net_device *upper_dev)
6284 {
6285         __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
6286                                            &dev->adj_list.upper,
6287                                            &upper_dev->adj_list.lower);
6288 }
6289
6290 static int __netdev_upper_dev_link(struct net_device *dev,
6291                                    struct net_device *upper_dev, bool master,
6292                                    void *upper_priv, void *upper_info,
6293                                    struct netlink_ext_ack *extack)
6294 {
6295         struct netdev_notifier_changeupper_info changeupper_info = {
6296                 .info = {
6297                         .dev = dev,
6298                         .extack = extack,
6299                 },
6300                 .upper_dev = upper_dev,
6301                 .master = master,
6302                 .linking = true,
6303                 .upper_info = upper_info,
6304         };
6305         int ret = 0;
6306
6307         ASSERT_RTNL();
6308
6309         if (dev == upper_dev)
6310                 return -EBUSY;
6311
6312         /* To prevent loops, check if dev is not upper device to upper_dev. */
6313         if (netdev_has_upper_dev(upper_dev, dev))
6314                 return -EBUSY;
6315
6316         if (netdev_has_upper_dev(dev, upper_dev))
6317                 return -EEXIST;
6318
6319         if (master && netdev_master_upper_dev_get(dev))
6320                 return -EBUSY;
6321
6322         ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
6323                                             &changeupper_info.info);
6324         ret = notifier_to_errno(ret);
6325         if (ret)
6326                 return ret;
6327
6328         ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
6329                                                    master);
6330         if (ret)
6331                 return ret;
6332
6333         ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
6334                                             &changeupper_info.info);
6335         ret = notifier_to_errno(ret);
6336         if (ret)
6337                 goto rollback;
6338
6339         return 0;
6340
6341 rollback:
6342         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
6343
6344         return ret;
6345 }
6346
6347 /**
6348  * netdev_upper_dev_link - Add a link to the upper device
6349  * @dev: device
6350  * @upper_dev: new upper device
6351  *
6352  * Adds a link to device which is upper to this one. The caller must hold
6353  * the RTNL lock. On a failure a negative errno code is returned.
6354  * On success the reference counts are adjusted and the function
6355  * returns zero.
6356  */
6357 int netdev_upper_dev_link(struct net_device *dev,
6358                           struct net_device *upper_dev,
6359                           struct netlink_ext_ack *extack)
6360 {
6361         return __netdev_upper_dev_link(dev, upper_dev, false,
6362                                        NULL, NULL, extack);
6363 }
6364 EXPORT_SYMBOL(netdev_upper_dev_link);
6365
6366 /**
6367  * netdev_master_upper_dev_link - Add a master link to the upper device
6368  * @dev: device
6369  * @upper_dev: new upper device
6370  * @upper_priv: upper device private
6371  * @upper_info: upper info to be passed down via notifier
6372  *
6373  * Adds a link to device which is upper to this one. In this case, only
6374  * one master upper device can be linked, although other non-master devices
6375  * might be linked as well. The caller must hold the RTNL lock.
6376  * On a failure a negative errno code is returned. On success the reference
6377  * counts are adjusted and the function returns zero.
6378  */
6379 int netdev_master_upper_dev_link(struct net_device *dev,
6380                                  struct net_device *upper_dev,
6381                                  void *upper_priv, void *upper_info,
6382                                  struct netlink_ext_ack *extack)
6383 {
6384         return __netdev_upper_dev_link(dev, upper_dev, true,
6385                                        upper_priv, upper_info, extack);
6386 }
6387 EXPORT_SYMBOL(netdev_master_upper_dev_link);
6388
6389 /**
6390  * netdev_upper_dev_unlink - Removes a link to upper device
6391  * @dev: device
6392  * @upper_dev: new upper device
6393  *
6394  * Removes a link to device which is upper to this one. The caller must hold
6395  * the RTNL lock.
6396  */
6397 void netdev_upper_dev_unlink(struct net_device *dev,
6398                              struct net_device *upper_dev)
6399 {
6400         struct netdev_notifier_changeupper_info changeupper_info = {
6401                 .info = {
6402                         .dev = dev,
6403                 },
6404                 .upper_dev = upper_dev,
6405                 .linking = false,
6406         };
6407
6408         ASSERT_RTNL();
6409
6410         changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
6411
6412         call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
6413                                       &changeupper_info.info);
6414
6415         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
6416
6417         call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
6418                                       &changeupper_info.info);
6419 }
6420 EXPORT_SYMBOL(netdev_upper_dev_unlink);
6421
6422 /**
6423  * netdev_bonding_info_change - Dispatch event about slave change
6424  * @dev: device
6425  * @bonding_info: info to dispatch
6426  *
6427  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
6428  * The caller must hold the RTNL lock.
6429  */
6430 void netdev_bonding_info_change(struct net_device *dev,
6431                                 struct netdev_bonding_info *bonding_info)
6432 {
6433         struct netdev_notifier_bonding_info info = {
6434                 .info.dev = dev,
6435         };
6436
6437         memcpy(&info.bonding_info, bonding_info,
6438                sizeof(struct netdev_bonding_info));
6439         call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
6440                                       &info.info);
6441 }
6442 EXPORT_SYMBOL(netdev_bonding_info_change);
6443
6444 static void netdev_adjacent_add_links(struct net_device *dev)
6445 {
6446         struct netdev_adjacent *iter;
6447
6448         struct net *net = dev_net(dev);
6449
6450         list_for_each_entry(iter, &dev->adj_list.upper, list) {
6451                 if (!net_eq(net, dev_net(iter->dev)))
6452                         continue;
6453                 netdev_adjacent_sysfs_add(iter->dev, dev,
6454                                           &iter->dev->adj_list.lower);
6455                 netdev_adjacent_sysfs_add(dev, iter->dev,
6456                                           &dev->adj_list.upper);
6457         }
6458
6459         list_for_each_entry(iter, &dev->adj_list.lower, list) {
6460                 if (!net_eq(net, dev_net(iter->dev)))
6461                         continue;
6462                 netdev_adjacent_sysfs_add(iter->dev, dev,
6463                                           &iter->dev->adj_list.upper);
6464                 netdev_adjacent_sysfs_add(dev, iter->dev,
6465                                           &dev->adj_list.lower);
6466         }
6467 }
6468
6469 static void netdev_adjacent_del_links(struct net_device *dev)
6470 {
6471         struct netdev_adjacent *iter;
6472
6473         struct net *net = dev_net(dev);
6474
6475         list_for_each_entry(iter, &dev->adj_list.upper, list) {
6476                 if (!net_eq(net, dev_net(iter->dev)))
6477                         continue;
6478                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
6479                                           &iter->dev->adj_list.lower);
6480                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
6481                                           &dev->adj_list.upper);
6482         }
6483
6484         list_for_each_entry(iter, &dev->adj_list.lower, list) {
6485                 if (!net_eq(net, dev_net(iter->dev)))
6486                         continue;
6487                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
6488                                           &iter->dev->adj_list.upper);
6489                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
6490                                           &dev->adj_list.lower);
6491         }
6492 }
6493
6494 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
6495 {
6496         struct netdev_adjacent *iter;
6497
6498         struct net *net = dev_net(dev);
6499
6500         list_for_each_entry(iter, &dev->adj_list.upper, list) {
6501                 if (!net_eq(net, dev_net(iter->dev)))
6502                         continue;
6503                 netdev_adjacent_sysfs_del(iter->dev, oldname,
6504                                           &iter->dev->adj_list.lower);
6505                 netdev_adjacent_sysfs_add(iter->dev, dev,
6506                                           &iter->dev->adj_list.lower);
6507         }
6508
6509         list_for_each_entry(iter, &dev->adj_list.lower, list) {
6510                 if (!net_eq(net, dev_net(iter->dev)))
6511                         continue;
6512                 netdev_adjacent_sysfs_del(iter->dev, oldname,
6513                                           &iter->dev->adj_list.upper);
6514                 netdev_adjacent_sysfs_add(iter->dev, dev,
6515                                           &iter->dev->adj_list.upper);
6516         }
6517 }
6518
6519 void *netdev_lower_dev_get_private(struct net_device *dev,
6520                                    struct net_device *lower_dev)
6521 {
6522         struct netdev_adjacent *lower;
6523
6524         if (!lower_dev)
6525                 return NULL;
6526         lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
6527         if (!lower)
6528                 return NULL;
6529
6530         return lower->private;
6531 }
6532 EXPORT_SYMBOL(netdev_lower_dev_get_private);
6533
6534
6535 int dev_get_nest_level(struct net_device *dev)
6536 {
6537         struct net_device *lower = NULL;
6538         struct list_head *iter;
6539         int max_nest = -1;
6540         int nest;
6541
6542         ASSERT_RTNL();
6543
6544         netdev_for_each_lower_dev(dev, lower, iter) {
6545                 nest = dev_get_nest_level(lower);
6546                 if (max_nest < nest)
6547                         max_nest = nest;
6548         }
6549
6550         return max_nest + 1;
6551 }
6552 EXPORT_SYMBOL(dev_get_nest_level);
6553
6554 /**
6555  * netdev_lower_change - Dispatch event about lower device state change
6556  * @lower_dev: device
6557  * @lower_state_info: state to dispatch
6558  *
6559  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
6560  * The caller must hold the RTNL lock.
6561  */
6562 void netdev_lower_state_changed(struct net_device *lower_dev,
6563                                 void *lower_state_info)
6564 {
6565         struct netdev_notifier_changelowerstate_info changelowerstate_info = {
6566                 .info.dev = lower_dev,
6567         };
6568
6569         ASSERT_RTNL();
6570         changelowerstate_info.lower_state_info = lower_state_info;
6571         call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
6572                                       &changelowerstate_info.info);
6573 }
6574 EXPORT_SYMBOL(netdev_lower_state_changed);
6575
6576 static void dev_change_rx_flags(struct net_device *dev, int flags)
6577 {
6578         const struct net_device_ops *ops = dev->netdev_ops;
6579
6580         if (ops->ndo_change_rx_flags)
6581                 ops->ndo_change_rx_flags(dev, flags);
6582 }
6583
6584 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
6585 {
6586         unsigned int old_flags = dev->flags;
6587         kuid_t uid;
6588         kgid_t gid;
6589
6590         ASSERT_RTNL();
6591
6592         dev->flags |= IFF_PROMISC;
6593         dev->promiscuity += inc;
6594         if (dev->promiscuity == 0) {
6595                 /*
6596                  * Avoid overflow.
6597                  * If inc causes overflow, untouch promisc and return error.
6598                  */
6599                 if (inc < 0)
6600                         dev->flags &= ~IFF_PROMISC;
6601                 else {
6602                         dev->promiscuity -= inc;
6603                         pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
6604                                 dev->name);
6605                         return -EOVERFLOW;
6606                 }
6607         }
6608         if (dev->flags != old_flags) {
6609                 pr_info("device %s %s promiscuous mode\n",
6610                         dev->name,
6611                         dev->flags & IFF_PROMISC ? "entered" : "left");
6612                 if (audit_enabled) {
6613                         current_uid_gid(&uid, &gid);
6614                         audit_log(current->audit_context, GFP_ATOMIC,
6615                                 AUDIT_ANOM_PROMISCUOUS,
6616                                 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
6617                                 dev->name, (dev->flags & IFF_PROMISC),
6618                                 (old_flags & IFF_PROMISC),
6619                                 from_kuid(&init_user_ns, audit_get_loginuid(current)),
6620                                 from_kuid(&init_user_ns, uid),
6621                                 from_kgid(&init_user_ns, gid),
6622                                 audit_get_sessionid(current));
6623                 }
6624
6625                 dev_change_rx_flags(dev, IFF_PROMISC);
6626         }
6627         if (notify)
6628                 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
6629         return 0;
6630 }
6631
6632 /**
6633  *      dev_set_promiscuity     - update promiscuity count on a device
6634  *      @dev: device
6635  *      @inc: modifier
6636  *
6637  *      Add or remove promiscuity from a device. While the count in the device
6638  *      remains above zero the interface remains promiscuous. Once it hits zero
6639  *      the device reverts back to normal filtering operation. A negative inc
6640  *      value is used to drop promiscuity on the device.
6641  *      Return 0 if successful or a negative errno code on error.
6642  */
6643 int dev_set_promiscuity(struct net_device *dev, int inc)
6644 {
6645         unsigned int old_flags = dev->flags;
6646         int err;
6647
6648         err = __dev_set_promiscuity(dev, inc, true);
6649         if (err < 0)
6650                 return err;
6651         if (dev->flags != old_flags)
6652                 dev_set_rx_mode(dev);
6653         return err;
6654 }
6655 EXPORT_SYMBOL(dev_set_promiscuity);
6656
6657 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
6658 {
6659         unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
6660
6661         ASSERT_RTNL();
6662
6663         dev->flags |= IFF_ALLMULTI;
6664         dev->allmulti += inc;
6665         if (dev->allmulti == 0) {
6666                 /*
6667                  * Avoid overflow.
6668                  * If inc causes overflow, untouch allmulti and return error.
6669                  */
6670                 if (inc < 0)
6671                         dev->flags &= ~IFF_ALLMULTI;
6672                 else {
6673                         dev->allmulti -= inc;
6674                         pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
6675                                 dev->name);
6676                         return -EOVERFLOW;
6677                 }
6678         }
6679         if (dev->flags ^ old_flags) {
6680                 dev_change_rx_flags(dev, IFF_ALLMULTI);
6681                 dev_set_rx_mode(dev);
6682                 if (notify)
6683                         __dev_notify_flags(dev, old_flags,
6684                                            dev->gflags ^ old_gflags);
6685         }
6686         return 0;
6687 }
6688
6689 /**
6690  *      dev_set_allmulti        - update allmulti count on a device
6691  *      @dev: device
6692  *      @inc: modifier
6693  *
6694  *      Add or remove reception of all multicast frames to a device. While the
6695  *      count in the device remains above zero the interface remains listening
6696  *      to all interfaces. Once it hits zero the device reverts back to normal
6697  *      filtering operation. A negative @inc value is used to drop the counter
6698  *      when releasing a resource needing all multicasts.
6699  *      Return 0 if successful or a negative errno code on error.
6700  */
6701
6702 int dev_set_allmulti(struct net_device *dev, int inc)
6703 {
6704         return __dev_set_allmulti(dev, inc, true);
6705 }
6706 EXPORT_SYMBOL(dev_set_allmulti);
6707
6708 /*
6709  *      Upload unicast and multicast address lists to device and
6710  *      configure RX filtering. When the device doesn't support unicast
6711  *      filtering it is put in promiscuous mode while unicast addresses
6712  *      are present.
6713  */
6714 void __dev_set_rx_mode(struct net_device *dev)
6715 {
6716         const struct net_device_ops *ops = dev->netdev_ops;
6717
6718         /* dev_open will call this function so the list will stay sane. */
6719         if (!(dev->flags&IFF_UP))
6720                 return;
6721
6722         if (!netif_device_present(dev))
6723                 return;
6724
6725         if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
6726                 /* Unicast addresses changes may only happen under the rtnl,
6727                  * therefore calling __dev_set_promiscuity here is safe.
6728                  */
6729                 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
6730                         __dev_set_promiscuity(dev, 1, false);
6731                         dev->uc_promisc = true;
6732                 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
6733                         __dev_set_promiscuity(dev, -1, false);
6734                         dev->uc_promisc = false;
6735                 }
6736         }
6737
6738         if (ops->ndo_set_rx_mode)
6739                 ops->ndo_set_rx_mode(dev);
6740 }
6741
6742 void dev_set_rx_mode(struct net_device *dev)
6743 {
6744         netif_addr_lock_bh(dev);
6745         __dev_set_rx_mode(dev);
6746         netif_addr_unlock_bh(dev);
6747 }
6748
6749 /**
6750  *      dev_get_flags - get flags reported to userspace
6751  *      @dev: device
6752  *
6753  *      Get the combination of flag bits exported through APIs to userspace.
6754  */
6755 unsigned int dev_get_flags(const struct net_device *dev)
6756 {
6757         unsigned int flags;
6758
6759         flags = (dev->flags & ~(IFF_PROMISC |
6760                                 IFF_ALLMULTI |
6761                                 IFF_RUNNING |
6762                                 IFF_LOWER_UP |
6763                                 IFF_DORMANT)) |
6764                 (dev->gflags & (IFF_PROMISC |
6765                                 IFF_ALLMULTI));
6766
6767         if (netif_running(dev)) {
6768                 if (netif_oper_up(dev))
6769                         flags |= IFF_RUNNING;
6770                 if (netif_carrier_ok(dev))
6771                         flags |= IFF_LOWER_UP;
6772                 if (netif_dormant(dev))
6773                         flags |= IFF_DORMANT;
6774         }
6775
6776         return flags;
6777 }
6778 EXPORT_SYMBOL(dev_get_flags);
6779
6780 int __dev_change_flags(struct net_device *dev, unsigned int flags)
6781 {
6782         unsigned int old_flags = dev->flags;
6783         int ret;
6784
6785         ASSERT_RTNL();
6786
6787         /*
6788          *      Set the flags on our device.
6789          */
6790
6791         dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
6792                                IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
6793                                IFF_AUTOMEDIA)) |
6794                      (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
6795                                     IFF_ALLMULTI));
6796
6797         /*
6798          *      Load in the correct multicast list now the flags have changed.
6799          */
6800
6801         if ((old_flags ^ flags) & IFF_MULTICAST)
6802                 dev_change_rx_flags(dev, IFF_MULTICAST);
6803
6804         dev_set_rx_mode(dev);
6805
6806         /*
6807          *      Have we downed the interface. We handle IFF_UP ourselves
6808          *      according to user attempts to set it, rather than blindly
6809          *      setting it.
6810          */
6811
6812         ret = 0;
6813         if ((old_flags ^ flags) & IFF_UP) {
6814                 if (old_flags & IFF_UP)
6815                         __dev_close(dev);
6816                 else
6817                         ret = __dev_open(dev);
6818         }
6819
6820         if ((flags ^ dev->gflags) & IFF_PROMISC) {
6821                 int inc = (flags & IFF_PROMISC) ? 1 : -1;
6822                 unsigned int old_flags = dev->flags;
6823
6824                 dev->gflags ^= IFF_PROMISC;
6825
6826                 if (__dev_set_promiscuity(dev, inc, false) >= 0)
6827                         if (dev->flags != old_flags)
6828                                 dev_set_rx_mode(dev);
6829         }
6830
6831         /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
6832          * is important. Some (broken) drivers set IFF_PROMISC, when
6833          * IFF_ALLMULTI is requested not asking us and not reporting.
6834          */
6835         if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
6836                 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
6837
6838                 dev->gflags ^= IFF_ALLMULTI;
6839                 __dev_set_allmulti(dev, inc, false);
6840         }
6841
6842         return ret;
6843 }
6844
6845 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
6846                         unsigned int gchanges)
6847 {
6848         unsigned int changes = dev->flags ^ old_flags;
6849
6850         if (gchanges)
6851                 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
6852
6853         if (changes & IFF_UP) {
6854                 if (dev->flags & IFF_UP)
6855                         call_netdevice_notifiers(NETDEV_UP, dev);
6856                 else
6857                         call_netdevice_notifiers(NETDEV_DOWN, dev);
6858         }
6859
6860         if (dev->flags & IFF_UP &&
6861             (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
6862                 struct netdev_notifier_change_info change_info = {
6863                         .info = {
6864                                 .dev = dev,
6865                         },
6866                         .flags_changed = changes,
6867                 };
6868
6869                 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
6870         }
6871 }
6872
6873 /**
6874  *      dev_change_flags - change device settings
6875  *      @dev: device
6876  *      @flags: device state flags
6877  *
6878  *      Change settings on device based state flags. The flags are
6879  *      in the userspace exported format.
6880  */
6881 int dev_change_flags(struct net_device *dev, unsigned int flags)
6882 {
6883         int ret;
6884         unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
6885
6886         ret = __dev_change_flags(dev, flags);
6887         if (ret < 0)
6888                 return ret;
6889
6890         changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
6891         __dev_notify_flags(dev, old_flags, changes);
6892         return ret;
6893 }
6894 EXPORT_SYMBOL(dev_change_flags);
6895
6896 int __dev_set_mtu(struct net_device *dev, int new_mtu)
6897 {
6898         const struct net_device_ops *ops = dev->netdev_ops;
6899
6900         if (ops->ndo_change_mtu)
6901                 return ops->ndo_change_mtu(dev, new_mtu);
6902
6903         dev->mtu = new_mtu;
6904         return 0;
6905 }
6906 EXPORT_SYMBOL(__dev_set_mtu);
6907
6908 /**
6909  *      dev_set_mtu - Change maximum transfer unit
6910  *      @dev: device
6911  *      @new_mtu: new transfer unit
6912  *
6913  *      Change the maximum transfer size of the network device.
6914  */
6915 int dev_set_mtu(struct net_device *dev, int new_mtu)
6916 {
6917         int err, orig_mtu;
6918
6919         if (new_mtu == dev->mtu)
6920                 return 0;
6921
6922         /* MTU must be positive, and in range */
6923         if (new_mtu < 0 || new_mtu < dev->min_mtu) {
6924                 net_err_ratelimited("%s: Invalid MTU %d requested, hw min %d\n",
6925                                     dev->name, new_mtu, dev->min_mtu);
6926                 return -EINVAL;
6927         }
6928
6929         if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
6930                 net_err_ratelimited("%s: Invalid MTU %d requested, hw max %d\n",
6931                                     dev->name, new_mtu, dev->max_mtu);
6932                 return -EINVAL;
6933         }
6934
6935         if (!netif_device_present(dev))
6936                 return -ENODEV;
6937
6938         err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
6939         err = notifier_to_errno(err);
6940         if (err)
6941                 return err;
6942
6943         orig_mtu = dev->mtu;
6944         err = __dev_set_mtu(dev, new_mtu);
6945
6946         if (!err) {
6947                 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6948                 err = notifier_to_errno(err);
6949                 if (err) {
6950                         /* setting mtu back and notifying everyone again,
6951                          * so that they have a chance to revert changes.
6952                          */
6953                         __dev_set_mtu(dev, orig_mtu);
6954                         call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6955                 }
6956         }
6957         return err;
6958 }
6959 EXPORT_SYMBOL(dev_set_mtu);
6960
6961 /**
6962  *      dev_set_group - Change group this device belongs to
6963  *      @dev: device
6964  *      @new_group: group this device should belong to
6965  */
6966 void dev_set_group(struct net_device *dev, int new_group)
6967 {
6968         dev->group = new_group;
6969 }
6970 EXPORT_SYMBOL(dev_set_group);
6971
6972 /**
6973  *      dev_set_mac_address - Change Media Access Control Address
6974  *      @dev: device
6975  *      @sa: new address
6976  *
6977  *      Change the hardware (MAC) address of the device
6978  */
6979 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
6980 {
6981         const struct net_device_ops *ops = dev->netdev_ops;
6982         int err;
6983
6984         if (!ops->ndo_set_mac_address)
6985                 return -EOPNOTSUPP;
6986         if (sa->sa_family != dev->type)
6987                 return -EINVAL;
6988         if (!netif_device_present(dev))
6989                 return -ENODEV;
6990         err = ops->ndo_set_mac_address(dev, sa);
6991         if (err)
6992                 return err;
6993         dev->addr_assign_type = NET_ADDR_SET;
6994         call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
6995         add_device_randomness(dev->dev_addr, dev->addr_len);
6996         return 0;
6997 }
6998 EXPORT_SYMBOL(dev_set_mac_address);
6999
7000 /**
7001  *      dev_change_carrier - Change device carrier
7002  *      @dev: device
7003  *      @new_carrier: new value
7004  *
7005  *      Change device carrier
7006  */
7007 int dev_change_carrier(struct net_device *dev, bool new_carrier)
7008 {
7009         const struct net_device_ops *ops = dev->netdev_ops;
7010
7011         if (!ops->ndo_change_carrier)
7012                 return -EOPNOTSUPP;
7013         if (!netif_device_present(dev))
7014                 return -ENODEV;
7015         return ops->ndo_change_carrier(dev, new_carrier);
7016 }
7017 EXPORT_SYMBOL(dev_change_carrier);
7018
7019 /**
7020  *      dev_get_phys_port_id - Get device physical port ID
7021  *      @dev: device
7022  *      @ppid: port ID
7023  *
7024  *      Get device physical port ID
7025  */
7026 int dev_get_phys_port_id(struct net_device *dev,
7027                          struct netdev_phys_item_id *ppid)
7028 {
7029         const struct net_device_ops *ops = dev->netdev_ops;
7030
7031         if (!ops->ndo_get_phys_port_id)
7032                 return -EOPNOTSUPP;
7033         return ops->ndo_get_phys_port_id(dev, ppid);
7034 }
7035 EXPORT_SYMBOL(dev_get_phys_port_id);
7036
7037 /**
7038  *      dev_get_phys_port_name - Get device physical port name
7039  *      @dev: device
7040  *      @name: port name
7041  *      @len: limit of bytes to copy to name
7042  *
7043  *      Get device physical port name
7044  */
7045 int dev_get_phys_port_name(struct net_device *dev,
7046                            char *name, size_t len)
7047 {
7048         const struct net_device_ops *ops = dev->netdev_ops;
7049
7050         if (!ops->ndo_get_phys_port_name)
7051                 return -EOPNOTSUPP;
7052         return ops->ndo_get_phys_port_name(dev, name, len);
7053 }
7054 EXPORT_SYMBOL(dev_get_phys_port_name);
7055
7056 /**
7057  *      dev_change_proto_down - update protocol port state information
7058  *      @dev: device
7059  *      @proto_down: new value
7060  *
7061  *      This info can be used by switch drivers to set the phys state of the
7062  *      port.
7063  */
7064 int dev_change_proto_down(struct net_device *dev, bool proto_down)
7065 {
7066         const struct net_device_ops *ops = dev->netdev_ops;
7067
7068         if (!ops->ndo_change_proto_down)
7069                 return -EOPNOTSUPP;
7070         if (!netif_device_present(dev))
7071                 return -ENODEV;
7072         return ops->ndo_change_proto_down(dev, proto_down);
7073 }
7074 EXPORT_SYMBOL(dev_change_proto_down);
7075
7076 u8 __dev_xdp_attached(struct net_device *dev, bpf_op_t bpf_op, u32 *prog_id)
7077 {
7078         struct netdev_bpf xdp;
7079
7080         memset(&xdp, 0, sizeof(xdp));
7081         xdp.command = XDP_QUERY_PROG;
7082
7083         /* Query must always succeed. */
7084         WARN_ON(bpf_op(dev, &xdp) < 0);
7085         if (prog_id)
7086                 *prog_id = xdp.prog_id;
7087
7088         return xdp.prog_attached;
7089 }
7090
7091 static int dev_xdp_install(struct net_device *dev, bpf_op_t bpf_op,
7092                            struct netlink_ext_ack *extack, u32 flags,
7093                            struct bpf_prog *prog)
7094 {
7095         struct netdev_bpf xdp;
7096
7097         memset(&xdp, 0, sizeof(xdp));
7098         if (flags & XDP_FLAGS_HW_MODE)
7099                 xdp.command = XDP_SETUP_PROG_HW;
7100         else
7101                 xdp.command = XDP_SETUP_PROG;
7102         xdp.extack = extack;
7103         xdp.flags = flags;
7104         xdp.prog = prog;
7105
7106         return bpf_op(dev, &xdp);
7107 }
7108
7109 /**
7110  *      dev_change_xdp_fd - set or clear a bpf program for a device rx path
7111  *      @dev: device
7112  *      @extack: netlink extended ack
7113  *      @fd: new program fd or negative value to clear
7114  *      @flags: xdp-related flags
7115  *
7116  *      Set or clear a bpf program for a device
7117  */
7118 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
7119                       int fd, u32 flags)
7120 {
7121         const struct net_device_ops *ops = dev->netdev_ops;
7122         struct bpf_prog *prog = NULL;
7123         bpf_op_t bpf_op, bpf_chk;
7124         int err;
7125
7126         ASSERT_RTNL();
7127
7128         bpf_op = bpf_chk = ops->ndo_bpf;
7129         if (!bpf_op && (flags & (XDP_FLAGS_DRV_MODE | XDP_FLAGS_HW_MODE)))
7130                 return -EOPNOTSUPP;
7131         if (!bpf_op || (flags & XDP_FLAGS_SKB_MODE))
7132                 bpf_op = generic_xdp_install;
7133         if (bpf_op == bpf_chk)
7134                 bpf_chk = generic_xdp_install;
7135
7136         if (fd >= 0) {
7137                 if (bpf_chk && __dev_xdp_attached(dev, bpf_chk, NULL))
7138                         return -EEXIST;
7139                 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) &&
7140                     __dev_xdp_attached(dev, bpf_op, NULL))
7141                         return -EBUSY;
7142
7143                 if (bpf_op == ops->ndo_bpf)
7144                         prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
7145                                                      dev);
7146                 else
7147                         prog = bpf_prog_get_type(fd, BPF_PROG_TYPE_XDP);
7148                 if (IS_ERR(prog))
7149                         return PTR_ERR(prog);
7150         }
7151
7152         err = dev_xdp_install(dev, bpf_op, extack, flags, prog);
7153         if (err < 0 && prog)
7154                 bpf_prog_put(prog);
7155
7156         return err;
7157 }
7158
7159 /**
7160  *      dev_new_index   -       allocate an ifindex
7161  *      @net: the applicable net namespace
7162  *
7163  *      Returns a suitable unique value for a new device interface
7164  *      number.  The caller must hold the rtnl semaphore or the
7165  *      dev_base_lock to be sure it remains unique.
7166  */
7167 static int dev_new_index(struct net *net)
7168 {
7169         int ifindex = net->ifindex;
7170
7171         for (;;) {
7172                 if (++ifindex <= 0)
7173                         ifindex = 1;
7174                 if (!__dev_get_by_index(net, ifindex))
7175                         return net->ifindex = ifindex;
7176         }
7177 }
7178
7179 /* Delayed registration/unregisteration */
7180 static LIST_HEAD(net_todo_list);
7181 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
7182
7183 static void net_set_todo(struct net_device *dev)
7184 {
7185         list_add_tail(&dev->todo_list, &net_todo_list);
7186         dev_net(dev)->dev_unreg_count++;
7187 }
7188
7189 static void rollback_registered_many(struct list_head *head)
7190 {
7191         struct net_device *dev, *tmp;
7192         LIST_HEAD(close_head);
7193
7194         BUG_ON(dev_boot_phase);
7195         ASSERT_RTNL();
7196
7197         list_for_each_entry_safe(dev, tmp, head, unreg_list) {
7198                 /* Some devices call without registering
7199                  * for initialization unwind. Remove those
7200                  * devices and proceed with the remaining.
7201                  */
7202                 if (dev->reg_state == NETREG_UNINITIALIZED) {
7203                         pr_debug("unregister_netdevice: device %s/%p never was registered\n",
7204                                  dev->name, dev);
7205
7206                         WARN_ON(1);
7207                         list_del(&dev->unreg_list);
7208                         continue;
7209                 }
7210                 dev->dismantle = true;
7211                 BUG_ON(dev->reg_state != NETREG_REGISTERED);
7212         }
7213
7214         /* If device is running, close it first. */
7215         list_for_each_entry(dev, head, unreg_list)
7216                 list_add_tail(&dev->close_list, &close_head);
7217         dev_close_many(&close_head, true);
7218
7219         list_for_each_entry(dev, head, unreg_list) {
7220                 /* And unlink it from device chain. */
7221                 unlist_netdevice(dev);
7222
7223                 dev->reg_state = NETREG_UNREGISTERING;
7224         }
7225         flush_all_backlogs();
7226
7227         synchronize_net();
7228
7229         list_for_each_entry(dev, head, unreg_list) {
7230                 struct sk_buff *skb = NULL;
7231
7232                 /* Shutdown queueing discipline. */
7233                 dev_shutdown(dev);
7234
7235
7236                 /* Notify protocols, that we are about to destroy
7237                  * this device. They should clean all the things.
7238                  */
7239                 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7240
7241                 if (!dev->rtnl_link_ops ||
7242                     dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7243                         skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
7244                                                      GFP_KERNEL, NULL);
7245
7246                 /*
7247                  *      Flush the unicast and multicast chains
7248                  */
7249                 dev_uc_flush(dev);
7250                 dev_mc_flush(dev);
7251
7252                 if (dev->netdev_ops->ndo_uninit)
7253                         dev->netdev_ops->ndo_uninit(dev);
7254
7255                 if (skb)
7256                         rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
7257
7258                 /* Notifier chain MUST detach us all upper devices. */
7259                 WARN_ON(netdev_has_any_upper_dev(dev));
7260                 WARN_ON(netdev_has_any_lower_dev(dev));
7261
7262                 /* Remove entries from kobject tree */
7263                 netdev_unregister_kobject(dev);
7264 #ifdef CONFIG_XPS
7265                 /* Remove XPS queueing entries */
7266                 netif_reset_xps_queues_gt(dev, 0);
7267 #endif
7268         }
7269
7270         synchronize_net();
7271
7272         list_for_each_entry(dev, head, unreg_list)
7273                 dev_put(dev);
7274 }
7275
7276 static void rollback_registered(struct net_device *dev)
7277 {
7278         LIST_HEAD(single);
7279
7280         list_add(&dev->unreg_list, &single);
7281         rollback_registered_many(&single);
7282         list_del(&single);
7283 }
7284
7285 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
7286         struct net_device *upper, netdev_features_t features)
7287 {
7288         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
7289         netdev_features_t feature;
7290         int feature_bit;
7291
7292         for_each_netdev_feature(&upper_disables, feature_bit) {
7293                 feature = __NETIF_F_BIT(feature_bit);
7294                 if (!(upper->wanted_features & feature)
7295                     && (features & feature)) {
7296                         netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
7297                                    &feature, upper->name);
7298                         features &= ~feature;
7299                 }
7300         }
7301
7302         return features;
7303 }
7304
7305 static void netdev_sync_lower_features(struct net_device *upper,
7306         struct net_device *lower, netdev_features_t features)
7307 {
7308         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
7309         netdev_features_t feature;
7310         int feature_bit;
7311
7312         for_each_netdev_feature(&upper_disables, feature_bit) {
7313                 feature = __NETIF_F_BIT(feature_bit);
7314                 if (!(features & feature) && (lower->features & feature)) {
7315                         netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
7316                                    &feature, lower->name);
7317                         lower->wanted_features &= ~feature;
7318                         netdev_update_features(lower);
7319
7320                         if (unlikely(lower->features & feature))
7321                                 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
7322                                             &feature, lower->name);
7323                 }
7324         }
7325 }
7326
7327 static netdev_features_t netdev_fix_features(struct net_device *dev,
7328         netdev_features_t features)
7329 {
7330         /* Fix illegal checksum combinations */
7331         if ((features & NETIF_F_HW_CSUM) &&
7332             (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
7333                 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
7334                 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
7335         }
7336
7337         /* TSO requires that SG is present as well. */
7338         if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
7339                 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
7340                 features &= ~NETIF_F_ALL_TSO;
7341         }
7342
7343         if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
7344                                         !(features & NETIF_F_IP_CSUM)) {
7345                 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
7346                 features &= ~NETIF_F_TSO;
7347                 features &= ~NETIF_F_TSO_ECN;
7348         }
7349
7350         if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
7351                                          !(features & NETIF_F_IPV6_CSUM)) {
7352                 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
7353                 features &= ~NETIF_F_TSO6;
7354         }
7355
7356         /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
7357         if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
7358                 features &= ~NETIF_F_TSO_MANGLEID;
7359
7360         /* TSO ECN requires that TSO is present as well. */
7361         if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
7362                 features &= ~NETIF_F_TSO_ECN;
7363
7364         /* Software GSO depends on SG. */
7365         if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
7366                 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
7367                 features &= ~NETIF_F_GSO;
7368         }
7369
7370         /* GSO partial features require GSO partial be set */
7371         if ((features & dev->gso_partial_features) &&
7372             !(features & NETIF_F_GSO_PARTIAL)) {
7373                 netdev_dbg(dev,
7374                            "Dropping partially supported GSO features since no GSO partial.\n");
7375                 features &= ~dev->gso_partial_features;
7376         }
7377
7378         return features;
7379 }
7380
7381 int __netdev_update_features(struct net_device *dev)
7382 {
7383         struct net_device *upper, *lower;
7384         netdev_features_t features;
7385         struct list_head *iter;
7386         int err = -1;
7387
7388         ASSERT_RTNL();
7389
7390         features = netdev_get_wanted_features(dev);
7391
7392         if (dev->netdev_ops->ndo_fix_features)
7393                 features = dev->netdev_ops->ndo_fix_features(dev, features);
7394
7395         /* driver might be less strict about feature dependencies */
7396         features = netdev_fix_features(dev, features);
7397
7398         /* some features can't be enabled if they're off an an upper device */
7399         netdev_for_each_upper_dev_rcu(dev, upper, iter)
7400                 features = netdev_sync_upper_features(dev, upper, features);
7401
7402         if (dev->features == features)
7403                 goto sync_lower;
7404
7405         netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
7406                 &dev->features, &features);
7407
7408         if (dev->netdev_ops->ndo_set_features)
7409                 err = dev->netdev_ops->ndo_set_features(dev, features);
7410         else
7411                 err = 0;
7412
7413         if (unlikely(err < 0)) {
7414                 netdev_err(dev,
7415                         "set_features() failed (%d); wanted %pNF, left %pNF\n",
7416                         err, &features, &dev->features);
7417                 /* return non-0 since some features might have changed and
7418                  * it's better to fire a spurious notification than miss it
7419                  */
7420                 return -1;
7421         }
7422
7423 sync_lower:
7424         /* some features must be disabled on lower devices when disabled
7425          * on an upper device (think: bonding master or bridge)
7426          */
7427         netdev_for_each_lower_dev(dev, lower, iter)
7428                 netdev_sync_lower_features(dev, lower, features);
7429
7430         if (!err) {
7431                 netdev_features_t diff = features ^ dev->features;
7432
7433                 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
7434                         /* udp_tunnel_{get,drop}_rx_info both need
7435                          * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
7436                          * device, or they won't do anything.
7437                          * Thus we need to update dev->features
7438                          * *before* calling udp_tunnel_get_rx_info,
7439                          * but *after* calling udp_tunnel_drop_rx_info.
7440                          */
7441                         if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
7442                                 dev->features = features;
7443                                 udp_tunnel_get_rx_info(dev);
7444                         } else {
7445                                 udp_tunnel_drop_rx_info(dev);
7446                         }
7447                 }
7448
7449                 dev->features = features;
7450         }
7451
7452         return err < 0 ? 0 : 1;
7453 }
7454
7455 /**
7456  *      netdev_update_features - recalculate device features
7457  *      @dev: the device to check
7458  *
7459  *      Recalculate dev->features set and send notifications if it
7460  *      has changed. Should be called after driver or hardware dependent
7461  *      conditions might have changed that influence the features.
7462  */
7463 void netdev_update_features(struct net_device *dev)
7464 {
7465         if (__netdev_update_features(dev))
7466                 netdev_features_change(dev);
7467 }
7468 EXPORT_SYMBOL(netdev_update_features);
7469
7470 /**
7471  *      netdev_change_features - recalculate device features
7472  *      @dev: the device to check
7473  *
7474  *      Recalculate dev->features set and send notifications even
7475  *      if they have not changed. Should be called instead of
7476  *      netdev_update_features() if also dev->vlan_features might
7477  *      have changed to allow the changes to be propagated to stacked
7478  *      VLAN devices.
7479  */
7480 void netdev_change_features(struct net_device *dev)
7481 {
7482         __netdev_update_features(dev);
7483         netdev_features_change(dev);
7484 }
7485 EXPORT_SYMBOL(netdev_change_features);
7486
7487 /**
7488  *      netif_stacked_transfer_operstate -      transfer operstate
7489  *      @rootdev: the root or lower level device to transfer state from
7490  *      @dev: the device to transfer operstate to
7491  *
7492  *      Transfer operational state from root to device. This is normally
7493  *      called when a stacking relationship exists between the root
7494  *      device and the device(a leaf device).
7495  */
7496 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
7497                                         struct net_device *dev)
7498 {
7499         if (rootdev->operstate == IF_OPER_DORMANT)
7500                 netif_dormant_on(dev);
7501         else
7502                 netif_dormant_off(dev);
7503
7504         if (netif_carrier_ok(rootdev))
7505                 netif_carrier_on(dev);
7506         else
7507                 netif_carrier_off(dev);
7508 }
7509 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
7510
7511 #ifdef CONFIG_SYSFS
7512 static int netif_alloc_rx_queues(struct net_device *dev)
7513 {
7514         unsigned int i, count = dev->num_rx_queues;
7515         struct netdev_rx_queue *rx;
7516         size_t sz = count * sizeof(*rx);
7517
7518         BUG_ON(count < 1);
7519
7520         rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
7521         if (!rx)
7522                 return -ENOMEM;
7523
7524         dev->_rx = rx;
7525
7526         for (i = 0; i < count; i++)
7527                 rx[i].dev = dev;
7528         return 0;
7529 }
7530 #endif
7531
7532 static void netdev_init_one_queue(struct net_device *dev,
7533                                   struct netdev_queue *queue, void *_unused)
7534 {
7535         /* Initialize queue lock */
7536         spin_lock_init(&queue->_xmit_lock);
7537         netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
7538         queue->xmit_lock_owner = -1;
7539         netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
7540         queue->dev = dev;
7541 #ifdef CONFIG_BQL
7542         dql_init(&queue->dql, HZ);
7543 #endif
7544 }
7545
7546 static void netif_free_tx_queues(struct net_device *dev)
7547 {
7548         kvfree(dev->_tx);
7549 }
7550
7551 static int netif_alloc_netdev_queues(struct net_device *dev)
7552 {
7553         unsigned int count = dev->num_tx_queues;
7554         struct netdev_queue *tx;
7555         size_t sz = count * sizeof(*tx);
7556
7557         if (count < 1 || count > 0xffff)
7558                 return -EINVAL;
7559
7560         tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
7561         if (!tx)
7562                 return -ENOMEM;
7563
7564         dev->_tx = tx;
7565
7566         netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
7567         spin_lock_init(&dev->tx_global_lock);
7568
7569         return 0;
7570 }
7571
7572 void netif_tx_stop_all_queues(struct net_device *dev)
7573 {
7574         unsigned int i;
7575
7576         for (i = 0; i < dev->num_tx_queues; i++) {
7577                 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
7578
7579                 netif_tx_stop_queue(txq);
7580         }
7581 }
7582 EXPORT_SYMBOL(netif_tx_stop_all_queues);
7583
7584 /**
7585  *      register_netdevice      - register a network device
7586  *      @dev: device to register
7587  *
7588  *      Take a completed network device structure and add it to the kernel
7589  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7590  *      chain. 0 is returned on success. A negative errno code is returned
7591  *      on a failure to set up the device, or if the name is a duplicate.
7592  *
7593  *      Callers must hold the rtnl semaphore. You may want
7594  *      register_netdev() instead of this.
7595  *
7596  *      BUGS:
7597  *      The locking appears insufficient to guarantee two parallel registers
7598  *      will not get the same name.
7599  */
7600
7601 int register_netdevice(struct net_device *dev)
7602 {
7603         int ret;
7604         struct net *net = dev_net(dev);
7605
7606         BUG_ON(dev_boot_phase);
7607         ASSERT_RTNL();
7608
7609         might_sleep();
7610
7611         /* When net_device's are persistent, this will be fatal. */
7612         BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
7613         BUG_ON(!net);
7614
7615         spin_lock_init(&dev->addr_list_lock);
7616         netdev_set_addr_lockdep_class(dev);
7617
7618         ret = dev_get_valid_name(net, dev, dev->name);
7619         if (ret < 0)
7620                 goto out;
7621
7622         /* Init, if this function is available */
7623         if (dev->netdev_ops->ndo_init) {
7624                 ret = dev->netdev_ops->ndo_init(dev);
7625                 if (ret) {
7626                         if (ret > 0)
7627                                 ret = -EIO;
7628                         goto out;
7629                 }
7630         }
7631
7632         if (((dev->hw_features | dev->features) &
7633              NETIF_F_HW_VLAN_CTAG_FILTER) &&
7634             (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
7635              !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
7636                 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
7637                 ret = -EINVAL;
7638                 goto err_uninit;
7639         }
7640
7641         ret = -EBUSY;
7642         if (!dev->ifindex)
7643                 dev->ifindex = dev_new_index(net);
7644         else if (__dev_get_by_index(net, dev->ifindex))
7645                 goto err_uninit;
7646
7647         /* Transfer changeable features to wanted_features and enable
7648          * software offloads (GSO and GRO).
7649          */
7650         dev->hw_features |= NETIF_F_SOFT_FEATURES;
7651         dev->features |= NETIF_F_SOFT_FEATURES;
7652
7653         if (dev->netdev_ops->ndo_udp_tunnel_add) {
7654                 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
7655                 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
7656         }
7657
7658         dev->wanted_features = dev->features & dev->hw_features;
7659
7660         if (!(dev->flags & IFF_LOOPBACK))
7661                 dev->hw_features |= NETIF_F_NOCACHE_COPY;
7662
7663         /* If IPv4 TCP segmentation offload is supported we should also
7664          * allow the device to enable segmenting the frame with the option
7665          * of ignoring a static IP ID value.  This doesn't enable the
7666          * feature itself but allows the user to enable it later.
7667          */
7668         if (dev->hw_features & NETIF_F_TSO)
7669                 dev->hw_features |= NETIF_F_TSO_MANGLEID;
7670         if (dev->vlan_features & NETIF_F_TSO)
7671                 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
7672         if (dev->mpls_features & NETIF_F_TSO)
7673                 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
7674         if (dev->hw_enc_features & NETIF_F_TSO)
7675                 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
7676
7677         /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
7678          */
7679         dev->vlan_features |= NETIF_F_HIGHDMA;
7680
7681         /* Make NETIF_F_SG inheritable to tunnel devices.
7682          */
7683         dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
7684
7685         /* Make NETIF_F_SG inheritable to MPLS.
7686          */
7687         dev->mpls_features |= NETIF_F_SG;
7688
7689         ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
7690         ret = notifier_to_errno(ret);
7691         if (ret)
7692                 goto err_uninit;
7693
7694         ret = netdev_register_kobject(dev);
7695         if (ret)
7696                 goto err_uninit;
7697         dev->reg_state = NETREG_REGISTERED;
7698
7699         __netdev_update_features(dev);
7700
7701         /*
7702          *      Default initial state at registry is that the
7703          *      device is present.
7704          */
7705
7706         set_bit(__LINK_STATE_PRESENT, &dev->state);
7707
7708         linkwatch_init_dev(dev);
7709
7710         dev_init_scheduler(dev);
7711         dev_hold(dev);
7712         list_netdevice(dev);
7713         add_device_randomness(dev->dev_addr, dev->addr_len);
7714
7715         /* If the device has permanent device address, driver should
7716          * set dev_addr and also addr_assign_type should be set to
7717          * NET_ADDR_PERM (default value).
7718          */
7719         if (dev->addr_assign_type == NET_ADDR_PERM)
7720                 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
7721
7722         /* Notify protocols, that a new device appeared. */
7723         ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
7724         ret = notifier_to_errno(ret);
7725         if (ret) {
7726                 rollback_registered(dev);
7727                 dev->reg_state = NETREG_UNREGISTERED;
7728         }
7729         /*
7730          *      Prevent userspace races by waiting until the network
7731          *      device is fully setup before sending notifications.
7732          */
7733         if (!dev->rtnl_link_ops ||
7734             dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7735                 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
7736
7737 out:
7738         return ret;
7739
7740 err_uninit:
7741         if (dev->netdev_ops->ndo_uninit)
7742                 dev->netdev_ops->ndo_uninit(dev);
7743         if (dev->priv_destructor)
7744                 dev->priv_destructor(dev);
7745         goto out;
7746 }
7747 EXPORT_SYMBOL(register_netdevice);
7748
7749 /**
7750  *      init_dummy_netdev       - init a dummy network device for NAPI
7751  *      @dev: device to init
7752  *
7753  *      This takes a network device structure and initialize the minimum
7754  *      amount of fields so it can be used to schedule NAPI polls without
7755  *      registering a full blown interface. This is to be used by drivers
7756  *      that need to tie several hardware interfaces to a single NAPI
7757  *      poll scheduler due to HW limitations.
7758  */
7759 int init_dummy_netdev(struct net_device *dev)
7760 {
7761         /* Clear everything. Note we don't initialize spinlocks
7762          * are they aren't supposed to be taken by any of the
7763          * NAPI code and this dummy netdev is supposed to be
7764          * only ever used for NAPI polls
7765          */
7766         memset(dev, 0, sizeof(struct net_device));
7767
7768         /* make sure we BUG if trying to hit standard
7769          * register/unregister code path
7770          */
7771         dev->reg_state = NETREG_DUMMY;
7772
7773         /* NAPI wants this */
7774         INIT_LIST_HEAD(&dev->napi_list);
7775
7776         /* a dummy interface is started by default */
7777         set_bit(__LINK_STATE_PRESENT, &dev->state);
7778         set_bit(__LINK_STATE_START, &dev->state);
7779
7780         /* Note : We dont allocate pcpu_refcnt for dummy devices,
7781          * because users of this 'device' dont need to change
7782          * its refcount.
7783          */
7784
7785         return 0;
7786 }
7787 EXPORT_SYMBOL_GPL(init_dummy_netdev);
7788
7789
7790 /**
7791  *      register_netdev - register a network device
7792  *      @dev: device to register
7793  *
7794  *      Take a completed network device structure and add it to the kernel
7795  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7796  *      chain. 0 is returned on success. A negative errno code is returned
7797  *      on a failure to set up the device, or if the name is a duplicate.
7798  *
7799  *      This is a wrapper around register_netdevice that takes the rtnl semaphore
7800  *      and expands the device name if you passed a format string to
7801  *      alloc_netdev.
7802  */
7803 int register_netdev(struct net_device *dev)
7804 {
7805         int err;
7806
7807         rtnl_lock();
7808         err = register_netdevice(dev);
7809         rtnl_unlock();
7810         return err;
7811 }
7812 EXPORT_SYMBOL(register_netdev);
7813
7814 int netdev_refcnt_read(const struct net_device *dev)
7815 {
7816         int i, refcnt = 0;
7817
7818         for_each_possible_cpu(i)
7819                 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
7820         return refcnt;
7821 }
7822 EXPORT_SYMBOL(netdev_refcnt_read);
7823
7824 /**
7825  * netdev_wait_allrefs - wait until all references are gone.
7826  * @dev: target net_device
7827  *
7828  * This is called when unregistering network devices.
7829  *
7830  * Any protocol or device that holds a reference should register
7831  * for netdevice notification, and cleanup and put back the
7832  * reference if they receive an UNREGISTER event.
7833  * We can get stuck here if buggy protocols don't correctly
7834  * call dev_put.
7835  */
7836 static void netdev_wait_allrefs(struct net_device *dev)
7837 {
7838         unsigned long rebroadcast_time, warning_time;
7839         int refcnt;
7840
7841         linkwatch_forget_dev(dev);
7842
7843         rebroadcast_time = warning_time = jiffies;
7844         refcnt = netdev_refcnt_read(dev);
7845
7846         while (refcnt != 0) {
7847                 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
7848                         rtnl_lock();
7849
7850                         /* Rebroadcast unregister notification */
7851                         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7852
7853                         __rtnl_unlock();
7854                         rcu_barrier();
7855                         rtnl_lock();
7856
7857                         call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7858                         if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
7859                                      &dev->state)) {
7860                                 /* We must not have linkwatch events
7861                                  * pending on unregister. If this
7862                                  * happens, we simply run the queue
7863                                  * unscheduled, resulting in a noop
7864                                  * for this device.
7865                                  */
7866                                 linkwatch_run_queue();
7867                         }
7868
7869                         __rtnl_unlock();
7870
7871                         rebroadcast_time = jiffies;
7872                 }
7873
7874                 msleep(250);
7875
7876                 refcnt = netdev_refcnt_read(dev);
7877
7878                 if (time_after(jiffies, warning_time + 10 * HZ)) {
7879                         pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
7880                                  dev->name, refcnt);
7881                         warning_time = jiffies;
7882                 }
7883         }
7884 }
7885
7886 /* The sequence is:
7887  *
7888  *      rtnl_lock();
7889  *      ...
7890  *      register_netdevice(x1);
7891  *      register_netdevice(x2);
7892  *      ...
7893  *      unregister_netdevice(y1);
7894  *      unregister_netdevice(y2);
7895  *      ...
7896  *      rtnl_unlock();
7897  *      free_netdev(y1);
7898  *      free_netdev(y2);
7899  *
7900  * We are invoked by rtnl_unlock().
7901  * This allows us to deal with problems:
7902  * 1) We can delete sysfs objects which invoke hotplug
7903  *    without deadlocking with linkwatch via keventd.
7904  * 2) Since we run with the RTNL semaphore not held, we can sleep
7905  *    safely in order to wait for the netdev refcnt to drop to zero.
7906  *
7907  * We must not return until all unregister events added during
7908  * the interval the lock was held have been completed.
7909  */
7910 void netdev_run_todo(void)
7911 {
7912         struct list_head list;
7913
7914         /* Snapshot list, allow later requests */
7915         list_replace_init(&net_todo_list, &list);
7916
7917         __rtnl_unlock();
7918
7919
7920         /* Wait for rcu callbacks to finish before next phase */
7921         if (!list_empty(&list))
7922                 rcu_barrier();
7923
7924         while (!list_empty(&list)) {
7925                 struct net_device *dev
7926                         = list_first_entry(&list, struct net_device, todo_list);
7927                 list_del(&dev->todo_list);
7928
7929                 rtnl_lock();
7930                 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7931                 __rtnl_unlock();
7932
7933                 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
7934                         pr_err("network todo '%s' but state %d\n",
7935                                dev->name, dev->reg_state);
7936                         dump_stack();
7937                         continue;
7938                 }
7939
7940                 dev->reg_state = NETREG_UNREGISTERED;
7941
7942                 netdev_wait_allrefs(dev);
7943
7944                 /* paranoia */
7945                 BUG_ON(netdev_refcnt_read(dev));
7946                 BUG_ON(!list_empty(&dev->ptype_all));
7947                 BUG_ON(!list_empty(&dev->ptype_specific));
7948                 WARN_ON(rcu_access_pointer(dev->ip_ptr));
7949                 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
7950                 WARN_ON(dev->dn_ptr);
7951
7952                 if (dev->priv_destructor)
7953                         dev->priv_destructor(dev);
7954                 if (dev->needs_free_netdev)
7955                         free_netdev(dev);
7956
7957                 /* Report a network device has been unregistered */
7958                 rtnl_lock();
7959                 dev_net(dev)->dev_unreg_count--;
7960                 __rtnl_unlock();
7961                 wake_up(&netdev_unregistering_wq);
7962
7963                 /* Free network device */
7964                 kobject_put(&dev->dev.kobj);
7965         }
7966 }
7967
7968 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
7969  * all the same fields in the same order as net_device_stats, with only
7970  * the type differing, but rtnl_link_stats64 may have additional fields
7971  * at the end for newer counters.
7972  */
7973 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
7974                              const struct net_device_stats *netdev_stats)
7975 {
7976 #if BITS_PER_LONG == 64
7977         BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
7978         memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
7979         /* zero out counters that only exist in rtnl_link_stats64 */
7980         memset((char *)stats64 + sizeof(*netdev_stats), 0,
7981                sizeof(*stats64) - sizeof(*netdev_stats));
7982 #else
7983         size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
7984         const unsigned long *src = (const unsigned long *)netdev_stats;
7985         u64 *dst = (u64 *)stats64;
7986
7987         BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
7988         for (i = 0; i < n; i++)
7989                 dst[i] = src[i];
7990         /* zero out counters that only exist in rtnl_link_stats64 */
7991         memset((char *)stats64 + n * sizeof(u64), 0,
7992                sizeof(*stats64) - n * sizeof(u64));
7993 #endif
7994 }
7995 EXPORT_SYMBOL(netdev_stats_to_stats64);
7996
7997 /**
7998  *      dev_get_stats   - get network device statistics
7999  *      @dev: device to get statistics from
8000  *      @storage: place to store stats
8001  *
8002  *      Get network statistics from device. Return @storage.
8003  *      The device driver may provide its own method by setting
8004  *      dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
8005  *      otherwise the internal statistics structure is used.
8006  */
8007 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
8008                                         struct rtnl_link_stats64 *storage)
8009 {
8010         const struct net_device_ops *ops = dev->netdev_ops;
8011
8012         if (ops->ndo_get_stats64) {
8013                 memset(storage, 0, sizeof(*storage));
8014                 ops->ndo_get_stats64(dev, storage);
8015         } else if (ops->ndo_get_stats) {
8016                 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
8017         } else {
8018                 netdev_stats_to_stats64(storage, &dev->stats);
8019         }
8020         storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
8021         storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
8022         storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
8023         return storage;
8024 }
8025 EXPORT_SYMBOL(dev_get_stats);
8026
8027 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
8028 {
8029         struct netdev_queue *queue = dev_ingress_queue(dev);
8030
8031 #ifdef CONFIG_NET_CLS_ACT
8032         if (queue)
8033                 return queue;
8034         queue = kzalloc(sizeof(*queue), GFP_KERNEL);
8035         if (!queue)
8036                 return NULL;
8037         netdev_init_one_queue(dev, queue, NULL);
8038         RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
8039         queue->qdisc_sleeping = &noop_qdisc;
8040         rcu_assign_pointer(dev->ingress_queue, queue);
8041 #endif
8042         return queue;
8043 }
8044
8045 static const struct ethtool_ops default_ethtool_ops;
8046
8047 void netdev_set_default_ethtool_ops(struct net_device *dev,
8048                                     const struct ethtool_ops *ops)
8049 {
8050         if (dev->ethtool_ops == &default_ethtool_ops)
8051                 dev->ethtool_ops = ops;
8052 }
8053 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
8054
8055 void netdev_freemem(struct net_device *dev)
8056 {
8057         char *addr = (char *)dev - dev->padded;
8058
8059         kvfree(addr);
8060 }
8061
8062 /**
8063  * alloc_netdev_mqs - allocate network device
8064  * @sizeof_priv: size of private data to allocate space for
8065  * @name: device name format string
8066  * @name_assign_type: origin of device name
8067  * @setup: callback to initialize device
8068  * @txqs: the number of TX subqueues to allocate
8069  * @rxqs: the number of RX subqueues to allocate
8070  *
8071  * Allocates a struct net_device with private data area for driver use
8072  * and performs basic initialization.  Also allocates subqueue structs
8073  * for each queue on the device.
8074  */
8075 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
8076                 unsigned char name_assign_type,
8077                 void (*setup)(struct net_device *),
8078                 unsigned int txqs, unsigned int rxqs)
8079 {
8080         struct net_device *dev;
8081         unsigned int alloc_size;
8082         struct net_device *p;
8083
8084         BUG_ON(strlen(name) >= sizeof(dev->name));
8085
8086         if (txqs < 1) {
8087                 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
8088                 return NULL;
8089         }
8090
8091 #ifdef CONFIG_SYSFS
8092         if (rxqs < 1) {
8093                 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
8094                 return NULL;
8095         }
8096 #endif
8097
8098         alloc_size = sizeof(struct net_device);
8099         if (sizeof_priv) {
8100                 /* ensure 32-byte alignment of private area */
8101                 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
8102                 alloc_size += sizeof_priv;
8103         }
8104         /* ensure 32-byte alignment of whole construct */
8105         alloc_size += NETDEV_ALIGN - 1;
8106
8107         p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
8108         if (!p)
8109                 return NULL;
8110
8111         dev = PTR_ALIGN(p, NETDEV_ALIGN);
8112         dev->padded = (char *)dev - (char *)p;
8113
8114         dev->pcpu_refcnt = alloc_percpu(int);
8115         if (!dev->pcpu_refcnt)
8116                 goto free_dev;
8117
8118         if (dev_addr_init(dev))
8119                 goto free_pcpu;
8120
8121         dev_mc_init(dev);
8122         dev_uc_init(dev);
8123
8124         dev_net_set(dev, &init_net);
8125
8126         dev->gso_max_size = GSO_MAX_SIZE;
8127         dev->gso_max_segs = GSO_MAX_SEGS;
8128
8129         INIT_LIST_HEAD(&dev->napi_list);
8130         INIT_LIST_HEAD(&dev->unreg_list);
8131         INIT_LIST_HEAD(&dev->close_list);
8132         INIT_LIST_HEAD(&dev->link_watch_list);
8133         INIT_LIST_HEAD(&dev->adj_list.upper);
8134         INIT_LIST_HEAD(&dev->adj_list.lower);
8135         INIT_LIST_HEAD(&dev->ptype_all);
8136         INIT_LIST_HEAD(&dev->ptype_specific);
8137 #ifdef CONFIG_NET_SCHED
8138         hash_init(dev->qdisc_hash);
8139 #endif
8140         dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
8141         setup(dev);
8142
8143         if (!dev->tx_queue_len) {
8144                 dev->priv_flags |= IFF_NO_QUEUE;
8145                 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
8146         }
8147
8148         dev->num_tx_queues = txqs;
8149         dev->real_num_tx_queues = txqs;
8150         if (netif_alloc_netdev_queues(dev))
8151                 goto free_all;
8152
8153 #ifdef CONFIG_SYSFS
8154         dev->num_rx_queues = rxqs;
8155         dev->real_num_rx_queues = rxqs;
8156         if (netif_alloc_rx_queues(dev))
8157                 goto free_all;
8158 #endif
8159
8160         strcpy(dev->name, name);
8161         dev->name_assign_type = name_assign_type;
8162         dev->group = INIT_NETDEV_GROUP;
8163         if (!dev->ethtool_ops)
8164                 dev->ethtool_ops = &default_ethtool_ops;
8165
8166         nf_hook_ingress_init(dev);
8167
8168         return dev;
8169
8170 free_all:
8171         free_netdev(dev);
8172         return NULL;
8173
8174 free_pcpu:
8175         free_percpu(dev->pcpu_refcnt);
8176 free_dev:
8177         netdev_freemem(dev);
8178         return NULL;
8179 }
8180 EXPORT_SYMBOL(alloc_netdev_mqs);
8181
8182 /**
8183  * free_netdev - free network device
8184  * @dev: device
8185  *
8186  * This function does the last stage of destroying an allocated device
8187  * interface. The reference to the device object is released. If this
8188  * is the last reference then it will be freed.Must be called in process
8189  * context.
8190  */
8191 void free_netdev(struct net_device *dev)
8192 {
8193         struct napi_struct *p, *n;
8194         struct bpf_prog *prog;
8195
8196         might_sleep();
8197         netif_free_tx_queues(dev);
8198 #ifdef CONFIG_SYSFS
8199         kvfree(dev->_rx);
8200 #endif
8201
8202         kfree(rcu_dereference_protected(dev->ingress_queue, 1));
8203
8204         /* Flush device addresses */
8205         dev_addr_flush(dev);
8206
8207         list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
8208                 netif_napi_del(p);
8209
8210         free_percpu(dev->pcpu_refcnt);
8211         dev->pcpu_refcnt = NULL;
8212
8213         prog = rcu_dereference_protected(dev->xdp_prog, 1);
8214         if (prog) {
8215                 bpf_prog_put(prog);
8216                 static_key_slow_dec(&generic_xdp_needed);
8217         }
8218
8219         /*  Compatibility with error handling in drivers */
8220         if (dev->reg_state == NETREG_UNINITIALIZED) {
8221                 netdev_freemem(dev);
8222                 return;
8223         }
8224
8225         BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
8226         dev->reg_state = NETREG_RELEASED;
8227
8228         /* will free via device release */
8229         put_device(&dev->dev);
8230 }
8231 EXPORT_SYMBOL(free_netdev);
8232
8233 /**
8234  *      synchronize_net -  Synchronize with packet receive processing
8235  *
8236  *      Wait for packets currently being received to be done.
8237  *      Does not block later packets from starting.
8238  */
8239 void synchronize_net(void)
8240 {
8241         might_sleep();
8242         if (rtnl_is_locked())
8243                 synchronize_rcu_expedited();
8244         else
8245                 synchronize_rcu();
8246 }
8247 EXPORT_SYMBOL(synchronize_net);
8248
8249 /**
8250  *      unregister_netdevice_queue - remove device from the kernel
8251  *      @dev: device
8252  *      @head: list
8253  *
8254  *      This function shuts down a device interface and removes it
8255  *      from the kernel tables.
8256  *      If head not NULL, device is queued to be unregistered later.
8257  *
8258  *      Callers must hold the rtnl semaphore.  You may want
8259  *      unregister_netdev() instead of this.
8260  */
8261
8262 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
8263 {
8264         ASSERT_RTNL();
8265
8266         if (head) {
8267                 list_move_tail(&dev->unreg_list, head);
8268         } else {
8269                 rollback_registered(dev);
8270                 /* Finish processing unregister after unlock */
8271                 net_set_todo(dev);
8272         }
8273 }
8274 EXPORT_SYMBOL(unregister_netdevice_queue);
8275
8276 /**
8277  *      unregister_netdevice_many - unregister many devices
8278  *      @head: list of devices
8279  *
8280  *  Note: As most callers use a stack allocated list_head,
8281  *  we force a list_del() to make sure stack wont be corrupted later.
8282  */
8283 void unregister_netdevice_many(struct list_head *head)
8284 {
8285         struct net_device *dev;
8286
8287         if (!list_empty(head)) {
8288                 rollback_registered_many(head);
8289                 list_for_each_entry(dev, head, unreg_list)
8290                         net_set_todo(dev);
8291                 list_del(head);
8292         }
8293 }
8294 EXPORT_SYMBOL(unregister_netdevice_many);
8295
8296 /**
8297  *      unregister_netdev - remove device from the kernel
8298  *      @dev: device
8299  *
8300  *      This function shuts down a device interface and removes it
8301  *      from the kernel tables.
8302  *
8303  *      This is just a wrapper for unregister_netdevice that takes
8304  *      the rtnl semaphore.  In general you want to use this and not
8305  *      unregister_netdevice.
8306  */
8307 void unregister_netdev(struct net_device *dev)
8308 {
8309         rtnl_lock();
8310         unregister_netdevice(dev);
8311         rtnl_unlock();
8312 }
8313 EXPORT_SYMBOL(unregister_netdev);
8314
8315 /**
8316  *      dev_change_net_namespace - move device to different nethost namespace
8317  *      @dev: device
8318  *      @net: network namespace
8319  *      @pat: If not NULL name pattern to try if the current device name
8320  *            is already taken in the destination network namespace.
8321  *
8322  *      This function shuts down a device interface and moves it
8323  *      to a new network namespace. On success 0 is returned, on
8324  *      a failure a netagive errno code is returned.
8325  *
8326  *      Callers must hold the rtnl semaphore.
8327  */
8328
8329 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
8330 {
8331         int err, new_nsid;
8332
8333         ASSERT_RTNL();
8334
8335         /* Don't allow namespace local devices to be moved. */
8336         err = -EINVAL;
8337         if (dev->features & NETIF_F_NETNS_LOCAL)
8338                 goto out;
8339
8340         /* Ensure the device has been registrered */
8341         if (dev->reg_state != NETREG_REGISTERED)
8342                 goto out;
8343
8344         /* Get out if there is nothing todo */
8345         err = 0;
8346         if (net_eq(dev_net(dev), net))
8347                 goto out;
8348
8349         /* Pick the destination device name, and ensure
8350          * we can use it in the destination network namespace.
8351          */
8352         err = -EEXIST;
8353         if (__dev_get_by_name(net, dev->name)) {
8354                 /* We get here if we can't use the current device name */
8355                 if (!pat)
8356                         goto out;
8357                 if (dev_get_valid_name(net, dev, pat) < 0)
8358                         goto out;
8359         }
8360
8361         /*
8362          * And now a mini version of register_netdevice unregister_netdevice.
8363          */
8364
8365         /* If device is running close it first. */
8366         dev_close(dev);
8367
8368         /* And unlink it from device chain */
8369         err = -ENODEV;
8370         unlist_netdevice(dev);
8371
8372         synchronize_net();
8373
8374         /* Shutdown queueing discipline. */
8375         dev_shutdown(dev);
8376
8377         /* Notify protocols, that we are about to destroy
8378          * this device. They should clean all the things.
8379          *
8380          * Note that dev->reg_state stays at NETREG_REGISTERED.
8381          * This is wanted because this way 8021q and macvlan know
8382          * the device is just moving and can keep their slaves up.
8383          */
8384         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
8385         rcu_barrier();
8386         call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
8387         if (dev->rtnl_link_ops && dev->rtnl_link_ops->get_link_net)
8388                 new_nsid = peernet2id_alloc(dev_net(dev), net);
8389         else
8390                 new_nsid = peernet2id(dev_net(dev), net);
8391         rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid);
8392
8393         /*
8394          *      Flush the unicast and multicast chains
8395          */
8396         dev_uc_flush(dev);
8397         dev_mc_flush(dev);
8398
8399         /* Send a netdev-removed uevent to the old namespace */
8400         kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
8401         netdev_adjacent_del_links(dev);
8402
8403         /* Actually switch the network namespace */
8404         dev_net_set(dev, net);
8405
8406         /* If there is an ifindex conflict assign a new one */
8407         if (__dev_get_by_index(net, dev->ifindex))
8408                 dev->ifindex = dev_new_index(net);
8409
8410         /* Send a netdev-add uevent to the new namespace */
8411         kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
8412         netdev_adjacent_add_links(dev);
8413
8414         /* Fixup kobjects */
8415         err = device_rename(&dev->dev, dev->name);
8416         WARN_ON(err);
8417
8418         /* Add the device back in the hashes */
8419         list_netdevice(dev);
8420
8421         /* Notify protocols, that a new device appeared. */
8422         call_netdevice_notifiers(NETDEV_REGISTER, dev);
8423
8424         /*
8425          *      Prevent userspace races by waiting until the network
8426          *      device is fully setup before sending notifications.
8427          */
8428         rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
8429
8430         synchronize_net();
8431         err = 0;
8432 out:
8433         return err;
8434 }
8435 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
8436
8437 static int dev_cpu_dead(unsigned int oldcpu)
8438 {
8439         struct sk_buff **list_skb;
8440         struct sk_buff *skb;
8441         unsigned int cpu;
8442         struct softnet_data *sd, *oldsd, *remsd = NULL;
8443
8444         local_irq_disable();
8445         cpu = smp_processor_id();
8446         sd = &per_cpu(softnet_data, cpu);
8447         oldsd = &per_cpu(softnet_data, oldcpu);
8448
8449         /* Find end of our completion_queue. */
8450         list_skb = &sd->completion_queue;
8451         while (*list_skb)
8452                 list_skb = &(*list_skb)->next;
8453         /* Append completion queue from offline CPU. */
8454         *list_skb = oldsd->completion_queue;
8455         oldsd->completion_queue = NULL;
8456
8457         /* Append output queue from offline CPU. */
8458         if (oldsd->output_queue) {
8459                 *sd->output_queue_tailp = oldsd->output_queue;
8460                 sd->output_queue_tailp = oldsd->output_queue_tailp;
8461                 oldsd->output_queue = NULL;
8462                 oldsd->output_queue_tailp = &oldsd->output_queue;
8463         }
8464         /* Append NAPI poll list from offline CPU, with one exception :
8465          * process_backlog() must be called by cpu owning percpu backlog.
8466          * We properly handle process_queue & input_pkt_queue later.
8467          */
8468         while (!list_empty(&oldsd->poll_list)) {
8469                 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
8470                                                             struct napi_struct,
8471                                                             poll_list);
8472
8473                 list_del_init(&napi->poll_list);
8474                 if (napi->poll == process_backlog)
8475                         napi->state = 0;
8476                 else
8477                         ____napi_schedule(sd, napi);
8478         }
8479
8480         raise_softirq_irqoff(NET_TX_SOFTIRQ);
8481         local_irq_enable();
8482
8483 #ifdef CONFIG_RPS
8484         remsd = oldsd->rps_ipi_list;
8485         oldsd->rps_ipi_list = NULL;
8486 #endif
8487         /* send out pending IPI's on offline CPU */
8488         net_rps_send_ipi(remsd);
8489
8490         /* Process offline CPU's input_pkt_queue */
8491         while ((skb = __skb_dequeue(&oldsd->process_queue))) {
8492                 netif_rx_ni(skb);
8493                 input_queue_head_incr(oldsd);
8494         }
8495         while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
8496                 netif_rx_ni(skb);
8497                 input_queue_head_incr(oldsd);
8498         }
8499
8500         return 0;
8501 }
8502
8503 /**
8504  *      netdev_increment_features - increment feature set by one
8505  *      @all: current feature set
8506  *      @one: new feature set
8507  *      @mask: mask feature set
8508  *
8509  *      Computes a new feature set after adding a device with feature set
8510  *      @one to the master device with current feature set @all.  Will not
8511  *      enable anything that is off in @mask. Returns the new feature set.
8512  */
8513 netdev_features_t netdev_increment_features(netdev_features_t all,
8514         netdev_features_t one, netdev_features_t mask)
8515 {
8516         if (mask & NETIF_F_HW_CSUM)
8517                 mask |= NETIF_F_CSUM_MASK;
8518         mask |= NETIF_F_VLAN_CHALLENGED;
8519
8520         all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
8521         all &= one | ~NETIF_F_ALL_FOR_ALL;
8522
8523         /* If one device supports hw checksumming, set for all. */
8524         if (all & NETIF_F_HW_CSUM)
8525                 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
8526
8527         return all;
8528 }
8529 EXPORT_SYMBOL(netdev_increment_features);
8530
8531 static struct hlist_head * __net_init netdev_create_hash(void)
8532 {
8533         int i;
8534         struct hlist_head *hash;
8535
8536         hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
8537         if (hash != NULL)
8538                 for (i = 0; i < NETDEV_HASHENTRIES; i++)
8539                         INIT_HLIST_HEAD(&hash[i]);
8540
8541         return hash;
8542 }
8543
8544 /* Initialize per network namespace state */
8545 static int __net_init netdev_init(struct net *net)
8546 {
8547         if (net != &init_net)
8548                 INIT_LIST_HEAD(&net->dev_base_head);
8549
8550         net->dev_name_head = netdev_create_hash();
8551         if (net->dev_name_head == NULL)
8552                 goto err_name;
8553
8554         net->dev_index_head = netdev_create_hash();
8555         if (net->dev_index_head == NULL)
8556                 goto err_idx;
8557
8558         return 0;
8559
8560 err_idx:
8561         kfree(net->dev_name_head);
8562 err_name:
8563         return -ENOMEM;
8564 }
8565
8566 /**
8567  *      netdev_drivername - network driver for the device
8568  *      @dev: network device
8569  *
8570  *      Determine network driver for device.
8571  */
8572 const char *netdev_drivername(const struct net_device *dev)
8573 {
8574         const struct device_driver *driver;
8575         const struct device *parent;
8576         const char *empty = "";
8577
8578         parent = dev->dev.parent;
8579         if (!parent)
8580                 return empty;
8581
8582         driver = parent->driver;
8583         if (driver && driver->name)
8584                 return driver->name;
8585         return empty;
8586 }
8587
8588 static void __netdev_printk(const char *level, const struct net_device *dev,
8589                             struct va_format *vaf)
8590 {
8591         if (dev && dev->dev.parent) {
8592                 dev_printk_emit(level[1] - '0',
8593                                 dev->dev.parent,
8594                                 "%s %s %s%s: %pV",
8595                                 dev_driver_string(dev->dev.parent),
8596                                 dev_name(dev->dev.parent),
8597                                 netdev_name(dev), netdev_reg_state(dev),
8598                                 vaf);
8599         } else if (dev) {
8600                 printk("%s%s%s: %pV",
8601                        level, netdev_name(dev), netdev_reg_state(dev), vaf);
8602         } else {
8603                 printk("%s(NULL net_device): %pV", level, vaf);
8604         }
8605 }
8606
8607 void netdev_printk(const char *level, const struct net_device *dev,
8608                    const char *format, ...)
8609 {
8610         struct va_format vaf;
8611         va_list args;
8612
8613         va_start(args, format);
8614
8615         vaf.fmt = format;
8616         vaf.va = &args;
8617
8618         __netdev_printk(level, dev, &vaf);
8619
8620         va_end(args);
8621 }
8622 EXPORT_SYMBOL(netdev_printk);
8623
8624 #define define_netdev_printk_level(func, level)                 \
8625 void func(const struct net_device *dev, const char *fmt, ...)   \
8626 {                                                               \
8627         struct va_format vaf;                                   \
8628         va_list args;                                           \
8629                                                                 \
8630         va_start(args, fmt);                                    \
8631                                                                 \
8632         vaf.fmt = fmt;                                          \
8633         vaf.va = &args;                                         \
8634                                                                 \
8635         __netdev_printk(level, dev, &vaf);                      \
8636                                                                 \
8637         va_end(args);                                           \
8638 }                                                               \
8639 EXPORT_SYMBOL(func);
8640
8641 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
8642 define_netdev_printk_level(netdev_alert, KERN_ALERT);
8643 define_netdev_printk_level(netdev_crit, KERN_CRIT);
8644 define_netdev_printk_level(netdev_err, KERN_ERR);
8645 define_netdev_printk_level(netdev_warn, KERN_WARNING);
8646 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
8647 define_netdev_printk_level(netdev_info, KERN_INFO);
8648
8649 static void __net_exit netdev_exit(struct net *net)
8650 {
8651         kfree(net->dev_name_head);
8652         kfree(net->dev_index_head);
8653         if (net != &init_net)
8654                 WARN_ON_ONCE(!list_empty(&net->dev_base_head));
8655 }
8656
8657 static struct pernet_operations __net_initdata netdev_net_ops = {
8658         .init = netdev_init,
8659         .exit = netdev_exit,
8660 };
8661
8662 static void __net_exit default_device_exit(struct net *net)
8663 {
8664         struct net_device *dev, *aux;
8665         /*
8666          * Push all migratable network devices back to the
8667          * initial network namespace
8668          */
8669         rtnl_lock();
8670         for_each_netdev_safe(net, dev, aux) {
8671                 int err;
8672                 char fb_name[IFNAMSIZ];
8673
8674                 /* Ignore unmoveable devices (i.e. loopback) */
8675                 if (dev->features & NETIF_F_NETNS_LOCAL)
8676                         continue;
8677
8678                 /* Leave virtual devices for the generic cleanup */
8679                 if (dev->rtnl_link_ops)
8680                         continue;
8681
8682                 /* Push remaining network devices to init_net */
8683                 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
8684                 err = dev_change_net_namespace(dev, &init_net, fb_name);
8685                 if (err) {
8686                         pr_emerg("%s: failed to move %s to init_net: %d\n",
8687                                  __func__, dev->name, err);
8688                         BUG();
8689                 }
8690         }
8691         rtnl_unlock();
8692 }
8693
8694 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
8695 {
8696         /* Return with the rtnl_lock held when there are no network
8697          * devices unregistering in any network namespace in net_list.
8698          */
8699         struct net *net;
8700         bool unregistering;
8701         DEFINE_WAIT_FUNC(wait, woken_wake_function);
8702
8703         add_wait_queue(&netdev_unregistering_wq, &wait);
8704         for (;;) {
8705                 unregistering = false;
8706                 rtnl_lock();
8707                 list_for_each_entry(net, net_list, exit_list) {
8708                         if (net->dev_unreg_count > 0) {
8709                                 unregistering = true;
8710                                 break;
8711                         }
8712                 }
8713                 if (!unregistering)
8714                         break;
8715                 __rtnl_unlock();
8716
8717                 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
8718         }
8719         remove_wait_queue(&netdev_unregistering_wq, &wait);
8720 }
8721
8722 static void __net_exit default_device_exit_batch(struct list_head *net_list)
8723 {
8724         /* At exit all network devices most be removed from a network
8725          * namespace.  Do this in the reverse order of registration.
8726          * Do this across as many network namespaces as possible to
8727          * improve batching efficiency.
8728          */
8729         struct net_device *dev;
8730         struct net *net;
8731         LIST_HEAD(dev_kill_list);
8732
8733         /* To prevent network device cleanup code from dereferencing
8734          * loopback devices or network devices that have been freed
8735          * wait here for all pending unregistrations to complete,
8736          * before unregistring the loopback device and allowing the
8737          * network namespace be freed.
8738          *
8739          * The netdev todo list containing all network devices
8740          * unregistrations that happen in default_device_exit_batch
8741          * will run in the rtnl_unlock() at the end of
8742          * default_device_exit_batch.
8743          */
8744         rtnl_lock_unregistering(net_list);
8745         list_for_each_entry(net, net_list, exit_list) {
8746                 for_each_netdev_reverse(net, dev) {
8747                         if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
8748                                 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
8749                         else
8750                                 unregister_netdevice_queue(dev, &dev_kill_list);
8751                 }
8752         }
8753         unregister_netdevice_many(&dev_kill_list);
8754         rtnl_unlock();
8755 }
8756
8757 static struct pernet_operations __net_initdata default_device_ops = {
8758         .exit = default_device_exit,
8759         .exit_batch = default_device_exit_batch,
8760 };
8761
8762 /*
8763  *      Initialize the DEV module. At boot time this walks the device list and
8764  *      unhooks any devices that fail to initialise (normally hardware not
8765  *      present) and leaves us with a valid list of present and active devices.
8766  *
8767  */
8768
8769 /*
8770  *       This is called single threaded during boot, so no need
8771  *       to take the rtnl semaphore.
8772  */
8773 static int __init net_dev_init(void)
8774 {
8775         int i, rc = -ENOMEM;
8776
8777         BUG_ON(!dev_boot_phase);
8778
8779         if (dev_proc_init())
8780                 goto out;
8781
8782         if (netdev_kobject_init())
8783                 goto out;
8784
8785         INIT_LIST_HEAD(&ptype_all);
8786         for (i = 0; i < PTYPE_HASH_SIZE; i++)
8787                 INIT_LIST_HEAD(&ptype_base[i]);
8788
8789         INIT_LIST_HEAD(&offload_base);
8790
8791         if (register_pernet_subsys(&netdev_net_ops))
8792                 goto out;
8793
8794         /*
8795          *      Initialise the packet receive queues.
8796          */
8797
8798         for_each_possible_cpu(i) {
8799                 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
8800                 struct softnet_data *sd = &per_cpu(softnet_data, i);
8801
8802                 INIT_WORK(flush, flush_backlog);
8803
8804                 skb_queue_head_init(&sd->input_pkt_queue);
8805                 skb_queue_head_init(&sd->process_queue);
8806                 INIT_LIST_HEAD(&sd->poll_list);
8807                 sd->output_queue_tailp = &sd->output_queue;
8808 #ifdef CONFIG_RPS
8809                 sd->csd.func = rps_trigger_softirq;
8810                 sd->csd.info = sd;
8811                 sd->cpu = i;
8812 #endif
8813
8814                 sd->backlog.poll = process_backlog;
8815                 sd->backlog.weight = weight_p;
8816         }
8817
8818         dev_boot_phase = 0;
8819
8820         /* The loopback device is special if any other network devices
8821          * is present in a network namespace the loopback device must
8822          * be present. Since we now dynamically allocate and free the
8823          * loopback device ensure this invariant is maintained by
8824          * keeping the loopback device as the first device on the
8825          * list of network devices.  Ensuring the loopback devices
8826          * is the first device that appears and the last network device
8827          * that disappears.
8828          */
8829         if (register_pernet_device(&loopback_net_ops))
8830                 goto out;
8831
8832         if (register_pernet_device(&default_device_ops))
8833                 goto out;
8834
8835         open_softirq(NET_TX_SOFTIRQ, net_tx_action);
8836         open_softirq(NET_RX_SOFTIRQ, net_rx_action);
8837
8838         rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
8839                                        NULL, dev_cpu_dead);
8840         WARN_ON(rc < 0);
8841         rc = 0;
8842 out:
8843         return rc;
8844 }
8845
8846 subsys_initcall(net_dev_init);