OSDN Git Service

cc1d6bba017adda287ae31b1a3a3aca7c24c9a75
[tomoyo/tomoyo-test1.git] / net / core / dev.c
1 /*
2  *      NET3    Protocol independent device support routines.
3  *
4  *              This program is free software; you can redistribute it and/or
5  *              modify it under the terms of the GNU General Public License
6  *              as published by the Free Software Foundation; either version
7  *              2 of the License, or (at your option) any later version.
8  *
9  *      Derived from the non IP parts of dev.c 1.0.19
10  *              Authors:        Ross Biro
11  *                              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *                              Mark Evans, <evansmp@uhura.aston.ac.uk>
13  *
14  *      Additional Authors:
15  *              Florian la Roche <rzsfl@rz.uni-sb.de>
16  *              Alan Cox <gw4pts@gw4pts.ampr.org>
17  *              David Hinds <dahinds@users.sourceforge.net>
18  *              Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19  *              Adam Sulmicki <adam@cfar.umd.edu>
20  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
21  *
22  *      Changes:
23  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
24  *                                      to 2 if register_netdev gets called
25  *                                      before net_dev_init & also removed a
26  *                                      few lines of code in the process.
27  *              Alan Cox        :       device private ioctl copies fields back.
28  *              Alan Cox        :       Transmit queue code does relevant
29  *                                      stunts to keep the queue safe.
30  *              Alan Cox        :       Fixed double lock.
31  *              Alan Cox        :       Fixed promisc NULL pointer trap
32  *              ????????        :       Support the full private ioctl range
33  *              Alan Cox        :       Moved ioctl permission check into
34  *                                      drivers
35  *              Tim Kordas      :       SIOCADDMULTI/SIOCDELMULTI
36  *              Alan Cox        :       100 backlog just doesn't cut it when
37  *                                      you start doing multicast video 8)
38  *              Alan Cox        :       Rewrote net_bh and list manager.
39  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
40  *              Alan Cox        :       Took out transmit every packet pass
41  *                                      Saved a few bytes in the ioctl handler
42  *              Alan Cox        :       Network driver sets packet type before
43  *                                      calling netif_rx. Saves a function
44  *                                      call a packet.
45  *              Alan Cox        :       Hashed net_bh()
46  *              Richard Kooijman:       Timestamp fixes.
47  *              Alan Cox        :       Wrong field in SIOCGIFDSTADDR
48  *              Alan Cox        :       Device lock protection.
49  *              Alan Cox        :       Fixed nasty side effect of device close
50  *                                      changes.
51  *              Rudi Cilibrasi  :       Pass the right thing to
52  *                                      set_mac_address()
53  *              Dave Miller     :       32bit quantity for the device lock to
54  *                                      make it work out on a Sparc.
55  *              Bjorn Ekwall    :       Added KERNELD hack.
56  *              Alan Cox        :       Cleaned up the backlog initialise.
57  *              Craig Metz      :       SIOCGIFCONF fix if space for under
58  *                                      1 device.
59  *          Thomas Bogendoerfer :       Return ENODEV for dev_open, if there
60  *                                      is no device open function.
61  *              Andi Kleen      :       Fix error reporting for SIOCGIFCONF
62  *          Michael Chastain    :       Fix signed/unsigned for SIOCGIFCONF
63  *              Cyrus Durgin    :       Cleaned for KMOD
64  *              Adam Sulmicki   :       Bug Fix : Network Device Unload
65  *                                      A network device unload needs to purge
66  *                                      the backlog queue.
67  *      Paul Rusty Russell      :       SIOCSIFNAME
68  *              Pekka Riikonen  :       Netdev boot-time settings code
69  *              Andrew Morton   :       Make unregister_netdevice wait
70  *                                      indefinitely on dev->refcnt
71  *              J Hadi Salim    :       - Backlog queue sampling
72  *                                      - netif_rx() feedback
73  */
74
75 #include <linux/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/sched/mm.h>
85 #include <linux/mutex.h>
86 #include <linux/string.h>
87 #include <linux/mm.h>
88 #include <linux/socket.h>
89 #include <linux/sockios.h>
90 #include <linux/errno.h>
91 #include <linux/interrupt.h>
92 #include <linux/if_ether.h>
93 #include <linux/netdevice.h>
94 #include <linux/etherdevice.h>
95 #include <linux/ethtool.h>
96 #include <linux/notifier.h>
97 #include <linux/skbuff.h>
98 #include <linux/bpf.h>
99 #include <linux/bpf_trace.h>
100 #include <net/net_namespace.h>
101 #include <net/sock.h>
102 #include <net/busy_poll.h>
103 #include <linux/rtnetlink.h>
104 #include <linux/stat.h>
105 #include <net/dst.h>
106 #include <net/dst_metadata.h>
107 #include <net/pkt_sched.h>
108 #include <net/pkt_cls.h>
109 #include <net/checksum.h>
110 #include <net/xfrm.h>
111 #include <linux/highmem.h>
112 #include <linux/init.h>
113 #include <linux/module.h>
114 #include <linux/netpoll.h>
115 #include <linux/rcupdate.h>
116 #include <linux/delay.h>
117 #include <net/iw_handler.h>
118 #include <asm/current.h>
119 #include <linux/audit.h>
120 #include <linux/dmaengine.h>
121 #include <linux/err.h>
122 #include <linux/ctype.h>
123 #include <linux/if_arp.h>
124 #include <linux/if_vlan.h>
125 #include <linux/ip.h>
126 #include <net/ip.h>
127 #include <net/mpls.h>
128 #include <linux/ipv6.h>
129 #include <linux/in.h>
130 #include <linux/jhash.h>
131 #include <linux/random.h>
132 #include <trace/events/napi.h>
133 #include <trace/events/net.h>
134 #include <trace/events/skb.h>
135 #include <linux/pci.h>
136 #include <linux/inetdevice.h>
137 #include <linux/cpu_rmap.h>
138 #include <linux/static_key.h>
139 #include <linux/hashtable.h>
140 #include <linux/vmalloc.h>
141 #include <linux/if_macvlan.h>
142 #include <linux/errqueue.h>
143 #include <linux/hrtimer.h>
144 #include <linux/netfilter_ingress.h>
145 #include <linux/crash_dump.h>
146 #include <linux/sctp.h>
147 #include <net/udp_tunnel.h>
148 #include <linux/net_namespace.h>
149
150 #include "net-sysfs.h"
151
152 #define MAX_GRO_SKBS 8
153
154 /* This should be increased if a protocol with a bigger head is added. */
155 #define GRO_MAX_HEAD (MAX_HEADER + 128)
156
157 static DEFINE_SPINLOCK(ptype_lock);
158 static DEFINE_SPINLOCK(offload_lock);
159 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
160 struct list_head ptype_all __read_mostly;       /* Taps */
161 static struct list_head offload_base __read_mostly;
162
163 static int netif_rx_internal(struct sk_buff *skb);
164 static int call_netdevice_notifiers_info(unsigned long val,
165                                          struct netdev_notifier_info *info);
166 static struct napi_struct *napi_by_id(unsigned int napi_id);
167
168 /*
169  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
170  * semaphore.
171  *
172  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
173  *
174  * Writers must hold the rtnl semaphore while they loop through the
175  * dev_base_head list, and hold dev_base_lock for writing when they do the
176  * actual updates.  This allows pure readers to access the list even
177  * while a writer is preparing to update it.
178  *
179  * To put it another way, dev_base_lock is held for writing only to
180  * protect against pure readers; the rtnl semaphore provides the
181  * protection against other writers.
182  *
183  * See, for example usages, register_netdevice() and
184  * unregister_netdevice(), which must be called with the rtnl
185  * semaphore held.
186  */
187 DEFINE_RWLOCK(dev_base_lock);
188 EXPORT_SYMBOL(dev_base_lock);
189
190 static DEFINE_MUTEX(ifalias_mutex);
191
192 /* protects napi_hash addition/deletion and napi_gen_id */
193 static DEFINE_SPINLOCK(napi_hash_lock);
194
195 static unsigned int napi_gen_id = NR_CPUS;
196 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
197
198 static seqcount_t devnet_rename_seq;
199
200 static inline void dev_base_seq_inc(struct net *net)
201 {
202         while (++net->dev_base_seq == 0)
203                 ;
204 }
205
206 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
207 {
208         unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
209
210         return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
211 }
212
213 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
214 {
215         return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
216 }
217
218 static inline void rps_lock(struct softnet_data *sd)
219 {
220 #ifdef CONFIG_RPS
221         spin_lock(&sd->input_pkt_queue.lock);
222 #endif
223 }
224
225 static inline void rps_unlock(struct softnet_data *sd)
226 {
227 #ifdef CONFIG_RPS
228         spin_unlock(&sd->input_pkt_queue.lock);
229 #endif
230 }
231
232 /* Device list insertion */
233 static void list_netdevice(struct net_device *dev)
234 {
235         struct net *net = dev_net(dev);
236
237         ASSERT_RTNL();
238
239         write_lock_bh(&dev_base_lock);
240         list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
241         hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
242         hlist_add_head_rcu(&dev->index_hlist,
243                            dev_index_hash(net, dev->ifindex));
244         write_unlock_bh(&dev_base_lock);
245
246         dev_base_seq_inc(net);
247 }
248
249 /* Device list removal
250  * caller must respect a RCU grace period before freeing/reusing dev
251  */
252 static void unlist_netdevice(struct net_device *dev)
253 {
254         ASSERT_RTNL();
255
256         /* Unlink dev from the device chain */
257         write_lock_bh(&dev_base_lock);
258         list_del_rcu(&dev->dev_list);
259         hlist_del_rcu(&dev->name_hlist);
260         hlist_del_rcu(&dev->index_hlist);
261         write_unlock_bh(&dev_base_lock);
262
263         dev_base_seq_inc(dev_net(dev));
264 }
265
266 /*
267  *      Our notifier list
268  */
269
270 static RAW_NOTIFIER_HEAD(netdev_chain);
271
272 /*
273  *      Device drivers call our routines to queue packets here. We empty the
274  *      queue in the local softnet handler.
275  */
276
277 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
278 EXPORT_PER_CPU_SYMBOL(softnet_data);
279
280 #ifdef CONFIG_LOCKDEP
281 /*
282  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
283  * according to dev->type
284  */
285 static const unsigned short netdev_lock_type[] = {
286          ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
287          ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
288          ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
289          ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
290          ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
291          ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
292          ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
293          ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
294          ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
295          ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
296          ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
297          ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
298          ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
299          ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
300          ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
301
302 static const char *const netdev_lock_name[] = {
303         "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
304         "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
305         "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
306         "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
307         "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
308         "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
309         "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
310         "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
311         "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
312         "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
313         "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
314         "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
315         "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
316         "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
317         "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
318
319 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
320 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
321
322 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
323 {
324         int i;
325
326         for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
327                 if (netdev_lock_type[i] == dev_type)
328                         return i;
329         /* the last key is used by default */
330         return ARRAY_SIZE(netdev_lock_type) - 1;
331 }
332
333 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
334                                                  unsigned short dev_type)
335 {
336         int i;
337
338         i = netdev_lock_pos(dev_type);
339         lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
340                                    netdev_lock_name[i]);
341 }
342
343 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
344 {
345         int i;
346
347         i = netdev_lock_pos(dev->type);
348         lockdep_set_class_and_name(&dev->addr_list_lock,
349                                    &netdev_addr_lock_key[i],
350                                    netdev_lock_name[i]);
351 }
352 #else
353 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
354                                                  unsigned short dev_type)
355 {
356 }
357 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
358 {
359 }
360 #endif
361
362 /*******************************************************************************
363  *
364  *              Protocol management and registration routines
365  *
366  *******************************************************************************/
367
368
369 /*
370  *      Add a protocol ID to the list. Now that the input handler is
371  *      smarter we can dispense with all the messy stuff that used to be
372  *      here.
373  *
374  *      BEWARE!!! Protocol handlers, mangling input packets,
375  *      MUST BE last in hash buckets and checking protocol handlers
376  *      MUST start from promiscuous ptype_all chain in net_bh.
377  *      It is true now, do not change it.
378  *      Explanation follows: if protocol handler, mangling packet, will
379  *      be the first on list, it is not able to sense, that packet
380  *      is cloned and should be copied-on-write, so that it will
381  *      change it and subsequent readers will get broken packet.
382  *                                                      --ANK (980803)
383  */
384
385 static inline struct list_head *ptype_head(const struct packet_type *pt)
386 {
387         if (pt->type == htons(ETH_P_ALL))
388                 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
389         else
390                 return pt->dev ? &pt->dev->ptype_specific :
391                                  &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
392 }
393
394 /**
395  *      dev_add_pack - add packet handler
396  *      @pt: packet type declaration
397  *
398  *      Add a protocol handler to the networking stack. The passed &packet_type
399  *      is linked into kernel lists and may not be freed until it has been
400  *      removed from the kernel lists.
401  *
402  *      This call does not sleep therefore it can not
403  *      guarantee all CPU's that are in middle of receiving packets
404  *      will see the new packet type (until the next received packet).
405  */
406
407 void dev_add_pack(struct packet_type *pt)
408 {
409         struct list_head *head = ptype_head(pt);
410
411         spin_lock(&ptype_lock);
412         list_add_rcu(&pt->list, head);
413         spin_unlock(&ptype_lock);
414 }
415 EXPORT_SYMBOL(dev_add_pack);
416
417 /**
418  *      __dev_remove_pack        - remove packet handler
419  *      @pt: packet type declaration
420  *
421  *      Remove a protocol handler that was previously added to the kernel
422  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
423  *      from the kernel lists and can be freed or reused once this function
424  *      returns.
425  *
426  *      The packet type might still be in use by receivers
427  *      and must not be freed until after all the CPU's have gone
428  *      through a quiescent state.
429  */
430 void __dev_remove_pack(struct packet_type *pt)
431 {
432         struct list_head *head = ptype_head(pt);
433         struct packet_type *pt1;
434
435         spin_lock(&ptype_lock);
436
437         list_for_each_entry(pt1, head, list) {
438                 if (pt == pt1) {
439                         list_del_rcu(&pt->list);
440                         goto out;
441                 }
442         }
443
444         pr_warn("dev_remove_pack: %p not found\n", pt);
445 out:
446         spin_unlock(&ptype_lock);
447 }
448 EXPORT_SYMBOL(__dev_remove_pack);
449
450 /**
451  *      dev_remove_pack  - remove packet handler
452  *      @pt: packet type declaration
453  *
454  *      Remove a protocol handler that was previously added to the kernel
455  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
456  *      from the kernel lists and can be freed or reused once this function
457  *      returns.
458  *
459  *      This call sleeps to guarantee that no CPU is looking at the packet
460  *      type after return.
461  */
462 void dev_remove_pack(struct packet_type *pt)
463 {
464         __dev_remove_pack(pt);
465
466         synchronize_net();
467 }
468 EXPORT_SYMBOL(dev_remove_pack);
469
470
471 /**
472  *      dev_add_offload - register offload handlers
473  *      @po: protocol offload declaration
474  *
475  *      Add protocol offload handlers to the networking stack. The passed
476  *      &proto_offload is linked into kernel lists and may not be freed until
477  *      it has been removed from the kernel lists.
478  *
479  *      This call does not sleep therefore it can not
480  *      guarantee all CPU's that are in middle of receiving packets
481  *      will see the new offload handlers (until the next received packet).
482  */
483 void dev_add_offload(struct packet_offload *po)
484 {
485         struct packet_offload *elem;
486
487         spin_lock(&offload_lock);
488         list_for_each_entry(elem, &offload_base, list) {
489                 if (po->priority < elem->priority)
490                         break;
491         }
492         list_add_rcu(&po->list, elem->list.prev);
493         spin_unlock(&offload_lock);
494 }
495 EXPORT_SYMBOL(dev_add_offload);
496
497 /**
498  *      __dev_remove_offload     - remove offload handler
499  *      @po: packet offload declaration
500  *
501  *      Remove a protocol offload handler that was previously added to the
502  *      kernel offload handlers by dev_add_offload(). The passed &offload_type
503  *      is removed from the kernel lists and can be freed or reused once this
504  *      function returns.
505  *
506  *      The packet type might still be in use by receivers
507  *      and must not be freed until after all the CPU's have gone
508  *      through a quiescent state.
509  */
510 static void __dev_remove_offload(struct packet_offload *po)
511 {
512         struct list_head *head = &offload_base;
513         struct packet_offload *po1;
514
515         spin_lock(&offload_lock);
516
517         list_for_each_entry(po1, head, list) {
518                 if (po == po1) {
519                         list_del_rcu(&po->list);
520                         goto out;
521                 }
522         }
523
524         pr_warn("dev_remove_offload: %p not found\n", po);
525 out:
526         spin_unlock(&offload_lock);
527 }
528
529 /**
530  *      dev_remove_offload       - remove packet offload handler
531  *      @po: packet offload declaration
532  *
533  *      Remove a packet offload handler that was previously added to the kernel
534  *      offload handlers by dev_add_offload(). The passed &offload_type is
535  *      removed from the kernel lists and can be freed or reused once this
536  *      function returns.
537  *
538  *      This call sleeps to guarantee that no CPU is looking at the packet
539  *      type after return.
540  */
541 void dev_remove_offload(struct packet_offload *po)
542 {
543         __dev_remove_offload(po);
544
545         synchronize_net();
546 }
547 EXPORT_SYMBOL(dev_remove_offload);
548
549 /******************************************************************************
550  *
551  *                    Device Boot-time Settings Routines
552  *
553  ******************************************************************************/
554
555 /* Boot time configuration table */
556 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
557
558 /**
559  *      netdev_boot_setup_add   - add new setup entry
560  *      @name: name of the device
561  *      @map: configured settings for the device
562  *
563  *      Adds new setup entry to the dev_boot_setup list.  The function
564  *      returns 0 on error and 1 on success.  This is a generic routine to
565  *      all netdevices.
566  */
567 static int netdev_boot_setup_add(char *name, struct ifmap *map)
568 {
569         struct netdev_boot_setup *s;
570         int i;
571
572         s = dev_boot_setup;
573         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
574                 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
575                         memset(s[i].name, 0, sizeof(s[i].name));
576                         strlcpy(s[i].name, name, IFNAMSIZ);
577                         memcpy(&s[i].map, map, sizeof(s[i].map));
578                         break;
579                 }
580         }
581
582         return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
583 }
584
585 /**
586  * netdev_boot_setup_check      - check boot time settings
587  * @dev: the netdevice
588  *
589  * Check boot time settings for the device.
590  * The found settings are set for the device to be used
591  * later in the device probing.
592  * Returns 0 if no settings found, 1 if they are.
593  */
594 int netdev_boot_setup_check(struct net_device *dev)
595 {
596         struct netdev_boot_setup *s = dev_boot_setup;
597         int i;
598
599         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
600                 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
601                     !strcmp(dev->name, s[i].name)) {
602                         dev->irq = s[i].map.irq;
603                         dev->base_addr = s[i].map.base_addr;
604                         dev->mem_start = s[i].map.mem_start;
605                         dev->mem_end = s[i].map.mem_end;
606                         return 1;
607                 }
608         }
609         return 0;
610 }
611 EXPORT_SYMBOL(netdev_boot_setup_check);
612
613
614 /**
615  * netdev_boot_base     - get address from boot time settings
616  * @prefix: prefix for network device
617  * @unit: id for network device
618  *
619  * Check boot time settings for the base address of device.
620  * The found settings are set for the device to be used
621  * later in the device probing.
622  * Returns 0 if no settings found.
623  */
624 unsigned long netdev_boot_base(const char *prefix, int unit)
625 {
626         const struct netdev_boot_setup *s = dev_boot_setup;
627         char name[IFNAMSIZ];
628         int i;
629
630         sprintf(name, "%s%d", prefix, unit);
631
632         /*
633          * If device already registered then return base of 1
634          * to indicate not to probe for this interface
635          */
636         if (__dev_get_by_name(&init_net, name))
637                 return 1;
638
639         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
640                 if (!strcmp(name, s[i].name))
641                         return s[i].map.base_addr;
642         return 0;
643 }
644
645 /*
646  * Saves at boot time configured settings for any netdevice.
647  */
648 int __init netdev_boot_setup(char *str)
649 {
650         int ints[5];
651         struct ifmap map;
652
653         str = get_options(str, ARRAY_SIZE(ints), ints);
654         if (!str || !*str)
655                 return 0;
656
657         /* Save settings */
658         memset(&map, 0, sizeof(map));
659         if (ints[0] > 0)
660                 map.irq = ints[1];
661         if (ints[0] > 1)
662                 map.base_addr = ints[2];
663         if (ints[0] > 2)
664                 map.mem_start = ints[3];
665         if (ints[0] > 3)
666                 map.mem_end = ints[4];
667
668         /* Add new entry to the list */
669         return netdev_boot_setup_add(str, &map);
670 }
671
672 __setup("netdev=", netdev_boot_setup);
673
674 /*******************************************************************************
675  *
676  *                          Device Interface Subroutines
677  *
678  *******************************************************************************/
679
680 /**
681  *      dev_get_iflink  - get 'iflink' value of a interface
682  *      @dev: targeted interface
683  *
684  *      Indicates the ifindex the interface is linked to.
685  *      Physical interfaces have the same 'ifindex' and 'iflink' values.
686  */
687
688 int dev_get_iflink(const struct net_device *dev)
689 {
690         if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
691                 return dev->netdev_ops->ndo_get_iflink(dev);
692
693         return dev->ifindex;
694 }
695 EXPORT_SYMBOL(dev_get_iflink);
696
697 /**
698  *      dev_fill_metadata_dst - Retrieve tunnel egress information.
699  *      @dev: targeted interface
700  *      @skb: The packet.
701  *
702  *      For better visibility of tunnel traffic OVS needs to retrieve
703  *      egress tunnel information for a packet. Following API allows
704  *      user to get this info.
705  */
706 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
707 {
708         struct ip_tunnel_info *info;
709
710         if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
711                 return -EINVAL;
712
713         info = skb_tunnel_info_unclone(skb);
714         if (!info)
715                 return -ENOMEM;
716         if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
717                 return -EINVAL;
718
719         return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
720 }
721 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
722
723 /**
724  *      __dev_get_by_name       - find a device by its name
725  *      @net: the applicable net namespace
726  *      @name: name to find
727  *
728  *      Find an interface by name. Must be called under RTNL semaphore
729  *      or @dev_base_lock. If the name is found a pointer to the device
730  *      is returned. If the name is not found then %NULL is returned. The
731  *      reference counters are not incremented so the caller must be
732  *      careful with locks.
733  */
734
735 struct net_device *__dev_get_by_name(struct net *net, const char *name)
736 {
737         struct net_device *dev;
738         struct hlist_head *head = dev_name_hash(net, name);
739
740         hlist_for_each_entry(dev, head, name_hlist)
741                 if (!strncmp(dev->name, name, IFNAMSIZ))
742                         return dev;
743
744         return NULL;
745 }
746 EXPORT_SYMBOL(__dev_get_by_name);
747
748 /**
749  * dev_get_by_name_rcu  - find a device by its name
750  * @net: the applicable net namespace
751  * @name: name to find
752  *
753  * Find an interface by name.
754  * If the name is found a pointer to the device is returned.
755  * If the name is not found then %NULL is returned.
756  * The reference counters are not incremented so the caller must be
757  * careful with locks. The caller must hold RCU lock.
758  */
759
760 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
761 {
762         struct net_device *dev;
763         struct hlist_head *head = dev_name_hash(net, name);
764
765         hlist_for_each_entry_rcu(dev, head, name_hlist)
766                 if (!strncmp(dev->name, name, IFNAMSIZ))
767                         return dev;
768
769         return NULL;
770 }
771 EXPORT_SYMBOL(dev_get_by_name_rcu);
772
773 /**
774  *      dev_get_by_name         - find a device by its name
775  *      @net: the applicable net namespace
776  *      @name: name to find
777  *
778  *      Find an interface by name. This can be called from any
779  *      context and does its own locking. The returned handle has
780  *      the usage count incremented and the caller must use dev_put() to
781  *      release it when it is no longer needed. %NULL is returned if no
782  *      matching device is found.
783  */
784
785 struct net_device *dev_get_by_name(struct net *net, const char *name)
786 {
787         struct net_device *dev;
788
789         rcu_read_lock();
790         dev = dev_get_by_name_rcu(net, name);
791         if (dev)
792                 dev_hold(dev);
793         rcu_read_unlock();
794         return dev;
795 }
796 EXPORT_SYMBOL(dev_get_by_name);
797
798 /**
799  *      __dev_get_by_index - find a device by its ifindex
800  *      @net: the applicable net namespace
801  *      @ifindex: index of device
802  *
803  *      Search for an interface by index. Returns %NULL if the device
804  *      is not found or a pointer to the device. The device has not
805  *      had its reference counter increased so the caller must be careful
806  *      about locking. The caller must hold either the RTNL semaphore
807  *      or @dev_base_lock.
808  */
809
810 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
811 {
812         struct net_device *dev;
813         struct hlist_head *head = dev_index_hash(net, ifindex);
814
815         hlist_for_each_entry(dev, head, index_hlist)
816                 if (dev->ifindex == ifindex)
817                         return dev;
818
819         return NULL;
820 }
821 EXPORT_SYMBOL(__dev_get_by_index);
822
823 /**
824  *      dev_get_by_index_rcu - find a device by its ifindex
825  *      @net: the applicable net namespace
826  *      @ifindex: index of device
827  *
828  *      Search for an interface by index. Returns %NULL if the device
829  *      is not found or a pointer to the device. The device has not
830  *      had its reference counter increased so the caller must be careful
831  *      about locking. The caller must hold RCU lock.
832  */
833
834 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
835 {
836         struct net_device *dev;
837         struct hlist_head *head = dev_index_hash(net, ifindex);
838
839         hlist_for_each_entry_rcu(dev, head, index_hlist)
840                 if (dev->ifindex == ifindex)
841                         return dev;
842
843         return NULL;
844 }
845 EXPORT_SYMBOL(dev_get_by_index_rcu);
846
847
848 /**
849  *      dev_get_by_index - find a device by its ifindex
850  *      @net: the applicable net namespace
851  *      @ifindex: index of device
852  *
853  *      Search for an interface by index. Returns NULL if the device
854  *      is not found or a pointer to the device. The device returned has
855  *      had a reference added and the pointer is safe until the user calls
856  *      dev_put to indicate they have finished with it.
857  */
858
859 struct net_device *dev_get_by_index(struct net *net, int ifindex)
860 {
861         struct net_device *dev;
862
863         rcu_read_lock();
864         dev = dev_get_by_index_rcu(net, ifindex);
865         if (dev)
866                 dev_hold(dev);
867         rcu_read_unlock();
868         return dev;
869 }
870 EXPORT_SYMBOL(dev_get_by_index);
871
872 /**
873  *      dev_get_by_napi_id - find a device by napi_id
874  *      @napi_id: ID of the NAPI struct
875  *
876  *      Search for an interface by NAPI ID. Returns %NULL if the device
877  *      is not found or a pointer to the device. The device has not had
878  *      its reference counter increased so the caller must be careful
879  *      about locking. The caller must hold RCU lock.
880  */
881
882 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
883 {
884         struct napi_struct *napi;
885
886         WARN_ON_ONCE(!rcu_read_lock_held());
887
888         if (napi_id < MIN_NAPI_ID)
889                 return NULL;
890
891         napi = napi_by_id(napi_id);
892
893         return napi ? napi->dev : NULL;
894 }
895 EXPORT_SYMBOL(dev_get_by_napi_id);
896
897 /**
898  *      netdev_get_name - get a netdevice name, knowing its ifindex.
899  *      @net: network namespace
900  *      @name: a pointer to the buffer where the name will be stored.
901  *      @ifindex: the ifindex of the interface to get the name from.
902  *
903  *      The use of raw_seqcount_begin() and cond_resched() before
904  *      retrying is required as we want to give the writers a chance
905  *      to complete when CONFIG_PREEMPT is not set.
906  */
907 int netdev_get_name(struct net *net, char *name, int ifindex)
908 {
909         struct net_device *dev;
910         unsigned int seq;
911
912 retry:
913         seq = raw_seqcount_begin(&devnet_rename_seq);
914         rcu_read_lock();
915         dev = dev_get_by_index_rcu(net, ifindex);
916         if (!dev) {
917                 rcu_read_unlock();
918                 return -ENODEV;
919         }
920
921         strcpy(name, dev->name);
922         rcu_read_unlock();
923         if (read_seqcount_retry(&devnet_rename_seq, seq)) {
924                 cond_resched();
925                 goto retry;
926         }
927
928         return 0;
929 }
930
931 /**
932  *      dev_getbyhwaddr_rcu - find a device by its hardware address
933  *      @net: the applicable net namespace
934  *      @type: media type of device
935  *      @ha: hardware address
936  *
937  *      Search for an interface by MAC address. Returns NULL if the device
938  *      is not found or a pointer to the device.
939  *      The caller must hold RCU or RTNL.
940  *      The returned device has not had its ref count increased
941  *      and the caller must therefore be careful about locking
942  *
943  */
944
945 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
946                                        const char *ha)
947 {
948         struct net_device *dev;
949
950         for_each_netdev_rcu(net, dev)
951                 if (dev->type == type &&
952                     !memcmp(dev->dev_addr, ha, dev->addr_len))
953                         return dev;
954
955         return NULL;
956 }
957 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
958
959 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
960 {
961         struct net_device *dev;
962
963         ASSERT_RTNL();
964         for_each_netdev(net, dev)
965                 if (dev->type == type)
966                         return dev;
967
968         return NULL;
969 }
970 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
971
972 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
973 {
974         struct net_device *dev, *ret = NULL;
975
976         rcu_read_lock();
977         for_each_netdev_rcu(net, dev)
978                 if (dev->type == type) {
979                         dev_hold(dev);
980                         ret = dev;
981                         break;
982                 }
983         rcu_read_unlock();
984         return ret;
985 }
986 EXPORT_SYMBOL(dev_getfirstbyhwtype);
987
988 /**
989  *      __dev_get_by_flags - find any device with given flags
990  *      @net: the applicable net namespace
991  *      @if_flags: IFF_* values
992  *      @mask: bitmask of bits in if_flags to check
993  *
994  *      Search for any interface with the given flags. Returns NULL if a device
995  *      is not found or a pointer to the device. Must be called inside
996  *      rtnl_lock(), and result refcount is unchanged.
997  */
998
999 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1000                                       unsigned short mask)
1001 {
1002         struct net_device *dev, *ret;
1003
1004         ASSERT_RTNL();
1005
1006         ret = NULL;
1007         for_each_netdev(net, dev) {
1008                 if (((dev->flags ^ if_flags) & mask) == 0) {
1009                         ret = dev;
1010                         break;
1011                 }
1012         }
1013         return ret;
1014 }
1015 EXPORT_SYMBOL(__dev_get_by_flags);
1016
1017 /**
1018  *      dev_valid_name - check if name is okay for network device
1019  *      @name: name string
1020  *
1021  *      Network device names need to be valid file names to
1022  *      to allow sysfs to work.  We also disallow any kind of
1023  *      whitespace.
1024  */
1025 bool dev_valid_name(const char *name)
1026 {
1027         if (*name == '\0')
1028                 return false;
1029         if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1030                 return false;
1031         if (!strcmp(name, ".") || !strcmp(name, ".."))
1032                 return false;
1033
1034         while (*name) {
1035                 if (*name == '/' || *name == ':' || isspace(*name))
1036                         return false;
1037                 name++;
1038         }
1039         return true;
1040 }
1041 EXPORT_SYMBOL(dev_valid_name);
1042
1043 /**
1044  *      __dev_alloc_name - allocate a name for a device
1045  *      @net: network namespace to allocate the device name in
1046  *      @name: name format string
1047  *      @buf:  scratch buffer and result name string
1048  *
1049  *      Passed a format string - eg "lt%d" it will try and find a suitable
1050  *      id. It scans list of devices to build up a free map, then chooses
1051  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1052  *      while allocating the name and adding the device in order to avoid
1053  *      duplicates.
1054  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1055  *      Returns the number of the unit assigned or a negative errno code.
1056  */
1057
1058 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1059 {
1060         int i = 0;
1061         const char *p;
1062         const int max_netdevices = 8*PAGE_SIZE;
1063         unsigned long *inuse;
1064         struct net_device *d;
1065
1066         if (!dev_valid_name(name))
1067                 return -EINVAL;
1068
1069         p = strchr(name, '%');
1070         if (p) {
1071                 /*
1072                  * Verify the string as this thing may have come from
1073                  * the user.  There must be either one "%d" and no other "%"
1074                  * characters.
1075                  */
1076                 if (p[1] != 'd' || strchr(p + 2, '%'))
1077                         return -EINVAL;
1078
1079                 /* Use one page as a bit array of possible slots */
1080                 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1081                 if (!inuse)
1082                         return -ENOMEM;
1083
1084                 for_each_netdev(net, d) {
1085                         if (!sscanf(d->name, name, &i))
1086                                 continue;
1087                         if (i < 0 || i >= max_netdevices)
1088                                 continue;
1089
1090                         /*  avoid cases where sscanf is not exact inverse of printf */
1091                         snprintf(buf, IFNAMSIZ, name, i);
1092                         if (!strncmp(buf, d->name, IFNAMSIZ))
1093                                 set_bit(i, inuse);
1094                 }
1095
1096                 i = find_first_zero_bit(inuse, max_netdevices);
1097                 free_page((unsigned long) inuse);
1098         }
1099
1100         snprintf(buf, IFNAMSIZ, name, i);
1101         if (!__dev_get_by_name(net, buf))
1102                 return i;
1103
1104         /* It is possible to run out of possible slots
1105          * when the name is long and there isn't enough space left
1106          * for the digits, or if all bits are used.
1107          */
1108         return -ENFILE;
1109 }
1110
1111 static int dev_alloc_name_ns(struct net *net,
1112                              struct net_device *dev,
1113                              const char *name)
1114 {
1115         char buf[IFNAMSIZ];
1116         int ret;
1117
1118         BUG_ON(!net);
1119         ret = __dev_alloc_name(net, name, buf);
1120         if (ret >= 0)
1121                 strlcpy(dev->name, buf, IFNAMSIZ);
1122         return ret;
1123 }
1124
1125 /**
1126  *      dev_alloc_name - allocate a name for a device
1127  *      @dev: device
1128  *      @name: name format string
1129  *
1130  *      Passed a format string - eg "lt%d" it will try and find a suitable
1131  *      id. It scans list of devices to build up a free map, then chooses
1132  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1133  *      while allocating the name and adding the device in order to avoid
1134  *      duplicates.
1135  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1136  *      Returns the number of the unit assigned or a negative errno code.
1137  */
1138
1139 int dev_alloc_name(struct net_device *dev, const char *name)
1140 {
1141         return dev_alloc_name_ns(dev_net(dev), dev, name);
1142 }
1143 EXPORT_SYMBOL(dev_alloc_name);
1144
1145 int dev_get_valid_name(struct net *net, struct net_device *dev,
1146                        const char *name)
1147 {
1148         BUG_ON(!net);
1149
1150         if (!dev_valid_name(name))
1151                 return -EINVAL;
1152
1153         if (strchr(name, '%'))
1154                 return dev_alloc_name_ns(net, dev, name);
1155         else if (__dev_get_by_name(net, name))
1156                 return -EEXIST;
1157         else if (dev->name != name)
1158                 strlcpy(dev->name, name, IFNAMSIZ);
1159
1160         return 0;
1161 }
1162 EXPORT_SYMBOL(dev_get_valid_name);
1163
1164 /**
1165  *      dev_change_name - change name of a device
1166  *      @dev: device
1167  *      @newname: name (or format string) must be at least IFNAMSIZ
1168  *
1169  *      Change name of a device, can pass format strings "eth%d".
1170  *      for wildcarding.
1171  */
1172 int dev_change_name(struct net_device *dev, const char *newname)
1173 {
1174         unsigned char old_assign_type;
1175         char oldname[IFNAMSIZ];
1176         int err = 0;
1177         int ret;
1178         struct net *net;
1179
1180         ASSERT_RTNL();
1181         BUG_ON(!dev_net(dev));
1182
1183         net = dev_net(dev);
1184         if (dev->flags & IFF_UP)
1185                 return -EBUSY;
1186
1187         write_seqcount_begin(&devnet_rename_seq);
1188
1189         if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1190                 write_seqcount_end(&devnet_rename_seq);
1191                 return 0;
1192         }
1193
1194         memcpy(oldname, dev->name, IFNAMSIZ);
1195
1196         err = dev_get_valid_name(net, dev, newname);
1197         if (err < 0) {
1198                 write_seqcount_end(&devnet_rename_seq);
1199                 return err;
1200         }
1201
1202         if (oldname[0] && !strchr(oldname, '%'))
1203                 netdev_info(dev, "renamed from %s\n", oldname);
1204
1205         old_assign_type = dev->name_assign_type;
1206         dev->name_assign_type = NET_NAME_RENAMED;
1207
1208 rollback:
1209         ret = device_rename(&dev->dev, dev->name);
1210         if (ret) {
1211                 memcpy(dev->name, oldname, IFNAMSIZ);
1212                 dev->name_assign_type = old_assign_type;
1213                 write_seqcount_end(&devnet_rename_seq);
1214                 return ret;
1215         }
1216
1217         write_seqcount_end(&devnet_rename_seq);
1218
1219         netdev_adjacent_rename_links(dev, oldname);
1220
1221         write_lock_bh(&dev_base_lock);
1222         hlist_del_rcu(&dev->name_hlist);
1223         write_unlock_bh(&dev_base_lock);
1224
1225         synchronize_rcu();
1226
1227         write_lock_bh(&dev_base_lock);
1228         hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1229         write_unlock_bh(&dev_base_lock);
1230
1231         ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1232         ret = notifier_to_errno(ret);
1233
1234         if (ret) {
1235                 /* err >= 0 after dev_alloc_name() or stores the first errno */
1236                 if (err >= 0) {
1237                         err = ret;
1238                         write_seqcount_begin(&devnet_rename_seq);
1239                         memcpy(dev->name, oldname, IFNAMSIZ);
1240                         memcpy(oldname, newname, IFNAMSIZ);
1241                         dev->name_assign_type = old_assign_type;
1242                         old_assign_type = NET_NAME_RENAMED;
1243                         goto rollback;
1244                 } else {
1245                         pr_err("%s: name change rollback failed: %d\n",
1246                                dev->name, ret);
1247                 }
1248         }
1249
1250         return err;
1251 }
1252
1253 /**
1254  *      dev_set_alias - change ifalias of a device
1255  *      @dev: device
1256  *      @alias: name up to IFALIASZ
1257  *      @len: limit of bytes to copy from info
1258  *
1259  *      Set ifalias for a device,
1260  */
1261 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1262 {
1263         struct dev_ifalias *new_alias = NULL;
1264
1265         if (len >= IFALIASZ)
1266                 return -EINVAL;
1267
1268         if (len) {
1269                 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1270                 if (!new_alias)
1271                         return -ENOMEM;
1272
1273                 memcpy(new_alias->ifalias, alias, len);
1274                 new_alias->ifalias[len] = 0;
1275         }
1276
1277         mutex_lock(&ifalias_mutex);
1278         rcu_swap_protected(dev->ifalias, new_alias,
1279                            mutex_is_locked(&ifalias_mutex));
1280         mutex_unlock(&ifalias_mutex);
1281
1282         if (new_alias)
1283                 kfree_rcu(new_alias, rcuhead);
1284
1285         return len;
1286 }
1287 EXPORT_SYMBOL(dev_set_alias);
1288
1289 /**
1290  *      dev_get_alias - get ifalias of a device
1291  *      @dev: device
1292  *      @name: buffer to store name of ifalias
1293  *      @len: size of buffer
1294  *
1295  *      get ifalias for a device.  Caller must make sure dev cannot go
1296  *      away,  e.g. rcu read lock or own a reference count to device.
1297  */
1298 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1299 {
1300         const struct dev_ifalias *alias;
1301         int ret = 0;
1302
1303         rcu_read_lock();
1304         alias = rcu_dereference(dev->ifalias);
1305         if (alias)
1306                 ret = snprintf(name, len, "%s", alias->ifalias);
1307         rcu_read_unlock();
1308
1309         return ret;
1310 }
1311
1312 /**
1313  *      netdev_features_change - device changes features
1314  *      @dev: device to cause notification
1315  *
1316  *      Called to indicate a device has changed features.
1317  */
1318 void netdev_features_change(struct net_device *dev)
1319 {
1320         call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1321 }
1322 EXPORT_SYMBOL(netdev_features_change);
1323
1324 /**
1325  *      netdev_state_change - device changes state
1326  *      @dev: device to cause notification
1327  *
1328  *      Called to indicate a device has changed state. This function calls
1329  *      the notifier chains for netdev_chain and sends a NEWLINK message
1330  *      to the routing socket.
1331  */
1332 void netdev_state_change(struct net_device *dev)
1333 {
1334         if (dev->flags & IFF_UP) {
1335                 struct netdev_notifier_change_info change_info = {
1336                         .info.dev = dev,
1337                 };
1338
1339                 call_netdevice_notifiers_info(NETDEV_CHANGE,
1340                                               &change_info.info);
1341                 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1342         }
1343 }
1344 EXPORT_SYMBOL(netdev_state_change);
1345
1346 /**
1347  * netdev_notify_peers - notify network peers about existence of @dev
1348  * @dev: network device
1349  *
1350  * Generate traffic such that interested network peers are aware of
1351  * @dev, such as by generating a gratuitous ARP. This may be used when
1352  * a device wants to inform the rest of the network about some sort of
1353  * reconfiguration such as a failover event or virtual machine
1354  * migration.
1355  */
1356 void netdev_notify_peers(struct net_device *dev)
1357 {
1358         rtnl_lock();
1359         call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1360         call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1361         rtnl_unlock();
1362 }
1363 EXPORT_SYMBOL(netdev_notify_peers);
1364
1365 static int __dev_open(struct net_device *dev)
1366 {
1367         const struct net_device_ops *ops = dev->netdev_ops;
1368         int ret;
1369
1370         ASSERT_RTNL();
1371
1372         if (!netif_device_present(dev))
1373                 return -ENODEV;
1374
1375         /* Block netpoll from trying to do any rx path servicing.
1376          * If we don't do this there is a chance ndo_poll_controller
1377          * or ndo_poll may be running while we open the device
1378          */
1379         netpoll_poll_disable(dev);
1380
1381         ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1382         ret = notifier_to_errno(ret);
1383         if (ret)
1384                 return ret;
1385
1386         set_bit(__LINK_STATE_START, &dev->state);
1387
1388         if (ops->ndo_validate_addr)
1389                 ret = ops->ndo_validate_addr(dev);
1390
1391         if (!ret && ops->ndo_open)
1392                 ret = ops->ndo_open(dev);
1393
1394         netpoll_poll_enable(dev);
1395
1396         if (ret)
1397                 clear_bit(__LINK_STATE_START, &dev->state);
1398         else {
1399                 dev->flags |= IFF_UP;
1400                 dev_set_rx_mode(dev);
1401                 dev_activate(dev);
1402                 add_device_randomness(dev->dev_addr, dev->addr_len);
1403         }
1404
1405         return ret;
1406 }
1407
1408 /**
1409  *      dev_open        - prepare an interface for use.
1410  *      @dev:   device to open
1411  *
1412  *      Takes a device from down to up state. The device's private open
1413  *      function is invoked and then the multicast lists are loaded. Finally
1414  *      the device is moved into the up state and a %NETDEV_UP message is
1415  *      sent to the netdev notifier chain.
1416  *
1417  *      Calling this function on an active interface is a nop. On a failure
1418  *      a negative errno code is returned.
1419  */
1420 int dev_open(struct net_device *dev)
1421 {
1422         int ret;
1423
1424         if (dev->flags & IFF_UP)
1425                 return 0;
1426
1427         ret = __dev_open(dev);
1428         if (ret < 0)
1429                 return ret;
1430
1431         rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1432         call_netdevice_notifiers(NETDEV_UP, dev);
1433
1434         return ret;
1435 }
1436 EXPORT_SYMBOL(dev_open);
1437
1438 static void __dev_close_many(struct list_head *head)
1439 {
1440         struct net_device *dev;
1441
1442         ASSERT_RTNL();
1443         might_sleep();
1444
1445         list_for_each_entry(dev, head, close_list) {
1446                 /* Temporarily disable netpoll until the interface is down */
1447                 netpoll_poll_disable(dev);
1448
1449                 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1450
1451                 clear_bit(__LINK_STATE_START, &dev->state);
1452
1453                 /* Synchronize to scheduled poll. We cannot touch poll list, it
1454                  * can be even on different cpu. So just clear netif_running().
1455                  *
1456                  * dev->stop() will invoke napi_disable() on all of it's
1457                  * napi_struct instances on this device.
1458                  */
1459                 smp_mb__after_atomic(); /* Commit netif_running(). */
1460         }
1461
1462         dev_deactivate_many(head);
1463
1464         list_for_each_entry(dev, head, close_list) {
1465                 const struct net_device_ops *ops = dev->netdev_ops;
1466
1467                 /*
1468                  *      Call the device specific close. This cannot fail.
1469                  *      Only if device is UP
1470                  *
1471                  *      We allow it to be called even after a DETACH hot-plug
1472                  *      event.
1473                  */
1474                 if (ops->ndo_stop)
1475                         ops->ndo_stop(dev);
1476
1477                 dev->flags &= ~IFF_UP;
1478                 netpoll_poll_enable(dev);
1479         }
1480 }
1481
1482 static void __dev_close(struct net_device *dev)
1483 {
1484         LIST_HEAD(single);
1485
1486         list_add(&dev->close_list, &single);
1487         __dev_close_many(&single);
1488         list_del(&single);
1489 }
1490
1491 void dev_close_many(struct list_head *head, bool unlink)
1492 {
1493         struct net_device *dev, *tmp;
1494
1495         /* Remove the devices that don't need to be closed */
1496         list_for_each_entry_safe(dev, tmp, head, close_list)
1497                 if (!(dev->flags & IFF_UP))
1498                         list_del_init(&dev->close_list);
1499
1500         __dev_close_many(head);
1501
1502         list_for_each_entry_safe(dev, tmp, head, close_list) {
1503                 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1504                 call_netdevice_notifiers(NETDEV_DOWN, dev);
1505                 if (unlink)
1506                         list_del_init(&dev->close_list);
1507         }
1508 }
1509 EXPORT_SYMBOL(dev_close_many);
1510
1511 /**
1512  *      dev_close - shutdown an interface.
1513  *      @dev: device to shutdown
1514  *
1515  *      This function moves an active device into down state. A
1516  *      %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1517  *      is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1518  *      chain.
1519  */
1520 void dev_close(struct net_device *dev)
1521 {
1522         if (dev->flags & IFF_UP) {
1523                 LIST_HEAD(single);
1524
1525                 list_add(&dev->close_list, &single);
1526                 dev_close_many(&single, true);
1527                 list_del(&single);
1528         }
1529 }
1530 EXPORT_SYMBOL(dev_close);
1531
1532
1533 /**
1534  *      dev_disable_lro - disable Large Receive Offload on a device
1535  *      @dev: device
1536  *
1537  *      Disable Large Receive Offload (LRO) on a net device.  Must be
1538  *      called under RTNL.  This is needed if received packets may be
1539  *      forwarded to another interface.
1540  */
1541 void dev_disable_lro(struct net_device *dev)
1542 {
1543         struct net_device *lower_dev;
1544         struct list_head *iter;
1545
1546         dev->wanted_features &= ~NETIF_F_LRO;
1547         netdev_update_features(dev);
1548
1549         if (unlikely(dev->features & NETIF_F_LRO))
1550                 netdev_WARN(dev, "failed to disable LRO!\n");
1551
1552         netdev_for_each_lower_dev(dev, lower_dev, iter)
1553                 dev_disable_lro(lower_dev);
1554 }
1555 EXPORT_SYMBOL(dev_disable_lro);
1556
1557 /**
1558  *      dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1559  *      @dev: device
1560  *
1561  *      Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
1562  *      called under RTNL.  This is needed if Generic XDP is installed on
1563  *      the device.
1564  */
1565 static void dev_disable_gro_hw(struct net_device *dev)
1566 {
1567         dev->wanted_features &= ~NETIF_F_GRO_HW;
1568         netdev_update_features(dev);
1569
1570         if (unlikely(dev->features & NETIF_F_GRO_HW))
1571                 netdev_WARN(dev, "failed to disable GRO_HW!\n");
1572 }
1573
1574 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1575 {
1576 #define N(val)                                          \
1577         case NETDEV_##val:                              \
1578                 return "NETDEV_" __stringify(val);
1579         switch (cmd) {
1580         N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1581         N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1582         N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1583         N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER)
1584         N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO)
1585         N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO)
1586         N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1587         N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1588         N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1589         }
1590 #undef N
1591         return "UNKNOWN_NETDEV_EVENT";
1592 }
1593 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1594
1595 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1596                                    struct net_device *dev)
1597 {
1598         struct netdev_notifier_info info = {
1599                 .dev = dev,
1600         };
1601
1602         return nb->notifier_call(nb, val, &info);
1603 }
1604
1605 static int dev_boot_phase = 1;
1606
1607 /**
1608  * register_netdevice_notifier - register a network notifier block
1609  * @nb: notifier
1610  *
1611  * Register a notifier to be called when network device events occur.
1612  * The notifier passed is linked into the kernel structures and must
1613  * not be reused until it has been unregistered. A negative errno code
1614  * is returned on a failure.
1615  *
1616  * When registered all registration and up events are replayed
1617  * to the new notifier to allow device to have a race free
1618  * view of the network device list.
1619  */
1620
1621 int register_netdevice_notifier(struct notifier_block *nb)
1622 {
1623         struct net_device *dev;
1624         struct net_device *last;
1625         struct net *net;
1626         int err;
1627
1628         /* Close race with setup_net() and cleanup_net() */
1629         down_write(&pernet_ops_rwsem);
1630         rtnl_lock();
1631         err = raw_notifier_chain_register(&netdev_chain, nb);
1632         if (err)
1633                 goto unlock;
1634         if (dev_boot_phase)
1635                 goto unlock;
1636         for_each_net(net) {
1637                 for_each_netdev(net, dev) {
1638                         err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1639                         err = notifier_to_errno(err);
1640                         if (err)
1641                                 goto rollback;
1642
1643                         if (!(dev->flags & IFF_UP))
1644                                 continue;
1645
1646                         call_netdevice_notifier(nb, NETDEV_UP, dev);
1647                 }
1648         }
1649
1650 unlock:
1651         rtnl_unlock();
1652         up_write(&pernet_ops_rwsem);
1653         return err;
1654
1655 rollback:
1656         last = dev;
1657         for_each_net(net) {
1658                 for_each_netdev(net, dev) {
1659                         if (dev == last)
1660                                 goto outroll;
1661
1662                         if (dev->flags & IFF_UP) {
1663                                 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1664                                                         dev);
1665                                 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1666                         }
1667                         call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1668                 }
1669         }
1670
1671 outroll:
1672         raw_notifier_chain_unregister(&netdev_chain, nb);
1673         goto unlock;
1674 }
1675 EXPORT_SYMBOL(register_netdevice_notifier);
1676
1677 /**
1678  * unregister_netdevice_notifier - unregister a network notifier block
1679  * @nb: notifier
1680  *
1681  * Unregister a notifier previously registered by
1682  * register_netdevice_notifier(). The notifier is unlinked into the
1683  * kernel structures and may then be reused. A negative errno code
1684  * is returned on a failure.
1685  *
1686  * After unregistering unregister and down device events are synthesized
1687  * for all devices on the device list to the removed notifier to remove
1688  * the need for special case cleanup code.
1689  */
1690
1691 int unregister_netdevice_notifier(struct notifier_block *nb)
1692 {
1693         struct net_device *dev;
1694         struct net *net;
1695         int err;
1696
1697         /* Close race with setup_net() and cleanup_net() */
1698         down_write(&pernet_ops_rwsem);
1699         rtnl_lock();
1700         err = raw_notifier_chain_unregister(&netdev_chain, nb);
1701         if (err)
1702                 goto unlock;
1703
1704         for_each_net(net) {
1705                 for_each_netdev(net, dev) {
1706                         if (dev->flags & IFF_UP) {
1707                                 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1708                                                         dev);
1709                                 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1710                         }
1711                         call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1712                 }
1713         }
1714 unlock:
1715         rtnl_unlock();
1716         up_write(&pernet_ops_rwsem);
1717         return err;
1718 }
1719 EXPORT_SYMBOL(unregister_netdevice_notifier);
1720
1721 /**
1722  *      call_netdevice_notifiers_info - call all network notifier blocks
1723  *      @val: value passed unmodified to notifier function
1724  *      @info: notifier information data
1725  *
1726  *      Call all network notifier blocks.  Parameters and return value
1727  *      are as for raw_notifier_call_chain().
1728  */
1729
1730 static int call_netdevice_notifiers_info(unsigned long val,
1731                                          struct netdev_notifier_info *info)
1732 {
1733         ASSERT_RTNL();
1734         return raw_notifier_call_chain(&netdev_chain, val, info);
1735 }
1736
1737 /**
1738  *      call_netdevice_notifiers - call all network notifier blocks
1739  *      @val: value passed unmodified to notifier function
1740  *      @dev: net_device pointer passed unmodified to notifier function
1741  *
1742  *      Call all network notifier blocks.  Parameters and return value
1743  *      are as for raw_notifier_call_chain().
1744  */
1745
1746 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1747 {
1748         struct netdev_notifier_info info = {
1749                 .dev = dev,
1750         };
1751
1752         return call_netdevice_notifiers_info(val, &info);
1753 }
1754 EXPORT_SYMBOL(call_netdevice_notifiers);
1755
1756 #ifdef CONFIG_NET_INGRESS
1757 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
1758
1759 void net_inc_ingress_queue(void)
1760 {
1761         static_branch_inc(&ingress_needed_key);
1762 }
1763 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1764
1765 void net_dec_ingress_queue(void)
1766 {
1767         static_branch_dec(&ingress_needed_key);
1768 }
1769 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1770 #endif
1771
1772 #ifdef CONFIG_NET_EGRESS
1773 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
1774
1775 void net_inc_egress_queue(void)
1776 {
1777         static_branch_inc(&egress_needed_key);
1778 }
1779 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
1780
1781 void net_dec_egress_queue(void)
1782 {
1783         static_branch_dec(&egress_needed_key);
1784 }
1785 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
1786 #endif
1787
1788 static DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
1789 #ifdef HAVE_JUMP_LABEL
1790 static atomic_t netstamp_needed_deferred;
1791 static atomic_t netstamp_wanted;
1792 static void netstamp_clear(struct work_struct *work)
1793 {
1794         int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1795         int wanted;
1796
1797         wanted = atomic_add_return(deferred, &netstamp_wanted);
1798         if (wanted > 0)
1799                 static_branch_enable(&netstamp_needed_key);
1800         else
1801                 static_branch_disable(&netstamp_needed_key);
1802 }
1803 static DECLARE_WORK(netstamp_work, netstamp_clear);
1804 #endif
1805
1806 void net_enable_timestamp(void)
1807 {
1808 #ifdef HAVE_JUMP_LABEL
1809         int wanted;
1810
1811         while (1) {
1812                 wanted = atomic_read(&netstamp_wanted);
1813                 if (wanted <= 0)
1814                         break;
1815                 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
1816                         return;
1817         }
1818         atomic_inc(&netstamp_needed_deferred);
1819         schedule_work(&netstamp_work);
1820 #else
1821         static_branch_inc(&netstamp_needed_key);
1822 #endif
1823 }
1824 EXPORT_SYMBOL(net_enable_timestamp);
1825
1826 void net_disable_timestamp(void)
1827 {
1828 #ifdef HAVE_JUMP_LABEL
1829         int wanted;
1830
1831         while (1) {
1832                 wanted = atomic_read(&netstamp_wanted);
1833                 if (wanted <= 1)
1834                         break;
1835                 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
1836                         return;
1837         }
1838         atomic_dec(&netstamp_needed_deferred);
1839         schedule_work(&netstamp_work);
1840 #else
1841         static_branch_dec(&netstamp_needed_key);
1842 #endif
1843 }
1844 EXPORT_SYMBOL(net_disable_timestamp);
1845
1846 static inline void net_timestamp_set(struct sk_buff *skb)
1847 {
1848         skb->tstamp = 0;
1849         if (static_branch_unlikely(&netstamp_needed_key))
1850                 __net_timestamp(skb);
1851 }
1852
1853 #define net_timestamp_check(COND, SKB)                          \
1854         if (static_branch_unlikely(&netstamp_needed_key)) {     \
1855                 if ((COND) && !(SKB)->tstamp)                   \
1856                         __net_timestamp(SKB);                   \
1857         }                                                       \
1858
1859 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
1860 {
1861         unsigned int len;
1862
1863         if (!(dev->flags & IFF_UP))
1864                 return false;
1865
1866         len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1867         if (skb->len <= len)
1868                 return true;
1869
1870         /* if TSO is enabled, we don't care about the length as the packet
1871          * could be forwarded without being segmented before
1872          */
1873         if (skb_is_gso(skb))
1874                 return true;
1875
1876         return false;
1877 }
1878 EXPORT_SYMBOL_GPL(is_skb_forwardable);
1879
1880 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1881 {
1882         int ret = ____dev_forward_skb(dev, skb);
1883
1884         if (likely(!ret)) {
1885                 skb->protocol = eth_type_trans(skb, dev);
1886                 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1887         }
1888
1889         return ret;
1890 }
1891 EXPORT_SYMBOL_GPL(__dev_forward_skb);
1892
1893 /**
1894  * dev_forward_skb - loopback an skb to another netif
1895  *
1896  * @dev: destination network device
1897  * @skb: buffer to forward
1898  *
1899  * return values:
1900  *      NET_RX_SUCCESS  (no congestion)
1901  *      NET_RX_DROP     (packet was dropped, but freed)
1902  *
1903  * dev_forward_skb can be used for injecting an skb from the
1904  * start_xmit function of one device into the receive queue
1905  * of another device.
1906  *
1907  * The receiving device may be in another namespace, so
1908  * we have to clear all information in the skb that could
1909  * impact namespace isolation.
1910  */
1911 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1912 {
1913         return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1914 }
1915 EXPORT_SYMBOL_GPL(dev_forward_skb);
1916
1917 static inline int deliver_skb(struct sk_buff *skb,
1918                               struct packet_type *pt_prev,
1919                               struct net_device *orig_dev)
1920 {
1921         if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
1922                 return -ENOMEM;
1923         refcount_inc(&skb->users);
1924         return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1925 }
1926
1927 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1928                                           struct packet_type **pt,
1929                                           struct net_device *orig_dev,
1930                                           __be16 type,
1931                                           struct list_head *ptype_list)
1932 {
1933         struct packet_type *ptype, *pt_prev = *pt;
1934
1935         list_for_each_entry_rcu(ptype, ptype_list, list) {
1936                 if (ptype->type != type)
1937                         continue;
1938                 if (pt_prev)
1939                         deliver_skb(skb, pt_prev, orig_dev);
1940                 pt_prev = ptype;
1941         }
1942         *pt = pt_prev;
1943 }
1944
1945 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1946 {
1947         if (!ptype->af_packet_priv || !skb->sk)
1948                 return false;
1949
1950         if (ptype->id_match)
1951                 return ptype->id_match(ptype, skb->sk);
1952         else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1953                 return true;
1954
1955         return false;
1956 }
1957
1958 /*
1959  *      Support routine. Sends outgoing frames to any network
1960  *      taps currently in use.
1961  */
1962
1963 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1964 {
1965         struct packet_type *ptype;
1966         struct sk_buff *skb2 = NULL;
1967         struct packet_type *pt_prev = NULL;
1968         struct list_head *ptype_list = &ptype_all;
1969
1970         rcu_read_lock();
1971 again:
1972         list_for_each_entry_rcu(ptype, ptype_list, list) {
1973                 /* Never send packets back to the socket
1974                  * they originated from - MvS (miquels@drinkel.ow.org)
1975                  */
1976                 if (skb_loop_sk(ptype, skb))
1977                         continue;
1978
1979                 if (pt_prev) {
1980                         deliver_skb(skb2, pt_prev, skb->dev);
1981                         pt_prev = ptype;
1982                         continue;
1983                 }
1984
1985                 /* need to clone skb, done only once */
1986                 skb2 = skb_clone(skb, GFP_ATOMIC);
1987                 if (!skb2)
1988                         goto out_unlock;
1989
1990                 net_timestamp_set(skb2);
1991
1992                 /* skb->nh should be correctly
1993                  * set by sender, so that the second statement is
1994                  * just protection against buggy protocols.
1995                  */
1996                 skb_reset_mac_header(skb2);
1997
1998                 if (skb_network_header(skb2) < skb2->data ||
1999                     skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2000                         net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2001                                              ntohs(skb2->protocol),
2002                                              dev->name);
2003                         skb_reset_network_header(skb2);
2004                 }
2005
2006                 skb2->transport_header = skb2->network_header;
2007                 skb2->pkt_type = PACKET_OUTGOING;
2008                 pt_prev = ptype;
2009         }
2010
2011         if (ptype_list == &ptype_all) {
2012                 ptype_list = &dev->ptype_all;
2013                 goto again;
2014         }
2015 out_unlock:
2016         if (pt_prev) {
2017                 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2018                         pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2019                 else
2020                         kfree_skb(skb2);
2021         }
2022         rcu_read_unlock();
2023 }
2024 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2025
2026 /**
2027  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2028  * @dev: Network device
2029  * @txq: number of queues available
2030  *
2031  * If real_num_tx_queues is changed the tc mappings may no longer be
2032  * valid. To resolve this verify the tc mapping remains valid and if
2033  * not NULL the mapping. With no priorities mapping to this
2034  * offset/count pair it will no longer be used. In the worst case TC0
2035  * is invalid nothing can be done so disable priority mappings. If is
2036  * expected that drivers will fix this mapping if they can before
2037  * calling netif_set_real_num_tx_queues.
2038  */
2039 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2040 {
2041         int i;
2042         struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2043
2044         /* If TC0 is invalidated disable TC mapping */
2045         if (tc->offset + tc->count > txq) {
2046                 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2047                 dev->num_tc = 0;
2048                 return;
2049         }
2050
2051         /* Invalidated prio to tc mappings set to TC0 */
2052         for (i = 1; i < TC_BITMASK + 1; i++) {
2053                 int q = netdev_get_prio_tc_map(dev, i);
2054
2055                 tc = &dev->tc_to_txq[q];
2056                 if (tc->offset + tc->count > txq) {
2057                         pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2058                                 i, q);
2059                         netdev_set_prio_tc_map(dev, i, 0);
2060                 }
2061         }
2062 }
2063
2064 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2065 {
2066         if (dev->num_tc) {
2067                 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2068                 int i;
2069
2070                 /* walk through the TCs and see if it falls into any of them */
2071                 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2072                         if ((txq - tc->offset) < tc->count)
2073                                 return i;
2074                 }
2075
2076                 /* didn't find it, just return -1 to indicate no match */
2077                 return -1;
2078         }
2079
2080         return 0;
2081 }
2082 EXPORT_SYMBOL(netdev_txq_to_tc);
2083
2084 #ifdef CONFIG_XPS
2085 struct static_key xps_needed __read_mostly;
2086 EXPORT_SYMBOL(xps_needed);
2087 struct static_key xps_rxqs_needed __read_mostly;
2088 EXPORT_SYMBOL(xps_rxqs_needed);
2089 static DEFINE_MUTEX(xps_map_mutex);
2090 #define xmap_dereference(P)             \
2091         rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2092
2093 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2094                              int tci, u16 index)
2095 {
2096         struct xps_map *map = NULL;
2097         int pos;
2098
2099         if (dev_maps)
2100                 map = xmap_dereference(dev_maps->attr_map[tci]);
2101         if (!map)
2102                 return false;
2103
2104         for (pos = map->len; pos--;) {
2105                 if (map->queues[pos] != index)
2106                         continue;
2107
2108                 if (map->len > 1) {
2109                         map->queues[pos] = map->queues[--map->len];
2110                         break;
2111                 }
2112
2113                 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2114                 kfree_rcu(map, rcu);
2115                 return false;
2116         }
2117
2118         return true;
2119 }
2120
2121 static bool remove_xps_queue_cpu(struct net_device *dev,
2122                                  struct xps_dev_maps *dev_maps,
2123                                  int cpu, u16 offset, u16 count)
2124 {
2125         int num_tc = dev->num_tc ? : 1;
2126         bool active = false;
2127         int tci;
2128
2129         for (tci = cpu * num_tc; num_tc--; tci++) {
2130                 int i, j;
2131
2132                 for (i = count, j = offset; i--; j++) {
2133                         if (!remove_xps_queue(dev_maps, tci, j))
2134                                 break;
2135                 }
2136
2137                 active |= i < 0;
2138         }
2139
2140         return active;
2141 }
2142
2143 static void clean_xps_maps(struct net_device *dev, const unsigned long *mask,
2144                            struct xps_dev_maps *dev_maps, unsigned int nr_ids,
2145                            u16 offset, u16 count, bool is_rxqs_map)
2146 {
2147         bool active = false;
2148         int i, j;
2149
2150         for (j = -1; j = netif_attrmask_next(j, mask, nr_ids),
2151              j < nr_ids;)
2152                 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset,
2153                                                count);
2154         if (!active) {
2155                 if (is_rxqs_map) {
2156                         RCU_INIT_POINTER(dev->xps_rxqs_map, NULL);
2157                 } else {
2158                         RCU_INIT_POINTER(dev->xps_cpus_map, NULL);
2159
2160                         for (i = offset + (count - 1); count--; i--)
2161                                 netdev_queue_numa_node_write(
2162                                         netdev_get_tx_queue(dev, i),
2163                                                         NUMA_NO_NODE);
2164                 }
2165                 kfree_rcu(dev_maps, rcu);
2166         }
2167 }
2168
2169 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2170                                    u16 count)
2171 {
2172         const unsigned long *possible_mask = NULL;
2173         struct xps_dev_maps *dev_maps;
2174         unsigned int nr_ids;
2175
2176         if (!static_key_false(&xps_needed))
2177                 return;
2178
2179         mutex_lock(&xps_map_mutex);
2180
2181         if (static_key_false(&xps_rxqs_needed)) {
2182                 dev_maps = xmap_dereference(dev->xps_rxqs_map);
2183                 if (dev_maps) {
2184                         nr_ids = dev->num_rx_queues;
2185                         clean_xps_maps(dev, possible_mask, dev_maps, nr_ids,
2186                                        offset, count, true);
2187                 }
2188         }
2189
2190         dev_maps = xmap_dereference(dev->xps_cpus_map);
2191         if (!dev_maps)
2192                 goto out_no_maps;
2193
2194         if (num_possible_cpus() > 1)
2195                 possible_mask = cpumask_bits(cpu_possible_mask);
2196         nr_ids = nr_cpu_ids;
2197         clean_xps_maps(dev, possible_mask, dev_maps, nr_ids, offset, count,
2198                        false);
2199
2200 out_no_maps:
2201         if (static_key_enabled(&xps_rxqs_needed))
2202                 static_key_slow_dec(&xps_rxqs_needed);
2203
2204         static_key_slow_dec(&xps_needed);
2205         mutex_unlock(&xps_map_mutex);
2206 }
2207
2208 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2209 {
2210         netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2211 }
2212
2213 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2214                                       u16 index, bool is_rxqs_map)
2215 {
2216         struct xps_map *new_map;
2217         int alloc_len = XPS_MIN_MAP_ALLOC;
2218         int i, pos;
2219
2220         for (pos = 0; map && pos < map->len; pos++) {
2221                 if (map->queues[pos] != index)
2222                         continue;
2223                 return map;
2224         }
2225
2226         /* Need to add tx-queue to this CPU's/rx-queue's existing map */
2227         if (map) {
2228                 if (pos < map->alloc_len)
2229                         return map;
2230
2231                 alloc_len = map->alloc_len * 2;
2232         }
2233
2234         /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2235          *  map
2236          */
2237         if (is_rxqs_map)
2238                 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2239         else
2240                 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2241                                        cpu_to_node(attr_index));
2242         if (!new_map)
2243                 return NULL;
2244
2245         for (i = 0; i < pos; i++)
2246                 new_map->queues[i] = map->queues[i];
2247         new_map->alloc_len = alloc_len;
2248         new_map->len = pos;
2249
2250         return new_map;
2251 }
2252
2253 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2254                           u16 index, bool is_rxqs_map)
2255 {
2256         const unsigned long *online_mask = NULL, *possible_mask = NULL;
2257         struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2258         int i, j, tci, numa_node_id = -2;
2259         int maps_sz, num_tc = 1, tc = 0;
2260         struct xps_map *map, *new_map;
2261         bool active = false;
2262         unsigned int nr_ids;
2263
2264         if (dev->num_tc) {
2265                 /* Do not allow XPS on subordinate device directly */
2266                 num_tc = dev->num_tc;
2267                 if (num_tc < 0)
2268                         return -EINVAL;
2269
2270                 /* If queue belongs to subordinate dev use its map */
2271                 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2272
2273                 tc = netdev_txq_to_tc(dev, index);
2274                 if (tc < 0)
2275                         return -EINVAL;
2276         }
2277
2278         mutex_lock(&xps_map_mutex);
2279         if (is_rxqs_map) {
2280                 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2281                 dev_maps = xmap_dereference(dev->xps_rxqs_map);
2282                 nr_ids = dev->num_rx_queues;
2283         } else {
2284                 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2285                 if (num_possible_cpus() > 1) {
2286                         online_mask = cpumask_bits(cpu_online_mask);
2287                         possible_mask = cpumask_bits(cpu_possible_mask);
2288                 }
2289                 dev_maps = xmap_dereference(dev->xps_cpus_map);
2290                 nr_ids = nr_cpu_ids;
2291         }
2292
2293         if (maps_sz < L1_CACHE_BYTES)
2294                 maps_sz = L1_CACHE_BYTES;
2295
2296         /* allocate memory for queue storage */
2297         for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2298              j < nr_ids;) {
2299                 if (!new_dev_maps)
2300                         new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2301                 if (!new_dev_maps) {
2302                         mutex_unlock(&xps_map_mutex);
2303                         return -ENOMEM;
2304                 }
2305
2306                 tci = j * num_tc + tc;
2307                 map = dev_maps ? xmap_dereference(dev_maps->attr_map[tci]) :
2308                                  NULL;
2309
2310                 map = expand_xps_map(map, j, index, is_rxqs_map);
2311                 if (!map)
2312                         goto error;
2313
2314                 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2315         }
2316
2317         if (!new_dev_maps)
2318                 goto out_no_new_maps;
2319
2320         static_key_slow_inc(&xps_needed);
2321         if (is_rxqs_map)
2322                 static_key_slow_inc(&xps_rxqs_needed);
2323
2324         for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2325              j < nr_ids;) {
2326                 /* copy maps belonging to foreign traffic classes */
2327                 for (i = tc, tci = j * num_tc; dev_maps && i--; tci++) {
2328                         /* fill in the new device map from the old device map */
2329                         map = xmap_dereference(dev_maps->attr_map[tci]);
2330                         RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2331                 }
2332
2333                 /* We need to explicitly update tci as prevous loop
2334                  * could break out early if dev_maps is NULL.
2335                  */
2336                 tci = j * num_tc + tc;
2337
2338                 if (netif_attr_test_mask(j, mask, nr_ids) &&
2339                     netif_attr_test_online(j, online_mask, nr_ids)) {
2340                         /* add tx-queue to CPU/rx-queue maps */
2341                         int pos = 0;
2342
2343                         map = xmap_dereference(new_dev_maps->attr_map[tci]);
2344                         while ((pos < map->len) && (map->queues[pos] != index))
2345                                 pos++;
2346
2347                         if (pos == map->len)
2348                                 map->queues[map->len++] = index;
2349 #ifdef CONFIG_NUMA
2350                         if (!is_rxqs_map) {
2351                                 if (numa_node_id == -2)
2352                                         numa_node_id = cpu_to_node(j);
2353                                 else if (numa_node_id != cpu_to_node(j))
2354                                         numa_node_id = -1;
2355                         }
2356 #endif
2357                 } else if (dev_maps) {
2358                         /* fill in the new device map from the old device map */
2359                         map = xmap_dereference(dev_maps->attr_map[tci]);
2360                         RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2361                 }
2362
2363                 /* copy maps belonging to foreign traffic classes */
2364                 for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2365                         /* fill in the new device map from the old device map */
2366                         map = xmap_dereference(dev_maps->attr_map[tci]);
2367                         RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2368                 }
2369         }
2370
2371         if (is_rxqs_map)
2372                 rcu_assign_pointer(dev->xps_rxqs_map, new_dev_maps);
2373         else
2374                 rcu_assign_pointer(dev->xps_cpus_map, new_dev_maps);
2375
2376         /* Cleanup old maps */
2377         if (!dev_maps)
2378                 goto out_no_old_maps;
2379
2380         for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2381              j < nr_ids;) {
2382                 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2383                         new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2384                         map = xmap_dereference(dev_maps->attr_map[tci]);
2385                         if (map && map != new_map)
2386                                 kfree_rcu(map, rcu);
2387                 }
2388         }
2389
2390         kfree_rcu(dev_maps, rcu);
2391
2392 out_no_old_maps:
2393         dev_maps = new_dev_maps;
2394         active = true;
2395
2396 out_no_new_maps:
2397         if (!is_rxqs_map) {
2398                 /* update Tx queue numa node */
2399                 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2400                                              (numa_node_id >= 0) ?
2401                                              numa_node_id : NUMA_NO_NODE);
2402         }
2403
2404         if (!dev_maps)
2405                 goto out_no_maps;
2406
2407         /* removes tx-queue from unused CPUs/rx-queues */
2408         for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2409              j < nr_ids;) {
2410                 for (i = tc, tci = j * num_tc; i--; tci++)
2411                         active |= remove_xps_queue(dev_maps, tci, index);
2412                 if (!netif_attr_test_mask(j, mask, nr_ids) ||
2413                     !netif_attr_test_online(j, online_mask, nr_ids))
2414                         active |= remove_xps_queue(dev_maps, tci, index);
2415                 for (i = num_tc - tc, tci++; --i; tci++)
2416                         active |= remove_xps_queue(dev_maps, tci, index);
2417         }
2418
2419         /* free map if not active */
2420         if (!active) {
2421                 if (is_rxqs_map)
2422                         RCU_INIT_POINTER(dev->xps_rxqs_map, NULL);
2423                 else
2424                         RCU_INIT_POINTER(dev->xps_cpus_map, NULL);
2425                 kfree_rcu(dev_maps, rcu);
2426         }
2427
2428 out_no_maps:
2429         mutex_unlock(&xps_map_mutex);
2430
2431         return 0;
2432 error:
2433         /* remove any maps that we added */
2434         for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2435              j < nr_ids;) {
2436                 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2437                         new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2438                         map = dev_maps ?
2439                               xmap_dereference(dev_maps->attr_map[tci]) :
2440                               NULL;
2441                         if (new_map && new_map != map)
2442                                 kfree(new_map);
2443                 }
2444         }
2445
2446         mutex_unlock(&xps_map_mutex);
2447
2448         kfree(new_dev_maps);
2449         return -ENOMEM;
2450 }
2451
2452 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2453                         u16 index)
2454 {
2455         return __netif_set_xps_queue(dev, cpumask_bits(mask), index, false);
2456 }
2457 EXPORT_SYMBOL(netif_set_xps_queue);
2458
2459 #endif
2460 static void netdev_unbind_all_sb_channels(struct net_device *dev)
2461 {
2462         struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2463
2464         /* Unbind any subordinate channels */
2465         while (txq-- != &dev->_tx[0]) {
2466                 if (txq->sb_dev)
2467                         netdev_unbind_sb_channel(dev, txq->sb_dev);
2468         }
2469 }
2470
2471 void netdev_reset_tc(struct net_device *dev)
2472 {
2473 #ifdef CONFIG_XPS
2474         netif_reset_xps_queues_gt(dev, 0);
2475 #endif
2476         netdev_unbind_all_sb_channels(dev);
2477
2478         /* Reset TC configuration of device */
2479         dev->num_tc = 0;
2480         memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2481         memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2482 }
2483 EXPORT_SYMBOL(netdev_reset_tc);
2484
2485 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2486 {
2487         if (tc >= dev->num_tc)
2488                 return -EINVAL;
2489
2490 #ifdef CONFIG_XPS
2491         netif_reset_xps_queues(dev, offset, count);
2492 #endif
2493         dev->tc_to_txq[tc].count = count;
2494         dev->tc_to_txq[tc].offset = offset;
2495         return 0;
2496 }
2497 EXPORT_SYMBOL(netdev_set_tc_queue);
2498
2499 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2500 {
2501         if (num_tc > TC_MAX_QUEUE)
2502                 return -EINVAL;
2503
2504 #ifdef CONFIG_XPS
2505         netif_reset_xps_queues_gt(dev, 0);
2506 #endif
2507         netdev_unbind_all_sb_channels(dev);
2508
2509         dev->num_tc = num_tc;
2510         return 0;
2511 }
2512 EXPORT_SYMBOL(netdev_set_num_tc);
2513
2514 void netdev_unbind_sb_channel(struct net_device *dev,
2515                               struct net_device *sb_dev)
2516 {
2517         struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2518
2519 #ifdef CONFIG_XPS
2520         netif_reset_xps_queues_gt(sb_dev, 0);
2521 #endif
2522         memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2523         memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2524
2525         while (txq-- != &dev->_tx[0]) {
2526                 if (txq->sb_dev == sb_dev)
2527                         txq->sb_dev = NULL;
2528         }
2529 }
2530 EXPORT_SYMBOL(netdev_unbind_sb_channel);
2531
2532 int netdev_bind_sb_channel_queue(struct net_device *dev,
2533                                  struct net_device *sb_dev,
2534                                  u8 tc, u16 count, u16 offset)
2535 {
2536         /* Make certain the sb_dev and dev are already configured */
2537         if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2538                 return -EINVAL;
2539
2540         /* We cannot hand out queues we don't have */
2541         if ((offset + count) > dev->real_num_tx_queues)
2542                 return -EINVAL;
2543
2544         /* Record the mapping */
2545         sb_dev->tc_to_txq[tc].count = count;
2546         sb_dev->tc_to_txq[tc].offset = offset;
2547
2548         /* Provide a way for Tx queue to find the tc_to_txq map or
2549          * XPS map for itself.
2550          */
2551         while (count--)
2552                 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2553
2554         return 0;
2555 }
2556 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2557
2558 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2559 {
2560         /* Do not use a multiqueue device to represent a subordinate channel */
2561         if (netif_is_multiqueue(dev))
2562                 return -ENODEV;
2563
2564         /* We allow channels 1 - 32767 to be used for subordinate channels.
2565          * Channel 0 is meant to be "native" mode and used only to represent
2566          * the main root device. We allow writing 0 to reset the device back
2567          * to normal mode after being used as a subordinate channel.
2568          */
2569         if (channel > S16_MAX)
2570                 return -EINVAL;
2571
2572         dev->num_tc = -channel;
2573
2574         return 0;
2575 }
2576 EXPORT_SYMBOL(netdev_set_sb_channel);
2577
2578 /*
2579  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2580  * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2581  */
2582 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2583 {
2584         bool disabling;
2585         int rc;
2586
2587         disabling = txq < dev->real_num_tx_queues;
2588
2589         if (txq < 1 || txq > dev->num_tx_queues)
2590                 return -EINVAL;
2591
2592         if (dev->reg_state == NETREG_REGISTERED ||
2593             dev->reg_state == NETREG_UNREGISTERING) {
2594                 ASSERT_RTNL();
2595
2596                 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2597                                                   txq);
2598                 if (rc)
2599                         return rc;
2600
2601                 if (dev->num_tc)
2602                         netif_setup_tc(dev, txq);
2603
2604                 dev->real_num_tx_queues = txq;
2605
2606                 if (disabling) {
2607                         synchronize_net();
2608                         qdisc_reset_all_tx_gt(dev, txq);
2609 #ifdef CONFIG_XPS
2610                         netif_reset_xps_queues_gt(dev, txq);
2611 #endif
2612                 }
2613         } else {
2614                 dev->real_num_tx_queues = txq;
2615         }
2616
2617         return 0;
2618 }
2619 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2620
2621 #ifdef CONFIG_SYSFS
2622 /**
2623  *      netif_set_real_num_rx_queues - set actual number of RX queues used
2624  *      @dev: Network device
2625  *      @rxq: Actual number of RX queues
2626  *
2627  *      This must be called either with the rtnl_lock held or before
2628  *      registration of the net device.  Returns 0 on success, or a
2629  *      negative error code.  If called before registration, it always
2630  *      succeeds.
2631  */
2632 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2633 {
2634         int rc;
2635
2636         if (rxq < 1 || rxq > dev->num_rx_queues)
2637                 return -EINVAL;
2638
2639         if (dev->reg_state == NETREG_REGISTERED) {
2640                 ASSERT_RTNL();
2641
2642                 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2643                                                   rxq);
2644                 if (rc)
2645                         return rc;
2646         }
2647
2648         dev->real_num_rx_queues = rxq;
2649         return 0;
2650 }
2651 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2652 #endif
2653
2654 /**
2655  * netif_get_num_default_rss_queues - default number of RSS queues
2656  *
2657  * This routine should set an upper limit on the number of RSS queues
2658  * used by default by multiqueue devices.
2659  */
2660 int netif_get_num_default_rss_queues(void)
2661 {
2662         return is_kdump_kernel() ?
2663                 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2664 }
2665 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2666
2667 static void __netif_reschedule(struct Qdisc *q)
2668 {
2669         struct softnet_data *sd;
2670         unsigned long flags;
2671
2672         local_irq_save(flags);
2673         sd = this_cpu_ptr(&softnet_data);
2674         q->next_sched = NULL;
2675         *sd->output_queue_tailp = q;
2676         sd->output_queue_tailp = &q->next_sched;
2677         raise_softirq_irqoff(NET_TX_SOFTIRQ);
2678         local_irq_restore(flags);
2679 }
2680
2681 void __netif_schedule(struct Qdisc *q)
2682 {
2683         if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2684                 __netif_reschedule(q);
2685 }
2686 EXPORT_SYMBOL(__netif_schedule);
2687
2688 struct dev_kfree_skb_cb {
2689         enum skb_free_reason reason;
2690 };
2691
2692 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2693 {
2694         return (struct dev_kfree_skb_cb *)skb->cb;
2695 }
2696
2697 void netif_schedule_queue(struct netdev_queue *txq)
2698 {
2699         rcu_read_lock();
2700         if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2701                 struct Qdisc *q = rcu_dereference(txq->qdisc);
2702
2703                 __netif_schedule(q);
2704         }
2705         rcu_read_unlock();
2706 }
2707 EXPORT_SYMBOL(netif_schedule_queue);
2708
2709 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2710 {
2711         if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2712                 struct Qdisc *q;
2713
2714                 rcu_read_lock();
2715                 q = rcu_dereference(dev_queue->qdisc);
2716                 __netif_schedule(q);
2717                 rcu_read_unlock();
2718         }
2719 }
2720 EXPORT_SYMBOL(netif_tx_wake_queue);
2721
2722 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2723 {
2724         unsigned long flags;
2725
2726         if (unlikely(!skb))
2727                 return;
2728
2729         if (likely(refcount_read(&skb->users) == 1)) {
2730                 smp_rmb();
2731                 refcount_set(&skb->users, 0);
2732         } else if (likely(!refcount_dec_and_test(&skb->users))) {
2733                 return;
2734         }
2735         get_kfree_skb_cb(skb)->reason = reason;
2736         local_irq_save(flags);
2737         skb->next = __this_cpu_read(softnet_data.completion_queue);
2738         __this_cpu_write(softnet_data.completion_queue, skb);
2739         raise_softirq_irqoff(NET_TX_SOFTIRQ);
2740         local_irq_restore(flags);
2741 }
2742 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2743
2744 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2745 {
2746         if (in_irq() || irqs_disabled())
2747                 __dev_kfree_skb_irq(skb, reason);
2748         else
2749                 dev_kfree_skb(skb);
2750 }
2751 EXPORT_SYMBOL(__dev_kfree_skb_any);
2752
2753
2754 /**
2755  * netif_device_detach - mark device as removed
2756  * @dev: network device
2757  *
2758  * Mark device as removed from system and therefore no longer available.
2759  */
2760 void netif_device_detach(struct net_device *dev)
2761 {
2762         if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2763             netif_running(dev)) {
2764                 netif_tx_stop_all_queues(dev);
2765         }
2766 }
2767 EXPORT_SYMBOL(netif_device_detach);
2768
2769 /**
2770  * netif_device_attach - mark device as attached
2771  * @dev: network device
2772  *
2773  * Mark device as attached from system and restart if needed.
2774  */
2775 void netif_device_attach(struct net_device *dev)
2776 {
2777         if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2778             netif_running(dev)) {
2779                 netif_tx_wake_all_queues(dev);
2780                 __netdev_watchdog_up(dev);
2781         }
2782 }
2783 EXPORT_SYMBOL(netif_device_attach);
2784
2785 /*
2786  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2787  * to be used as a distribution range.
2788  */
2789 static u16 skb_tx_hash(const struct net_device *dev, struct sk_buff *skb)
2790 {
2791         u32 hash;
2792         u16 qoffset = 0;
2793         u16 qcount = dev->real_num_tx_queues;
2794
2795         if (skb_rx_queue_recorded(skb)) {
2796                 hash = skb_get_rx_queue(skb);
2797                 while (unlikely(hash >= qcount))
2798                         hash -= qcount;
2799                 return hash;
2800         }
2801
2802         if (dev->num_tc) {
2803                 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2804
2805                 qoffset = dev->tc_to_txq[tc].offset;
2806                 qcount = dev->tc_to_txq[tc].count;
2807         }
2808
2809         return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2810 }
2811
2812 static void skb_warn_bad_offload(const struct sk_buff *skb)
2813 {
2814         static const netdev_features_t null_features;
2815         struct net_device *dev = skb->dev;
2816         const char *name = "";
2817
2818         if (!net_ratelimit())
2819                 return;
2820
2821         if (dev) {
2822                 if (dev->dev.parent)
2823                         name = dev_driver_string(dev->dev.parent);
2824                 else
2825                         name = netdev_name(dev);
2826         }
2827         WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2828              "gso_type=%d ip_summed=%d\n",
2829              name, dev ? &dev->features : &null_features,
2830              skb->sk ? &skb->sk->sk_route_caps : &null_features,
2831              skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2832              skb_shinfo(skb)->gso_type, skb->ip_summed);
2833 }
2834
2835 /*
2836  * Invalidate hardware checksum when packet is to be mangled, and
2837  * complete checksum manually on outgoing path.
2838  */
2839 int skb_checksum_help(struct sk_buff *skb)
2840 {
2841         __wsum csum;
2842         int ret = 0, offset;
2843
2844         if (skb->ip_summed == CHECKSUM_COMPLETE)
2845                 goto out_set_summed;
2846
2847         if (unlikely(skb_shinfo(skb)->gso_size)) {
2848                 skb_warn_bad_offload(skb);
2849                 return -EINVAL;
2850         }
2851
2852         /* Before computing a checksum, we should make sure no frag could
2853          * be modified by an external entity : checksum could be wrong.
2854          */
2855         if (skb_has_shared_frag(skb)) {
2856                 ret = __skb_linearize(skb);
2857                 if (ret)
2858                         goto out;
2859         }
2860
2861         offset = skb_checksum_start_offset(skb);
2862         BUG_ON(offset >= skb_headlen(skb));
2863         csum = skb_checksum(skb, offset, skb->len - offset, 0);
2864
2865         offset += skb->csum_offset;
2866         BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2867
2868         if (skb_cloned(skb) &&
2869             !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2870                 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2871                 if (ret)
2872                         goto out;
2873         }
2874
2875         *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
2876 out_set_summed:
2877         skb->ip_summed = CHECKSUM_NONE;
2878 out:
2879         return ret;
2880 }
2881 EXPORT_SYMBOL(skb_checksum_help);
2882
2883 int skb_crc32c_csum_help(struct sk_buff *skb)
2884 {
2885         __le32 crc32c_csum;
2886         int ret = 0, offset, start;
2887
2888         if (skb->ip_summed != CHECKSUM_PARTIAL)
2889                 goto out;
2890
2891         if (unlikely(skb_is_gso(skb)))
2892                 goto out;
2893
2894         /* Before computing a checksum, we should make sure no frag could
2895          * be modified by an external entity : checksum could be wrong.
2896          */
2897         if (unlikely(skb_has_shared_frag(skb))) {
2898                 ret = __skb_linearize(skb);
2899                 if (ret)
2900                         goto out;
2901         }
2902         start = skb_checksum_start_offset(skb);
2903         offset = start + offsetof(struct sctphdr, checksum);
2904         if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
2905                 ret = -EINVAL;
2906                 goto out;
2907         }
2908         if (skb_cloned(skb) &&
2909             !skb_clone_writable(skb, offset + sizeof(__le32))) {
2910                 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2911                 if (ret)
2912                         goto out;
2913         }
2914         crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
2915                                                   skb->len - start, ~(__u32)0,
2916                                                   crc32c_csum_stub));
2917         *(__le32 *)(skb->data + offset) = crc32c_csum;
2918         skb->ip_summed = CHECKSUM_NONE;
2919         skb->csum_not_inet = 0;
2920 out:
2921         return ret;
2922 }
2923
2924 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2925 {
2926         __be16 type = skb->protocol;
2927
2928         /* Tunnel gso handlers can set protocol to ethernet. */
2929         if (type == htons(ETH_P_TEB)) {
2930                 struct ethhdr *eth;
2931
2932                 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2933                         return 0;
2934
2935                 eth = (struct ethhdr *)skb->data;
2936                 type = eth->h_proto;
2937         }
2938
2939         return __vlan_get_protocol(skb, type, depth);
2940 }
2941
2942 /**
2943  *      skb_mac_gso_segment - mac layer segmentation handler.
2944  *      @skb: buffer to segment
2945  *      @features: features for the output path (see dev->features)
2946  */
2947 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2948                                     netdev_features_t features)
2949 {
2950         struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2951         struct packet_offload *ptype;
2952         int vlan_depth = skb->mac_len;
2953         __be16 type = skb_network_protocol(skb, &vlan_depth);
2954
2955         if (unlikely(!type))
2956                 return ERR_PTR(-EINVAL);
2957
2958         __skb_pull(skb, vlan_depth);
2959
2960         rcu_read_lock();
2961         list_for_each_entry_rcu(ptype, &offload_base, list) {
2962                 if (ptype->type == type && ptype->callbacks.gso_segment) {
2963                         segs = ptype->callbacks.gso_segment(skb, features);
2964                         break;
2965                 }
2966         }
2967         rcu_read_unlock();
2968
2969         __skb_push(skb, skb->data - skb_mac_header(skb));
2970
2971         return segs;
2972 }
2973 EXPORT_SYMBOL(skb_mac_gso_segment);
2974
2975
2976 /* openvswitch calls this on rx path, so we need a different check.
2977  */
2978 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2979 {
2980         if (tx_path)
2981                 return skb->ip_summed != CHECKSUM_PARTIAL &&
2982                        skb->ip_summed != CHECKSUM_UNNECESSARY;
2983
2984         return skb->ip_summed == CHECKSUM_NONE;
2985 }
2986
2987 /**
2988  *      __skb_gso_segment - Perform segmentation on skb.
2989  *      @skb: buffer to segment
2990  *      @features: features for the output path (see dev->features)
2991  *      @tx_path: whether it is called in TX path
2992  *
2993  *      This function segments the given skb and returns a list of segments.
2994  *
2995  *      It may return NULL if the skb requires no segmentation.  This is
2996  *      only possible when GSO is used for verifying header integrity.
2997  *
2998  *      Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
2999  */
3000 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3001                                   netdev_features_t features, bool tx_path)
3002 {
3003         struct sk_buff *segs;
3004
3005         if (unlikely(skb_needs_check(skb, tx_path))) {
3006                 int err;
3007
3008                 /* We're going to init ->check field in TCP or UDP header */
3009                 err = skb_cow_head(skb, 0);
3010                 if (err < 0)
3011                         return ERR_PTR(err);
3012         }
3013
3014         /* Only report GSO partial support if it will enable us to
3015          * support segmentation on this frame without needing additional
3016          * work.
3017          */
3018         if (features & NETIF_F_GSO_PARTIAL) {
3019                 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
3020                 struct net_device *dev = skb->dev;
3021
3022                 partial_features |= dev->features & dev->gso_partial_features;
3023                 if (!skb_gso_ok(skb, features | partial_features))
3024                         features &= ~NETIF_F_GSO_PARTIAL;
3025         }
3026
3027         BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
3028                      sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
3029
3030         SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3031         SKB_GSO_CB(skb)->encap_level = 0;
3032
3033         skb_reset_mac_header(skb);
3034         skb_reset_mac_len(skb);
3035
3036         segs = skb_mac_gso_segment(skb, features);
3037
3038         if (unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
3039                 skb_warn_bad_offload(skb);
3040
3041         return segs;
3042 }
3043 EXPORT_SYMBOL(__skb_gso_segment);
3044
3045 /* Take action when hardware reception checksum errors are detected. */
3046 #ifdef CONFIG_BUG
3047 void netdev_rx_csum_fault(struct net_device *dev)
3048 {
3049         if (net_ratelimit()) {
3050                 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
3051                 dump_stack();
3052         }
3053 }
3054 EXPORT_SYMBOL(netdev_rx_csum_fault);
3055 #endif
3056
3057 /* XXX: check that highmem exists at all on the given machine. */
3058 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3059 {
3060 #ifdef CONFIG_HIGHMEM
3061         int i;
3062
3063         if (!(dev->features & NETIF_F_HIGHDMA)) {
3064                 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3065                         skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3066
3067                         if (PageHighMem(skb_frag_page(frag)))
3068                                 return 1;
3069                 }
3070         }
3071 #endif
3072         return 0;
3073 }
3074
3075 /* If MPLS offload request, verify we are testing hardware MPLS features
3076  * instead of standard features for the netdev.
3077  */
3078 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3079 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3080                                            netdev_features_t features,
3081                                            __be16 type)
3082 {
3083         if (eth_p_mpls(type))
3084                 features &= skb->dev->mpls_features;
3085
3086         return features;
3087 }
3088 #else
3089 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3090                                            netdev_features_t features,
3091                                            __be16 type)
3092 {
3093         return features;
3094 }
3095 #endif
3096
3097 static netdev_features_t harmonize_features(struct sk_buff *skb,
3098         netdev_features_t features)
3099 {
3100         int tmp;
3101         __be16 type;
3102
3103         type = skb_network_protocol(skb, &tmp);
3104         features = net_mpls_features(skb, features, type);
3105
3106         if (skb->ip_summed != CHECKSUM_NONE &&
3107             !can_checksum_protocol(features, type)) {
3108                 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3109         }
3110         if (illegal_highdma(skb->dev, skb))
3111                 features &= ~NETIF_F_SG;
3112
3113         return features;
3114 }
3115
3116 netdev_features_t passthru_features_check(struct sk_buff *skb,
3117                                           struct net_device *dev,
3118                                           netdev_features_t features)
3119 {
3120         return features;
3121 }
3122 EXPORT_SYMBOL(passthru_features_check);
3123
3124 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3125                                              struct net_device *dev,
3126                                              netdev_features_t features)
3127 {
3128         return vlan_features_check(skb, features);
3129 }
3130
3131 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3132                                             struct net_device *dev,
3133                                             netdev_features_t features)
3134 {
3135         u16 gso_segs = skb_shinfo(skb)->gso_segs;
3136
3137         if (gso_segs > dev->gso_max_segs)
3138                 return features & ~NETIF_F_GSO_MASK;
3139
3140         /* Support for GSO partial features requires software
3141          * intervention before we can actually process the packets
3142          * so we need to strip support for any partial features now
3143          * and we can pull them back in after we have partially
3144          * segmented the frame.
3145          */
3146         if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3147                 features &= ~dev->gso_partial_features;
3148
3149         /* Make sure to clear the IPv4 ID mangling feature if the
3150          * IPv4 header has the potential to be fragmented.
3151          */
3152         if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3153                 struct iphdr *iph = skb->encapsulation ?
3154                                     inner_ip_hdr(skb) : ip_hdr(skb);
3155
3156                 if (!(iph->frag_off & htons(IP_DF)))
3157                         features &= ~NETIF_F_TSO_MANGLEID;
3158         }
3159
3160         return features;
3161 }
3162
3163 netdev_features_t netif_skb_features(struct sk_buff *skb)
3164 {
3165         struct net_device *dev = skb->dev;
3166         netdev_features_t features = dev->features;
3167
3168         if (skb_is_gso(skb))
3169                 features = gso_features_check(skb, dev, features);
3170
3171         /* If encapsulation offload request, verify we are testing
3172          * hardware encapsulation features instead of standard
3173          * features for the netdev
3174          */
3175         if (skb->encapsulation)
3176                 features &= dev->hw_enc_features;
3177
3178         if (skb_vlan_tagged(skb))
3179                 features = netdev_intersect_features(features,
3180                                                      dev->vlan_features |
3181                                                      NETIF_F_HW_VLAN_CTAG_TX |
3182                                                      NETIF_F_HW_VLAN_STAG_TX);
3183
3184         if (dev->netdev_ops->ndo_features_check)
3185                 features &= dev->netdev_ops->ndo_features_check(skb, dev,
3186                                                                 features);
3187         else
3188                 features &= dflt_features_check(skb, dev, features);
3189
3190         return harmonize_features(skb, features);
3191 }
3192 EXPORT_SYMBOL(netif_skb_features);
3193
3194 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3195                     struct netdev_queue *txq, bool more)
3196 {
3197         unsigned int len;
3198         int rc;
3199
3200         if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all))
3201                 dev_queue_xmit_nit(skb, dev);
3202
3203         len = skb->len;
3204         trace_net_dev_start_xmit(skb, dev);
3205         rc = netdev_start_xmit(skb, dev, txq, more);
3206         trace_net_dev_xmit(skb, rc, dev, len);
3207
3208         return rc;
3209 }
3210
3211 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3212                                     struct netdev_queue *txq, int *ret)
3213 {
3214         struct sk_buff *skb = first;
3215         int rc = NETDEV_TX_OK;
3216
3217         while (skb) {
3218                 struct sk_buff *next = skb->next;
3219
3220                 skb->next = NULL;
3221                 rc = xmit_one(skb, dev, txq, next != NULL);
3222                 if (unlikely(!dev_xmit_complete(rc))) {
3223                         skb->next = next;
3224                         goto out;
3225                 }
3226
3227                 skb = next;
3228                 if (netif_xmit_stopped(txq) && skb) {
3229                         rc = NETDEV_TX_BUSY;
3230                         break;
3231                 }
3232         }
3233
3234 out:
3235         *ret = rc;
3236         return skb;
3237 }
3238
3239 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3240                                           netdev_features_t features)
3241 {
3242         if (skb_vlan_tag_present(skb) &&
3243             !vlan_hw_offload_capable(features, skb->vlan_proto))
3244                 skb = __vlan_hwaccel_push_inside(skb);
3245         return skb;
3246 }
3247
3248 int skb_csum_hwoffload_help(struct sk_buff *skb,
3249                             const netdev_features_t features)
3250 {
3251         if (unlikely(skb->csum_not_inet))
3252                 return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3253                         skb_crc32c_csum_help(skb);
3254
3255         return !!(features & NETIF_F_CSUM_MASK) ? 0 : skb_checksum_help(skb);
3256 }
3257 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3258
3259 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3260 {
3261         netdev_features_t features;
3262
3263         features = netif_skb_features(skb);
3264         skb = validate_xmit_vlan(skb, features);
3265         if (unlikely(!skb))
3266                 goto out_null;
3267
3268         skb = sk_validate_xmit_skb(skb, dev);
3269         if (unlikely(!skb))
3270                 goto out_null;
3271
3272         if (netif_needs_gso(skb, features)) {
3273                 struct sk_buff *segs;
3274
3275                 segs = skb_gso_segment(skb, features);
3276                 if (IS_ERR(segs)) {
3277                         goto out_kfree_skb;
3278                 } else if (segs) {
3279                         consume_skb(skb);
3280                         skb = segs;
3281                 }
3282         } else {
3283                 if (skb_needs_linearize(skb, features) &&
3284                     __skb_linearize(skb))
3285                         goto out_kfree_skb;
3286
3287                 /* If packet is not checksummed and device does not
3288                  * support checksumming for this protocol, complete
3289                  * checksumming here.
3290                  */
3291                 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3292                         if (skb->encapsulation)
3293                                 skb_set_inner_transport_header(skb,
3294                                                                skb_checksum_start_offset(skb));
3295                         else
3296                                 skb_set_transport_header(skb,
3297                                                          skb_checksum_start_offset(skb));
3298                         if (skb_csum_hwoffload_help(skb, features))
3299                                 goto out_kfree_skb;
3300                 }
3301         }
3302
3303         skb = validate_xmit_xfrm(skb, features, again);
3304
3305         return skb;
3306
3307 out_kfree_skb:
3308         kfree_skb(skb);
3309 out_null:
3310         atomic_long_inc(&dev->tx_dropped);
3311         return NULL;
3312 }
3313
3314 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3315 {
3316         struct sk_buff *next, *head = NULL, *tail;
3317
3318         for (; skb != NULL; skb = next) {
3319                 next = skb->next;
3320                 skb->next = NULL;
3321
3322                 /* in case skb wont be segmented, point to itself */
3323                 skb->prev = skb;
3324
3325                 skb = validate_xmit_skb(skb, dev, again);
3326                 if (!skb)
3327                         continue;
3328
3329                 if (!head)
3330                         head = skb;
3331                 else
3332                         tail->next = skb;
3333                 /* If skb was segmented, skb->prev points to
3334                  * the last segment. If not, it still contains skb.
3335                  */
3336                 tail = skb->prev;
3337         }
3338         return head;
3339 }
3340 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3341
3342 static void qdisc_pkt_len_init(struct sk_buff *skb)
3343 {
3344         const struct skb_shared_info *shinfo = skb_shinfo(skb);
3345
3346         qdisc_skb_cb(skb)->pkt_len = skb->len;
3347
3348         /* To get more precise estimation of bytes sent on wire,
3349          * we add to pkt_len the headers size of all segments
3350          */
3351         if (shinfo->gso_size)  {
3352                 unsigned int hdr_len;
3353                 u16 gso_segs = shinfo->gso_segs;
3354
3355                 /* mac layer + network layer */
3356                 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3357
3358                 /* + transport layer */
3359                 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3360                         const struct tcphdr *th;
3361                         struct tcphdr _tcphdr;
3362
3363                         th = skb_header_pointer(skb, skb_transport_offset(skb),
3364                                                 sizeof(_tcphdr), &_tcphdr);
3365                         if (likely(th))
3366                                 hdr_len += __tcp_hdrlen(th);
3367                 } else {
3368                         struct udphdr _udphdr;
3369
3370                         if (skb_header_pointer(skb, skb_transport_offset(skb),
3371                                                sizeof(_udphdr), &_udphdr))
3372                                 hdr_len += sizeof(struct udphdr);
3373                 }
3374
3375                 if (shinfo->gso_type & SKB_GSO_DODGY)
3376                         gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3377                                                 shinfo->gso_size);
3378
3379                 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3380         }
3381 }
3382
3383 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3384                                  struct net_device *dev,
3385                                  struct netdev_queue *txq)
3386 {
3387         spinlock_t *root_lock = qdisc_lock(q);
3388         struct sk_buff *to_free = NULL;
3389         bool contended;
3390         int rc;
3391
3392         qdisc_calculate_pkt_len(skb, q);
3393
3394         if (q->flags & TCQ_F_NOLOCK) {
3395                 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3396                         __qdisc_drop(skb, &to_free);
3397                         rc = NET_XMIT_DROP;
3398                 } else {
3399                         rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3400                         qdisc_run(q);
3401                 }
3402
3403                 if (unlikely(to_free))
3404                         kfree_skb_list(to_free);
3405                 return rc;
3406         }
3407
3408         /*
3409          * Heuristic to force contended enqueues to serialize on a
3410          * separate lock before trying to get qdisc main lock.
3411          * This permits qdisc->running owner to get the lock more
3412          * often and dequeue packets faster.
3413          */
3414         contended = qdisc_is_running(q);
3415         if (unlikely(contended))
3416                 spin_lock(&q->busylock);
3417
3418         spin_lock(root_lock);
3419         if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3420                 __qdisc_drop(skb, &to_free);
3421                 rc = NET_XMIT_DROP;
3422         } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3423                    qdisc_run_begin(q)) {
3424                 /*
3425                  * This is a work-conserving queue; there are no old skbs
3426                  * waiting to be sent out; and the qdisc is not running -
3427                  * xmit the skb directly.
3428                  */
3429
3430                 qdisc_bstats_update(q, skb);
3431
3432                 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3433                         if (unlikely(contended)) {
3434                                 spin_unlock(&q->busylock);
3435                                 contended = false;
3436                         }
3437                         __qdisc_run(q);
3438                 }
3439
3440                 qdisc_run_end(q);
3441                 rc = NET_XMIT_SUCCESS;
3442         } else {
3443                 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3444                 if (qdisc_run_begin(q)) {
3445                         if (unlikely(contended)) {
3446                                 spin_unlock(&q->busylock);
3447                                 contended = false;
3448                         }
3449                         __qdisc_run(q);
3450                         qdisc_run_end(q);
3451                 }
3452         }
3453         spin_unlock(root_lock);
3454         if (unlikely(to_free))
3455                 kfree_skb_list(to_free);
3456         if (unlikely(contended))
3457                 spin_unlock(&q->busylock);
3458         return rc;
3459 }
3460
3461 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3462 static void skb_update_prio(struct sk_buff *skb)
3463 {
3464         const struct netprio_map *map;
3465         const struct sock *sk;
3466         unsigned int prioidx;
3467
3468         if (skb->priority)
3469                 return;
3470         map = rcu_dereference_bh(skb->dev->priomap);
3471         if (!map)
3472                 return;
3473         sk = skb_to_full_sk(skb);
3474         if (!sk)
3475                 return;
3476
3477         prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3478
3479         if (prioidx < map->priomap_len)
3480                 skb->priority = map->priomap[prioidx];
3481 }
3482 #else
3483 #define skb_update_prio(skb)
3484 #endif
3485
3486 DEFINE_PER_CPU(int, xmit_recursion);
3487 EXPORT_SYMBOL(xmit_recursion);
3488
3489 /**
3490  *      dev_loopback_xmit - loop back @skb
3491  *      @net: network namespace this loopback is happening in
3492  *      @sk:  sk needed to be a netfilter okfn
3493  *      @skb: buffer to transmit
3494  */
3495 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3496 {
3497         skb_reset_mac_header(skb);
3498         __skb_pull(skb, skb_network_offset(skb));
3499         skb->pkt_type = PACKET_LOOPBACK;
3500         skb->ip_summed = CHECKSUM_UNNECESSARY;
3501         WARN_ON(!skb_dst(skb));
3502         skb_dst_force(skb);
3503         netif_rx_ni(skb);
3504         return 0;
3505 }
3506 EXPORT_SYMBOL(dev_loopback_xmit);
3507
3508 #ifdef CONFIG_NET_EGRESS
3509 static struct sk_buff *
3510 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3511 {
3512         struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
3513         struct tcf_result cl_res;
3514
3515         if (!miniq)
3516                 return skb;
3517
3518         /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3519         mini_qdisc_bstats_cpu_update(miniq, skb);
3520
3521         switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
3522         case TC_ACT_OK:
3523         case TC_ACT_RECLASSIFY:
3524                 skb->tc_index = TC_H_MIN(cl_res.classid);
3525                 break;
3526         case TC_ACT_SHOT:
3527                 mini_qdisc_qstats_cpu_drop(miniq);
3528                 *ret = NET_XMIT_DROP;
3529                 kfree_skb(skb);
3530                 return NULL;
3531         case TC_ACT_STOLEN:
3532         case TC_ACT_QUEUED:
3533         case TC_ACT_TRAP:
3534                 *ret = NET_XMIT_SUCCESS;
3535                 consume_skb(skb);
3536                 return NULL;
3537         case TC_ACT_REDIRECT:
3538                 /* No need to push/pop skb's mac_header here on egress! */
3539                 skb_do_redirect(skb);
3540                 *ret = NET_XMIT_SUCCESS;
3541                 return NULL;
3542         default:
3543                 break;
3544         }
3545
3546         return skb;
3547 }
3548 #endif /* CONFIG_NET_EGRESS */
3549
3550 #ifdef CONFIG_XPS
3551 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
3552                                struct xps_dev_maps *dev_maps, unsigned int tci)
3553 {
3554         struct xps_map *map;
3555         int queue_index = -1;
3556
3557         if (dev->num_tc) {
3558                 tci *= dev->num_tc;
3559                 tci += netdev_get_prio_tc_map(dev, skb->priority);
3560         }
3561
3562         map = rcu_dereference(dev_maps->attr_map[tci]);
3563         if (map) {
3564                 if (map->len == 1)
3565                         queue_index = map->queues[0];
3566                 else
3567                         queue_index = map->queues[reciprocal_scale(
3568                                                 skb_get_hash(skb), map->len)];
3569                 if (unlikely(queue_index >= dev->real_num_tx_queues))
3570                         queue_index = -1;
3571         }
3572         return queue_index;
3573 }
3574 #endif
3575
3576 static int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
3577 {
3578 #ifdef CONFIG_XPS
3579         struct xps_dev_maps *dev_maps;
3580         struct sock *sk = skb->sk;
3581         int queue_index = -1;
3582
3583         if (!static_key_false(&xps_needed))
3584                 return -1;
3585
3586         rcu_read_lock();
3587         if (!static_key_false(&xps_rxqs_needed))
3588                 goto get_cpus_map;
3589
3590         dev_maps = rcu_dereference(dev->xps_rxqs_map);
3591         if (dev_maps) {
3592                 int tci = sk_rx_queue_get(sk);
3593
3594                 if (tci >= 0 && tci < dev->num_rx_queues)
3595                         queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3596                                                           tci);
3597         }
3598
3599 get_cpus_map:
3600         if (queue_index < 0) {
3601                 dev_maps = rcu_dereference(dev->xps_cpus_map);
3602                 if (dev_maps) {
3603                         unsigned int tci = skb->sender_cpu - 1;
3604
3605                         queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3606                                                           tci);
3607                 }
3608         }
3609         rcu_read_unlock();
3610
3611         return queue_index;
3612 #else
3613         return -1;
3614 #endif
3615 }
3616
3617 static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb)
3618 {
3619         struct sock *sk = skb->sk;
3620         int queue_index = sk_tx_queue_get(sk);
3621
3622         if (queue_index < 0 || skb->ooo_okay ||
3623             queue_index >= dev->real_num_tx_queues) {
3624                 int new_index = get_xps_queue(dev, skb);
3625
3626                 if (new_index < 0)
3627                         new_index = skb_tx_hash(dev, skb);
3628
3629                 if (queue_index != new_index && sk &&
3630                     sk_fullsock(sk) &&
3631                     rcu_access_pointer(sk->sk_dst_cache))
3632                         sk_tx_queue_set(sk, new_index);
3633
3634                 queue_index = new_index;
3635         }
3636
3637         return queue_index;
3638 }
3639
3640 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
3641                                     struct sk_buff *skb,
3642                                     void *accel_priv)
3643 {
3644         int queue_index = 0;
3645
3646 #ifdef CONFIG_XPS
3647         u32 sender_cpu = skb->sender_cpu - 1;
3648
3649         if (sender_cpu >= (u32)NR_CPUS)
3650                 skb->sender_cpu = raw_smp_processor_id() + 1;
3651 #endif
3652
3653         if (dev->real_num_tx_queues != 1) {
3654                 const struct net_device_ops *ops = dev->netdev_ops;
3655
3656                 if (ops->ndo_select_queue)
3657                         queue_index = ops->ndo_select_queue(dev, skb, accel_priv,
3658                                                             __netdev_pick_tx);
3659                 else
3660                         queue_index = __netdev_pick_tx(dev, skb);
3661
3662                 queue_index = netdev_cap_txqueue(dev, queue_index);
3663         }
3664
3665         skb_set_queue_mapping(skb, queue_index);
3666         return netdev_get_tx_queue(dev, queue_index);
3667 }
3668
3669 /**
3670  *      __dev_queue_xmit - transmit a buffer
3671  *      @skb: buffer to transmit
3672  *      @accel_priv: private data used for L2 forwarding offload
3673  *
3674  *      Queue a buffer for transmission to a network device. The caller must
3675  *      have set the device and priority and built the buffer before calling
3676  *      this function. The function can be called from an interrupt.
3677  *
3678  *      A negative errno code is returned on a failure. A success does not
3679  *      guarantee the frame will be transmitted as it may be dropped due
3680  *      to congestion or traffic shaping.
3681  *
3682  * -----------------------------------------------------------------------------------
3683  *      I notice this method can also return errors from the queue disciplines,
3684  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
3685  *      be positive.
3686  *
3687  *      Regardless of the return value, the skb is consumed, so it is currently
3688  *      difficult to retry a send to this method.  (You can bump the ref count
3689  *      before sending to hold a reference for retry if you are careful.)
3690  *
3691  *      When calling this method, interrupts MUST be enabled.  This is because
3692  *      the BH enable code must have IRQs enabled so that it will not deadlock.
3693  *          --BLG
3694  */
3695 static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
3696 {
3697         struct net_device *dev = skb->dev;
3698         struct netdev_queue *txq;
3699         struct Qdisc *q;
3700         int rc = -ENOMEM;
3701         bool again = false;
3702
3703         skb_reset_mac_header(skb);
3704
3705         if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3706                 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3707
3708         /* Disable soft irqs for various locks below. Also
3709          * stops preemption for RCU.
3710          */
3711         rcu_read_lock_bh();
3712
3713         skb_update_prio(skb);
3714
3715         qdisc_pkt_len_init(skb);
3716 #ifdef CONFIG_NET_CLS_ACT
3717         skb->tc_at_ingress = 0;
3718 # ifdef CONFIG_NET_EGRESS
3719         if (static_branch_unlikely(&egress_needed_key)) {
3720                 skb = sch_handle_egress(skb, &rc, dev);
3721                 if (!skb)
3722                         goto out;
3723         }
3724 # endif
3725 #endif
3726         /* If device/qdisc don't need skb->dst, release it right now while
3727          * its hot in this cpu cache.
3728          */
3729         if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3730                 skb_dst_drop(skb);
3731         else
3732                 skb_dst_force(skb);
3733
3734         txq = netdev_pick_tx(dev, skb, accel_priv);
3735         q = rcu_dereference_bh(txq->qdisc);
3736
3737         trace_net_dev_queue(skb);
3738         if (q->enqueue) {
3739                 rc = __dev_xmit_skb(skb, q, dev, txq);
3740                 goto out;
3741         }
3742
3743         /* The device has no queue. Common case for software devices:
3744          * loopback, all the sorts of tunnels...
3745
3746          * Really, it is unlikely that netif_tx_lock protection is necessary
3747          * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
3748          * counters.)
3749          * However, it is possible, that they rely on protection
3750          * made by us here.
3751
3752          * Check this and shot the lock. It is not prone from deadlocks.
3753          *Either shot noqueue qdisc, it is even simpler 8)
3754          */
3755         if (dev->flags & IFF_UP) {
3756                 int cpu = smp_processor_id(); /* ok because BHs are off */
3757
3758                 if (txq->xmit_lock_owner != cpu) {
3759                         if (unlikely(__this_cpu_read(xmit_recursion) >
3760                                      XMIT_RECURSION_LIMIT))
3761                                 goto recursion_alert;
3762
3763                         skb = validate_xmit_skb(skb, dev, &again);
3764                         if (!skb)
3765                                 goto out;
3766
3767                         HARD_TX_LOCK(dev, txq, cpu);
3768
3769                         if (!netif_xmit_stopped(txq)) {
3770                                 __this_cpu_inc(xmit_recursion);
3771                                 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
3772                                 __this_cpu_dec(xmit_recursion);
3773                                 if (dev_xmit_complete(rc)) {
3774                                         HARD_TX_UNLOCK(dev, txq);
3775                                         goto out;
3776                                 }
3777                         }
3778                         HARD_TX_UNLOCK(dev, txq);
3779                         net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3780                                              dev->name);
3781                 } else {
3782                         /* Recursion is detected! It is possible,
3783                          * unfortunately
3784                          */
3785 recursion_alert:
3786                         net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3787                                              dev->name);
3788                 }
3789         }
3790
3791         rc = -ENETDOWN;
3792         rcu_read_unlock_bh();
3793
3794         atomic_long_inc(&dev->tx_dropped);
3795         kfree_skb_list(skb);
3796         return rc;
3797 out:
3798         rcu_read_unlock_bh();
3799         return rc;
3800 }
3801
3802 int dev_queue_xmit(struct sk_buff *skb)
3803 {
3804         return __dev_queue_xmit(skb, NULL);
3805 }
3806 EXPORT_SYMBOL(dev_queue_xmit);
3807
3808 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
3809 {
3810         return __dev_queue_xmit(skb, accel_priv);
3811 }
3812 EXPORT_SYMBOL(dev_queue_xmit_accel);
3813
3814 int dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
3815 {
3816         struct net_device *dev = skb->dev;
3817         struct sk_buff *orig_skb = skb;
3818         struct netdev_queue *txq;
3819         int ret = NETDEV_TX_BUSY;
3820         bool again = false;
3821
3822         if (unlikely(!netif_running(dev) ||
3823                      !netif_carrier_ok(dev)))
3824                 goto drop;
3825
3826         skb = validate_xmit_skb_list(skb, dev, &again);
3827         if (skb != orig_skb)
3828                 goto drop;
3829
3830         skb_set_queue_mapping(skb, queue_id);
3831         txq = skb_get_tx_queue(dev, skb);
3832
3833         local_bh_disable();
3834
3835         HARD_TX_LOCK(dev, txq, smp_processor_id());
3836         if (!netif_xmit_frozen_or_drv_stopped(txq))
3837                 ret = netdev_start_xmit(skb, dev, txq, false);
3838         HARD_TX_UNLOCK(dev, txq);
3839
3840         local_bh_enable();
3841
3842         if (!dev_xmit_complete(ret))
3843                 kfree_skb(skb);
3844
3845         return ret;
3846 drop:
3847         atomic_long_inc(&dev->tx_dropped);
3848         kfree_skb_list(skb);
3849         return NET_XMIT_DROP;
3850 }
3851 EXPORT_SYMBOL(dev_direct_xmit);
3852
3853 /*************************************************************************
3854  *                      Receiver routines
3855  *************************************************************************/
3856
3857 int netdev_max_backlog __read_mostly = 1000;
3858 EXPORT_SYMBOL(netdev_max_backlog);
3859
3860 int netdev_tstamp_prequeue __read_mostly = 1;
3861 int netdev_budget __read_mostly = 300;
3862 unsigned int __read_mostly netdev_budget_usecs = 2000;
3863 int weight_p __read_mostly = 64;           /* old backlog weight */
3864 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
3865 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
3866 int dev_rx_weight __read_mostly = 64;
3867 int dev_tx_weight __read_mostly = 64;
3868
3869 /* Called with irq disabled */
3870 static inline void ____napi_schedule(struct softnet_data *sd,
3871                                      struct napi_struct *napi)
3872 {
3873         list_add_tail(&napi->poll_list, &sd->poll_list);
3874         __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3875 }
3876
3877 #ifdef CONFIG_RPS
3878
3879 /* One global table that all flow-based protocols share. */
3880 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3881 EXPORT_SYMBOL(rps_sock_flow_table);
3882 u32 rps_cpu_mask __read_mostly;
3883 EXPORT_SYMBOL(rps_cpu_mask);
3884
3885 struct static_key rps_needed __read_mostly;
3886 EXPORT_SYMBOL(rps_needed);
3887 struct static_key rfs_needed __read_mostly;
3888 EXPORT_SYMBOL(rfs_needed);
3889
3890 static struct rps_dev_flow *
3891 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3892             struct rps_dev_flow *rflow, u16 next_cpu)
3893 {
3894         if (next_cpu < nr_cpu_ids) {
3895 #ifdef CONFIG_RFS_ACCEL
3896                 struct netdev_rx_queue *rxqueue;
3897                 struct rps_dev_flow_table *flow_table;
3898                 struct rps_dev_flow *old_rflow;
3899                 u32 flow_id;
3900                 u16 rxq_index;
3901                 int rc;
3902
3903                 /* Should we steer this flow to a different hardware queue? */
3904                 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3905                     !(dev->features & NETIF_F_NTUPLE))
3906                         goto out;
3907                 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3908                 if (rxq_index == skb_get_rx_queue(skb))
3909                         goto out;
3910
3911                 rxqueue = dev->_rx + rxq_index;
3912                 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3913                 if (!flow_table)
3914                         goto out;
3915                 flow_id = skb_get_hash(skb) & flow_table->mask;
3916                 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3917                                                         rxq_index, flow_id);
3918                 if (rc < 0)
3919                         goto out;
3920                 old_rflow = rflow;
3921                 rflow = &flow_table->flows[flow_id];
3922                 rflow->filter = rc;
3923                 if (old_rflow->filter == rflow->filter)
3924                         old_rflow->filter = RPS_NO_FILTER;
3925         out:
3926 #endif
3927                 rflow->last_qtail =
3928                         per_cpu(softnet_data, next_cpu).input_queue_head;
3929         }
3930
3931         rflow->cpu = next_cpu;
3932         return rflow;
3933 }
3934
3935 /*
3936  * get_rps_cpu is called from netif_receive_skb and returns the target
3937  * CPU from the RPS map of the receiving queue for a given skb.
3938  * rcu_read_lock must be held on entry.
3939  */
3940 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3941                        struct rps_dev_flow **rflowp)
3942 {
3943         const struct rps_sock_flow_table *sock_flow_table;
3944         struct netdev_rx_queue *rxqueue = dev->_rx;
3945         struct rps_dev_flow_table *flow_table;
3946         struct rps_map *map;
3947         int cpu = -1;
3948         u32 tcpu;
3949         u32 hash;
3950
3951         if (skb_rx_queue_recorded(skb)) {
3952                 u16 index = skb_get_rx_queue(skb);
3953
3954                 if (unlikely(index >= dev->real_num_rx_queues)) {
3955                         WARN_ONCE(dev->real_num_rx_queues > 1,
3956                                   "%s received packet on queue %u, but number "
3957                                   "of RX queues is %u\n",
3958                                   dev->name, index, dev->real_num_rx_queues);
3959                         goto done;
3960                 }
3961                 rxqueue += index;
3962         }
3963
3964         /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
3965
3966         flow_table = rcu_dereference(rxqueue->rps_flow_table);
3967         map = rcu_dereference(rxqueue->rps_map);
3968         if (!flow_table && !map)
3969                 goto done;
3970
3971         skb_reset_network_header(skb);
3972         hash = skb_get_hash(skb);
3973         if (!hash)
3974                 goto done;
3975
3976         sock_flow_table = rcu_dereference(rps_sock_flow_table);
3977         if (flow_table && sock_flow_table) {
3978                 struct rps_dev_flow *rflow;
3979                 u32 next_cpu;
3980                 u32 ident;
3981
3982                 /* First check into global flow table if there is a match */
3983                 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
3984                 if ((ident ^ hash) & ~rps_cpu_mask)
3985                         goto try_rps;
3986
3987                 next_cpu = ident & rps_cpu_mask;
3988
3989                 /* OK, now we know there is a match,
3990                  * we can look at the local (per receive queue) flow table
3991                  */
3992                 rflow = &flow_table->flows[hash & flow_table->mask];
3993                 tcpu = rflow->cpu;
3994
3995                 /*
3996                  * If the desired CPU (where last recvmsg was done) is
3997                  * different from current CPU (one in the rx-queue flow
3998                  * table entry), switch if one of the following holds:
3999                  *   - Current CPU is unset (>= nr_cpu_ids).
4000                  *   - Current CPU is offline.
4001                  *   - The current CPU's queue tail has advanced beyond the
4002                  *     last packet that was enqueued using this table entry.
4003                  *     This guarantees that all previous packets for the flow
4004                  *     have been dequeued, thus preserving in order delivery.
4005                  */
4006                 if (unlikely(tcpu != next_cpu) &&
4007                     (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4008                      ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4009                       rflow->last_qtail)) >= 0)) {
4010                         tcpu = next_cpu;
4011                         rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4012                 }
4013
4014                 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4015                         *rflowp = rflow;
4016                         cpu = tcpu;
4017                         goto done;
4018                 }
4019         }
4020
4021 try_rps:
4022
4023         if (map) {
4024                 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4025                 if (cpu_online(tcpu)) {
4026                         cpu = tcpu;
4027                         goto done;
4028                 }
4029         }
4030
4031 done:
4032         return cpu;
4033 }
4034
4035 #ifdef CONFIG_RFS_ACCEL
4036
4037 /**
4038  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4039  * @dev: Device on which the filter was set
4040  * @rxq_index: RX queue index
4041  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4042  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4043  *
4044  * Drivers that implement ndo_rx_flow_steer() should periodically call
4045  * this function for each installed filter and remove the filters for
4046  * which it returns %true.
4047  */
4048 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4049                          u32 flow_id, u16 filter_id)
4050 {
4051         struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4052         struct rps_dev_flow_table *flow_table;
4053         struct rps_dev_flow *rflow;
4054         bool expire = true;
4055         unsigned int cpu;
4056
4057         rcu_read_lock();
4058         flow_table = rcu_dereference(rxqueue->rps_flow_table);
4059         if (flow_table && flow_id <= flow_table->mask) {
4060                 rflow = &flow_table->flows[flow_id];
4061                 cpu = READ_ONCE(rflow->cpu);
4062                 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4063                     ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4064                            rflow->last_qtail) <
4065                      (int)(10 * flow_table->mask)))
4066                         expire = false;
4067         }
4068         rcu_read_unlock();
4069         return expire;
4070 }
4071 EXPORT_SYMBOL(rps_may_expire_flow);
4072
4073 #endif /* CONFIG_RFS_ACCEL */
4074
4075 /* Called from hardirq (IPI) context */
4076 static void rps_trigger_softirq(void *data)
4077 {
4078         struct softnet_data *sd = data;
4079
4080         ____napi_schedule(sd, &sd->backlog);
4081         sd->received_rps++;
4082 }
4083
4084 #endif /* CONFIG_RPS */
4085
4086 /*
4087  * Check if this softnet_data structure is another cpu one
4088  * If yes, queue it to our IPI list and return 1
4089  * If no, return 0
4090  */
4091 static int rps_ipi_queued(struct softnet_data *sd)
4092 {
4093 #ifdef CONFIG_RPS
4094         struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4095
4096         if (sd != mysd) {
4097                 sd->rps_ipi_next = mysd->rps_ipi_list;
4098                 mysd->rps_ipi_list = sd;
4099
4100                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4101                 return 1;
4102         }
4103 #endif /* CONFIG_RPS */
4104         return 0;
4105 }
4106
4107 #ifdef CONFIG_NET_FLOW_LIMIT
4108 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4109 #endif
4110
4111 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4112 {
4113 #ifdef CONFIG_NET_FLOW_LIMIT
4114         struct sd_flow_limit *fl;
4115         struct softnet_data *sd;
4116         unsigned int old_flow, new_flow;
4117
4118         if (qlen < (netdev_max_backlog >> 1))
4119                 return false;
4120
4121         sd = this_cpu_ptr(&softnet_data);
4122
4123         rcu_read_lock();
4124         fl = rcu_dereference(sd->flow_limit);
4125         if (fl) {
4126                 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4127                 old_flow = fl->history[fl->history_head];
4128                 fl->history[fl->history_head] = new_flow;
4129
4130                 fl->history_head++;
4131                 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4132
4133                 if (likely(fl->buckets[old_flow]))
4134                         fl->buckets[old_flow]--;
4135
4136                 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4137                         fl->count++;
4138                         rcu_read_unlock();
4139                         return true;
4140                 }
4141         }
4142         rcu_read_unlock();
4143 #endif
4144         return false;
4145 }
4146
4147 /*
4148  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4149  * queue (may be a remote CPU queue).
4150  */
4151 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4152                               unsigned int *qtail)
4153 {
4154         struct softnet_data *sd;
4155         unsigned long flags;
4156         unsigned int qlen;
4157
4158         sd = &per_cpu(softnet_data, cpu);
4159
4160         local_irq_save(flags);
4161
4162         rps_lock(sd);
4163         if (!netif_running(skb->dev))
4164                 goto drop;
4165         qlen = skb_queue_len(&sd->input_pkt_queue);
4166         if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
4167                 if (qlen) {
4168 enqueue:
4169                         __skb_queue_tail(&sd->input_pkt_queue, skb);
4170                         input_queue_tail_incr_save(sd, qtail);
4171                         rps_unlock(sd);
4172                         local_irq_restore(flags);
4173                         return NET_RX_SUCCESS;
4174                 }
4175
4176                 /* Schedule NAPI for backlog device
4177                  * We can use non atomic operation since we own the queue lock
4178                  */
4179                 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
4180                         if (!rps_ipi_queued(sd))
4181                                 ____napi_schedule(sd, &sd->backlog);
4182                 }
4183                 goto enqueue;
4184         }
4185
4186 drop:
4187         sd->dropped++;
4188         rps_unlock(sd);
4189
4190         local_irq_restore(flags);
4191
4192         atomic_long_inc(&skb->dev->rx_dropped);
4193         kfree_skb(skb);
4194         return NET_RX_DROP;
4195 }
4196
4197 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4198 {
4199         struct net_device *dev = skb->dev;
4200         struct netdev_rx_queue *rxqueue;
4201
4202         rxqueue = dev->_rx;
4203
4204         if (skb_rx_queue_recorded(skb)) {
4205                 u16 index = skb_get_rx_queue(skb);
4206
4207                 if (unlikely(index >= dev->real_num_rx_queues)) {
4208                         WARN_ONCE(dev->real_num_rx_queues > 1,
4209                                   "%s received packet on queue %u, but number "
4210                                   "of RX queues is %u\n",
4211                                   dev->name, index, dev->real_num_rx_queues);
4212
4213                         return rxqueue; /* Return first rxqueue */
4214                 }
4215                 rxqueue += index;
4216         }
4217         return rxqueue;
4218 }
4219
4220 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4221                                      struct xdp_buff *xdp,
4222                                      struct bpf_prog *xdp_prog)
4223 {
4224         struct netdev_rx_queue *rxqueue;
4225         void *orig_data, *orig_data_end;
4226         u32 metalen, act = XDP_DROP;
4227         int hlen, off;
4228         u32 mac_len;
4229
4230         /* Reinjected packets coming from act_mirred or similar should
4231          * not get XDP generic processing.
4232          */
4233         if (skb_cloned(skb))
4234                 return XDP_PASS;
4235
4236         /* XDP packets must be linear and must have sufficient headroom
4237          * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4238          * native XDP provides, thus we need to do it here as well.
4239          */
4240         if (skb_is_nonlinear(skb) ||
4241             skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4242                 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4243                 int troom = skb->tail + skb->data_len - skb->end;
4244
4245                 /* In case we have to go down the path and also linearize,
4246                  * then lets do the pskb_expand_head() work just once here.
4247                  */
4248                 if (pskb_expand_head(skb,
4249                                      hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4250                                      troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4251                         goto do_drop;
4252                 if (skb_linearize(skb))
4253                         goto do_drop;
4254         }
4255
4256         /* The XDP program wants to see the packet starting at the MAC
4257          * header.
4258          */
4259         mac_len = skb->data - skb_mac_header(skb);
4260         hlen = skb_headlen(skb) + mac_len;
4261         xdp->data = skb->data - mac_len;
4262         xdp->data_meta = xdp->data;
4263         xdp->data_end = xdp->data + hlen;
4264         xdp->data_hard_start = skb->data - skb_headroom(skb);
4265         orig_data_end = xdp->data_end;
4266         orig_data = xdp->data;
4267
4268         rxqueue = netif_get_rxqueue(skb);
4269         xdp->rxq = &rxqueue->xdp_rxq;
4270
4271         act = bpf_prog_run_xdp(xdp_prog, xdp);
4272
4273         off = xdp->data - orig_data;
4274         if (off > 0)
4275                 __skb_pull(skb, off);
4276         else if (off < 0)
4277                 __skb_push(skb, -off);
4278         skb->mac_header += off;
4279
4280         /* check if bpf_xdp_adjust_tail was used. it can only "shrink"
4281          * pckt.
4282          */
4283         off = orig_data_end - xdp->data_end;
4284         if (off != 0) {
4285                 skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4286                 skb->len -= off;
4287
4288         }
4289
4290         switch (act) {
4291         case XDP_REDIRECT:
4292         case XDP_TX:
4293                 __skb_push(skb, mac_len);
4294                 break;
4295         case XDP_PASS:
4296                 metalen = xdp->data - xdp->data_meta;
4297                 if (metalen)
4298                         skb_metadata_set(skb, metalen);
4299                 break;
4300         default:
4301                 bpf_warn_invalid_xdp_action(act);
4302                 /* fall through */
4303         case XDP_ABORTED:
4304                 trace_xdp_exception(skb->dev, xdp_prog, act);
4305                 /* fall through */
4306         case XDP_DROP:
4307         do_drop:
4308                 kfree_skb(skb);
4309                 break;
4310         }
4311
4312         return act;
4313 }
4314
4315 /* When doing generic XDP we have to bypass the qdisc layer and the
4316  * network taps in order to match in-driver-XDP behavior.
4317  */
4318 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4319 {
4320         struct net_device *dev = skb->dev;
4321         struct netdev_queue *txq;
4322         bool free_skb = true;
4323         int cpu, rc;
4324
4325         txq = netdev_pick_tx(dev, skb, NULL);
4326         cpu = smp_processor_id();
4327         HARD_TX_LOCK(dev, txq, cpu);
4328         if (!netif_xmit_stopped(txq)) {
4329                 rc = netdev_start_xmit(skb, dev, txq, 0);
4330                 if (dev_xmit_complete(rc))
4331                         free_skb = false;
4332         }
4333         HARD_TX_UNLOCK(dev, txq);
4334         if (free_skb) {
4335                 trace_xdp_exception(dev, xdp_prog, XDP_TX);
4336                 kfree_skb(skb);
4337         }
4338 }
4339 EXPORT_SYMBOL_GPL(generic_xdp_tx);
4340
4341 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
4342
4343 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4344 {
4345         if (xdp_prog) {
4346                 struct xdp_buff xdp;
4347                 u32 act;
4348                 int err;
4349
4350                 act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
4351                 if (act != XDP_PASS) {
4352                         switch (act) {
4353                         case XDP_REDIRECT:
4354                                 err = xdp_do_generic_redirect(skb->dev, skb,
4355                                                               &xdp, xdp_prog);
4356                                 if (err)
4357                                         goto out_redir;
4358                                 break;
4359                         case XDP_TX:
4360                                 generic_xdp_tx(skb, xdp_prog);
4361                                 break;
4362                         }
4363                         return XDP_DROP;
4364                 }
4365         }
4366         return XDP_PASS;
4367 out_redir:
4368         kfree_skb(skb);
4369         return XDP_DROP;
4370 }
4371 EXPORT_SYMBOL_GPL(do_xdp_generic);
4372
4373 static int netif_rx_internal(struct sk_buff *skb)
4374 {
4375         int ret;
4376
4377         net_timestamp_check(netdev_tstamp_prequeue, skb);
4378
4379         trace_netif_rx(skb);
4380
4381         if (static_branch_unlikely(&generic_xdp_needed_key)) {
4382                 int ret;
4383
4384                 preempt_disable();
4385                 rcu_read_lock();
4386                 ret = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
4387                 rcu_read_unlock();
4388                 preempt_enable();
4389
4390                 /* Consider XDP consuming the packet a success from
4391                  * the netdev point of view we do not want to count
4392                  * this as an error.
4393                  */
4394                 if (ret != XDP_PASS)
4395                         return NET_RX_SUCCESS;
4396         }
4397
4398 #ifdef CONFIG_RPS
4399         if (static_key_false(&rps_needed)) {
4400                 struct rps_dev_flow voidflow, *rflow = &voidflow;
4401                 int cpu;
4402
4403                 preempt_disable();
4404                 rcu_read_lock();
4405
4406                 cpu = get_rps_cpu(skb->dev, skb, &rflow);
4407                 if (cpu < 0)
4408                         cpu = smp_processor_id();
4409
4410                 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4411
4412                 rcu_read_unlock();
4413                 preempt_enable();
4414         } else
4415 #endif
4416         {
4417                 unsigned int qtail;
4418
4419                 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4420                 put_cpu();
4421         }
4422         return ret;
4423 }
4424
4425 /**
4426  *      netif_rx        -       post buffer to the network code
4427  *      @skb: buffer to post
4428  *
4429  *      This function receives a packet from a device driver and queues it for
4430  *      the upper (protocol) levels to process.  It always succeeds. The buffer
4431  *      may be dropped during processing for congestion control or by the
4432  *      protocol layers.
4433  *
4434  *      return values:
4435  *      NET_RX_SUCCESS  (no congestion)
4436  *      NET_RX_DROP     (packet was dropped)
4437  *
4438  */
4439
4440 int netif_rx(struct sk_buff *skb)
4441 {
4442         trace_netif_rx_entry(skb);
4443
4444         return netif_rx_internal(skb);
4445 }
4446 EXPORT_SYMBOL(netif_rx);
4447
4448 int netif_rx_ni(struct sk_buff *skb)
4449 {
4450         int err;
4451
4452         trace_netif_rx_ni_entry(skb);
4453
4454         preempt_disable();
4455         err = netif_rx_internal(skb);
4456         if (local_softirq_pending())
4457                 do_softirq();
4458         preempt_enable();
4459
4460         return err;
4461 }
4462 EXPORT_SYMBOL(netif_rx_ni);
4463
4464 static __latent_entropy void net_tx_action(struct softirq_action *h)
4465 {
4466         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4467
4468         if (sd->completion_queue) {
4469                 struct sk_buff *clist;
4470
4471                 local_irq_disable();
4472                 clist = sd->completion_queue;
4473                 sd->completion_queue = NULL;
4474                 local_irq_enable();
4475
4476                 while (clist) {
4477                         struct sk_buff *skb = clist;
4478
4479                         clist = clist->next;
4480
4481                         WARN_ON(refcount_read(&skb->users));
4482                         if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
4483                                 trace_consume_skb(skb);
4484                         else
4485                                 trace_kfree_skb(skb, net_tx_action);
4486
4487                         if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
4488                                 __kfree_skb(skb);
4489                         else
4490                                 __kfree_skb_defer(skb);
4491                 }
4492
4493                 __kfree_skb_flush();
4494         }
4495
4496         if (sd->output_queue) {
4497                 struct Qdisc *head;
4498
4499                 local_irq_disable();
4500                 head = sd->output_queue;
4501                 sd->output_queue = NULL;
4502                 sd->output_queue_tailp = &sd->output_queue;
4503                 local_irq_enable();
4504
4505                 while (head) {
4506                         struct Qdisc *q = head;
4507                         spinlock_t *root_lock = NULL;
4508
4509                         head = head->next_sched;
4510
4511                         if (!(q->flags & TCQ_F_NOLOCK)) {
4512                                 root_lock = qdisc_lock(q);
4513                                 spin_lock(root_lock);
4514                         }
4515                         /* We need to make sure head->next_sched is read
4516                          * before clearing __QDISC_STATE_SCHED
4517                          */
4518                         smp_mb__before_atomic();
4519                         clear_bit(__QDISC_STATE_SCHED, &q->state);
4520                         qdisc_run(q);
4521                         if (root_lock)
4522                                 spin_unlock(root_lock);
4523                 }
4524         }
4525
4526         xfrm_dev_backlog(sd);
4527 }
4528
4529 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
4530 /* This hook is defined here for ATM LANE */
4531 int (*br_fdb_test_addr_hook)(struct net_device *dev,
4532                              unsigned char *addr) __read_mostly;
4533 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
4534 #endif
4535
4536 static inline struct sk_buff *
4537 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4538                    struct net_device *orig_dev)
4539 {
4540 #ifdef CONFIG_NET_CLS_ACT
4541         struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
4542         struct tcf_result cl_res;
4543
4544         /* If there's at least one ingress present somewhere (so
4545          * we get here via enabled static key), remaining devices
4546          * that are not configured with an ingress qdisc will bail
4547          * out here.
4548          */
4549         if (!miniq)
4550                 return skb;
4551
4552         if (*pt_prev) {
4553                 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4554                 *pt_prev = NULL;
4555         }
4556
4557         qdisc_skb_cb(skb)->pkt_len = skb->len;
4558         skb->tc_at_ingress = 1;
4559         mini_qdisc_bstats_cpu_update(miniq, skb);
4560
4561         switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
4562         case TC_ACT_OK:
4563         case TC_ACT_RECLASSIFY:
4564                 skb->tc_index = TC_H_MIN(cl_res.classid);
4565                 break;
4566         case TC_ACT_SHOT:
4567                 mini_qdisc_qstats_cpu_drop(miniq);
4568                 kfree_skb(skb);
4569                 return NULL;
4570         case TC_ACT_STOLEN:
4571         case TC_ACT_QUEUED:
4572         case TC_ACT_TRAP:
4573                 consume_skb(skb);
4574                 return NULL;
4575         case TC_ACT_REDIRECT:
4576                 /* skb_mac_header check was done by cls/act_bpf, so
4577                  * we can safely push the L2 header back before
4578                  * redirecting to another netdev
4579                  */
4580                 __skb_push(skb, skb->mac_len);
4581                 skb_do_redirect(skb);
4582                 return NULL;
4583         default:
4584                 break;
4585         }
4586 #endif /* CONFIG_NET_CLS_ACT */
4587         return skb;
4588 }
4589
4590 /**
4591  *      netdev_is_rx_handler_busy - check if receive handler is registered
4592  *      @dev: device to check
4593  *
4594  *      Check if a receive handler is already registered for a given device.
4595  *      Return true if there one.
4596  *
4597  *      The caller must hold the rtnl_mutex.
4598  */
4599 bool netdev_is_rx_handler_busy(struct net_device *dev)
4600 {
4601         ASSERT_RTNL();
4602         return dev && rtnl_dereference(dev->rx_handler);
4603 }
4604 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
4605
4606 /**
4607  *      netdev_rx_handler_register - register receive handler
4608  *      @dev: device to register a handler for
4609  *      @rx_handler: receive handler to register
4610  *      @rx_handler_data: data pointer that is used by rx handler
4611  *
4612  *      Register a receive handler for a device. This handler will then be
4613  *      called from __netif_receive_skb. A negative errno code is returned
4614  *      on a failure.
4615  *
4616  *      The caller must hold the rtnl_mutex.
4617  *
4618  *      For a general description of rx_handler, see enum rx_handler_result.
4619  */
4620 int netdev_rx_handler_register(struct net_device *dev,
4621                                rx_handler_func_t *rx_handler,
4622                                void *rx_handler_data)
4623 {
4624         if (netdev_is_rx_handler_busy(dev))
4625                 return -EBUSY;
4626
4627         if (dev->priv_flags & IFF_NO_RX_HANDLER)
4628                 return -EINVAL;
4629
4630         /* Note: rx_handler_data must be set before rx_handler */
4631         rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
4632         rcu_assign_pointer(dev->rx_handler, rx_handler);
4633
4634         return 0;
4635 }
4636 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
4637
4638 /**
4639  *      netdev_rx_handler_unregister - unregister receive handler
4640  *      @dev: device to unregister a handler from
4641  *
4642  *      Unregister a receive handler from a device.
4643  *
4644  *      The caller must hold the rtnl_mutex.
4645  */
4646 void netdev_rx_handler_unregister(struct net_device *dev)
4647 {
4648
4649         ASSERT_RTNL();
4650         RCU_INIT_POINTER(dev->rx_handler, NULL);
4651         /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
4652          * section has a guarantee to see a non NULL rx_handler_data
4653          * as well.
4654          */
4655         synchronize_net();
4656         RCU_INIT_POINTER(dev->rx_handler_data, NULL);
4657 }
4658 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
4659
4660 /*
4661  * Limit the use of PFMEMALLOC reserves to those protocols that implement
4662  * the special handling of PFMEMALLOC skbs.
4663  */
4664 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
4665 {
4666         switch (skb->protocol) {
4667         case htons(ETH_P_ARP):
4668         case htons(ETH_P_IP):
4669         case htons(ETH_P_IPV6):
4670         case htons(ETH_P_8021Q):
4671         case htons(ETH_P_8021AD):
4672                 return true;
4673         default:
4674                 return false;
4675         }
4676 }
4677
4678 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
4679                              int *ret, struct net_device *orig_dev)
4680 {
4681 #ifdef CONFIG_NETFILTER_INGRESS
4682         if (nf_hook_ingress_active(skb)) {
4683                 int ingress_retval;
4684
4685                 if (*pt_prev) {
4686                         *ret = deliver_skb(skb, *pt_prev, orig_dev);
4687                         *pt_prev = NULL;
4688                 }
4689
4690                 rcu_read_lock();
4691                 ingress_retval = nf_hook_ingress(skb);
4692                 rcu_read_unlock();
4693                 return ingress_retval;
4694         }
4695 #endif /* CONFIG_NETFILTER_INGRESS */
4696         return 0;
4697 }
4698
4699 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc,
4700                                     struct packet_type **ppt_prev)
4701 {
4702         struct packet_type *ptype, *pt_prev;
4703         rx_handler_func_t *rx_handler;
4704         struct net_device *orig_dev;
4705         bool deliver_exact = false;
4706         int ret = NET_RX_DROP;
4707         __be16 type;
4708
4709         net_timestamp_check(!netdev_tstamp_prequeue, skb);
4710
4711         trace_netif_receive_skb(skb);
4712
4713         orig_dev = skb->dev;
4714
4715         skb_reset_network_header(skb);
4716         if (!skb_transport_header_was_set(skb))
4717                 skb_reset_transport_header(skb);
4718         skb_reset_mac_len(skb);
4719
4720         pt_prev = NULL;
4721
4722 another_round:
4723         skb->skb_iif = skb->dev->ifindex;
4724
4725         __this_cpu_inc(softnet_data.processed);
4726
4727         if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4728             skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
4729                 skb = skb_vlan_untag(skb);
4730                 if (unlikely(!skb))
4731                         goto out;
4732         }
4733
4734         if (skb_skip_tc_classify(skb))
4735                 goto skip_classify;
4736
4737         if (pfmemalloc)
4738                 goto skip_taps;
4739
4740         list_for_each_entry_rcu(ptype, &ptype_all, list) {
4741                 if (pt_prev)
4742                         ret = deliver_skb(skb, pt_prev, orig_dev);
4743                 pt_prev = ptype;
4744         }
4745
4746         list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
4747                 if (pt_prev)
4748                         ret = deliver_skb(skb, pt_prev, orig_dev);
4749                 pt_prev = ptype;
4750         }
4751
4752 skip_taps:
4753 #ifdef CONFIG_NET_INGRESS
4754         if (static_branch_unlikely(&ingress_needed_key)) {
4755                 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
4756                 if (!skb)
4757                         goto out;
4758
4759                 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
4760                         goto out;
4761         }
4762 #endif
4763         skb_reset_tc(skb);
4764 skip_classify:
4765         if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
4766                 goto drop;
4767
4768         if (skb_vlan_tag_present(skb)) {
4769                 if (pt_prev) {
4770                         ret = deliver_skb(skb, pt_prev, orig_dev);
4771                         pt_prev = NULL;
4772                 }
4773                 if (vlan_do_receive(&skb))
4774                         goto another_round;
4775                 else if (unlikely(!skb))
4776                         goto out;
4777         }
4778
4779         rx_handler = rcu_dereference(skb->dev->rx_handler);
4780         if (rx_handler) {
4781                 if (pt_prev) {
4782                         ret = deliver_skb(skb, pt_prev, orig_dev);
4783                         pt_prev = NULL;
4784                 }
4785                 switch (rx_handler(&skb)) {
4786                 case RX_HANDLER_CONSUMED:
4787                         ret = NET_RX_SUCCESS;
4788                         goto out;
4789                 case RX_HANDLER_ANOTHER:
4790                         goto another_round;
4791                 case RX_HANDLER_EXACT:
4792                         deliver_exact = true;
4793                 case RX_HANDLER_PASS:
4794                         break;
4795                 default:
4796                         BUG();
4797                 }
4798         }
4799
4800         if (unlikely(skb_vlan_tag_present(skb))) {
4801                 if (skb_vlan_tag_get_id(skb))
4802                         skb->pkt_type = PACKET_OTHERHOST;
4803                 /* Note: we might in the future use prio bits
4804                  * and set skb->priority like in vlan_do_receive()
4805                  * For the time being, just ignore Priority Code Point
4806                  */
4807                 skb->vlan_tci = 0;
4808         }
4809
4810         type = skb->protocol;
4811
4812         /* deliver only exact match when indicated */
4813         if (likely(!deliver_exact)) {
4814                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4815                                        &ptype_base[ntohs(type) &
4816                                                    PTYPE_HASH_MASK]);
4817         }
4818
4819         deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4820                                &orig_dev->ptype_specific);
4821
4822         if (unlikely(skb->dev != orig_dev)) {
4823                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4824                                        &skb->dev->ptype_specific);
4825         }
4826
4827         if (pt_prev) {
4828                 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
4829                         goto drop;
4830                 *ppt_prev = pt_prev;
4831         } else {
4832 drop:
4833                 if (!deliver_exact)
4834                         atomic_long_inc(&skb->dev->rx_dropped);
4835                 else
4836                         atomic_long_inc(&skb->dev->rx_nohandler);
4837                 kfree_skb(skb);
4838                 /* Jamal, now you will not able to escape explaining
4839                  * me how you were going to use this. :-)
4840                  */
4841                 ret = NET_RX_DROP;
4842         }
4843
4844 out:
4845         return ret;
4846 }
4847
4848 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
4849 {
4850         struct net_device *orig_dev = skb->dev;
4851         struct packet_type *pt_prev = NULL;
4852         int ret;
4853
4854         ret = __netif_receive_skb_core(skb, pfmemalloc, &pt_prev);
4855         if (pt_prev)
4856                 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
4857         return ret;
4858 }
4859
4860 /**
4861  *      netif_receive_skb_core - special purpose version of netif_receive_skb
4862  *      @skb: buffer to process
4863  *
4864  *      More direct receive version of netif_receive_skb().  It should
4865  *      only be used by callers that have a need to skip RPS and Generic XDP.
4866  *      Caller must also take care of handling if (page_is_)pfmemalloc.
4867  *
4868  *      This function may only be called from softirq context and interrupts
4869  *      should be enabled.
4870  *
4871  *      Return values (usually ignored):
4872  *      NET_RX_SUCCESS: no congestion
4873  *      NET_RX_DROP: packet was dropped
4874  */
4875 int netif_receive_skb_core(struct sk_buff *skb)
4876 {
4877         int ret;
4878
4879         rcu_read_lock();
4880         ret = __netif_receive_skb_one_core(skb, false);
4881         rcu_read_unlock();
4882
4883         return ret;
4884 }
4885 EXPORT_SYMBOL(netif_receive_skb_core);
4886
4887 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
4888                                                   struct packet_type *pt_prev,
4889                                                   struct net_device *orig_dev)
4890 {
4891         struct sk_buff *skb, *next;
4892
4893         if (!pt_prev)
4894                 return;
4895         if (list_empty(head))
4896                 return;
4897         if (pt_prev->list_func != NULL)
4898                 pt_prev->list_func(head, pt_prev, orig_dev);
4899         else
4900                 list_for_each_entry_safe(skb, next, head, list)
4901                         pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
4902 }
4903
4904 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
4905 {
4906         /* Fast-path assumptions:
4907          * - There is no RX handler.
4908          * - Only one packet_type matches.
4909          * If either of these fails, we will end up doing some per-packet
4910          * processing in-line, then handling the 'last ptype' for the whole
4911          * sublist.  This can't cause out-of-order delivery to any single ptype,
4912          * because the 'last ptype' must be constant across the sublist, and all
4913          * other ptypes are handled per-packet.
4914          */
4915         /* Current (common) ptype of sublist */
4916         struct packet_type *pt_curr = NULL;
4917         /* Current (common) orig_dev of sublist */
4918         struct net_device *od_curr = NULL;
4919         struct list_head sublist;
4920         struct sk_buff *skb, *next;
4921
4922         list_for_each_entry_safe(skb, next, head, list) {
4923                 struct net_device *orig_dev = skb->dev;
4924                 struct packet_type *pt_prev = NULL;
4925
4926                 __netif_receive_skb_core(skb, pfmemalloc, &pt_prev);
4927                 if (pt_curr != pt_prev || od_curr != orig_dev) {
4928                         /* dispatch old sublist */
4929                         list_cut_before(&sublist, head, &skb->list);
4930                         __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
4931                         /* start new sublist */
4932                         pt_curr = pt_prev;
4933                         od_curr = orig_dev;
4934                 }
4935         }
4936
4937         /* dispatch final sublist */
4938         __netif_receive_skb_list_ptype(head, pt_curr, od_curr);
4939 }
4940
4941 static int __netif_receive_skb(struct sk_buff *skb)
4942 {
4943         int ret;
4944
4945         if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
4946                 unsigned int noreclaim_flag;
4947
4948                 /*
4949                  * PFMEMALLOC skbs are special, they should
4950                  * - be delivered to SOCK_MEMALLOC sockets only
4951                  * - stay away from userspace
4952                  * - have bounded memory usage
4953                  *
4954                  * Use PF_MEMALLOC as this saves us from propagating the allocation
4955                  * context down to all allocation sites.
4956                  */
4957                 noreclaim_flag = memalloc_noreclaim_save();
4958                 ret = __netif_receive_skb_one_core(skb, true);
4959                 memalloc_noreclaim_restore(noreclaim_flag);
4960         } else
4961                 ret = __netif_receive_skb_one_core(skb, false);
4962
4963         return ret;
4964 }
4965
4966 static void __netif_receive_skb_list(struct list_head *head)
4967 {
4968         unsigned long noreclaim_flag = 0;
4969         struct sk_buff *skb, *next;
4970         bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
4971
4972         list_for_each_entry_safe(skb, next, head, list) {
4973                 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
4974                         struct list_head sublist;
4975
4976                         /* Handle the previous sublist */
4977                         list_cut_before(&sublist, head, &skb->list);
4978                         if (!list_empty(&sublist))
4979                                 __netif_receive_skb_list_core(&sublist, pfmemalloc);
4980                         pfmemalloc = !pfmemalloc;
4981                         /* See comments in __netif_receive_skb */
4982                         if (pfmemalloc)
4983                                 noreclaim_flag = memalloc_noreclaim_save();
4984                         else
4985                                 memalloc_noreclaim_restore(noreclaim_flag);
4986                 }
4987         }
4988         /* Handle the remaining sublist */
4989         if (!list_empty(head))
4990                 __netif_receive_skb_list_core(head, pfmemalloc);
4991         /* Restore pflags */
4992         if (pfmemalloc)
4993                 memalloc_noreclaim_restore(noreclaim_flag);
4994 }
4995
4996 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
4997 {
4998         struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
4999         struct bpf_prog *new = xdp->prog;
5000         int ret = 0;
5001
5002         switch (xdp->command) {
5003         case XDP_SETUP_PROG:
5004                 rcu_assign_pointer(dev->xdp_prog, new);
5005                 if (old)
5006                         bpf_prog_put(old);
5007
5008                 if (old && !new) {
5009                         static_branch_dec(&generic_xdp_needed_key);
5010                 } else if (new && !old) {
5011                         static_branch_inc(&generic_xdp_needed_key);
5012                         dev_disable_lro(dev);
5013                         dev_disable_gro_hw(dev);
5014                 }
5015                 break;
5016
5017         case XDP_QUERY_PROG:
5018                 xdp->prog_attached = !!old;
5019                 xdp->prog_id = old ? old->aux->id : 0;
5020                 break;
5021
5022         default:
5023                 ret = -EINVAL;
5024                 break;
5025         }
5026
5027         return ret;
5028 }
5029
5030 static int netif_receive_skb_internal(struct sk_buff *skb)
5031 {
5032         int ret;
5033
5034         net_timestamp_check(netdev_tstamp_prequeue, skb);
5035
5036         if (skb_defer_rx_timestamp(skb))
5037                 return NET_RX_SUCCESS;
5038
5039         if (static_branch_unlikely(&generic_xdp_needed_key)) {
5040                 int ret;
5041
5042                 preempt_disable();
5043                 rcu_read_lock();
5044                 ret = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
5045                 rcu_read_unlock();
5046                 preempt_enable();
5047
5048                 if (ret != XDP_PASS)
5049                         return NET_RX_DROP;
5050         }
5051
5052         rcu_read_lock();
5053 #ifdef CONFIG_RPS
5054         if (static_key_false(&rps_needed)) {
5055                 struct rps_dev_flow voidflow, *rflow = &voidflow;
5056                 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5057
5058                 if (cpu >= 0) {
5059                         ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5060                         rcu_read_unlock();
5061                         return ret;
5062                 }
5063         }
5064 #endif
5065         ret = __netif_receive_skb(skb);
5066         rcu_read_unlock();
5067         return ret;
5068 }
5069
5070 static void netif_receive_skb_list_internal(struct list_head *head)
5071 {
5072         struct bpf_prog *xdp_prog = NULL;
5073         struct sk_buff *skb, *next;
5074
5075         list_for_each_entry_safe(skb, next, head, list) {
5076                 net_timestamp_check(netdev_tstamp_prequeue, skb);
5077                 if (skb_defer_rx_timestamp(skb))
5078                         /* Handled, remove from list */
5079                         list_del(&skb->list);
5080         }
5081
5082         if (static_branch_unlikely(&generic_xdp_needed_key)) {
5083                 preempt_disable();
5084                 rcu_read_lock();
5085                 list_for_each_entry_safe(skb, next, head, list) {
5086                         xdp_prog = rcu_dereference(skb->dev->xdp_prog);
5087                         if (do_xdp_generic(xdp_prog, skb) != XDP_PASS)
5088                                 /* Dropped, remove from list */
5089                                 list_del(&skb->list);
5090                 }
5091                 rcu_read_unlock();
5092                 preempt_enable();
5093         }
5094
5095         rcu_read_lock();
5096 #ifdef CONFIG_RPS
5097         if (static_key_false(&rps_needed)) {
5098                 list_for_each_entry_safe(skb, next, head, list) {
5099                         struct rps_dev_flow voidflow, *rflow = &voidflow;
5100                         int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5101
5102                         if (cpu >= 0) {
5103                                 enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5104                                 /* Handled, remove from list */
5105                                 list_del(&skb->list);
5106                         }
5107                 }
5108         }
5109 #endif
5110         __netif_receive_skb_list(head);
5111         rcu_read_unlock();
5112 }
5113
5114 /**
5115  *      netif_receive_skb - process receive buffer from network
5116  *      @skb: buffer to process
5117  *
5118  *      netif_receive_skb() is the main receive data processing function.
5119  *      It always succeeds. The buffer may be dropped during processing
5120  *      for congestion control or by the protocol layers.
5121  *
5122  *      This function may only be called from softirq context and interrupts
5123  *      should be enabled.
5124  *
5125  *      Return values (usually ignored):
5126  *      NET_RX_SUCCESS: no congestion
5127  *      NET_RX_DROP: packet was dropped
5128  */
5129 int netif_receive_skb(struct sk_buff *skb)
5130 {
5131         trace_netif_receive_skb_entry(skb);
5132
5133         return netif_receive_skb_internal(skb);
5134 }
5135 EXPORT_SYMBOL(netif_receive_skb);
5136
5137 /**
5138  *      netif_receive_skb_list - process many receive buffers from network
5139  *      @head: list of skbs to process.
5140  *
5141  *      Since return value of netif_receive_skb() is normally ignored, and
5142  *      wouldn't be meaningful for a list, this function returns void.
5143  *
5144  *      This function may only be called from softirq context and interrupts
5145  *      should be enabled.
5146  */
5147 void netif_receive_skb_list(struct list_head *head)
5148 {
5149         struct sk_buff *skb;
5150
5151         if (list_empty(head))
5152                 return;
5153         list_for_each_entry(skb, head, list)
5154                 trace_netif_receive_skb_list_entry(skb);
5155         netif_receive_skb_list_internal(head);
5156 }
5157 EXPORT_SYMBOL(netif_receive_skb_list);
5158
5159 DEFINE_PER_CPU(struct work_struct, flush_works);
5160
5161 /* Network device is going away, flush any packets still pending */
5162 static void flush_backlog(struct work_struct *work)
5163 {
5164         struct sk_buff *skb, *tmp;
5165         struct softnet_data *sd;
5166
5167         local_bh_disable();
5168         sd = this_cpu_ptr(&softnet_data);
5169
5170         local_irq_disable();
5171         rps_lock(sd);
5172         skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5173                 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5174                         __skb_unlink(skb, &sd->input_pkt_queue);
5175                         kfree_skb(skb);
5176                         input_queue_head_incr(sd);
5177                 }
5178         }
5179         rps_unlock(sd);
5180         local_irq_enable();
5181
5182         skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5183                 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5184                         __skb_unlink(skb, &sd->process_queue);
5185                         kfree_skb(skb);
5186                         input_queue_head_incr(sd);
5187                 }
5188         }
5189         local_bh_enable();
5190 }
5191
5192 static void flush_all_backlogs(void)
5193 {
5194         unsigned int cpu;
5195
5196         get_online_cpus();
5197
5198         for_each_online_cpu(cpu)
5199                 queue_work_on(cpu, system_highpri_wq,
5200                               per_cpu_ptr(&flush_works, cpu));
5201
5202         for_each_online_cpu(cpu)
5203                 flush_work(per_cpu_ptr(&flush_works, cpu));
5204
5205         put_online_cpus();
5206 }
5207
5208 static int napi_gro_complete(struct sk_buff *skb)
5209 {
5210         struct packet_offload *ptype;
5211         __be16 type = skb->protocol;
5212         struct list_head *head = &offload_base;
5213         int err = -ENOENT;
5214
5215         BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
5216
5217         if (NAPI_GRO_CB(skb)->count == 1) {
5218                 skb_shinfo(skb)->gso_size = 0;
5219                 goto out;
5220         }
5221
5222         rcu_read_lock();
5223         list_for_each_entry_rcu(ptype, head, list) {
5224                 if (ptype->type != type || !ptype->callbacks.gro_complete)
5225                         continue;
5226
5227                 err = ptype->callbacks.gro_complete(skb, 0);
5228                 break;
5229         }
5230         rcu_read_unlock();
5231
5232         if (err) {
5233                 WARN_ON(&ptype->list == head);
5234                 kfree_skb(skb);
5235                 return NET_RX_SUCCESS;
5236         }
5237
5238 out:
5239         return netif_receive_skb_internal(skb);
5240 }
5241
5242 static void __napi_gro_flush_chain(struct napi_struct *napi, u32 index,
5243                                    bool flush_old)
5244 {
5245         struct list_head *head = &napi->gro_hash[index].list;
5246         struct sk_buff *skb, *p;
5247
5248         list_for_each_entry_safe_reverse(skb, p, head, list) {
5249                 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
5250                         return;
5251                 list_del_init(&skb->list);
5252                 napi_gro_complete(skb);
5253                 napi->gro_count--;
5254                 napi->gro_hash[index].count--;
5255         }
5256 }
5257
5258 /* napi->gro_hash[].list contains packets ordered by age.
5259  * youngest packets at the head of it.
5260  * Complete skbs in reverse order to reduce latencies.
5261  */
5262 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
5263 {
5264         u32 i;
5265
5266         for (i = 0; i < GRO_HASH_BUCKETS; i++)
5267                 __napi_gro_flush_chain(napi, i, flush_old);
5268 }
5269 EXPORT_SYMBOL(napi_gro_flush);
5270
5271 static struct list_head *gro_list_prepare(struct napi_struct *napi,
5272                                           struct sk_buff *skb)
5273 {
5274         unsigned int maclen = skb->dev->hard_header_len;
5275         u32 hash = skb_get_hash_raw(skb);
5276         struct list_head *head;
5277         struct sk_buff *p;
5278
5279         head = &napi->gro_hash[hash & (GRO_HASH_BUCKETS - 1)].list;
5280         list_for_each_entry(p, head, list) {
5281                 unsigned long diffs;
5282
5283                 NAPI_GRO_CB(p)->flush = 0;
5284
5285                 if (hash != skb_get_hash_raw(p)) {
5286                         NAPI_GRO_CB(p)->same_flow = 0;
5287                         continue;
5288                 }
5289
5290                 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
5291                 diffs |= p->vlan_tci ^ skb->vlan_tci;
5292                 diffs |= skb_metadata_dst_cmp(p, skb);
5293                 diffs |= skb_metadata_differs(p, skb);
5294                 if (maclen == ETH_HLEN)
5295                         diffs |= compare_ether_header(skb_mac_header(p),
5296                                                       skb_mac_header(skb));
5297                 else if (!diffs)
5298                         diffs = memcmp(skb_mac_header(p),
5299                                        skb_mac_header(skb),
5300                                        maclen);
5301                 NAPI_GRO_CB(p)->same_flow = !diffs;
5302         }
5303
5304         return head;
5305 }
5306
5307 static void skb_gro_reset_offset(struct sk_buff *skb)
5308 {
5309         const struct skb_shared_info *pinfo = skb_shinfo(skb);
5310         const skb_frag_t *frag0 = &pinfo->frags[0];
5311
5312         NAPI_GRO_CB(skb)->data_offset = 0;
5313         NAPI_GRO_CB(skb)->frag0 = NULL;
5314         NAPI_GRO_CB(skb)->frag0_len = 0;
5315
5316         if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
5317             pinfo->nr_frags &&
5318             !PageHighMem(skb_frag_page(frag0))) {
5319                 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
5320                 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
5321                                                     skb_frag_size(frag0),
5322                                                     skb->end - skb->tail);
5323         }
5324 }
5325
5326 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
5327 {
5328         struct skb_shared_info *pinfo = skb_shinfo(skb);
5329
5330         BUG_ON(skb->end - skb->tail < grow);
5331
5332         memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
5333
5334         skb->data_len -= grow;
5335         skb->tail += grow;
5336
5337         pinfo->frags[0].page_offset += grow;
5338         skb_frag_size_sub(&pinfo->frags[0], grow);
5339
5340         if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
5341                 skb_frag_unref(skb, 0);
5342                 memmove(pinfo->frags, pinfo->frags + 1,
5343                         --pinfo->nr_frags * sizeof(pinfo->frags[0]));
5344         }
5345 }
5346
5347 static void gro_flush_oldest(struct list_head *head)
5348 {
5349         struct sk_buff *oldest;
5350
5351         oldest = list_last_entry(head, struct sk_buff, list);
5352
5353         /* We are called with head length >= MAX_GRO_SKBS, so this is
5354          * impossible.
5355          */
5356         if (WARN_ON_ONCE(!oldest))
5357                 return;
5358
5359         /* Do not adjust napi->gro_count, caller is adding a new SKB to
5360          * the chain.
5361          */
5362         list_del(&oldest->list);
5363         napi_gro_complete(oldest);
5364 }
5365
5366 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5367 {
5368         u32 hash = skb_get_hash_raw(skb) & (GRO_HASH_BUCKETS - 1);
5369         struct list_head *head = &offload_base;
5370         struct packet_offload *ptype;
5371         __be16 type = skb->protocol;
5372         struct list_head *gro_head;
5373         struct sk_buff *pp = NULL;
5374         enum gro_result ret;
5375         int same_flow;
5376         int grow;
5377
5378         if (netif_elide_gro(skb->dev))
5379                 goto normal;
5380
5381         gro_head = gro_list_prepare(napi, skb);
5382
5383         rcu_read_lock();
5384         list_for_each_entry_rcu(ptype, head, list) {
5385                 if (ptype->type != type || !ptype->callbacks.gro_receive)
5386                         continue;
5387
5388                 skb_set_network_header(skb, skb_gro_offset(skb));
5389                 skb_reset_mac_len(skb);
5390                 NAPI_GRO_CB(skb)->same_flow = 0;
5391                 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
5392                 NAPI_GRO_CB(skb)->free = 0;
5393                 NAPI_GRO_CB(skb)->encap_mark = 0;
5394                 NAPI_GRO_CB(skb)->recursion_counter = 0;
5395                 NAPI_GRO_CB(skb)->is_fou = 0;
5396                 NAPI_GRO_CB(skb)->is_atomic = 1;
5397                 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
5398
5399                 /* Setup for GRO checksum validation */
5400                 switch (skb->ip_summed) {
5401                 case CHECKSUM_COMPLETE:
5402                         NAPI_GRO_CB(skb)->csum = skb->csum;
5403                         NAPI_GRO_CB(skb)->csum_valid = 1;
5404                         NAPI_GRO_CB(skb)->csum_cnt = 0;
5405                         break;
5406                 case CHECKSUM_UNNECESSARY:
5407                         NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
5408                         NAPI_GRO_CB(skb)->csum_valid = 0;
5409                         break;
5410                 default:
5411                         NAPI_GRO_CB(skb)->csum_cnt = 0;
5412                         NAPI_GRO_CB(skb)->csum_valid = 0;
5413                 }
5414
5415                 pp = ptype->callbacks.gro_receive(gro_head, skb);
5416                 break;
5417         }
5418         rcu_read_unlock();
5419
5420         if (&ptype->list == head)
5421                 goto normal;
5422
5423         if (IS_ERR(pp) && PTR_ERR(pp) == -EINPROGRESS) {
5424                 ret = GRO_CONSUMED;
5425                 goto ok;
5426         }
5427
5428         same_flow = NAPI_GRO_CB(skb)->same_flow;
5429         ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
5430
5431         if (pp) {
5432                 list_del_init(&pp->list);
5433                 napi_gro_complete(pp);
5434                 napi->gro_count--;
5435                 napi->gro_hash[hash].count--;
5436         }
5437
5438         if (same_flow)
5439                 goto ok;
5440
5441         if (NAPI_GRO_CB(skb)->flush)
5442                 goto normal;
5443
5444         if (unlikely(napi->gro_hash[hash].count >= MAX_GRO_SKBS)) {
5445                 gro_flush_oldest(gro_head);
5446         } else {
5447                 napi->gro_count++;
5448                 napi->gro_hash[hash].count++;
5449         }
5450         NAPI_GRO_CB(skb)->count = 1;
5451         NAPI_GRO_CB(skb)->age = jiffies;
5452         NAPI_GRO_CB(skb)->last = skb;
5453         skb_shinfo(skb)->gso_size = skb_gro_len(skb);
5454         list_add(&skb->list, gro_head);
5455         ret = GRO_HELD;
5456
5457 pull:
5458         grow = skb_gro_offset(skb) - skb_headlen(skb);
5459         if (grow > 0)
5460                 gro_pull_from_frag0(skb, grow);
5461 ok:
5462         return ret;
5463
5464 normal:
5465         ret = GRO_NORMAL;
5466         goto pull;
5467 }
5468
5469 struct packet_offload *gro_find_receive_by_type(__be16 type)
5470 {
5471         struct list_head *offload_head = &offload_base;
5472         struct packet_offload *ptype;
5473
5474         list_for_each_entry_rcu(ptype, offload_head, list) {
5475                 if (ptype->type != type || !ptype->callbacks.gro_receive)
5476                         continue;
5477                 return ptype;
5478         }
5479         return NULL;
5480 }
5481 EXPORT_SYMBOL(gro_find_receive_by_type);
5482
5483 struct packet_offload *gro_find_complete_by_type(__be16 type)
5484 {
5485         struct list_head *offload_head = &offload_base;
5486         struct packet_offload *ptype;
5487
5488         list_for_each_entry_rcu(ptype, offload_head, list) {
5489                 if (ptype->type != type || !ptype->callbacks.gro_complete)
5490                         continue;
5491                 return ptype;
5492         }
5493         return NULL;
5494 }
5495 EXPORT_SYMBOL(gro_find_complete_by_type);
5496
5497 static void napi_skb_free_stolen_head(struct sk_buff *skb)
5498 {
5499         skb_dst_drop(skb);
5500         secpath_reset(skb);
5501         kmem_cache_free(skbuff_head_cache, skb);
5502 }
5503
5504 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
5505 {
5506         switch (ret) {
5507         case GRO_NORMAL:
5508                 if (netif_receive_skb_internal(skb))
5509                         ret = GRO_DROP;
5510                 break;
5511
5512         case GRO_DROP:
5513                 kfree_skb(skb);
5514                 break;
5515
5516         case GRO_MERGED_FREE:
5517                 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5518                         napi_skb_free_stolen_head(skb);
5519                 else
5520                         __kfree_skb(skb);
5521                 break;
5522
5523         case GRO_HELD:
5524         case GRO_MERGED:
5525         case GRO_CONSUMED:
5526                 break;
5527         }
5528
5529         return ret;
5530 }
5531
5532 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5533 {
5534         skb_mark_napi_id(skb, napi);
5535         trace_napi_gro_receive_entry(skb);
5536
5537         skb_gro_reset_offset(skb);
5538
5539         return napi_skb_finish(dev_gro_receive(napi, skb), skb);
5540 }
5541 EXPORT_SYMBOL(napi_gro_receive);
5542
5543 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
5544 {
5545         if (unlikely(skb->pfmemalloc)) {
5546                 consume_skb(skb);
5547                 return;
5548         }
5549         __skb_pull(skb, skb_headlen(skb));
5550         /* restore the reserve we had after netdev_alloc_skb_ip_align() */
5551         skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
5552         skb->vlan_tci = 0;
5553         skb->dev = napi->dev;
5554         skb->skb_iif = 0;
5555         skb->encapsulation = 0;
5556         skb_shinfo(skb)->gso_type = 0;
5557         skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
5558         secpath_reset(skb);
5559
5560         napi->skb = skb;
5561 }
5562
5563 struct sk_buff *napi_get_frags(struct napi_struct *napi)
5564 {
5565         struct sk_buff *skb = napi->skb;
5566
5567         if (!skb) {
5568                 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
5569                 if (skb) {
5570                         napi->skb = skb;
5571                         skb_mark_napi_id(skb, napi);
5572                 }
5573         }
5574         return skb;
5575 }
5576 EXPORT_SYMBOL(napi_get_frags);
5577
5578 static gro_result_t napi_frags_finish(struct napi_struct *napi,
5579                                       struct sk_buff *skb,
5580                                       gro_result_t ret)
5581 {
5582         switch (ret) {
5583         case GRO_NORMAL:
5584         case GRO_HELD:
5585                 __skb_push(skb, ETH_HLEN);
5586                 skb->protocol = eth_type_trans(skb, skb->dev);
5587                 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
5588                         ret = GRO_DROP;
5589                 break;
5590
5591         case GRO_DROP:
5592                 napi_reuse_skb(napi, skb);
5593                 break;
5594
5595         case GRO_MERGED_FREE:
5596                 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5597                         napi_skb_free_stolen_head(skb);
5598                 else
5599                         napi_reuse_skb(napi, skb);
5600                 break;
5601
5602         case GRO_MERGED:
5603         case GRO_CONSUMED:
5604                 break;
5605         }
5606
5607         return ret;
5608 }
5609
5610 /* Upper GRO stack assumes network header starts at gro_offset=0
5611  * Drivers could call both napi_gro_frags() and napi_gro_receive()
5612  * We copy ethernet header into skb->data to have a common layout.
5613  */
5614 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
5615 {
5616         struct sk_buff *skb = napi->skb;
5617         const struct ethhdr *eth;
5618         unsigned int hlen = sizeof(*eth);
5619
5620         napi->skb = NULL;
5621
5622         skb_reset_mac_header(skb);
5623         skb_gro_reset_offset(skb);
5624
5625         eth = skb_gro_header_fast(skb, 0);
5626         if (unlikely(skb_gro_header_hard(skb, hlen))) {
5627                 eth = skb_gro_header_slow(skb, hlen, 0);
5628                 if (unlikely(!eth)) {
5629                         net_warn_ratelimited("%s: dropping impossible skb from %s\n",
5630                                              __func__, napi->dev->name);
5631                         napi_reuse_skb(napi, skb);
5632                         return NULL;
5633                 }
5634         } else {
5635                 gro_pull_from_frag0(skb, hlen);
5636                 NAPI_GRO_CB(skb)->frag0 += hlen;
5637                 NAPI_GRO_CB(skb)->frag0_len -= hlen;
5638         }
5639         __skb_pull(skb, hlen);
5640
5641         /*
5642          * This works because the only protocols we care about don't require
5643          * special handling.
5644          * We'll fix it up properly in napi_frags_finish()
5645          */
5646         skb->protocol = eth->h_proto;
5647
5648         return skb;
5649 }
5650
5651 gro_result_t napi_gro_frags(struct napi_struct *napi)
5652 {
5653         struct sk_buff *skb = napi_frags_skb(napi);
5654
5655         if (!skb)
5656                 return GRO_DROP;
5657
5658         trace_napi_gro_frags_entry(skb);
5659
5660         return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
5661 }
5662 EXPORT_SYMBOL(napi_gro_frags);
5663
5664 /* Compute the checksum from gro_offset and return the folded value
5665  * after adding in any pseudo checksum.
5666  */
5667 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
5668 {
5669         __wsum wsum;
5670         __sum16 sum;
5671
5672         wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
5673
5674         /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
5675         sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
5676         if (likely(!sum)) {
5677                 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
5678                     !skb->csum_complete_sw)
5679                         netdev_rx_csum_fault(skb->dev);
5680         }
5681
5682         NAPI_GRO_CB(skb)->csum = wsum;
5683         NAPI_GRO_CB(skb)->csum_valid = 1;
5684
5685         return sum;
5686 }
5687 EXPORT_SYMBOL(__skb_gro_checksum_complete);
5688
5689 static void net_rps_send_ipi(struct softnet_data *remsd)
5690 {
5691 #ifdef CONFIG_RPS
5692         while (remsd) {
5693                 struct softnet_data *next = remsd->rps_ipi_next;
5694
5695                 if (cpu_online(remsd->cpu))
5696                         smp_call_function_single_async(remsd->cpu, &remsd->csd);
5697                 remsd = next;
5698         }
5699 #endif
5700 }
5701
5702 /*
5703  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
5704  * Note: called with local irq disabled, but exits with local irq enabled.
5705  */
5706 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
5707 {
5708 #ifdef CONFIG_RPS
5709         struct softnet_data *remsd = sd->rps_ipi_list;
5710
5711         if (remsd) {
5712                 sd->rps_ipi_list = NULL;
5713
5714                 local_irq_enable();
5715
5716                 /* Send pending IPI's to kick RPS processing on remote cpus. */
5717                 net_rps_send_ipi(remsd);
5718         } else
5719 #endif
5720                 local_irq_enable();
5721 }
5722
5723 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
5724 {
5725 #ifdef CONFIG_RPS
5726         return sd->rps_ipi_list != NULL;
5727 #else
5728         return false;
5729 #endif
5730 }
5731
5732 static int process_backlog(struct napi_struct *napi, int quota)
5733 {
5734         struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
5735         bool again = true;
5736         int work = 0;
5737
5738         /* Check if we have pending ipi, its better to send them now,
5739          * not waiting net_rx_action() end.
5740          */
5741         if (sd_has_rps_ipi_waiting(sd)) {
5742                 local_irq_disable();
5743                 net_rps_action_and_irq_enable(sd);
5744         }
5745
5746         napi->weight = dev_rx_weight;
5747         while (again) {
5748                 struct sk_buff *skb;
5749
5750                 while ((skb = __skb_dequeue(&sd->process_queue))) {
5751                         rcu_read_lock();
5752                         __netif_receive_skb(skb);
5753                         rcu_read_unlock();
5754                         input_queue_head_incr(sd);
5755                         if (++work >= quota)
5756                                 return work;
5757
5758                 }
5759
5760                 local_irq_disable();
5761                 rps_lock(sd);
5762                 if (skb_queue_empty(&sd->input_pkt_queue)) {
5763                         /*
5764                          * Inline a custom version of __napi_complete().
5765                          * only current cpu owns and manipulates this napi,
5766                          * and NAPI_STATE_SCHED is the only possible flag set
5767                          * on backlog.
5768                          * We can use a plain write instead of clear_bit(),
5769                          * and we dont need an smp_mb() memory barrier.
5770                          */
5771                         napi->state = 0;
5772                         again = false;
5773                 } else {
5774                         skb_queue_splice_tail_init(&sd->input_pkt_queue,
5775                                                    &sd->process_queue);
5776                 }
5777                 rps_unlock(sd);
5778                 local_irq_enable();
5779         }
5780
5781         return work;
5782 }
5783
5784 /**
5785  * __napi_schedule - schedule for receive
5786  * @n: entry to schedule
5787  *
5788  * The entry's receive function will be scheduled to run.
5789  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
5790  */
5791 void __napi_schedule(struct napi_struct *n)
5792 {
5793         unsigned long flags;
5794
5795         local_irq_save(flags);
5796         ____napi_schedule(this_cpu_ptr(&softnet_data), n);
5797         local_irq_restore(flags);
5798 }
5799 EXPORT_SYMBOL(__napi_schedule);
5800
5801 /**
5802  *      napi_schedule_prep - check if napi can be scheduled
5803  *      @n: napi context
5804  *
5805  * Test if NAPI routine is already running, and if not mark
5806  * it as running.  This is used as a condition variable
5807  * insure only one NAPI poll instance runs.  We also make
5808  * sure there is no pending NAPI disable.
5809  */
5810 bool napi_schedule_prep(struct napi_struct *n)
5811 {
5812         unsigned long val, new;
5813
5814         do {
5815                 val = READ_ONCE(n->state);
5816                 if (unlikely(val & NAPIF_STATE_DISABLE))
5817                         return false;
5818                 new = val | NAPIF_STATE_SCHED;
5819
5820                 /* Sets STATE_MISSED bit if STATE_SCHED was already set
5821                  * This was suggested by Alexander Duyck, as compiler
5822                  * emits better code than :
5823                  * if (val & NAPIF_STATE_SCHED)
5824                  *     new |= NAPIF_STATE_MISSED;
5825                  */
5826                 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
5827                                                    NAPIF_STATE_MISSED;
5828         } while (cmpxchg(&n->state, val, new) != val);
5829
5830         return !(val & NAPIF_STATE_SCHED);
5831 }
5832 EXPORT_SYMBOL(napi_schedule_prep);
5833
5834 /**
5835  * __napi_schedule_irqoff - schedule for receive
5836  * @n: entry to schedule
5837  *
5838  * Variant of __napi_schedule() assuming hard irqs are masked
5839  */
5840 void __napi_schedule_irqoff(struct napi_struct *n)
5841 {
5842         ____napi_schedule(this_cpu_ptr(&softnet_data), n);
5843 }
5844 EXPORT_SYMBOL(__napi_schedule_irqoff);
5845
5846 bool napi_complete_done(struct napi_struct *n, int work_done)
5847 {
5848         unsigned long flags, val, new;
5849
5850         /*
5851          * 1) Don't let napi dequeue from the cpu poll list
5852          *    just in case its running on a different cpu.
5853          * 2) If we are busy polling, do nothing here, we have
5854          *    the guarantee we will be called later.
5855          */
5856         if (unlikely(n->state & (NAPIF_STATE_NPSVC |
5857                                  NAPIF_STATE_IN_BUSY_POLL)))
5858                 return false;
5859
5860         if (n->gro_count) {
5861                 unsigned long timeout = 0;
5862
5863                 if (work_done)
5864                         timeout = n->dev->gro_flush_timeout;
5865
5866                 if (timeout)
5867                         hrtimer_start(&n->timer, ns_to_ktime(timeout),
5868                                       HRTIMER_MODE_REL_PINNED);
5869                 else
5870                         napi_gro_flush(n, false);
5871         }
5872         if (unlikely(!list_empty(&n->poll_list))) {
5873                 /* If n->poll_list is not empty, we need to mask irqs */
5874                 local_irq_save(flags);
5875                 list_del_init(&n->poll_list);
5876                 local_irq_restore(flags);
5877         }
5878
5879         do {
5880                 val = READ_ONCE(n->state);
5881
5882                 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
5883
5884                 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED);
5885
5886                 /* If STATE_MISSED was set, leave STATE_SCHED set,
5887                  * because we will call napi->poll() one more time.
5888                  * This C code was suggested by Alexander Duyck to help gcc.
5889                  */
5890                 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
5891                                                     NAPIF_STATE_SCHED;
5892         } while (cmpxchg(&n->state, val, new) != val);
5893
5894         if (unlikely(val & NAPIF_STATE_MISSED)) {
5895                 __napi_schedule(n);
5896                 return false;
5897         }
5898
5899         return true;
5900 }
5901 EXPORT_SYMBOL(napi_complete_done);
5902
5903 /* must be called under rcu_read_lock(), as we dont take a reference */
5904 static struct napi_struct *napi_by_id(unsigned int napi_id)
5905 {
5906         unsigned int hash = napi_id % HASH_SIZE(napi_hash);
5907         struct napi_struct *napi;
5908
5909         hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
5910                 if (napi->napi_id == napi_id)
5911                         return napi;
5912
5913         return NULL;
5914 }
5915
5916 #if defined(CONFIG_NET_RX_BUSY_POLL)
5917
5918 #define BUSY_POLL_BUDGET 8
5919
5920 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock)
5921 {
5922         int rc;
5923
5924         /* Busy polling means there is a high chance device driver hard irq
5925          * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
5926          * set in napi_schedule_prep().
5927          * Since we are about to call napi->poll() once more, we can safely
5928          * clear NAPI_STATE_MISSED.
5929          *
5930          * Note: x86 could use a single "lock and ..." instruction
5931          * to perform these two clear_bit()
5932          */
5933         clear_bit(NAPI_STATE_MISSED, &napi->state);
5934         clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
5935
5936         local_bh_disable();
5937
5938         /* All we really want here is to re-enable device interrupts.
5939          * Ideally, a new ndo_busy_poll_stop() could avoid another round.
5940          */
5941         rc = napi->poll(napi, BUSY_POLL_BUDGET);
5942         trace_napi_poll(napi, rc, BUSY_POLL_BUDGET);
5943         netpoll_poll_unlock(have_poll_lock);
5944         if (rc == BUSY_POLL_BUDGET)
5945                 __napi_schedule(napi);
5946         local_bh_enable();
5947 }
5948
5949 void napi_busy_loop(unsigned int napi_id,
5950                     bool (*loop_end)(void *, unsigned long),
5951                     void *loop_end_arg)
5952 {
5953         unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
5954         int (*napi_poll)(struct napi_struct *napi, int budget);
5955         void *have_poll_lock = NULL;
5956         struct napi_struct *napi;
5957
5958 restart:
5959         napi_poll = NULL;
5960
5961         rcu_read_lock();
5962
5963         napi = napi_by_id(napi_id);
5964         if (!napi)
5965                 goto out;
5966
5967         preempt_disable();
5968         for (;;) {
5969                 int work = 0;
5970
5971                 local_bh_disable();
5972                 if (!napi_poll) {
5973                         unsigned long val = READ_ONCE(napi->state);
5974
5975                         /* If multiple threads are competing for this napi,
5976                          * we avoid dirtying napi->state as much as we can.
5977                          */
5978                         if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
5979                                    NAPIF_STATE_IN_BUSY_POLL))
5980                                 goto count;
5981                         if (cmpxchg(&napi->state, val,
5982                                     val | NAPIF_STATE_IN_BUSY_POLL |
5983                                           NAPIF_STATE_SCHED) != val)
5984                                 goto count;
5985                         have_poll_lock = netpoll_poll_lock(napi);
5986                         napi_poll = napi->poll;
5987                 }
5988                 work = napi_poll(napi, BUSY_POLL_BUDGET);
5989                 trace_napi_poll(napi, work, BUSY_POLL_BUDGET);
5990 count:
5991                 if (work > 0)
5992                         __NET_ADD_STATS(dev_net(napi->dev),
5993                                         LINUX_MIB_BUSYPOLLRXPACKETS, work);
5994                 local_bh_enable();
5995
5996                 if (!loop_end || loop_end(loop_end_arg, start_time))
5997                         break;
5998
5999                 if (unlikely(need_resched())) {
6000                         if (napi_poll)
6001                                 busy_poll_stop(napi, have_poll_lock);
6002                         preempt_enable();
6003                         rcu_read_unlock();
6004                         cond_resched();
6005                         if (loop_end(loop_end_arg, start_time))
6006                                 return;
6007                         goto restart;
6008                 }
6009                 cpu_relax();
6010         }
6011         if (napi_poll)
6012                 busy_poll_stop(napi, have_poll_lock);
6013         preempt_enable();
6014 out:
6015         rcu_read_unlock();
6016 }
6017 EXPORT_SYMBOL(napi_busy_loop);
6018
6019 #endif /* CONFIG_NET_RX_BUSY_POLL */
6020
6021 static void napi_hash_add(struct napi_struct *napi)
6022 {
6023         if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
6024             test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
6025                 return;
6026
6027         spin_lock(&napi_hash_lock);
6028
6029         /* 0..NR_CPUS range is reserved for sender_cpu use */
6030         do {
6031                 if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6032                         napi_gen_id = MIN_NAPI_ID;
6033         } while (napi_by_id(napi_gen_id));
6034         napi->napi_id = napi_gen_id;
6035
6036         hlist_add_head_rcu(&napi->napi_hash_node,
6037                            &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6038
6039         spin_unlock(&napi_hash_lock);
6040 }
6041
6042 /* Warning : caller is responsible to make sure rcu grace period
6043  * is respected before freeing memory containing @napi
6044  */
6045 bool napi_hash_del(struct napi_struct *napi)
6046 {
6047         bool rcu_sync_needed = false;
6048
6049         spin_lock(&napi_hash_lock);
6050
6051         if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
6052                 rcu_sync_needed = true;
6053                 hlist_del_rcu(&napi->napi_hash_node);
6054         }
6055         spin_unlock(&napi_hash_lock);
6056         return rcu_sync_needed;
6057 }
6058 EXPORT_SYMBOL_GPL(napi_hash_del);
6059
6060 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6061 {
6062         struct napi_struct *napi;
6063
6064         napi = container_of(timer, struct napi_struct, timer);
6065
6066         /* Note : we use a relaxed variant of napi_schedule_prep() not setting
6067          * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6068          */
6069         if (napi->gro_count && !napi_disable_pending(napi) &&
6070             !test_and_set_bit(NAPI_STATE_SCHED, &napi->state))
6071                 __napi_schedule_irqoff(napi);
6072
6073         return HRTIMER_NORESTART;
6074 }
6075
6076 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
6077                     int (*poll)(struct napi_struct *, int), int weight)
6078 {
6079         int i;
6080
6081         INIT_LIST_HEAD(&napi->poll_list);
6082         hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6083         napi->timer.function = napi_watchdog;
6084         napi->gro_count = 0;
6085         for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6086                 INIT_LIST_HEAD(&napi->gro_hash[i].list);
6087                 napi->gro_hash[i].count = 0;
6088         }
6089         napi->skb = NULL;
6090         napi->poll = poll;
6091         if (weight > NAPI_POLL_WEIGHT)
6092                 pr_err_once("netif_napi_add() called with weight %d on device %s\n",
6093                             weight, dev->name);
6094         napi->weight = weight;
6095         list_add(&napi->dev_list, &dev->napi_list);
6096         napi->dev = dev;
6097 #ifdef CONFIG_NETPOLL
6098         napi->poll_owner = -1;
6099 #endif
6100         set_bit(NAPI_STATE_SCHED, &napi->state);
6101         napi_hash_add(napi);
6102 }
6103 EXPORT_SYMBOL(netif_napi_add);
6104
6105 void napi_disable(struct napi_struct *n)
6106 {
6107         might_sleep();
6108         set_bit(NAPI_STATE_DISABLE, &n->state);
6109
6110         while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
6111                 msleep(1);
6112         while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
6113                 msleep(1);
6114
6115         hrtimer_cancel(&n->timer);
6116
6117         clear_bit(NAPI_STATE_DISABLE, &n->state);
6118 }
6119 EXPORT_SYMBOL(napi_disable);
6120
6121 static void flush_gro_hash(struct napi_struct *napi)
6122 {
6123         int i;
6124
6125         for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6126                 struct sk_buff *skb, *n;
6127
6128                 list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6129                         kfree_skb(skb);
6130                 napi->gro_hash[i].count = 0;
6131         }
6132 }
6133
6134 /* Must be called in process context */
6135 void netif_napi_del(struct napi_struct *napi)
6136 {
6137         might_sleep();
6138         if (napi_hash_del(napi))
6139                 synchronize_net();
6140         list_del_init(&napi->dev_list);
6141         napi_free_frags(napi);
6142
6143         flush_gro_hash(napi);
6144         napi->gro_count = 0;
6145 }
6146 EXPORT_SYMBOL(netif_napi_del);
6147
6148 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6149 {
6150         void *have;
6151         int work, weight;
6152
6153         list_del_init(&n->poll_list);
6154
6155         have = netpoll_poll_lock(n);
6156
6157         weight = n->weight;
6158
6159         /* This NAPI_STATE_SCHED test is for avoiding a race
6160          * with netpoll's poll_napi().  Only the entity which
6161          * obtains the lock and sees NAPI_STATE_SCHED set will
6162          * actually make the ->poll() call.  Therefore we avoid
6163          * accidentally calling ->poll() when NAPI is not scheduled.
6164          */
6165         work = 0;
6166         if (test_bit(NAPI_STATE_SCHED, &n->state)) {
6167                 work = n->poll(n, weight);
6168                 trace_napi_poll(n, work, weight);
6169         }
6170
6171         WARN_ON_ONCE(work > weight);
6172
6173         if (likely(work < weight))
6174                 goto out_unlock;
6175
6176         /* Drivers must not modify the NAPI state if they
6177          * consume the entire weight.  In such cases this code
6178          * still "owns" the NAPI instance and therefore can
6179          * move the instance around on the list at-will.
6180          */
6181         if (unlikely(napi_disable_pending(n))) {
6182                 napi_complete(n);
6183                 goto out_unlock;
6184         }
6185
6186         if (n->gro_count) {
6187                 /* flush too old packets
6188                  * If HZ < 1000, flush all packets.
6189                  */
6190                 napi_gro_flush(n, HZ >= 1000);
6191         }
6192
6193         /* Some drivers may have called napi_schedule
6194          * prior to exhausting their budget.
6195          */
6196         if (unlikely(!list_empty(&n->poll_list))) {
6197                 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6198                              n->dev ? n->dev->name : "backlog");
6199                 goto out_unlock;
6200         }
6201
6202         list_add_tail(&n->poll_list, repoll);
6203
6204 out_unlock:
6205         netpoll_poll_unlock(have);
6206
6207         return work;
6208 }
6209
6210 static __latent_entropy void net_rx_action(struct softirq_action *h)
6211 {
6212         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
6213         unsigned long time_limit = jiffies +
6214                 usecs_to_jiffies(netdev_budget_usecs);
6215         int budget = netdev_budget;
6216         LIST_HEAD(list);
6217         LIST_HEAD(repoll);
6218
6219         local_irq_disable();
6220         list_splice_init(&sd->poll_list, &list);
6221         local_irq_enable();
6222
6223         for (;;) {
6224                 struct napi_struct *n;
6225
6226                 if (list_empty(&list)) {
6227                         if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
6228                                 goto out;
6229                         break;
6230                 }
6231
6232                 n = list_first_entry(&list, struct napi_struct, poll_list);
6233                 budget -= napi_poll(n, &repoll);
6234
6235                 /* If softirq window is exhausted then punt.
6236                  * Allow this to run for 2 jiffies since which will allow
6237                  * an average latency of 1.5/HZ.
6238                  */
6239                 if (unlikely(budget <= 0 ||
6240                              time_after_eq(jiffies, time_limit))) {
6241                         sd->time_squeeze++;
6242                         break;
6243                 }
6244         }
6245
6246         local_irq_disable();
6247
6248         list_splice_tail_init(&sd->poll_list, &list);
6249         list_splice_tail(&repoll, &list);
6250         list_splice(&list, &sd->poll_list);
6251         if (!list_empty(&sd->poll_list))
6252                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
6253
6254         net_rps_action_and_irq_enable(sd);
6255 out:
6256         __kfree_skb_flush();
6257 }
6258
6259 struct netdev_adjacent {
6260         struct net_device *dev;
6261
6262         /* upper master flag, there can only be one master device per list */
6263         bool master;
6264
6265         /* counter for the number of times this device was added to us */
6266         u16 ref_nr;
6267
6268         /* private field for the users */
6269         void *private;
6270
6271         struct list_head list;
6272         struct rcu_head rcu;
6273 };
6274
6275 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
6276                                                  struct list_head *adj_list)
6277 {
6278         struct netdev_adjacent *adj;
6279
6280         list_for_each_entry(adj, adj_list, list) {
6281                 if (adj->dev == adj_dev)
6282                         return adj;
6283         }
6284         return NULL;
6285 }
6286
6287 static int __netdev_has_upper_dev(struct net_device *upper_dev, void *data)
6288 {
6289         struct net_device *dev = data;
6290
6291         return upper_dev == dev;
6292 }
6293
6294 /**
6295  * netdev_has_upper_dev - Check if device is linked to an upper device
6296  * @dev: device
6297  * @upper_dev: upper device to check
6298  *
6299  * Find out if a device is linked to specified upper device and return true
6300  * in case it is. Note that this checks only immediate upper device,
6301  * not through a complete stack of devices. The caller must hold the RTNL lock.
6302  */
6303 bool netdev_has_upper_dev(struct net_device *dev,
6304                           struct net_device *upper_dev)
6305 {
6306         ASSERT_RTNL();
6307
6308         return netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
6309                                              upper_dev);
6310 }
6311 EXPORT_SYMBOL(netdev_has_upper_dev);
6312
6313 /**
6314  * netdev_has_upper_dev_all - Check if device is linked to an upper device
6315  * @dev: device
6316  * @upper_dev: upper device to check
6317  *
6318  * Find out if a device is linked to specified upper device and return true
6319  * in case it is. Note that this checks the entire upper device chain.
6320  * The caller must hold rcu lock.
6321  */
6322
6323 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
6324                                   struct net_device *upper_dev)
6325 {
6326         return !!netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
6327                                                upper_dev);
6328 }
6329 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
6330
6331 /**
6332  * netdev_has_any_upper_dev - Check if device is linked to some device
6333  * @dev: device
6334  *
6335  * Find out if a device is linked to an upper device and return true in case
6336  * it is. The caller must hold the RTNL lock.
6337  */
6338 bool netdev_has_any_upper_dev(struct net_device *dev)
6339 {
6340         ASSERT_RTNL();
6341
6342         return !list_empty(&dev->adj_list.upper);
6343 }
6344 EXPORT_SYMBOL(netdev_has_any_upper_dev);
6345
6346 /**
6347  * netdev_master_upper_dev_get - Get master upper device
6348  * @dev: device
6349  *
6350  * Find a master upper device and return pointer to it or NULL in case
6351  * it's not there. The caller must hold the RTNL lock.
6352  */
6353 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
6354 {
6355         struct netdev_adjacent *upper;
6356
6357         ASSERT_RTNL();
6358
6359         if (list_empty(&dev->adj_list.upper))
6360                 return NULL;
6361
6362         upper = list_first_entry(&dev->adj_list.upper,
6363                                  struct netdev_adjacent, list);
6364         if (likely(upper->master))
6365                 return upper->dev;
6366         return NULL;
6367 }
6368 EXPORT_SYMBOL(netdev_master_upper_dev_get);
6369
6370 /**
6371  * netdev_has_any_lower_dev - Check if device is linked to some device
6372  * @dev: device
6373  *
6374  * Find out if a device is linked to a lower device and return true in case
6375  * it is. The caller must hold the RTNL lock.
6376  */
6377 static bool netdev_has_any_lower_dev(struct net_device *dev)
6378 {
6379         ASSERT_RTNL();
6380
6381         return !list_empty(&dev->adj_list.lower);
6382 }
6383
6384 void *netdev_adjacent_get_private(struct list_head *adj_list)
6385 {
6386         struct netdev_adjacent *adj;
6387
6388         adj = list_entry(adj_list, struct netdev_adjacent, list);
6389
6390         return adj->private;
6391 }
6392 EXPORT_SYMBOL(netdev_adjacent_get_private);
6393
6394 /**
6395  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
6396  * @dev: device
6397  * @iter: list_head ** of the current position
6398  *
6399  * Gets the next device from the dev's upper list, starting from iter
6400  * position. The caller must hold RCU read lock.
6401  */
6402 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
6403                                                  struct list_head **iter)
6404 {
6405         struct netdev_adjacent *upper;
6406
6407         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6408
6409         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6410
6411         if (&upper->list == &dev->adj_list.upper)
6412                 return NULL;
6413
6414         *iter = &upper->list;
6415
6416         return upper->dev;
6417 }
6418 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
6419
6420 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
6421                                                     struct list_head **iter)
6422 {
6423         struct netdev_adjacent *upper;
6424
6425         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6426
6427         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6428
6429         if (&upper->list == &dev->adj_list.upper)
6430                 return NULL;
6431
6432         *iter = &upper->list;
6433
6434         return upper->dev;
6435 }
6436
6437 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
6438                                   int (*fn)(struct net_device *dev,
6439                                             void *data),
6440                                   void *data)
6441 {
6442         struct net_device *udev;
6443         struct list_head *iter;
6444         int ret;
6445
6446         for (iter = &dev->adj_list.upper,
6447              udev = netdev_next_upper_dev_rcu(dev, &iter);
6448              udev;
6449              udev = netdev_next_upper_dev_rcu(dev, &iter)) {
6450                 /* first is the upper device itself */
6451                 ret = fn(udev, data);
6452                 if (ret)
6453                         return ret;
6454
6455                 /* then look at all of its upper devices */
6456                 ret = netdev_walk_all_upper_dev_rcu(udev, fn, data);
6457                 if (ret)
6458                         return ret;
6459         }
6460
6461         return 0;
6462 }
6463 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
6464
6465 /**
6466  * netdev_lower_get_next_private - Get the next ->private from the
6467  *                                 lower neighbour list
6468  * @dev: device
6469  * @iter: list_head ** of the current position
6470  *
6471  * Gets the next netdev_adjacent->private from the dev's lower neighbour
6472  * list, starting from iter position. The caller must hold either hold the
6473  * RTNL lock or its own locking that guarantees that the neighbour lower
6474  * list will remain unchanged.
6475  */
6476 void *netdev_lower_get_next_private(struct net_device *dev,
6477                                     struct list_head **iter)
6478 {
6479         struct netdev_adjacent *lower;
6480
6481         lower = list_entry(*iter, struct netdev_adjacent, list);
6482
6483         if (&lower->list == &dev->adj_list.lower)
6484                 return NULL;
6485
6486         *iter = lower->list.next;
6487
6488         return lower->private;
6489 }
6490 EXPORT_SYMBOL(netdev_lower_get_next_private);
6491
6492 /**
6493  * netdev_lower_get_next_private_rcu - Get the next ->private from the
6494  *                                     lower neighbour list, RCU
6495  *                                     variant
6496  * @dev: device
6497  * @iter: list_head ** of the current position
6498  *
6499  * Gets the next netdev_adjacent->private from the dev's lower neighbour
6500  * list, starting from iter position. The caller must hold RCU read lock.
6501  */
6502 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
6503                                         struct list_head **iter)
6504 {
6505         struct netdev_adjacent *lower;
6506
6507         WARN_ON_ONCE(!rcu_read_lock_held());
6508
6509         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6510
6511         if (&lower->list == &dev->adj_list.lower)
6512                 return NULL;
6513
6514         *iter = &lower->list;
6515
6516         return lower->private;
6517 }
6518 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
6519
6520 /**
6521  * netdev_lower_get_next - Get the next device from the lower neighbour
6522  *                         list
6523  * @dev: device
6524  * @iter: list_head ** of the current position
6525  *
6526  * Gets the next netdev_adjacent from the dev's lower neighbour
6527  * list, starting from iter position. The caller must hold RTNL lock or
6528  * its own locking that guarantees that the neighbour lower
6529  * list will remain unchanged.
6530  */
6531 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
6532 {
6533         struct netdev_adjacent *lower;
6534
6535         lower = list_entry(*iter, struct netdev_adjacent, list);
6536
6537         if (&lower->list == &dev->adj_list.lower)
6538                 return NULL;
6539
6540         *iter = lower->list.next;
6541
6542         return lower->dev;
6543 }
6544 EXPORT_SYMBOL(netdev_lower_get_next);
6545
6546 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
6547                                                 struct list_head **iter)
6548 {
6549         struct netdev_adjacent *lower;
6550
6551         lower = list_entry((*iter)->next, struct netdev_adjacent, list);
6552
6553         if (&lower->list == &dev->adj_list.lower)
6554                 return NULL;
6555
6556         *iter = &lower->list;
6557
6558         return lower->dev;
6559 }
6560
6561 int netdev_walk_all_lower_dev(struct net_device *dev,
6562                               int (*fn)(struct net_device *dev,
6563                                         void *data),
6564                               void *data)
6565 {
6566         struct net_device *ldev;
6567         struct list_head *iter;
6568         int ret;
6569
6570         for (iter = &dev->adj_list.lower,
6571              ldev = netdev_next_lower_dev(dev, &iter);
6572              ldev;
6573              ldev = netdev_next_lower_dev(dev, &iter)) {
6574                 /* first is the lower device itself */
6575                 ret = fn(ldev, data);
6576                 if (ret)
6577                         return ret;
6578
6579                 /* then look at all of its lower devices */
6580                 ret = netdev_walk_all_lower_dev(ldev, fn, data);
6581                 if (ret)
6582                         return ret;
6583         }
6584
6585         return 0;
6586 }
6587 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
6588
6589 static struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
6590                                                     struct list_head **iter)
6591 {
6592         struct netdev_adjacent *lower;
6593
6594         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6595         if (&lower->list == &dev->adj_list.lower)
6596                 return NULL;
6597
6598         *iter = &lower->list;
6599
6600         return lower->dev;
6601 }
6602
6603 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
6604                                   int (*fn)(struct net_device *dev,
6605                                             void *data),
6606                                   void *data)
6607 {
6608         struct net_device *ldev;
6609         struct list_head *iter;
6610         int ret;
6611
6612         for (iter = &dev->adj_list.lower,
6613              ldev = netdev_next_lower_dev_rcu(dev, &iter);
6614              ldev;
6615              ldev = netdev_next_lower_dev_rcu(dev, &iter)) {
6616                 /* first is the lower device itself */
6617                 ret = fn(ldev, data);
6618                 if (ret)
6619                         return ret;
6620
6621                 /* then look at all of its lower devices */
6622                 ret = netdev_walk_all_lower_dev_rcu(ldev, fn, data);
6623                 if (ret)
6624                         return ret;
6625         }
6626
6627         return 0;
6628 }
6629 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
6630
6631 /**
6632  * netdev_lower_get_first_private_rcu - Get the first ->private from the
6633  *                                     lower neighbour list, RCU
6634  *                                     variant
6635  * @dev: device
6636  *
6637  * Gets the first netdev_adjacent->private from the dev's lower neighbour
6638  * list. The caller must hold RCU read lock.
6639  */
6640 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
6641 {
6642         struct netdev_adjacent *lower;
6643
6644         lower = list_first_or_null_rcu(&dev->adj_list.lower,
6645                         struct netdev_adjacent, list);
6646         if (lower)
6647                 return lower->private;
6648         return NULL;
6649 }
6650 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
6651
6652 /**
6653  * netdev_master_upper_dev_get_rcu - Get master upper device
6654  * @dev: device
6655  *
6656  * Find a master upper device and return pointer to it or NULL in case
6657  * it's not there. The caller must hold the RCU read lock.
6658  */
6659 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
6660 {
6661         struct netdev_adjacent *upper;
6662
6663         upper = list_first_or_null_rcu(&dev->adj_list.upper,
6664                                        struct netdev_adjacent, list);
6665         if (upper && likely(upper->master))
6666                 return upper->dev;
6667         return NULL;
6668 }
6669 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
6670
6671 static int netdev_adjacent_sysfs_add(struct net_device *dev,
6672                               struct net_device *adj_dev,
6673                               struct list_head *dev_list)
6674 {
6675         char linkname[IFNAMSIZ+7];
6676
6677         sprintf(linkname, dev_list == &dev->adj_list.upper ?
6678                 "upper_%s" : "lower_%s", adj_dev->name);
6679         return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
6680                                  linkname);
6681 }
6682 static void netdev_adjacent_sysfs_del(struct net_device *dev,
6683                                char *name,
6684                                struct list_head *dev_list)
6685 {
6686         char linkname[IFNAMSIZ+7];
6687
6688         sprintf(linkname, dev_list == &dev->adj_list.upper ?
6689                 "upper_%s" : "lower_%s", name);
6690         sysfs_remove_link(&(dev->dev.kobj), linkname);
6691 }
6692
6693 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
6694                                                  struct net_device *adj_dev,
6695                                                  struct list_head *dev_list)
6696 {
6697         return (dev_list == &dev->adj_list.upper ||
6698                 dev_list == &dev->adj_list.lower) &&
6699                 net_eq(dev_net(dev), dev_net(adj_dev));
6700 }
6701
6702 static int __netdev_adjacent_dev_insert(struct net_device *dev,
6703                                         struct net_device *adj_dev,
6704                                         struct list_head *dev_list,
6705                                         void *private, bool master)
6706 {
6707         struct netdev_adjacent *adj;
6708         int ret;
6709
6710         adj = __netdev_find_adj(adj_dev, dev_list);
6711
6712         if (adj) {
6713                 adj->ref_nr += 1;
6714                 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
6715                          dev->name, adj_dev->name, adj->ref_nr);
6716
6717                 return 0;
6718         }
6719
6720         adj = kmalloc(sizeof(*adj), GFP_KERNEL);
6721         if (!adj)
6722                 return -ENOMEM;
6723
6724         adj->dev = adj_dev;
6725         adj->master = master;
6726         adj->ref_nr = 1;
6727         adj->private = private;
6728         dev_hold(adj_dev);
6729
6730         pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
6731                  dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
6732
6733         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
6734                 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
6735                 if (ret)
6736                         goto free_adj;
6737         }
6738
6739         /* Ensure that master link is always the first item in list. */
6740         if (master) {
6741                 ret = sysfs_create_link(&(dev->dev.kobj),
6742                                         &(adj_dev->dev.kobj), "master");
6743                 if (ret)
6744                         goto remove_symlinks;
6745
6746                 list_add_rcu(&adj->list, dev_list);
6747         } else {
6748                 list_add_tail_rcu(&adj->list, dev_list);
6749         }
6750
6751         return 0;
6752
6753 remove_symlinks:
6754         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
6755                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
6756 free_adj:
6757         kfree(adj);
6758         dev_put(adj_dev);
6759
6760         return ret;
6761 }
6762
6763 static void __netdev_adjacent_dev_remove(struct net_device *dev,
6764                                          struct net_device *adj_dev,
6765                                          u16 ref_nr,
6766                                          struct list_head *dev_list)
6767 {
6768         struct netdev_adjacent *adj;
6769
6770         pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
6771                  dev->name, adj_dev->name, ref_nr);
6772
6773         adj = __netdev_find_adj(adj_dev, dev_list);
6774
6775         if (!adj) {
6776                 pr_err("Adjacency does not exist for device %s from %s\n",
6777                        dev->name, adj_dev->name);
6778                 WARN_ON(1);
6779                 return;
6780         }
6781
6782         if (adj->ref_nr > ref_nr) {
6783                 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
6784                          dev->name, adj_dev->name, ref_nr,
6785                          adj->ref_nr - ref_nr);
6786                 adj->ref_nr -= ref_nr;
6787                 return;
6788         }
6789
6790         if (adj->master)
6791                 sysfs_remove_link(&(dev->dev.kobj), "master");
6792
6793         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
6794                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
6795
6796         list_del_rcu(&adj->list);
6797         pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
6798                  adj_dev->name, dev->name, adj_dev->name);
6799         dev_put(adj_dev);
6800         kfree_rcu(adj, rcu);
6801 }
6802
6803 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
6804                                             struct net_device *upper_dev,
6805                                             struct list_head *up_list,
6806                                             struct list_head *down_list,
6807                                             void *private, bool master)
6808 {
6809         int ret;
6810
6811         ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
6812                                            private, master);
6813         if (ret)
6814                 return ret;
6815
6816         ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
6817                                            private, false);
6818         if (ret) {
6819                 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
6820                 return ret;
6821         }
6822
6823         return 0;
6824 }
6825
6826 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
6827                                                struct net_device *upper_dev,
6828                                                u16 ref_nr,
6829                                                struct list_head *up_list,
6830                                                struct list_head *down_list)
6831 {
6832         __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
6833         __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
6834 }
6835
6836 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
6837                                                 struct net_device *upper_dev,
6838                                                 void *private, bool master)
6839 {
6840         return __netdev_adjacent_dev_link_lists(dev, upper_dev,
6841                                                 &dev->adj_list.upper,
6842                                                 &upper_dev->adj_list.lower,
6843                                                 private, master);
6844 }
6845
6846 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
6847                                                    struct net_device *upper_dev)
6848 {
6849         __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
6850                                            &dev->adj_list.upper,
6851                                            &upper_dev->adj_list.lower);
6852 }
6853
6854 static int __netdev_upper_dev_link(struct net_device *dev,
6855                                    struct net_device *upper_dev, bool master,
6856                                    void *upper_priv, void *upper_info,
6857                                    struct netlink_ext_ack *extack)
6858 {
6859         struct netdev_notifier_changeupper_info changeupper_info = {
6860                 .info = {
6861                         .dev = dev,
6862                         .extack = extack,
6863                 },
6864                 .upper_dev = upper_dev,
6865                 .master = master,
6866                 .linking = true,
6867                 .upper_info = upper_info,
6868         };
6869         struct net_device *master_dev;
6870         int ret = 0;
6871
6872         ASSERT_RTNL();
6873
6874         if (dev == upper_dev)
6875                 return -EBUSY;
6876
6877         /* To prevent loops, check if dev is not upper device to upper_dev. */
6878         if (netdev_has_upper_dev(upper_dev, dev))
6879                 return -EBUSY;
6880
6881         if (!master) {
6882                 if (netdev_has_upper_dev(dev, upper_dev))
6883                         return -EEXIST;
6884         } else {
6885                 master_dev = netdev_master_upper_dev_get(dev);
6886                 if (master_dev)
6887                         return master_dev == upper_dev ? -EEXIST : -EBUSY;
6888         }
6889
6890         ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
6891                                             &changeupper_info.info);
6892         ret = notifier_to_errno(ret);
6893         if (ret)
6894                 return ret;
6895
6896         ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
6897                                                    master);
6898         if (ret)
6899                 return ret;
6900
6901         ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
6902                                             &changeupper_info.info);
6903         ret = notifier_to_errno(ret);
6904         if (ret)
6905                 goto rollback;
6906
6907         return 0;
6908
6909 rollback:
6910         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
6911
6912         return ret;
6913 }
6914
6915 /**
6916  * netdev_upper_dev_link - Add a link to the upper device
6917  * @dev: device
6918  * @upper_dev: new upper device
6919  * @extack: netlink extended ack
6920  *
6921  * Adds a link to device which is upper to this one. The caller must hold
6922  * the RTNL lock. On a failure a negative errno code is returned.
6923  * On success the reference counts are adjusted and the function
6924  * returns zero.
6925  */
6926 int netdev_upper_dev_link(struct net_device *dev,
6927                           struct net_device *upper_dev,
6928                           struct netlink_ext_ack *extack)
6929 {
6930         return __netdev_upper_dev_link(dev, upper_dev, false,
6931                                        NULL, NULL, extack);
6932 }
6933 EXPORT_SYMBOL(netdev_upper_dev_link);
6934
6935 /**
6936  * netdev_master_upper_dev_link - Add a master link to the upper device
6937  * @dev: device
6938  * @upper_dev: new upper device
6939  * @upper_priv: upper device private
6940  * @upper_info: upper info to be passed down via notifier
6941  * @extack: netlink extended ack
6942  *
6943  * Adds a link to device which is upper to this one. In this case, only
6944  * one master upper device can be linked, although other non-master devices
6945  * might be linked as well. The caller must hold the RTNL lock.
6946  * On a failure a negative errno code is returned. On success the reference
6947  * counts are adjusted and the function returns zero.
6948  */
6949 int netdev_master_upper_dev_link(struct net_device *dev,
6950                                  struct net_device *upper_dev,
6951                                  void *upper_priv, void *upper_info,
6952                                  struct netlink_ext_ack *extack)
6953 {
6954         return __netdev_upper_dev_link(dev, upper_dev, true,
6955                                        upper_priv, upper_info, extack);
6956 }
6957 EXPORT_SYMBOL(netdev_master_upper_dev_link);
6958
6959 /**
6960  * netdev_upper_dev_unlink - Removes a link to upper device
6961  * @dev: device
6962  * @upper_dev: new upper device
6963  *
6964  * Removes a link to device which is upper to this one. The caller must hold
6965  * the RTNL lock.
6966  */
6967 void netdev_upper_dev_unlink(struct net_device *dev,
6968                              struct net_device *upper_dev)
6969 {
6970         struct netdev_notifier_changeupper_info changeupper_info = {
6971                 .info = {
6972                         .dev = dev,
6973                 },
6974                 .upper_dev = upper_dev,
6975                 .linking = false,
6976         };
6977
6978         ASSERT_RTNL();
6979
6980         changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
6981
6982         call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
6983                                       &changeupper_info.info);
6984
6985         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
6986
6987         call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
6988                                       &changeupper_info.info);
6989 }
6990 EXPORT_SYMBOL(netdev_upper_dev_unlink);
6991
6992 /**
6993  * netdev_bonding_info_change - Dispatch event about slave change
6994  * @dev: device
6995  * @bonding_info: info to dispatch
6996  *
6997  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
6998  * The caller must hold the RTNL lock.
6999  */
7000 void netdev_bonding_info_change(struct net_device *dev,
7001                                 struct netdev_bonding_info *bonding_info)
7002 {
7003         struct netdev_notifier_bonding_info info = {
7004                 .info.dev = dev,
7005         };
7006
7007         memcpy(&info.bonding_info, bonding_info,
7008                sizeof(struct netdev_bonding_info));
7009         call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
7010                                       &info.info);
7011 }
7012 EXPORT_SYMBOL(netdev_bonding_info_change);
7013
7014 static void netdev_adjacent_add_links(struct net_device *dev)
7015 {
7016         struct netdev_adjacent *iter;
7017
7018         struct net *net = dev_net(dev);
7019
7020         list_for_each_entry(iter, &dev->adj_list.upper, list) {
7021                 if (!net_eq(net, dev_net(iter->dev)))
7022                         continue;
7023                 netdev_adjacent_sysfs_add(iter->dev, dev,
7024                                           &iter->dev->adj_list.lower);
7025                 netdev_adjacent_sysfs_add(dev, iter->dev,
7026                                           &dev->adj_list.upper);
7027         }
7028
7029         list_for_each_entry(iter, &dev->adj_list.lower, list) {
7030                 if (!net_eq(net, dev_net(iter->dev)))
7031                         continue;
7032                 netdev_adjacent_sysfs_add(iter->dev, dev,
7033                                           &iter->dev->adj_list.upper);
7034                 netdev_adjacent_sysfs_add(dev, iter->dev,
7035                                           &dev->adj_list.lower);
7036         }
7037 }
7038
7039 static void netdev_adjacent_del_links(struct net_device *dev)
7040 {
7041         struct netdev_adjacent *iter;
7042
7043         struct net *net = dev_net(dev);
7044
7045         list_for_each_entry(iter, &dev->adj_list.upper, list) {
7046                 if (!net_eq(net, dev_net(iter->dev)))
7047                         continue;
7048                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
7049                                           &iter->dev->adj_list.lower);
7050                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
7051                                           &dev->adj_list.upper);
7052         }
7053
7054         list_for_each_entry(iter, &dev->adj_list.lower, list) {
7055                 if (!net_eq(net, dev_net(iter->dev)))
7056                         continue;
7057                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
7058                                           &iter->dev->adj_list.upper);
7059                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
7060                                           &dev->adj_list.lower);
7061         }
7062 }
7063
7064 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
7065 {
7066         struct netdev_adjacent *iter;
7067
7068         struct net *net = dev_net(dev);
7069
7070         list_for_each_entry(iter, &dev->adj_list.upper, list) {
7071                 if (!net_eq(net, dev_net(iter->dev)))
7072                         continue;
7073                 netdev_adjacent_sysfs_del(iter->dev, oldname,
7074                                           &iter->dev->adj_list.lower);
7075                 netdev_adjacent_sysfs_add(iter->dev, dev,
7076                                           &iter->dev->adj_list.lower);
7077         }
7078
7079         list_for_each_entry(iter, &dev->adj_list.lower, list) {
7080                 if (!net_eq(net, dev_net(iter->dev)))
7081                         continue;
7082                 netdev_adjacent_sysfs_del(iter->dev, oldname,
7083                                           &iter->dev->adj_list.upper);
7084                 netdev_adjacent_sysfs_add(iter->dev, dev,
7085                                           &iter->dev->adj_list.upper);
7086         }
7087 }
7088
7089 void *netdev_lower_dev_get_private(struct net_device *dev,
7090                                    struct net_device *lower_dev)
7091 {
7092         struct netdev_adjacent *lower;
7093
7094         if (!lower_dev)
7095                 return NULL;
7096         lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
7097         if (!lower)
7098                 return NULL;
7099
7100         return lower->private;
7101 }
7102 EXPORT_SYMBOL(netdev_lower_dev_get_private);
7103
7104
7105 int dev_get_nest_level(struct net_device *dev)
7106 {
7107         struct net_device *lower = NULL;
7108         struct list_head *iter;
7109         int max_nest = -1;
7110         int nest;
7111
7112         ASSERT_RTNL();
7113
7114         netdev_for_each_lower_dev(dev, lower, iter) {
7115                 nest = dev_get_nest_level(lower);
7116                 if (max_nest < nest)
7117                         max_nest = nest;
7118         }
7119
7120         return max_nest + 1;
7121 }
7122 EXPORT_SYMBOL(dev_get_nest_level);
7123
7124 /**
7125  * netdev_lower_change - Dispatch event about lower device state change
7126  * @lower_dev: device
7127  * @lower_state_info: state to dispatch
7128  *
7129  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
7130  * The caller must hold the RTNL lock.
7131  */
7132 void netdev_lower_state_changed(struct net_device *lower_dev,
7133                                 void *lower_state_info)
7134 {
7135         struct netdev_notifier_changelowerstate_info changelowerstate_info = {
7136                 .info.dev = lower_dev,
7137         };
7138
7139         ASSERT_RTNL();
7140         changelowerstate_info.lower_state_info = lower_state_info;
7141         call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
7142                                       &changelowerstate_info.info);
7143 }
7144 EXPORT_SYMBOL(netdev_lower_state_changed);
7145
7146 static void dev_change_rx_flags(struct net_device *dev, int flags)
7147 {
7148         const struct net_device_ops *ops = dev->netdev_ops;
7149
7150         if (ops->ndo_change_rx_flags)
7151                 ops->ndo_change_rx_flags(dev, flags);
7152 }
7153
7154 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
7155 {
7156         unsigned int old_flags = dev->flags;
7157         kuid_t uid;
7158         kgid_t gid;
7159
7160         ASSERT_RTNL();
7161
7162         dev->flags |= IFF_PROMISC;
7163         dev->promiscuity += inc;
7164         if (dev->promiscuity == 0) {
7165                 /*
7166                  * Avoid overflow.
7167                  * If inc causes overflow, untouch promisc and return error.
7168                  */
7169                 if (inc < 0)
7170                         dev->flags &= ~IFF_PROMISC;
7171                 else {
7172                         dev->promiscuity -= inc;
7173                         pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
7174                                 dev->name);
7175                         return -EOVERFLOW;
7176                 }
7177         }
7178         if (dev->flags != old_flags) {
7179                 pr_info("device %s %s promiscuous mode\n",
7180                         dev->name,
7181                         dev->flags & IFF_PROMISC ? "entered" : "left");
7182                 if (audit_enabled) {
7183                         current_uid_gid(&uid, &gid);
7184                         audit_log(audit_context(), GFP_ATOMIC,
7185                                   AUDIT_ANOM_PROMISCUOUS,
7186                                   "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
7187                                   dev->name, (dev->flags & IFF_PROMISC),
7188                                   (old_flags & IFF_PROMISC),
7189                                   from_kuid(&init_user_ns, audit_get_loginuid(current)),
7190                                   from_kuid(&init_user_ns, uid),
7191                                   from_kgid(&init_user_ns, gid),
7192                                   audit_get_sessionid(current));
7193                 }
7194
7195                 dev_change_rx_flags(dev, IFF_PROMISC);
7196         }
7197         if (notify)
7198                 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
7199         return 0;
7200 }
7201
7202 /**
7203  *      dev_set_promiscuity     - update promiscuity count on a device
7204  *      @dev: device
7205  *      @inc: modifier
7206  *
7207  *      Add or remove promiscuity from a device. While the count in the device
7208  *      remains above zero the interface remains promiscuous. Once it hits zero
7209  *      the device reverts back to normal filtering operation. A negative inc
7210  *      value is used to drop promiscuity on the device.
7211  *      Return 0 if successful or a negative errno code on error.
7212  */
7213 int dev_set_promiscuity(struct net_device *dev, int inc)
7214 {
7215         unsigned int old_flags = dev->flags;
7216         int err;
7217
7218         err = __dev_set_promiscuity(dev, inc, true);
7219         if (err < 0)
7220                 return err;
7221         if (dev->flags != old_flags)
7222                 dev_set_rx_mode(dev);
7223         return err;
7224 }
7225 EXPORT_SYMBOL(dev_set_promiscuity);
7226
7227 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
7228 {
7229         unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
7230
7231         ASSERT_RTNL();
7232
7233         dev->flags |= IFF_ALLMULTI;
7234         dev->allmulti += inc;
7235         if (dev->allmulti == 0) {
7236                 /*
7237                  * Avoid overflow.
7238                  * If inc causes overflow, untouch allmulti and return error.
7239                  */
7240                 if (inc < 0)
7241                         dev->flags &= ~IFF_ALLMULTI;
7242                 else {
7243                         dev->allmulti -= inc;
7244                         pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
7245                                 dev->name);
7246                         return -EOVERFLOW;
7247                 }
7248         }
7249         if (dev->flags ^ old_flags) {
7250                 dev_change_rx_flags(dev, IFF_ALLMULTI);
7251                 dev_set_rx_mode(dev);
7252                 if (notify)
7253                         __dev_notify_flags(dev, old_flags,
7254                                            dev->gflags ^ old_gflags);
7255         }
7256         return 0;
7257 }
7258
7259 /**
7260  *      dev_set_allmulti        - update allmulti count on a device
7261  *      @dev: device
7262  *      @inc: modifier
7263  *
7264  *      Add or remove reception of all multicast frames to a device. While the
7265  *      count in the device remains above zero the interface remains listening
7266  *      to all interfaces. Once it hits zero the device reverts back to normal
7267  *      filtering operation. A negative @inc value is used to drop the counter
7268  *      when releasing a resource needing all multicasts.
7269  *      Return 0 if successful or a negative errno code on error.
7270  */
7271
7272 int dev_set_allmulti(struct net_device *dev, int inc)
7273 {
7274         return __dev_set_allmulti(dev, inc, true);
7275 }
7276 EXPORT_SYMBOL(dev_set_allmulti);
7277
7278 /*
7279  *      Upload unicast and multicast address lists to device and
7280  *      configure RX filtering. When the device doesn't support unicast
7281  *      filtering it is put in promiscuous mode while unicast addresses
7282  *      are present.
7283  */
7284 void __dev_set_rx_mode(struct net_device *dev)
7285 {
7286         const struct net_device_ops *ops = dev->netdev_ops;
7287
7288         /* dev_open will call this function so the list will stay sane. */
7289         if (!(dev->flags&IFF_UP))
7290                 return;
7291
7292         if (!netif_device_present(dev))
7293                 return;
7294
7295         if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
7296                 /* Unicast addresses changes may only happen under the rtnl,
7297                  * therefore calling __dev_set_promiscuity here is safe.
7298                  */
7299                 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
7300                         __dev_set_promiscuity(dev, 1, false);
7301                         dev->uc_promisc = true;
7302                 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
7303                         __dev_set_promiscuity(dev, -1, false);
7304                         dev->uc_promisc = false;
7305                 }
7306         }
7307
7308         if (ops->ndo_set_rx_mode)
7309                 ops->ndo_set_rx_mode(dev);
7310 }
7311
7312 void dev_set_rx_mode(struct net_device *dev)
7313 {
7314         netif_addr_lock_bh(dev);
7315         __dev_set_rx_mode(dev);
7316         netif_addr_unlock_bh(dev);
7317 }
7318
7319 /**
7320  *      dev_get_flags - get flags reported to userspace
7321  *      @dev: device
7322  *
7323  *      Get the combination of flag bits exported through APIs to userspace.
7324  */
7325 unsigned int dev_get_flags(const struct net_device *dev)
7326 {
7327         unsigned int flags;
7328
7329         flags = (dev->flags & ~(IFF_PROMISC |
7330                                 IFF_ALLMULTI |
7331                                 IFF_RUNNING |
7332                                 IFF_LOWER_UP |
7333                                 IFF_DORMANT)) |
7334                 (dev->gflags & (IFF_PROMISC |
7335                                 IFF_ALLMULTI));
7336
7337         if (netif_running(dev)) {
7338                 if (netif_oper_up(dev))
7339                         flags |= IFF_RUNNING;
7340                 if (netif_carrier_ok(dev))
7341                         flags |= IFF_LOWER_UP;
7342                 if (netif_dormant(dev))
7343                         flags |= IFF_DORMANT;
7344         }
7345
7346         return flags;
7347 }
7348 EXPORT_SYMBOL(dev_get_flags);
7349
7350 int __dev_change_flags(struct net_device *dev, unsigned int flags)
7351 {
7352         unsigned int old_flags = dev->flags;
7353         int ret;
7354
7355         ASSERT_RTNL();
7356
7357         /*
7358          *      Set the flags on our device.
7359          */
7360
7361         dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
7362                                IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
7363                                IFF_AUTOMEDIA)) |
7364                      (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
7365                                     IFF_ALLMULTI));
7366
7367         /*
7368          *      Load in the correct multicast list now the flags have changed.
7369          */
7370
7371         if ((old_flags ^ flags) & IFF_MULTICAST)
7372                 dev_change_rx_flags(dev, IFF_MULTICAST);
7373
7374         dev_set_rx_mode(dev);
7375
7376         /*
7377          *      Have we downed the interface. We handle IFF_UP ourselves
7378          *      according to user attempts to set it, rather than blindly
7379          *      setting it.
7380          */
7381
7382         ret = 0;
7383         if ((old_flags ^ flags) & IFF_UP) {
7384                 if (old_flags & IFF_UP)
7385                         __dev_close(dev);
7386                 else
7387                         ret = __dev_open(dev);
7388         }
7389
7390         if ((flags ^ dev->gflags) & IFF_PROMISC) {
7391                 int inc = (flags & IFF_PROMISC) ? 1 : -1;
7392                 unsigned int old_flags = dev->flags;
7393
7394                 dev->gflags ^= IFF_PROMISC;
7395
7396                 if (__dev_set_promiscuity(dev, inc, false) >= 0)
7397                         if (dev->flags != old_flags)
7398                                 dev_set_rx_mode(dev);
7399         }
7400
7401         /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
7402          * is important. Some (broken) drivers set IFF_PROMISC, when
7403          * IFF_ALLMULTI is requested not asking us and not reporting.
7404          */
7405         if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
7406                 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
7407
7408                 dev->gflags ^= IFF_ALLMULTI;
7409                 __dev_set_allmulti(dev, inc, false);
7410         }
7411
7412         return ret;
7413 }
7414
7415 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
7416                         unsigned int gchanges)
7417 {
7418         unsigned int changes = dev->flags ^ old_flags;
7419
7420         if (gchanges)
7421                 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
7422
7423         if (changes & IFF_UP) {
7424                 if (dev->flags & IFF_UP)
7425                         call_netdevice_notifiers(NETDEV_UP, dev);
7426                 else
7427                         call_netdevice_notifiers(NETDEV_DOWN, dev);
7428         }
7429
7430         if (dev->flags & IFF_UP &&
7431             (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
7432                 struct netdev_notifier_change_info change_info = {
7433                         .info = {
7434                                 .dev = dev,
7435                         },
7436                         .flags_changed = changes,
7437                 };
7438
7439                 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
7440         }
7441 }
7442
7443 /**
7444  *      dev_change_flags - change device settings
7445  *      @dev: device
7446  *      @flags: device state flags
7447  *
7448  *      Change settings on device based state flags. The flags are
7449  *      in the userspace exported format.
7450  */
7451 int dev_change_flags(struct net_device *dev, unsigned int flags)
7452 {
7453         int ret;
7454         unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
7455
7456         ret = __dev_change_flags(dev, flags);
7457         if (ret < 0)
7458                 return ret;
7459
7460         changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
7461         __dev_notify_flags(dev, old_flags, changes);
7462         return ret;
7463 }
7464 EXPORT_SYMBOL(dev_change_flags);
7465
7466 int __dev_set_mtu(struct net_device *dev, int new_mtu)
7467 {
7468         const struct net_device_ops *ops = dev->netdev_ops;
7469
7470         if (ops->ndo_change_mtu)
7471                 return ops->ndo_change_mtu(dev, new_mtu);
7472
7473         dev->mtu = new_mtu;
7474         return 0;
7475 }
7476 EXPORT_SYMBOL(__dev_set_mtu);
7477
7478 /**
7479  *      dev_set_mtu - Change maximum transfer unit
7480  *      @dev: device
7481  *      @new_mtu: new transfer unit
7482  *
7483  *      Change the maximum transfer size of the network device.
7484  */
7485 int dev_set_mtu(struct net_device *dev, int new_mtu)
7486 {
7487         int err, orig_mtu;
7488
7489         if (new_mtu == dev->mtu)
7490                 return 0;
7491
7492         /* MTU must be positive, and in range */
7493         if (new_mtu < 0 || new_mtu < dev->min_mtu) {
7494                 net_err_ratelimited("%s: Invalid MTU %d requested, hw min %d\n",
7495                                     dev->name, new_mtu, dev->min_mtu);
7496                 return -EINVAL;
7497         }
7498
7499         if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
7500                 net_err_ratelimited("%s: Invalid MTU %d requested, hw max %d\n",
7501                                     dev->name, new_mtu, dev->max_mtu);
7502                 return -EINVAL;
7503         }
7504
7505         if (!netif_device_present(dev))
7506                 return -ENODEV;
7507
7508         err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
7509         err = notifier_to_errno(err);
7510         if (err)
7511                 return err;
7512
7513         orig_mtu = dev->mtu;
7514         err = __dev_set_mtu(dev, new_mtu);
7515
7516         if (!err) {
7517                 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
7518                 err = notifier_to_errno(err);
7519                 if (err) {
7520                         /* setting mtu back and notifying everyone again,
7521                          * so that they have a chance to revert changes.
7522                          */
7523                         __dev_set_mtu(dev, orig_mtu);
7524                         call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
7525                 }
7526         }
7527         return err;
7528 }
7529 EXPORT_SYMBOL(dev_set_mtu);
7530
7531 /**
7532  *      dev_change_tx_queue_len - Change TX queue length of a netdevice
7533  *      @dev: device
7534  *      @new_len: new tx queue length
7535  */
7536 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
7537 {
7538         unsigned int orig_len = dev->tx_queue_len;
7539         int res;
7540
7541         if (new_len != (unsigned int)new_len)
7542                 return -ERANGE;
7543
7544         if (new_len != orig_len) {
7545                 dev->tx_queue_len = new_len;
7546                 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
7547                 res = notifier_to_errno(res);
7548                 if (res) {
7549                         netdev_err(dev,
7550                                    "refused to change device tx_queue_len\n");
7551                         dev->tx_queue_len = orig_len;
7552                         return res;
7553                 }
7554                 return dev_qdisc_change_tx_queue_len(dev);
7555         }
7556
7557         return 0;
7558 }
7559
7560 /**
7561  *      dev_set_group - Change group this device belongs to
7562  *      @dev: device
7563  *      @new_group: group this device should belong to
7564  */
7565 void dev_set_group(struct net_device *dev, int new_group)
7566 {
7567         dev->group = new_group;
7568 }
7569 EXPORT_SYMBOL(dev_set_group);
7570
7571 /**
7572  *      dev_set_mac_address - Change Media Access Control Address
7573  *      @dev: device
7574  *      @sa: new address
7575  *
7576  *      Change the hardware (MAC) address of the device
7577  */
7578 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
7579 {
7580         const struct net_device_ops *ops = dev->netdev_ops;
7581         int err;
7582
7583         if (!ops->ndo_set_mac_address)
7584                 return -EOPNOTSUPP;
7585         if (sa->sa_family != dev->type)
7586                 return -EINVAL;
7587         if (!netif_device_present(dev))
7588                 return -ENODEV;
7589         err = ops->ndo_set_mac_address(dev, sa);
7590         if (err)
7591                 return err;
7592         dev->addr_assign_type = NET_ADDR_SET;
7593         call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
7594         add_device_randomness(dev->dev_addr, dev->addr_len);
7595         return 0;
7596 }
7597 EXPORT_SYMBOL(dev_set_mac_address);
7598
7599 /**
7600  *      dev_change_carrier - Change device carrier
7601  *      @dev: device
7602  *      @new_carrier: new value
7603  *
7604  *      Change device carrier
7605  */
7606 int dev_change_carrier(struct net_device *dev, bool new_carrier)
7607 {
7608         const struct net_device_ops *ops = dev->netdev_ops;
7609
7610         if (!ops->ndo_change_carrier)
7611                 return -EOPNOTSUPP;
7612         if (!netif_device_present(dev))
7613                 return -ENODEV;
7614         return ops->ndo_change_carrier(dev, new_carrier);
7615 }
7616 EXPORT_SYMBOL(dev_change_carrier);
7617
7618 /**
7619  *      dev_get_phys_port_id - Get device physical port ID
7620  *      @dev: device
7621  *      @ppid: port ID
7622  *
7623  *      Get device physical port ID
7624  */
7625 int dev_get_phys_port_id(struct net_device *dev,
7626                          struct netdev_phys_item_id *ppid)
7627 {
7628         const struct net_device_ops *ops = dev->netdev_ops;
7629
7630         if (!ops->ndo_get_phys_port_id)
7631                 return -EOPNOTSUPP;
7632         return ops->ndo_get_phys_port_id(dev, ppid);
7633 }
7634 EXPORT_SYMBOL(dev_get_phys_port_id);
7635
7636 /**
7637  *      dev_get_phys_port_name - Get device physical port name
7638  *      @dev: device
7639  *      @name: port name
7640  *      @len: limit of bytes to copy to name
7641  *
7642  *      Get device physical port name
7643  */
7644 int dev_get_phys_port_name(struct net_device *dev,
7645                            char *name, size_t len)
7646 {
7647         const struct net_device_ops *ops = dev->netdev_ops;
7648
7649         if (!ops->ndo_get_phys_port_name)
7650                 return -EOPNOTSUPP;
7651         return ops->ndo_get_phys_port_name(dev, name, len);
7652 }
7653 EXPORT_SYMBOL(dev_get_phys_port_name);
7654
7655 /**
7656  *      dev_change_proto_down - update protocol port state information
7657  *      @dev: device
7658  *      @proto_down: new value
7659  *
7660  *      This info can be used by switch drivers to set the phys state of the
7661  *      port.
7662  */
7663 int dev_change_proto_down(struct net_device *dev, bool proto_down)
7664 {
7665         const struct net_device_ops *ops = dev->netdev_ops;
7666
7667         if (!ops->ndo_change_proto_down)
7668                 return -EOPNOTSUPP;
7669         if (!netif_device_present(dev))
7670                 return -ENODEV;
7671         return ops->ndo_change_proto_down(dev, proto_down);
7672 }
7673 EXPORT_SYMBOL(dev_change_proto_down);
7674
7675 void __dev_xdp_query(struct net_device *dev, bpf_op_t bpf_op,
7676                      struct netdev_bpf *xdp)
7677 {
7678         memset(xdp, 0, sizeof(*xdp));
7679         xdp->command = XDP_QUERY_PROG;
7680
7681         /* Query must always succeed. */
7682         WARN_ON(bpf_op(dev, xdp) < 0);
7683 }
7684
7685 static u8 __dev_xdp_attached(struct net_device *dev, bpf_op_t bpf_op)
7686 {
7687         struct netdev_bpf xdp;
7688
7689         __dev_xdp_query(dev, bpf_op, &xdp);
7690
7691         return xdp.prog_attached;
7692 }
7693
7694 static int dev_xdp_install(struct net_device *dev, bpf_op_t bpf_op,
7695                            struct netlink_ext_ack *extack, u32 flags,
7696                            struct bpf_prog *prog)
7697 {
7698         struct netdev_bpf xdp;
7699
7700         memset(&xdp, 0, sizeof(xdp));
7701         if (flags & XDP_FLAGS_HW_MODE)
7702                 xdp.command = XDP_SETUP_PROG_HW;
7703         else
7704                 xdp.command = XDP_SETUP_PROG;
7705         xdp.extack = extack;
7706         xdp.flags = flags;
7707         xdp.prog = prog;
7708
7709         return bpf_op(dev, &xdp);
7710 }
7711
7712 static void dev_xdp_uninstall(struct net_device *dev)
7713 {
7714         struct netdev_bpf xdp;
7715         bpf_op_t ndo_bpf;
7716
7717         /* Remove generic XDP */
7718         WARN_ON(dev_xdp_install(dev, generic_xdp_install, NULL, 0, NULL));
7719
7720         /* Remove from the driver */
7721         ndo_bpf = dev->netdev_ops->ndo_bpf;
7722         if (!ndo_bpf)
7723                 return;
7724
7725         __dev_xdp_query(dev, ndo_bpf, &xdp);
7726         if (xdp.prog_attached == XDP_ATTACHED_NONE)
7727                 return;
7728
7729         /* Program removal should always succeed */
7730         WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags, NULL));
7731 }
7732
7733 /**
7734  *      dev_change_xdp_fd - set or clear a bpf program for a device rx path
7735  *      @dev: device
7736  *      @extack: netlink extended ack
7737  *      @fd: new program fd or negative value to clear
7738  *      @flags: xdp-related flags
7739  *
7740  *      Set or clear a bpf program for a device
7741  */
7742 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
7743                       int fd, u32 flags)
7744 {
7745         const struct net_device_ops *ops = dev->netdev_ops;
7746         struct bpf_prog *prog = NULL;
7747         bpf_op_t bpf_op, bpf_chk;
7748         int err;
7749
7750         ASSERT_RTNL();
7751
7752         bpf_op = bpf_chk = ops->ndo_bpf;
7753         if (!bpf_op && (flags & (XDP_FLAGS_DRV_MODE | XDP_FLAGS_HW_MODE)))
7754                 return -EOPNOTSUPP;
7755         if (!bpf_op || (flags & XDP_FLAGS_SKB_MODE))
7756                 bpf_op = generic_xdp_install;
7757         if (bpf_op == bpf_chk)
7758                 bpf_chk = generic_xdp_install;
7759
7760         if (fd >= 0) {
7761                 if (bpf_chk && __dev_xdp_attached(dev, bpf_chk))
7762                         return -EEXIST;
7763                 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) &&
7764                     __dev_xdp_attached(dev, bpf_op))
7765                         return -EBUSY;
7766
7767                 prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
7768                                              bpf_op == ops->ndo_bpf);
7769                 if (IS_ERR(prog))
7770                         return PTR_ERR(prog);
7771
7772                 if (!(flags & XDP_FLAGS_HW_MODE) &&
7773                     bpf_prog_is_dev_bound(prog->aux)) {
7774                         NL_SET_ERR_MSG(extack, "using device-bound program without HW_MODE flag is not supported");
7775                         bpf_prog_put(prog);
7776                         return -EINVAL;
7777                 }
7778         }
7779
7780         err = dev_xdp_install(dev, bpf_op, extack, flags, prog);
7781         if (err < 0 && prog)
7782                 bpf_prog_put(prog);
7783
7784         return err;
7785 }
7786
7787 /**
7788  *      dev_new_index   -       allocate an ifindex
7789  *      @net: the applicable net namespace
7790  *
7791  *      Returns a suitable unique value for a new device interface
7792  *      number.  The caller must hold the rtnl semaphore or the
7793  *      dev_base_lock to be sure it remains unique.
7794  */
7795 static int dev_new_index(struct net *net)
7796 {
7797         int ifindex = net->ifindex;
7798
7799         for (;;) {
7800                 if (++ifindex <= 0)
7801                         ifindex = 1;
7802                 if (!__dev_get_by_index(net, ifindex))
7803                         return net->ifindex = ifindex;
7804         }
7805 }
7806
7807 /* Delayed registration/unregisteration */
7808 static LIST_HEAD(net_todo_list);
7809 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
7810
7811 static void net_set_todo(struct net_device *dev)
7812 {
7813         list_add_tail(&dev->todo_list, &net_todo_list);
7814         dev_net(dev)->dev_unreg_count++;
7815 }
7816
7817 static void rollback_registered_many(struct list_head *head)
7818 {
7819         struct net_device *dev, *tmp;
7820         LIST_HEAD(close_head);
7821
7822         BUG_ON(dev_boot_phase);
7823         ASSERT_RTNL();
7824
7825         list_for_each_entry_safe(dev, tmp, head, unreg_list) {
7826                 /* Some devices call without registering
7827                  * for initialization unwind. Remove those
7828                  * devices and proceed with the remaining.
7829                  */
7830                 if (dev->reg_state == NETREG_UNINITIALIZED) {
7831                         pr_debug("unregister_netdevice: device %s/%p never was registered\n",
7832                                  dev->name, dev);
7833
7834                         WARN_ON(1);
7835                         list_del(&dev->unreg_list);
7836                         continue;
7837                 }
7838                 dev->dismantle = true;
7839                 BUG_ON(dev->reg_state != NETREG_REGISTERED);
7840         }
7841
7842         /* If device is running, close it first. */
7843         list_for_each_entry(dev, head, unreg_list)
7844                 list_add_tail(&dev->close_list, &close_head);
7845         dev_close_many(&close_head, true);
7846
7847         list_for_each_entry(dev, head, unreg_list) {
7848                 /* And unlink it from device chain. */
7849                 unlist_netdevice(dev);
7850
7851                 dev->reg_state = NETREG_UNREGISTERING;
7852         }
7853         flush_all_backlogs();
7854
7855         synchronize_net();
7856
7857         list_for_each_entry(dev, head, unreg_list) {
7858                 struct sk_buff *skb = NULL;
7859
7860                 /* Shutdown queueing discipline. */
7861                 dev_shutdown(dev);
7862
7863                 dev_xdp_uninstall(dev);
7864
7865                 /* Notify protocols, that we are about to destroy
7866                  * this device. They should clean all the things.
7867                  */
7868                 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7869
7870                 if (!dev->rtnl_link_ops ||
7871                     dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7872                         skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
7873                                                      GFP_KERNEL, NULL, 0);
7874
7875                 /*
7876                  *      Flush the unicast and multicast chains
7877                  */
7878                 dev_uc_flush(dev);
7879                 dev_mc_flush(dev);
7880
7881                 if (dev->netdev_ops->ndo_uninit)
7882                         dev->netdev_ops->ndo_uninit(dev);
7883
7884                 if (skb)
7885                         rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
7886
7887                 /* Notifier chain MUST detach us all upper devices. */
7888                 WARN_ON(netdev_has_any_upper_dev(dev));
7889                 WARN_ON(netdev_has_any_lower_dev(dev));
7890
7891                 /* Remove entries from kobject tree */
7892                 netdev_unregister_kobject(dev);
7893 #ifdef CONFIG_XPS
7894                 /* Remove XPS queueing entries */
7895                 netif_reset_xps_queues_gt(dev, 0);
7896 #endif
7897         }
7898
7899         synchronize_net();
7900
7901         list_for_each_entry(dev, head, unreg_list)
7902                 dev_put(dev);
7903 }
7904
7905 static void rollback_registered(struct net_device *dev)
7906 {
7907         LIST_HEAD(single);
7908
7909         list_add(&dev->unreg_list, &single);
7910         rollback_registered_many(&single);
7911         list_del(&single);
7912 }
7913
7914 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
7915         struct net_device *upper, netdev_features_t features)
7916 {
7917         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
7918         netdev_features_t feature;
7919         int feature_bit;
7920
7921         for_each_netdev_feature(&upper_disables, feature_bit) {
7922                 feature = __NETIF_F_BIT(feature_bit);
7923                 if (!(upper->wanted_features & feature)
7924                     && (features & feature)) {
7925                         netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
7926                                    &feature, upper->name);
7927                         features &= ~feature;
7928                 }
7929         }
7930
7931         return features;
7932 }
7933
7934 static void netdev_sync_lower_features(struct net_device *upper,
7935         struct net_device *lower, netdev_features_t features)
7936 {
7937         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
7938         netdev_features_t feature;
7939         int feature_bit;
7940
7941         for_each_netdev_feature(&upper_disables, feature_bit) {
7942                 feature = __NETIF_F_BIT(feature_bit);
7943                 if (!(features & feature) && (lower->features & feature)) {
7944                         netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
7945                                    &feature, lower->name);
7946                         lower->wanted_features &= ~feature;
7947                         netdev_update_features(lower);
7948
7949                         if (unlikely(lower->features & feature))
7950                                 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
7951                                             &feature, lower->name);
7952                 }
7953         }
7954 }
7955
7956 static netdev_features_t netdev_fix_features(struct net_device *dev,
7957         netdev_features_t features)
7958 {
7959         /* Fix illegal checksum combinations */
7960         if ((features & NETIF_F_HW_CSUM) &&
7961             (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
7962                 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
7963                 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
7964         }
7965
7966         /* TSO requires that SG is present as well. */
7967         if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
7968                 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
7969                 features &= ~NETIF_F_ALL_TSO;
7970         }
7971
7972         if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
7973                                         !(features & NETIF_F_IP_CSUM)) {
7974                 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
7975                 features &= ~NETIF_F_TSO;
7976                 features &= ~NETIF_F_TSO_ECN;
7977         }
7978
7979         if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
7980                                          !(features & NETIF_F_IPV6_CSUM)) {
7981                 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
7982                 features &= ~NETIF_F_TSO6;
7983         }
7984
7985         /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
7986         if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
7987                 features &= ~NETIF_F_TSO_MANGLEID;
7988
7989         /* TSO ECN requires that TSO is present as well. */
7990         if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
7991                 features &= ~NETIF_F_TSO_ECN;
7992
7993         /* Software GSO depends on SG. */
7994         if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
7995                 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
7996                 features &= ~NETIF_F_GSO;
7997         }
7998
7999         /* GSO partial features require GSO partial be set */
8000         if ((features & dev->gso_partial_features) &&
8001             !(features & NETIF_F_GSO_PARTIAL)) {
8002                 netdev_dbg(dev,
8003                            "Dropping partially supported GSO features since no GSO partial.\n");
8004                 features &= ~dev->gso_partial_features;
8005         }
8006
8007         if (!(features & NETIF_F_RXCSUM)) {
8008                 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet
8009                  * successfully merged by hardware must also have the
8010                  * checksum verified by hardware.  If the user does not
8011                  * want to enable RXCSUM, logically, we should disable GRO_HW.
8012                  */
8013                 if (features & NETIF_F_GRO_HW) {
8014                         netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
8015                         features &= ~NETIF_F_GRO_HW;
8016                 }
8017         }
8018
8019         /* LRO/HW-GRO features cannot be combined with RX-FCS */
8020         if (features & NETIF_F_RXFCS) {
8021                 if (features & NETIF_F_LRO) {
8022                         netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
8023                         features &= ~NETIF_F_LRO;
8024                 }
8025
8026                 if (features & NETIF_F_GRO_HW) {
8027                         netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
8028                         features &= ~NETIF_F_GRO_HW;
8029                 }
8030         }
8031
8032         return features;
8033 }
8034
8035 int __netdev_update_features(struct net_device *dev)
8036 {
8037         struct net_device *upper, *lower;
8038         netdev_features_t features;
8039         struct list_head *iter;
8040         int err = -1;
8041
8042         ASSERT_RTNL();
8043
8044         features = netdev_get_wanted_features(dev);
8045
8046         if (dev->netdev_ops->ndo_fix_features)
8047                 features = dev->netdev_ops->ndo_fix_features(dev, features);
8048
8049         /* driver might be less strict about feature dependencies */
8050         features = netdev_fix_features(dev, features);
8051
8052         /* some features can't be enabled if they're off an an upper device */
8053         netdev_for_each_upper_dev_rcu(dev, upper, iter)
8054                 features = netdev_sync_upper_features(dev, upper, features);
8055
8056         if (dev->features == features)
8057                 goto sync_lower;
8058
8059         netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
8060                 &dev->features, &features);
8061
8062         if (dev->netdev_ops->ndo_set_features)
8063                 err = dev->netdev_ops->ndo_set_features(dev, features);
8064         else
8065                 err = 0;
8066
8067         if (unlikely(err < 0)) {
8068                 netdev_err(dev,
8069                         "set_features() failed (%d); wanted %pNF, left %pNF\n",
8070                         err, &features, &dev->features);
8071                 /* return non-0 since some features might have changed and
8072                  * it's better to fire a spurious notification than miss it
8073                  */
8074                 return -1;
8075         }
8076
8077 sync_lower:
8078         /* some features must be disabled on lower devices when disabled
8079          * on an upper device (think: bonding master or bridge)
8080          */
8081         netdev_for_each_lower_dev(dev, lower, iter)
8082                 netdev_sync_lower_features(dev, lower, features);
8083
8084         if (!err) {
8085                 netdev_features_t diff = features ^ dev->features;
8086
8087                 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
8088                         /* udp_tunnel_{get,drop}_rx_info both need
8089                          * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
8090                          * device, or they won't do anything.
8091                          * Thus we need to update dev->features
8092                          * *before* calling udp_tunnel_get_rx_info,
8093                          * but *after* calling udp_tunnel_drop_rx_info.
8094                          */
8095                         if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
8096                                 dev->features = features;
8097                                 udp_tunnel_get_rx_info(dev);
8098                         } else {
8099                                 udp_tunnel_drop_rx_info(dev);
8100                         }
8101                 }
8102
8103                 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
8104                         if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
8105                                 dev->features = features;
8106                                 err |= vlan_get_rx_ctag_filter_info(dev);
8107                         } else {
8108                                 vlan_drop_rx_ctag_filter_info(dev);
8109                         }
8110                 }
8111
8112                 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
8113                         if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
8114                                 dev->features = features;
8115                                 err |= vlan_get_rx_stag_filter_info(dev);
8116                         } else {
8117                                 vlan_drop_rx_stag_filter_info(dev);
8118                         }
8119                 }
8120
8121                 dev->features = features;
8122         }
8123
8124         return err < 0 ? 0 : 1;
8125 }
8126
8127 /**
8128  *      netdev_update_features - recalculate device features
8129  *      @dev: the device to check
8130  *
8131  *      Recalculate dev->features set and send notifications if it
8132  *      has changed. Should be called after driver or hardware dependent
8133  *      conditions might have changed that influence the features.
8134  */
8135 void netdev_update_features(struct net_device *dev)
8136 {
8137         if (__netdev_update_features(dev))
8138                 netdev_features_change(dev);
8139 }
8140 EXPORT_SYMBOL(netdev_update_features);
8141
8142 /**
8143  *      netdev_change_features - recalculate device features
8144  *      @dev: the device to check
8145  *
8146  *      Recalculate dev->features set and send notifications even
8147  *      if they have not changed. Should be called instead of
8148  *      netdev_update_features() if also dev->vlan_features might
8149  *      have changed to allow the changes to be propagated to stacked
8150  *      VLAN devices.
8151  */
8152 void netdev_change_features(struct net_device *dev)
8153 {
8154         __netdev_update_features(dev);
8155         netdev_features_change(dev);
8156 }
8157 EXPORT_SYMBOL(netdev_change_features);
8158
8159 /**
8160  *      netif_stacked_transfer_operstate -      transfer operstate
8161  *      @rootdev: the root or lower level device to transfer state from
8162  *      @dev: the device to transfer operstate to
8163  *
8164  *      Transfer operational state from root to device. This is normally
8165  *      called when a stacking relationship exists between the root
8166  *      device and the device(a leaf device).
8167  */
8168 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
8169                                         struct net_device *dev)
8170 {
8171         if (rootdev->operstate == IF_OPER_DORMANT)
8172                 netif_dormant_on(dev);
8173         else
8174                 netif_dormant_off(dev);
8175
8176         if (netif_carrier_ok(rootdev))
8177                 netif_carrier_on(dev);
8178         else
8179                 netif_carrier_off(dev);
8180 }
8181 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
8182
8183 static int netif_alloc_rx_queues(struct net_device *dev)
8184 {
8185         unsigned int i, count = dev->num_rx_queues;
8186         struct netdev_rx_queue *rx;
8187         size_t sz = count * sizeof(*rx);
8188         int err = 0;
8189
8190         BUG_ON(count < 1);
8191
8192         rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
8193         if (!rx)
8194                 return -ENOMEM;
8195
8196         dev->_rx = rx;
8197
8198         for (i = 0; i < count; i++) {
8199                 rx[i].dev = dev;
8200
8201                 /* XDP RX-queue setup */
8202                 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i);
8203                 if (err < 0)
8204                         goto err_rxq_info;
8205         }
8206         return 0;
8207
8208 err_rxq_info:
8209         /* Rollback successful reg's and free other resources */
8210         while (i--)
8211                 xdp_rxq_info_unreg(&rx[i].xdp_rxq);
8212         kvfree(dev->_rx);
8213         dev->_rx = NULL;
8214         return err;
8215 }
8216
8217 static void netif_free_rx_queues(struct net_device *dev)
8218 {
8219         unsigned int i, count = dev->num_rx_queues;
8220
8221         /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
8222         if (!dev->_rx)
8223                 return;
8224
8225         for (i = 0; i < count; i++)
8226                 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
8227
8228         kvfree(dev->_rx);
8229 }
8230
8231 static void netdev_init_one_queue(struct net_device *dev,
8232                                   struct netdev_queue *queue, void *_unused)
8233 {
8234         /* Initialize queue lock */
8235         spin_lock_init(&queue->_xmit_lock);
8236         netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
8237         queue->xmit_lock_owner = -1;
8238         netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
8239         queue->dev = dev;
8240 #ifdef CONFIG_BQL
8241         dql_init(&queue->dql, HZ);
8242 #endif
8243 }
8244
8245 static void netif_free_tx_queues(struct net_device *dev)
8246 {
8247         kvfree(dev->_tx);
8248 }
8249
8250 static int netif_alloc_netdev_queues(struct net_device *dev)
8251 {
8252         unsigned int count = dev->num_tx_queues;
8253         struct netdev_queue *tx;
8254         size_t sz = count * sizeof(*tx);
8255
8256         if (count < 1 || count > 0xffff)
8257                 return -EINVAL;
8258
8259         tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
8260         if (!tx)
8261                 return -ENOMEM;
8262
8263         dev->_tx = tx;
8264
8265         netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
8266         spin_lock_init(&dev->tx_global_lock);
8267
8268         return 0;
8269 }
8270
8271 void netif_tx_stop_all_queues(struct net_device *dev)
8272 {
8273         unsigned int i;
8274
8275         for (i = 0; i < dev->num_tx_queues; i++) {
8276                 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
8277
8278                 netif_tx_stop_queue(txq);
8279         }
8280 }
8281 EXPORT_SYMBOL(netif_tx_stop_all_queues);
8282
8283 /**
8284  *      register_netdevice      - register a network device
8285  *      @dev: device to register
8286  *
8287  *      Take a completed network device structure and add it to the kernel
8288  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
8289  *      chain. 0 is returned on success. A negative errno code is returned
8290  *      on a failure to set up the device, or if the name is a duplicate.
8291  *
8292  *      Callers must hold the rtnl semaphore. You may want
8293  *      register_netdev() instead of this.
8294  *
8295  *      BUGS:
8296  *      The locking appears insufficient to guarantee two parallel registers
8297  *      will not get the same name.
8298  */
8299
8300 int register_netdevice(struct net_device *dev)
8301 {
8302         int ret;
8303         struct net *net = dev_net(dev);
8304
8305         BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
8306                      NETDEV_FEATURE_COUNT);
8307         BUG_ON(dev_boot_phase);
8308         ASSERT_RTNL();
8309
8310         might_sleep();
8311
8312         /* When net_device's are persistent, this will be fatal. */
8313         BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
8314         BUG_ON(!net);
8315
8316         spin_lock_init(&dev->addr_list_lock);
8317         netdev_set_addr_lockdep_class(dev);
8318
8319         ret = dev_get_valid_name(net, dev, dev->name);
8320         if (ret < 0)
8321                 goto out;
8322
8323         /* Init, if this function is available */
8324         if (dev->netdev_ops->ndo_init) {
8325                 ret = dev->netdev_ops->ndo_init(dev);
8326                 if (ret) {
8327                         if (ret > 0)
8328                                 ret = -EIO;
8329                         goto out;
8330                 }
8331         }
8332
8333         if (((dev->hw_features | dev->features) &
8334              NETIF_F_HW_VLAN_CTAG_FILTER) &&
8335             (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
8336              !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
8337                 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
8338                 ret = -EINVAL;
8339                 goto err_uninit;
8340         }
8341
8342         ret = -EBUSY;
8343         if (!dev->ifindex)
8344                 dev->ifindex = dev_new_index(net);
8345         else if (__dev_get_by_index(net, dev->ifindex))
8346                 goto err_uninit;
8347
8348         /* Transfer changeable features to wanted_features and enable
8349          * software offloads (GSO and GRO).
8350          */
8351         dev->hw_features |= NETIF_F_SOFT_FEATURES;
8352         dev->features |= NETIF_F_SOFT_FEATURES;
8353
8354         if (dev->netdev_ops->ndo_udp_tunnel_add) {
8355                 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
8356                 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
8357         }
8358
8359         dev->wanted_features = dev->features & dev->hw_features;
8360
8361         if (!(dev->flags & IFF_LOOPBACK))
8362                 dev->hw_features |= NETIF_F_NOCACHE_COPY;
8363
8364         /* If IPv4 TCP segmentation offload is supported we should also
8365          * allow the device to enable segmenting the frame with the option
8366          * of ignoring a static IP ID value.  This doesn't enable the
8367          * feature itself but allows the user to enable it later.
8368          */
8369         if (dev->hw_features & NETIF_F_TSO)
8370                 dev->hw_features |= NETIF_F_TSO_MANGLEID;
8371         if (dev->vlan_features & NETIF_F_TSO)
8372                 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
8373         if (dev->mpls_features & NETIF_F_TSO)
8374                 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
8375         if (dev->hw_enc_features & NETIF_F_TSO)
8376                 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
8377
8378         /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
8379          */
8380         dev->vlan_features |= NETIF_F_HIGHDMA;
8381
8382         /* Make NETIF_F_SG inheritable to tunnel devices.
8383          */
8384         dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
8385
8386         /* Make NETIF_F_SG inheritable to MPLS.
8387          */
8388         dev->mpls_features |= NETIF_F_SG;
8389
8390         ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
8391         ret = notifier_to_errno(ret);
8392         if (ret)
8393                 goto err_uninit;
8394
8395         ret = netdev_register_kobject(dev);
8396         if (ret)
8397                 goto err_uninit;
8398         dev->reg_state = NETREG_REGISTERED;
8399
8400         __netdev_update_features(dev);
8401
8402         /*
8403          *      Default initial state at registry is that the
8404          *      device is present.
8405          */
8406
8407         set_bit(__LINK_STATE_PRESENT, &dev->state);
8408
8409         linkwatch_init_dev(dev);
8410
8411         dev_init_scheduler(dev);
8412         dev_hold(dev);
8413         list_netdevice(dev);
8414         add_device_randomness(dev->dev_addr, dev->addr_len);
8415
8416         /* If the device has permanent device address, driver should
8417          * set dev_addr and also addr_assign_type should be set to
8418          * NET_ADDR_PERM (default value).
8419          */
8420         if (dev->addr_assign_type == NET_ADDR_PERM)
8421                 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
8422
8423         /* Notify protocols, that a new device appeared. */
8424         ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
8425         ret = notifier_to_errno(ret);
8426         if (ret) {
8427                 rollback_registered(dev);
8428                 dev->reg_state = NETREG_UNREGISTERED;
8429         }
8430         /*
8431          *      Prevent userspace races by waiting until the network
8432          *      device is fully setup before sending notifications.
8433          */
8434         if (!dev->rtnl_link_ops ||
8435             dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
8436                 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
8437
8438 out:
8439         return ret;
8440
8441 err_uninit:
8442         if (dev->netdev_ops->ndo_uninit)
8443                 dev->netdev_ops->ndo_uninit(dev);
8444         if (dev->priv_destructor)
8445                 dev->priv_destructor(dev);
8446         goto out;
8447 }
8448 EXPORT_SYMBOL(register_netdevice);
8449
8450 /**
8451  *      init_dummy_netdev       - init a dummy network device for NAPI
8452  *      @dev: device to init
8453  *
8454  *      This takes a network device structure and initialize the minimum
8455  *      amount of fields so it can be used to schedule NAPI polls without
8456  *      registering a full blown interface. This is to be used by drivers
8457  *      that need to tie several hardware interfaces to a single NAPI
8458  *      poll scheduler due to HW limitations.
8459  */
8460 int init_dummy_netdev(struct net_device *dev)
8461 {
8462         /* Clear everything. Note we don't initialize spinlocks
8463          * are they aren't supposed to be taken by any of the
8464          * NAPI code and this dummy netdev is supposed to be
8465          * only ever used for NAPI polls
8466          */
8467         memset(dev, 0, sizeof(struct net_device));
8468
8469         /* make sure we BUG if trying to hit standard
8470          * register/unregister code path
8471          */
8472         dev->reg_state = NETREG_DUMMY;
8473
8474         /* NAPI wants this */
8475         INIT_LIST_HEAD(&dev->napi_list);
8476
8477         /* a dummy interface is started by default */
8478         set_bit(__LINK_STATE_PRESENT, &dev->state);
8479         set_bit(__LINK_STATE_START, &dev->state);
8480
8481         /* Note : We dont allocate pcpu_refcnt for dummy devices,
8482          * because users of this 'device' dont need to change
8483          * its refcount.
8484          */
8485
8486         return 0;
8487 }
8488 EXPORT_SYMBOL_GPL(init_dummy_netdev);
8489
8490
8491 /**
8492  *      register_netdev - register a network device
8493  *      @dev: device to register
8494  *
8495  *      Take a completed network device structure and add it to the kernel
8496  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
8497  *      chain. 0 is returned on success. A negative errno code is returned
8498  *      on a failure to set up the device, or if the name is a duplicate.
8499  *
8500  *      This is a wrapper around register_netdevice that takes the rtnl semaphore
8501  *      and expands the device name if you passed a format string to
8502  *      alloc_netdev.
8503  */
8504 int register_netdev(struct net_device *dev)
8505 {
8506         int err;
8507
8508         if (rtnl_lock_killable())
8509                 return -EINTR;
8510         err = register_netdevice(dev);
8511         rtnl_unlock();
8512         return err;
8513 }
8514 EXPORT_SYMBOL(register_netdev);
8515
8516 int netdev_refcnt_read(const struct net_device *dev)
8517 {
8518         int i, refcnt = 0;
8519
8520         for_each_possible_cpu(i)
8521                 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
8522         return refcnt;
8523 }
8524 EXPORT_SYMBOL(netdev_refcnt_read);
8525
8526 /**
8527  * netdev_wait_allrefs - wait until all references are gone.
8528  * @dev: target net_device
8529  *
8530  * This is called when unregistering network devices.
8531  *
8532  * Any protocol or device that holds a reference should register
8533  * for netdevice notification, and cleanup and put back the
8534  * reference if they receive an UNREGISTER event.
8535  * We can get stuck here if buggy protocols don't correctly
8536  * call dev_put.
8537  */
8538 static void netdev_wait_allrefs(struct net_device *dev)
8539 {
8540         unsigned long rebroadcast_time, warning_time;
8541         int refcnt;
8542
8543         linkwatch_forget_dev(dev);
8544
8545         rebroadcast_time = warning_time = jiffies;
8546         refcnt = netdev_refcnt_read(dev);
8547
8548         while (refcnt != 0) {
8549                 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
8550                         rtnl_lock();
8551
8552                         /* Rebroadcast unregister notification */
8553                         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
8554
8555                         __rtnl_unlock();
8556                         rcu_barrier();
8557                         rtnl_lock();
8558
8559                         if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
8560                                      &dev->state)) {
8561                                 /* We must not have linkwatch events
8562                                  * pending on unregister. If this
8563                                  * happens, we simply run the queue
8564                                  * unscheduled, resulting in a noop
8565                                  * for this device.
8566                                  */
8567                                 linkwatch_run_queue();
8568                         }
8569
8570                         __rtnl_unlock();
8571
8572                         rebroadcast_time = jiffies;
8573                 }
8574
8575                 msleep(250);
8576
8577                 refcnt = netdev_refcnt_read(dev);
8578
8579                 if (time_after(jiffies, warning_time + 10 * HZ)) {
8580                         pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
8581                                  dev->name, refcnt);
8582                         warning_time = jiffies;
8583                 }
8584         }
8585 }
8586
8587 /* The sequence is:
8588  *
8589  *      rtnl_lock();
8590  *      ...
8591  *      register_netdevice(x1);
8592  *      register_netdevice(x2);
8593  *      ...
8594  *      unregister_netdevice(y1);
8595  *      unregister_netdevice(y2);
8596  *      ...
8597  *      rtnl_unlock();
8598  *      free_netdev(y1);
8599  *      free_netdev(y2);
8600  *
8601  * We are invoked by rtnl_unlock().
8602  * This allows us to deal with problems:
8603  * 1) We can delete sysfs objects which invoke hotplug
8604  *    without deadlocking with linkwatch via keventd.
8605  * 2) Since we run with the RTNL semaphore not held, we can sleep
8606  *    safely in order to wait for the netdev refcnt to drop to zero.
8607  *
8608  * We must not return until all unregister events added during
8609  * the interval the lock was held have been completed.
8610  */
8611 void netdev_run_todo(void)
8612 {
8613         struct list_head list;
8614
8615         /* Snapshot list, allow later requests */
8616         list_replace_init(&net_todo_list, &list);
8617
8618         __rtnl_unlock();
8619
8620
8621         /* Wait for rcu callbacks to finish before next phase */
8622         if (!list_empty(&list))
8623                 rcu_barrier();
8624
8625         while (!list_empty(&list)) {
8626                 struct net_device *dev
8627                         = list_first_entry(&list, struct net_device, todo_list);
8628                 list_del(&dev->todo_list);
8629
8630                 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
8631                         pr_err("network todo '%s' but state %d\n",
8632                                dev->name, dev->reg_state);
8633                         dump_stack();
8634                         continue;
8635                 }
8636
8637                 dev->reg_state = NETREG_UNREGISTERED;
8638
8639                 netdev_wait_allrefs(dev);
8640
8641                 /* paranoia */
8642                 BUG_ON(netdev_refcnt_read(dev));
8643                 BUG_ON(!list_empty(&dev->ptype_all));
8644                 BUG_ON(!list_empty(&dev->ptype_specific));
8645                 WARN_ON(rcu_access_pointer(dev->ip_ptr));
8646                 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
8647 #if IS_ENABLED(CONFIG_DECNET)
8648                 WARN_ON(dev->dn_ptr);
8649 #endif
8650                 if (dev->priv_destructor)
8651                         dev->priv_destructor(dev);
8652                 if (dev->needs_free_netdev)
8653                         free_netdev(dev);
8654
8655                 /* Report a network device has been unregistered */
8656                 rtnl_lock();
8657                 dev_net(dev)->dev_unreg_count--;
8658                 __rtnl_unlock();
8659                 wake_up(&netdev_unregistering_wq);
8660
8661                 /* Free network device */
8662                 kobject_put(&dev->dev.kobj);
8663         }
8664 }
8665
8666 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
8667  * all the same fields in the same order as net_device_stats, with only
8668  * the type differing, but rtnl_link_stats64 may have additional fields
8669  * at the end for newer counters.
8670  */
8671 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
8672                              const struct net_device_stats *netdev_stats)
8673 {
8674 #if BITS_PER_LONG == 64
8675         BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
8676         memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
8677         /* zero out counters that only exist in rtnl_link_stats64 */
8678         memset((char *)stats64 + sizeof(*netdev_stats), 0,
8679                sizeof(*stats64) - sizeof(*netdev_stats));
8680 #else
8681         size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
8682         const unsigned long *src = (const unsigned long *)netdev_stats;
8683         u64 *dst = (u64 *)stats64;
8684
8685         BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
8686         for (i = 0; i < n; i++)
8687                 dst[i] = src[i];
8688         /* zero out counters that only exist in rtnl_link_stats64 */
8689         memset((char *)stats64 + n * sizeof(u64), 0,
8690                sizeof(*stats64) - n * sizeof(u64));
8691 #endif
8692 }
8693 EXPORT_SYMBOL(netdev_stats_to_stats64);
8694
8695 /**
8696  *      dev_get_stats   - get network device statistics
8697  *      @dev: device to get statistics from
8698  *      @storage: place to store stats
8699  *
8700  *      Get network statistics from device. Return @storage.
8701  *      The device driver may provide its own method by setting
8702  *      dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
8703  *      otherwise the internal statistics structure is used.
8704  */
8705 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
8706                                         struct rtnl_link_stats64 *storage)
8707 {
8708         const struct net_device_ops *ops = dev->netdev_ops;
8709
8710         if (ops->ndo_get_stats64) {
8711                 memset(storage, 0, sizeof(*storage));
8712                 ops->ndo_get_stats64(dev, storage);
8713         } else if (ops->ndo_get_stats) {
8714                 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
8715         } else {
8716                 netdev_stats_to_stats64(storage, &dev->stats);
8717         }
8718         storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
8719         storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
8720         storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
8721         return storage;
8722 }
8723 EXPORT_SYMBOL(dev_get_stats);
8724
8725 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
8726 {
8727         struct netdev_queue *queue = dev_ingress_queue(dev);
8728
8729 #ifdef CONFIG_NET_CLS_ACT
8730         if (queue)
8731                 return queue;
8732         queue = kzalloc(sizeof(*queue), GFP_KERNEL);
8733         if (!queue)
8734                 return NULL;
8735         netdev_init_one_queue(dev, queue, NULL);
8736         RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
8737         queue->qdisc_sleeping = &noop_qdisc;
8738         rcu_assign_pointer(dev->ingress_queue, queue);
8739 #endif
8740         return queue;
8741 }
8742
8743 static const struct ethtool_ops default_ethtool_ops;
8744
8745 void netdev_set_default_ethtool_ops(struct net_device *dev,
8746                                     const struct ethtool_ops *ops)
8747 {
8748         if (dev->ethtool_ops == &default_ethtool_ops)
8749                 dev->ethtool_ops = ops;
8750 }
8751 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
8752
8753 void netdev_freemem(struct net_device *dev)
8754 {
8755         char *addr = (char *)dev - dev->padded;
8756
8757         kvfree(addr);
8758 }
8759
8760 /**
8761  * alloc_netdev_mqs - allocate network device
8762  * @sizeof_priv: size of private data to allocate space for
8763  * @name: device name format string
8764  * @name_assign_type: origin of device name
8765  * @setup: callback to initialize device
8766  * @txqs: the number of TX subqueues to allocate
8767  * @rxqs: the number of RX subqueues to allocate
8768  *
8769  * Allocates a struct net_device with private data area for driver use
8770  * and performs basic initialization.  Also allocates subqueue structs
8771  * for each queue on the device.
8772  */
8773 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
8774                 unsigned char name_assign_type,
8775                 void (*setup)(struct net_device *),
8776                 unsigned int txqs, unsigned int rxqs)
8777 {
8778         struct net_device *dev;
8779         unsigned int alloc_size;
8780         struct net_device *p;
8781
8782         BUG_ON(strlen(name) >= sizeof(dev->name));
8783
8784         if (txqs < 1) {
8785                 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
8786                 return NULL;
8787         }
8788
8789         if (rxqs < 1) {
8790                 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
8791                 return NULL;
8792         }
8793
8794         alloc_size = sizeof(struct net_device);
8795         if (sizeof_priv) {
8796                 /* ensure 32-byte alignment of private area */
8797                 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
8798                 alloc_size += sizeof_priv;
8799         }
8800         /* ensure 32-byte alignment of whole construct */
8801         alloc_size += NETDEV_ALIGN - 1;
8802
8803         p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
8804         if (!p)
8805                 return NULL;
8806
8807         dev = PTR_ALIGN(p, NETDEV_ALIGN);
8808         dev->padded = (char *)dev - (char *)p;
8809
8810         dev->pcpu_refcnt = alloc_percpu(int);
8811         if (!dev->pcpu_refcnt)
8812                 goto free_dev;
8813
8814         if (dev_addr_init(dev))
8815                 goto free_pcpu;
8816
8817         dev_mc_init(dev);
8818         dev_uc_init(dev);
8819
8820         dev_net_set(dev, &init_net);
8821
8822         dev->gso_max_size = GSO_MAX_SIZE;
8823         dev->gso_max_segs = GSO_MAX_SEGS;
8824
8825         INIT_LIST_HEAD(&dev->napi_list);
8826         INIT_LIST_HEAD(&dev->unreg_list);
8827         INIT_LIST_HEAD(&dev->close_list);
8828         INIT_LIST_HEAD(&dev->link_watch_list);
8829         INIT_LIST_HEAD(&dev->adj_list.upper);
8830         INIT_LIST_HEAD(&dev->adj_list.lower);
8831         INIT_LIST_HEAD(&dev->ptype_all);
8832         INIT_LIST_HEAD(&dev->ptype_specific);
8833 #ifdef CONFIG_NET_SCHED
8834         hash_init(dev->qdisc_hash);
8835 #endif
8836         dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
8837         setup(dev);
8838
8839         if (!dev->tx_queue_len) {
8840                 dev->priv_flags |= IFF_NO_QUEUE;
8841                 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
8842         }
8843
8844         dev->num_tx_queues = txqs;
8845         dev->real_num_tx_queues = txqs;
8846         if (netif_alloc_netdev_queues(dev))
8847                 goto free_all;
8848
8849         dev->num_rx_queues = rxqs;
8850         dev->real_num_rx_queues = rxqs;
8851         if (netif_alloc_rx_queues(dev))
8852                 goto free_all;
8853
8854         strcpy(dev->name, name);
8855         dev->name_assign_type = name_assign_type;
8856         dev->group = INIT_NETDEV_GROUP;
8857         if (!dev->ethtool_ops)
8858                 dev->ethtool_ops = &default_ethtool_ops;
8859
8860         nf_hook_ingress_init(dev);
8861
8862         return dev;
8863
8864 free_all:
8865         free_netdev(dev);
8866         return NULL;
8867
8868 free_pcpu:
8869         free_percpu(dev->pcpu_refcnt);
8870 free_dev:
8871         netdev_freemem(dev);
8872         return NULL;
8873 }
8874 EXPORT_SYMBOL(alloc_netdev_mqs);
8875
8876 /**
8877  * free_netdev - free network device
8878  * @dev: device
8879  *
8880  * This function does the last stage of destroying an allocated device
8881  * interface. The reference to the device object is released. If this
8882  * is the last reference then it will be freed.Must be called in process
8883  * context.
8884  */
8885 void free_netdev(struct net_device *dev)
8886 {
8887         struct napi_struct *p, *n;
8888
8889         might_sleep();
8890         netif_free_tx_queues(dev);
8891         netif_free_rx_queues(dev);
8892
8893         kfree(rcu_dereference_protected(dev->ingress_queue, 1));
8894
8895         /* Flush device addresses */
8896         dev_addr_flush(dev);
8897
8898         list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
8899                 netif_napi_del(p);
8900
8901         free_percpu(dev->pcpu_refcnt);
8902         dev->pcpu_refcnt = NULL;
8903
8904         /*  Compatibility with error handling in drivers */
8905         if (dev->reg_state == NETREG_UNINITIALIZED) {
8906                 netdev_freemem(dev);
8907                 return;
8908         }
8909
8910         BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
8911         dev->reg_state = NETREG_RELEASED;
8912
8913         /* will free via device release */
8914         put_device(&dev->dev);
8915 }
8916 EXPORT_SYMBOL(free_netdev);
8917
8918 /**
8919  *      synchronize_net -  Synchronize with packet receive processing
8920  *
8921  *      Wait for packets currently being received to be done.
8922  *      Does not block later packets from starting.
8923  */
8924 void synchronize_net(void)
8925 {
8926         might_sleep();
8927         if (rtnl_is_locked())
8928                 synchronize_rcu_expedited();
8929         else
8930                 synchronize_rcu();
8931 }
8932 EXPORT_SYMBOL(synchronize_net);
8933
8934 /**
8935  *      unregister_netdevice_queue - remove device from the kernel
8936  *      @dev: device
8937  *      @head: list
8938  *
8939  *      This function shuts down a device interface and removes it
8940  *      from the kernel tables.
8941  *      If head not NULL, device is queued to be unregistered later.
8942  *
8943  *      Callers must hold the rtnl semaphore.  You may want
8944  *      unregister_netdev() instead of this.
8945  */
8946
8947 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
8948 {
8949         ASSERT_RTNL();
8950
8951         if (head) {
8952                 list_move_tail(&dev->unreg_list, head);
8953         } else {
8954                 rollback_registered(dev);
8955                 /* Finish processing unregister after unlock */
8956                 net_set_todo(dev);
8957         }
8958 }
8959 EXPORT_SYMBOL(unregister_netdevice_queue);
8960
8961 /**
8962  *      unregister_netdevice_many - unregister many devices
8963  *      @head: list of devices
8964  *
8965  *  Note: As most callers use a stack allocated list_head,
8966  *  we force a list_del() to make sure stack wont be corrupted later.
8967  */
8968 void unregister_netdevice_many(struct list_head *head)
8969 {
8970         struct net_device *dev;
8971
8972         if (!list_empty(head)) {
8973                 rollback_registered_many(head);
8974                 list_for_each_entry(dev, head, unreg_list)
8975                         net_set_todo(dev);
8976                 list_del(head);
8977         }
8978 }
8979 EXPORT_SYMBOL(unregister_netdevice_many);
8980
8981 /**
8982  *      unregister_netdev - remove device from the kernel
8983  *      @dev: device
8984  *
8985  *      This function shuts down a device interface and removes it
8986  *      from the kernel tables.
8987  *
8988  *      This is just a wrapper for unregister_netdevice that takes
8989  *      the rtnl semaphore.  In general you want to use this and not
8990  *      unregister_netdevice.
8991  */
8992 void unregister_netdev(struct net_device *dev)
8993 {
8994         rtnl_lock();
8995         unregister_netdevice(dev);
8996         rtnl_unlock();
8997 }
8998 EXPORT_SYMBOL(unregister_netdev);
8999
9000 /**
9001  *      dev_change_net_namespace - move device to different nethost namespace
9002  *      @dev: device
9003  *      @net: network namespace
9004  *      @pat: If not NULL name pattern to try if the current device name
9005  *            is already taken in the destination network namespace.
9006  *
9007  *      This function shuts down a device interface and moves it
9008  *      to a new network namespace. On success 0 is returned, on
9009  *      a failure a netagive errno code is returned.
9010  *
9011  *      Callers must hold the rtnl semaphore.
9012  */
9013
9014 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
9015 {
9016         int err, new_nsid, new_ifindex;
9017
9018         ASSERT_RTNL();
9019
9020         /* Don't allow namespace local devices to be moved. */
9021         err = -EINVAL;
9022         if (dev->features & NETIF_F_NETNS_LOCAL)
9023                 goto out;
9024
9025         /* Ensure the device has been registrered */
9026         if (dev->reg_state != NETREG_REGISTERED)
9027                 goto out;
9028
9029         /* Get out if there is nothing todo */
9030         err = 0;
9031         if (net_eq(dev_net(dev), net))
9032                 goto out;
9033
9034         /* Pick the destination device name, and ensure
9035          * we can use it in the destination network namespace.
9036          */
9037         err = -EEXIST;
9038         if (__dev_get_by_name(net, dev->name)) {
9039                 /* We get here if we can't use the current device name */
9040                 if (!pat)
9041                         goto out;
9042                 err = dev_get_valid_name(net, dev, pat);
9043                 if (err < 0)
9044                         goto out;
9045         }
9046
9047         /*
9048          * And now a mini version of register_netdevice unregister_netdevice.
9049          */
9050
9051         /* If device is running close it first. */
9052         dev_close(dev);
9053
9054         /* And unlink it from device chain */
9055         unlist_netdevice(dev);
9056
9057         synchronize_net();
9058
9059         /* Shutdown queueing discipline. */
9060         dev_shutdown(dev);
9061
9062         /* Notify protocols, that we are about to destroy
9063          * this device. They should clean all the things.
9064          *
9065          * Note that dev->reg_state stays at NETREG_REGISTERED.
9066          * This is wanted because this way 8021q and macvlan know
9067          * the device is just moving and can keep their slaves up.
9068          */
9069         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
9070         rcu_barrier();
9071
9072         new_nsid = peernet2id_alloc(dev_net(dev), net);
9073         /* If there is an ifindex conflict assign a new one */
9074         if (__dev_get_by_index(net, dev->ifindex))
9075                 new_ifindex = dev_new_index(net);
9076         else
9077                 new_ifindex = dev->ifindex;
9078
9079         rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
9080                             new_ifindex);
9081
9082         /*
9083          *      Flush the unicast and multicast chains
9084          */
9085         dev_uc_flush(dev);
9086         dev_mc_flush(dev);
9087
9088         /* Send a netdev-removed uevent to the old namespace */
9089         kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
9090         netdev_adjacent_del_links(dev);
9091
9092         /* Actually switch the network namespace */
9093         dev_net_set(dev, net);
9094         dev->ifindex = new_ifindex;
9095
9096         /* Send a netdev-add uevent to the new namespace */
9097         kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
9098         netdev_adjacent_add_links(dev);
9099
9100         /* Fixup kobjects */
9101         err = device_rename(&dev->dev, dev->name);
9102         WARN_ON(err);
9103
9104         /* Add the device back in the hashes */
9105         list_netdevice(dev);
9106
9107         /* Notify protocols, that a new device appeared. */
9108         call_netdevice_notifiers(NETDEV_REGISTER, dev);
9109
9110         /*
9111          *      Prevent userspace races by waiting until the network
9112          *      device is fully setup before sending notifications.
9113          */
9114         rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
9115
9116         synchronize_net();
9117         err = 0;
9118 out:
9119         return err;
9120 }
9121 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
9122
9123 static int dev_cpu_dead(unsigned int oldcpu)
9124 {
9125         struct sk_buff **list_skb;
9126         struct sk_buff *skb;
9127         unsigned int cpu;
9128         struct softnet_data *sd, *oldsd, *remsd = NULL;
9129
9130         local_irq_disable();
9131         cpu = smp_processor_id();
9132         sd = &per_cpu(softnet_data, cpu);
9133         oldsd = &per_cpu(softnet_data, oldcpu);
9134
9135         /* Find end of our completion_queue. */
9136         list_skb = &sd->completion_queue;
9137         while (*list_skb)
9138                 list_skb = &(*list_skb)->next;
9139         /* Append completion queue from offline CPU. */
9140         *list_skb = oldsd->completion_queue;
9141         oldsd->completion_queue = NULL;
9142
9143         /* Append output queue from offline CPU. */
9144         if (oldsd->output_queue) {
9145                 *sd->output_queue_tailp = oldsd->output_queue;
9146                 sd->output_queue_tailp = oldsd->output_queue_tailp;
9147                 oldsd->output_queue = NULL;
9148                 oldsd->output_queue_tailp = &oldsd->output_queue;
9149         }
9150         /* Append NAPI poll list from offline CPU, with one exception :
9151          * process_backlog() must be called by cpu owning percpu backlog.
9152          * We properly handle process_queue & input_pkt_queue later.
9153          */
9154         while (!list_empty(&oldsd->poll_list)) {
9155                 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
9156                                                             struct napi_struct,
9157                                                             poll_list);
9158
9159                 list_del_init(&napi->poll_list);
9160                 if (napi->poll == process_backlog)
9161                         napi->state = 0;
9162                 else
9163                         ____napi_schedule(sd, napi);
9164         }
9165
9166         raise_softirq_irqoff(NET_TX_SOFTIRQ);
9167         local_irq_enable();
9168
9169 #ifdef CONFIG_RPS
9170         remsd = oldsd->rps_ipi_list;
9171         oldsd->rps_ipi_list = NULL;
9172 #endif
9173         /* send out pending IPI's on offline CPU */
9174         net_rps_send_ipi(remsd);
9175
9176         /* Process offline CPU's input_pkt_queue */
9177         while ((skb = __skb_dequeue(&oldsd->process_queue))) {
9178                 netif_rx_ni(skb);
9179                 input_queue_head_incr(oldsd);
9180         }
9181         while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
9182                 netif_rx_ni(skb);
9183                 input_queue_head_incr(oldsd);
9184         }
9185
9186         return 0;
9187 }
9188
9189 /**
9190  *      netdev_increment_features - increment feature set by one
9191  *      @all: current feature set
9192  *      @one: new feature set
9193  *      @mask: mask feature set
9194  *
9195  *      Computes a new feature set after adding a device with feature set
9196  *      @one to the master device with current feature set @all.  Will not
9197  *      enable anything that is off in @mask. Returns the new feature set.
9198  */
9199 netdev_features_t netdev_increment_features(netdev_features_t all,
9200         netdev_features_t one, netdev_features_t mask)
9201 {
9202         if (mask & NETIF_F_HW_CSUM)
9203                 mask |= NETIF_F_CSUM_MASK;
9204         mask |= NETIF_F_VLAN_CHALLENGED;
9205
9206         all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
9207         all &= one | ~NETIF_F_ALL_FOR_ALL;
9208
9209         /* If one device supports hw checksumming, set for all. */
9210         if (all & NETIF_F_HW_CSUM)
9211                 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
9212
9213         return all;
9214 }
9215 EXPORT_SYMBOL(netdev_increment_features);
9216
9217 static struct hlist_head * __net_init netdev_create_hash(void)
9218 {
9219         int i;
9220         struct hlist_head *hash;
9221
9222         hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
9223         if (hash != NULL)
9224                 for (i = 0; i < NETDEV_HASHENTRIES; i++)
9225                         INIT_HLIST_HEAD(&hash[i]);
9226
9227         return hash;
9228 }
9229
9230 /* Initialize per network namespace state */
9231 static int __net_init netdev_init(struct net *net)
9232 {
9233         if (net != &init_net)
9234                 INIT_LIST_HEAD(&net->dev_base_head);
9235
9236         net->dev_name_head = netdev_create_hash();
9237         if (net->dev_name_head == NULL)
9238                 goto err_name;
9239
9240         net->dev_index_head = netdev_create_hash();
9241         if (net->dev_index_head == NULL)
9242                 goto err_idx;
9243
9244         return 0;
9245
9246 err_idx:
9247         kfree(net->dev_name_head);
9248 err_name:
9249         return -ENOMEM;
9250 }
9251
9252 /**
9253  *      netdev_drivername - network driver for the device
9254  *      @dev: network device
9255  *
9256  *      Determine network driver for device.
9257  */
9258 const char *netdev_drivername(const struct net_device *dev)
9259 {
9260         const struct device_driver *driver;
9261         const struct device *parent;
9262         const char *empty = "";
9263
9264         parent = dev->dev.parent;
9265         if (!parent)
9266                 return empty;
9267
9268         driver = parent->driver;
9269         if (driver && driver->name)
9270                 return driver->name;
9271         return empty;
9272 }
9273
9274 static void __netdev_printk(const char *level, const struct net_device *dev,
9275                             struct va_format *vaf)
9276 {
9277         if (dev && dev->dev.parent) {
9278                 dev_printk_emit(level[1] - '0',
9279                                 dev->dev.parent,
9280                                 "%s %s %s%s: %pV",
9281                                 dev_driver_string(dev->dev.parent),
9282                                 dev_name(dev->dev.parent),
9283                                 netdev_name(dev), netdev_reg_state(dev),
9284                                 vaf);
9285         } else if (dev) {
9286                 printk("%s%s%s: %pV",
9287                        level, netdev_name(dev), netdev_reg_state(dev), vaf);
9288         } else {
9289                 printk("%s(NULL net_device): %pV", level, vaf);
9290         }
9291 }
9292
9293 void netdev_printk(const char *level, const struct net_device *dev,
9294                    const char *format, ...)
9295 {
9296         struct va_format vaf;
9297         va_list args;
9298
9299         va_start(args, format);
9300
9301         vaf.fmt = format;
9302         vaf.va = &args;
9303
9304         __netdev_printk(level, dev, &vaf);
9305
9306         va_end(args);
9307 }
9308 EXPORT_SYMBOL(netdev_printk);
9309
9310 #define define_netdev_printk_level(func, level)                 \
9311 void func(const struct net_device *dev, const char *fmt, ...)   \
9312 {                                                               \
9313         struct va_format vaf;                                   \
9314         va_list args;                                           \
9315                                                                 \
9316         va_start(args, fmt);                                    \
9317                                                                 \
9318         vaf.fmt = fmt;                                          \
9319         vaf.va = &args;                                         \
9320                                                                 \
9321         __netdev_printk(level, dev, &vaf);                      \
9322                                                                 \
9323         va_end(args);                                           \
9324 }                                                               \
9325 EXPORT_SYMBOL(func);
9326
9327 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
9328 define_netdev_printk_level(netdev_alert, KERN_ALERT);
9329 define_netdev_printk_level(netdev_crit, KERN_CRIT);
9330 define_netdev_printk_level(netdev_err, KERN_ERR);
9331 define_netdev_printk_level(netdev_warn, KERN_WARNING);
9332 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
9333 define_netdev_printk_level(netdev_info, KERN_INFO);
9334
9335 static void __net_exit netdev_exit(struct net *net)
9336 {
9337         kfree(net->dev_name_head);
9338         kfree(net->dev_index_head);
9339         if (net != &init_net)
9340                 WARN_ON_ONCE(!list_empty(&net->dev_base_head));
9341 }
9342
9343 static struct pernet_operations __net_initdata netdev_net_ops = {
9344         .init = netdev_init,
9345         .exit = netdev_exit,
9346 };
9347
9348 static void __net_exit default_device_exit(struct net *net)
9349 {
9350         struct net_device *dev, *aux;
9351         /*
9352          * Push all migratable network devices back to the
9353          * initial network namespace
9354          */
9355         rtnl_lock();
9356         for_each_netdev_safe(net, dev, aux) {
9357                 int err;
9358                 char fb_name[IFNAMSIZ];
9359
9360                 /* Ignore unmoveable devices (i.e. loopback) */
9361                 if (dev->features & NETIF_F_NETNS_LOCAL)
9362                         continue;
9363
9364                 /* Leave virtual devices for the generic cleanup */
9365                 if (dev->rtnl_link_ops)
9366                         continue;
9367
9368                 /* Push remaining network devices to init_net */
9369                 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
9370                 err = dev_change_net_namespace(dev, &init_net, fb_name);
9371                 if (err) {
9372                         pr_emerg("%s: failed to move %s to init_net: %d\n",
9373                                  __func__, dev->name, err);
9374                         BUG();
9375                 }
9376         }
9377         rtnl_unlock();
9378 }
9379
9380 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
9381 {
9382         /* Return with the rtnl_lock held when there are no network
9383          * devices unregistering in any network namespace in net_list.
9384          */
9385         struct net *net;
9386         bool unregistering;
9387         DEFINE_WAIT_FUNC(wait, woken_wake_function);
9388
9389         add_wait_queue(&netdev_unregistering_wq, &wait);
9390         for (;;) {
9391                 unregistering = false;
9392                 rtnl_lock();
9393                 list_for_each_entry(net, net_list, exit_list) {
9394                         if (net->dev_unreg_count > 0) {
9395                                 unregistering = true;
9396                                 break;
9397                         }
9398                 }
9399                 if (!unregistering)
9400                         break;
9401                 __rtnl_unlock();
9402
9403                 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
9404         }
9405         remove_wait_queue(&netdev_unregistering_wq, &wait);
9406 }
9407
9408 static void __net_exit default_device_exit_batch(struct list_head *net_list)
9409 {
9410         /* At exit all network devices most be removed from a network
9411          * namespace.  Do this in the reverse order of registration.
9412          * Do this across as many network namespaces as possible to
9413          * improve batching efficiency.
9414          */
9415         struct net_device *dev;
9416         struct net *net;
9417         LIST_HEAD(dev_kill_list);
9418
9419         /* To prevent network device cleanup code from dereferencing
9420          * loopback devices or network devices that have been freed
9421          * wait here for all pending unregistrations to complete,
9422          * before unregistring the loopback device and allowing the
9423          * network namespace be freed.
9424          *
9425          * The netdev todo list containing all network devices
9426          * unregistrations that happen in default_device_exit_batch
9427          * will run in the rtnl_unlock() at the end of
9428          * default_device_exit_batch.
9429          */
9430         rtnl_lock_unregistering(net_list);
9431         list_for_each_entry(net, net_list, exit_list) {
9432                 for_each_netdev_reverse(net, dev) {
9433                         if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
9434                                 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
9435                         else
9436                                 unregister_netdevice_queue(dev, &dev_kill_list);
9437                 }
9438         }
9439         unregister_netdevice_many(&dev_kill_list);
9440         rtnl_unlock();
9441 }
9442
9443 static struct pernet_operations __net_initdata default_device_ops = {
9444         .exit = default_device_exit,
9445         .exit_batch = default_device_exit_batch,
9446 };
9447
9448 /*
9449  *      Initialize the DEV module. At boot time this walks the device list and
9450  *      unhooks any devices that fail to initialise (normally hardware not
9451  *      present) and leaves us with a valid list of present and active devices.
9452  *
9453  */
9454
9455 /*
9456  *       This is called single threaded during boot, so no need
9457  *       to take the rtnl semaphore.
9458  */
9459 static int __init net_dev_init(void)
9460 {
9461         int i, rc = -ENOMEM;
9462
9463         BUG_ON(!dev_boot_phase);
9464
9465         if (dev_proc_init())
9466                 goto out;
9467
9468         if (netdev_kobject_init())
9469                 goto out;
9470
9471         INIT_LIST_HEAD(&ptype_all);
9472         for (i = 0; i < PTYPE_HASH_SIZE; i++)
9473                 INIT_LIST_HEAD(&ptype_base[i]);
9474
9475         INIT_LIST_HEAD(&offload_base);
9476
9477         if (register_pernet_subsys(&netdev_net_ops))
9478                 goto out;
9479
9480         /*
9481          *      Initialise the packet receive queues.
9482          */
9483
9484         for_each_possible_cpu(i) {
9485                 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
9486                 struct softnet_data *sd = &per_cpu(softnet_data, i);
9487
9488                 INIT_WORK(flush, flush_backlog);
9489
9490                 skb_queue_head_init(&sd->input_pkt_queue);
9491                 skb_queue_head_init(&sd->process_queue);
9492 #ifdef CONFIG_XFRM_OFFLOAD
9493                 skb_queue_head_init(&sd->xfrm_backlog);
9494 #endif
9495                 INIT_LIST_HEAD(&sd->poll_list);
9496                 sd->output_queue_tailp = &sd->output_queue;
9497 #ifdef CONFIG_RPS
9498                 sd->csd.func = rps_trigger_softirq;
9499                 sd->csd.info = sd;
9500                 sd->cpu = i;
9501 #endif
9502
9503                 sd->backlog.poll = process_backlog;
9504                 sd->backlog.weight = weight_p;
9505         }
9506
9507         dev_boot_phase = 0;
9508
9509         /* The loopback device is special if any other network devices
9510          * is present in a network namespace the loopback device must
9511          * be present. Since we now dynamically allocate and free the
9512          * loopback device ensure this invariant is maintained by
9513          * keeping the loopback device as the first device on the
9514          * list of network devices.  Ensuring the loopback devices
9515          * is the first device that appears and the last network device
9516          * that disappears.
9517          */
9518         if (register_pernet_device(&loopback_net_ops))
9519                 goto out;
9520
9521         if (register_pernet_device(&default_device_ops))
9522                 goto out;
9523
9524         open_softirq(NET_TX_SOFTIRQ, net_tx_action);
9525         open_softirq(NET_RX_SOFTIRQ, net_rx_action);
9526
9527         rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
9528                                        NULL, dev_cpu_dead);
9529         WARN_ON(rc < 0);
9530         rc = 0;
9531 out:
9532         return rc;
9533 }
9534
9535 subsys_initcall(net_dev_init);