OSDN Git Service

net: Resend IGMP memberships upon peer notification.
[sagit-ice-cold/kernel_xiaomi_msm8998.git] / net / core / dev.c
1 /*
2  *      NET3    Protocol independent device support routines.
3  *
4  *              This program is free software; you can redistribute it and/or
5  *              modify it under the terms of the GNU General Public License
6  *              as published by the Free Software Foundation; either version
7  *              2 of the License, or (at your option) any later version.
8  *
9  *      Derived from the non IP parts of dev.c 1.0.19
10  *              Authors:        Ross Biro
11  *                              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *                              Mark Evans, <evansmp@uhura.aston.ac.uk>
13  *
14  *      Additional Authors:
15  *              Florian la Roche <rzsfl@rz.uni-sb.de>
16  *              Alan Cox <gw4pts@gw4pts.ampr.org>
17  *              David Hinds <dahinds@users.sourceforge.net>
18  *              Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19  *              Adam Sulmicki <adam@cfar.umd.edu>
20  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
21  *
22  *      Changes:
23  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
24  *                                      to 2 if register_netdev gets called
25  *                                      before net_dev_init & also removed a
26  *                                      few lines of code in the process.
27  *              Alan Cox        :       device private ioctl copies fields back.
28  *              Alan Cox        :       Transmit queue code does relevant
29  *                                      stunts to keep the queue safe.
30  *              Alan Cox        :       Fixed double lock.
31  *              Alan Cox        :       Fixed promisc NULL pointer trap
32  *              ????????        :       Support the full private ioctl range
33  *              Alan Cox        :       Moved ioctl permission check into
34  *                                      drivers
35  *              Tim Kordas      :       SIOCADDMULTI/SIOCDELMULTI
36  *              Alan Cox        :       100 backlog just doesn't cut it when
37  *                                      you start doing multicast video 8)
38  *              Alan Cox        :       Rewrote net_bh and list manager.
39  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
40  *              Alan Cox        :       Took out transmit every packet pass
41  *                                      Saved a few bytes in the ioctl handler
42  *              Alan Cox        :       Network driver sets packet type before
43  *                                      calling netif_rx. Saves a function
44  *                                      call a packet.
45  *              Alan Cox        :       Hashed net_bh()
46  *              Richard Kooijman:       Timestamp fixes.
47  *              Alan Cox        :       Wrong field in SIOCGIFDSTADDR
48  *              Alan Cox        :       Device lock protection.
49  *              Alan Cox        :       Fixed nasty side effect of device close
50  *                                      changes.
51  *              Rudi Cilibrasi  :       Pass the right thing to
52  *                                      set_mac_address()
53  *              Dave Miller     :       32bit quantity for the device lock to
54  *                                      make it work out on a Sparc.
55  *              Bjorn Ekwall    :       Added KERNELD hack.
56  *              Alan Cox        :       Cleaned up the backlog initialise.
57  *              Craig Metz      :       SIOCGIFCONF fix if space for under
58  *                                      1 device.
59  *          Thomas Bogendoerfer :       Return ENODEV for dev_open, if there
60  *                                      is no device open function.
61  *              Andi Kleen      :       Fix error reporting for SIOCGIFCONF
62  *          Michael Chastain    :       Fix signed/unsigned for SIOCGIFCONF
63  *              Cyrus Durgin    :       Cleaned for KMOD
64  *              Adam Sulmicki   :       Bug Fix : Network Device Unload
65  *                                      A network device unload needs to purge
66  *                                      the backlog queue.
67  *      Paul Rusty Russell      :       SIOCSIFNAME
68  *              Pekka Riikonen  :       Netdev boot-time settings code
69  *              Andrew Morton   :       Make unregister_netdevice wait
70  *                                      indefinitely on dev->refcnt
71  *              J Hadi Salim    :       - Backlog queue sampling
72  *                                      - netif_rx() feedback
73  */
74
75 #include <asm/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/mutex.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/notifier.h>
96 #include <linux/skbuff.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <linux/rtnetlink.h>
100 #include <linux/stat.h>
101 #include <net/dst.h>
102 #include <net/dst_metadata.h>
103 #include <net/pkt_sched.h>
104 #include <net/checksum.h>
105 #include <net/xfrm.h>
106 #include <linux/highmem.h>
107 #include <linux/init.h>
108 #include <linux/module.h>
109 #include <linux/netpoll.h>
110 #include <linux/rcupdate.h>
111 #include <linux/delay.h>
112 #include <net/iw_handler.h>
113 #include <asm/current.h>
114 #include <linux/audit.h>
115 #include <linux/dmaengine.h>
116 #include <linux/err.h>
117 #include <linux/ctype.h>
118 #include <linux/if_arp.h>
119 #include <linux/if_vlan.h>
120 #include <linux/ip.h>
121 #include <net/ip.h>
122 #include <net/mpls.h>
123 #include <linux/ipv6.h>
124 #include <linux/in.h>
125 #include <linux/jhash.h>
126 #include <linux/random.h>
127 #include <trace/events/napi.h>
128 #include <trace/events/net.h>
129 #include <trace/events/skb.h>
130 #include <linux/pci.h>
131 #include <linux/inetdevice.h>
132 #include <linux/cpu_rmap.h>
133 #include <linux/static_key.h>
134 #include <linux/hashtable.h>
135 #include <linux/vmalloc.h>
136 #include <linux/if_macvlan.h>
137 #include <linux/errqueue.h>
138 #include <linux/hrtimer.h>
139 #include <linux/netfilter_ingress.h>
140
141 #include "net-sysfs.h"
142
143 /* Instead of increasing this, you should create a hash table. */
144 #define MAX_GRO_SKBS 8
145
146 /* This should be increased if a protocol with a bigger head is added. */
147 #define GRO_MAX_HEAD (MAX_HEADER + 128)
148
149 static DEFINE_SPINLOCK(ptype_lock);
150 static DEFINE_SPINLOCK(offload_lock);
151 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
152 struct list_head ptype_all __read_mostly;       /* Taps */
153 static struct list_head offload_base __read_mostly;
154
155 static int netif_rx_internal(struct sk_buff *skb);
156 static int call_netdevice_notifiers_info(unsigned long val,
157                                          struct net_device *dev,
158                                          struct netdev_notifier_info *info);
159
160 /*
161  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
162  * semaphore.
163  *
164  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
165  *
166  * Writers must hold the rtnl semaphore while they loop through the
167  * dev_base_head list, and hold dev_base_lock for writing when they do the
168  * actual updates.  This allows pure readers to access the list even
169  * while a writer is preparing to update it.
170  *
171  * To put it another way, dev_base_lock is held for writing only to
172  * protect against pure readers; the rtnl semaphore provides the
173  * protection against other writers.
174  *
175  * See, for example usages, register_netdevice() and
176  * unregister_netdevice(), which must be called with the rtnl
177  * semaphore held.
178  */
179 DEFINE_RWLOCK(dev_base_lock);
180 EXPORT_SYMBOL(dev_base_lock);
181
182 /* protects napi_hash addition/deletion and napi_gen_id */
183 static DEFINE_SPINLOCK(napi_hash_lock);
184
185 static unsigned int napi_gen_id = NR_CPUS;
186 static DEFINE_HASHTABLE(napi_hash, 8);
187
188 static seqcount_t devnet_rename_seq;
189
190 static inline void dev_base_seq_inc(struct net *net)
191 {
192         while (++net->dev_base_seq == 0);
193 }
194
195 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
196 {
197         unsigned int hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
198
199         return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
200 }
201
202 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
203 {
204         return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
205 }
206
207 static inline void rps_lock(struct softnet_data *sd)
208 {
209 #ifdef CONFIG_RPS
210         spin_lock(&sd->input_pkt_queue.lock);
211 #endif
212 }
213
214 static inline void rps_unlock(struct softnet_data *sd)
215 {
216 #ifdef CONFIG_RPS
217         spin_unlock(&sd->input_pkt_queue.lock);
218 #endif
219 }
220
221 /* Device list insertion */
222 static void list_netdevice(struct net_device *dev)
223 {
224         struct net *net = dev_net(dev);
225
226         ASSERT_RTNL();
227
228         write_lock_bh(&dev_base_lock);
229         list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
230         hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
231         hlist_add_head_rcu(&dev->index_hlist,
232                            dev_index_hash(net, dev->ifindex));
233         write_unlock_bh(&dev_base_lock);
234
235         dev_base_seq_inc(net);
236 }
237
238 /* Device list removal
239  * caller must respect a RCU grace period before freeing/reusing dev
240  */
241 static void unlist_netdevice(struct net_device *dev)
242 {
243         ASSERT_RTNL();
244
245         /* Unlink dev from the device chain */
246         write_lock_bh(&dev_base_lock);
247         list_del_rcu(&dev->dev_list);
248         hlist_del_rcu(&dev->name_hlist);
249         hlist_del_rcu(&dev->index_hlist);
250         write_unlock_bh(&dev_base_lock);
251
252         dev_base_seq_inc(dev_net(dev));
253 }
254
255 /*
256  *      Our notifier list
257  */
258
259 static RAW_NOTIFIER_HEAD(netdev_chain);
260
261 /*
262  *      Device drivers call our routines to queue packets here. We empty the
263  *      queue in the local softnet handler.
264  */
265
266 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
267 EXPORT_PER_CPU_SYMBOL(softnet_data);
268
269 #ifdef CONFIG_LOCKDEP
270 /*
271  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
272  * according to dev->type
273  */
274 static const unsigned short netdev_lock_type[] =
275         {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
276          ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
277          ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
278          ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
279          ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
280          ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
281          ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
282          ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
283          ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
284          ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
285          ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
286          ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
287          ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
288          ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
289          ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
290
291 static const char *const netdev_lock_name[] =
292         {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
293          "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
294          "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
295          "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
296          "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
297          "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
298          "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
299          "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
300          "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
301          "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
302          "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
303          "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
304          "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
305          "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
306          "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
307
308 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
309 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
310
311 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
312 {
313         int i;
314
315         for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
316                 if (netdev_lock_type[i] == dev_type)
317                         return i;
318         /* the last key is used by default */
319         return ARRAY_SIZE(netdev_lock_type) - 1;
320 }
321
322 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
323                                                  unsigned short dev_type)
324 {
325         int i;
326
327         i = netdev_lock_pos(dev_type);
328         lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
329                                    netdev_lock_name[i]);
330 }
331
332 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
333 {
334         int i;
335
336         i = netdev_lock_pos(dev->type);
337         lockdep_set_class_and_name(&dev->addr_list_lock,
338                                    &netdev_addr_lock_key[i],
339                                    netdev_lock_name[i]);
340 }
341 #else
342 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
343                                                  unsigned short dev_type)
344 {
345 }
346 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
347 {
348 }
349 #endif
350
351 /*******************************************************************************
352
353                 Protocol management and registration routines
354
355 *******************************************************************************/
356
357 /*
358  *      Add a protocol ID to the list. Now that the input handler is
359  *      smarter we can dispense with all the messy stuff that used to be
360  *      here.
361  *
362  *      BEWARE!!! Protocol handlers, mangling input packets,
363  *      MUST BE last in hash buckets and checking protocol handlers
364  *      MUST start from promiscuous ptype_all chain in net_bh.
365  *      It is true now, do not change it.
366  *      Explanation follows: if protocol handler, mangling packet, will
367  *      be the first on list, it is not able to sense, that packet
368  *      is cloned and should be copied-on-write, so that it will
369  *      change it and subsequent readers will get broken packet.
370  *                                                      --ANK (980803)
371  */
372
373 static inline struct list_head *ptype_head(const struct packet_type *pt)
374 {
375         if (pt->type == htons(ETH_P_ALL))
376                 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
377         else
378                 return pt->dev ? &pt->dev->ptype_specific :
379                                  &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
380 }
381
382 /**
383  *      dev_add_pack - add packet handler
384  *      @pt: packet type declaration
385  *
386  *      Add a protocol handler to the networking stack. The passed &packet_type
387  *      is linked into kernel lists and may not be freed until it has been
388  *      removed from the kernel lists.
389  *
390  *      This call does not sleep therefore it can not
391  *      guarantee all CPU's that are in middle of receiving packets
392  *      will see the new packet type (until the next received packet).
393  */
394
395 void dev_add_pack(struct packet_type *pt)
396 {
397         struct list_head *head = ptype_head(pt);
398
399         spin_lock(&ptype_lock);
400         list_add_rcu(&pt->list, head);
401         spin_unlock(&ptype_lock);
402 }
403 EXPORT_SYMBOL(dev_add_pack);
404
405 /**
406  *      __dev_remove_pack        - remove packet handler
407  *      @pt: packet type declaration
408  *
409  *      Remove a protocol handler that was previously added to the kernel
410  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
411  *      from the kernel lists and can be freed or reused once this function
412  *      returns.
413  *
414  *      The packet type might still be in use by receivers
415  *      and must not be freed until after all the CPU's have gone
416  *      through a quiescent state.
417  */
418 void __dev_remove_pack(struct packet_type *pt)
419 {
420         struct list_head *head = ptype_head(pt);
421         struct packet_type *pt1;
422
423         spin_lock(&ptype_lock);
424
425         list_for_each_entry(pt1, head, list) {
426                 if (pt == pt1) {
427                         list_del_rcu(&pt->list);
428                         goto out;
429                 }
430         }
431
432         pr_warn("dev_remove_pack: %p not found\n", pt);
433 out:
434         spin_unlock(&ptype_lock);
435 }
436 EXPORT_SYMBOL(__dev_remove_pack);
437
438 /**
439  *      dev_remove_pack  - remove packet handler
440  *      @pt: packet type declaration
441  *
442  *      Remove a protocol handler that was previously added to the kernel
443  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
444  *      from the kernel lists and can be freed or reused once this function
445  *      returns.
446  *
447  *      This call sleeps to guarantee that no CPU is looking at the packet
448  *      type after return.
449  */
450 void dev_remove_pack(struct packet_type *pt)
451 {
452         __dev_remove_pack(pt);
453
454         synchronize_net();
455 }
456 EXPORT_SYMBOL(dev_remove_pack);
457
458
459 /**
460  *      dev_add_offload - register offload handlers
461  *      @po: protocol offload declaration
462  *
463  *      Add protocol offload handlers to the networking stack. The passed
464  *      &proto_offload is linked into kernel lists and may not be freed until
465  *      it has been removed from the kernel lists.
466  *
467  *      This call does not sleep therefore it can not
468  *      guarantee all CPU's that are in middle of receiving packets
469  *      will see the new offload handlers (until the next received packet).
470  */
471 void dev_add_offload(struct packet_offload *po)
472 {
473         struct packet_offload *elem;
474
475         spin_lock(&offload_lock);
476         list_for_each_entry(elem, &offload_base, list) {
477                 if (po->priority < elem->priority)
478                         break;
479         }
480         list_add_rcu(&po->list, elem->list.prev);
481         spin_unlock(&offload_lock);
482 }
483 EXPORT_SYMBOL(dev_add_offload);
484
485 /**
486  *      __dev_remove_offload     - remove offload handler
487  *      @po: packet offload declaration
488  *
489  *      Remove a protocol offload handler that was previously added to the
490  *      kernel offload handlers by dev_add_offload(). The passed &offload_type
491  *      is removed from the kernel lists and can be freed or reused once this
492  *      function returns.
493  *
494  *      The packet type might still be in use by receivers
495  *      and must not be freed until after all the CPU's have gone
496  *      through a quiescent state.
497  */
498 static void __dev_remove_offload(struct packet_offload *po)
499 {
500         struct list_head *head = &offload_base;
501         struct packet_offload *po1;
502
503         spin_lock(&offload_lock);
504
505         list_for_each_entry(po1, head, list) {
506                 if (po == po1) {
507                         list_del_rcu(&po->list);
508                         goto out;
509                 }
510         }
511
512         pr_warn("dev_remove_offload: %p not found\n", po);
513 out:
514         spin_unlock(&offload_lock);
515 }
516
517 /**
518  *      dev_remove_offload       - remove packet offload handler
519  *      @po: packet offload declaration
520  *
521  *      Remove a packet offload handler that was previously added to the kernel
522  *      offload handlers by dev_add_offload(). The passed &offload_type is
523  *      removed from the kernel lists and can be freed or reused once this
524  *      function returns.
525  *
526  *      This call sleeps to guarantee that no CPU is looking at the packet
527  *      type after return.
528  */
529 void dev_remove_offload(struct packet_offload *po)
530 {
531         __dev_remove_offload(po);
532
533         synchronize_net();
534 }
535 EXPORT_SYMBOL(dev_remove_offload);
536
537 /******************************************************************************
538
539                       Device Boot-time Settings Routines
540
541 *******************************************************************************/
542
543 /* Boot time configuration table */
544 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
545
546 /**
547  *      netdev_boot_setup_add   - add new setup entry
548  *      @name: name of the device
549  *      @map: configured settings for the device
550  *
551  *      Adds new setup entry to the dev_boot_setup list.  The function
552  *      returns 0 on error and 1 on success.  This is a generic routine to
553  *      all netdevices.
554  */
555 static int netdev_boot_setup_add(char *name, struct ifmap *map)
556 {
557         struct netdev_boot_setup *s;
558         int i;
559
560         s = dev_boot_setup;
561         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
562                 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
563                         memset(s[i].name, 0, sizeof(s[i].name));
564                         strlcpy(s[i].name, name, IFNAMSIZ);
565                         memcpy(&s[i].map, map, sizeof(s[i].map));
566                         break;
567                 }
568         }
569
570         return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
571 }
572
573 /**
574  *      netdev_boot_setup_check - check boot time settings
575  *      @dev: the netdevice
576  *
577  *      Check boot time settings for the device.
578  *      The found settings are set for the device to be used
579  *      later in the device probing.
580  *      Returns 0 if no settings found, 1 if they are.
581  */
582 int netdev_boot_setup_check(struct net_device *dev)
583 {
584         struct netdev_boot_setup *s = dev_boot_setup;
585         int i;
586
587         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
588                 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
589                     !strcmp(dev->name, s[i].name)) {
590                         dev->irq        = s[i].map.irq;
591                         dev->base_addr  = s[i].map.base_addr;
592                         dev->mem_start  = s[i].map.mem_start;
593                         dev->mem_end    = s[i].map.mem_end;
594                         return 1;
595                 }
596         }
597         return 0;
598 }
599 EXPORT_SYMBOL(netdev_boot_setup_check);
600
601
602 /**
603  *      netdev_boot_base        - get address from boot time settings
604  *      @prefix: prefix for network device
605  *      @unit: id for network device
606  *
607  *      Check boot time settings for the base address of device.
608  *      The found settings are set for the device to be used
609  *      later in the device probing.
610  *      Returns 0 if no settings found.
611  */
612 unsigned long netdev_boot_base(const char *prefix, int unit)
613 {
614         const struct netdev_boot_setup *s = dev_boot_setup;
615         char name[IFNAMSIZ];
616         int i;
617
618         sprintf(name, "%s%d", prefix, unit);
619
620         /*
621          * If device already registered then return base of 1
622          * to indicate not to probe for this interface
623          */
624         if (__dev_get_by_name(&init_net, name))
625                 return 1;
626
627         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
628                 if (!strcmp(name, s[i].name))
629                         return s[i].map.base_addr;
630         return 0;
631 }
632
633 /*
634  * Saves at boot time configured settings for any netdevice.
635  */
636 int __init netdev_boot_setup(char *str)
637 {
638         int ints[5];
639         struct ifmap map;
640
641         str = get_options(str, ARRAY_SIZE(ints), ints);
642         if (!str || !*str)
643                 return 0;
644
645         /* Save settings */
646         memset(&map, 0, sizeof(map));
647         if (ints[0] > 0)
648                 map.irq = ints[1];
649         if (ints[0] > 1)
650                 map.base_addr = ints[2];
651         if (ints[0] > 2)
652                 map.mem_start = ints[3];
653         if (ints[0] > 3)
654                 map.mem_end = ints[4];
655
656         /* Add new entry to the list */
657         return netdev_boot_setup_add(str, &map);
658 }
659
660 __setup("netdev=", netdev_boot_setup);
661
662 /*******************************************************************************
663
664                             Device Interface Subroutines
665
666 *******************************************************************************/
667
668 /**
669  *      dev_get_iflink  - get 'iflink' value of a interface
670  *      @dev: targeted interface
671  *
672  *      Indicates the ifindex the interface is linked to.
673  *      Physical interfaces have the same 'ifindex' and 'iflink' values.
674  */
675
676 int dev_get_iflink(const struct net_device *dev)
677 {
678         if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
679                 return dev->netdev_ops->ndo_get_iflink(dev);
680
681         return dev->ifindex;
682 }
683 EXPORT_SYMBOL(dev_get_iflink);
684
685 /**
686  *      dev_fill_metadata_dst - Retrieve tunnel egress information.
687  *      @dev: targeted interface
688  *      @skb: The packet.
689  *
690  *      For better visibility of tunnel traffic OVS needs to retrieve
691  *      egress tunnel information for a packet. Following API allows
692  *      user to get this info.
693  */
694 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
695 {
696         struct ip_tunnel_info *info;
697
698         if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
699                 return -EINVAL;
700
701         info = skb_tunnel_info_unclone(skb);
702         if (!info)
703                 return -ENOMEM;
704         if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
705                 return -EINVAL;
706
707         return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
708 }
709 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
710
711 /**
712  *      __dev_get_by_name       - find a device by its name
713  *      @net: the applicable net namespace
714  *      @name: name to find
715  *
716  *      Find an interface by name. Must be called under RTNL semaphore
717  *      or @dev_base_lock. If the name is found a pointer to the device
718  *      is returned. If the name is not found then %NULL is returned. The
719  *      reference counters are not incremented so the caller must be
720  *      careful with locks.
721  */
722
723 struct net_device *__dev_get_by_name(struct net *net, const char *name)
724 {
725         struct net_device *dev;
726         struct hlist_head *head = dev_name_hash(net, name);
727
728         hlist_for_each_entry(dev, head, name_hlist)
729                 if (!strncmp(dev->name, name, IFNAMSIZ))
730                         return dev;
731
732         return NULL;
733 }
734 EXPORT_SYMBOL(__dev_get_by_name);
735
736 /**
737  *      dev_get_by_name_rcu     - find a device by its name
738  *      @net: the applicable net namespace
739  *      @name: name to find
740  *
741  *      Find an interface by name.
742  *      If the name is found a pointer to the device is returned.
743  *      If the name is not found then %NULL is returned.
744  *      The reference counters are not incremented so the caller must be
745  *      careful with locks. The caller must hold RCU lock.
746  */
747
748 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
749 {
750         struct net_device *dev;
751         struct hlist_head *head = dev_name_hash(net, name);
752
753         hlist_for_each_entry_rcu(dev, head, name_hlist)
754                 if (!strncmp(dev->name, name, IFNAMSIZ))
755                         return dev;
756
757         return NULL;
758 }
759 EXPORT_SYMBOL(dev_get_by_name_rcu);
760
761 /**
762  *      dev_get_by_name         - find a device by its name
763  *      @net: the applicable net namespace
764  *      @name: name to find
765  *
766  *      Find an interface by name. This can be called from any
767  *      context and does its own locking. The returned handle has
768  *      the usage count incremented and the caller must use dev_put() to
769  *      release it when it is no longer needed. %NULL is returned if no
770  *      matching device is found.
771  */
772
773 struct net_device *dev_get_by_name(struct net *net, const char *name)
774 {
775         struct net_device *dev;
776
777         rcu_read_lock();
778         dev = dev_get_by_name_rcu(net, name);
779         if (dev)
780                 dev_hold(dev);
781         rcu_read_unlock();
782         return dev;
783 }
784 EXPORT_SYMBOL(dev_get_by_name);
785
786 /**
787  *      __dev_get_by_index - find a device by its ifindex
788  *      @net: the applicable net namespace
789  *      @ifindex: index of device
790  *
791  *      Search for an interface by index. Returns %NULL if the device
792  *      is not found or a pointer to the device. The device has not
793  *      had its reference counter increased so the caller must be careful
794  *      about locking. The caller must hold either the RTNL semaphore
795  *      or @dev_base_lock.
796  */
797
798 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
799 {
800         struct net_device *dev;
801         struct hlist_head *head = dev_index_hash(net, ifindex);
802
803         hlist_for_each_entry(dev, head, index_hlist)
804                 if (dev->ifindex == ifindex)
805                         return dev;
806
807         return NULL;
808 }
809 EXPORT_SYMBOL(__dev_get_by_index);
810
811 /**
812  *      dev_get_by_index_rcu - find a device by its ifindex
813  *      @net: the applicable net namespace
814  *      @ifindex: index of device
815  *
816  *      Search for an interface by index. Returns %NULL if the device
817  *      is not found or a pointer to the device. The device has not
818  *      had its reference counter increased so the caller must be careful
819  *      about locking. The caller must hold RCU lock.
820  */
821
822 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
823 {
824         struct net_device *dev;
825         struct hlist_head *head = dev_index_hash(net, ifindex);
826
827         hlist_for_each_entry_rcu(dev, head, index_hlist)
828                 if (dev->ifindex == ifindex)
829                         return dev;
830
831         return NULL;
832 }
833 EXPORT_SYMBOL(dev_get_by_index_rcu);
834
835
836 /**
837  *      dev_get_by_index - find a device by its ifindex
838  *      @net: the applicable net namespace
839  *      @ifindex: index of device
840  *
841  *      Search for an interface by index. Returns NULL if the device
842  *      is not found or a pointer to the device. The device returned has
843  *      had a reference added and the pointer is safe until the user calls
844  *      dev_put to indicate they have finished with it.
845  */
846
847 struct net_device *dev_get_by_index(struct net *net, int ifindex)
848 {
849         struct net_device *dev;
850
851         rcu_read_lock();
852         dev = dev_get_by_index_rcu(net, ifindex);
853         if (dev)
854                 dev_hold(dev);
855         rcu_read_unlock();
856         return dev;
857 }
858 EXPORT_SYMBOL(dev_get_by_index);
859
860 /**
861  *      netdev_get_name - get a netdevice name, knowing its ifindex.
862  *      @net: network namespace
863  *      @name: a pointer to the buffer where the name will be stored.
864  *      @ifindex: the ifindex of the interface to get the name from.
865  *
866  *      The use of raw_seqcount_begin() and cond_resched() before
867  *      retrying is required as we want to give the writers a chance
868  *      to complete when CONFIG_PREEMPT is not set.
869  */
870 int netdev_get_name(struct net *net, char *name, int ifindex)
871 {
872         struct net_device *dev;
873         unsigned int seq;
874
875 retry:
876         seq = raw_seqcount_begin(&devnet_rename_seq);
877         rcu_read_lock();
878         dev = dev_get_by_index_rcu(net, ifindex);
879         if (!dev) {
880                 rcu_read_unlock();
881                 return -ENODEV;
882         }
883
884         strcpy(name, dev->name);
885         rcu_read_unlock();
886         if (read_seqcount_retry(&devnet_rename_seq, seq)) {
887                 cond_resched();
888                 goto retry;
889         }
890
891         return 0;
892 }
893
894 /**
895  *      dev_getbyhwaddr_rcu - find a device by its hardware address
896  *      @net: the applicable net namespace
897  *      @type: media type of device
898  *      @ha: hardware address
899  *
900  *      Search for an interface by MAC address. Returns NULL if the device
901  *      is not found or a pointer to the device.
902  *      The caller must hold RCU or RTNL.
903  *      The returned device has not had its ref count increased
904  *      and the caller must therefore be careful about locking
905  *
906  */
907
908 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
909                                        const char *ha)
910 {
911         struct net_device *dev;
912
913         for_each_netdev_rcu(net, dev)
914                 if (dev->type == type &&
915                     !memcmp(dev->dev_addr, ha, dev->addr_len))
916                         return dev;
917
918         return NULL;
919 }
920 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
921
922 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
923 {
924         struct net_device *dev;
925
926         ASSERT_RTNL();
927         for_each_netdev(net, dev)
928                 if (dev->type == type)
929                         return dev;
930
931         return NULL;
932 }
933 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
934
935 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
936 {
937         struct net_device *dev, *ret = NULL;
938
939         rcu_read_lock();
940         for_each_netdev_rcu(net, dev)
941                 if (dev->type == type) {
942                         dev_hold(dev);
943                         ret = dev;
944                         break;
945                 }
946         rcu_read_unlock();
947         return ret;
948 }
949 EXPORT_SYMBOL(dev_getfirstbyhwtype);
950
951 /**
952  *      __dev_get_by_flags - find any device with given flags
953  *      @net: the applicable net namespace
954  *      @if_flags: IFF_* values
955  *      @mask: bitmask of bits in if_flags to check
956  *
957  *      Search for any interface with the given flags. Returns NULL if a device
958  *      is not found or a pointer to the device. Must be called inside
959  *      rtnl_lock(), and result refcount is unchanged.
960  */
961
962 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
963                                       unsigned short mask)
964 {
965         struct net_device *dev, *ret;
966
967         ASSERT_RTNL();
968
969         ret = NULL;
970         for_each_netdev(net, dev) {
971                 if (((dev->flags ^ if_flags) & mask) == 0) {
972                         ret = dev;
973                         break;
974                 }
975         }
976         return ret;
977 }
978 EXPORT_SYMBOL(__dev_get_by_flags);
979
980 /**
981  *      dev_valid_name - check if name is okay for network device
982  *      @name: name string
983  *
984  *      Network device names need to be valid file names to
985  *      to allow sysfs to work.  We also disallow any kind of
986  *      whitespace.
987  */
988 bool dev_valid_name(const char *name)
989 {
990         if (*name == '\0')
991                 return false;
992         if (strlen(name) >= IFNAMSIZ)
993                 return false;
994         if (!strcmp(name, ".") || !strcmp(name, ".."))
995                 return false;
996
997         while (*name) {
998                 if (*name == '/' || *name == ':' || isspace(*name))
999                         return false;
1000                 name++;
1001         }
1002         return true;
1003 }
1004 EXPORT_SYMBOL(dev_valid_name);
1005
1006 /**
1007  *      __dev_alloc_name - allocate a name for a device
1008  *      @net: network namespace to allocate the device name in
1009  *      @name: name format string
1010  *      @buf:  scratch buffer and result name string
1011  *
1012  *      Passed a format string - eg "lt%d" it will try and find a suitable
1013  *      id. It scans list of devices to build up a free map, then chooses
1014  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1015  *      while allocating the name and adding the device in order to avoid
1016  *      duplicates.
1017  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1018  *      Returns the number of the unit assigned or a negative errno code.
1019  */
1020
1021 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1022 {
1023         int i = 0;
1024         const char *p;
1025         const int max_netdevices = 8*PAGE_SIZE;
1026         unsigned long *inuse;
1027         struct net_device *d;
1028
1029         p = strnchr(name, IFNAMSIZ-1, '%');
1030         if (p) {
1031                 /*
1032                  * Verify the string as this thing may have come from
1033                  * the user.  There must be either one "%d" and no other "%"
1034                  * characters.
1035                  */
1036                 if (p[1] != 'd' || strchr(p + 2, '%'))
1037                         return -EINVAL;
1038
1039                 /* Use one page as a bit array of possible slots */
1040                 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1041                 if (!inuse)
1042                         return -ENOMEM;
1043
1044                 for_each_netdev(net, d) {
1045                         if (!sscanf(d->name, name, &i))
1046                                 continue;
1047                         if (i < 0 || i >= max_netdevices)
1048                                 continue;
1049
1050                         /*  avoid cases where sscanf is not exact inverse of printf */
1051                         snprintf(buf, IFNAMSIZ, name, i);
1052                         if (!strncmp(buf, d->name, IFNAMSIZ))
1053                                 set_bit(i, inuse);
1054                 }
1055
1056                 i = find_first_zero_bit(inuse, max_netdevices);
1057                 free_page((unsigned long) inuse);
1058         }
1059
1060         if (buf != name)
1061                 snprintf(buf, IFNAMSIZ, name, i);
1062         if (!__dev_get_by_name(net, buf))
1063                 return i;
1064
1065         /* It is possible to run out of possible slots
1066          * when the name is long and there isn't enough space left
1067          * for the digits, or if all bits are used.
1068          */
1069         return -ENFILE;
1070 }
1071
1072 /**
1073  *      dev_alloc_name - allocate a name for a device
1074  *      @dev: device
1075  *      @name: name format string
1076  *
1077  *      Passed a format string - eg "lt%d" it will try and find a suitable
1078  *      id. It scans list of devices to build up a free map, then chooses
1079  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1080  *      while allocating the name and adding the device in order to avoid
1081  *      duplicates.
1082  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1083  *      Returns the number of the unit assigned or a negative errno code.
1084  */
1085
1086 int dev_alloc_name(struct net_device *dev, const char *name)
1087 {
1088         char buf[IFNAMSIZ];
1089         struct net *net;
1090         int ret;
1091
1092         BUG_ON(!dev_net(dev));
1093         net = dev_net(dev);
1094         ret = __dev_alloc_name(net, name, buf);
1095         if (ret >= 0)
1096                 strlcpy(dev->name, buf, IFNAMSIZ);
1097         return ret;
1098 }
1099 EXPORT_SYMBOL(dev_alloc_name);
1100
1101 static int dev_alloc_name_ns(struct net *net,
1102                              struct net_device *dev,
1103                              const char *name)
1104 {
1105         char buf[IFNAMSIZ];
1106         int ret;
1107
1108         ret = __dev_alloc_name(net, name, buf);
1109         if (ret >= 0)
1110                 strlcpy(dev->name, buf, IFNAMSIZ);
1111         return ret;
1112 }
1113
1114 int dev_get_valid_name(struct net *net, struct net_device *dev,
1115                        const char *name)
1116 {
1117         BUG_ON(!net);
1118
1119         if (!dev_valid_name(name))
1120                 return -EINVAL;
1121
1122         if (strchr(name, '%'))
1123                 return dev_alloc_name_ns(net, dev, name);
1124         else if (__dev_get_by_name(net, name))
1125                 return -EEXIST;
1126         else if (dev->name != name)
1127                 strlcpy(dev->name, name, IFNAMSIZ);
1128
1129         return 0;
1130 }
1131 EXPORT_SYMBOL(dev_get_valid_name);
1132
1133 /**
1134  *      dev_change_name - change name of a device
1135  *      @dev: device
1136  *      @newname: name (or format string) must be at least IFNAMSIZ
1137  *
1138  *      Change name of a device, can pass format strings "eth%d".
1139  *      for wildcarding.
1140  */
1141 int dev_change_name(struct net_device *dev, const char *newname)
1142 {
1143         unsigned char old_assign_type;
1144         char oldname[IFNAMSIZ];
1145         int err = 0;
1146         int ret;
1147         struct net *net;
1148
1149         ASSERT_RTNL();
1150         BUG_ON(!dev_net(dev));
1151
1152         net = dev_net(dev);
1153         if (dev->flags & IFF_UP)
1154                 return -EBUSY;
1155
1156         write_seqcount_begin(&devnet_rename_seq);
1157
1158         if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1159                 write_seqcount_end(&devnet_rename_seq);
1160                 return 0;
1161         }
1162
1163         memcpy(oldname, dev->name, IFNAMSIZ);
1164
1165         err = dev_get_valid_name(net, dev, newname);
1166         if (err < 0) {
1167                 write_seqcount_end(&devnet_rename_seq);
1168                 return err;
1169         }
1170
1171         if (oldname[0] && !strchr(oldname, '%'))
1172                 netdev_info(dev, "renamed from %s\n", oldname);
1173
1174         old_assign_type = dev->name_assign_type;
1175         dev->name_assign_type = NET_NAME_RENAMED;
1176
1177 rollback:
1178         ret = device_rename(&dev->dev, dev->name);
1179         if (ret) {
1180                 memcpy(dev->name, oldname, IFNAMSIZ);
1181                 dev->name_assign_type = old_assign_type;
1182                 write_seqcount_end(&devnet_rename_seq);
1183                 return ret;
1184         }
1185
1186         write_seqcount_end(&devnet_rename_seq);
1187
1188         netdev_adjacent_rename_links(dev, oldname);
1189
1190         write_lock_bh(&dev_base_lock);
1191         hlist_del_rcu(&dev->name_hlist);
1192         write_unlock_bh(&dev_base_lock);
1193
1194         synchronize_rcu();
1195
1196         write_lock_bh(&dev_base_lock);
1197         hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1198         write_unlock_bh(&dev_base_lock);
1199
1200         ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1201         ret = notifier_to_errno(ret);
1202
1203         if (ret) {
1204                 /* err >= 0 after dev_alloc_name() or stores the first errno */
1205                 if (err >= 0) {
1206                         err = ret;
1207                         write_seqcount_begin(&devnet_rename_seq);
1208                         memcpy(dev->name, oldname, IFNAMSIZ);
1209                         memcpy(oldname, newname, IFNAMSIZ);
1210                         dev->name_assign_type = old_assign_type;
1211                         old_assign_type = NET_NAME_RENAMED;
1212                         goto rollback;
1213                 } else {
1214                         pr_err("%s: name change rollback failed: %d\n",
1215                                dev->name, ret);
1216                 }
1217         }
1218
1219         return err;
1220 }
1221
1222 /**
1223  *      dev_set_alias - change ifalias of a device
1224  *      @dev: device
1225  *      @alias: name up to IFALIASZ
1226  *      @len: limit of bytes to copy from info
1227  *
1228  *      Set ifalias for a device,
1229  */
1230 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1231 {
1232         char *new_ifalias;
1233
1234         ASSERT_RTNL();
1235
1236         if (len >= IFALIASZ)
1237                 return -EINVAL;
1238
1239         if (!len) {
1240                 kfree(dev->ifalias);
1241                 dev->ifalias = NULL;
1242                 return 0;
1243         }
1244
1245         new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1246         if (!new_ifalias)
1247                 return -ENOMEM;
1248         dev->ifalias = new_ifalias;
1249         memcpy(dev->ifalias, alias, len);
1250         dev->ifalias[len] = 0;
1251
1252         return len;
1253 }
1254
1255
1256 /**
1257  *      netdev_features_change - device changes features
1258  *      @dev: device to cause notification
1259  *
1260  *      Called to indicate a device has changed features.
1261  */
1262 void netdev_features_change(struct net_device *dev)
1263 {
1264         call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1265 }
1266 EXPORT_SYMBOL(netdev_features_change);
1267
1268 /**
1269  *      netdev_state_change - device changes state
1270  *      @dev: device to cause notification
1271  *
1272  *      Called to indicate a device has changed state. This function calls
1273  *      the notifier chains for netdev_chain and sends a NEWLINK message
1274  *      to the routing socket.
1275  */
1276 void netdev_state_change(struct net_device *dev)
1277 {
1278         if (dev->flags & IFF_UP) {
1279                 struct netdev_notifier_change_info change_info;
1280
1281                 change_info.flags_changed = 0;
1282                 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
1283                                               &change_info.info);
1284                 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1285         }
1286 }
1287 EXPORT_SYMBOL(netdev_state_change);
1288
1289 /**
1290  *      netdev_notify_peers - notify network peers about existence of @dev
1291  *      @dev: network device
1292  *
1293  * Generate traffic such that interested network peers are aware of
1294  * @dev, such as by generating a gratuitous ARP. This may be used when
1295  * a device wants to inform the rest of the network about some sort of
1296  * reconfiguration such as a failover event or virtual machine
1297  * migration.
1298  */
1299 void netdev_notify_peers(struct net_device *dev)
1300 {
1301         rtnl_lock();
1302         call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1303         call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1304         rtnl_unlock();
1305 }
1306 EXPORT_SYMBOL(netdev_notify_peers);
1307
1308 static int __dev_open(struct net_device *dev)
1309 {
1310         const struct net_device_ops *ops = dev->netdev_ops;
1311         int ret;
1312
1313         ASSERT_RTNL();
1314
1315         if (!netif_device_present(dev))
1316                 return -ENODEV;
1317
1318         /* Block netpoll from trying to do any rx path servicing.
1319          * If we don't do this there is a chance ndo_poll_controller
1320          * or ndo_poll may be running while we open the device
1321          */
1322         netpoll_poll_disable(dev);
1323
1324         ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1325         ret = notifier_to_errno(ret);
1326         if (ret)
1327                 return ret;
1328
1329         set_bit(__LINK_STATE_START, &dev->state);
1330
1331         if (ops->ndo_validate_addr)
1332                 ret = ops->ndo_validate_addr(dev);
1333
1334         if (!ret && ops->ndo_open)
1335                 ret = ops->ndo_open(dev);
1336
1337         netpoll_poll_enable(dev);
1338
1339         if (ret)
1340                 clear_bit(__LINK_STATE_START, &dev->state);
1341         else {
1342                 dev->flags |= IFF_UP;
1343                 dev_set_rx_mode(dev);
1344                 dev_activate(dev);
1345                 add_device_randomness(dev->dev_addr, dev->addr_len);
1346         }
1347
1348         return ret;
1349 }
1350
1351 /**
1352  *      dev_open        - prepare an interface for use.
1353  *      @dev:   device to open
1354  *
1355  *      Takes a device from down to up state. The device's private open
1356  *      function is invoked and then the multicast lists are loaded. Finally
1357  *      the device is moved into the up state and a %NETDEV_UP message is
1358  *      sent to the netdev notifier chain.
1359  *
1360  *      Calling this function on an active interface is a nop. On a failure
1361  *      a negative errno code is returned.
1362  */
1363 int dev_open(struct net_device *dev)
1364 {
1365         int ret;
1366
1367         if (dev->flags & IFF_UP)
1368                 return 0;
1369
1370         ret = __dev_open(dev);
1371         if (ret < 0)
1372                 return ret;
1373
1374         rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1375         call_netdevice_notifiers(NETDEV_UP, dev);
1376
1377         return ret;
1378 }
1379 EXPORT_SYMBOL(dev_open);
1380
1381 static int __dev_close_many(struct list_head *head)
1382 {
1383         struct net_device *dev;
1384
1385         ASSERT_RTNL();
1386         might_sleep();
1387
1388         list_for_each_entry(dev, head, close_list) {
1389                 /* Temporarily disable netpoll until the interface is down */
1390                 netpoll_poll_disable(dev);
1391
1392                 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1393
1394                 clear_bit(__LINK_STATE_START, &dev->state);
1395
1396                 /* Synchronize to scheduled poll. We cannot touch poll list, it
1397                  * can be even on different cpu. So just clear netif_running().
1398                  *
1399                  * dev->stop() will invoke napi_disable() on all of it's
1400                  * napi_struct instances on this device.
1401                  */
1402                 smp_mb__after_atomic(); /* Commit netif_running(). */
1403         }
1404
1405         dev_deactivate_many(head);
1406
1407         list_for_each_entry(dev, head, close_list) {
1408                 const struct net_device_ops *ops = dev->netdev_ops;
1409
1410                 /*
1411                  *      Call the device specific close. This cannot fail.
1412                  *      Only if device is UP
1413                  *
1414                  *      We allow it to be called even after a DETACH hot-plug
1415                  *      event.
1416                  */
1417                 if (ops->ndo_stop)
1418                         ops->ndo_stop(dev);
1419
1420                 dev->flags &= ~IFF_UP;
1421                 netpoll_poll_enable(dev);
1422         }
1423
1424         return 0;
1425 }
1426
1427 static int __dev_close(struct net_device *dev)
1428 {
1429         int retval;
1430         LIST_HEAD(single);
1431
1432         list_add(&dev->close_list, &single);
1433         retval = __dev_close_many(&single);
1434         list_del(&single);
1435
1436         return retval;
1437 }
1438
1439 int dev_close_many(struct list_head *head, bool unlink)
1440 {
1441         struct net_device *dev, *tmp;
1442
1443         /* Remove the devices that don't need to be closed */
1444         list_for_each_entry_safe(dev, tmp, head, close_list)
1445                 if (!(dev->flags & IFF_UP))
1446                         list_del_init(&dev->close_list);
1447
1448         __dev_close_many(head);
1449
1450         list_for_each_entry_safe(dev, tmp, head, close_list) {
1451                 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1452                 call_netdevice_notifiers(NETDEV_DOWN, dev);
1453                 if (unlink)
1454                         list_del_init(&dev->close_list);
1455         }
1456
1457         return 0;
1458 }
1459 EXPORT_SYMBOL(dev_close_many);
1460
1461 /**
1462  *      dev_close - shutdown an interface.
1463  *      @dev: device to shutdown
1464  *
1465  *      This function moves an active device into down state. A
1466  *      %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1467  *      is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1468  *      chain.
1469  */
1470 int dev_close(struct net_device *dev)
1471 {
1472         if (dev->flags & IFF_UP) {
1473                 LIST_HEAD(single);
1474
1475                 list_add(&dev->close_list, &single);
1476                 dev_close_many(&single, true);
1477                 list_del(&single);
1478         }
1479         return 0;
1480 }
1481 EXPORT_SYMBOL(dev_close);
1482
1483
1484 /**
1485  *      dev_disable_lro - disable Large Receive Offload on a device
1486  *      @dev: device
1487  *
1488  *      Disable Large Receive Offload (LRO) on a net device.  Must be
1489  *      called under RTNL.  This is needed if received packets may be
1490  *      forwarded to another interface.
1491  */
1492 void dev_disable_lro(struct net_device *dev)
1493 {
1494         struct net_device *lower_dev;
1495         struct list_head *iter;
1496
1497         dev->wanted_features &= ~NETIF_F_LRO;
1498         netdev_update_features(dev);
1499
1500         if (unlikely(dev->features & NETIF_F_LRO))
1501                 netdev_WARN(dev, "failed to disable LRO!\n");
1502
1503         netdev_for_each_lower_dev(dev, lower_dev, iter)
1504                 dev_disable_lro(lower_dev);
1505 }
1506 EXPORT_SYMBOL(dev_disable_lro);
1507
1508 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1509                                    struct net_device *dev)
1510 {
1511         struct netdev_notifier_info info;
1512
1513         netdev_notifier_info_init(&info, dev);
1514         return nb->notifier_call(nb, val, &info);
1515 }
1516
1517 static int dev_boot_phase = 1;
1518
1519 /**
1520  *      register_netdevice_notifier - register a network notifier block
1521  *      @nb: notifier
1522  *
1523  *      Register a notifier to be called when network device events occur.
1524  *      The notifier passed is linked into the kernel structures and must
1525  *      not be reused until it has been unregistered. A negative errno code
1526  *      is returned on a failure.
1527  *
1528  *      When registered all registration and up events are replayed
1529  *      to the new notifier to allow device to have a race free
1530  *      view of the network device list.
1531  */
1532
1533 int register_netdevice_notifier(struct notifier_block *nb)
1534 {
1535         struct net_device *dev;
1536         struct net_device *last;
1537         struct net *net;
1538         int err;
1539
1540         rtnl_lock();
1541         err = raw_notifier_chain_register(&netdev_chain, nb);
1542         if (err)
1543                 goto unlock;
1544         if (dev_boot_phase)
1545                 goto unlock;
1546         for_each_net(net) {
1547                 for_each_netdev(net, dev) {
1548                         err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1549                         err = notifier_to_errno(err);
1550                         if (err)
1551                                 goto rollback;
1552
1553                         if (!(dev->flags & IFF_UP))
1554                                 continue;
1555
1556                         call_netdevice_notifier(nb, NETDEV_UP, dev);
1557                 }
1558         }
1559
1560 unlock:
1561         rtnl_unlock();
1562         return err;
1563
1564 rollback:
1565         last = dev;
1566         for_each_net(net) {
1567                 for_each_netdev(net, dev) {
1568                         if (dev == last)
1569                                 goto outroll;
1570
1571                         if (dev->flags & IFF_UP) {
1572                                 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1573                                                         dev);
1574                                 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1575                         }
1576                         call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1577                 }
1578         }
1579
1580 outroll:
1581         raw_notifier_chain_unregister(&netdev_chain, nb);
1582         goto unlock;
1583 }
1584 EXPORT_SYMBOL(register_netdevice_notifier);
1585
1586 /**
1587  *      unregister_netdevice_notifier - unregister a network notifier block
1588  *      @nb: notifier
1589  *
1590  *      Unregister a notifier previously registered by
1591  *      register_netdevice_notifier(). The notifier is unlinked into the
1592  *      kernel structures and may then be reused. A negative errno code
1593  *      is returned on a failure.
1594  *
1595  *      After unregistering unregister and down device events are synthesized
1596  *      for all devices on the device list to the removed notifier to remove
1597  *      the need for special case cleanup code.
1598  */
1599
1600 int unregister_netdevice_notifier(struct notifier_block *nb)
1601 {
1602         struct net_device *dev;
1603         struct net *net;
1604         int err;
1605
1606         rtnl_lock();
1607         err = raw_notifier_chain_unregister(&netdev_chain, nb);
1608         if (err)
1609                 goto unlock;
1610
1611         for_each_net(net) {
1612                 for_each_netdev(net, dev) {
1613                         if (dev->flags & IFF_UP) {
1614                                 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1615                                                         dev);
1616                                 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1617                         }
1618                         call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1619                 }
1620         }
1621 unlock:
1622         rtnl_unlock();
1623         return err;
1624 }
1625 EXPORT_SYMBOL(unregister_netdevice_notifier);
1626
1627 /**
1628  *      call_netdevice_notifiers_info - call all network notifier blocks
1629  *      @val: value passed unmodified to notifier function
1630  *      @dev: net_device pointer passed unmodified to notifier function
1631  *      @info: notifier information data
1632  *
1633  *      Call all network notifier blocks.  Parameters and return value
1634  *      are as for raw_notifier_call_chain().
1635  */
1636
1637 static int call_netdevice_notifiers_info(unsigned long val,
1638                                          struct net_device *dev,
1639                                          struct netdev_notifier_info *info)
1640 {
1641         ASSERT_RTNL();
1642         netdev_notifier_info_init(info, dev);
1643         return raw_notifier_call_chain(&netdev_chain, val, info);
1644 }
1645
1646 /**
1647  *      call_netdevice_notifiers - call all network notifier blocks
1648  *      @val: value passed unmodified to notifier function
1649  *      @dev: net_device pointer passed unmodified to notifier function
1650  *
1651  *      Call all network notifier blocks.  Parameters and return value
1652  *      are as for raw_notifier_call_chain().
1653  */
1654
1655 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1656 {
1657         struct netdev_notifier_info info;
1658
1659         return call_netdevice_notifiers_info(val, dev, &info);
1660 }
1661 EXPORT_SYMBOL(call_netdevice_notifiers);
1662
1663 #ifdef CONFIG_NET_INGRESS
1664 static struct static_key ingress_needed __read_mostly;
1665
1666 void net_inc_ingress_queue(void)
1667 {
1668         static_key_slow_inc(&ingress_needed);
1669 }
1670 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1671
1672 void net_dec_ingress_queue(void)
1673 {
1674         static_key_slow_dec(&ingress_needed);
1675 }
1676 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1677 #endif
1678
1679 static struct static_key netstamp_needed __read_mostly;
1680 #ifdef HAVE_JUMP_LABEL
1681 static atomic_t netstamp_needed_deferred;
1682 static atomic_t netstamp_wanted;
1683 static void netstamp_clear(struct work_struct *work)
1684 {
1685         int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1686         int wanted;
1687
1688         wanted = atomic_add_return(deferred, &netstamp_wanted);
1689         if (wanted > 0)
1690                 static_key_enable(&netstamp_needed);
1691         else
1692                 static_key_disable(&netstamp_needed);
1693 }
1694 static DECLARE_WORK(netstamp_work, netstamp_clear);
1695 #endif
1696
1697 void net_enable_timestamp(void)
1698 {
1699 #ifdef HAVE_JUMP_LABEL
1700         int wanted;
1701
1702         while (1) {
1703                 wanted = atomic_read(&netstamp_wanted);
1704                 if (wanted <= 0)
1705                         break;
1706                 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
1707                         return;
1708         }
1709         atomic_inc(&netstamp_needed_deferred);
1710         schedule_work(&netstamp_work);
1711 #else
1712         static_key_slow_inc(&netstamp_needed);
1713 #endif
1714 }
1715 EXPORT_SYMBOL(net_enable_timestamp);
1716
1717 void net_disable_timestamp(void)
1718 {
1719 #ifdef HAVE_JUMP_LABEL
1720         int wanted;
1721
1722         while (1) {
1723                 wanted = atomic_read(&netstamp_wanted);
1724                 if (wanted <= 1)
1725                         break;
1726                 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
1727                         return;
1728         }
1729         atomic_dec(&netstamp_needed_deferred);
1730         schedule_work(&netstamp_work);
1731 #else
1732         static_key_slow_dec(&netstamp_needed);
1733 #endif
1734 }
1735 EXPORT_SYMBOL(net_disable_timestamp);
1736
1737 static inline void net_timestamp_set(struct sk_buff *skb)
1738 {
1739         skb->tstamp.tv64 = 0;
1740         if (static_key_false(&netstamp_needed))
1741                 __net_timestamp(skb);
1742 }
1743
1744 #define net_timestamp_check(COND, SKB)                  \
1745         if (static_key_false(&netstamp_needed)) {               \
1746                 if ((COND) && !(SKB)->tstamp.tv64)      \
1747                         __net_timestamp(SKB);           \
1748         }                                               \
1749
1750 bool is_skb_forwardable(struct net_device *dev, struct sk_buff *skb)
1751 {
1752         unsigned int len;
1753
1754         if (!(dev->flags & IFF_UP))
1755                 return false;
1756
1757         len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1758         if (skb->len <= len)
1759                 return true;
1760
1761         /* if TSO is enabled, we don't care about the length as the packet
1762          * could be forwarded without being segmented before
1763          */
1764         if (skb_is_gso(skb))
1765                 return true;
1766
1767         return false;
1768 }
1769 EXPORT_SYMBOL_GPL(is_skb_forwardable);
1770
1771 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1772 {
1773         if (skb_orphan_frags(skb, GFP_ATOMIC) ||
1774             unlikely(!is_skb_forwardable(dev, skb))) {
1775                 atomic_long_inc(&dev->rx_dropped);
1776                 kfree_skb(skb);
1777                 return NET_RX_DROP;
1778         }
1779
1780         skb_scrub_packet(skb, true);
1781         skb->priority = 0;
1782         skb->protocol = eth_type_trans(skb, dev);
1783         skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1784
1785         return 0;
1786 }
1787 EXPORT_SYMBOL_GPL(__dev_forward_skb);
1788
1789 /**
1790  * dev_forward_skb - loopback an skb to another netif
1791  *
1792  * @dev: destination network device
1793  * @skb: buffer to forward
1794  *
1795  * return values:
1796  *      NET_RX_SUCCESS  (no congestion)
1797  *      NET_RX_DROP     (packet was dropped, but freed)
1798  *
1799  * dev_forward_skb can be used for injecting an skb from the
1800  * start_xmit function of one device into the receive queue
1801  * of another device.
1802  *
1803  * The receiving device may be in another namespace, so
1804  * we have to clear all information in the skb that could
1805  * impact namespace isolation.
1806  */
1807 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1808 {
1809         return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1810 }
1811 EXPORT_SYMBOL_GPL(dev_forward_skb);
1812
1813 static inline int deliver_skb(struct sk_buff *skb,
1814                               struct packet_type *pt_prev,
1815                               struct net_device *orig_dev)
1816 {
1817         if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1818                 return -ENOMEM;
1819         atomic_inc(&skb->users);
1820         return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1821 }
1822
1823 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1824                                           struct packet_type **pt,
1825                                           struct net_device *orig_dev,
1826                                           __be16 type,
1827                                           struct list_head *ptype_list)
1828 {
1829         struct packet_type *ptype, *pt_prev = *pt;
1830
1831         list_for_each_entry_rcu(ptype, ptype_list, list) {
1832                 if (ptype->type != type)
1833                         continue;
1834                 if (pt_prev)
1835                         deliver_skb(skb, pt_prev, orig_dev);
1836                 pt_prev = ptype;
1837         }
1838         *pt = pt_prev;
1839 }
1840
1841 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1842 {
1843         if (!ptype->af_packet_priv || !skb->sk)
1844                 return false;
1845
1846         if (ptype->id_match)
1847                 return ptype->id_match(ptype, skb->sk);
1848         else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1849                 return true;
1850
1851         return false;
1852 }
1853
1854 /*
1855  *      Support routine. Sends outgoing frames to any network
1856  *      taps currently in use.
1857  */
1858
1859 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1860 {
1861         struct packet_type *ptype;
1862         struct sk_buff *skb2 = NULL;
1863         struct packet_type *pt_prev = NULL;
1864         struct list_head *ptype_list = &ptype_all;
1865
1866         rcu_read_lock();
1867 again:
1868         list_for_each_entry_rcu(ptype, ptype_list, list) {
1869                 /* Never send packets back to the socket
1870                  * they originated from - MvS (miquels@drinkel.ow.org)
1871                  */
1872                 if (skb_loop_sk(ptype, skb))
1873                         continue;
1874
1875                 if (pt_prev) {
1876                         deliver_skb(skb2, pt_prev, skb->dev);
1877                         pt_prev = ptype;
1878                         continue;
1879                 }
1880
1881                 /* need to clone skb, done only once */
1882                 skb2 = skb_clone(skb, GFP_ATOMIC);
1883                 if (!skb2)
1884                         goto out_unlock;
1885
1886                 net_timestamp_set(skb2);
1887
1888                 /* skb->nh should be correctly
1889                  * set by sender, so that the second statement is
1890                  * just protection against buggy protocols.
1891                  */
1892                 skb_reset_mac_header(skb2);
1893
1894                 if (skb_network_header(skb2) < skb2->data ||
1895                     skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1896                         net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1897                                              ntohs(skb2->protocol),
1898                                              dev->name);
1899                         skb_reset_network_header(skb2);
1900                 }
1901
1902                 skb2->transport_header = skb2->network_header;
1903                 skb2->pkt_type = PACKET_OUTGOING;
1904                 pt_prev = ptype;
1905         }
1906
1907         if (ptype_list == &ptype_all) {
1908                 ptype_list = &dev->ptype_all;
1909                 goto again;
1910         }
1911 out_unlock:
1912         if (pt_prev)
1913                 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1914         rcu_read_unlock();
1915 }
1916
1917 /**
1918  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1919  * @dev: Network device
1920  * @txq: number of queues available
1921  *
1922  * If real_num_tx_queues is changed the tc mappings may no longer be
1923  * valid. To resolve this verify the tc mapping remains valid and if
1924  * not NULL the mapping. With no priorities mapping to this
1925  * offset/count pair it will no longer be used. In the worst case TC0
1926  * is invalid nothing can be done so disable priority mappings. If is
1927  * expected that drivers will fix this mapping if they can before
1928  * calling netif_set_real_num_tx_queues.
1929  */
1930 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1931 {
1932         int i;
1933         struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1934
1935         /* If TC0 is invalidated disable TC mapping */
1936         if (tc->offset + tc->count > txq) {
1937                 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1938                 dev->num_tc = 0;
1939                 return;
1940         }
1941
1942         /* Invalidated prio to tc mappings set to TC0 */
1943         for (i = 1; i < TC_BITMASK + 1; i++) {
1944                 int q = netdev_get_prio_tc_map(dev, i);
1945
1946                 tc = &dev->tc_to_txq[q];
1947                 if (tc->offset + tc->count > txq) {
1948                         pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1949                                 i, q);
1950                         netdev_set_prio_tc_map(dev, i, 0);
1951                 }
1952         }
1953 }
1954
1955 #ifdef CONFIG_XPS
1956 static DEFINE_MUTEX(xps_map_mutex);
1957 #define xmap_dereference(P)             \
1958         rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
1959
1960 static struct xps_map *remove_xps_queue(struct xps_dev_maps *dev_maps,
1961                                         int cpu, u16 index)
1962 {
1963         struct xps_map *map = NULL;
1964         int pos;
1965
1966         if (dev_maps)
1967                 map = xmap_dereference(dev_maps->cpu_map[cpu]);
1968
1969         for (pos = 0; map && pos < map->len; pos++) {
1970                 if (map->queues[pos] == index) {
1971                         if (map->len > 1) {
1972                                 map->queues[pos] = map->queues[--map->len];
1973                         } else {
1974                                 RCU_INIT_POINTER(dev_maps->cpu_map[cpu], NULL);
1975                                 kfree_rcu(map, rcu);
1976                                 map = NULL;
1977                         }
1978                         break;
1979                 }
1980         }
1981
1982         return map;
1983 }
1984
1985 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
1986 {
1987         struct xps_dev_maps *dev_maps;
1988         int cpu, i;
1989         bool active = false;
1990
1991         mutex_lock(&xps_map_mutex);
1992         dev_maps = xmap_dereference(dev->xps_maps);
1993
1994         if (!dev_maps)
1995                 goto out_no_maps;
1996
1997         for_each_possible_cpu(cpu) {
1998                 for (i = index; i < dev->num_tx_queues; i++) {
1999                         if (!remove_xps_queue(dev_maps, cpu, i))
2000                                 break;
2001                 }
2002                 if (i == dev->num_tx_queues)
2003                         active = true;
2004         }
2005
2006         if (!active) {
2007                 RCU_INIT_POINTER(dev->xps_maps, NULL);
2008                 kfree_rcu(dev_maps, rcu);
2009         }
2010
2011         for (i = index; i < dev->num_tx_queues; i++)
2012                 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
2013                                              NUMA_NO_NODE);
2014
2015 out_no_maps:
2016         mutex_unlock(&xps_map_mutex);
2017 }
2018
2019 static struct xps_map *expand_xps_map(struct xps_map *map,
2020                                       int cpu, u16 index)
2021 {
2022         struct xps_map *new_map;
2023         int alloc_len = XPS_MIN_MAP_ALLOC;
2024         int i, pos;
2025
2026         for (pos = 0; map && pos < map->len; pos++) {
2027                 if (map->queues[pos] != index)
2028                         continue;
2029                 return map;
2030         }
2031
2032         /* Need to add queue to this CPU's existing map */
2033         if (map) {
2034                 if (pos < map->alloc_len)
2035                         return map;
2036
2037                 alloc_len = map->alloc_len * 2;
2038         }
2039
2040         /* Need to allocate new map to store queue on this CPU's map */
2041         new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2042                                cpu_to_node(cpu));
2043         if (!new_map)
2044                 return NULL;
2045
2046         for (i = 0; i < pos; i++)
2047                 new_map->queues[i] = map->queues[i];
2048         new_map->alloc_len = alloc_len;
2049         new_map->len = pos;
2050
2051         return new_map;
2052 }
2053
2054 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2055                         u16 index)
2056 {
2057         struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2058         struct xps_map *map, *new_map;
2059         int maps_sz = max_t(unsigned int, XPS_DEV_MAPS_SIZE, L1_CACHE_BYTES);
2060         int cpu, numa_node_id = -2;
2061         bool active = false;
2062
2063         mutex_lock(&xps_map_mutex);
2064
2065         dev_maps = xmap_dereference(dev->xps_maps);
2066
2067         /* allocate memory for queue storage */
2068         for_each_online_cpu(cpu) {
2069                 if (!cpumask_test_cpu(cpu, mask))
2070                         continue;
2071
2072                 if (!new_dev_maps)
2073                         new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2074                 if (!new_dev_maps) {
2075                         mutex_unlock(&xps_map_mutex);
2076                         return -ENOMEM;
2077                 }
2078
2079                 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2080                                  NULL;
2081
2082                 map = expand_xps_map(map, cpu, index);
2083                 if (!map)
2084                         goto error;
2085
2086                 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
2087         }
2088
2089         if (!new_dev_maps)
2090                 goto out_no_new_maps;
2091
2092         for_each_possible_cpu(cpu) {
2093                 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
2094                         /* add queue to CPU maps */
2095                         int pos = 0;
2096
2097                         map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2098                         while ((pos < map->len) && (map->queues[pos] != index))
2099                                 pos++;
2100
2101                         if (pos == map->len)
2102                                 map->queues[map->len++] = index;
2103 #ifdef CONFIG_NUMA
2104                         if (numa_node_id == -2)
2105                                 numa_node_id = cpu_to_node(cpu);
2106                         else if (numa_node_id != cpu_to_node(cpu))
2107                                 numa_node_id = -1;
2108 #endif
2109                 } else if (dev_maps) {
2110                         /* fill in the new device map from the old device map */
2111                         map = xmap_dereference(dev_maps->cpu_map[cpu]);
2112                         RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
2113                 }
2114
2115         }
2116
2117         rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2118
2119         /* Cleanup old maps */
2120         if (dev_maps) {
2121                 for_each_possible_cpu(cpu) {
2122                         new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2123                         map = xmap_dereference(dev_maps->cpu_map[cpu]);
2124                         if (map && map != new_map)
2125                                 kfree_rcu(map, rcu);
2126                 }
2127
2128                 kfree_rcu(dev_maps, rcu);
2129         }
2130
2131         dev_maps = new_dev_maps;
2132         active = true;
2133
2134 out_no_new_maps:
2135         /* update Tx queue numa node */
2136         netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2137                                      (numa_node_id >= 0) ? numa_node_id :
2138                                      NUMA_NO_NODE);
2139
2140         if (!dev_maps)
2141                 goto out_no_maps;
2142
2143         /* removes queue from unused CPUs */
2144         for_each_possible_cpu(cpu) {
2145                 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu))
2146                         continue;
2147
2148                 if (remove_xps_queue(dev_maps, cpu, index))
2149                         active = true;
2150         }
2151
2152         /* free map if not active */
2153         if (!active) {
2154                 RCU_INIT_POINTER(dev->xps_maps, NULL);
2155                 kfree_rcu(dev_maps, rcu);
2156         }
2157
2158 out_no_maps:
2159         mutex_unlock(&xps_map_mutex);
2160
2161         return 0;
2162 error:
2163         /* remove any maps that we added */
2164         for_each_possible_cpu(cpu) {
2165                 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2166                 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2167                                  NULL;
2168                 if (new_map && new_map != map)
2169                         kfree(new_map);
2170         }
2171
2172         mutex_unlock(&xps_map_mutex);
2173
2174         kfree(new_dev_maps);
2175         return -ENOMEM;
2176 }
2177 EXPORT_SYMBOL(netif_set_xps_queue);
2178
2179 #endif
2180 /*
2181  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2182  * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2183  */
2184 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2185 {
2186         int rc;
2187
2188         if (txq < 1 || txq > dev->num_tx_queues)
2189                 return -EINVAL;
2190
2191         if (dev->reg_state == NETREG_REGISTERED ||
2192             dev->reg_state == NETREG_UNREGISTERING) {
2193                 ASSERT_RTNL();
2194
2195                 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2196                                                   txq);
2197                 if (rc)
2198                         return rc;
2199
2200                 if (dev->num_tc)
2201                         netif_setup_tc(dev, txq);
2202
2203                 if (txq < dev->real_num_tx_queues) {
2204                         qdisc_reset_all_tx_gt(dev, txq);
2205 #ifdef CONFIG_XPS
2206                         netif_reset_xps_queues_gt(dev, txq);
2207 #endif
2208                 }
2209         }
2210
2211         dev->real_num_tx_queues = txq;
2212         return 0;
2213 }
2214 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2215
2216 #ifdef CONFIG_SYSFS
2217 /**
2218  *      netif_set_real_num_rx_queues - set actual number of RX queues used
2219  *      @dev: Network device
2220  *      @rxq: Actual number of RX queues
2221  *
2222  *      This must be called either with the rtnl_lock held or before
2223  *      registration of the net device.  Returns 0 on success, or a
2224  *      negative error code.  If called before registration, it always
2225  *      succeeds.
2226  */
2227 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2228 {
2229         int rc;
2230
2231         if (rxq < 1 || rxq > dev->num_rx_queues)
2232                 return -EINVAL;
2233
2234         if (dev->reg_state == NETREG_REGISTERED) {
2235                 ASSERT_RTNL();
2236
2237                 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2238                                                   rxq);
2239                 if (rc)
2240                         return rc;
2241         }
2242
2243         dev->real_num_rx_queues = rxq;
2244         return 0;
2245 }
2246 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2247 #endif
2248
2249 /**
2250  * netif_get_num_default_rss_queues - default number of RSS queues
2251  *
2252  * This routine should set an upper limit on the number of RSS queues
2253  * used by default by multiqueue devices.
2254  */
2255 int netif_get_num_default_rss_queues(void)
2256 {
2257         return min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2258 }
2259 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2260
2261 static inline void __netif_reschedule(struct Qdisc *q)
2262 {
2263         struct softnet_data *sd;
2264         unsigned long flags;
2265
2266         local_irq_save(flags);
2267         sd = this_cpu_ptr(&softnet_data);
2268         q->next_sched = NULL;
2269         *sd->output_queue_tailp = q;
2270         sd->output_queue_tailp = &q->next_sched;
2271         raise_softirq_irqoff(NET_TX_SOFTIRQ);
2272         local_irq_restore(flags);
2273 }
2274
2275 void __netif_schedule(struct Qdisc *q)
2276 {
2277         if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2278                 __netif_reschedule(q);
2279 }
2280 EXPORT_SYMBOL(__netif_schedule);
2281
2282 struct dev_kfree_skb_cb {
2283         enum skb_free_reason reason;
2284 };
2285
2286 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2287 {
2288         return (struct dev_kfree_skb_cb *)skb->cb;
2289 }
2290
2291 void netif_schedule_queue(struct netdev_queue *txq)
2292 {
2293         rcu_read_lock();
2294         if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2295                 struct Qdisc *q = rcu_dereference(txq->qdisc);
2296
2297                 __netif_schedule(q);
2298         }
2299         rcu_read_unlock();
2300 }
2301 EXPORT_SYMBOL(netif_schedule_queue);
2302
2303 /**
2304  *      netif_wake_subqueue - allow sending packets on subqueue
2305  *      @dev: network device
2306  *      @queue_index: sub queue index
2307  *
2308  * Resume individual transmit queue of a device with multiple transmit queues.
2309  */
2310 void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
2311 {
2312         struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2313
2314         if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &txq->state)) {
2315                 struct Qdisc *q;
2316
2317                 rcu_read_lock();
2318                 q = rcu_dereference(txq->qdisc);
2319                 __netif_schedule(q);
2320                 rcu_read_unlock();
2321         }
2322 }
2323 EXPORT_SYMBOL(netif_wake_subqueue);
2324
2325 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2326 {
2327         if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2328                 struct Qdisc *q;
2329
2330                 rcu_read_lock();
2331                 q = rcu_dereference(dev_queue->qdisc);
2332                 __netif_schedule(q);
2333                 rcu_read_unlock();
2334         }
2335 }
2336 EXPORT_SYMBOL(netif_tx_wake_queue);
2337
2338 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2339 {
2340         unsigned long flags;
2341
2342         if (unlikely(!skb))
2343                 return;
2344
2345         if (likely(atomic_read(&skb->users) == 1)) {
2346                 smp_rmb();
2347                 atomic_set(&skb->users, 0);
2348         } else if (likely(!atomic_dec_and_test(&skb->users))) {
2349                 return;
2350         }
2351         get_kfree_skb_cb(skb)->reason = reason;
2352         local_irq_save(flags);
2353         skb->next = __this_cpu_read(softnet_data.completion_queue);
2354         __this_cpu_write(softnet_data.completion_queue, skb);
2355         raise_softirq_irqoff(NET_TX_SOFTIRQ);
2356         local_irq_restore(flags);
2357 }
2358 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2359
2360 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2361 {
2362         if (in_irq() || irqs_disabled())
2363                 __dev_kfree_skb_irq(skb, reason);
2364         else
2365                 dev_kfree_skb(skb);
2366 }
2367 EXPORT_SYMBOL(__dev_kfree_skb_any);
2368
2369
2370 /**
2371  * netif_device_detach - mark device as removed
2372  * @dev: network device
2373  *
2374  * Mark device as removed from system and therefore no longer available.
2375  */
2376 void netif_device_detach(struct net_device *dev)
2377 {
2378         if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2379             netif_running(dev)) {
2380                 netif_tx_stop_all_queues(dev);
2381         }
2382 }
2383 EXPORT_SYMBOL(netif_device_detach);
2384
2385 /**
2386  * netif_device_attach - mark device as attached
2387  * @dev: network device
2388  *
2389  * Mark device as attached from system and restart if needed.
2390  */
2391 void netif_device_attach(struct net_device *dev)
2392 {
2393         if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2394             netif_running(dev)) {
2395                 netif_tx_wake_all_queues(dev);
2396                 __netdev_watchdog_up(dev);
2397         }
2398 }
2399 EXPORT_SYMBOL(netif_device_attach);
2400
2401 /*
2402  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2403  * to be used as a distribution range.
2404  */
2405 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
2406                   unsigned int num_tx_queues)
2407 {
2408         u32 hash;
2409         u16 qoffset = 0;
2410         u16 qcount = num_tx_queues;
2411
2412         if (skb_rx_queue_recorded(skb)) {
2413                 hash = skb_get_rx_queue(skb);
2414                 while (unlikely(hash >= num_tx_queues))
2415                         hash -= num_tx_queues;
2416                 return hash;
2417         }
2418
2419         if (dev->num_tc) {
2420                 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2421                 qoffset = dev->tc_to_txq[tc].offset;
2422                 qcount = dev->tc_to_txq[tc].count;
2423         }
2424
2425         return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2426 }
2427 EXPORT_SYMBOL(__skb_tx_hash);
2428
2429 static void skb_warn_bad_offload(const struct sk_buff *skb)
2430 {
2431         static const netdev_features_t null_features = 0;
2432         struct net_device *dev = skb->dev;
2433         const char *name = "";
2434
2435         if (!net_ratelimit())
2436                 return;
2437
2438         if (dev) {
2439                 if (dev->dev.parent)
2440                         name = dev_driver_string(dev->dev.parent);
2441                 else
2442                         name = netdev_name(dev);
2443         }
2444         WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2445              "gso_type=%d ip_summed=%d\n",
2446              name, dev ? &dev->features : &null_features,
2447              skb->sk ? &skb->sk->sk_route_caps : &null_features,
2448              skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2449              skb_shinfo(skb)->gso_type, skb->ip_summed);
2450 }
2451
2452 /*
2453  * Invalidate hardware checksum when packet is to be mangled, and
2454  * complete checksum manually on outgoing path.
2455  */
2456 int skb_checksum_help(struct sk_buff *skb)
2457 {
2458         __wsum csum;
2459         int ret = 0, offset;
2460
2461         if (skb->ip_summed == CHECKSUM_COMPLETE)
2462                 goto out_set_summed;
2463
2464         if (unlikely(skb_shinfo(skb)->gso_size)) {
2465                 skb_warn_bad_offload(skb);
2466                 return -EINVAL;
2467         }
2468
2469         /* Before computing a checksum, we should make sure no frag could
2470          * be modified by an external entity : checksum could be wrong.
2471          */
2472         if (skb_has_shared_frag(skb)) {
2473                 ret = __skb_linearize(skb);
2474                 if (ret)
2475                         goto out;
2476         }
2477
2478         offset = skb_checksum_start_offset(skb);
2479         BUG_ON(offset >= skb_headlen(skb));
2480         csum = skb_checksum(skb, offset, skb->len - offset, 0);
2481
2482         offset += skb->csum_offset;
2483         BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2484
2485         if (skb_cloned(skb) &&
2486             !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2487                 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2488                 if (ret)
2489                         goto out;
2490         }
2491
2492         *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
2493 out_set_summed:
2494         skb->ip_summed = CHECKSUM_NONE;
2495 out:
2496         return ret;
2497 }
2498 EXPORT_SYMBOL(skb_checksum_help);
2499
2500 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2501 {
2502         __be16 type = skb->protocol;
2503
2504         /* Tunnel gso handlers can set protocol to ethernet. */
2505         if (type == htons(ETH_P_TEB)) {
2506                 struct ethhdr *eth;
2507
2508                 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2509                         return 0;
2510
2511                 eth = (struct ethhdr *)skb_mac_header(skb);
2512                 type = eth->h_proto;
2513         }
2514
2515         return __vlan_get_protocol(skb, type, depth);
2516 }
2517
2518 /**
2519  *      skb_mac_gso_segment - mac layer segmentation handler.
2520  *      @skb: buffer to segment
2521  *      @features: features for the output path (see dev->features)
2522  */
2523 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2524                                     netdev_features_t features)
2525 {
2526         struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2527         struct packet_offload *ptype;
2528         int vlan_depth = skb->mac_len;
2529         __be16 type = skb_network_protocol(skb, &vlan_depth);
2530
2531         if (unlikely(!type))
2532                 return ERR_PTR(-EINVAL);
2533
2534         __skb_pull(skb, vlan_depth);
2535
2536         rcu_read_lock();
2537         list_for_each_entry_rcu(ptype, &offload_base, list) {
2538                 if (ptype->type == type && ptype->callbacks.gso_segment) {
2539                         segs = ptype->callbacks.gso_segment(skb, features);
2540                         break;
2541                 }
2542         }
2543         rcu_read_unlock();
2544
2545         __skb_push(skb, skb->data - skb_mac_header(skb));
2546
2547         return segs;
2548 }
2549 EXPORT_SYMBOL(skb_mac_gso_segment);
2550
2551
2552 /* openvswitch calls this on rx path, so we need a different check.
2553  */
2554 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2555 {
2556         if (tx_path)
2557                 return skb->ip_summed != CHECKSUM_PARTIAL &&
2558                        skb->ip_summed != CHECKSUM_UNNECESSARY;
2559
2560         return skb->ip_summed == CHECKSUM_NONE;
2561 }
2562
2563 /**
2564  *      __skb_gso_segment - Perform segmentation on skb.
2565  *      @skb: buffer to segment
2566  *      @features: features for the output path (see dev->features)
2567  *      @tx_path: whether it is called in TX path
2568  *
2569  *      This function segments the given skb and returns a list of segments.
2570  *
2571  *      It may return NULL if the skb requires no segmentation.  This is
2572  *      only possible when GSO is used for verifying header integrity.
2573  *
2574  *      Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
2575  */
2576 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2577                                   netdev_features_t features, bool tx_path)
2578 {
2579         struct sk_buff *segs;
2580
2581         if (unlikely(skb_needs_check(skb, tx_path))) {
2582                 int err;
2583
2584                 /* We're going to init ->check field in TCP or UDP header */
2585                 err = skb_cow_head(skb, 0);
2586                 if (err < 0)
2587                         return ERR_PTR(err);
2588         }
2589
2590         BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
2591                      sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
2592
2593         SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2594         SKB_GSO_CB(skb)->encap_level = 0;
2595
2596         skb_reset_mac_header(skb);
2597         skb_reset_mac_len(skb);
2598
2599         segs = skb_mac_gso_segment(skb, features);
2600
2601         if (unlikely(skb_needs_check(skb, tx_path)))
2602                 skb_warn_bad_offload(skb);
2603
2604         return segs;
2605 }
2606 EXPORT_SYMBOL(__skb_gso_segment);
2607
2608 /* Take action when hardware reception checksum errors are detected. */
2609 #ifdef CONFIG_BUG
2610 void netdev_rx_csum_fault(struct net_device *dev)
2611 {
2612         if (net_ratelimit()) {
2613                 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2614                 dump_stack();
2615         }
2616 }
2617 EXPORT_SYMBOL(netdev_rx_csum_fault);
2618 #endif
2619
2620 /* Actually, we should eliminate this check as soon as we know, that:
2621  * 1. IOMMU is present and allows to map all the memory.
2622  * 2. No high memory really exists on this machine.
2623  */
2624
2625 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2626 {
2627 #ifdef CONFIG_HIGHMEM
2628         int i;
2629         if (!(dev->features & NETIF_F_HIGHDMA)) {
2630                 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2631                         skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2632                         if (PageHighMem(skb_frag_page(frag)))
2633                                 return 1;
2634                 }
2635         }
2636
2637         if (PCI_DMA_BUS_IS_PHYS) {
2638                 struct device *pdev = dev->dev.parent;
2639
2640                 if (!pdev)
2641                         return 0;
2642                 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2643                         skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2644                         dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2645                         if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2646                                 return 1;
2647                 }
2648         }
2649 #endif
2650         return 0;
2651 }
2652
2653 /* If MPLS offload request, verify we are testing hardware MPLS features
2654  * instead of standard features for the netdev.
2655  */
2656 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
2657 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2658                                            netdev_features_t features,
2659                                            __be16 type)
2660 {
2661         if (eth_p_mpls(type))
2662                 features &= skb->dev->mpls_features;
2663
2664         return features;
2665 }
2666 #else
2667 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2668                                            netdev_features_t features,
2669                                            __be16 type)
2670 {
2671         return features;
2672 }
2673 #endif
2674
2675 static netdev_features_t harmonize_features(struct sk_buff *skb,
2676         netdev_features_t features)
2677 {
2678         int tmp;
2679         __be16 type;
2680
2681         type = skb_network_protocol(skb, &tmp);
2682         features = net_mpls_features(skb, features, type);
2683
2684         if (skb->ip_summed != CHECKSUM_NONE &&
2685             !can_checksum_protocol(features, type)) {
2686                 features &= ~NETIF_F_ALL_CSUM;
2687         }
2688         if (illegal_highdma(skb->dev, skb))
2689                 features &= ~NETIF_F_SG;
2690
2691         return features;
2692 }
2693
2694 netdev_features_t passthru_features_check(struct sk_buff *skb,
2695                                           struct net_device *dev,
2696                                           netdev_features_t features)
2697 {
2698         return features;
2699 }
2700 EXPORT_SYMBOL(passthru_features_check);
2701
2702 static netdev_features_t dflt_features_check(const struct sk_buff *skb,
2703                                              struct net_device *dev,
2704                                              netdev_features_t features)
2705 {
2706         return vlan_features_check(skb, features);
2707 }
2708
2709 netdev_features_t netif_skb_features(struct sk_buff *skb)
2710 {
2711         struct net_device *dev = skb->dev;
2712         netdev_features_t features = dev->features;
2713         u16 gso_segs = skb_shinfo(skb)->gso_segs;
2714
2715         if (gso_segs > dev->gso_max_segs || gso_segs < dev->gso_min_segs)
2716                 features &= ~NETIF_F_GSO_MASK;
2717
2718         /* If encapsulation offload request, verify we are testing
2719          * hardware encapsulation features instead of standard
2720          * features for the netdev
2721          */
2722         if (skb->encapsulation)
2723                 features &= dev->hw_enc_features;
2724
2725         if (skb_vlan_tagged(skb))
2726                 features = netdev_intersect_features(features,
2727                                                      dev->vlan_features |
2728                                                      NETIF_F_HW_VLAN_CTAG_TX |
2729                                                      NETIF_F_HW_VLAN_STAG_TX);
2730
2731         if (dev->netdev_ops->ndo_features_check)
2732                 features &= dev->netdev_ops->ndo_features_check(skb, dev,
2733                                                                 features);
2734         else
2735                 features &= dflt_features_check(skb, dev, features);
2736
2737         return harmonize_features(skb, features);
2738 }
2739 EXPORT_SYMBOL(netif_skb_features);
2740
2741 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
2742                     struct netdev_queue *txq, bool more)
2743 {
2744         unsigned int len;
2745         int rc;
2746
2747         if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all))
2748                 dev_queue_xmit_nit(skb, dev);
2749
2750         len = skb->len;
2751         trace_net_dev_start_xmit(skb, dev);
2752         rc = netdev_start_xmit(skb, dev, txq, more);
2753         trace_net_dev_xmit(skb, rc, dev, len);
2754
2755         return rc;
2756 }
2757
2758 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
2759                                     struct netdev_queue *txq, int *ret)
2760 {
2761         struct sk_buff *skb = first;
2762         int rc = NETDEV_TX_OK;
2763
2764         while (skb) {
2765                 struct sk_buff *next = skb->next;
2766
2767                 skb->next = NULL;
2768                 rc = xmit_one(skb, dev, txq, next != NULL);
2769                 if (unlikely(!dev_xmit_complete(rc))) {
2770                         skb->next = next;
2771                         goto out;
2772                 }
2773
2774                 skb = next;
2775                 if (netif_xmit_stopped(txq) && skb) {
2776                         rc = NETDEV_TX_BUSY;
2777                         break;
2778                 }
2779         }
2780
2781 out:
2782         *ret = rc;
2783         return skb;
2784 }
2785
2786 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
2787                                           netdev_features_t features)
2788 {
2789         if (skb_vlan_tag_present(skb) &&
2790             !vlan_hw_offload_capable(features, skb->vlan_proto))
2791                 skb = __vlan_hwaccel_push_inside(skb);
2792         return skb;
2793 }
2794
2795 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev)
2796 {
2797         netdev_features_t features;
2798
2799         if (skb->next)
2800                 return skb;
2801
2802         features = netif_skb_features(skb);
2803         skb = validate_xmit_vlan(skb, features);
2804         if (unlikely(!skb))
2805                 goto out_null;
2806
2807         if (netif_needs_gso(skb, features)) {
2808                 struct sk_buff *segs;
2809
2810                 segs = skb_gso_segment(skb, features);
2811                 if (IS_ERR(segs)) {
2812                         goto out_kfree_skb;
2813                 } else if (segs) {
2814                         consume_skb(skb);
2815                         skb = segs;
2816                 }
2817         } else {
2818                 if (skb_needs_linearize(skb, features) &&
2819                     __skb_linearize(skb))
2820                         goto out_kfree_skb;
2821
2822                 /* If packet is not checksummed and device does not
2823                  * support checksumming for this protocol, complete
2824                  * checksumming here.
2825                  */
2826                 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2827                         if (skb->encapsulation)
2828                                 skb_set_inner_transport_header(skb,
2829                                                                skb_checksum_start_offset(skb));
2830                         else
2831                                 skb_set_transport_header(skb,
2832                                                          skb_checksum_start_offset(skb));
2833                         if (!(features & NETIF_F_ALL_CSUM) &&
2834                             skb_checksum_help(skb))
2835                                 goto out_kfree_skb;
2836                 }
2837         }
2838
2839         return skb;
2840
2841 out_kfree_skb:
2842         kfree_skb(skb);
2843 out_null:
2844         return NULL;
2845 }
2846
2847 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev)
2848 {
2849         struct sk_buff *next, *head = NULL, *tail;
2850
2851         for (; skb != NULL; skb = next) {
2852                 next = skb->next;
2853                 skb->next = NULL;
2854
2855                 /* in case skb wont be segmented, point to itself */
2856                 skb->prev = skb;
2857
2858                 skb = validate_xmit_skb(skb, dev);
2859                 if (!skb)
2860                         continue;
2861
2862                 if (!head)
2863                         head = skb;
2864                 else
2865                         tail->next = skb;
2866                 /* If skb was segmented, skb->prev points to
2867                  * the last segment. If not, it still contains skb.
2868                  */
2869                 tail = skb->prev;
2870         }
2871         return head;
2872 }
2873 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
2874
2875 static void qdisc_pkt_len_init(struct sk_buff *skb)
2876 {
2877         const struct skb_shared_info *shinfo = skb_shinfo(skb);
2878
2879         qdisc_skb_cb(skb)->pkt_len = skb->len;
2880
2881         /* To get more precise estimation of bytes sent on wire,
2882          * we add to pkt_len the headers size of all segments
2883          */
2884         if (shinfo->gso_size)  {
2885                 unsigned int hdr_len;
2886                 u16 gso_segs = shinfo->gso_segs;
2887
2888                 /* mac layer + network layer */
2889                 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
2890
2891                 /* + transport layer */
2892                 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
2893                         hdr_len += tcp_hdrlen(skb);
2894                 else
2895                         hdr_len += sizeof(struct udphdr);
2896
2897                 if (shinfo->gso_type & SKB_GSO_DODGY)
2898                         gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
2899                                                 shinfo->gso_size);
2900
2901                 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
2902         }
2903 }
2904
2905 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2906                                  struct net_device *dev,
2907                                  struct netdev_queue *txq)
2908 {
2909         spinlock_t *root_lock = qdisc_lock(q);
2910         bool contended;
2911         int rc;
2912
2913         qdisc_pkt_len_init(skb);
2914         qdisc_calculate_pkt_len(skb, q);
2915         /*
2916          * Heuristic to force contended enqueues to serialize on a
2917          * separate lock before trying to get qdisc main lock.
2918          * This permits __QDISC___STATE_RUNNING owner to get the lock more
2919          * often and dequeue packets faster.
2920          */
2921         contended = qdisc_is_running(q);
2922         if (unlikely(contended))
2923                 spin_lock(&q->busylock);
2924
2925         spin_lock(root_lock);
2926         if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2927                 kfree_skb(skb);
2928                 rc = NET_XMIT_DROP;
2929         } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2930                    qdisc_run_begin(q)) {
2931                 /*
2932                  * This is a work-conserving queue; there are no old skbs
2933                  * waiting to be sent out; and the qdisc is not running -
2934                  * xmit the skb directly.
2935                  */
2936
2937                 qdisc_bstats_update(q, skb);
2938
2939                 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
2940                         if (unlikely(contended)) {
2941                                 spin_unlock(&q->busylock);
2942                                 contended = false;
2943                         }
2944                         __qdisc_run(q);
2945                 } else
2946                         qdisc_run_end(q);
2947
2948                 rc = NET_XMIT_SUCCESS;
2949         } else {
2950                 rc = q->enqueue(skb, q) & NET_XMIT_MASK;
2951                 if (qdisc_run_begin(q)) {
2952                         if (unlikely(contended)) {
2953                                 spin_unlock(&q->busylock);
2954                                 contended = false;
2955                         }
2956                         __qdisc_run(q);
2957                 }
2958         }
2959         spin_unlock(root_lock);
2960         if (unlikely(contended))
2961                 spin_unlock(&q->busylock);
2962         return rc;
2963 }
2964
2965 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
2966 static void skb_update_prio(struct sk_buff *skb)
2967 {
2968         struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
2969
2970         if (!skb->priority && skb->sk && map) {
2971                 unsigned int prioidx = skb->sk->sk_cgrp_prioidx;
2972
2973                 if (prioidx < map->priomap_len)
2974                         skb->priority = map->priomap[prioidx];
2975         }
2976 }
2977 #else
2978 #define skb_update_prio(skb)
2979 #endif
2980
2981 DEFINE_PER_CPU(int, xmit_recursion);
2982 EXPORT_SYMBOL(xmit_recursion);
2983
2984 #define RECURSION_LIMIT 10
2985
2986 /**
2987  *      dev_loopback_xmit - loop back @skb
2988  *      @net: network namespace this loopback is happening in
2989  *      @sk:  sk needed to be a netfilter okfn
2990  *      @skb: buffer to transmit
2991  */
2992 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
2993 {
2994         skb_reset_mac_header(skb);
2995         __skb_pull(skb, skb_network_offset(skb));
2996         skb->pkt_type = PACKET_LOOPBACK;
2997         skb->ip_summed = CHECKSUM_UNNECESSARY;
2998         WARN_ON(!skb_dst(skb));
2999         skb_dst_force(skb);
3000         netif_rx_ni(skb);
3001         return 0;
3002 }
3003 EXPORT_SYMBOL(dev_loopback_xmit);
3004
3005 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
3006 {
3007 #ifdef CONFIG_XPS
3008         struct xps_dev_maps *dev_maps;
3009         struct xps_map *map;
3010         int queue_index = -1;
3011
3012         rcu_read_lock();
3013         dev_maps = rcu_dereference(dev->xps_maps);
3014         if (dev_maps) {
3015                 map = rcu_dereference(
3016                     dev_maps->cpu_map[skb->sender_cpu - 1]);
3017                 if (map) {
3018                         if (map->len == 1)
3019                                 queue_index = map->queues[0];
3020                         else
3021                                 queue_index = map->queues[reciprocal_scale(skb_get_hash(skb),
3022                                                                            map->len)];
3023                         if (unlikely(queue_index >= dev->real_num_tx_queues))
3024                                 queue_index = -1;
3025                 }
3026         }
3027         rcu_read_unlock();
3028
3029         return queue_index;
3030 #else
3031         return -1;
3032 #endif
3033 }
3034
3035 static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb)
3036 {
3037         struct sock *sk = skb->sk;
3038         int queue_index = sk_tx_queue_get(sk);
3039
3040         if (queue_index < 0 || skb->ooo_okay ||
3041             queue_index >= dev->real_num_tx_queues) {
3042                 int new_index = get_xps_queue(dev, skb);
3043                 if (new_index < 0)
3044                         new_index = skb_tx_hash(dev, skb);
3045
3046                 if (queue_index != new_index && sk &&
3047                     sk_fullsock(sk) &&
3048                     rcu_access_pointer(sk->sk_dst_cache))
3049                         sk_tx_queue_set(sk, new_index);
3050
3051                 queue_index = new_index;
3052         }
3053
3054         return queue_index;
3055 }
3056
3057 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
3058                                     struct sk_buff *skb,
3059                                     void *accel_priv)
3060 {
3061         int queue_index = 0;
3062
3063 #ifdef CONFIG_XPS
3064         u32 sender_cpu = skb->sender_cpu - 1;
3065
3066         if (sender_cpu >= (u32)NR_CPUS)
3067                 skb->sender_cpu = raw_smp_processor_id() + 1;
3068 #endif
3069
3070         if (dev->real_num_tx_queues != 1) {
3071                 const struct net_device_ops *ops = dev->netdev_ops;
3072                 if (ops->ndo_select_queue)
3073                         queue_index = ops->ndo_select_queue(dev, skb, accel_priv,
3074                                                             __netdev_pick_tx);
3075                 else
3076                         queue_index = __netdev_pick_tx(dev, skb);
3077
3078                 if (!accel_priv)
3079                         queue_index = netdev_cap_txqueue(dev, queue_index);
3080         }
3081
3082         skb_set_queue_mapping(skb, queue_index);
3083         return netdev_get_tx_queue(dev, queue_index);
3084 }
3085
3086 /**
3087  *      __dev_queue_xmit - transmit a buffer
3088  *      @skb: buffer to transmit
3089  *      @accel_priv: private data used for L2 forwarding offload
3090  *
3091  *      Queue a buffer for transmission to a network device. The caller must
3092  *      have set the device and priority and built the buffer before calling
3093  *      this function. The function can be called from an interrupt.
3094  *
3095  *      A negative errno code is returned on a failure. A success does not
3096  *      guarantee the frame will be transmitted as it may be dropped due
3097  *      to congestion or traffic shaping.
3098  *
3099  * -----------------------------------------------------------------------------------
3100  *      I notice this method can also return errors from the queue disciplines,
3101  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
3102  *      be positive.
3103  *
3104  *      Regardless of the return value, the skb is consumed, so it is currently
3105  *      difficult to retry a send to this method.  (You can bump the ref count
3106  *      before sending to hold a reference for retry if you are careful.)
3107  *
3108  *      When calling this method, interrupts MUST be enabled.  This is because
3109  *      the BH enable code must have IRQs enabled so that it will not deadlock.
3110  *          --BLG
3111  */
3112 static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
3113 {
3114         struct net_device *dev = skb->dev;
3115         struct netdev_queue *txq;
3116         struct Qdisc *q;
3117         int rc = -ENOMEM;
3118
3119         skb_reset_mac_header(skb);
3120
3121         if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3122                 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3123
3124         /* Disable soft irqs for various locks below. Also
3125          * stops preemption for RCU.
3126          */
3127         rcu_read_lock_bh();
3128
3129         skb_update_prio(skb);
3130
3131         /* If device/qdisc don't need skb->dst, release it right now while
3132          * its hot in this cpu cache.
3133          */
3134         if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3135                 skb_dst_drop(skb);
3136         else
3137                 skb_dst_force(skb);
3138
3139 #ifdef CONFIG_NET_SWITCHDEV
3140         /* Don't forward if offload device already forwarded */
3141         if (skb->offload_fwd_mark &&
3142             skb->offload_fwd_mark == dev->offload_fwd_mark) {
3143                 consume_skb(skb);
3144                 rc = NET_XMIT_SUCCESS;
3145                 goto out;
3146         }
3147 #endif
3148
3149         txq = netdev_pick_tx(dev, skb, accel_priv);
3150         q = rcu_dereference_bh(txq->qdisc);
3151
3152 #ifdef CONFIG_NET_CLS_ACT
3153         skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
3154 #endif
3155         trace_net_dev_queue(skb);
3156         if (q->enqueue) {
3157                 rc = __dev_xmit_skb(skb, q, dev, txq);
3158                 goto out;
3159         }
3160
3161         /* The device has no queue. Common case for software devices:
3162            loopback, all the sorts of tunnels...
3163
3164            Really, it is unlikely that netif_tx_lock protection is necessary
3165            here.  (f.e. loopback and IP tunnels are clean ignoring statistics
3166            counters.)
3167            However, it is possible, that they rely on protection
3168            made by us here.
3169
3170            Check this and shot the lock. It is not prone from deadlocks.
3171            Either shot noqueue qdisc, it is even simpler 8)
3172          */
3173         if (dev->flags & IFF_UP) {
3174                 int cpu = smp_processor_id(); /* ok because BHs are off */
3175
3176                 if (txq->xmit_lock_owner != cpu) {
3177
3178                         if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
3179                                 goto recursion_alert;
3180
3181                         skb = validate_xmit_skb(skb, dev);
3182                         if (!skb)
3183                                 goto drop;
3184
3185                         HARD_TX_LOCK(dev, txq, cpu);
3186
3187                         if (!netif_xmit_stopped(txq)) {
3188                                 __this_cpu_inc(xmit_recursion);
3189                                 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
3190                                 __this_cpu_dec(xmit_recursion);
3191                                 if (dev_xmit_complete(rc)) {
3192                                         HARD_TX_UNLOCK(dev, txq);
3193                                         goto out;
3194                                 }
3195                         }
3196                         HARD_TX_UNLOCK(dev, txq);
3197                         net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3198                                              dev->name);
3199                 } else {
3200                         /* Recursion is detected! It is possible,
3201                          * unfortunately
3202                          */
3203 recursion_alert:
3204                         net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3205                                              dev->name);
3206                 }
3207         }
3208
3209         rc = -ENETDOWN;
3210 drop:
3211         rcu_read_unlock_bh();
3212
3213         atomic_long_inc(&dev->tx_dropped);
3214         kfree_skb_list(skb);
3215         return rc;
3216 out:
3217         rcu_read_unlock_bh();
3218         return rc;
3219 }
3220
3221 int dev_queue_xmit(struct sk_buff *skb)
3222 {
3223         return __dev_queue_xmit(skb, NULL);
3224 }
3225 EXPORT_SYMBOL(dev_queue_xmit);
3226
3227 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
3228 {
3229         return __dev_queue_xmit(skb, accel_priv);
3230 }
3231 EXPORT_SYMBOL(dev_queue_xmit_accel);
3232
3233
3234 /*=======================================================================
3235                         Receiver routines
3236   =======================================================================*/
3237
3238 int netdev_max_backlog __read_mostly = 1000;
3239 EXPORT_SYMBOL(netdev_max_backlog);
3240
3241 int netdev_tstamp_prequeue __read_mostly = 1;
3242 int netdev_budget __read_mostly = 300;
3243 int weight_p __read_mostly = 64;            /* old backlog weight */
3244
3245 /* Called with irq disabled */
3246 static inline void ____napi_schedule(struct softnet_data *sd,
3247                                      struct napi_struct *napi)
3248 {
3249         list_add_tail(&napi->poll_list, &sd->poll_list);
3250         __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3251 }
3252
3253 #ifdef CONFIG_RPS
3254
3255 /* One global table that all flow-based protocols share. */
3256 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3257 EXPORT_SYMBOL(rps_sock_flow_table);
3258 u32 rps_cpu_mask __read_mostly;
3259 EXPORT_SYMBOL(rps_cpu_mask);
3260
3261 struct static_key rps_needed __read_mostly;
3262
3263 static struct rps_dev_flow *
3264 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3265             struct rps_dev_flow *rflow, u16 next_cpu)
3266 {
3267         if (next_cpu < nr_cpu_ids) {
3268 #ifdef CONFIG_RFS_ACCEL
3269                 struct netdev_rx_queue *rxqueue;
3270                 struct rps_dev_flow_table *flow_table;
3271                 struct rps_dev_flow *old_rflow;
3272                 u32 flow_id;
3273                 u16 rxq_index;
3274                 int rc;
3275
3276                 /* Should we steer this flow to a different hardware queue? */
3277                 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3278                     !(dev->features & NETIF_F_NTUPLE))
3279                         goto out;
3280                 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3281                 if (rxq_index == skb_get_rx_queue(skb))
3282                         goto out;
3283
3284                 rxqueue = dev->_rx + rxq_index;
3285                 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3286                 if (!flow_table)
3287                         goto out;
3288                 flow_id = skb_get_hash(skb) & flow_table->mask;
3289                 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3290                                                         rxq_index, flow_id);
3291                 if (rc < 0)
3292                         goto out;
3293                 old_rflow = rflow;
3294                 rflow = &flow_table->flows[flow_id];
3295                 rflow->filter = rc;
3296                 if (old_rflow->filter == rflow->filter)
3297                         old_rflow->filter = RPS_NO_FILTER;
3298         out:
3299 #endif
3300                 rflow->last_qtail =
3301                         per_cpu(softnet_data, next_cpu).input_queue_head;
3302         }
3303
3304         rflow->cpu = next_cpu;
3305         return rflow;
3306 }
3307
3308 /*
3309  * get_rps_cpu is called from netif_receive_skb and returns the target
3310  * CPU from the RPS map of the receiving queue for a given skb.
3311  * rcu_read_lock must be held on entry.
3312  */
3313 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3314                        struct rps_dev_flow **rflowp)
3315 {
3316         const struct rps_sock_flow_table *sock_flow_table;
3317         struct netdev_rx_queue *rxqueue = dev->_rx;
3318         struct rps_dev_flow_table *flow_table;
3319         struct rps_map *map;
3320         int cpu = -1;
3321         u32 tcpu;
3322         u32 hash;
3323
3324         if (skb_rx_queue_recorded(skb)) {
3325                 u16 index = skb_get_rx_queue(skb);
3326
3327                 if (unlikely(index >= dev->real_num_rx_queues)) {
3328                         WARN_ONCE(dev->real_num_rx_queues > 1,
3329                                   "%s received packet on queue %u, but number "
3330                                   "of RX queues is %u\n",
3331                                   dev->name, index, dev->real_num_rx_queues);
3332                         goto done;
3333                 }
3334                 rxqueue += index;
3335         }
3336
3337         /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
3338
3339         flow_table = rcu_dereference(rxqueue->rps_flow_table);
3340         map = rcu_dereference(rxqueue->rps_map);
3341         if (!flow_table && !map)
3342                 goto done;
3343
3344         skb_reset_network_header(skb);
3345         hash = skb_get_hash(skb);
3346         if (!hash)
3347                 goto done;
3348
3349         sock_flow_table = rcu_dereference(rps_sock_flow_table);
3350         if (flow_table && sock_flow_table) {
3351                 struct rps_dev_flow *rflow;
3352                 u32 next_cpu;
3353                 u32 ident;
3354
3355                 /* First check into global flow table if there is a match */
3356                 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
3357                 if ((ident ^ hash) & ~rps_cpu_mask)
3358                         goto try_rps;
3359
3360                 next_cpu = ident & rps_cpu_mask;
3361
3362                 /* OK, now we know there is a match,
3363                  * we can look at the local (per receive queue) flow table
3364                  */
3365                 rflow = &flow_table->flows[hash & flow_table->mask];
3366                 tcpu = rflow->cpu;
3367
3368                 /*
3369                  * If the desired CPU (where last recvmsg was done) is
3370                  * different from current CPU (one in the rx-queue flow
3371                  * table entry), switch if one of the following holds:
3372                  *   - Current CPU is unset (>= nr_cpu_ids).
3373                  *   - Current CPU is offline.
3374                  *   - The current CPU's queue tail has advanced beyond the
3375                  *     last packet that was enqueued using this table entry.
3376                  *     This guarantees that all previous packets for the flow
3377                  *     have been dequeued, thus preserving in order delivery.
3378                  */
3379                 if (unlikely(tcpu != next_cpu) &&
3380                     (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
3381                      ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
3382                       rflow->last_qtail)) >= 0)) {
3383                         tcpu = next_cpu;
3384                         rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
3385                 }
3386
3387                 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
3388                         *rflowp = rflow;
3389                         cpu = tcpu;
3390                         goto done;
3391                 }
3392         }
3393
3394 try_rps:
3395
3396         if (map) {
3397                 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
3398                 if (cpu_online(tcpu)) {
3399                         cpu = tcpu;
3400                         goto done;
3401                 }
3402         }
3403
3404 done:
3405         return cpu;
3406 }
3407
3408 #ifdef CONFIG_RFS_ACCEL
3409
3410 /**
3411  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3412  * @dev: Device on which the filter was set
3413  * @rxq_index: RX queue index
3414  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3415  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3416  *
3417  * Drivers that implement ndo_rx_flow_steer() should periodically call
3418  * this function for each installed filter and remove the filters for
3419  * which it returns %true.
3420  */
3421 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3422                          u32 flow_id, u16 filter_id)
3423 {
3424         struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3425         struct rps_dev_flow_table *flow_table;
3426         struct rps_dev_flow *rflow;
3427         bool expire = true;
3428         unsigned int cpu;
3429
3430         rcu_read_lock();
3431         flow_table = rcu_dereference(rxqueue->rps_flow_table);
3432         if (flow_table && flow_id <= flow_table->mask) {
3433                 rflow = &flow_table->flows[flow_id];
3434                 cpu = ACCESS_ONCE(rflow->cpu);
3435                 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
3436                     ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3437                            rflow->last_qtail) <
3438                      (int)(10 * flow_table->mask)))
3439                         expire = false;
3440         }
3441         rcu_read_unlock();
3442         return expire;
3443 }
3444 EXPORT_SYMBOL(rps_may_expire_flow);
3445
3446 #endif /* CONFIG_RFS_ACCEL */
3447
3448 /* Called from hardirq (IPI) context */
3449 static void rps_trigger_softirq(void *data)
3450 {
3451         struct softnet_data *sd = data;
3452
3453         ____napi_schedule(sd, &sd->backlog);
3454         sd->received_rps++;
3455 }
3456
3457 #endif /* CONFIG_RPS */
3458
3459 /*
3460  * Check if this softnet_data structure is another cpu one
3461  * If yes, queue it to our IPI list and return 1
3462  * If no, return 0
3463  */
3464 static int rps_ipi_queued(struct softnet_data *sd)
3465 {
3466 #ifdef CONFIG_RPS
3467         struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
3468
3469         if (sd != mysd) {
3470                 sd->rps_ipi_next = mysd->rps_ipi_list;
3471                 mysd->rps_ipi_list = sd;
3472
3473                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3474                 return 1;
3475         }
3476 #endif /* CONFIG_RPS */
3477         return 0;
3478 }
3479
3480 #ifdef CONFIG_NET_FLOW_LIMIT
3481 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3482 #endif
3483
3484 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3485 {
3486 #ifdef CONFIG_NET_FLOW_LIMIT
3487         struct sd_flow_limit *fl;
3488         struct softnet_data *sd;
3489         unsigned int old_flow, new_flow;
3490
3491         if (qlen < (netdev_max_backlog >> 1))
3492                 return false;
3493
3494         sd = this_cpu_ptr(&softnet_data);
3495
3496         rcu_read_lock();
3497         fl = rcu_dereference(sd->flow_limit);
3498         if (fl) {
3499                 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
3500                 old_flow = fl->history[fl->history_head];
3501                 fl->history[fl->history_head] = new_flow;
3502
3503                 fl->history_head++;
3504                 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3505
3506                 if (likely(fl->buckets[old_flow]))
3507                         fl->buckets[old_flow]--;
3508
3509                 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3510                         fl->count++;
3511                         rcu_read_unlock();
3512                         return true;
3513                 }
3514         }
3515         rcu_read_unlock();
3516 #endif
3517         return false;
3518 }
3519
3520 /*
3521  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3522  * queue (may be a remote CPU queue).
3523  */
3524 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3525                               unsigned int *qtail)
3526 {
3527         struct softnet_data *sd;
3528         unsigned long flags;
3529         unsigned int qlen;
3530
3531         sd = &per_cpu(softnet_data, cpu);
3532
3533         local_irq_save(flags);
3534
3535         rps_lock(sd);
3536         if (!netif_running(skb->dev))
3537                 goto drop;
3538         qlen = skb_queue_len(&sd->input_pkt_queue);
3539         if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
3540                 if (qlen) {
3541 enqueue:
3542                         __skb_queue_tail(&sd->input_pkt_queue, skb);
3543                         input_queue_tail_incr_save(sd, qtail);
3544                         rps_unlock(sd);
3545                         local_irq_restore(flags);
3546                         return NET_RX_SUCCESS;
3547                 }
3548
3549                 /* Schedule NAPI for backlog device
3550                  * We can use non atomic operation since we own the queue lock
3551                  */
3552                 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3553                         if (!rps_ipi_queued(sd))
3554                                 ____napi_schedule(sd, &sd->backlog);
3555                 }
3556                 goto enqueue;
3557         }
3558
3559 drop:
3560         sd->dropped++;
3561         rps_unlock(sd);
3562
3563         local_irq_restore(flags);
3564
3565         atomic_long_inc(&skb->dev->rx_dropped);
3566         kfree_skb(skb);
3567         return NET_RX_DROP;
3568 }
3569
3570 static int netif_rx_internal(struct sk_buff *skb)
3571 {
3572         int ret;
3573
3574         net_timestamp_check(netdev_tstamp_prequeue, skb);
3575
3576         trace_netif_rx(skb);
3577 #ifdef CONFIG_RPS
3578         if (static_key_false(&rps_needed)) {
3579                 struct rps_dev_flow voidflow, *rflow = &voidflow;
3580                 int cpu;
3581
3582                 preempt_disable();
3583                 rcu_read_lock();
3584
3585                 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3586                 if (cpu < 0)
3587                         cpu = smp_processor_id();
3588
3589                 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3590
3591                 rcu_read_unlock();
3592                 preempt_enable();
3593         } else
3594 #endif
3595         {
3596                 unsigned int qtail;
3597                 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3598                 put_cpu();
3599         }
3600         return ret;
3601 }
3602
3603 /**
3604  *      netif_rx        -       post buffer to the network code
3605  *      @skb: buffer to post
3606  *
3607  *      This function receives a packet from a device driver and queues it for
3608  *      the upper (protocol) levels to process.  It always succeeds. The buffer
3609  *      may be dropped during processing for congestion control or by the
3610  *      protocol layers.
3611  *
3612  *      return values:
3613  *      NET_RX_SUCCESS  (no congestion)
3614  *      NET_RX_DROP     (packet was dropped)
3615  *
3616  */
3617
3618 int netif_rx(struct sk_buff *skb)
3619 {
3620         trace_netif_rx_entry(skb);
3621
3622         return netif_rx_internal(skb);
3623 }
3624 EXPORT_SYMBOL(netif_rx);
3625
3626 int netif_rx_ni(struct sk_buff *skb)
3627 {
3628         int err;
3629
3630         trace_netif_rx_ni_entry(skb);
3631
3632         preempt_disable();
3633         err = netif_rx_internal(skb);
3634         if (local_softirq_pending())
3635                 do_softirq();
3636         preempt_enable();
3637
3638         return err;
3639 }
3640 EXPORT_SYMBOL(netif_rx_ni);
3641
3642 static void net_tx_action(struct softirq_action *h)
3643 {
3644         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
3645
3646         if (sd->completion_queue) {
3647                 struct sk_buff *clist;
3648
3649                 local_irq_disable();
3650                 clist = sd->completion_queue;
3651                 sd->completion_queue = NULL;
3652                 local_irq_enable();
3653
3654                 while (clist) {
3655                         struct sk_buff *skb = clist;
3656                         clist = clist->next;
3657
3658                         WARN_ON(atomic_read(&skb->users));
3659                         if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
3660                                 trace_consume_skb(skb);
3661                         else
3662                                 trace_kfree_skb(skb, net_tx_action);
3663                         __kfree_skb(skb);
3664                 }
3665         }
3666
3667         if (sd->output_queue) {
3668                 struct Qdisc *head;
3669
3670                 local_irq_disable();
3671                 head = sd->output_queue;
3672                 sd->output_queue = NULL;
3673                 sd->output_queue_tailp = &sd->output_queue;
3674                 local_irq_enable();
3675
3676                 while (head) {
3677                         struct Qdisc *q = head;
3678                         spinlock_t *root_lock;
3679
3680                         head = head->next_sched;
3681
3682                         root_lock = qdisc_lock(q);
3683                         if (spin_trylock(root_lock)) {
3684                                 smp_mb__before_atomic();
3685                                 clear_bit(__QDISC_STATE_SCHED,
3686                                           &q->state);
3687                                 qdisc_run(q);
3688                                 spin_unlock(root_lock);
3689                         } else {
3690                                 if (!test_bit(__QDISC_STATE_DEACTIVATED,
3691                                               &q->state)) {
3692                                         __netif_reschedule(q);
3693                                 } else {
3694                                         smp_mb__before_atomic();
3695                                         clear_bit(__QDISC_STATE_SCHED,
3696                                                   &q->state);
3697                                 }
3698                         }
3699                 }
3700         }
3701 }
3702
3703 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
3704     (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
3705 /* This hook is defined here for ATM LANE */
3706 int (*br_fdb_test_addr_hook)(struct net_device *dev,
3707                              unsigned char *addr) __read_mostly;
3708 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
3709 #endif
3710
3711 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
3712                                          struct packet_type **pt_prev,
3713                                          int *ret, struct net_device *orig_dev)
3714 {
3715 #ifdef CONFIG_NET_CLS_ACT
3716         struct tcf_proto *cl = rcu_dereference_bh(skb->dev->ingress_cl_list);
3717         struct tcf_result cl_res;
3718
3719         /* If there's at least one ingress present somewhere (so
3720          * we get here via enabled static key), remaining devices
3721          * that are not configured with an ingress qdisc will bail
3722          * out here.
3723          */
3724         if (!cl)
3725                 return skb;
3726         if (*pt_prev) {
3727                 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3728                 *pt_prev = NULL;
3729         }
3730
3731         qdisc_skb_cb(skb)->pkt_len = skb->len;
3732         skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
3733         qdisc_bstats_cpu_update(cl->q, skb);
3734
3735         switch (tc_classify(skb, cl, &cl_res, false)) {
3736         case TC_ACT_OK:
3737         case TC_ACT_RECLASSIFY:
3738                 skb->tc_index = TC_H_MIN(cl_res.classid);
3739                 break;
3740         case TC_ACT_SHOT:
3741                 qdisc_qstats_cpu_drop(cl->q);
3742         case TC_ACT_STOLEN:
3743         case TC_ACT_QUEUED:
3744                 kfree_skb(skb);
3745                 return NULL;
3746         case TC_ACT_REDIRECT:
3747                 /* skb_mac_header check was done by cls/act_bpf, so
3748                  * we can safely push the L2 header back before
3749                  * redirecting to another netdev
3750                  */
3751                 __skb_push(skb, skb->mac_len);
3752                 skb_do_redirect(skb);
3753                 return NULL;
3754         default:
3755                 break;
3756         }
3757 #endif /* CONFIG_NET_CLS_ACT */
3758         return skb;
3759 }
3760
3761 /**
3762  *      netdev_is_rx_handler_busy - check if receive handler is registered
3763  *      @dev: device to check
3764  *
3765  *      Check if a receive handler is already registered for a given device.
3766  *      Return true if there one.
3767  *
3768  *      The caller must hold the rtnl_mutex.
3769  */
3770 bool netdev_is_rx_handler_busy(struct net_device *dev)
3771 {
3772         ASSERT_RTNL();
3773         return dev && rtnl_dereference(dev->rx_handler);
3774 }
3775 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
3776
3777 /**
3778  *      netdev_rx_handler_register - register receive handler
3779  *      @dev: device to register a handler for
3780  *      @rx_handler: receive handler to register
3781  *      @rx_handler_data: data pointer that is used by rx handler
3782  *
3783  *      Register a receive handler for a device. This handler will then be
3784  *      called from __netif_receive_skb. A negative errno code is returned
3785  *      on a failure.
3786  *
3787  *      The caller must hold the rtnl_mutex.
3788  *
3789  *      For a general description of rx_handler, see enum rx_handler_result.
3790  */
3791 int netdev_rx_handler_register(struct net_device *dev,
3792                                rx_handler_func_t *rx_handler,
3793                                void *rx_handler_data)
3794 {
3795         ASSERT_RTNL();
3796
3797         if (dev->rx_handler)
3798                 return -EBUSY;
3799
3800         /* Note: rx_handler_data must be set before rx_handler */
3801         rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
3802         rcu_assign_pointer(dev->rx_handler, rx_handler);
3803
3804         return 0;
3805 }
3806 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3807
3808 /**
3809  *      netdev_rx_handler_unregister - unregister receive handler
3810  *      @dev: device to unregister a handler from
3811  *
3812  *      Unregister a receive handler from a device.
3813  *
3814  *      The caller must hold the rtnl_mutex.
3815  */
3816 void netdev_rx_handler_unregister(struct net_device *dev)
3817 {
3818
3819         ASSERT_RTNL();
3820         RCU_INIT_POINTER(dev->rx_handler, NULL);
3821         /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
3822          * section has a guarantee to see a non NULL rx_handler_data
3823          * as well.
3824          */
3825         synchronize_net();
3826         RCU_INIT_POINTER(dev->rx_handler_data, NULL);
3827 }
3828 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
3829
3830 /*
3831  * Limit the use of PFMEMALLOC reserves to those protocols that implement
3832  * the special handling of PFMEMALLOC skbs.
3833  */
3834 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
3835 {
3836         switch (skb->protocol) {
3837         case htons(ETH_P_ARP):
3838         case htons(ETH_P_IP):
3839         case htons(ETH_P_IPV6):
3840         case htons(ETH_P_8021Q):
3841         case htons(ETH_P_8021AD):
3842                 return true;
3843         default:
3844                 return false;
3845         }
3846 }
3847
3848 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
3849                              int *ret, struct net_device *orig_dev)
3850 {
3851 #ifdef CONFIG_NETFILTER_INGRESS
3852         if (nf_hook_ingress_active(skb)) {
3853                 if (*pt_prev) {
3854                         *ret = deliver_skb(skb, *pt_prev, orig_dev);
3855                         *pt_prev = NULL;
3856                 }
3857
3858                 return nf_hook_ingress(skb);
3859         }
3860 #endif /* CONFIG_NETFILTER_INGRESS */
3861         return 0;
3862 }
3863
3864 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
3865 {
3866         struct packet_type *ptype, *pt_prev;
3867         rx_handler_func_t *rx_handler;
3868         struct net_device *orig_dev;
3869         bool deliver_exact = false;
3870         int ret = NET_RX_DROP;
3871         __be16 type;
3872
3873         net_timestamp_check(!netdev_tstamp_prequeue, skb);
3874
3875         trace_netif_receive_skb(skb);
3876
3877         orig_dev = skb->dev;
3878
3879         skb_reset_network_header(skb);
3880         if (!skb_transport_header_was_set(skb))
3881                 skb_reset_transport_header(skb);
3882         skb_reset_mac_len(skb);
3883
3884         pt_prev = NULL;
3885
3886 another_round:
3887         skb->skb_iif = skb->dev->ifindex;
3888
3889         __this_cpu_inc(softnet_data.processed);
3890
3891         if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
3892             skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
3893                 skb = skb_vlan_untag(skb);
3894                 if (unlikely(!skb))
3895                         goto out;
3896         }
3897
3898 #ifdef CONFIG_NET_CLS_ACT
3899         if (skb->tc_verd & TC_NCLS) {
3900                 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
3901                 goto ncls;
3902         }
3903 #endif
3904
3905         if (pfmemalloc)
3906                 goto skip_taps;
3907
3908         list_for_each_entry_rcu(ptype, &ptype_all, list) {
3909                 if (pt_prev)
3910                         ret = deliver_skb(skb, pt_prev, orig_dev);
3911                 pt_prev = ptype;
3912         }
3913
3914         list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
3915                 if (pt_prev)
3916                         ret = deliver_skb(skb, pt_prev, orig_dev);
3917                 pt_prev = ptype;
3918         }
3919
3920 skip_taps:
3921 #ifdef CONFIG_NET_INGRESS
3922         if (static_key_false(&ingress_needed)) {
3923                 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
3924                 if (!skb)
3925                         goto out;
3926
3927                 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
3928                         goto out;
3929         }
3930 #endif
3931 #ifdef CONFIG_NET_CLS_ACT
3932         skb->tc_verd = 0;
3933 ncls:
3934 #endif
3935         if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
3936                 goto drop;
3937
3938         if (skb_vlan_tag_present(skb)) {
3939                 if (pt_prev) {
3940                         ret = deliver_skb(skb, pt_prev, orig_dev);
3941                         pt_prev = NULL;
3942                 }
3943                 if (vlan_do_receive(&skb))
3944                         goto another_round;
3945                 else if (unlikely(!skb))
3946                         goto out;
3947         }
3948
3949         rx_handler = rcu_dereference(skb->dev->rx_handler);
3950         if (rx_handler) {
3951                 if (pt_prev) {
3952                         ret = deliver_skb(skb, pt_prev, orig_dev);
3953                         pt_prev = NULL;
3954                 }
3955                 switch (rx_handler(&skb)) {
3956                 case RX_HANDLER_CONSUMED:
3957                         ret = NET_RX_SUCCESS;
3958                         goto out;
3959                 case RX_HANDLER_ANOTHER:
3960                         goto another_round;
3961                 case RX_HANDLER_EXACT:
3962                         deliver_exact = true;
3963                 case RX_HANDLER_PASS:
3964                         break;
3965                 default:
3966                         BUG();
3967                 }
3968         }
3969
3970         if (unlikely(skb_vlan_tag_present(skb))) {
3971                 if (skb_vlan_tag_get_id(skb))
3972                         skb->pkt_type = PACKET_OTHERHOST;
3973                 /* Note: we might in the future use prio bits
3974                  * and set skb->priority like in vlan_do_receive()
3975                  * For the time being, just ignore Priority Code Point
3976                  */
3977                 skb->vlan_tci = 0;
3978         }
3979
3980         type = skb->protocol;
3981
3982         /* deliver only exact match when indicated */
3983         if (likely(!deliver_exact)) {
3984                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
3985                                        &ptype_base[ntohs(type) &
3986                                                    PTYPE_HASH_MASK]);
3987         }
3988
3989         deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
3990                                &orig_dev->ptype_specific);
3991
3992         if (unlikely(skb->dev != orig_dev)) {
3993                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
3994                                        &skb->dev->ptype_specific);
3995         }
3996
3997         if (pt_prev) {
3998                 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
3999                         goto drop;
4000                 else
4001                         ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
4002         } else {
4003 drop:
4004                 atomic_long_inc(&skb->dev->rx_dropped);
4005                 kfree_skb(skb);
4006                 /* Jamal, now you will not able to escape explaining
4007                  * me how you were going to use this. :-)
4008                  */
4009                 ret = NET_RX_DROP;
4010         }
4011
4012 out:
4013         return ret;
4014 }
4015
4016 static int __netif_receive_skb(struct sk_buff *skb)
4017 {
4018         int ret;
4019
4020         if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
4021                 unsigned long pflags = current->flags;
4022
4023                 /*
4024                  * PFMEMALLOC skbs are special, they should
4025                  * - be delivered to SOCK_MEMALLOC sockets only
4026                  * - stay away from userspace
4027                  * - have bounded memory usage
4028                  *
4029                  * Use PF_MEMALLOC as this saves us from propagating the allocation
4030                  * context down to all allocation sites.
4031                  */
4032                 current->flags |= PF_MEMALLOC;
4033                 ret = __netif_receive_skb_core(skb, true);
4034                 tsk_restore_flags(current, pflags, PF_MEMALLOC);
4035         } else
4036                 ret = __netif_receive_skb_core(skb, false);
4037
4038         return ret;
4039 }
4040
4041 static int netif_receive_skb_internal(struct sk_buff *skb)
4042 {
4043         int ret;
4044
4045         net_timestamp_check(netdev_tstamp_prequeue, skb);
4046
4047         if (skb_defer_rx_timestamp(skb))
4048                 return NET_RX_SUCCESS;
4049
4050         rcu_read_lock();
4051
4052 #ifdef CONFIG_RPS
4053         if (static_key_false(&rps_needed)) {
4054                 struct rps_dev_flow voidflow, *rflow = &voidflow;
4055                 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
4056
4057                 if (cpu >= 0) {
4058                         ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4059                         rcu_read_unlock();
4060                         return ret;
4061                 }
4062         }
4063 #endif
4064         ret = __netif_receive_skb(skb);
4065         rcu_read_unlock();
4066         return ret;
4067 }
4068
4069 /**
4070  *      netif_receive_skb - process receive buffer from network
4071  *      @skb: buffer to process
4072  *
4073  *      netif_receive_skb() is the main receive data processing function.
4074  *      It always succeeds. The buffer may be dropped during processing
4075  *      for congestion control or by the protocol layers.
4076  *
4077  *      This function may only be called from softirq context and interrupts
4078  *      should be enabled.
4079  *
4080  *      Return values (usually ignored):
4081  *      NET_RX_SUCCESS: no congestion
4082  *      NET_RX_DROP: packet was dropped
4083  */
4084 int netif_receive_skb(struct sk_buff *skb)
4085 {
4086         trace_netif_receive_skb_entry(skb);
4087
4088         return netif_receive_skb_internal(skb);
4089 }
4090 EXPORT_SYMBOL(netif_receive_skb);
4091
4092 /* Network device is going away, flush any packets still pending
4093  * Called with irqs disabled.
4094  */
4095 static void flush_backlog(void *arg)
4096 {
4097         struct net_device *dev = arg;
4098         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4099         struct sk_buff *skb, *tmp;
4100
4101         rps_lock(sd);
4102         skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
4103                 if (skb->dev == dev) {
4104                         __skb_unlink(skb, &sd->input_pkt_queue);
4105                         kfree_skb(skb);
4106                         input_queue_head_incr(sd);
4107                 }
4108         }
4109         rps_unlock(sd);
4110
4111         skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
4112                 if (skb->dev == dev) {
4113                         __skb_unlink(skb, &sd->process_queue);
4114                         kfree_skb(skb);
4115                         input_queue_head_incr(sd);
4116                 }
4117         }
4118 }
4119
4120 static int napi_gro_complete(struct sk_buff *skb)
4121 {
4122         struct packet_offload *ptype;
4123         __be16 type = skb->protocol;
4124         struct list_head *head = &offload_base;
4125         int err = -ENOENT;
4126
4127         BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
4128
4129         if (NAPI_GRO_CB(skb)->count == 1) {
4130                 skb_shinfo(skb)->gso_size = 0;
4131                 goto out;
4132         }
4133
4134         rcu_read_lock();
4135         list_for_each_entry_rcu(ptype, head, list) {
4136                 if (ptype->type != type || !ptype->callbacks.gro_complete)
4137                         continue;
4138
4139                 err = ptype->callbacks.gro_complete(skb, 0);
4140                 break;
4141         }
4142         rcu_read_unlock();
4143
4144         if (err) {
4145                 WARN_ON(&ptype->list == head);
4146                 kfree_skb(skb);
4147                 return NET_RX_SUCCESS;
4148         }
4149
4150 out:
4151         return netif_receive_skb_internal(skb);
4152 }
4153
4154 /* napi->gro_list contains packets ordered by age.
4155  * youngest packets at the head of it.
4156  * Complete skbs in reverse order to reduce latencies.
4157  */
4158 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
4159 {
4160         struct sk_buff *skb, *prev = NULL;
4161
4162         /* scan list and build reverse chain */
4163         for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
4164                 skb->prev = prev;
4165                 prev = skb;
4166         }
4167
4168         for (skb = prev; skb; skb = prev) {
4169                 skb->next = NULL;
4170
4171                 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
4172                         return;
4173
4174                 prev = skb->prev;
4175                 napi_gro_complete(skb);
4176                 napi->gro_count--;
4177         }
4178
4179         napi->gro_list = NULL;
4180 }
4181 EXPORT_SYMBOL(napi_gro_flush);
4182
4183 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
4184 {
4185         struct sk_buff *p;
4186         unsigned int maclen = skb->dev->hard_header_len;
4187         u32 hash = skb_get_hash_raw(skb);
4188
4189         for (p = napi->gro_list; p; p = p->next) {
4190                 unsigned long diffs;
4191
4192                 NAPI_GRO_CB(p)->flush = 0;
4193
4194                 if (hash != skb_get_hash_raw(p)) {
4195                         NAPI_GRO_CB(p)->same_flow = 0;
4196                         continue;
4197                 }
4198
4199                 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
4200                 diffs |= p->vlan_tci ^ skb->vlan_tci;
4201                 diffs |= skb_metadata_dst_cmp(p, skb);
4202                 if (maclen == ETH_HLEN)
4203                         diffs |= compare_ether_header(skb_mac_header(p),
4204                                                       skb_mac_header(skb));
4205                 else if (!diffs)
4206                         diffs = memcmp(skb_mac_header(p),
4207                                        skb_mac_header(skb),
4208                                        maclen);
4209                 NAPI_GRO_CB(p)->same_flow = !diffs;
4210         }
4211 }
4212
4213 static void skb_gro_reset_offset(struct sk_buff *skb)
4214 {
4215         const struct skb_shared_info *pinfo = skb_shinfo(skb);
4216         const skb_frag_t *frag0 = &pinfo->frags[0];
4217
4218         NAPI_GRO_CB(skb)->data_offset = 0;
4219         NAPI_GRO_CB(skb)->frag0 = NULL;
4220         NAPI_GRO_CB(skb)->frag0_len = 0;
4221
4222         if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
4223             pinfo->nr_frags &&
4224             !PageHighMem(skb_frag_page(frag0))) {
4225                 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
4226                 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
4227                                                     skb_frag_size(frag0),
4228                                                     skb->end - skb->tail);
4229         }
4230 }
4231
4232 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
4233 {
4234         struct skb_shared_info *pinfo = skb_shinfo(skb);
4235
4236         BUG_ON(skb->end - skb->tail < grow);
4237
4238         memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
4239
4240         skb->data_len -= grow;
4241         skb->tail += grow;
4242
4243         pinfo->frags[0].page_offset += grow;
4244         skb_frag_size_sub(&pinfo->frags[0], grow);
4245
4246         if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
4247                 skb_frag_unref(skb, 0);
4248                 memmove(pinfo->frags, pinfo->frags + 1,
4249                         --pinfo->nr_frags * sizeof(pinfo->frags[0]));
4250         }
4251 }
4252
4253 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4254 {
4255         struct sk_buff **pp = NULL;
4256         struct packet_offload *ptype;
4257         __be16 type = skb->protocol;
4258         struct list_head *head = &offload_base;
4259         int same_flow;
4260         enum gro_result ret;
4261         int grow;
4262
4263         if (!(skb->dev->features & NETIF_F_GRO))
4264                 goto normal;
4265
4266         if (skb_is_gso(skb) || skb_has_frag_list(skb) || skb->csum_bad)
4267                 goto normal;
4268
4269         gro_list_prepare(napi, skb);
4270
4271         rcu_read_lock();
4272         list_for_each_entry_rcu(ptype, head, list) {
4273                 if (ptype->type != type || !ptype->callbacks.gro_receive)
4274                         continue;
4275
4276                 skb_set_network_header(skb, skb_gro_offset(skb));
4277                 skb_reset_mac_len(skb);
4278                 NAPI_GRO_CB(skb)->same_flow = 0;
4279                 NAPI_GRO_CB(skb)->flush = 0;
4280                 NAPI_GRO_CB(skb)->free = 0;
4281                 NAPI_GRO_CB(skb)->encap_mark = 0;
4282                 NAPI_GRO_CB(skb)->recursion_counter = 0;
4283                 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
4284
4285                 /* Setup for GRO checksum validation */
4286                 switch (skb->ip_summed) {
4287                 case CHECKSUM_COMPLETE:
4288                         NAPI_GRO_CB(skb)->csum = skb->csum;
4289                         NAPI_GRO_CB(skb)->csum_valid = 1;
4290                         NAPI_GRO_CB(skb)->csum_cnt = 0;
4291                         break;
4292                 case CHECKSUM_UNNECESSARY:
4293                         NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
4294                         NAPI_GRO_CB(skb)->csum_valid = 0;
4295                         break;
4296                 default:
4297                         NAPI_GRO_CB(skb)->csum_cnt = 0;
4298                         NAPI_GRO_CB(skb)->csum_valid = 0;
4299                 }
4300
4301                 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
4302                 break;
4303         }
4304         rcu_read_unlock();
4305
4306         if (&ptype->list == head)
4307                 goto normal;
4308
4309         same_flow = NAPI_GRO_CB(skb)->same_flow;
4310         ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
4311
4312         if (pp) {
4313                 struct sk_buff *nskb = *pp;
4314
4315                 *pp = nskb->next;
4316                 nskb->next = NULL;
4317                 napi_gro_complete(nskb);
4318                 napi->gro_count--;
4319         }
4320
4321         if (same_flow)
4322                 goto ok;
4323
4324         if (NAPI_GRO_CB(skb)->flush)
4325                 goto normal;
4326
4327         if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
4328                 struct sk_buff *nskb = napi->gro_list;
4329
4330                 /* locate the end of the list to select the 'oldest' flow */
4331                 while (nskb->next) {
4332                         pp = &nskb->next;
4333                         nskb = *pp;
4334                 }
4335                 *pp = NULL;
4336                 nskb->next = NULL;
4337                 napi_gro_complete(nskb);
4338         } else {
4339                 napi->gro_count++;
4340         }
4341         NAPI_GRO_CB(skb)->count = 1;
4342         NAPI_GRO_CB(skb)->age = jiffies;
4343         NAPI_GRO_CB(skb)->last = skb;
4344         skb_shinfo(skb)->gso_size = skb_gro_len(skb);
4345         skb->next = napi->gro_list;
4346         napi->gro_list = skb;
4347         ret = GRO_HELD;
4348
4349 pull:
4350         grow = skb_gro_offset(skb) - skb_headlen(skb);
4351         if (grow > 0)
4352                 gro_pull_from_frag0(skb, grow);
4353 ok:
4354         return ret;
4355
4356 normal:
4357         ret = GRO_NORMAL;
4358         goto pull;
4359 }
4360
4361 struct packet_offload *gro_find_receive_by_type(__be16 type)
4362 {
4363         struct list_head *offload_head = &offload_base;
4364         struct packet_offload *ptype;
4365
4366         list_for_each_entry_rcu(ptype, offload_head, list) {
4367                 if (ptype->type != type || !ptype->callbacks.gro_receive)
4368                         continue;
4369                 return ptype;
4370         }
4371         return NULL;
4372 }
4373 EXPORT_SYMBOL(gro_find_receive_by_type);
4374
4375 struct packet_offload *gro_find_complete_by_type(__be16 type)
4376 {
4377         struct list_head *offload_head = &offload_base;
4378         struct packet_offload *ptype;
4379
4380         list_for_each_entry_rcu(ptype, offload_head, list) {
4381                 if (ptype->type != type || !ptype->callbacks.gro_complete)
4382                         continue;
4383                 return ptype;
4384         }
4385         return NULL;
4386 }
4387 EXPORT_SYMBOL(gro_find_complete_by_type);
4388
4389 static void napi_skb_free_stolen_head(struct sk_buff *skb)
4390 {
4391         skb_dst_drop(skb);
4392         kmem_cache_free(skbuff_head_cache, skb);
4393 }
4394
4395 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
4396 {
4397         switch (ret) {
4398         case GRO_NORMAL:
4399                 if (netif_receive_skb_internal(skb))
4400                         ret = GRO_DROP;
4401                 break;
4402
4403         case GRO_DROP:
4404                 kfree_skb(skb);
4405                 break;
4406
4407         case GRO_MERGED_FREE:
4408                 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
4409                         napi_skb_free_stolen_head(skb);
4410                 else
4411                         __kfree_skb(skb);
4412                 break;
4413
4414         case GRO_HELD:
4415         case GRO_MERGED:
4416                 break;
4417         }
4418
4419         return ret;
4420 }
4421
4422 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4423 {
4424         trace_napi_gro_receive_entry(skb);
4425
4426         skb_gro_reset_offset(skb);
4427
4428         return napi_skb_finish(dev_gro_receive(napi, skb), skb);
4429 }
4430 EXPORT_SYMBOL(napi_gro_receive);
4431
4432 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
4433 {
4434         if (unlikely(skb->pfmemalloc)) {
4435                 consume_skb(skb);
4436                 return;
4437         }
4438         __skb_pull(skb, skb_headlen(skb));
4439         /* restore the reserve we had after netdev_alloc_skb_ip_align() */
4440         skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
4441         skb->vlan_tci = 0;
4442         skb->dev = napi->dev;
4443         skb->skb_iif = 0;
4444         skb->encapsulation = 0;
4445         skb_shinfo(skb)->gso_type = 0;
4446         skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
4447
4448         napi->skb = skb;
4449 }
4450
4451 struct sk_buff *napi_get_frags(struct napi_struct *napi)
4452 {
4453         struct sk_buff *skb = napi->skb;
4454
4455         if (!skb) {
4456                 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
4457                 napi->skb = skb;
4458         }
4459         return skb;
4460 }
4461 EXPORT_SYMBOL(napi_get_frags);
4462
4463 static gro_result_t napi_frags_finish(struct napi_struct *napi,
4464                                       struct sk_buff *skb,
4465                                       gro_result_t ret)
4466 {
4467         switch (ret) {
4468         case GRO_NORMAL:
4469         case GRO_HELD:
4470                 __skb_push(skb, ETH_HLEN);
4471                 skb->protocol = eth_type_trans(skb, skb->dev);
4472                 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
4473                         ret = GRO_DROP;
4474                 break;
4475
4476         case GRO_DROP:
4477                 napi_reuse_skb(napi, skb);
4478                 break;
4479
4480         case GRO_MERGED_FREE:
4481                 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
4482                         napi_skb_free_stolen_head(skb);
4483                 else
4484                         napi_reuse_skb(napi, skb);
4485                 break;
4486
4487         case GRO_MERGED:
4488                 break;
4489         }
4490
4491         return ret;
4492 }
4493
4494 /* Upper GRO stack assumes network header starts at gro_offset=0
4495  * Drivers could call both napi_gro_frags() and napi_gro_receive()
4496  * We copy ethernet header into skb->data to have a common layout.
4497  */
4498 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
4499 {
4500         struct sk_buff *skb = napi->skb;
4501         const struct ethhdr *eth;
4502         unsigned int hlen = sizeof(*eth);
4503
4504         napi->skb = NULL;
4505
4506         skb_reset_mac_header(skb);
4507         skb_gro_reset_offset(skb);
4508
4509         eth = skb_gro_header_fast(skb, 0);
4510         if (unlikely(skb_gro_header_hard(skb, hlen))) {
4511                 eth = skb_gro_header_slow(skb, hlen, 0);
4512                 if (unlikely(!eth)) {
4513                         napi_reuse_skb(napi, skb);
4514                         return NULL;
4515                 }
4516         } else {
4517                 gro_pull_from_frag0(skb, hlen);
4518                 NAPI_GRO_CB(skb)->frag0 += hlen;
4519                 NAPI_GRO_CB(skb)->frag0_len -= hlen;
4520         }
4521         __skb_pull(skb, hlen);
4522
4523         /*
4524          * This works because the only protocols we care about don't require
4525          * special handling.
4526          * We'll fix it up properly in napi_frags_finish()
4527          */
4528         skb->protocol = eth->h_proto;
4529
4530         return skb;
4531 }
4532
4533 gro_result_t napi_gro_frags(struct napi_struct *napi)
4534 {
4535         struct sk_buff *skb = napi_frags_skb(napi);
4536
4537         if (!skb)
4538                 return GRO_DROP;
4539
4540         trace_napi_gro_frags_entry(skb);
4541
4542         return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
4543 }
4544 EXPORT_SYMBOL(napi_gro_frags);
4545
4546 /* Compute the checksum from gro_offset and return the folded value
4547  * after adding in any pseudo checksum.
4548  */
4549 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
4550 {
4551         __wsum wsum;
4552         __sum16 sum;
4553
4554         wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
4555
4556         /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
4557         sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
4558         if (likely(!sum)) {
4559                 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
4560                     !skb->csum_complete_sw)
4561                         netdev_rx_csum_fault(skb->dev);
4562         }
4563
4564         NAPI_GRO_CB(skb)->csum = wsum;
4565         NAPI_GRO_CB(skb)->csum_valid = 1;
4566
4567         return sum;
4568 }
4569 EXPORT_SYMBOL(__skb_gro_checksum_complete);
4570
4571 /*
4572  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
4573  * Note: called with local irq disabled, but exits with local irq enabled.
4574  */
4575 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
4576 {
4577 #ifdef CONFIG_RPS
4578         struct softnet_data *remsd = sd->rps_ipi_list;
4579
4580         if (remsd) {
4581                 sd->rps_ipi_list = NULL;
4582
4583                 local_irq_enable();
4584
4585                 /* Send pending IPI's to kick RPS processing on remote cpus. */
4586                 while (remsd) {
4587                         struct softnet_data *next = remsd->rps_ipi_next;
4588
4589                         if (cpu_online(remsd->cpu))
4590                                 smp_call_function_single_async(remsd->cpu,
4591                                                            &remsd->csd);
4592                         remsd = next;
4593                 }
4594         } else
4595 #endif
4596                 local_irq_enable();
4597 }
4598
4599 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
4600 {
4601 #ifdef CONFIG_RPS
4602         return sd->rps_ipi_list != NULL;
4603 #else
4604         return false;
4605 #endif
4606 }
4607
4608 static int process_backlog(struct napi_struct *napi, int quota)
4609 {
4610         int work = 0;
4611         struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
4612
4613         /* Check if we have pending ipi, its better to send them now,
4614          * not waiting net_rx_action() end.
4615          */
4616         if (sd_has_rps_ipi_waiting(sd)) {
4617                 local_irq_disable();
4618                 net_rps_action_and_irq_enable(sd);
4619         }
4620
4621         napi->weight = weight_p;
4622         local_irq_disable();
4623         while (1) {
4624                 struct sk_buff *skb;
4625
4626                 while ((skb = __skb_dequeue(&sd->process_queue))) {
4627                         rcu_read_lock();
4628                         local_irq_enable();
4629                         __netif_receive_skb(skb);
4630                         rcu_read_unlock();
4631                         local_irq_disable();
4632                         input_queue_head_incr(sd);
4633                         if (++work >= quota) {
4634                                 local_irq_enable();
4635                                 return work;
4636                         }
4637                 }
4638
4639                 rps_lock(sd);
4640                 if (skb_queue_empty(&sd->input_pkt_queue)) {
4641                         /*
4642                          * Inline a custom version of __napi_complete().
4643                          * only current cpu owns and manipulates this napi,
4644                          * and NAPI_STATE_SCHED is the only possible flag set
4645                          * on backlog.
4646                          * We can use a plain write instead of clear_bit(),
4647                          * and we dont need an smp_mb() memory barrier.
4648                          */
4649                         napi->state = 0;
4650                         rps_unlock(sd);
4651
4652                         break;
4653                 }
4654
4655                 skb_queue_splice_tail_init(&sd->input_pkt_queue,
4656                                            &sd->process_queue);
4657                 rps_unlock(sd);
4658         }
4659         local_irq_enable();
4660
4661         return work;
4662 }
4663
4664 /**
4665  * __napi_schedule - schedule for receive
4666  * @n: entry to schedule
4667  *
4668  * The entry's receive function will be scheduled to run.
4669  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
4670  */
4671 void __napi_schedule(struct napi_struct *n)
4672 {
4673         unsigned long flags;
4674
4675         local_irq_save(flags);
4676         ____napi_schedule(this_cpu_ptr(&softnet_data), n);
4677         local_irq_restore(flags);
4678 }
4679 EXPORT_SYMBOL(__napi_schedule);
4680
4681 /**
4682  * __napi_schedule_irqoff - schedule for receive
4683  * @n: entry to schedule
4684  *
4685  * Variant of __napi_schedule() assuming hard irqs are masked
4686  */
4687 void __napi_schedule_irqoff(struct napi_struct *n)
4688 {
4689         ____napi_schedule(this_cpu_ptr(&softnet_data), n);
4690 }
4691 EXPORT_SYMBOL(__napi_schedule_irqoff);
4692
4693 void __napi_complete(struct napi_struct *n)
4694 {
4695         BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
4696
4697         list_del_init(&n->poll_list);
4698         smp_mb__before_atomic();
4699         clear_bit(NAPI_STATE_SCHED, &n->state);
4700 }
4701 EXPORT_SYMBOL(__napi_complete);
4702
4703 void napi_complete_done(struct napi_struct *n, int work_done)
4704 {
4705         unsigned long flags;
4706
4707         /*
4708          * don't let napi dequeue from the cpu poll list
4709          * just in case its running on a different cpu
4710          */
4711         if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
4712                 return;
4713
4714         if (n->gro_list) {
4715                 unsigned long timeout = 0;
4716
4717                 if (work_done)
4718                         timeout = n->dev->gro_flush_timeout;
4719
4720                 if (timeout)
4721                         hrtimer_start(&n->timer, ns_to_ktime(timeout),
4722                                       HRTIMER_MODE_REL_PINNED);
4723                 else
4724                         napi_gro_flush(n, false);
4725         }
4726         if (likely(list_empty(&n->poll_list))) {
4727                 WARN_ON_ONCE(!test_and_clear_bit(NAPI_STATE_SCHED, &n->state));
4728         } else {
4729                 /* If n->poll_list is not empty, we need to mask irqs */
4730                 local_irq_save(flags);
4731                 __napi_complete(n);
4732                 local_irq_restore(flags);
4733         }
4734 }
4735 EXPORT_SYMBOL(napi_complete_done);
4736
4737 /* must be called under rcu_read_lock(), as we dont take a reference */
4738 struct napi_struct *napi_by_id(unsigned int napi_id)
4739 {
4740         unsigned int hash = napi_id % HASH_SIZE(napi_hash);
4741         struct napi_struct *napi;
4742
4743         hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
4744                 if (napi->napi_id == napi_id)
4745                         return napi;
4746
4747         return NULL;
4748 }
4749 EXPORT_SYMBOL_GPL(napi_by_id);
4750
4751 void napi_hash_add(struct napi_struct *napi)
4752 {
4753         if (test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
4754                 return;
4755
4756         spin_lock(&napi_hash_lock);
4757
4758         /* 0..NR_CPUS+1 range is reserved for sender_cpu use */
4759         do {
4760                 if (unlikely(++napi_gen_id < NR_CPUS + 1))
4761                         napi_gen_id = NR_CPUS + 1;
4762         } while (napi_by_id(napi_gen_id));
4763         napi->napi_id = napi_gen_id;
4764
4765         hlist_add_head_rcu(&napi->napi_hash_node,
4766                            &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
4767
4768         spin_unlock(&napi_hash_lock);
4769 }
4770 EXPORT_SYMBOL_GPL(napi_hash_add);
4771
4772 /* Warning : caller is responsible to make sure rcu grace period
4773  * is respected before freeing memory containing @napi
4774  */
4775 void napi_hash_del(struct napi_struct *napi)
4776 {
4777         spin_lock(&napi_hash_lock);
4778
4779         if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state))
4780                 hlist_del_rcu(&napi->napi_hash_node);
4781
4782         spin_unlock(&napi_hash_lock);
4783 }
4784 EXPORT_SYMBOL_GPL(napi_hash_del);
4785
4786 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
4787 {
4788         struct napi_struct *napi;
4789
4790         napi = container_of(timer, struct napi_struct, timer);
4791         if (napi->gro_list)
4792                 napi_schedule(napi);
4793
4794         return HRTIMER_NORESTART;
4795 }
4796
4797 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
4798                     int (*poll)(struct napi_struct *, int), int weight)
4799 {
4800         INIT_LIST_HEAD(&napi->poll_list);
4801         hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
4802         napi->timer.function = napi_watchdog;
4803         napi->gro_count = 0;
4804         napi->gro_list = NULL;
4805         napi->skb = NULL;
4806         napi->poll = poll;
4807         if (weight > NAPI_POLL_WEIGHT)
4808                 pr_err_once("netif_napi_add() called with weight %d on device %s\n",
4809                             weight, dev->name);
4810         napi->weight = weight;
4811         list_add(&napi->dev_list, &dev->napi_list);
4812         napi->dev = dev;
4813 #ifdef CONFIG_NETPOLL
4814         spin_lock_init(&napi->poll_lock);
4815         napi->poll_owner = -1;
4816 #endif
4817         set_bit(NAPI_STATE_SCHED, &napi->state);
4818 }
4819 EXPORT_SYMBOL(netif_napi_add);
4820
4821 void napi_disable(struct napi_struct *n)
4822 {
4823         might_sleep();
4824         set_bit(NAPI_STATE_DISABLE, &n->state);
4825
4826         while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
4827                 msleep(1);
4828         while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
4829                 msleep(1);
4830
4831         hrtimer_cancel(&n->timer);
4832
4833         clear_bit(NAPI_STATE_DISABLE, &n->state);
4834 }
4835 EXPORT_SYMBOL(napi_disable);
4836
4837 void netif_napi_del(struct napi_struct *napi)
4838 {
4839         list_del_init(&napi->dev_list);
4840         napi_free_frags(napi);
4841
4842         kfree_skb_list(napi->gro_list);
4843         napi->gro_list = NULL;
4844         napi->gro_count = 0;
4845 }
4846 EXPORT_SYMBOL(netif_napi_del);
4847
4848 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
4849 {
4850         void *have;
4851         int work, weight;
4852
4853         list_del_init(&n->poll_list);
4854
4855         have = netpoll_poll_lock(n);
4856
4857         weight = n->weight;
4858
4859         /* This NAPI_STATE_SCHED test is for avoiding a race
4860          * with netpoll's poll_napi().  Only the entity which
4861          * obtains the lock and sees NAPI_STATE_SCHED set will
4862          * actually make the ->poll() call.  Therefore we avoid
4863          * accidentally calling ->poll() when NAPI is not scheduled.
4864          */
4865         work = 0;
4866         if (test_bit(NAPI_STATE_SCHED, &n->state)) {
4867                 work = n->poll(n, weight);
4868                 trace_napi_poll(n);
4869         }
4870
4871         WARN_ON_ONCE(work > weight);
4872
4873         if (likely(work < weight))
4874                 goto out_unlock;
4875
4876         /* Drivers must not modify the NAPI state if they
4877          * consume the entire weight.  In such cases this code
4878          * still "owns" the NAPI instance and therefore can
4879          * move the instance around on the list at-will.
4880          */
4881         if (unlikely(napi_disable_pending(n))) {
4882                 napi_complete(n);
4883                 goto out_unlock;
4884         }
4885
4886         if (n->gro_list) {
4887                 /* flush too old packets
4888                  * If HZ < 1000, flush all packets.
4889                  */
4890                 napi_gro_flush(n, HZ >= 1000);
4891         }
4892
4893         /* Some drivers may have called napi_schedule
4894          * prior to exhausting their budget.
4895          */
4896         if (unlikely(!list_empty(&n->poll_list))) {
4897                 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
4898                              n->dev ? n->dev->name : "backlog");
4899                 goto out_unlock;
4900         }
4901
4902         list_add_tail(&n->poll_list, repoll);
4903
4904 out_unlock:
4905         netpoll_poll_unlock(have);
4906
4907         return work;
4908 }
4909
4910 static void net_rx_action(struct softirq_action *h)
4911 {
4912         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4913         unsigned long time_limit = jiffies + 2;
4914         int budget = netdev_budget;
4915         LIST_HEAD(list);
4916         LIST_HEAD(repoll);
4917
4918         local_irq_disable();
4919         list_splice_init(&sd->poll_list, &list);
4920         local_irq_enable();
4921
4922         for (;;) {
4923                 struct napi_struct *n;
4924
4925                 if (list_empty(&list)) {
4926                         if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
4927                                 return;
4928                         break;
4929                 }
4930
4931                 n = list_first_entry(&list, struct napi_struct, poll_list);
4932                 budget -= napi_poll(n, &repoll);
4933
4934                 /* If softirq window is exhausted then punt.
4935                  * Allow this to run for 2 jiffies since which will allow
4936                  * an average latency of 1.5/HZ.
4937                  */
4938                 if (unlikely(budget <= 0 ||
4939                              time_after_eq(jiffies, time_limit))) {
4940                         sd->time_squeeze++;
4941                         break;
4942                 }
4943         }
4944
4945         local_irq_disable();
4946
4947         list_splice_tail_init(&sd->poll_list, &list);
4948         list_splice_tail(&repoll, &list);
4949         list_splice(&list, &sd->poll_list);
4950         if (!list_empty(&sd->poll_list))
4951                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4952
4953         net_rps_action_and_irq_enable(sd);
4954 }
4955
4956 struct netdev_adjacent {
4957         struct net_device *dev;
4958
4959         /* upper master flag, there can only be one master device per list */
4960         bool master;
4961
4962         /* counter for the number of times this device was added to us */
4963         u16 ref_nr;
4964
4965         /* private field for the users */
4966         void *private;
4967
4968         struct list_head list;
4969         struct rcu_head rcu;
4970 };
4971
4972 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
4973                                                  struct list_head *adj_list)
4974 {
4975         struct netdev_adjacent *adj;
4976
4977         list_for_each_entry(adj, adj_list, list) {
4978                 if (adj->dev == adj_dev)
4979                         return adj;
4980         }
4981         return NULL;
4982 }
4983
4984 /**
4985  * netdev_has_upper_dev - Check if device is linked to an upper device
4986  * @dev: device
4987  * @upper_dev: upper device to check
4988  *
4989  * Find out if a device is linked to specified upper device and return true
4990  * in case it is. Note that this checks only immediate upper device,
4991  * not through a complete stack of devices. The caller must hold the RTNL lock.
4992  */
4993 bool netdev_has_upper_dev(struct net_device *dev,
4994                           struct net_device *upper_dev)
4995 {
4996         ASSERT_RTNL();
4997
4998         return __netdev_find_adj(upper_dev, &dev->all_adj_list.upper);
4999 }
5000 EXPORT_SYMBOL(netdev_has_upper_dev);
5001
5002 /**
5003  * netdev_has_any_upper_dev - Check if device is linked to some device
5004  * @dev: device
5005  *
5006  * Find out if a device is linked to an upper device and return true in case
5007  * it is. The caller must hold the RTNL lock.
5008  */
5009 static bool netdev_has_any_upper_dev(struct net_device *dev)
5010 {
5011         ASSERT_RTNL();
5012
5013         return !list_empty(&dev->all_adj_list.upper);
5014 }
5015
5016 /**
5017  * netdev_master_upper_dev_get - Get master upper device
5018  * @dev: device
5019  *
5020  * Find a master upper device and return pointer to it or NULL in case
5021  * it's not there. The caller must hold the RTNL lock.
5022  */
5023 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
5024 {
5025         struct netdev_adjacent *upper;
5026
5027         ASSERT_RTNL();
5028
5029         if (list_empty(&dev->adj_list.upper))
5030                 return NULL;
5031
5032         upper = list_first_entry(&dev->adj_list.upper,
5033                                  struct netdev_adjacent, list);
5034         if (likely(upper->master))
5035                 return upper->dev;
5036         return NULL;
5037 }
5038 EXPORT_SYMBOL(netdev_master_upper_dev_get);
5039
5040 void *netdev_adjacent_get_private(struct list_head *adj_list)
5041 {
5042         struct netdev_adjacent *adj;
5043
5044         adj = list_entry(adj_list, struct netdev_adjacent, list);
5045
5046         return adj->private;
5047 }
5048 EXPORT_SYMBOL(netdev_adjacent_get_private);
5049
5050 /**
5051  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
5052  * @dev: device
5053  * @iter: list_head ** of the current position
5054  *
5055  * Gets the next device from the dev's upper list, starting from iter
5056  * position. The caller must hold RCU read lock.
5057  */
5058 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
5059                                                  struct list_head **iter)
5060 {
5061         struct netdev_adjacent *upper;
5062
5063         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5064
5065         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5066
5067         if (&upper->list == &dev->adj_list.upper)
5068                 return NULL;
5069
5070         *iter = &upper->list;
5071
5072         return upper->dev;
5073 }
5074 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
5075
5076 /**
5077  * netdev_all_upper_get_next_dev_rcu - Get the next dev from upper list
5078  * @dev: device
5079  * @iter: list_head ** of the current position
5080  *
5081  * Gets the next device from the dev's upper list, starting from iter
5082  * position. The caller must hold RCU read lock.
5083  */
5084 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
5085                                                      struct list_head **iter)
5086 {
5087         struct netdev_adjacent *upper;
5088
5089         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5090
5091         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5092
5093         if (&upper->list == &dev->all_adj_list.upper)
5094                 return NULL;
5095
5096         *iter = &upper->list;
5097
5098         return upper->dev;
5099 }
5100 EXPORT_SYMBOL(netdev_all_upper_get_next_dev_rcu);
5101
5102 /**
5103  * netdev_lower_get_next_private - Get the next ->private from the
5104  *                                 lower neighbour list
5105  * @dev: device
5106  * @iter: list_head ** of the current position
5107  *
5108  * Gets the next netdev_adjacent->private from the dev's lower neighbour
5109  * list, starting from iter position. The caller must hold either hold the
5110  * RTNL lock or its own locking that guarantees that the neighbour lower
5111  * list will remain unchanged.
5112  */
5113 void *netdev_lower_get_next_private(struct net_device *dev,
5114                                     struct list_head **iter)
5115 {
5116         struct netdev_adjacent *lower;
5117
5118         lower = list_entry(*iter, struct netdev_adjacent, list);
5119
5120         if (&lower->list == &dev->adj_list.lower)
5121                 return NULL;
5122
5123         *iter = lower->list.next;
5124
5125         return lower->private;
5126 }
5127 EXPORT_SYMBOL(netdev_lower_get_next_private);
5128
5129 /**
5130  * netdev_lower_get_next_private_rcu - Get the next ->private from the
5131  *                                     lower neighbour list, RCU
5132  *                                     variant
5133  * @dev: device
5134  * @iter: list_head ** of the current position
5135  *
5136  * Gets the next netdev_adjacent->private from the dev's lower neighbour
5137  * list, starting from iter position. The caller must hold RCU read lock.
5138  */
5139 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
5140                                         struct list_head **iter)
5141 {
5142         struct netdev_adjacent *lower;
5143
5144         WARN_ON_ONCE(!rcu_read_lock_held());
5145
5146         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5147
5148         if (&lower->list == &dev->adj_list.lower)
5149                 return NULL;
5150
5151         *iter = &lower->list;
5152
5153         return lower->private;
5154 }
5155 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
5156
5157 /**
5158  * netdev_lower_get_next - Get the next device from the lower neighbour
5159  *                         list
5160  * @dev: device
5161  * @iter: list_head ** of the current position
5162  *
5163  * Gets the next netdev_adjacent from the dev's lower neighbour
5164  * list, starting from iter position. The caller must hold RTNL lock or
5165  * its own locking that guarantees that the neighbour lower
5166  * list will remain unchanged.
5167  */
5168 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
5169 {
5170         struct netdev_adjacent *lower;
5171
5172         lower = list_entry((*iter)->next, struct netdev_adjacent, list);
5173
5174         if (&lower->list == &dev->adj_list.lower)
5175                 return NULL;
5176
5177         *iter = &lower->list;
5178
5179         return lower->dev;
5180 }
5181 EXPORT_SYMBOL(netdev_lower_get_next);
5182
5183 /**
5184  * netdev_lower_get_first_private_rcu - Get the first ->private from the
5185  *                                     lower neighbour list, RCU
5186  *                                     variant
5187  * @dev: device
5188  *
5189  * Gets the first netdev_adjacent->private from the dev's lower neighbour
5190  * list. The caller must hold RCU read lock.
5191  */
5192 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
5193 {
5194         struct netdev_adjacent *lower;
5195
5196         lower = list_first_or_null_rcu(&dev->adj_list.lower,
5197                         struct netdev_adjacent, list);
5198         if (lower)
5199                 return lower->private;
5200         return NULL;
5201 }
5202 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
5203
5204 /**
5205  * netdev_master_upper_dev_get_rcu - Get master upper device
5206  * @dev: device
5207  *
5208  * Find a master upper device and return pointer to it or NULL in case
5209  * it's not there. The caller must hold the RCU read lock.
5210  */
5211 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
5212 {
5213         struct netdev_adjacent *upper;
5214
5215         upper = list_first_or_null_rcu(&dev->adj_list.upper,
5216                                        struct netdev_adjacent, list);
5217         if (upper && likely(upper->master))
5218                 return upper->dev;
5219         return NULL;
5220 }
5221 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
5222
5223 static int netdev_adjacent_sysfs_add(struct net_device *dev,
5224                               struct net_device *adj_dev,
5225                               struct list_head *dev_list)
5226 {
5227         char linkname[IFNAMSIZ+7];
5228         sprintf(linkname, dev_list == &dev->adj_list.upper ?
5229                 "upper_%s" : "lower_%s", adj_dev->name);
5230         return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
5231                                  linkname);
5232 }
5233 static void netdev_adjacent_sysfs_del(struct net_device *dev,
5234                                char *name,
5235                                struct list_head *dev_list)
5236 {
5237         char linkname[IFNAMSIZ+7];
5238         sprintf(linkname, dev_list == &dev->adj_list.upper ?
5239                 "upper_%s" : "lower_%s", name);
5240         sysfs_remove_link(&(dev->dev.kobj), linkname);
5241 }
5242
5243 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
5244                                                  struct net_device *adj_dev,
5245                                                  struct list_head *dev_list)
5246 {
5247         return (dev_list == &dev->adj_list.upper ||
5248                 dev_list == &dev->adj_list.lower) &&
5249                 net_eq(dev_net(dev), dev_net(adj_dev));
5250 }
5251
5252 static int __netdev_adjacent_dev_insert(struct net_device *dev,
5253                                         struct net_device *adj_dev,
5254                                         u16 ref_nr,
5255                                         struct list_head *dev_list,
5256                                         void *private, bool master)
5257 {
5258         struct netdev_adjacent *adj;
5259         int ret;
5260
5261         adj = __netdev_find_adj(adj_dev, dev_list);
5262
5263         if (adj) {
5264                 adj->ref_nr += ref_nr;
5265                 return 0;
5266         }
5267
5268         adj = kmalloc(sizeof(*adj), GFP_KERNEL);
5269         if (!adj)
5270                 return -ENOMEM;
5271
5272         adj->dev = adj_dev;
5273         adj->master = master;
5274         adj->ref_nr = ref_nr;
5275         adj->private = private;
5276         dev_hold(adj_dev);
5277
5278         pr_debug("dev_hold for %s, because of link added from %s to %s\n",
5279                  adj_dev->name, dev->name, adj_dev->name);
5280
5281         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
5282                 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
5283                 if (ret)
5284                         goto free_adj;
5285         }
5286
5287         /* Ensure that master link is always the first item in list. */
5288         if (master) {
5289                 ret = sysfs_create_link(&(dev->dev.kobj),
5290                                         &(adj_dev->dev.kobj), "master");
5291                 if (ret)
5292                         goto remove_symlinks;
5293
5294                 list_add_rcu(&adj->list, dev_list);
5295         } else {
5296                 list_add_tail_rcu(&adj->list, dev_list);
5297         }
5298
5299         return 0;
5300
5301 remove_symlinks:
5302         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
5303                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5304 free_adj:
5305         kfree(adj);
5306         dev_put(adj_dev);
5307
5308         return ret;
5309 }
5310
5311 static void __netdev_adjacent_dev_remove(struct net_device *dev,
5312                                          struct net_device *adj_dev,
5313                                          u16 ref_nr,
5314                                          struct list_head *dev_list)
5315 {
5316         struct netdev_adjacent *adj;
5317
5318         adj = __netdev_find_adj(adj_dev, dev_list);
5319
5320         if (!adj) {
5321                 pr_err("tried to remove device %s from %s\n",
5322                        dev->name, adj_dev->name);
5323                 BUG();
5324         }
5325
5326         if (adj->ref_nr > ref_nr) {
5327                 pr_debug("%s to %s ref_nr-%d = %d\n", dev->name, adj_dev->name,
5328                          ref_nr, adj->ref_nr-ref_nr);
5329                 adj->ref_nr -= ref_nr;
5330                 return;
5331         }
5332
5333         if (adj->master)
5334                 sysfs_remove_link(&(dev->dev.kobj), "master");
5335
5336         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
5337                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5338
5339         list_del_rcu(&adj->list);
5340         pr_debug("dev_put for %s, because link removed from %s to %s\n",
5341                  adj_dev->name, dev->name, adj_dev->name);
5342         dev_put(adj_dev);
5343         kfree_rcu(adj, rcu);
5344 }
5345
5346 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
5347                                             struct net_device *upper_dev,
5348                                             u16 ref_nr,
5349                                             struct list_head *up_list,
5350                                             struct list_head *down_list,
5351                                             void *private, bool master)
5352 {
5353         int ret;
5354
5355         ret = __netdev_adjacent_dev_insert(dev, upper_dev, ref_nr, up_list,
5356                                            private, master);
5357         if (ret)
5358                 return ret;
5359
5360         ret = __netdev_adjacent_dev_insert(upper_dev, dev, ref_nr, down_list,
5361                                            private, false);
5362         if (ret) {
5363                 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
5364                 return ret;
5365         }
5366
5367         return 0;
5368 }
5369
5370 static int __netdev_adjacent_dev_link(struct net_device *dev,
5371                                       struct net_device *upper_dev,
5372                                       u16 ref_nr)
5373 {
5374         return __netdev_adjacent_dev_link_lists(dev, upper_dev, ref_nr,
5375                                                 &dev->all_adj_list.upper,
5376                                                 &upper_dev->all_adj_list.lower,
5377                                                 NULL, false);
5378 }
5379
5380 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
5381                                                struct net_device *upper_dev,
5382                                                u16 ref_nr,
5383                                                struct list_head *up_list,
5384                                                struct list_head *down_list)
5385 {
5386         __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
5387         __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
5388 }
5389
5390 static void __netdev_adjacent_dev_unlink(struct net_device *dev,
5391                                          struct net_device *upper_dev,
5392                                          u16 ref_nr)
5393 {
5394         __netdev_adjacent_dev_unlink_lists(dev, upper_dev, ref_nr,
5395                                            &dev->all_adj_list.upper,
5396                                            &upper_dev->all_adj_list.lower);
5397 }
5398
5399 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
5400                                                 struct net_device *upper_dev,
5401                                                 void *private, bool master)
5402 {
5403         int ret = __netdev_adjacent_dev_link(dev, upper_dev, 1);
5404
5405         if (ret)
5406                 return ret;
5407
5408         ret = __netdev_adjacent_dev_link_lists(dev, upper_dev, 1,
5409                                                &dev->adj_list.upper,
5410                                                &upper_dev->adj_list.lower,
5411                                                private, master);
5412         if (ret) {
5413                 __netdev_adjacent_dev_unlink(dev, upper_dev, 1);
5414                 return ret;
5415         }
5416
5417         return 0;
5418 }
5419
5420 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
5421                                                    struct net_device *upper_dev)
5422 {
5423         __netdev_adjacent_dev_unlink(dev, upper_dev, 1);
5424         __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
5425                                            &dev->adj_list.upper,
5426                                            &upper_dev->adj_list.lower);
5427 }
5428
5429 static int __netdev_upper_dev_link(struct net_device *dev,
5430                                    struct net_device *upper_dev, bool master,
5431                                    void *private)
5432 {
5433         struct netdev_notifier_changeupper_info changeupper_info;
5434         struct netdev_adjacent *i, *j, *to_i, *to_j;
5435         int ret = 0;
5436
5437         ASSERT_RTNL();
5438
5439         if (dev == upper_dev)
5440                 return -EBUSY;
5441
5442         /* To prevent loops, check if dev is not upper device to upper_dev. */
5443         if (__netdev_find_adj(dev, &upper_dev->all_adj_list.upper))
5444                 return -EBUSY;
5445
5446         if (__netdev_find_adj(upper_dev, &dev->adj_list.upper))
5447                 return -EEXIST;
5448
5449         if (master && netdev_master_upper_dev_get(dev))
5450                 return -EBUSY;
5451
5452         changeupper_info.upper_dev = upper_dev;
5453         changeupper_info.master = master;
5454         changeupper_info.linking = true;
5455
5456         ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
5457                                             &changeupper_info.info);
5458         ret = notifier_to_errno(ret);
5459         if (ret)
5460                 return ret;
5461
5462         ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, private,
5463                                                    master);
5464         if (ret)
5465                 return ret;
5466
5467         /* Now that we linked these devs, make all the upper_dev's
5468          * all_adj_list.upper visible to every dev's all_adj_list.lower an
5469          * versa, and don't forget the devices itself. All of these
5470          * links are non-neighbours.
5471          */
5472         list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5473                 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5474                         pr_debug("Interlinking %s with %s, non-neighbour\n",
5475                                  i->dev->name, j->dev->name);
5476                         ret = __netdev_adjacent_dev_link(i->dev, j->dev, i->ref_nr);
5477                         if (ret)
5478                                 goto rollback_mesh;
5479                 }
5480         }
5481
5482         /* add dev to every upper_dev's upper device */
5483         list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5484                 pr_debug("linking %s's upper device %s with %s\n",
5485                          upper_dev->name, i->dev->name, dev->name);
5486                 ret = __netdev_adjacent_dev_link(dev, i->dev, i->ref_nr);
5487                 if (ret)
5488                         goto rollback_upper_mesh;
5489         }
5490
5491         /* add upper_dev to every dev's lower device */
5492         list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5493                 pr_debug("linking %s's lower device %s with %s\n", dev->name,
5494                          i->dev->name, upper_dev->name);
5495                 ret = __netdev_adjacent_dev_link(i->dev, upper_dev, i->ref_nr);
5496                 if (ret)
5497                         goto rollback_lower_mesh;
5498         }
5499
5500         call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
5501                                       &changeupper_info.info);
5502         return 0;
5503
5504 rollback_lower_mesh:
5505         to_i = i;
5506         list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5507                 if (i == to_i)
5508                         break;
5509                 __netdev_adjacent_dev_unlink(i->dev, upper_dev, i->ref_nr);
5510         }
5511
5512         i = NULL;
5513
5514 rollback_upper_mesh:
5515         to_i = i;
5516         list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5517                 if (i == to_i)
5518                         break;
5519                 __netdev_adjacent_dev_unlink(dev, i->dev, i->ref_nr);
5520         }
5521
5522         i = j = NULL;
5523
5524 rollback_mesh:
5525         to_i = i;
5526         to_j = j;
5527         list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5528                 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5529                         if (i == to_i && j == to_j)
5530                                 break;
5531                         __netdev_adjacent_dev_unlink(i->dev, j->dev, i->ref_nr);
5532                 }
5533                 if (i == to_i)
5534                         break;
5535         }
5536
5537         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5538
5539         return ret;
5540 }
5541
5542 /**
5543  * netdev_upper_dev_link - Add a link to the upper device
5544  * @dev: device
5545  * @upper_dev: new upper device
5546  *
5547  * Adds a link to device which is upper to this one. The caller must hold
5548  * the RTNL lock. On a failure a negative errno code is returned.
5549  * On success the reference counts are adjusted and the function
5550  * returns zero.
5551  */
5552 int netdev_upper_dev_link(struct net_device *dev,
5553                           struct net_device *upper_dev)
5554 {
5555         return __netdev_upper_dev_link(dev, upper_dev, false, NULL);
5556 }
5557 EXPORT_SYMBOL(netdev_upper_dev_link);
5558
5559 /**
5560  * netdev_master_upper_dev_link - Add a master link to the upper device
5561  * @dev: device
5562  * @upper_dev: new upper device
5563  *
5564  * Adds a link to device which is upper to this one. In this case, only
5565  * one master upper device can be linked, although other non-master devices
5566  * might be linked as well. The caller must hold the RTNL lock.
5567  * On a failure a negative errno code is returned. On success the reference
5568  * counts are adjusted and the function returns zero.
5569  */
5570 int netdev_master_upper_dev_link(struct net_device *dev,
5571                                  struct net_device *upper_dev)
5572 {
5573         return __netdev_upper_dev_link(dev, upper_dev, true, NULL);
5574 }
5575 EXPORT_SYMBOL(netdev_master_upper_dev_link);
5576
5577 int netdev_master_upper_dev_link_private(struct net_device *dev,
5578                                          struct net_device *upper_dev,
5579                                          void *private)
5580 {
5581         return __netdev_upper_dev_link(dev, upper_dev, true, private);
5582 }
5583 EXPORT_SYMBOL(netdev_master_upper_dev_link_private);
5584
5585 /**
5586  * netdev_upper_dev_unlink - Removes a link to upper device
5587  * @dev: device
5588  * @upper_dev: new upper device
5589  *
5590  * Removes a link to device which is upper to this one. The caller must hold
5591  * the RTNL lock.
5592  */
5593 void netdev_upper_dev_unlink(struct net_device *dev,
5594                              struct net_device *upper_dev)
5595 {
5596         struct netdev_notifier_changeupper_info changeupper_info;
5597         struct netdev_adjacent *i, *j;
5598         ASSERT_RTNL();
5599
5600         changeupper_info.upper_dev = upper_dev;
5601         changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
5602         changeupper_info.linking = false;
5603
5604         call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
5605                                       &changeupper_info.info);
5606
5607         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5608
5609         /* Here is the tricky part. We must remove all dev's lower
5610          * devices from all upper_dev's upper devices and vice
5611          * versa, to maintain the graph relationship.
5612          */
5613         list_for_each_entry(i, &dev->all_adj_list.lower, list)
5614                 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list)
5615                         __netdev_adjacent_dev_unlink(i->dev, j->dev, i->ref_nr);
5616
5617         /* remove also the devices itself from lower/upper device
5618          * list
5619          */
5620         list_for_each_entry(i, &dev->all_adj_list.lower, list)
5621                 __netdev_adjacent_dev_unlink(i->dev, upper_dev, i->ref_nr);
5622
5623         list_for_each_entry(i, &upper_dev->all_adj_list.upper, list)
5624                 __netdev_adjacent_dev_unlink(dev, i->dev, i->ref_nr);
5625
5626         call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
5627                                       &changeupper_info.info);
5628 }
5629 EXPORT_SYMBOL(netdev_upper_dev_unlink);
5630
5631 /**
5632  * netdev_bonding_info_change - Dispatch event about slave change
5633  * @dev: device
5634  * @bonding_info: info to dispatch
5635  *
5636  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
5637  * The caller must hold the RTNL lock.
5638  */
5639 void netdev_bonding_info_change(struct net_device *dev,
5640                                 struct netdev_bonding_info *bonding_info)
5641 {
5642         struct netdev_notifier_bonding_info     info;
5643
5644         memcpy(&info.bonding_info, bonding_info,
5645                sizeof(struct netdev_bonding_info));
5646         call_netdevice_notifiers_info(NETDEV_BONDING_INFO, dev,
5647                                       &info.info);
5648 }
5649 EXPORT_SYMBOL(netdev_bonding_info_change);
5650
5651 static void netdev_adjacent_add_links(struct net_device *dev)
5652 {
5653         struct netdev_adjacent *iter;
5654
5655         struct net *net = dev_net(dev);
5656
5657         list_for_each_entry(iter, &dev->adj_list.upper, list) {
5658                 if (!net_eq(net,dev_net(iter->dev)))
5659                         continue;
5660                 netdev_adjacent_sysfs_add(iter->dev, dev,
5661                                           &iter->dev->adj_list.lower);
5662                 netdev_adjacent_sysfs_add(dev, iter->dev,
5663                                           &dev->adj_list.upper);
5664         }
5665
5666         list_for_each_entry(iter, &dev->adj_list.lower, list) {
5667                 if (!net_eq(net,dev_net(iter->dev)))
5668                         continue;
5669                 netdev_adjacent_sysfs_add(iter->dev, dev,
5670                                           &iter->dev->adj_list.upper);
5671                 netdev_adjacent_sysfs_add(dev, iter->dev,
5672                                           &dev->adj_list.lower);
5673         }
5674 }
5675
5676 static void netdev_adjacent_del_links(struct net_device *dev)
5677 {
5678         struct netdev_adjacent *iter;
5679
5680         struct net *net = dev_net(dev);
5681
5682         list_for_each_entry(iter, &dev->adj_list.upper, list) {
5683                 if (!net_eq(net,dev_net(iter->dev)))
5684                         continue;
5685                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
5686                                           &iter->dev->adj_list.lower);
5687                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
5688                                           &dev->adj_list.upper);
5689         }
5690
5691         list_for_each_entry(iter, &dev->adj_list.lower, list) {
5692                 if (!net_eq(net,dev_net(iter->dev)))
5693                         continue;
5694                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
5695                                           &iter->dev->adj_list.upper);
5696                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
5697                                           &dev->adj_list.lower);
5698         }
5699 }
5700
5701 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
5702 {
5703         struct netdev_adjacent *iter;
5704
5705         struct net *net = dev_net(dev);
5706
5707         list_for_each_entry(iter, &dev->adj_list.upper, list) {
5708                 if (!net_eq(net,dev_net(iter->dev)))
5709                         continue;
5710                 netdev_adjacent_sysfs_del(iter->dev, oldname,
5711                                           &iter->dev->adj_list.lower);
5712                 netdev_adjacent_sysfs_add(iter->dev, dev,
5713                                           &iter->dev->adj_list.lower);
5714         }
5715
5716         list_for_each_entry(iter, &dev->adj_list.lower, list) {
5717                 if (!net_eq(net,dev_net(iter->dev)))
5718                         continue;
5719                 netdev_adjacent_sysfs_del(iter->dev, oldname,
5720                                           &iter->dev->adj_list.upper);
5721                 netdev_adjacent_sysfs_add(iter->dev, dev,
5722                                           &iter->dev->adj_list.upper);
5723         }
5724 }
5725
5726 void *netdev_lower_dev_get_private(struct net_device *dev,
5727                                    struct net_device *lower_dev)
5728 {
5729         struct netdev_adjacent *lower;
5730
5731         if (!lower_dev)
5732                 return NULL;
5733         lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
5734         if (!lower)
5735                 return NULL;
5736
5737         return lower->private;
5738 }
5739 EXPORT_SYMBOL(netdev_lower_dev_get_private);
5740
5741
5742 int dev_get_nest_level(struct net_device *dev,
5743                        bool (*type_check)(struct net_device *dev))
5744 {
5745         struct net_device *lower = NULL;
5746         struct list_head *iter;
5747         int max_nest = -1;
5748         int nest;
5749
5750         ASSERT_RTNL();
5751
5752         netdev_for_each_lower_dev(dev, lower, iter) {
5753                 nest = dev_get_nest_level(lower, type_check);
5754                 if (max_nest < nest)
5755                         max_nest = nest;
5756         }
5757
5758         if (type_check(dev))
5759                 max_nest++;
5760
5761         return max_nest;
5762 }
5763 EXPORT_SYMBOL(dev_get_nest_level);
5764
5765 static void dev_change_rx_flags(struct net_device *dev, int flags)
5766 {
5767         const struct net_device_ops *ops = dev->netdev_ops;
5768
5769         if (ops->ndo_change_rx_flags)
5770                 ops->ndo_change_rx_flags(dev, flags);
5771 }
5772
5773 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
5774 {
5775         unsigned int old_flags = dev->flags;
5776         kuid_t uid;
5777         kgid_t gid;
5778
5779         ASSERT_RTNL();
5780
5781         dev->flags |= IFF_PROMISC;
5782         dev->promiscuity += inc;
5783         if (dev->promiscuity == 0) {
5784                 /*
5785                  * Avoid overflow.
5786                  * If inc causes overflow, untouch promisc and return error.
5787                  */
5788                 if (inc < 0)
5789                         dev->flags &= ~IFF_PROMISC;
5790                 else {
5791                         dev->promiscuity -= inc;
5792                         pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
5793                                 dev->name);
5794                         return -EOVERFLOW;
5795                 }
5796         }
5797         if (dev->flags != old_flags) {
5798                 pr_info("device %s %s promiscuous mode\n",
5799                         dev->name,
5800                         dev->flags & IFF_PROMISC ? "entered" : "left");
5801                 if (audit_enabled) {
5802                         current_uid_gid(&uid, &gid);
5803                         audit_log(current->audit_context, GFP_ATOMIC,
5804                                 AUDIT_ANOM_PROMISCUOUS,
5805                                 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
5806                                 dev->name, (dev->flags & IFF_PROMISC),
5807                                 (old_flags & IFF_PROMISC),
5808                                 from_kuid(&init_user_ns, audit_get_loginuid(current)),
5809                                 from_kuid(&init_user_ns, uid),
5810                                 from_kgid(&init_user_ns, gid),
5811                                 audit_get_sessionid(current));
5812                 }
5813
5814                 dev_change_rx_flags(dev, IFF_PROMISC);
5815         }
5816         if (notify)
5817                 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
5818         return 0;
5819 }
5820
5821 /**
5822  *      dev_set_promiscuity     - update promiscuity count on a device
5823  *      @dev: device
5824  *      @inc: modifier
5825  *
5826  *      Add or remove promiscuity from a device. While the count in the device
5827  *      remains above zero the interface remains promiscuous. Once it hits zero
5828  *      the device reverts back to normal filtering operation. A negative inc
5829  *      value is used to drop promiscuity on the device.
5830  *      Return 0 if successful or a negative errno code on error.
5831  */
5832 int dev_set_promiscuity(struct net_device *dev, int inc)
5833 {
5834         unsigned int old_flags = dev->flags;
5835         int err;
5836
5837         err = __dev_set_promiscuity(dev, inc, true);
5838         if (err < 0)
5839                 return err;
5840         if (dev->flags != old_flags)
5841                 dev_set_rx_mode(dev);
5842         return err;
5843 }
5844 EXPORT_SYMBOL(dev_set_promiscuity);
5845
5846 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
5847 {
5848         unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
5849
5850         ASSERT_RTNL();
5851
5852         dev->flags |= IFF_ALLMULTI;
5853         dev->allmulti += inc;
5854         if (dev->allmulti == 0) {
5855                 /*
5856                  * Avoid overflow.
5857                  * If inc causes overflow, untouch allmulti and return error.
5858                  */
5859                 if (inc < 0)
5860                         dev->flags &= ~IFF_ALLMULTI;
5861                 else {
5862                         dev->allmulti -= inc;
5863                         pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
5864                                 dev->name);
5865                         return -EOVERFLOW;
5866                 }
5867         }
5868         if (dev->flags ^ old_flags) {
5869                 dev_change_rx_flags(dev, IFF_ALLMULTI);
5870                 dev_set_rx_mode(dev);
5871                 if (notify)
5872                         __dev_notify_flags(dev, old_flags,
5873                                            dev->gflags ^ old_gflags);
5874         }
5875         return 0;
5876 }
5877
5878 /**
5879  *      dev_set_allmulti        - update allmulti count on a device
5880  *      @dev: device
5881  *      @inc: modifier
5882  *
5883  *      Add or remove reception of all multicast frames to a device. While the
5884  *      count in the device remains above zero the interface remains listening
5885  *      to all interfaces. Once it hits zero the device reverts back to normal
5886  *      filtering operation. A negative @inc value is used to drop the counter
5887  *      when releasing a resource needing all multicasts.
5888  *      Return 0 if successful or a negative errno code on error.
5889  */
5890
5891 int dev_set_allmulti(struct net_device *dev, int inc)
5892 {
5893         return __dev_set_allmulti(dev, inc, true);
5894 }
5895 EXPORT_SYMBOL(dev_set_allmulti);
5896
5897 /*
5898  *      Upload unicast and multicast address lists to device and
5899  *      configure RX filtering. When the device doesn't support unicast
5900  *      filtering it is put in promiscuous mode while unicast addresses
5901  *      are present.
5902  */
5903 void __dev_set_rx_mode(struct net_device *dev)
5904 {
5905         const struct net_device_ops *ops = dev->netdev_ops;
5906
5907         /* dev_open will call this function so the list will stay sane. */
5908         if (!(dev->flags&IFF_UP))
5909                 return;
5910
5911         if (!netif_device_present(dev))
5912                 return;
5913
5914         if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
5915                 /* Unicast addresses changes may only happen under the rtnl,
5916                  * therefore calling __dev_set_promiscuity here is safe.
5917                  */
5918                 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
5919                         __dev_set_promiscuity(dev, 1, false);
5920                         dev->uc_promisc = true;
5921                 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
5922                         __dev_set_promiscuity(dev, -1, false);
5923                         dev->uc_promisc = false;
5924                 }
5925         }
5926
5927         if (ops->ndo_set_rx_mode)
5928                 ops->ndo_set_rx_mode(dev);
5929 }
5930
5931 void dev_set_rx_mode(struct net_device *dev)
5932 {
5933         netif_addr_lock_bh(dev);
5934         __dev_set_rx_mode(dev);
5935         netif_addr_unlock_bh(dev);
5936 }
5937
5938 /**
5939  *      dev_get_flags - get flags reported to userspace
5940  *      @dev: device
5941  *
5942  *      Get the combination of flag bits exported through APIs to userspace.
5943  */
5944 unsigned int dev_get_flags(const struct net_device *dev)
5945 {
5946         unsigned int flags;
5947
5948         flags = (dev->flags & ~(IFF_PROMISC |
5949                                 IFF_ALLMULTI |
5950                                 IFF_RUNNING |
5951                                 IFF_LOWER_UP |
5952                                 IFF_DORMANT)) |
5953                 (dev->gflags & (IFF_PROMISC |
5954                                 IFF_ALLMULTI));
5955
5956         if (netif_running(dev)) {
5957                 if (netif_oper_up(dev))
5958                         flags |= IFF_RUNNING;
5959                 if (netif_carrier_ok(dev))
5960                         flags |= IFF_LOWER_UP;
5961                 if (netif_dormant(dev))
5962                         flags |= IFF_DORMANT;
5963         }
5964
5965         return flags;
5966 }
5967 EXPORT_SYMBOL(dev_get_flags);
5968
5969 int __dev_change_flags(struct net_device *dev, unsigned int flags)
5970 {
5971         unsigned int old_flags = dev->flags;
5972         int ret;
5973
5974         ASSERT_RTNL();
5975
5976         /*
5977          *      Set the flags on our device.
5978          */
5979
5980         dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
5981                                IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
5982                                IFF_AUTOMEDIA)) |
5983                      (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
5984                                     IFF_ALLMULTI));
5985
5986         /*
5987          *      Load in the correct multicast list now the flags have changed.
5988          */
5989
5990         if ((old_flags ^ flags) & IFF_MULTICAST)
5991                 dev_change_rx_flags(dev, IFF_MULTICAST);
5992
5993         dev_set_rx_mode(dev);
5994
5995         /*
5996          *      Have we downed the interface. We handle IFF_UP ourselves
5997          *      according to user attempts to set it, rather than blindly
5998          *      setting it.
5999          */
6000
6001         ret = 0;
6002         if ((old_flags ^ flags) & IFF_UP)
6003                 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
6004
6005         if ((flags ^ dev->gflags) & IFF_PROMISC) {
6006                 int inc = (flags & IFF_PROMISC) ? 1 : -1;
6007                 unsigned int old_flags = dev->flags;
6008
6009                 dev->gflags ^= IFF_PROMISC;
6010
6011                 if (__dev_set_promiscuity(dev, inc, false) >= 0)
6012                         if (dev->flags != old_flags)
6013                                 dev_set_rx_mode(dev);
6014         }
6015
6016         /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
6017            is important. Some (broken) drivers set IFF_PROMISC, when
6018            IFF_ALLMULTI is requested not asking us and not reporting.
6019          */
6020         if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
6021                 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
6022
6023                 dev->gflags ^= IFF_ALLMULTI;
6024                 __dev_set_allmulti(dev, inc, false);
6025         }
6026
6027         return ret;
6028 }
6029
6030 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
6031                         unsigned int gchanges)
6032 {
6033         unsigned int changes = dev->flags ^ old_flags;
6034
6035         if (gchanges)
6036                 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
6037
6038         if (changes & IFF_UP) {
6039                 if (dev->flags & IFF_UP)
6040                         call_netdevice_notifiers(NETDEV_UP, dev);
6041                 else
6042                         call_netdevice_notifiers(NETDEV_DOWN, dev);
6043         }
6044
6045         if (dev->flags & IFF_UP &&
6046             (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
6047                 struct netdev_notifier_change_info change_info;
6048
6049                 change_info.flags_changed = changes;
6050                 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
6051                                               &change_info.info);
6052         }
6053 }
6054
6055 /**
6056  *      dev_change_flags - change device settings
6057  *      @dev: device
6058  *      @flags: device state flags
6059  *
6060  *      Change settings on device based state flags. The flags are
6061  *      in the userspace exported format.
6062  */
6063 int dev_change_flags(struct net_device *dev, unsigned int flags)
6064 {
6065         int ret;
6066         unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
6067
6068         ret = __dev_change_flags(dev, flags);
6069         if (ret < 0)
6070                 return ret;
6071
6072         changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
6073         __dev_notify_flags(dev, old_flags, changes);
6074         return ret;
6075 }
6076 EXPORT_SYMBOL(dev_change_flags);
6077
6078 static int __dev_set_mtu(struct net_device *dev, int new_mtu)
6079 {
6080         const struct net_device_ops *ops = dev->netdev_ops;
6081
6082         if (ops->ndo_change_mtu)
6083                 return ops->ndo_change_mtu(dev, new_mtu);
6084
6085         dev->mtu = new_mtu;
6086         return 0;
6087 }
6088
6089 /**
6090  *      dev_set_mtu - Change maximum transfer unit
6091  *      @dev: device
6092  *      @new_mtu: new transfer unit
6093  *
6094  *      Change the maximum transfer size of the network device.
6095  */
6096 int dev_set_mtu(struct net_device *dev, int new_mtu)
6097 {
6098         int err, orig_mtu;
6099
6100         if (new_mtu == dev->mtu)
6101                 return 0;
6102
6103         /*      MTU must be positive.    */
6104         if (new_mtu < 0)
6105                 return -EINVAL;
6106
6107         if (!netif_device_present(dev))
6108                 return -ENODEV;
6109
6110         err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
6111         err = notifier_to_errno(err);
6112         if (err)
6113                 return err;
6114
6115         orig_mtu = dev->mtu;
6116         err = __dev_set_mtu(dev, new_mtu);
6117
6118         if (!err) {
6119                 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6120                 err = notifier_to_errno(err);
6121                 if (err) {
6122                         /* setting mtu back and notifying everyone again,
6123                          * so that they have a chance to revert changes.
6124                          */
6125                         __dev_set_mtu(dev, orig_mtu);
6126                         call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6127                 }
6128         }
6129         return err;
6130 }
6131 EXPORT_SYMBOL(dev_set_mtu);
6132
6133 /**
6134  *      dev_set_group - Change group this device belongs to
6135  *      @dev: device
6136  *      @new_group: group this device should belong to
6137  */
6138 void dev_set_group(struct net_device *dev, int new_group)
6139 {
6140         dev->group = new_group;
6141 }
6142 EXPORT_SYMBOL(dev_set_group);
6143
6144 /**
6145  *      dev_set_mac_address - Change Media Access Control Address
6146  *      @dev: device
6147  *      @sa: new address
6148  *
6149  *      Change the hardware (MAC) address of the device
6150  */
6151 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
6152 {
6153         const struct net_device_ops *ops = dev->netdev_ops;
6154         int err;
6155
6156         if (!ops->ndo_set_mac_address)
6157                 return -EOPNOTSUPP;
6158         if (sa->sa_family != dev->type)
6159                 return -EINVAL;
6160         if (!netif_device_present(dev))
6161                 return -ENODEV;
6162         err = ops->ndo_set_mac_address(dev, sa);
6163         if (err)
6164                 return err;
6165         dev->addr_assign_type = NET_ADDR_SET;
6166         call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
6167         add_device_randomness(dev->dev_addr, dev->addr_len);
6168         return 0;
6169 }
6170 EXPORT_SYMBOL(dev_set_mac_address);
6171
6172 /**
6173  *      dev_change_carrier - Change device carrier
6174  *      @dev: device
6175  *      @new_carrier: new value
6176  *
6177  *      Change device carrier
6178  */
6179 int dev_change_carrier(struct net_device *dev, bool new_carrier)
6180 {
6181         const struct net_device_ops *ops = dev->netdev_ops;
6182
6183         if (!ops->ndo_change_carrier)
6184                 return -EOPNOTSUPP;
6185         if (!netif_device_present(dev))
6186                 return -ENODEV;
6187         return ops->ndo_change_carrier(dev, new_carrier);
6188 }
6189 EXPORT_SYMBOL(dev_change_carrier);
6190
6191 /**
6192  *      dev_get_phys_port_id - Get device physical port ID
6193  *      @dev: device
6194  *      @ppid: port ID
6195  *
6196  *      Get device physical port ID
6197  */
6198 int dev_get_phys_port_id(struct net_device *dev,
6199                          struct netdev_phys_item_id *ppid)
6200 {
6201         const struct net_device_ops *ops = dev->netdev_ops;
6202
6203         if (!ops->ndo_get_phys_port_id)
6204                 return -EOPNOTSUPP;
6205         return ops->ndo_get_phys_port_id(dev, ppid);
6206 }
6207 EXPORT_SYMBOL(dev_get_phys_port_id);
6208
6209 /**
6210  *      dev_get_phys_port_name - Get device physical port name
6211  *      @dev: device
6212  *      @name: port name
6213  *
6214  *      Get device physical port name
6215  */
6216 int dev_get_phys_port_name(struct net_device *dev,
6217                            char *name, size_t len)
6218 {
6219         const struct net_device_ops *ops = dev->netdev_ops;
6220
6221         if (!ops->ndo_get_phys_port_name)
6222                 return -EOPNOTSUPP;
6223         return ops->ndo_get_phys_port_name(dev, name, len);
6224 }
6225 EXPORT_SYMBOL(dev_get_phys_port_name);
6226
6227 /**
6228  *      dev_change_proto_down - update protocol port state information
6229  *      @dev: device
6230  *      @proto_down: new value
6231  *
6232  *      This info can be used by switch drivers to set the phys state of the
6233  *      port.
6234  */
6235 int dev_change_proto_down(struct net_device *dev, bool proto_down)
6236 {
6237         const struct net_device_ops *ops = dev->netdev_ops;
6238
6239         if (!ops->ndo_change_proto_down)
6240                 return -EOPNOTSUPP;
6241         if (!netif_device_present(dev))
6242                 return -ENODEV;
6243         return ops->ndo_change_proto_down(dev, proto_down);
6244 }
6245 EXPORT_SYMBOL(dev_change_proto_down);
6246
6247 /**
6248  *      dev_new_index   -       allocate an ifindex
6249  *      @net: the applicable net namespace
6250  *
6251  *      Returns a suitable unique value for a new device interface
6252  *      number.  The caller must hold the rtnl semaphore or the
6253  *      dev_base_lock to be sure it remains unique.
6254  */
6255 static int dev_new_index(struct net *net)
6256 {
6257         int ifindex = net->ifindex;
6258         for (;;) {
6259                 if (++ifindex <= 0)
6260                         ifindex = 1;
6261                 if (!__dev_get_by_index(net, ifindex))
6262                         return net->ifindex = ifindex;
6263         }
6264 }
6265
6266 /* Delayed registration/unregisteration */
6267 static LIST_HEAD(net_todo_list);
6268 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
6269
6270 static void net_set_todo(struct net_device *dev)
6271 {
6272         list_add_tail(&dev->todo_list, &net_todo_list);
6273         dev_net(dev)->dev_unreg_count++;
6274 }
6275
6276 static void rollback_registered_many(struct list_head *head)
6277 {
6278         struct net_device *dev, *tmp;
6279         LIST_HEAD(close_head);
6280
6281         BUG_ON(dev_boot_phase);
6282         ASSERT_RTNL();
6283
6284         list_for_each_entry_safe(dev, tmp, head, unreg_list) {
6285                 /* Some devices call without registering
6286                  * for initialization unwind. Remove those
6287                  * devices and proceed with the remaining.
6288                  */
6289                 if (dev->reg_state == NETREG_UNINITIALIZED) {
6290                         pr_debug("unregister_netdevice: device %s/%p never was registered\n",
6291                                  dev->name, dev);
6292
6293                         WARN_ON(1);
6294                         list_del(&dev->unreg_list);
6295                         continue;
6296                 }
6297                 dev->dismantle = true;
6298                 BUG_ON(dev->reg_state != NETREG_REGISTERED);
6299         }
6300
6301         /* If device is running, close it first. */
6302         list_for_each_entry(dev, head, unreg_list)
6303                 list_add_tail(&dev->close_list, &close_head);
6304         dev_close_many(&close_head, true);
6305
6306         list_for_each_entry(dev, head, unreg_list) {
6307                 /* And unlink it from device chain. */
6308                 unlist_netdevice(dev);
6309
6310                 dev->reg_state = NETREG_UNREGISTERING;
6311                 on_each_cpu(flush_backlog, dev, 1);
6312         }
6313
6314         synchronize_net();
6315
6316         list_for_each_entry(dev, head, unreg_list) {
6317                 struct sk_buff *skb = NULL;
6318
6319                 /* Shutdown queueing discipline. */
6320                 dev_shutdown(dev);
6321
6322
6323                 /* Notify protocols, that we are about to destroy
6324                    this device. They should clean all the things.
6325                 */
6326                 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6327
6328                 if (!dev->rtnl_link_ops ||
6329                     dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
6330                         skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U,
6331                                                      GFP_KERNEL);
6332
6333                 /*
6334                  *      Flush the unicast and multicast chains
6335                  */
6336                 dev_uc_flush(dev);
6337                 dev_mc_flush(dev);
6338
6339                 if (dev->netdev_ops->ndo_uninit)
6340                         dev->netdev_ops->ndo_uninit(dev);
6341
6342                 if (skb)
6343                         rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
6344
6345                 /* Notifier chain MUST detach us all upper devices. */
6346                 WARN_ON(netdev_has_any_upper_dev(dev));
6347
6348                 /* Remove entries from kobject tree */
6349                 netdev_unregister_kobject(dev);
6350 #ifdef CONFIG_XPS
6351                 /* Remove XPS queueing entries */
6352                 netif_reset_xps_queues_gt(dev, 0);
6353 #endif
6354         }
6355
6356         synchronize_net();
6357
6358         list_for_each_entry(dev, head, unreg_list)
6359                 dev_put(dev);
6360 }
6361
6362 static void rollback_registered(struct net_device *dev)
6363 {
6364         LIST_HEAD(single);
6365
6366         list_add(&dev->unreg_list, &single);
6367         rollback_registered_many(&single);
6368         list_del(&single);
6369 }
6370
6371 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
6372         struct net_device *upper, netdev_features_t features)
6373 {
6374         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
6375         netdev_features_t feature;
6376         int feature_bit;
6377
6378         for_each_netdev_feature(&upper_disables, feature_bit) {
6379                 feature = __NETIF_F_BIT(feature_bit);
6380                 if (!(upper->wanted_features & feature)
6381                     && (features & feature)) {
6382                         netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
6383                                    &feature, upper->name);
6384                         features &= ~feature;
6385                 }
6386         }
6387
6388         return features;
6389 }
6390
6391 static void netdev_sync_lower_features(struct net_device *upper,
6392         struct net_device *lower, netdev_features_t features)
6393 {
6394         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
6395         netdev_features_t feature;
6396         int feature_bit;
6397
6398         for_each_netdev_feature(&upper_disables, feature_bit) {
6399                 feature = __NETIF_F_BIT(feature_bit);
6400                 if (!(features & feature) && (lower->features & feature)) {
6401                         netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
6402                                    &feature, lower->name);
6403                         lower->wanted_features &= ~feature;
6404                         netdev_update_features(lower);
6405
6406                         if (unlikely(lower->features & feature))
6407                                 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
6408                                             &feature, lower->name);
6409                 }
6410         }
6411 }
6412
6413 static netdev_features_t netdev_fix_features(struct net_device *dev,
6414         netdev_features_t features)
6415 {
6416         /* Fix illegal checksum combinations */
6417         if ((features & NETIF_F_HW_CSUM) &&
6418             (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6419                 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
6420                 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
6421         }
6422
6423         /* TSO requires that SG is present as well. */
6424         if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
6425                 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
6426                 features &= ~NETIF_F_ALL_TSO;
6427         }
6428
6429         if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
6430                                         !(features & NETIF_F_IP_CSUM)) {
6431                 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
6432                 features &= ~NETIF_F_TSO;
6433                 features &= ~NETIF_F_TSO_ECN;
6434         }
6435
6436         if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
6437                                          !(features & NETIF_F_IPV6_CSUM)) {
6438                 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
6439                 features &= ~NETIF_F_TSO6;
6440         }
6441
6442         /* TSO ECN requires that TSO is present as well. */
6443         if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
6444                 features &= ~NETIF_F_TSO_ECN;
6445
6446         /* Software GSO depends on SG. */
6447         if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
6448                 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
6449                 features &= ~NETIF_F_GSO;
6450         }
6451
6452         /* UFO needs SG and checksumming */
6453         if (features & NETIF_F_UFO) {
6454                 /* maybe split UFO into V4 and V6? */
6455                 if (!((features & NETIF_F_GEN_CSUM) ||
6456                     (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))
6457                             == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6458                         netdev_dbg(dev,
6459                                 "Dropping NETIF_F_UFO since no checksum offload features.\n");
6460                         features &= ~NETIF_F_UFO;
6461                 }
6462
6463                 if (!(features & NETIF_F_SG)) {
6464                         netdev_dbg(dev,
6465                                 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
6466                         features &= ~NETIF_F_UFO;
6467                 }
6468         }
6469
6470 #ifdef CONFIG_NET_RX_BUSY_POLL
6471         if (dev->netdev_ops->ndo_busy_poll)
6472                 features |= NETIF_F_BUSY_POLL;
6473         else
6474 #endif
6475                 features &= ~NETIF_F_BUSY_POLL;
6476
6477         return features;
6478 }
6479
6480 int __netdev_update_features(struct net_device *dev)
6481 {
6482         struct net_device *upper, *lower;
6483         netdev_features_t features;
6484         struct list_head *iter;
6485         int err = -1;
6486
6487         ASSERT_RTNL();
6488
6489         features = netdev_get_wanted_features(dev);
6490
6491         if (dev->netdev_ops->ndo_fix_features)
6492                 features = dev->netdev_ops->ndo_fix_features(dev, features);
6493
6494         /* driver might be less strict about feature dependencies */
6495         features = netdev_fix_features(dev, features);
6496
6497         /* some features can't be enabled if they're off an an upper device */
6498         netdev_for_each_upper_dev_rcu(dev, upper, iter)
6499                 features = netdev_sync_upper_features(dev, upper, features);
6500
6501         if (dev->features == features)
6502                 goto sync_lower;
6503
6504         netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
6505                 &dev->features, &features);
6506
6507         if (dev->netdev_ops->ndo_set_features)
6508                 err = dev->netdev_ops->ndo_set_features(dev, features);
6509         else
6510                 err = 0;
6511
6512         if (unlikely(err < 0)) {
6513                 netdev_err(dev,
6514                         "set_features() failed (%d); wanted %pNF, left %pNF\n",
6515                         err, &features, &dev->features);
6516                 /* return non-0 since some features might have changed and
6517                  * it's better to fire a spurious notification than miss it
6518                  */
6519                 return -1;
6520         }
6521
6522 sync_lower:
6523         /* some features must be disabled on lower devices when disabled
6524          * on an upper device (think: bonding master or bridge)
6525          */
6526         netdev_for_each_lower_dev(dev, lower, iter)
6527                 netdev_sync_lower_features(dev, lower, features);
6528
6529         if (!err)
6530                 dev->features = features;
6531
6532         return err < 0 ? 0 : 1;
6533 }
6534
6535 /**
6536  *      netdev_update_features - recalculate device features
6537  *      @dev: the device to check
6538  *
6539  *      Recalculate dev->features set and send notifications if it
6540  *      has changed. Should be called after driver or hardware dependent
6541  *      conditions might have changed that influence the features.
6542  */
6543 void netdev_update_features(struct net_device *dev)
6544 {
6545         if (__netdev_update_features(dev))
6546                 netdev_features_change(dev);
6547 }
6548 EXPORT_SYMBOL(netdev_update_features);
6549
6550 /**
6551  *      netdev_change_features - recalculate device features
6552  *      @dev: the device to check
6553  *
6554  *      Recalculate dev->features set and send notifications even
6555  *      if they have not changed. Should be called instead of
6556  *      netdev_update_features() if also dev->vlan_features might
6557  *      have changed to allow the changes to be propagated to stacked
6558  *      VLAN devices.
6559  */
6560 void netdev_change_features(struct net_device *dev)
6561 {
6562         __netdev_update_features(dev);
6563         netdev_features_change(dev);
6564 }
6565 EXPORT_SYMBOL(netdev_change_features);
6566
6567 /**
6568  *      netif_stacked_transfer_operstate -      transfer operstate
6569  *      @rootdev: the root or lower level device to transfer state from
6570  *      @dev: the device to transfer operstate to
6571  *
6572  *      Transfer operational state from root to device. This is normally
6573  *      called when a stacking relationship exists between the root
6574  *      device and the device(a leaf device).
6575  */
6576 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
6577                                         struct net_device *dev)
6578 {
6579         if (rootdev->operstate == IF_OPER_DORMANT)
6580                 netif_dormant_on(dev);
6581         else
6582                 netif_dormant_off(dev);
6583
6584         if (netif_carrier_ok(rootdev)) {
6585                 if (!netif_carrier_ok(dev))
6586                         netif_carrier_on(dev);
6587         } else {
6588                 if (netif_carrier_ok(dev))
6589                         netif_carrier_off(dev);
6590         }
6591 }
6592 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
6593
6594 #ifdef CONFIG_SYSFS
6595 static int netif_alloc_rx_queues(struct net_device *dev)
6596 {
6597         unsigned int i, count = dev->num_rx_queues;
6598         struct netdev_rx_queue *rx;
6599         size_t sz = count * sizeof(*rx);
6600
6601         BUG_ON(count < 1);
6602
6603         rx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6604         if (!rx) {
6605                 rx = vzalloc(sz);
6606                 if (!rx)
6607                         return -ENOMEM;
6608         }
6609         dev->_rx = rx;
6610
6611         for (i = 0; i < count; i++)
6612                 rx[i].dev = dev;
6613         return 0;
6614 }
6615 #endif
6616
6617 static void netdev_init_one_queue(struct net_device *dev,
6618                                   struct netdev_queue *queue, void *_unused)
6619 {
6620         /* Initialize queue lock */
6621         spin_lock_init(&queue->_xmit_lock);
6622         netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
6623         queue->xmit_lock_owner = -1;
6624         netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
6625         queue->dev = dev;
6626 #ifdef CONFIG_BQL
6627         dql_init(&queue->dql, HZ);
6628 #endif
6629 }
6630
6631 static void netif_free_tx_queues(struct net_device *dev)
6632 {
6633         kvfree(dev->_tx);
6634 }
6635
6636 static int netif_alloc_netdev_queues(struct net_device *dev)
6637 {
6638         unsigned int count = dev->num_tx_queues;
6639         struct netdev_queue *tx;
6640         size_t sz = count * sizeof(*tx);
6641
6642         if (count < 1 || count > 0xffff)
6643                 return -EINVAL;
6644
6645         tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6646         if (!tx) {
6647                 tx = vzalloc(sz);
6648                 if (!tx)
6649                         return -ENOMEM;
6650         }
6651         dev->_tx = tx;
6652
6653         netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
6654         spin_lock_init(&dev->tx_global_lock);
6655
6656         return 0;
6657 }
6658
6659 void netif_tx_stop_all_queues(struct net_device *dev)
6660 {
6661         unsigned int i;
6662
6663         for (i = 0; i < dev->num_tx_queues; i++) {
6664                 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
6665                 netif_tx_stop_queue(txq);
6666         }
6667 }
6668 EXPORT_SYMBOL(netif_tx_stop_all_queues);
6669
6670 /**
6671  *      register_netdevice      - register a network device
6672  *      @dev: device to register
6673  *
6674  *      Take a completed network device structure and add it to the kernel
6675  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
6676  *      chain. 0 is returned on success. A negative errno code is returned
6677  *      on a failure to set up the device, or if the name is a duplicate.
6678  *
6679  *      Callers must hold the rtnl semaphore. You may want
6680  *      register_netdev() instead of this.
6681  *
6682  *      BUGS:
6683  *      The locking appears insufficient to guarantee two parallel registers
6684  *      will not get the same name.
6685  */
6686
6687 int register_netdevice(struct net_device *dev)
6688 {
6689         int ret;
6690         struct net *net = dev_net(dev);
6691
6692         BUG_ON(dev_boot_phase);
6693         ASSERT_RTNL();
6694
6695         might_sleep();
6696
6697         /* When net_device's are persistent, this will be fatal. */
6698         BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
6699         BUG_ON(!net);
6700
6701         spin_lock_init(&dev->addr_list_lock);
6702         netdev_set_addr_lockdep_class(dev);
6703
6704         ret = dev_get_valid_name(net, dev, dev->name);
6705         if (ret < 0)
6706                 goto out;
6707
6708         /* Init, if this function is available */
6709         if (dev->netdev_ops->ndo_init) {
6710                 ret = dev->netdev_ops->ndo_init(dev);
6711                 if (ret) {
6712                         if (ret > 0)
6713                                 ret = -EIO;
6714                         goto out;
6715                 }
6716         }
6717
6718         if (((dev->hw_features | dev->features) &
6719              NETIF_F_HW_VLAN_CTAG_FILTER) &&
6720             (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
6721              !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
6722                 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
6723                 ret = -EINVAL;
6724                 goto err_uninit;
6725         }
6726
6727         ret = -EBUSY;
6728         if (!dev->ifindex)
6729                 dev->ifindex = dev_new_index(net);
6730         else if (__dev_get_by_index(net, dev->ifindex))
6731                 goto err_uninit;
6732
6733         /* Transfer changeable features to wanted_features and enable
6734          * software offloads (GSO and GRO).
6735          */
6736         dev->hw_features |= NETIF_F_SOFT_FEATURES;
6737         dev->features |= NETIF_F_SOFT_FEATURES;
6738         dev->wanted_features = dev->features & dev->hw_features;
6739
6740         if (!(dev->flags & IFF_LOOPBACK)) {
6741                 dev->hw_features |= NETIF_F_NOCACHE_COPY;
6742         }
6743
6744         /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
6745          */
6746         dev->vlan_features |= NETIF_F_HIGHDMA;
6747
6748         /* Make NETIF_F_SG inheritable to tunnel devices.
6749          */
6750         dev->hw_enc_features |= NETIF_F_SG;
6751
6752         /* Make NETIF_F_SG inheritable to MPLS.
6753          */
6754         dev->mpls_features |= NETIF_F_SG;
6755
6756         ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
6757         ret = notifier_to_errno(ret);
6758         if (ret)
6759                 goto err_uninit;
6760
6761         ret = netdev_register_kobject(dev);
6762         if (ret)
6763                 goto err_uninit;
6764         dev->reg_state = NETREG_REGISTERED;
6765
6766         __netdev_update_features(dev);
6767
6768         /*
6769          *      Default initial state at registry is that the
6770          *      device is present.
6771          */
6772
6773         set_bit(__LINK_STATE_PRESENT, &dev->state);
6774
6775         linkwatch_init_dev(dev);
6776
6777         dev_init_scheduler(dev);
6778         dev_hold(dev);
6779         list_netdevice(dev);
6780         add_device_randomness(dev->dev_addr, dev->addr_len);
6781
6782         /* If the device has permanent device address, driver should
6783          * set dev_addr and also addr_assign_type should be set to
6784          * NET_ADDR_PERM (default value).
6785          */
6786         if (dev->addr_assign_type == NET_ADDR_PERM)
6787                 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
6788
6789         /* Notify protocols, that a new device appeared. */
6790         ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
6791         ret = notifier_to_errno(ret);
6792         if (ret) {
6793                 rollback_registered(dev);
6794                 dev->reg_state = NETREG_UNREGISTERED;
6795         }
6796         /*
6797          *      Prevent userspace races by waiting until the network
6798          *      device is fully setup before sending notifications.
6799          */
6800         if (!dev->rtnl_link_ops ||
6801             dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
6802                 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
6803
6804 out:
6805         return ret;
6806
6807 err_uninit:
6808         if (dev->netdev_ops->ndo_uninit)
6809                 dev->netdev_ops->ndo_uninit(dev);
6810         goto out;
6811 }
6812 EXPORT_SYMBOL(register_netdevice);
6813
6814 /**
6815  *      init_dummy_netdev       - init a dummy network device for NAPI
6816  *      @dev: device to init
6817  *
6818  *      This takes a network device structure and initialize the minimum
6819  *      amount of fields so it can be used to schedule NAPI polls without
6820  *      registering a full blown interface. This is to be used by drivers
6821  *      that need to tie several hardware interfaces to a single NAPI
6822  *      poll scheduler due to HW limitations.
6823  */
6824 int init_dummy_netdev(struct net_device *dev)
6825 {
6826         /* Clear everything. Note we don't initialize spinlocks
6827          * are they aren't supposed to be taken by any of the
6828          * NAPI code and this dummy netdev is supposed to be
6829          * only ever used for NAPI polls
6830          */
6831         memset(dev, 0, sizeof(struct net_device));
6832
6833         /* make sure we BUG if trying to hit standard
6834          * register/unregister code path
6835          */
6836         dev->reg_state = NETREG_DUMMY;
6837
6838         /* NAPI wants this */
6839         INIT_LIST_HEAD(&dev->napi_list);
6840
6841         /* a dummy interface is started by default */
6842         set_bit(__LINK_STATE_PRESENT, &dev->state);
6843         set_bit(__LINK_STATE_START, &dev->state);
6844
6845         /* Note : We dont allocate pcpu_refcnt for dummy devices,
6846          * because users of this 'device' dont need to change
6847          * its refcount.
6848          */
6849
6850         return 0;
6851 }
6852 EXPORT_SYMBOL_GPL(init_dummy_netdev);
6853
6854
6855 /**
6856  *      register_netdev - register a network device
6857  *      @dev: device to register
6858  *
6859  *      Take a completed network device structure and add it to the kernel
6860  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
6861  *      chain. 0 is returned on success. A negative errno code is returned
6862  *      on a failure to set up the device, or if the name is a duplicate.
6863  *
6864  *      This is a wrapper around register_netdevice that takes the rtnl semaphore
6865  *      and expands the device name if you passed a format string to
6866  *      alloc_netdev.
6867  */
6868 int register_netdev(struct net_device *dev)
6869 {
6870         int err;
6871
6872         rtnl_lock();
6873         err = register_netdevice(dev);
6874         rtnl_unlock();
6875         return err;
6876 }
6877 EXPORT_SYMBOL(register_netdev);
6878
6879 int netdev_refcnt_read(const struct net_device *dev)
6880 {
6881         int i, refcnt = 0;
6882
6883         for_each_possible_cpu(i)
6884                 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
6885         return refcnt;
6886 }
6887 EXPORT_SYMBOL(netdev_refcnt_read);
6888
6889 /**
6890  * netdev_wait_allrefs - wait until all references are gone.
6891  * @dev: target net_device
6892  *
6893  * This is called when unregistering network devices.
6894  *
6895  * Any protocol or device that holds a reference should register
6896  * for netdevice notification, and cleanup and put back the
6897  * reference if they receive an UNREGISTER event.
6898  * We can get stuck here if buggy protocols don't correctly
6899  * call dev_put.
6900  */
6901 static void netdev_wait_allrefs(struct net_device *dev)
6902 {
6903         unsigned long rebroadcast_time, warning_time;
6904         int refcnt;
6905
6906         linkwatch_forget_dev(dev);
6907
6908         rebroadcast_time = warning_time = jiffies;
6909         refcnt = netdev_refcnt_read(dev);
6910
6911         while (refcnt != 0) {
6912                 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
6913                         rtnl_lock();
6914
6915                         /* Rebroadcast unregister notification */
6916                         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6917
6918                         __rtnl_unlock();
6919                         rcu_barrier();
6920                         rtnl_lock();
6921
6922                         call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6923                         if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
6924                                      &dev->state)) {
6925                                 /* We must not have linkwatch events
6926                                  * pending on unregister. If this
6927                                  * happens, we simply run the queue
6928                                  * unscheduled, resulting in a noop
6929                                  * for this device.
6930                                  */
6931                                 linkwatch_run_queue();
6932                         }
6933
6934                         __rtnl_unlock();
6935
6936                         rebroadcast_time = jiffies;
6937                 }
6938
6939                 msleep(250);
6940
6941                 refcnt = netdev_refcnt_read(dev);
6942
6943                 if (time_after(jiffies, warning_time + 10 * HZ)) {
6944                         pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
6945                                  dev->name, refcnt);
6946                         warning_time = jiffies;
6947                 }
6948         }
6949 }
6950
6951 /* The sequence is:
6952  *
6953  *      rtnl_lock();
6954  *      ...
6955  *      register_netdevice(x1);
6956  *      register_netdevice(x2);
6957  *      ...
6958  *      unregister_netdevice(y1);
6959  *      unregister_netdevice(y2);
6960  *      ...
6961  *      rtnl_unlock();
6962  *      free_netdev(y1);
6963  *      free_netdev(y2);
6964  *
6965  * We are invoked by rtnl_unlock().
6966  * This allows us to deal with problems:
6967  * 1) We can delete sysfs objects which invoke hotplug
6968  *    without deadlocking with linkwatch via keventd.
6969  * 2) Since we run with the RTNL semaphore not held, we can sleep
6970  *    safely in order to wait for the netdev refcnt to drop to zero.
6971  *
6972  * We must not return until all unregister events added during
6973  * the interval the lock was held have been completed.
6974  */
6975 void netdev_run_todo(void)
6976 {
6977         struct list_head list;
6978
6979         /* Snapshot list, allow later requests */
6980         list_replace_init(&net_todo_list, &list);
6981
6982         __rtnl_unlock();
6983
6984
6985         /* Wait for rcu callbacks to finish before next phase */
6986         if (!list_empty(&list))
6987                 rcu_barrier();
6988
6989         while (!list_empty(&list)) {
6990                 struct net_device *dev
6991                         = list_first_entry(&list, struct net_device, todo_list);
6992                 list_del(&dev->todo_list);
6993
6994                 rtnl_lock();
6995                 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6996                 __rtnl_unlock();
6997
6998                 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
6999                         pr_err("network todo '%s' but state %d\n",
7000                                dev->name, dev->reg_state);
7001                         dump_stack();
7002                         continue;
7003                 }
7004
7005                 dev->reg_state = NETREG_UNREGISTERED;
7006
7007                 netdev_wait_allrefs(dev);
7008
7009                 /* paranoia */
7010                 BUG_ON(netdev_refcnt_read(dev));
7011                 BUG_ON(!list_empty(&dev->ptype_all));
7012                 BUG_ON(!list_empty(&dev->ptype_specific));
7013                 WARN_ON(rcu_access_pointer(dev->ip_ptr));
7014                 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
7015                 WARN_ON(dev->dn_ptr);
7016
7017                 if (dev->destructor)
7018                         dev->destructor(dev);
7019
7020                 /* Report a network device has been unregistered */
7021                 rtnl_lock();
7022                 dev_net(dev)->dev_unreg_count--;
7023                 __rtnl_unlock();
7024                 wake_up(&netdev_unregistering_wq);
7025
7026                 /* Free network device */
7027                 kobject_put(&dev->dev.kobj);
7028         }
7029 }
7030
7031 /* Convert net_device_stats to rtnl_link_stats64.  They have the same
7032  * fields in the same order, with only the type differing.
7033  */
7034 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
7035                              const struct net_device_stats *netdev_stats)
7036 {
7037 #if BITS_PER_LONG == 64
7038         BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats));
7039         memcpy(stats64, netdev_stats, sizeof(*stats64));
7040 #else
7041         size_t i, n = sizeof(*stats64) / sizeof(u64);
7042         const unsigned long *src = (const unsigned long *)netdev_stats;
7043         u64 *dst = (u64 *)stats64;
7044
7045         BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) !=
7046                      sizeof(*stats64) / sizeof(u64));
7047         for (i = 0; i < n; i++)
7048                 dst[i] = src[i];
7049 #endif
7050 }
7051 EXPORT_SYMBOL(netdev_stats_to_stats64);
7052
7053 /**
7054  *      dev_get_stats   - get network device statistics
7055  *      @dev: device to get statistics from
7056  *      @storage: place to store stats
7057  *
7058  *      Get network statistics from device. Return @storage.
7059  *      The device driver may provide its own method by setting
7060  *      dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
7061  *      otherwise the internal statistics structure is used.
7062  */
7063 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
7064                                         struct rtnl_link_stats64 *storage)
7065 {
7066         const struct net_device_ops *ops = dev->netdev_ops;
7067
7068         if (ops->ndo_get_stats64) {
7069                 memset(storage, 0, sizeof(*storage));
7070                 ops->ndo_get_stats64(dev, storage);
7071         } else if (ops->ndo_get_stats) {
7072                 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
7073         } else {
7074                 netdev_stats_to_stats64(storage, &dev->stats);
7075         }
7076         storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
7077         storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
7078         return storage;
7079 }
7080 EXPORT_SYMBOL(dev_get_stats);
7081
7082 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
7083 {
7084         struct netdev_queue *queue = dev_ingress_queue(dev);
7085
7086 #ifdef CONFIG_NET_CLS_ACT
7087         if (queue)
7088                 return queue;
7089         queue = kzalloc(sizeof(*queue), GFP_KERNEL);
7090         if (!queue)
7091                 return NULL;
7092         netdev_init_one_queue(dev, queue, NULL);
7093         RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
7094         queue->qdisc_sleeping = &noop_qdisc;
7095         rcu_assign_pointer(dev->ingress_queue, queue);
7096 #endif
7097         return queue;
7098 }
7099
7100 static const struct ethtool_ops default_ethtool_ops;
7101
7102 void netdev_set_default_ethtool_ops(struct net_device *dev,
7103                                     const struct ethtool_ops *ops)
7104 {
7105         if (dev->ethtool_ops == &default_ethtool_ops)
7106                 dev->ethtool_ops = ops;
7107 }
7108 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
7109
7110 void netdev_freemem(struct net_device *dev)
7111 {
7112         char *addr = (char *)dev - dev->padded;
7113
7114         kvfree(addr);
7115 }
7116
7117 /**
7118  *      alloc_netdev_mqs - allocate network device
7119  *      @sizeof_priv:           size of private data to allocate space for
7120  *      @name:                  device name format string
7121  *      @name_assign_type:      origin of device name
7122  *      @setup:                 callback to initialize device
7123  *      @txqs:                  the number of TX subqueues to allocate
7124  *      @rxqs:                  the number of RX subqueues to allocate
7125  *
7126  *      Allocates a struct net_device with private data area for driver use
7127  *      and performs basic initialization.  Also allocates subqueue structs
7128  *      for each queue on the device.
7129  */
7130 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
7131                 unsigned char name_assign_type,
7132                 void (*setup)(struct net_device *),
7133                 unsigned int txqs, unsigned int rxqs)
7134 {
7135         struct net_device *dev;
7136         size_t alloc_size;
7137         struct net_device *p;
7138
7139         BUG_ON(strlen(name) >= sizeof(dev->name));
7140
7141         if (txqs < 1) {
7142                 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
7143                 return NULL;
7144         }
7145
7146 #ifdef CONFIG_SYSFS
7147         if (rxqs < 1) {
7148                 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
7149                 return NULL;
7150         }
7151 #endif
7152
7153         alloc_size = sizeof(struct net_device);
7154         if (sizeof_priv) {
7155                 /* ensure 32-byte alignment of private area */
7156                 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
7157                 alloc_size += sizeof_priv;
7158         }
7159         /* ensure 32-byte alignment of whole construct */
7160         alloc_size += NETDEV_ALIGN - 1;
7161
7162         p = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
7163         if (!p)
7164                 p = vzalloc(alloc_size);
7165         if (!p)
7166                 return NULL;
7167
7168         dev = PTR_ALIGN(p, NETDEV_ALIGN);
7169         dev->padded = (char *)dev - (char *)p;
7170
7171         dev->pcpu_refcnt = alloc_percpu(int);
7172         if (!dev->pcpu_refcnt)
7173                 goto free_dev;
7174
7175         if (dev_addr_init(dev))
7176                 goto free_pcpu;
7177
7178         dev_mc_init(dev);
7179         dev_uc_init(dev);
7180
7181         dev_net_set(dev, &init_net);
7182
7183         dev->gso_max_size = GSO_MAX_SIZE;
7184         dev->gso_max_segs = GSO_MAX_SEGS;
7185         dev->gso_min_segs = 0;
7186
7187         INIT_LIST_HEAD(&dev->napi_list);
7188         INIT_LIST_HEAD(&dev->unreg_list);
7189         INIT_LIST_HEAD(&dev->close_list);
7190         INIT_LIST_HEAD(&dev->link_watch_list);
7191         INIT_LIST_HEAD(&dev->adj_list.upper);
7192         INIT_LIST_HEAD(&dev->adj_list.lower);
7193         INIT_LIST_HEAD(&dev->all_adj_list.upper);
7194         INIT_LIST_HEAD(&dev->all_adj_list.lower);
7195         INIT_LIST_HEAD(&dev->ptype_all);
7196         INIT_LIST_HEAD(&dev->ptype_specific);
7197         dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
7198         setup(dev);
7199
7200         if (!dev->tx_queue_len) {
7201                 dev->priv_flags |= IFF_NO_QUEUE;
7202                 dev->tx_queue_len = 1;
7203         }
7204
7205         dev->num_tx_queues = txqs;
7206         dev->real_num_tx_queues = txqs;
7207         if (netif_alloc_netdev_queues(dev))
7208                 goto free_all;
7209
7210 #ifdef CONFIG_SYSFS
7211         dev->num_rx_queues = rxqs;
7212         dev->real_num_rx_queues = rxqs;
7213         if (netif_alloc_rx_queues(dev))
7214                 goto free_all;
7215 #endif
7216
7217         strcpy(dev->name, name);
7218         dev->name_assign_type = name_assign_type;
7219         dev->group = INIT_NETDEV_GROUP;
7220         if (!dev->ethtool_ops)
7221                 dev->ethtool_ops = &default_ethtool_ops;
7222
7223         nf_hook_ingress_init(dev);
7224
7225         return dev;
7226
7227 free_all:
7228         free_netdev(dev);
7229         return NULL;
7230
7231 free_pcpu:
7232         free_percpu(dev->pcpu_refcnt);
7233 free_dev:
7234         netdev_freemem(dev);
7235         return NULL;
7236 }
7237 EXPORT_SYMBOL(alloc_netdev_mqs);
7238
7239 /**
7240  *      free_netdev - free network device
7241  *      @dev: device
7242  *
7243  *      This function does the last stage of destroying an allocated device
7244  *      interface. The reference to the device object is released.
7245  *      If this is the last reference then it will be freed.
7246  */
7247 void free_netdev(struct net_device *dev)
7248 {
7249         struct napi_struct *p, *n;
7250
7251         netif_free_tx_queues(dev);
7252 #ifdef CONFIG_SYSFS
7253         kvfree(dev->_rx);
7254 #endif
7255
7256         kfree(rcu_dereference_protected(dev->ingress_queue, 1));
7257
7258         /* Flush device addresses */
7259         dev_addr_flush(dev);
7260
7261         list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
7262                 netif_napi_del(p);
7263
7264         free_percpu(dev->pcpu_refcnt);
7265         dev->pcpu_refcnt = NULL;
7266
7267         /*  Compatibility with error handling in drivers */
7268         if (dev->reg_state == NETREG_UNINITIALIZED) {
7269                 netdev_freemem(dev);
7270                 return;
7271         }
7272
7273         BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
7274         dev->reg_state = NETREG_RELEASED;
7275
7276         /* will free via device release */
7277         put_device(&dev->dev);
7278 }
7279 EXPORT_SYMBOL(free_netdev);
7280
7281 /**
7282  *      synchronize_net -  Synchronize with packet receive processing
7283  *
7284  *      Wait for packets currently being received to be done.
7285  *      Does not block later packets from starting.
7286  */
7287 void synchronize_net(void)
7288 {
7289         might_sleep();
7290         if (rtnl_is_locked())
7291                 synchronize_rcu_expedited();
7292         else
7293                 synchronize_rcu();
7294 }
7295 EXPORT_SYMBOL(synchronize_net);
7296
7297 /**
7298  *      unregister_netdevice_queue - remove device from the kernel
7299  *      @dev: device
7300  *      @head: list
7301  *
7302  *      This function shuts down a device interface and removes it
7303  *      from the kernel tables.
7304  *      If head not NULL, device is queued to be unregistered later.
7305  *
7306  *      Callers must hold the rtnl semaphore.  You may want
7307  *      unregister_netdev() instead of this.
7308  */
7309
7310 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
7311 {
7312         ASSERT_RTNL();
7313
7314         if (head) {
7315                 list_move_tail(&dev->unreg_list, head);
7316         } else {
7317                 rollback_registered(dev);
7318                 /* Finish processing unregister after unlock */
7319                 net_set_todo(dev);
7320         }
7321 }
7322 EXPORT_SYMBOL(unregister_netdevice_queue);
7323
7324 /**
7325  *      unregister_netdevice_many - unregister many devices
7326  *      @head: list of devices
7327  *
7328  *  Note: As most callers use a stack allocated list_head,
7329  *  we force a list_del() to make sure stack wont be corrupted later.
7330  */
7331 void unregister_netdevice_many(struct list_head *head)
7332 {
7333         struct net_device *dev;
7334
7335         if (!list_empty(head)) {
7336                 rollback_registered_many(head);
7337                 list_for_each_entry(dev, head, unreg_list)
7338                         net_set_todo(dev);
7339                 list_del(head);
7340         }
7341 }
7342 EXPORT_SYMBOL(unregister_netdevice_many);
7343
7344 /**
7345  *      unregister_netdev - remove device from the kernel
7346  *      @dev: device
7347  *
7348  *      This function shuts down a device interface and removes it
7349  *      from the kernel tables.
7350  *
7351  *      This is just a wrapper for unregister_netdevice that takes
7352  *      the rtnl semaphore.  In general you want to use this and not
7353  *      unregister_netdevice.
7354  */
7355 void unregister_netdev(struct net_device *dev)
7356 {
7357         rtnl_lock();
7358         unregister_netdevice(dev);
7359         rtnl_unlock();
7360 }
7361 EXPORT_SYMBOL(unregister_netdev);
7362
7363 /**
7364  *      dev_change_net_namespace - move device to different nethost namespace
7365  *      @dev: device
7366  *      @net: network namespace
7367  *      @pat: If not NULL name pattern to try if the current device name
7368  *            is already taken in the destination network namespace.
7369  *
7370  *      This function shuts down a device interface and moves it
7371  *      to a new network namespace. On success 0 is returned, on
7372  *      a failure a netagive errno code is returned.
7373  *
7374  *      Callers must hold the rtnl semaphore.
7375  */
7376
7377 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
7378 {
7379         int err;
7380
7381         ASSERT_RTNL();
7382
7383         /* Don't allow namespace local devices to be moved. */
7384         err = -EINVAL;
7385         if (dev->features & NETIF_F_NETNS_LOCAL)
7386                 goto out;
7387
7388         /* Ensure the device has been registrered */
7389         if (dev->reg_state != NETREG_REGISTERED)
7390                 goto out;
7391
7392         /* Get out if there is nothing todo */
7393         err = 0;
7394         if (net_eq(dev_net(dev), net))
7395                 goto out;
7396
7397         /* Pick the destination device name, and ensure
7398          * we can use it in the destination network namespace.
7399          */
7400         err = -EEXIST;
7401         if (__dev_get_by_name(net, dev->name)) {
7402                 /* We get here if we can't use the current device name */
7403                 if (!pat)
7404                         goto out;
7405                 if (dev_get_valid_name(net, dev, pat) < 0)
7406                         goto out;
7407         }
7408
7409         /*
7410          * And now a mini version of register_netdevice unregister_netdevice.
7411          */
7412
7413         /* If device is running close it first. */
7414         dev_close(dev);
7415
7416         /* And unlink it from device chain */
7417         err = -ENODEV;
7418         unlist_netdevice(dev);
7419
7420         synchronize_net();
7421
7422         /* Shutdown queueing discipline. */
7423         dev_shutdown(dev);
7424
7425         /* Notify protocols, that we are about to destroy
7426            this device. They should clean all the things.
7427
7428            Note that dev->reg_state stays at NETREG_REGISTERED.
7429            This is wanted because this way 8021q and macvlan know
7430            the device is just moving and can keep their slaves up.
7431         */
7432         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7433         rcu_barrier();
7434         call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7435         rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
7436
7437         /*
7438          *      Flush the unicast and multicast chains
7439          */
7440         dev_uc_flush(dev);
7441         dev_mc_flush(dev);
7442
7443         /* Send a netdev-removed uevent to the old namespace */
7444         kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
7445         netdev_adjacent_del_links(dev);
7446
7447         /* Actually switch the network namespace */
7448         dev_net_set(dev, net);
7449
7450         /* If there is an ifindex conflict assign a new one */
7451         if (__dev_get_by_index(net, dev->ifindex))
7452                 dev->ifindex = dev_new_index(net);
7453
7454         /* Send a netdev-add uevent to the new namespace */
7455         kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
7456         netdev_adjacent_add_links(dev);
7457
7458         /* Fixup kobjects */
7459         err = device_rename(&dev->dev, dev->name);
7460         WARN_ON(err);
7461
7462         /* Add the device back in the hashes */
7463         list_netdevice(dev);
7464
7465         /* Notify protocols, that a new device appeared. */
7466         call_netdevice_notifiers(NETDEV_REGISTER, dev);
7467
7468         /*
7469          *      Prevent userspace races by waiting until the network
7470          *      device is fully setup before sending notifications.
7471          */
7472         rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
7473
7474         synchronize_net();
7475         err = 0;
7476 out:
7477         return err;
7478 }
7479 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
7480
7481 static int dev_cpu_callback(struct notifier_block *nfb,
7482                             unsigned long action,
7483                             void *ocpu)
7484 {
7485         struct sk_buff **list_skb;
7486         struct sk_buff *skb;
7487         unsigned int cpu, oldcpu = (unsigned long)ocpu;
7488         struct softnet_data *sd, *oldsd;
7489
7490         if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
7491                 return NOTIFY_OK;
7492
7493         local_irq_disable();
7494         cpu = smp_processor_id();
7495         sd = &per_cpu(softnet_data, cpu);
7496         oldsd = &per_cpu(softnet_data, oldcpu);
7497
7498         /* Find end of our completion_queue. */
7499         list_skb = &sd->completion_queue;
7500         while (*list_skb)
7501                 list_skb = &(*list_skb)->next;
7502         /* Append completion queue from offline CPU. */
7503         *list_skb = oldsd->completion_queue;
7504         oldsd->completion_queue = NULL;
7505
7506         /* Append output queue from offline CPU. */
7507         if (oldsd->output_queue) {
7508                 *sd->output_queue_tailp = oldsd->output_queue;
7509                 sd->output_queue_tailp = oldsd->output_queue_tailp;
7510                 oldsd->output_queue = NULL;
7511                 oldsd->output_queue_tailp = &oldsd->output_queue;
7512         }
7513         /* Append NAPI poll list from offline CPU, with one exception :
7514          * process_backlog() must be called by cpu owning percpu backlog.
7515          * We properly handle process_queue & input_pkt_queue later.
7516          */
7517         while (!list_empty(&oldsd->poll_list)) {
7518                 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
7519                                                             struct napi_struct,
7520                                                             poll_list);
7521
7522                 list_del_init(&napi->poll_list);
7523                 if (napi->poll == process_backlog)
7524                         napi->state = 0;
7525                 else
7526                         ____napi_schedule(sd, napi);
7527         }
7528
7529         raise_softirq_irqoff(NET_TX_SOFTIRQ);
7530         local_irq_enable();
7531
7532         /* Process offline CPU's input_pkt_queue */
7533         while ((skb = __skb_dequeue(&oldsd->process_queue))) {
7534                 netif_rx_ni(skb);
7535                 input_queue_head_incr(oldsd);
7536         }
7537         while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
7538                 netif_rx_ni(skb);
7539                 input_queue_head_incr(oldsd);
7540         }
7541
7542         return NOTIFY_OK;
7543 }
7544
7545
7546 /**
7547  *      netdev_increment_features - increment feature set by one
7548  *      @all: current feature set
7549  *      @one: new feature set
7550  *      @mask: mask feature set
7551  *
7552  *      Computes a new feature set after adding a device with feature set
7553  *      @one to the master device with current feature set @all.  Will not
7554  *      enable anything that is off in @mask. Returns the new feature set.
7555  */
7556 netdev_features_t netdev_increment_features(netdev_features_t all,
7557         netdev_features_t one, netdev_features_t mask)
7558 {
7559         if (mask & NETIF_F_GEN_CSUM)
7560                 mask |= NETIF_F_ALL_CSUM;
7561         mask |= NETIF_F_VLAN_CHALLENGED;
7562
7563         all |= one & (NETIF_F_ONE_FOR_ALL|NETIF_F_ALL_CSUM) & mask;
7564         all &= one | ~NETIF_F_ALL_FOR_ALL;
7565
7566         /* If one device supports hw checksumming, set for all. */
7567         if (all & NETIF_F_GEN_CSUM)
7568                 all &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
7569
7570         return all;
7571 }
7572 EXPORT_SYMBOL(netdev_increment_features);
7573
7574 static struct hlist_head * __net_init netdev_create_hash(void)
7575 {
7576         int i;
7577         struct hlist_head *hash;
7578
7579         hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
7580         if (hash != NULL)
7581                 for (i = 0; i < NETDEV_HASHENTRIES; i++)
7582                         INIT_HLIST_HEAD(&hash[i]);
7583
7584         return hash;
7585 }
7586
7587 /* Initialize per network namespace state */
7588 static int __net_init netdev_init(struct net *net)
7589 {
7590         if (net != &init_net)
7591                 INIT_LIST_HEAD(&net->dev_base_head);
7592
7593         net->dev_name_head = netdev_create_hash();
7594         if (net->dev_name_head == NULL)
7595                 goto err_name;
7596
7597         net->dev_index_head = netdev_create_hash();
7598         if (net->dev_index_head == NULL)
7599                 goto err_idx;
7600
7601         return 0;
7602
7603 err_idx:
7604         kfree(net->dev_name_head);
7605 err_name:
7606         return -ENOMEM;
7607 }
7608
7609 /**
7610  *      netdev_drivername - network driver for the device
7611  *      @dev: network device
7612  *
7613  *      Determine network driver for device.
7614  */
7615 const char *netdev_drivername(const struct net_device *dev)
7616 {
7617         const struct device_driver *driver;
7618         const struct device *parent;
7619         const char *empty = "";
7620
7621         parent = dev->dev.parent;
7622         if (!parent)
7623                 return empty;
7624
7625         driver = parent->driver;
7626         if (driver && driver->name)
7627                 return driver->name;
7628         return empty;
7629 }
7630
7631 static void __netdev_printk(const char *level, const struct net_device *dev,
7632                             struct va_format *vaf)
7633 {
7634         if (dev && dev->dev.parent) {
7635                 dev_printk_emit(level[1] - '0',
7636                                 dev->dev.parent,
7637                                 "%s %s %s%s: %pV",
7638                                 dev_driver_string(dev->dev.parent),
7639                                 dev_name(dev->dev.parent),
7640                                 netdev_name(dev), netdev_reg_state(dev),
7641                                 vaf);
7642         } else if (dev) {
7643                 printk("%s%s%s: %pV",
7644                        level, netdev_name(dev), netdev_reg_state(dev), vaf);
7645         } else {
7646                 printk("%s(NULL net_device): %pV", level, vaf);
7647         }
7648 }
7649
7650 void netdev_printk(const char *level, const struct net_device *dev,
7651                    const char *format, ...)
7652 {
7653         struct va_format vaf;
7654         va_list args;
7655
7656         va_start(args, format);
7657
7658         vaf.fmt = format;
7659         vaf.va = &args;
7660
7661         __netdev_printk(level, dev, &vaf);
7662
7663         va_end(args);
7664 }
7665 EXPORT_SYMBOL(netdev_printk);
7666
7667 #define define_netdev_printk_level(func, level)                 \
7668 void func(const struct net_device *dev, const char *fmt, ...)   \
7669 {                                                               \
7670         struct va_format vaf;                                   \
7671         va_list args;                                           \
7672                                                                 \
7673         va_start(args, fmt);                                    \
7674                                                                 \
7675         vaf.fmt = fmt;                                          \
7676         vaf.va = &args;                                         \
7677                                                                 \
7678         __netdev_printk(level, dev, &vaf);                      \
7679                                                                 \
7680         va_end(args);                                           \
7681 }                                                               \
7682 EXPORT_SYMBOL(func);
7683
7684 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
7685 define_netdev_printk_level(netdev_alert, KERN_ALERT);
7686 define_netdev_printk_level(netdev_crit, KERN_CRIT);
7687 define_netdev_printk_level(netdev_err, KERN_ERR);
7688 define_netdev_printk_level(netdev_warn, KERN_WARNING);
7689 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
7690 define_netdev_printk_level(netdev_info, KERN_INFO);
7691
7692 static void __net_exit netdev_exit(struct net *net)
7693 {
7694         kfree(net->dev_name_head);
7695         kfree(net->dev_index_head);
7696 }
7697
7698 static struct pernet_operations __net_initdata netdev_net_ops = {
7699         .init = netdev_init,
7700         .exit = netdev_exit,
7701 };
7702
7703 static void __net_exit default_device_exit(struct net *net)
7704 {
7705         struct net_device *dev, *aux;
7706         /*
7707          * Push all migratable network devices back to the
7708          * initial network namespace
7709          */
7710         rtnl_lock();
7711         for_each_netdev_safe(net, dev, aux) {
7712                 int err;
7713                 char fb_name[IFNAMSIZ];
7714
7715                 /* Ignore unmoveable devices (i.e. loopback) */
7716                 if (dev->features & NETIF_F_NETNS_LOCAL)
7717                         continue;
7718
7719                 /* Leave virtual devices for the generic cleanup */
7720                 if (dev->rtnl_link_ops)
7721                         continue;
7722
7723                 /* Push remaining network devices to init_net */
7724                 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
7725                 err = dev_change_net_namespace(dev, &init_net, fb_name);
7726                 if (err) {
7727                         pr_emerg("%s: failed to move %s to init_net: %d\n",
7728                                  __func__, dev->name, err);
7729                         BUG();
7730                 }
7731         }
7732         rtnl_unlock();
7733 }
7734
7735 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
7736 {
7737         /* Return with the rtnl_lock held when there are no network
7738          * devices unregistering in any network namespace in net_list.
7739          */
7740         struct net *net;
7741         bool unregistering;
7742         DEFINE_WAIT_FUNC(wait, woken_wake_function);
7743
7744         add_wait_queue(&netdev_unregistering_wq, &wait);
7745         for (;;) {
7746                 unregistering = false;
7747                 rtnl_lock();
7748                 list_for_each_entry(net, net_list, exit_list) {
7749                         if (net->dev_unreg_count > 0) {
7750                                 unregistering = true;
7751                                 break;
7752                         }
7753                 }
7754                 if (!unregistering)
7755                         break;
7756                 __rtnl_unlock();
7757
7758                 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
7759         }
7760         remove_wait_queue(&netdev_unregistering_wq, &wait);
7761 }
7762
7763 static void __net_exit default_device_exit_batch(struct list_head *net_list)
7764 {
7765         /* At exit all network devices most be removed from a network
7766          * namespace.  Do this in the reverse order of registration.
7767          * Do this across as many network namespaces as possible to
7768          * improve batching efficiency.
7769          */
7770         struct net_device *dev;
7771         struct net *net;
7772         LIST_HEAD(dev_kill_list);
7773
7774         /* To prevent network device cleanup code from dereferencing
7775          * loopback devices or network devices that have been freed
7776          * wait here for all pending unregistrations to complete,
7777          * before unregistring the loopback device and allowing the
7778          * network namespace be freed.
7779          *
7780          * The netdev todo list containing all network devices
7781          * unregistrations that happen in default_device_exit_batch
7782          * will run in the rtnl_unlock() at the end of
7783          * default_device_exit_batch.
7784          */
7785         rtnl_lock_unregistering(net_list);
7786         list_for_each_entry(net, net_list, exit_list) {
7787                 for_each_netdev_reverse(net, dev) {
7788                         if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
7789                                 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
7790                         else
7791                                 unregister_netdevice_queue(dev, &dev_kill_list);
7792                 }
7793         }
7794         unregister_netdevice_many(&dev_kill_list);
7795         rtnl_unlock();
7796 }
7797
7798 static struct pernet_operations __net_initdata default_device_ops = {
7799         .exit = default_device_exit,
7800         .exit_batch = default_device_exit_batch,
7801 };
7802
7803 /*
7804  *      Initialize the DEV module. At boot time this walks the device list and
7805  *      unhooks any devices that fail to initialise (normally hardware not
7806  *      present) and leaves us with a valid list of present and active devices.
7807  *
7808  */
7809
7810 /*
7811  *       This is called single threaded during boot, so no need
7812  *       to take the rtnl semaphore.
7813  */
7814 static int __init net_dev_init(void)
7815 {
7816         int i, rc = -ENOMEM;
7817
7818         BUG_ON(!dev_boot_phase);
7819
7820         if (dev_proc_init())
7821                 goto out;
7822
7823         if (netdev_kobject_init())
7824                 goto out;
7825
7826         INIT_LIST_HEAD(&ptype_all);
7827         for (i = 0; i < PTYPE_HASH_SIZE; i++)
7828                 INIT_LIST_HEAD(&ptype_base[i]);
7829
7830         INIT_LIST_HEAD(&offload_base);
7831
7832         if (register_pernet_subsys(&netdev_net_ops))
7833                 goto out;
7834
7835         /*
7836          *      Initialise the packet receive queues.
7837          */
7838
7839         for_each_possible_cpu(i) {
7840                 struct softnet_data *sd = &per_cpu(softnet_data, i);
7841
7842                 skb_queue_head_init(&sd->input_pkt_queue);
7843                 skb_queue_head_init(&sd->process_queue);
7844                 INIT_LIST_HEAD(&sd->poll_list);
7845                 sd->output_queue_tailp = &sd->output_queue;
7846 #ifdef CONFIG_RPS
7847                 sd->csd.func = rps_trigger_softirq;
7848                 sd->csd.info = sd;
7849                 sd->cpu = i;
7850 #endif
7851
7852                 sd->backlog.poll = process_backlog;
7853                 sd->backlog.weight = weight_p;
7854         }
7855
7856         dev_boot_phase = 0;
7857
7858         /* The loopback device is special if any other network devices
7859          * is present in a network namespace the loopback device must
7860          * be present. Since we now dynamically allocate and free the
7861          * loopback device ensure this invariant is maintained by
7862          * keeping the loopback device as the first device on the
7863          * list of network devices.  Ensuring the loopback devices
7864          * is the first device that appears and the last network device
7865          * that disappears.
7866          */
7867         if (register_pernet_device(&loopback_net_ops))
7868                 goto out;
7869
7870         if (register_pernet_device(&default_device_ops))
7871                 goto out;
7872
7873         open_softirq(NET_TX_SOFTIRQ, net_tx_action);
7874         open_softirq(NET_RX_SOFTIRQ, net_rx_action);
7875
7876         hotcpu_notifier(dev_cpu_callback, 0);
7877         dst_subsys_init();
7878         rc = 0;
7879 out:
7880         return rc;
7881 }
7882
7883 subsys_initcall(net_dev_init);