OSDN Git Service

Merge tag 'drm-misc-fixes-2020-05-07' of git://anongit.freedesktop.org/drm/drm-misc...
[tomoyo/tomoyo-test1.git] / net / core / filter.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Linux Socket Filter - Kernel level socket filtering
4  *
5  * Based on the design of the Berkeley Packet Filter. The new
6  * internal format has been designed by PLUMgrid:
7  *
8  *      Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com
9  *
10  * Authors:
11  *
12  *      Jay Schulist <jschlst@samba.org>
13  *      Alexei Starovoitov <ast@plumgrid.com>
14  *      Daniel Borkmann <dborkman@redhat.com>
15  *
16  * Andi Kleen - Fix a few bad bugs and races.
17  * Kris Katterjohn - Added many additional checks in bpf_check_classic()
18  */
19
20 #include <linux/module.h>
21 #include <linux/types.h>
22 #include <linux/mm.h>
23 #include <linux/fcntl.h>
24 #include <linux/socket.h>
25 #include <linux/sock_diag.h>
26 #include <linux/in.h>
27 #include <linux/inet.h>
28 #include <linux/netdevice.h>
29 #include <linux/if_packet.h>
30 #include <linux/if_arp.h>
31 #include <linux/gfp.h>
32 #include <net/inet_common.h>
33 #include <net/ip.h>
34 #include <net/protocol.h>
35 #include <net/netlink.h>
36 #include <linux/skbuff.h>
37 #include <linux/skmsg.h>
38 #include <net/sock.h>
39 #include <net/flow_dissector.h>
40 #include <linux/errno.h>
41 #include <linux/timer.h>
42 #include <linux/uaccess.h>
43 #include <asm/unaligned.h>
44 #include <asm/cmpxchg.h>
45 #include <linux/filter.h>
46 #include <linux/ratelimit.h>
47 #include <linux/seccomp.h>
48 #include <linux/if_vlan.h>
49 #include <linux/bpf.h>
50 #include <net/sch_generic.h>
51 #include <net/cls_cgroup.h>
52 #include <net/dst_metadata.h>
53 #include <net/dst.h>
54 #include <net/sock_reuseport.h>
55 #include <net/busy_poll.h>
56 #include <net/tcp.h>
57 #include <net/xfrm.h>
58 #include <net/udp.h>
59 #include <linux/bpf_trace.h>
60 #include <net/xdp_sock.h>
61 #include <linux/inetdevice.h>
62 #include <net/inet_hashtables.h>
63 #include <net/inet6_hashtables.h>
64 #include <net/ip_fib.h>
65 #include <net/nexthop.h>
66 #include <net/flow.h>
67 #include <net/arp.h>
68 #include <net/ipv6.h>
69 #include <net/net_namespace.h>
70 #include <linux/seg6_local.h>
71 #include <net/seg6.h>
72 #include <net/seg6_local.h>
73 #include <net/lwtunnel.h>
74 #include <net/ipv6_stubs.h>
75 #include <net/bpf_sk_storage.h>
76
77 /**
78  *      sk_filter_trim_cap - run a packet through a socket filter
79  *      @sk: sock associated with &sk_buff
80  *      @skb: buffer to filter
81  *      @cap: limit on how short the eBPF program may trim the packet
82  *
83  * Run the eBPF program and then cut skb->data to correct size returned by
84  * the program. If pkt_len is 0 we toss packet. If skb->len is smaller
85  * than pkt_len we keep whole skb->data. This is the socket level
86  * wrapper to BPF_PROG_RUN. It returns 0 if the packet should
87  * be accepted or -EPERM if the packet should be tossed.
88  *
89  */
90 int sk_filter_trim_cap(struct sock *sk, struct sk_buff *skb, unsigned int cap)
91 {
92         int err;
93         struct sk_filter *filter;
94
95         /*
96          * If the skb was allocated from pfmemalloc reserves, only
97          * allow SOCK_MEMALLOC sockets to use it as this socket is
98          * helping free memory
99          */
100         if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC)) {
101                 NET_INC_STATS(sock_net(sk), LINUX_MIB_PFMEMALLOCDROP);
102                 return -ENOMEM;
103         }
104         err = BPF_CGROUP_RUN_PROG_INET_INGRESS(sk, skb);
105         if (err)
106                 return err;
107
108         err = security_sock_rcv_skb(sk, skb);
109         if (err)
110                 return err;
111
112         rcu_read_lock();
113         filter = rcu_dereference(sk->sk_filter);
114         if (filter) {
115                 struct sock *save_sk = skb->sk;
116                 unsigned int pkt_len;
117
118                 skb->sk = sk;
119                 pkt_len = bpf_prog_run_save_cb(filter->prog, skb);
120                 skb->sk = save_sk;
121                 err = pkt_len ? pskb_trim(skb, max(cap, pkt_len)) : -EPERM;
122         }
123         rcu_read_unlock();
124
125         return err;
126 }
127 EXPORT_SYMBOL(sk_filter_trim_cap);
128
129 BPF_CALL_1(bpf_skb_get_pay_offset, struct sk_buff *, skb)
130 {
131         return skb_get_poff(skb);
132 }
133
134 BPF_CALL_3(bpf_skb_get_nlattr, struct sk_buff *, skb, u32, a, u32, x)
135 {
136         struct nlattr *nla;
137
138         if (skb_is_nonlinear(skb))
139                 return 0;
140
141         if (skb->len < sizeof(struct nlattr))
142                 return 0;
143
144         if (a > skb->len - sizeof(struct nlattr))
145                 return 0;
146
147         nla = nla_find((struct nlattr *) &skb->data[a], skb->len - a, x);
148         if (nla)
149                 return (void *) nla - (void *) skb->data;
150
151         return 0;
152 }
153
154 BPF_CALL_3(bpf_skb_get_nlattr_nest, struct sk_buff *, skb, u32, a, u32, x)
155 {
156         struct nlattr *nla;
157
158         if (skb_is_nonlinear(skb))
159                 return 0;
160
161         if (skb->len < sizeof(struct nlattr))
162                 return 0;
163
164         if (a > skb->len - sizeof(struct nlattr))
165                 return 0;
166
167         nla = (struct nlattr *) &skb->data[a];
168         if (nla->nla_len > skb->len - a)
169                 return 0;
170
171         nla = nla_find_nested(nla, x);
172         if (nla)
173                 return (void *) nla - (void *) skb->data;
174
175         return 0;
176 }
177
178 BPF_CALL_4(bpf_skb_load_helper_8, const struct sk_buff *, skb, const void *,
179            data, int, headlen, int, offset)
180 {
181         u8 tmp, *ptr;
182         const int len = sizeof(tmp);
183
184         if (offset >= 0) {
185                 if (headlen - offset >= len)
186                         return *(u8 *)(data + offset);
187                 if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
188                         return tmp;
189         } else {
190                 ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len);
191                 if (likely(ptr))
192                         return *(u8 *)ptr;
193         }
194
195         return -EFAULT;
196 }
197
198 BPF_CALL_2(bpf_skb_load_helper_8_no_cache, const struct sk_buff *, skb,
199            int, offset)
200 {
201         return ____bpf_skb_load_helper_8(skb, skb->data, skb->len - skb->data_len,
202                                          offset);
203 }
204
205 BPF_CALL_4(bpf_skb_load_helper_16, const struct sk_buff *, skb, const void *,
206            data, int, headlen, int, offset)
207 {
208         u16 tmp, *ptr;
209         const int len = sizeof(tmp);
210
211         if (offset >= 0) {
212                 if (headlen - offset >= len)
213                         return get_unaligned_be16(data + offset);
214                 if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
215                         return be16_to_cpu(tmp);
216         } else {
217                 ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len);
218                 if (likely(ptr))
219                         return get_unaligned_be16(ptr);
220         }
221
222         return -EFAULT;
223 }
224
225 BPF_CALL_2(bpf_skb_load_helper_16_no_cache, const struct sk_buff *, skb,
226            int, offset)
227 {
228         return ____bpf_skb_load_helper_16(skb, skb->data, skb->len - skb->data_len,
229                                           offset);
230 }
231
232 BPF_CALL_4(bpf_skb_load_helper_32, const struct sk_buff *, skb, const void *,
233            data, int, headlen, int, offset)
234 {
235         u32 tmp, *ptr;
236         const int len = sizeof(tmp);
237
238         if (likely(offset >= 0)) {
239                 if (headlen - offset >= len)
240                         return get_unaligned_be32(data + offset);
241                 if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
242                         return be32_to_cpu(tmp);
243         } else {
244                 ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len);
245                 if (likely(ptr))
246                         return get_unaligned_be32(ptr);
247         }
248
249         return -EFAULT;
250 }
251
252 BPF_CALL_2(bpf_skb_load_helper_32_no_cache, const struct sk_buff *, skb,
253            int, offset)
254 {
255         return ____bpf_skb_load_helper_32(skb, skb->data, skb->len - skb->data_len,
256                                           offset);
257 }
258
259 BPF_CALL_0(bpf_get_raw_cpu_id)
260 {
261         return raw_smp_processor_id();
262 }
263
264 static const struct bpf_func_proto bpf_get_raw_smp_processor_id_proto = {
265         .func           = bpf_get_raw_cpu_id,
266         .gpl_only       = false,
267         .ret_type       = RET_INTEGER,
268 };
269
270 static u32 convert_skb_access(int skb_field, int dst_reg, int src_reg,
271                               struct bpf_insn *insn_buf)
272 {
273         struct bpf_insn *insn = insn_buf;
274
275         switch (skb_field) {
276         case SKF_AD_MARK:
277                 BUILD_BUG_ON(sizeof_field(struct sk_buff, mark) != 4);
278
279                 *insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg,
280                                       offsetof(struct sk_buff, mark));
281                 break;
282
283         case SKF_AD_PKTTYPE:
284                 *insn++ = BPF_LDX_MEM(BPF_B, dst_reg, src_reg, PKT_TYPE_OFFSET());
285                 *insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg, PKT_TYPE_MAX);
286 #ifdef __BIG_ENDIAN_BITFIELD
287                 *insn++ = BPF_ALU32_IMM(BPF_RSH, dst_reg, 5);
288 #endif
289                 break;
290
291         case SKF_AD_QUEUE:
292                 BUILD_BUG_ON(sizeof_field(struct sk_buff, queue_mapping) != 2);
293
294                 *insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
295                                       offsetof(struct sk_buff, queue_mapping));
296                 break;
297
298         case SKF_AD_VLAN_TAG:
299                 BUILD_BUG_ON(sizeof_field(struct sk_buff, vlan_tci) != 2);
300
301                 /* dst_reg = *(u16 *) (src_reg + offsetof(vlan_tci)) */
302                 *insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
303                                       offsetof(struct sk_buff, vlan_tci));
304                 break;
305         case SKF_AD_VLAN_TAG_PRESENT:
306                 *insn++ = BPF_LDX_MEM(BPF_B, dst_reg, src_reg, PKT_VLAN_PRESENT_OFFSET());
307                 if (PKT_VLAN_PRESENT_BIT)
308                         *insn++ = BPF_ALU32_IMM(BPF_RSH, dst_reg, PKT_VLAN_PRESENT_BIT);
309                 if (PKT_VLAN_PRESENT_BIT < 7)
310                         *insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg, 1);
311                 break;
312         }
313
314         return insn - insn_buf;
315 }
316
317 static bool convert_bpf_extensions(struct sock_filter *fp,
318                                    struct bpf_insn **insnp)
319 {
320         struct bpf_insn *insn = *insnp;
321         u32 cnt;
322
323         switch (fp->k) {
324         case SKF_AD_OFF + SKF_AD_PROTOCOL:
325                 BUILD_BUG_ON(sizeof_field(struct sk_buff, protocol) != 2);
326
327                 /* A = *(u16 *) (CTX + offsetof(protocol)) */
328                 *insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
329                                       offsetof(struct sk_buff, protocol));
330                 /* A = ntohs(A) [emitting a nop or swap16] */
331                 *insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
332                 break;
333
334         case SKF_AD_OFF + SKF_AD_PKTTYPE:
335                 cnt = convert_skb_access(SKF_AD_PKTTYPE, BPF_REG_A, BPF_REG_CTX, insn);
336                 insn += cnt - 1;
337                 break;
338
339         case SKF_AD_OFF + SKF_AD_IFINDEX:
340         case SKF_AD_OFF + SKF_AD_HATYPE:
341                 BUILD_BUG_ON(sizeof_field(struct net_device, ifindex) != 4);
342                 BUILD_BUG_ON(sizeof_field(struct net_device, type) != 2);
343
344                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
345                                       BPF_REG_TMP, BPF_REG_CTX,
346                                       offsetof(struct sk_buff, dev));
347                 /* if (tmp != 0) goto pc + 1 */
348                 *insn++ = BPF_JMP_IMM(BPF_JNE, BPF_REG_TMP, 0, 1);
349                 *insn++ = BPF_EXIT_INSN();
350                 if (fp->k == SKF_AD_OFF + SKF_AD_IFINDEX)
351                         *insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_TMP,
352                                             offsetof(struct net_device, ifindex));
353                 else
354                         *insn = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_TMP,
355                                             offsetof(struct net_device, type));
356                 break;
357
358         case SKF_AD_OFF + SKF_AD_MARK:
359                 cnt = convert_skb_access(SKF_AD_MARK, BPF_REG_A, BPF_REG_CTX, insn);
360                 insn += cnt - 1;
361                 break;
362
363         case SKF_AD_OFF + SKF_AD_RXHASH:
364                 BUILD_BUG_ON(sizeof_field(struct sk_buff, hash) != 4);
365
366                 *insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX,
367                                     offsetof(struct sk_buff, hash));
368                 break;
369
370         case SKF_AD_OFF + SKF_AD_QUEUE:
371                 cnt = convert_skb_access(SKF_AD_QUEUE, BPF_REG_A, BPF_REG_CTX, insn);
372                 insn += cnt - 1;
373                 break;
374
375         case SKF_AD_OFF + SKF_AD_VLAN_TAG:
376                 cnt = convert_skb_access(SKF_AD_VLAN_TAG,
377                                          BPF_REG_A, BPF_REG_CTX, insn);
378                 insn += cnt - 1;
379                 break;
380
381         case SKF_AD_OFF + SKF_AD_VLAN_TAG_PRESENT:
382                 cnt = convert_skb_access(SKF_AD_VLAN_TAG_PRESENT,
383                                          BPF_REG_A, BPF_REG_CTX, insn);
384                 insn += cnt - 1;
385                 break;
386
387         case SKF_AD_OFF + SKF_AD_VLAN_TPID:
388                 BUILD_BUG_ON(sizeof_field(struct sk_buff, vlan_proto) != 2);
389
390                 /* A = *(u16 *) (CTX + offsetof(vlan_proto)) */
391                 *insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
392                                       offsetof(struct sk_buff, vlan_proto));
393                 /* A = ntohs(A) [emitting a nop or swap16] */
394                 *insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
395                 break;
396
397         case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
398         case SKF_AD_OFF + SKF_AD_NLATTR:
399         case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
400         case SKF_AD_OFF + SKF_AD_CPU:
401         case SKF_AD_OFF + SKF_AD_RANDOM:
402                 /* arg1 = CTX */
403                 *insn++ = BPF_MOV64_REG(BPF_REG_ARG1, BPF_REG_CTX);
404                 /* arg2 = A */
405                 *insn++ = BPF_MOV64_REG(BPF_REG_ARG2, BPF_REG_A);
406                 /* arg3 = X */
407                 *insn++ = BPF_MOV64_REG(BPF_REG_ARG3, BPF_REG_X);
408                 /* Emit call(arg1=CTX, arg2=A, arg3=X) */
409                 switch (fp->k) {
410                 case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
411                         *insn = BPF_EMIT_CALL(bpf_skb_get_pay_offset);
412                         break;
413                 case SKF_AD_OFF + SKF_AD_NLATTR:
414                         *insn = BPF_EMIT_CALL(bpf_skb_get_nlattr);
415                         break;
416                 case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
417                         *insn = BPF_EMIT_CALL(bpf_skb_get_nlattr_nest);
418                         break;
419                 case SKF_AD_OFF + SKF_AD_CPU:
420                         *insn = BPF_EMIT_CALL(bpf_get_raw_cpu_id);
421                         break;
422                 case SKF_AD_OFF + SKF_AD_RANDOM:
423                         *insn = BPF_EMIT_CALL(bpf_user_rnd_u32);
424                         bpf_user_rnd_init_once();
425                         break;
426                 }
427                 break;
428
429         case SKF_AD_OFF + SKF_AD_ALU_XOR_X:
430                 /* A ^= X */
431                 *insn = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_X);
432                 break;
433
434         default:
435                 /* This is just a dummy call to avoid letting the compiler
436                  * evict __bpf_call_base() as an optimization. Placed here
437                  * where no-one bothers.
438                  */
439                 BUG_ON(__bpf_call_base(0, 0, 0, 0, 0) != 0);
440                 return false;
441         }
442
443         *insnp = insn;
444         return true;
445 }
446
447 static bool convert_bpf_ld_abs(struct sock_filter *fp, struct bpf_insn **insnp)
448 {
449         const bool unaligned_ok = IS_BUILTIN(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS);
450         int size = bpf_size_to_bytes(BPF_SIZE(fp->code));
451         bool endian = BPF_SIZE(fp->code) == BPF_H ||
452                       BPF_SIZE(fp->code) == BPF_W;
453         bool indirect = BPF_MODE(fp->code) == BPF_IND;
454         const int ip_align = NET_IP_ALIGN;
455         struct bpf_insn *insn = *insnp;
456         int offset = fp->k;
457
458         if (!indirect &&
459             ((unaligned_ok && offset >= 0) ||
460              (!unaligned_ok && offset >= 0 &&
461               offset + ip_align >= 0 &&
462               offset + ip_align % size == 0))) {
463                 bool ldx_off_ok = offset <= S16_MAX;
464
465                 *insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_H);
466                 if (offset)
467                         *insn++ = BPF_ALU64_IMM(BPF_SUB, BPF_REG_TMP, offset);
468                 *insn++ = BPF_JMP_IMM(BPF_JSLT, BPF_REG_TMP,
469                                       size, 2 + endian + (!ldx_off_ok * 2));
470                 if (ldx_off_ok) {
471                         *insn++ = BPF_LDX_MEM(BPF_SIZE(fp->code), BPF_REG_A,
472                                               BPF_REG_D, offset);
473                 } else {
474                         *insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_D);
475                         *insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_TMP, offset);
476                         *insn++ = BPF_LDX_MEM(BPF_SIZE(fp->code), BPF_REG_A,
477                                               BPF_REG_TMP, 0);
478                 }
479                 if (endian)
480                         *insn++ = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, size * 8);
481                 *insn++ = BPF_JMP_A(8);
482         }
483
484         *insn++ = BPF_MOV64_REG(BPF_REG_ARG1, BPF_REG_CTX);
485         *insn++ = BPF_MOV64_REG(BPF_REG_ARG2, BPF_REG_D);
486         *insn++ = BPF_MOV64_REG(BPF_REG_ARG3, BPF_REG_H);
487         if (!indirect) {
488                 *insn++ = BPF_MOV64_IMM(BPF_REG_ARG4, offset);
489         } else {
490                 *insn++ = BPF_MOV64_REG(BPF_REG_ARG4, BPF_REG_X);
491                 if (fp->k)
492                         *insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_ARG4, offset);
493         }
494
495         switch (BPF_SIZE(fp->code)) {
496         case BPF_B:
497                 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_8);
498                 break;
499         case BPF_H:
500                 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_16);
501                 break;
502         case BPF_W:
503                 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_32);
504                 break;
505         default:
506                 return false;
507         }
508
509         *insn++ = BPF_JMP_IMM(BPF_JSGE, BPF_REG_A, 0, 2);
510         *insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
511         *insn   = BPF_EXIT_INSN();
512
513         *insnp = insn;
514         return true;
515 }
516
517 /**
518  *      bpf_convert_filter - convert filter program
519  *      @prog: the user passed filter program
520  *      @len: the length of the user passed filter program
521  *      @new_prog: allocated 'struct bpf_prog' or NULL
522  *      @new_len: pointer to store length of converted program
523  *      @seen_ld_abs: bool whether we've seen ld_abs/ind
524  *
525  * Remap 'sock_filter' style classic BPF (cBPF) instruction set to 'bpf_insn'
526  * style extended BPF (eBPF).
527  * Conversion workflow:
528  *
529  * 1) First pass for calculating the new program length:
530  *   bpf_convert_filter(old_prog, old_len, NULL, &new_len, &seen_ld_abs)
531  *
532  * 2) 2nd pass to remap in two passes: 1st pass finds new
533  *    jump offsets, 2nd pass remapping:
534  *   bpf_convert_filter(old_prog, old_len, new_prog, &new_len, &seen_ld_abs)
535  */
536 static int bpf_convert_filter(struct sock_filter *prog, int len,
537                               struct bpf_prog *new_prog, int *new_len,
538                               bool *seen_ld_abs)
539 {
540         int new_flen = 0, pass = 0, target, i, stack_off;
541         struct bpf_insn *new_insn, *first_insn = NULL;
542         struct sock_filter *fp;
543         int *addrs = NULL;
544         u8 bpf_src;
545
546         BUILD_BUG_ON(BPF_MEMWORDS * sizeof(u32) > MAX_BPF_STACK);
547         BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
548
549         if (len <= 0 || len > BPF_MAXINSNS)
550                 return -EINVAL;
551
552         if (new_prog) {
553                 first_insn = new_prog->insnsi;
554                 addrs = kcalloc(len, sizeof(*addrs),
555                                 GFP_KERNEL | __GFP_NOWARN);
556                 if (!addrs)
557                         return -ENOMEM;
558         }
559
560 do_pass:
561         new_insn = first_insn;
562         fp = prog;
563
564         /* Classic BPF related prologue emission. */
565         if (new_prog) {
566                 /* Classic BPF expects A and X to be reset first. These need
567                  * to be guaranteed to be the first two instructions.
568                  */
569                 *new_insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
570                 *new_insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_X, BPF_REG_X);
571
572                 /* All programs must keep CTX in callee saved BPF_REG_CTX.
573                  * In eBPF case it's done by the compiler, here we need to
574                  * do this ourself. Initial CTX is present in BPF_REG_ARG1.
575                  */
576                 *new_insn++ = BPF_MOV64_REG(BPF_REG_CTX, BPF_REG_ARG1);
577                 if (*seen_ld_abs) {
578                         /* For packet access in classic BPF, cache skb->data
579                          * in callee-saved BPF R8 and skb->len - skb->data_len
580                          * (headlen) in BPF R9. Since classic BPF is read-only
581                          * on CTX, we only need to cache it once.
582                          */
583                         *new_insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
584                                                   BPF_REG_D, BPF_REG_CTX,
585                                                   offsetof(struct sk_buff, data));
586                         *new_insn++ = BPF_LDX_MEM(BPF_W, BPF_REG_H, BPF_REG_CTX,
587                                                   offsetof(struct sk_buff, len));
588                         *new_insn++ = BPF_LDX_MEM(BPF_W, BPF_REG_TMP, BPF_REG_CTX,
589                                                   offsetof(struct sk_buff, data_len));
590                         *new_insn++ = BPF_ALU32_REG(BPF_SUB, BPF_REG_H, BPF_REG_TMP);
591                 }
592         } else {
593                 new_insn += 3;
594         }
595
596         for (i = 0; i < len; fp++, i++) {
597                 struct bpf_insn tmp_insns[32] = { };
598                 struct bpf_insn *insn = tmp_insns;
599
600                 if (addrs)
601                         addrs[i] = new_insn - first_insn;
602
603                 switch (fp->code) {
604                 /* All arithmetic insns and skb loads map as-is. */
605                 case BPF_ALU | BPF_ADD | BPF_X:
606                 case BPF_ALU | BPF_ADD | BPF_K:
607                 case BPF_ALU | BPF_SUB | BPF_X:
608                 case BPF_ALU | BPF_SUB | BPF_K:
609                 case BPF_ALU | BPF_AND | BPF_X:
610                 case BPF_ALU | BPF_AND | BPF_K:
611                 case BPF_ALU | BPF_OR | BPF_X:
612                 case BPF_ALU | BPF_OR | BPF_K:
613                 case BPF_ALU | BPF_LSH | BPF_X:
614                 case BPF_ALU | BPF_LSH | BPF_K:
615                 case BPF_ALU | BPF_RSH | BPF_X:
616                 case BPF_ALU | BPF_RSH | BPF_K:
617                 case BPF_ALU | BPF_XOR | BPF_X:
618                 case BPF_ALU | BPF_XOR | BPF_K:
619                 case BPF_ALU | BPF_MUL | BPF_X:
620                 case BPF_ALU | BPF_MUL | BPF_K:
621                 case BPF_ALU | BPF_DIV | BPF_X:
622                 case BPF_ALU | BPF_DIV | BPF_K:
623                 case BPF_ALU | BPF_MOD | BPF_X:
624                 case BPF_ALU | BPF_MOD | BPF_K:
625                 case BPF_ALU | BPF_NEG:
626                 case BPF_LD | BPF_ABS | BPF_W:
627                 case BPF_LD | BPF_ABS | BPF_H:
628                 case BPF_LD | BPF_ABS | BPF_B:
629                 case BPF_LD | BPF_IND | BPF_W:
630                 case BPF_LD | BPF_IND | BPF_H:
631                 case BPF_LD | BPF_IND | BPF_B:
632                         /* Check for overloaded BPF extension and
633                          * directly convert it if found, otherwise
634                          * just move on with mapping.
635                          */
636                         if (BPF_CLASS(fp->code) == BPF_LD &&
637                             BPF_MODE(fp->code) == BPF_ABS &&
638                             convert_bpf_extensions(fp, &insn))
639                                 break;
640                         if (BPF_CLASS(fp->code) == BPF_LD &&
641                             convert_bpf_ld_abs(fp, &insn)) {
642                                 *seen_ld_abs = true;
643                                 break;
644                         }
645
646                         if (fp->code == (BPF_ALU | BPF_DIV | BPF_X) ||
647                             fp->code == (BPF_ALU | BPF_MOD | BPF_X)) {
648                                 *insn++ = BPF_MOV32_REG(BPF_REG_X, BPF_REG_X);
649                                 /* Error with exception code on div/mod by 0.
650                                  * For cBPF programs, this was always return 0.
651                                  */
652                                 *insn++ = BPF_JMP_IMM(BPF_JNE, BPF_REG_X, 0, 2);
653                                 *insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
654                                 *insn++ = BPF_EXIT_INSN();
655                         }
656
657                         *insn = BPF_RAW_INSN(fp->code, BPF_REG_A, BPF_REG_X, 0, fp->k);
658                         break;
659
660                 /* Jump transformation cannot use BPF block macros
661                  * everywhere as offset calculation and target updates
662                  * require a bit more work than the rest, i.e. jump
663                  * opcodes map as-is, but offsets need adjustment.
664                  */
665
666 #define BPF_EMIT_JMP                                                    \
667         do {                                                            \
668                 const s32 off_min = S16_MIN, off_max = S16_MAX;         \
669                 s32 off;                                                \
670                                                                         \
671                 if (target >= len || target < 0)                        \
672                         goto err;                                       \
673                 off = addrs ? addrs[target] - addrs[i] - 1 : 0;         \
674                 /* Adjust pc relative offset for 2nd or 3rd insn. */    \
675                 off -= insn - tmp_insns;                                \
676                 /* Reject anything not fitting into insn->off. */       \
677                 if (off < off_min || off > off_max)                     \
678                         goto err;                                       \
679                 insn->off = off;                                        \
680         } while (0)
681
682                 case BPF_JMP | BPF_JA:
683                         target = i + fp->k + 1;
684                         insn->code = fp->code;
685                         BPF_EMIT_JMP;
686                         break;
687
688                 case BPF_JMP | BPF_JEQ | BPF_K:
689                 case BPF_JMP | BPF_JEQ | BPF_X:
690                 case BPF_JMP | BPF_JSET | BPF_K:
691                 case BPF_JMP | BPF_JSET | BPF_X:
692                 case BPF_JMP | BPF_JGT | BPF_K:
693                 case BPF_JMP | BPF_JGT | BPF_X:
694                 case BPF_JMP | BPF_JGE | BPF_K:
695                 case BPF_JMP | BPF_JGE | BPF_X:
696                         if (BPF_SRC(fp->code) == BPF_K && (int) fp->k < 0) {
697                                 /* BPF immediates are signed, zero extend
698                                  * immediate into tmp register and use it
699                                  * in compare insn.
700                                  */
701                                 *insn++ = BPF_MOV32_IMM(BPF_REG_TMP, fp->k);
702
703                                 insn->dst_reg = BPF_REG_A;
704                                 insn->src_reg = BPF_REG_TMP;
705                                 bpf_src = BPF_X;
706                         } else {
707                                 insn->dst_reg = BPF_REG_A;
708                                 insn->imm = fp->k;
709                                 bpf_src = BPF_SRC(fp->code);
710                                 insn->src_reg = bpf_src == BPF_X ? BPF_REG_X : 0;
711                         }
712
713                         /* Common case where 'jump_false' is next insn. */
714                         if (fp->jf == 0) {
715                                 insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
716                                 target = i + fp->jt + 1;
717                                 BPF_EMIT_JMP;
718                                 break;
719                         }
720
721                         /* Convert some jumps when 'jump_true' is next insn. */
722                         if (fp->jt == 0) {
723                                 switch (BPF_OP(fp->code)) {
724                                 case BPF_JEQ:
725                                         insn->code = BPF_JMP | BPF_JNE | bpf_src;
726                                         break;
727                                 case BPF_JGT:
728                                         insn->code = BPF_JMP | BPF_JLE | bpf_src;
729                                         break;
730                                 case BPF_JGE:
731                                         insn->code = BPF_JMP | BPF_JLT | bpf_src;
732                                         break;
733                                 default:
734                                         goto jmp_rest;
735                                 }
736
737                                 target = i + fp->jf + 1;
738                                 BPF_EMIT_JMP;
739                                 break;
740                         }
741 jmp_rest:
742                         /* Other jumps are mapped into two insns: Jxx and JA. */
743                         target = i + fp->jt + 1;
744                         insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
745                         BPF_EMIT_JMP;
746                         insn++;
747
748                         insn->code = BPF_JMP | BPF_JA;
749                         target = i + fp->jf + 1;
750                         BPF_EMIT_JMP;
751                         break;
752
753                 /* ldxb 4 * ([14] & 0xf) is remaped into 6 insns. */
754                 case BPF_LDX | BPF_MSH | BPF_B: {
755                         struct sock_filter tmp = {
756                                 .code   = BPF_LD | BPF_ABS | BPF_B,
757                                 .k      = fp->k,
758                         };
759
760                         *seen_ld_abs = true;
761
762                         /* X = A */
763                         *insn++ = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
764                         /* A = BPF_R0 = *(u8 *) (skb->data + K) */
765                         convert_bpf_ld_abs(&tmp, &insn);
766                         insn++;
767                         /* A &= 0xf */
768                         *insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_A, 0xf);
769                         /* A <<= 2 */
770                         *insn++ = BPF_ALU32_IMM(BPF_LSH, BPF_REG_A, 2);
771                         /* tmp = X */
772                         *insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_X);
773                         /* X = A */
774                         *insn++ = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
775                         /* A = tmp */
776                         *insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_TMP);
777                         break;
778                 }
779                 /* RET_K is remaped into 2 insns. RET_A case doesn't need an
780                  * extra mov as BPF_REG_0 is already mapped into BPF_REG_A.
781                  */
782                 case BPF_RET | BPF_A:
783                 case BPF_RET | BPF_K:
784                         if (BPF_RVAL(fp->code) == BPF_K)
785                                 *insn++ = BPF_MOV32_RAW(BPF_K, BPF_REG_0,
786                                                         0, fp->k);
787                         *insn = BPF_EXIT_INSN();
788                         break;
789
790                 /* Store to stack. */
791                 case BPF_ST:
792                 case BPF_STX:
793                         stack_off = fp->k * 4  + 4;
794                         *insn = BPF_STX_MEM(BPF_W, BPF_REG_FP, BPF_CLASS(fp->code) ==
795                                             BPF_ST ? BPF_REG_A : BPF_REG_X,
796                                             -stack_off);
797                         /* check_load_and_stores() verifies that classic BPF can
798                          * load from stack only after write, so tracking
799                          * stack_depth for ST|STX insns is enough
800                          */
801                         if (new_prog && new_prog->aux->stack_depth < stack_off)
802                                 new_prog->aux->stack_depth = stack_off;
803                         break;
804
805                 /* Load from stack. */
806                 case BPF_LD | BPF_MEM:
807                 case BPF_LDX | BPF_MEM:
808                         stack_off = fp->k * 4  + 4;
809                         *insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD  ?
810                                             BPF_REG_A : BPF_REG_X, BPF_REG_FP,
811                                             -stack_off);
812                         break;
813
814                 /* A = K or X = K */
815                 case BPF_LD | BPF_IMM:
816                 case BPF_LDX | BPF_IMM:
817                         *insn = BPF_MOV32_IMM(BPF_CLASS(fp->code) == BPF_LD ?
818                                               BPF_REG_A : BPF_REG_X, fp->k);
819                         break;
820
821                 /* X = A */
822                 case BPF_MISC | BPF_TAX:
823                         *insn = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
824                         break;
825
826                 /* A = X */
827                 case BPF_MISC | BPF_TXA:
828                         *insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_X);
829                         break;
830
831                 /* A = skb->len or X = skb->len */
832                 case BPF_LD | BPF_W | BPF_LEN:
833                 case BPF_LDX | BPF_W | BPF_LEN:
834                         *insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD ?
835                                             BPF_REG_A : BPF_REG_X, BPF_REG_CTX,
836                                             offsetof(struct sk_buff, len));
837                         break;
838
839                 /* Access seccomp_data fields. */
840                 case BPF_LDX | BPF_ABS | BPF_W:
841                         /* A = *(u32 *) (ctx + K) */
842                         *insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX, fp->k);
843                         break;
844
845                 /* Unknown instruction. */
846                 default:
847                         goto err;
848                 }
849
850                 insn++;
851                 if (new_prog)
852                         memcpy(new_insn, tmp_insns,
853                                sizeof(*insn) * (insn - tmp_insns));
854                 new_insn += insn - tmp_insns;
855         }
856
857         if (!new_prog) {
858                 /* Only calculating new length. */
859                 *new_len = new_insn - first_insn;
860                 if (*seen_ld_abs)
861                         *new_len += 4; /* Prologue bits. */
862                 return 0;
863         }
864
865         pass++;
866         if (new_flen != new_insn - first_insn) {
867                 new_flen = new_insn - first_insn;
868                 if (pass > 2)
869                         goto err;
870                 goto do_pass;
871         }
872
873         kfree(addrs);
874         BUG_ON(*new_len != new_flen);
875         return 0;
876 err:
877         kfree(addrs);
878         return -EINVAL;
879 }
880
881 /* Security:
882  *
883  * As we dont want to clear mem[] array for each packet going through
884  * __bpf_prog_run(), we check that filter loaded by user never try to read
885  * a cell if not previously written, and we check all branches to be sure
886  * a malicious user doesn't try to abuse us.
887  */
888 static int check_load_and_stores(const struct sock_filter *filter, int flen)
889 {
890         u16 *masks, memvalid = 0; /* One bit per cell, 16 cells */
891         int pc, ret = 0;
892
893         BUILD_BUG_ON(BPF_MEMWORDS > 16);
894
895         masks = kmalloc_array(flen, sizeof(*masks), GFP_KERNEL);
896         if (!masks)
897                 return -ENOMEM;
898
899         memset(masks, 0xff, flen * sizeof(*masks));
900
901         for (pc = 0; pc < flen; pc++) {
902                 memvalid &= masks[pc];
903
904                 switch (filter[pc].code) {
905                 case BPF_ST:
906                 case BPF_STX:
907                         memvalid |= (1 << filter[pc].k);
908                         break;
909                 case BPF_LD | BPF_MEM:
910                 case BPF_LDX | BPF_MEM:
911                         if (!(memvalid & (1 << filter[pc].k))) {
912                                 ret = -EINVAL;
913                                 goto error;
914                         }
915                         break;
916                 case BPF_JMP | BPF_JA:
917                         /* A jump must set masks on target */
918                         masks[pc + 1 + filter[pc].k] &= memvalid;
919                         memvalid = ~0;
920                         break;
921                 case BPF_JMP | BPF_JEQ | BPF_K:
922                 case BPF_JMP | BPF_JEQ | BPF_X:
923                 case BPF_JMP | BPF_JGE | BPF_K:
924                 case BPF_JMP | BPF_JGE | BPF_X:
925                 case BPF_JMP | BPF_JGT | BPF_K:
926                 case BPF_JMP | BPF_JGT | BPF_X:
927                 case BPF_JMP | BPF_JSET | BPF_K:
928                 case BPF_JMP | BPF_JSET | BPF_X:
929                         /* A jump must set masks on targets */
930                         masks[pc + 1 + filter[pc].jt] &= memvalid;
931                         masks[pc + 1 + filter[pc].jf] &= memvalid;
932                         memvalid = ~0;
933                         break;
934                 }
935         }
936 error:
937         kfree(masks);
938         return ret;
939 }
940
941 static bool chk_code_allowed(u16 code_to_probe)
942 {
943         static const bool codes[] = {
944                 /* 32 bit ALU operations */
945                 [BPF_ALU | BPF_ADD | BPF_K] = true,
946                 [BPF_ALU | BPF_ADD | BPF_X] = true,
947                 [BPF_ALU | BPF_SUB | BPF_K] = true,
948                 [BPF_ALU | BPF_SUB | BPF_X] = true,
949                 [BPF_ALU | BPF_MUL | BPF_K] = true,
950                 [BPF_ALU | BPF_MUL | BPF_X] = true,
951                 [BPF_ALU | BPF_DIV | BPF_K] = true,
952                 [BPF_ALU | BPF_DIV | BPF_X] = true,
953                 [BPF_ALU | BPF_MOD | BPF_K] = true,
954                 [BPF_ALU | BPF_MOD | BPF_X] = true,
955                 [BPF_ALU | BPF_AND | BPF_K] = true,
956                 [BPF_ALU | BPF_AND | BPF_X] = true,
957                 [BPF_ALU | BPF_OR | BPF_K] = true,
958                 [BPF_ALU | BPF_OR | BPF_X] = true,
959                 [BPF_ALU | BPF_XOR | BPF_K] = true,
960                 [BPF_ALU | BPF_XOR | BPF_X] = true,
961                 [BPF_ALU | BPF_LSH | BPF_K] = true,
962                 [BPF_ALU | BPF_LSH | BPF_X] = true,
963                 [BPF_ALU | BPF_RSH | BPF_K] = true,
964                 [BPF_ALU | BPF_RSH | BPF_X] = true,
965                 [BPF_ALU | BPF_NEG] = true,
966                 /* Load instructions */
967                 [BPF_LD | BPF_W | BPF_ABS] = true,
968                 [BPF_LD | BPF_H | BPF_ABS] = true,
969                 [BPF_LD | BPF_B | BPF_ABS] = true,
970                 [BPF_LD | BPF_W | BPF_LEN] = true,
971                 [BPF_LD | BPF_W | BPF_IND] = true,
972                 [BPF_LD | BPF_H | BPF_IND] = true,
973                 [BPF_LD | BPF_B | BPF_IND] = true,
974                 [BPF_LD | BPF_IMM] = true,
975                 [BPF_LD | BPF_MEM] = true,
976                 [BPF_LDX | BPF_W | BPF_LEN] = true,
977                 [BPF_LDX | BPF_B | BPF_MSH] = true,
978                 [BPF_LDX | BPF_IMM] = true,
979                 [BPF_LDX | BPF_MEM] = true,
980                 /* Store instructions */
981                 [BPF_ST] = true,
982                 [BPF_STX] = true,
983                 /* Misc instructions */
984                 [BPF_MISC | BPF_TAX] = true,
985                 [BPF_MISC | BPF_TXA] = true,
986                 /* Return instructions */
987                 [BPF_RET | BPF_K] = true,
988                 [BPF_RET | BPF_A] = true,
989                 /* Jump instructions */
990                 [BPF_JMP | BPF_JA] = true,
991                 [BPF_JMP | BPF_JEQ | BPF_K] = true,
992                 [BPF_JMP | BPF_JEQ | BPF_X] = true,
993                 [BPF_JMP | BPF_JGE | BPF_K] = true,
994                 [BPF_JMP | BPF_JGE | BPF_X] = true,
995                 [BPF_JMP | BPF_JGT | BPF_K] = true,
996                 [BPF_JMP | BPF_JGT | BPF_X] = true,
997                 [BPF_JMP | BPF_JSET | BPF_K] = true,
998                 [BPF_JMP | BPF_JSET | BPF_X] = true,
999         };
1000
1001         if (code_to_probe >= ARRAY_SIZE(codes))
1002                 return false;
1003
1004         return codes[code_to_probe];
1005 }
1006
1007 static bool bpf_check_basics_ok(const struct sock_filter *filter,
1008                                 unsigned int flen)
1009 {
1010         if (filter == NULL)
1011                 return false;
1012         if (flen == 0 || flen > BPF_MAXINSNS)
1013                 return false;
1014
1015         return true;
1016 }
1017
1018 /**
1019  *      bpf_check_classic - verify socket filter code
1020  *      @filter: filter to verify
1021  *      @flen: length of filter
1022  *
1023  * Check the user's filter code. If we let some ugly
1024  * filter code slip through kaboom! The filter must contain
1025  * no references or jumps that are out of range, no illegal
1026  * instructions, and must end with a RET instruction.
1027  *
1028  * All jumps are forward as they are not signed.
1029  *
1030  * Returns 0 if the rule set is legal or -EINVAL if not.
1031  */
1032 static int bpf_check_classic(const struct sock_filter *filter,
1033                              unsigned int flen)
1034 {
1035         bool anc_found;
1036         int pc;
1037
1038         /* Check the filter code now */
1039         for (pc = 0; pc < flen; pc++) {
1040                 const struct sock_filter *ftest = &filter[pc];
1041
1042                 /* May we actually operate on this code? */
1043                 if (!chk_code_allowed(ftest->code))
1044                         return -EINVAL;
1045
1046                 /* Some instructions need special checks */
1047                 switch (ftest->code) {
1048                 case BPF_ALU | BPF_DIV | BPF_K:
1049                 case BPF_ALU | BPF_MOD | BPF_K:
1050                         /* Check for division by zero */
1051                         if (ftest->k == 0)
1052                                 return -EINVAL;
1053                         break;
1054                 case BPF_ALU | BPF_LSH | BPF_K:
1055                 case BPF_ALU | BPF_RSH | BPF_K:
1056                         if (ftest->k >= 32)
1057                                 return -EINVAL;
1058                         break;
1059                 case BPF_LD | BPF_MEM:
1060                 case BPF_LDX | BPF_MEM:
1061                 case BPF_ST:
1062                 case BPF_STX:
1063                         /* Check for invalid memory addresses */
1064                         if (ftest->k >= BPF_MEMWORDS)
1065                                 return -EINVAL;
1066                         break;
1067                 case BPF_JMP | BPF_JA:
1068                         /* Note, the large ftest->k might cause loops.
1069                          * Compare this with conditional jumps below,
1070                          * where offsets are limited. --ANK (981016)
1071                          */
1072                         if (ftest->k >= (unsigned int)(flen - pc - 1))
1073                                 return -EINVAL;
1074                         break;
1075                 case BPF_JMP | BPF_JEQ | BPF_K:
1076                 case BPF_JMP | BPF_JEQ | BPF_X:
1077                 case BPF_JMP | BPF_JGE | BPF_K:
1078                 case BPF_JMP | BPF_JGE | BPF_X:
1079                 case BPF_JMP | BPF_JGT | BPF_K:
1080                 case BPF_JMP | BPF_JGT | BPF_X:
1081                 case BPF_JMP | BPF_JSET | BPF_K:
1082                 case BPF_JMP | BPF_JSET | BPF_X:
1083                         /* Both conditionals must be safe */
1084                         if (pc + ftest->jt + 1 >= flen ||
1085                             pc + ftest->jf + 1 >= flen)
1086                                 return -EINVAL;
1087                         break;
1088                 case BPF_LD | BPF_W | BPF_ABS:
1089                 case BPF_LD | BPF_H | BPF_ABS:
1090                 case BPF_LD | BPF_B | BPF_ABS:
1091                         anc_found = false;
1092                         if (bpf_anc_helper(ftest) & BPF_ANC)
1093                                 anc_found = true;
1094                         /* Ancillary operation unknown or unsupported */
1095                         if (anc_found == false && ftest->k >= SKF_AD_OFF)
1096                                 return -EINVAL;
1097                 }
1098         }
1099
1100         /* Last instruction must be a RET code */
1101         switch (filter[flen - 1].code) {
1102         case BPF_RET | BPF_K:
1103         case BPF_RET | BPF_A:
1104                 return check_load_and_stores(filter, flen);
1105         }
1106
1107         return -EINVAL;
1108 }
1109
1110 static int bpf_prog_store_orig_filter(struct bpf_prog *fp,
1111                                       const struct sock_fprog *fprog)
1112 {
1113         unsigned int fsize = bpf_classic_proglen(fprog);
1114         struct sock_fprog_kern *fkprog;
1115
1116         fp->orig_prog = kmalloc(sizeof(*fkprog), GFP_KERNEL);
1117         if (!fp->orig_prog)
1118                 return -ENOMEM;
1119
1120         fkprog = fp->orig_prog;
1121         fkprog->len = fprog->len;
1122
1123         fkprog->filter = kmemdup(fp->insns, fsize,
1124                                  GFP_KERNEL | __GFP_NOWARN);
1125         if (!fkprog->filter) {
1126                 kfree(fp->orig_prog);
1127                 return -ENOMEM;
1128         }
1129
1130         return 0;
1131 }
1132
1133 static void bpf_release_orig_filter(struct bpf_prog *fp)
1134 {
1135         struct sock_fprog_kern *fprog = fp->orig_prog;
1136
1137         if (fprog) {
1138                 kfree(fprog->filter);
1139                 kfree(fprog);
1140         }
1141 }
1142
1143 static void __bpf_prog_release(struct bpf_prog *prog)
1144 {
1145         if (prog->type == BPF_PROG_TYPE_SOCKET_FILTER) {
1146                 bpf_prog_put(prog);
1147         } else {
1148                 bpf_release_orig_filter(prog);
1149                 bpf_prog_free(prog);
1150         }
1151 }
1152
1153 static void __sk_filter_release(struct sk_filter *fp)
1154 {
1155         __bpf_prog_release(fp->prog);
1156         kfree(fp);
1157 }
1158
1159 /**
1160  *      sk_filter_release_rcu - Release a socket filter by rcu_head
1161  *      @rcu: rcu_head that contains the sk_filter to free
1162  */
1163 static void sk_filter_release_rcu(struct rcu_head *rcu)
1164 {
1165         struct sk_filter *fp = container_of(rcu, struct sk_filter, rcu);
1166
1167         __sk_filter_release(fp);
1168 }
1169
1170 /**
1171  *      sk_filter_release - release a socket filter
1172  *      @fp: filter to remove
1173  *
1174  *      Remove a filter from a socket and release its resources.
1175  */
1176 static void sk_filter_release(struct sk_filter *fp)
1177 {
1178         if (refcount_dec_and_test(&fp->refcnt))
1179                 call_rcu(&fp->rcu, sk_filter_release_rcu);
1180 }
1181
1182 void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp)
1183 {
1184         u32 filter_size = bpf_prog_size(fp->prog->len);
1185
1186         atomic_sub(filter_size, &sk->sk_omem_alloc);
1187         sk_filter_release(fp);
1188 }
1189
1190 /* try to charge the socket memory if there is space available
1191  * return true on success
1192  */
1193 static bool __sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1194 {
1195         u32 filter_size = bpf_prog_size(fp->prog->len);
1196
1197         /* same check as in sock_kmalloc() */
1198         if (filter_size <= sysctl_optmem_max &&
1199             atomic_read(&sk->sk_omem_alloc) + filter_size < sysctl_optmem_max) {
1200                 atomic_add(filter_size, &sk->sk_omem_alloc);
1201                 return true;
1202         }
1203         return false;
1204 }
1205
1206 bool sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1207 {
1208         if (!refcount_inc_not_zero(&fp->refcnt))
1209                 return false;
1210
1211         if (!__sk_filter_charge(sk, fp)) {
1212                 sk_filter_release(fp);
1213                 return false;
1214         }
1215         return true;
1216 }
1217
1218 static struct bpf_prog *bpf_migrate_filter(struct bpf_prog *fp)
1219 {
1220         struct sock_filter *old_prog;
1221         struct bpf_prog *old_fp;
1222         int err, new_len, old_len = fp->len;
1223         bool seen_ld_abs = false;
1224
1225         /* We are free to overwrite insns et al right here as it
1226          * won't be used at this point in time anymore internally
1227          * after the migration to the internal BPF instruction
1228          * representation.
1229          */
1230         BUILD_BUG_ON(sizeof(struct sock_filter) !=
1231                      sizeof(struct bpf_insn));
1232
1233         /* Conversion cannot happen on overlapping memory areas,
1234          * so we need to keep the user BPF around until the 2nd
1235          * pass. At this time, the user BPF is stored in fp->insns.
1236          */
1237         old_prog = kmemdup(fp->insns, old_len * sizeof(struct sock_filter),
1238                            GFP_KERNEL | __GFP_NOWARN);
1239         if (!old_prog) {
1240                 err = -ENOMEM;
1241                 goto out_err;
1242         }
1243
1244         /* 1st pass: calculate the new program length. */
1245         err = bpf_convert_filter(old_prog, old_len, NULL, &new_len,
1246                                  &seen_ld_abs);
1247         if (err)
1248                 goto out_err_free;
1249
1250         /* Expand fp for appending the new filter representation. */
1251         old_fp = fp;
1252         fp = bpf_prog_realloc(old_fp, bpf_prog_size(new_len), 0);
1253         if (!fp) {
1254                 /* The old_fp is still around in case we couldn't
1255                  * allocate new memory, so uncharge on that one.
1256                  */
1257                 fp = old_fp;
1258                 err = -ENOMEM;
1259                 goto out_err_free;
1260         }
1261
1262         fp->len = new_len;
1263
1264         /* 2nd pass: remap sock_filter insns into bpf_insn insns. */
1265         err = bpf_convert_filter(old_prog, old_len, fp, &new_len,
1266                                  &seen_ld_abs);
1267         if (err)
1268                 /* 2nd bpf_convert_filter() can fail only if it fails
1269                  * to allocate memory, remapping must succeed. Note,
1270                  * that at this time old_fp has already been released
1271                  * by krealloc().
1272                  */
1273                 goto out_err_free;
1274
1275         fp = bpf_prog_select_runtime(fp, &err);
1276         if (err)
1277                 goto out_err_free;
1278
1279         kfree(old_prog);
1280         return fp;
1281
1282 out_err_free:
1283         kfree(old_prog);
1284 out_err:
1285         __bpf_prog_release(fp);
1286         return ERR_PTR(err);
1287 }
1288
1289 static struct bpf_prog *bpf_prepare_filter(struct bpf_prog *fp,
1290                                            bpf_aux_classic_check_t trans)
1291 {
1292         int err;
1293
1294         fp->bpf_func = NULL;
1295         fp->jited = 0;
1296
1297         err = bpf_check_classic(fp->insns, fp->len);
1298         if (err) {
1299                 __bpf_prog_release(fp);
1300                 return ERR_PTR(err);
1301         }
1302
1303         /* There might be additional checks and transformations
1304          * needed on classic filters, f.e. in case of seccomp.
1305          */
1306         if (trans) {
1307                 err = trans(fp->insns, fp->len);
1308                 if (err) {
1309                         __bpf_prog_release(fp);
1310                         return ERR_PTR(err);
1311                 }
1312         }
1313
1314         /* Probe if we can JIT compile the filter and if so, do
1315          * the compilation of the filter.
1316          */
1317         bpf_jit_compile(fp);
1318
1319         /* JIT compiler couldn't process this filter, so do the
1320          * internal BPF translation for the optimized interpreter.
1321          */
1322         if (!fp->jited)
1323                 fp = bpf_migrate_filter(fp);
1324
1325         return fp;
1326 }
1327
1328 /**
1329  *      bpf_prog_create - create an unattached filter
1330  *      @pfp: the unattached filter that is created
1331  *      @fprog: the filter program
1332  *
1333  * Create a filter independent of any socket. We first run some
1334  * sanity checks on it to make sure it does not explode on us later.
1335  * If an error occurs or there is insufficient memory for the filter
1336  * a negative errno code is returned. On success the return is zero.
1337  */
1338 int bpf_prog_create(struct bpf_prog **pfp, struct sock_fprog_kern *fprog)
1339 {
1340         unsigned int fsize = bpf_classic_proglen(fprog);
1341         struct bpf_prog *fp;
1342
1343         /* Make sure new filter is there and in the right amounts. */
1344         if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1345                 return -EINVAL;
1346
1347         fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1348         if (!fp)
1349                 return -ENOMEM;
1350
1351         memcpy(fp->insns, fprog->filter, fsize);
1352
1353         fp->len = fprog->len;
1354         /* Since unattached filters are not copied back to user
1355          * space through sk_get_filter(), we do not need to hold
1356          * a copy here, and can spare us the work.
1357          */
1358         fp->orig_prog = NULL;
1359
1360         /* bpf_prepare_filter() already takes care of freeing
1361          * memory in case something goes wrong.
1362          */
1363         fp = bpf_prepare_filter(fp, NULL);
1364         if (IS_ERR(fp))
1365                 return PTR_ERR(fp);
1366
1367         *pfp = fp;
1368         return 0;
1369 }
1370 EXPORT_SYMBOL_GPL(bpf_prog_create);
1371
1372 /**
1373  *      bpf_prog_create_from_user - create an unattached filter from user buffer
1374  *      @pfp: the unattached filter that is created
1375  *      @fprog: the filter program
1376  *      @trans: post-classic verifier transformation handler
1377  *      @save_orig: save classic BPF program
1378  *
1379  * This function effectively does the same as bpf_prog_create(), only
1380  * that it builds up its insns buffer from user space provided buffer.
1381  * It also allows for passing a bpf_aux_classic_check_t handler.
1382  */
1383 int bpf_prog_create_from_user(struct bpf_prog **pfp, struct sock_fprog *fprog,
1384                               bpf_aux_classic_check_t trans, bool save_orig)
1385 {
1386         unsigned int fsize = bpf_classic_proglen(fprog);
1387         struct bpf_prog *fp;
1388         int err;
1389
1390         /* Make sure new filter is there and in the right amounts. */
1391         if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1392                 return -EINVAL;
1393
1394         fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1395         if (!fp)
1396                 return -ENOMEM;
1397
1398         if (copy_from_user(fp->insns, fprog->filter, fsize)) {
1399                 __bpf_prog_free(fp);
1400                 return -EFAULT;
1401         }
1402
1403         fp->len = fprog->len;
1404         fp->orig_prog = NULL;
1405
1406         if (save_orig) {
1407                 err = bpf_prog_store_orig_filter(fp, fprog);
1408                 if (err) {
1409                         __bpf_prog_free(fp);
1410                         return -ENOMEM;
1411                 }
1412         }
1413
1414         /* bpf_prepare_filter() already takes care of freeing
1415          * memory in case something goes wrong.
1416          */
1417         fp = bpf_prepare_filter(fp, trans);
1418         if (IS_ERR(fp))
1419                 return PTR_ERR(fp);
1420
1421         *pfp = fp;
1422         return 0;
1423 }
1424 EXPORT_SYMBOL_GPL(bpf_prog_create_from_user);
1425
1426 void bpf_prog_destroy(struct bpf_prog *fp)
1427 {
1428         __bpf_prog_release(fp);
1429 }
1430 EXPORT_SYMBOL_GPL(bpf_prog_destroy);
1431
1432 static int __sk_attach_prog(struct bpf_prog *prog, struct sock *sk)
1433 {
1434         struct sk_filter *fp, *old_fp;
1435
1436         fp = kmalloc(sizeof(*fp), GFP_KERNEL);
1437         if (!fp)
1438                 return -ENOMEM;
1439
1440         fp->prog = prog;
1441
1442         if (!__sk_filter_charge(sk, fp)) {
1443                 kfree(fp);
1444                 return -ENOMEM;
1445         }
1446         refcount_set(&fp->refcnt, 1);
1447
1448         old_fp = rcu_dereference_protected(sk->sk_filter,
1449                                            lockdep_sock_is_held(sk));
1450         rcu_assign_pointer(sk->sk_filter, fp);
1451
1452         if (old_fp)
1453                 sk_filter_uncharge(sk, old_fp);
1454
1455         return 0;
1456 }
1457
1458 static
1459 struct bpf_prog *__get_filter(struct sock_fprog *fprog, struct sock *sk)
1460 {
1461         unsigned int fsize = bpf_classic_proglen(fprog);
1462         struct bpf_prog *prog;
1463         int err;
1464
1465         if (sock_flag(sk, SOCK_FILTER_LOCKED))
1466                 return ERR_PTR(-EPERM);
1467
1468         /* Make sure new filter is there and in the right amounts. */
1469         if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1470                 return ERR_PTR(-EINVAL);
1471
1472         prog = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1473         if (!prog)
1474                 return ERR_PTR(-ENOMEM);
1475
1476         if (copy_from_user(prog->insns, fprog->filter, fsize)) {
1477                 __bpf_prog_free(prog);
1478                 return ERR_PTR(-EFAULT);
1479         }
1480
1481         prog->len = fprog->len;
1482
1483         err = bpf_prog_store_orig_filter(prog, fprog);
1484         if (err) {
1485                 __bpf_prog_free(prog);
1486                 return ERR_PTR(-ENOMEM);
1487         }
1488
1489         /* bpf_prepare_filter() already takes care of freeing
1490          * memory in case something goes wrong.
1491          */
1492         return bpf_prepare_filter(prog, NULL);
1493 }
1494
1495 /**
1496  *      sk_attach_filter - attach a socket filter
1497  *      @fprog: the filter program
1498  *      @sk: the socket to use
1499  *
1500  * Attach the user's filter code. We first run some sanity checks on
1501  * it to make sure it does not explode on us later. If an error
1502  * occurs or there is insufficient memory for the filter a negative
1503  * errno code is returned. On success the return is zero.
1504  */
1505 int sk_attach_filter(struct sock_fprog *fprog, struct sock *sk)
1506 {
1507         struct bpf_prog *prog = __get_filter(fprog, sk);
1508         int err;
1509
1510         if (IS_ERR(prog))
1511                 return PTR_ERR(prog);
1512
1513         err = __sk_attach_prog(prog, sk);
1514         if (err < 0) {
1515                 __bpf_prog_release(prog);
1516                 return err;
1517         }
1518
1519         return 0;
1520 }
1521 EXPORT_SYMBOL_GPL(sk_attach_filter);
1522
1523 int sk_reuseport_attach_filter(struct sock_fprog *fprog, struct sock *sk)
1524 {
1525         struct bpf_prog *prog = __get_filter(fprog, sk);
1526         int err;
1527
1528         if (IS_ERR(prog))
1529                 return PTR_ERR(prog);
1530
1531         if (bpf_prog_size(prog->len) > sysctl_optmem_max)
1532                 err = -ENOMEM;
1533         else
1534                 err = reuseport_attach_prog(sk, prog);
1535
1536         if (err)
1537                 __bpf_prog_release(prog);
1538
1539         return err;
1540 }
1541
1542 static struct bpf_prog *__get_bpf(u32 ufd, struct sock *sk)
1543 {
1544         if (sock_flag(sk, SOCK_FILTER_LOCKED))
1545                 return ERR_PTR(-EPERM);
1546
1547         return bpf_prog_get_type(ufd, BPF_PROG_TYPE_SOCKET_FILTER);
1548 }
1549
1550 int sk_attach_bpf(u32 ufd, struct sock *sk)
1551 {
1552         struct bpf_prog *prog = __get_bpf(ufd, sk);
1553         int err;
1554
1555         if (IS_ERR(prog))
1556                 return PTR_ERR(prog);
1557
1558         err = __sk_attach_prog(prog, sk);
1559         if (err < 0) {
1560                 bpf_prog_put(prog);
1561                 return err;
1562         }
1563
1564         return 0;
1565 }
1566
1567 int sk_reuseport_attach_bpf(u32 ufd, struct sock *sk)
1568 {
1569         struct bpf_prog *prog;
1570         int err;
1571
1572         if (sock_flag(sk, SOCK_FILTER_LOCKED))
1573                 return -EPERM;
1574
1575         prog = bpf_prog_get_type(ufd, BPF_PROG_TYPE_SOCKET_FILTER);
1576         if (PTR_ERR(prog) == -EINVAL)
1577                 prog = bpf_prog_get_type(ufd, BPF_PROG_TYPE_SK_REUSEPORT);
1578         if (IS_ERR(prog))
1579                 return PTR_ERR(prog);
1580
1581         if (prog->type == BPF_PROG_TYPE_SK_REUSEPORT) {
1582                 /* Like other non BPF_PROG_TYPE_SOCKET_FILTER
1583                  * bpf prog (e.g. sockmap).  It depends on the
1584                  * limitation imposed by bpf_prog_load().
1585                  * Hence, sysctl_optmem_max is not checked.
1586                  */
1587                 if ((sk->sk_type != SOCK_STREAM &&
1588                      sk->sk_type != SOCK_DGRAM) ||
1589                     (sk->sk_protocol != IPPROTO_UDP &&
1590                      sk->sk_protocol != IPPROTO_TCP) ||
1591                     (sk->sk_family != AF_INET &&
1592                      sk->sk_family != AF_INET6)) {
1593                         err = -ENOTSUPP;
1594                         goto err_prog_put;
1595                 }
1596         } else {
1597                 /* BPF_PROG_TYPE_SOCKET_FILTER */
1598                 if (bpf_prog_size(prog->len) > sysctl_optmem_max) {
1599                         err = -ENOMEM;
1600                         goto err_prog_put;
1601                 }
1602         }
1603
1604         err = reuseport_attach_prog(sk, prog);
1605 err_prog_put:
1606         if (err)
1607                 bpf_prog_put(prog);
1608
1609         return err;
1610 }
1611
1612 void sk_reuseport_prog_free(struct bpf_prog *prog)
1613 {
1614         if (!prog)
1615                 return;
1616
1617         if (prog->type == BPF_PROG_TYPE_SK_REUSEPORT)
1618                 bpf_prog_put(prog);
1619         else
1620                 bpf_prog_destroy(prog);
1621 }
1622
1623 struct bpf_scratchpad {
1624         union {
1625                 __be32 diff[MAX_BPF_STACK / sizeof(__be32)];
1626                 u8     buff[MAX_BPF_STACK];
1627         };
1628 };
1629
1630 static DEFINE_PER_CPU(struct bpf_scratchpad, bpf_sp);
1631
1632 static inline int __bpf_try_make_writable(struct sk_buff *skb,
1633                                           unsigned int write_len)
1634 {
1635         return skb_ensure_writable(skb, write_len);
1636 }
1637
1638 static inline int bpf_try_make_writable(struct sk_buff *skb,
1639                                         unsigned int write_len)
1640 {
1641         int err = __bpf_try_make_writable(skb, write_len);
1642
1643         bpf_compute_data_pointers(skb);
1644         return err;
1645 }
1646
1647 static int bpf_try_make_head_writable(struct sk_buff *skb)
1648 {
1649         return bpf_try_make_writable(skb, skb_headlen(skb));
1650 }
1651
1652 static inline void bpf_push_mac_rcsum(struct sk_buff *skb)
1653 {
1654         if (skb_at_tc_ingress(skb))
1655                 skb_postpush_rcsum(skb, skb_mac_header(skb), skb->mac_len);
1656 }
1657
1658 static inline void bpf_pull_mac_rcsum(struct sk_buff *skb)
1659 {
1660         if (skb_at_tc_ingress(skb))
1661                 skb_postpull_rcsum(skb, skb_mac_header(skb), skb->mac_len);
1662 }
1663
1664 BPF_CALL_5(bpf_skb_store_bytes, struct sk_buff *, skb, u32, offset,
1665            const void *, from, u32, len, u64, flags)
1666 {
1667         void *ptr;
1668
1669         if (unlikely(flags & ~(BPF_F_RECOMPUTE_CSUM | BPF_F_INVALIDATE_HASH)))
1670                 return -EINVAL;
1671         if (unlikely(offset > 0xffff))
1672                 return -EFAULT;
1673         if (unlikely(bpf_try_make_writable(skb, offset + len)))
1674                 return -EFAULT;
1675
1676         ptr = skb->data + offset;
1677         if (flags & BPF_F_RECOMPUTE_CSUM)
1678                 __skb_postpull_rcsum(skb, ptr, len, offset);
1679
1680         memcpy(ptr, from, len);
1681
1682         if (flags & BPF_F_RECOMPUTE_CSUM)
1683                 __skb_postpush_rcsum(skb, ptr, len, offset);
1684         if (flags & BPF_F_INVALIDATE_HASH)
1685                 skb_clear_hash(skb);
1686
1687         return 0;
1688 }
1689
1690 static const struct bpf_func_proto bpf_skb_store_bytes_proto = {
1691         .func           = bpf_skb_store_bytes,
1692         .gpl_only       = false,
1693         .ret_type       = RET_INTEGER,
1694         .arg1_type      = ARG_PTR_TO_CTX,
1695         .arg2_type      = ARG_ANYTHING,
1696         .arg3_type      = ARG_PTR_TO_MEM,
1697         .arg4_type      = ARG_CONST_SIZE,
1698         .arg5_type      = ARG_ANYTHING,
1699 };
1700
1701 BPF_CALL_4(bpf_skb_load_bytes, const struct sk_buff *, skb, u32, offset,
1702            void *, to, u32, len)
1703 {
1704         void *ptr;
1705
1706         if (unlikely(offset > 0xffff))
1707                 goto err_clear;
1708
1709         ptr = skb_header_pointer(skb, offset, len, to);
1710         if (unlikely(!ptr))
1711                 goto err_clear;
1712         if (ptr != to)
1713                 memcpy(to, ptr, len);
1714
1715         return 0;
1716 err_clear:
1717         memset(to, 0, len);
1718         return -EFAULT;
1719 }
1720
1721 static const struct bpf_func_proto bpf_skb_load_bytes_proto = {
1722         .func           = bpf_skb_load_bytes,
1723         .gpl_only       = false,
1724         .ret_type       = RET_INTEGER,
1725         .arg1_type      = ARG_PTR_TO_CTX,
1726         .arg2_type      = ARG_ANYTHING,
1727         .arg3_type      = ARG_PTR_TO_UNINIT_MEM,
1728         .arg4_type      = ARG_CONST_SIZE,
1729 };
1730
1731 BPF_CALL_4(bpf_flow_dissector_load_bytes,
1732            const struct bpf_flow_dissector *, ctx, u32, offset,
1733            void *, to, u32, len)
1734 {
1735         void *ptr;
1736
1737         if (unlikely(offset > 0xffff))
1738                 goto err_clear;
1739
1740         if (unlikely(!ctx->skb))
1741                 goto err_clear;
1742
1743         ptr = skb_header_pointer(ctx->skb, offset, len, to);
1744         if (unlikely(!ptr))
1745                 goto err_clear;
1746         if (ptr != to)
1747                 memcpy(to, ptr, len);
1748
1749         return 0;
1750 err_clear:
1751         memset(to, 0, len);
1752         return -EFAULT;
1753 }
1754
1755 static const struct bpf_func_proto bpf_flow_dissector_load_bytes_proto = {
1756         .func           = bpf_flow_dissector_load_bytes,
1757         .gpl_only       = false,
1758         .ret_type       = RET_INTEGER,
1759         .arg1_type      = ARG_PTR_TO_CTX,
1760         .arg2_type      = ARG_ANYTHING,
1761         .arg3_type      = ARG_PTR_TO_UNINIT_MEM,
1762         .arg4_type      = ARG_CONST_SIZE,
1763 };
1764
1765 BPF_CALL_5(bpf_skb_load_bytes_relative, const struct sk_buff *, skb,
1766            u32, offset, void *, to, u32, len, u32, start_header)
1767 {
1768         u8 *end = skb_tail_pointer(skb);
1769         u8 *net = skb_network_header(skb);
1770         u8 *mac = skb_mac_header(skb);
1771         u8 *ptr;
1772
1773         if (unlikely(offset > 0xffff || len > (end - mac)))
1774                 goto err_clear;
1775
1776         switch (start_header) {
1777         case BPF_HDR_START_MAC:
1778                 ptr = mac + offset;
1779                 break;
1780         case BPF_HDR_START_NET:
1781                 ptr = net + offset;
1782                 break;
1783         default:
1784                 goto err_clear;
1785         }
1786
1787         if (likely(ptr >= mac && ptr + len <= end)) {
1788                 memcpy(to, ptr, len);
1789                 return 0;
1790         }
1791
1792 err_clear:
1793         memset(to, 0, len);
1794         return -EFAULT;
1795 }
1796
1797 static const struct bpf_func_proto bpf_skb_load_bytes_relative_proto = {
1798         .func           = bpf_skb_load_bytes_relative,
1799         .gpl_only       = false,
1800         .ret_type       = RET_INTEGER,
1801         .arg1_type      = ARG_PTR_TO_CTX,
1802         .arg2_type      = ARG_ANYTHING,
1803         .arg3_type      = ARG_PTR_TO_UNINIT_MEM,
1804         .arg4_type      = ARG_CONST_SIZE,
1805         .arg5_type      = ARG_ANYTHING,
1806 };
1807
1808 BPF_CALL_2(bpf_skb_pull_data, struct sk_buff *, skb, u32, len)
1809 {
1810         /* Idea is the following: should the needed direct read/write
1811          * test fail during runtime, we can pull in more data and redo
1812          * again, since implicitly, we invalidate previous checks here.
1813          *
1814          * Or, since we know how much we need to make read/writeable,
1815          * this can be done once at the program beginning for direct
1816          * access case. By this we overcome limitations of only current
1817          * headroom being accessible.
1818          */
1819         return bpf_try_make_writable(skb, len ? : skb_headlen(skb));
1820 }
1821
1822 static const struct bpf_func_proto bpf_skb_pull_data_proto = {
1823         .func           = bpf_skb_pull_data,
1824         .gpl_only       = false,
1825         .ret_type       = RET_INTEGER,
1826         .arg1_type      = ARG_PTR_TO_CTX,
1827         .arg2_type      = ARG_ANYTHING,
1828 };
1829
1830 BPF_CALL_1(bpf_sk_fullsock, struct sock *, sk)
1831 {
1832         return sk_fullsock(sk) ? (unsigned long)sk : (unsigned long)NULL;
1833 }
1834
1835 static const struct bpf_func_proto bpf_sk_fullsock_proto = {
1836         .func           = bpf_sk_fullsock,
1837         .gpl_only       = false,
1838         .ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
1839         .arg1_type      = ARG_PTR_TO_SOCK_COMMON,
1840 };
1841
1842 static inline int sk_skb_try_make_writable(struct sk_buff *skb,
1843                                            unsigned int write_len)
1844 {
1845         int err = __bpf_try_make_writable(skb, write_len);
1846
1847         bpf_compute_data_end_sk_skb(skb);
1848         return err;
1849 }
1850
1851 BPF_CALL_2(sk_skb_pull_data, struct sk_buff *, skb, u32, len)
1852 {
1853         /* Idea is the following: should the needed direct read/write
1854          * test fail during runtime, we can pull in more data and redo
1855          * again, since implicitly, we invalidate previous checks here.
1856          *
1857          * Or, since we know how much we need to make read/writeable,
1858          * this can be done once at the program beginning for direct
1859          * access case. By this we overcome limitations of only current
1860          * headroom being accessible.
1861          */
1862         return sk_skb_try_make_writable(skb, len ? : skb_headlen(skb));
1863 }
1864
1865 static const struct bpf_func_proto sk_skb_pull_data_proto = {
1866         .func           = sk_skb_pull_data,
1867         .gpl_only       = false,
1868         .ret_type       = RET_INTEGER,
1869         .arg1_type      = ARG_PTR_TO_CTX,
1870         .arg2_type      = ARG_ANYTHING,
1871 };
1872
1873 BPF_CALL_5(bpf_l3_csum_replace, struct sk_buff *, skb, u32, offset,
1874            u64, from, u64, to, u64, flags)
1875 {
1876         __sum16 *ptr;
1877
1878         if (unlikely(flags & ~(BPF_F_HDR_FIELD_MASK)))
1879                 return -EINVAL;
1880         if (unlikely(offset > 0xffff || offset & 1))
1881                 return -EFAULT;
1882         if (unlikely(bpf_try_make_writable(skb, offset + sizeof(*ptr))))
1883                 return -EFAULT;
1884
1885         ptr = (__sum16 *)(skb->data + offset);
1886         switch (flags & BPF_F_HDR_FIELD_MASK) {
1887         case 0:
1888                 if (unlikely(from != 0))
1889                         return -EINVAL;
1890
1891                 csum_replace_by_diff(ptr, to);
1892                 break;
1893         case 2:
1894                 csum_replace2(ptr, from, to);
1895                 break;
1896         case 4:
1897                 csum_replace4(ptr, from, to);
1898                 break;
1899         default:
1900                 return -EINVAL;
1901         }
1902
1903         return 0;
1904 }
1905
1906 static const struct bpf_func_proto bpf_l3_csum_replace_proto = {
1907         .func           = bpf_l3_csum_replace,
1908         .gpl_only       = false,
1909         .ret_type       = RET_INTEGER,
1910         .arg1_type      = ARG_PTR_TO_CTX,
1911         .arg2_type      = ARG_ANYTHING,
1912         .arg3_type      = ARG_ANYTHING,
1913         .arg4_type      = ARG_ANYTHING,
1914         .arg5_type      = ARG_ANYTHING,
1915 };
1916
1917 BPF_CALL_5(bpf_l4_csum_replace, struct sk_buff *, skb, u32, offset,
1918            u64, from, u64, to, u64, flags)
1919 {
1920         bool is_pseudo = flags & BPF_F_PSEUDO_HDR;
1921         bool is_mmzero = flags & BPF_F_MARK_MANGLED_0;
1922         bool do_mforce = flags & BPF_F_MARK_ENFORCE;
1923         __sum16 *ptr;
1924
1925         if (unlikely(flags & ~(BPF_F_MARK_MANGLED_0 | BPF_F_MARK_ENFORCE |
1926                                BPF_F_PSEUDO_HDR | BPF_F_HDR_FIELD_MASK)))
1927                 return -EINVAL;
1928         if (unlikely(offset > 0xffff || offset & 1))
1929                 return -EFAULT;
1930         if (unlikely(bpf_try_make_writable(skb, offset + sizeof(*ptr))))
1931                 return -EFAULT;
1932
1933         ptr = (__sum16 *)(skb->data + offset);
1934         if (is_mmzero && !do_mforce && !*ptr)
1935                 return 0;
1936
1937         switch (flags & BPF_F_HDR_FIELD_MASK) {
1938         case 0:
1939                 if (unlikely(from != 0))
1940                         return -EINVAL;
1941
1942                 inet_proto_csum_replace_by_diff(ptr, skb, to, is_pseudo);
1943                 break;
1944         case 2:
1945                 inet_proto_csum_replace2(ptr, skb, from, to, is_pseudo);
1946                 break;
1947         case 4:
1948                 inet_proto_csum_replace4(ptr, skb, from, to, is_pseudo);
1949                 break;
1950         default:
1951                 return -EINVAL;
1952         }
1953
1954         if (is_mmzero && !*ptr)
1955                 *ptr = CSUM_MANGLED_0;
1956         return 0;
1957 }
1958
1959 static const struct bpf_func_proto bpf_l4_csum_replace_proto = {
1960         .func           = bpf_l4_csum_replace,
1961         .gpl_only       = false,
1962         .ret_type       = RET_INTEGER,
1963         .arg1_type      = ARG_PTR_TO_CTX,
1964         .arg2_type      = ARG_ANYTHING,
1965         .arg3_type      = ARG_ANYTHING,
1966         .arg4_type      = ARG_ANYTHING,
1967         .arg5_type      = ARG_ANYTHING,
1968 };
1969
1970 BPF_CALL_5(bpf_csum_diff, __be32 *, from, u32, from_size,
1971            __be32 *, to, u32, to_size, __wsum, seed)
1972 {
1973         struct bpf_scratchpad *sp = this_cpu_ptr(&bpf_sp);
1974         u32 diff_size = from_size + to_size;
1975         int i, j = 0;
1976
1977         /* This is quite flexible, some examples:
1978          *
1979          * from_size == 0, to_size > 0,  seed := csum --> pushing data
1980          * from_size > 0,  to_size == 0, seed := csum --> pulling data
1981          * from_size > 0,  to_size > 0,  seed := 0    --> diffing data
1982          *
1983          * Even for diffing, from_size and to_size don't need to be equal.
1984          */
1985         if (unlikely(((from_size | to_size) & (sizeof(__be32) - 1)) ||
1986                      diff_size > sizeof(sp->diff)))
1987                 return -EINVAL;
1988
1989         for (i = 0; i < from_size / sizeof(__be32); i++, j++)
1990                 sp->diff[j] = ~from[i];
1991         for (i = 0; i <   to_size / sizeof(__be32); i++, j++)
1992                 sp->diff[j] = to[i];
1993
1994         return csum_partial(sp->diff, diff_size, seed);
1995 }
1996
1997 static const struct bpf_func_proto bpf_csum_diff_proto = {
1998         .func           = bpf_csum_diff,
1999         .gpl_only       = false,
2000         .pkt_access     = true,
2001         .ret_type       = RET_INTEGER,
2002         .arg1_type      = ARG_PTR_TO_MEM_OR_NULL,
2003         .arg2_type      = ARG_CONST_SIZE_OR_ZERO,
2004         .arg3_type      = ARG_PTR_TO_MEM_OR_NULL,
2005         .arg4_type      = ARG_CONST_SIZE_OR_ZERO,
2006         .arg5_type      = ARG_ANYTHING,
2007 };
2008
2009 BPF_CALL_2(bpf_csum_update, struct sk_buff *, skb, __wsum, csum)
2010 {
2011         /* The interface is to be used in combination with bpf_csum_diff()
2012          * for direct packet writes. csum rotation for alignment as well
2013          * as emulating csum_sub() can be done from the eBPF program.
2014          */
2015         if (skb->ip_summed == CHECKSUM_COMPLETE)
2016                 return (skb->csum = csum_add(skb->csum, csum));
2017
2018         return -ENOTSUPP;
2019 }
2020
2021 static const struct bpf_func_proto bpf_csum_update_proto = {
2022         .func           = bpf_csum_update,
2023         .gpl_only       = false,
2024         .ret_type       = RET_INTEGER,
2025         .arg1_type      = ARG_PTR_TO_CTX,
2026         .arg2_type      = ARG_ANYTHING,
2027 };
2028
2029 static inline int __bpf_rx_skb(struct net_device *dev, struct sk_buff *skb)
2030 {
2031         return dev_forward_skb(dev, skb);
2032 }
2033
2034 static inline int __bpf_rx_skb_no_mac(struct net_device *dev,
2035                                       struct sk_buff *skb)
2036 {
2037         int ret = ____dev_forward_skb(dev, skb);
2038
2039         if (likely(!ret)) {
2040                 skb->dev = dev;
2041                 ret = netif_rx(skb);
2042         }
2043
2044         return ret;
2045 }
2046
2047 static inline int __bpf_tx_skb(struct net_device *dev, struct sk_buff *skb)
2048 {
2049         int ret;
2050
2051         if (dev_xmit_recursion()) {
2052                 net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
2053                 kfree_skb(skb);
2054                 return -ENETDOWN;
2055         }
2056
2057         skb->dev = dev;
2058         skb->tstamp = 0;
2059
2060         dev_xmit_recursion_inc();
2061         ret = dev_queue_xmit(skb);
2062         dev_xmit_recursion_dec();
2063
2064         return ret;
2065 }
2066
2067 static int __bpf_redirect_no_mac(struct sk_buff *skb, struct net_device *dev,
2068                                  u32 flags)
2069 {
2070         unsigned int mlen = skb_network_offset(skb);
2071
2072         if (mlen) {
2073                 __skb_pull(skb, mlen);
2074
2075                 /* At ingress, the mac header has already been pulled once.
2076                  * At egress, skb_pospull_rcsum has to be done in case that
2077                  * the skb is originated from ingress (i.e. a forwarded skb)
2078                  * to ensure that rcsum starts at net header.
2079                  */
2080                 if (!skb_at_tc_ingress(skb))
2081                         skb_postpull_rcsum(skb, skb_mac_header(skb), mlen);
2082         }
2083         skb_pop_mac_header(skb);
2084         skb_reset_mac_len(skb);
2085         return flags & BPF_F_INGRESS ?
2086                __bpf_rx_skb_no_mac(dev, skb) : __bpf_tx_skb(dev, skb);
2087 }
2088
2089 static int __bpf_redirect_common(struct sk_buff *skb, struct net_device *dev,
2090                                  u32 flags)
2091 {
2092         /* Verify that a link layer header is carried */
2093         if (unlikely(skb->mac_header >= skb->network_header)) {
2094                 kfree_skb(skb);
2095                 return -ERANGE;
2096         }
2097
2098         bpf_push_mac_rcsum(skb);
2099         return flags & BPF_F_INGRESS ?
2100                __bpf_rx_skb(dev, skb) : __bpf_tx_skb(dev, skb);
2101 }
2102
2103 static int __bpf_redirect(struct sk_buff *skb, struct net_device *dev,
2104                           u32 flags)
2105 {
2106         if (dev_is_mac_header_xmit(dev))
2107                 return __bpf_redirect_common(skb, dev, flags);
2108         else
2109                 return __bpf_redirect_no_mac(skb, dev, flags);
2110 }
2111
2112 BPF_CALL_3(bpf_clone_redirect, struct sk_buff *, skb, u32, ifindex, u64, flags)
2113 {
2114         struct net_device *dev;
2115         struct sk_buff *clone;
2116         int ret;
2117
2118         if (unlikely(flags & ~(BPF_F_INGRESS)))
2119                 return -EINVAL;
2120
2121         dev = dev_get_by_index_rcu(dev_net(skb->dev), ifindex);
2122         if (unlikely(!dev))
2123                 return -EINVAL;
2124
2125         clone = skb_clone(skb, GFP_ATOMIC);
2126         if (unlikely(!clone))
2127                 return -ENOMEM;
2128
2129         /* For direct write, we need to keep the invariant that the skbs
2130          * we're dealing with need to be uncloned. Should uncloning fail
2131          * here, we need to free the just generated clone to unclone once
2132          * again.
2133          */
2134         ret = bpf_try_make_head_writable(skb);
2135         if (unlikely(ret)) {
2136                 kfree_skb(clone);
2137                 return -ENOMEM;
2138         }
2139
2140         return __bpf_redirect(clone, dev, flags);
2141 }
2142
2143 static const struct bpf_func_proto bpf_clone_redirect_proto = {
2144         .func           = bpf_clone_redirect,
2145         .gpl_only       = false,
2146         .ret_type       = RET_INTEGER,
2147         .arg1_type      = ARG_PTR_TO_CTX,
2148         .arg2_type      = ARG_ANYTHING,
2149         .arg3_type      = ARG_ANYTHING,
2150 };
2151
2152 DEFINE_PER_CPU(struct bpf_redirect_info, bpf_redirect_info);
2153 EXPORT_PER_CPU_SYMBOL_GPL(bpf_redirect_info);
2154
2155 BPF_CALL_2(bpf_redirect, u32, ifindex, u64, flags)
2156 {
2157         struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2158
2159         if (unlikely(flags & ~(BPF_F_INGRESS)))
2160                 return TC_ACT_SHOT;
2161
2162         ri->flags = flags;
2163         ri->tgt_index = ifindex;
2164
2165         return TC_ACT_REDIRECT;
2166 }
2167
2168 int skb_do_redirect(struct sk_buff *skb)
2169 {
2170         struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2171         struct net_device *dev;
2172
2173         dev = dev_get_by_index_rcu(dev_net(skb->dev), ri->tgt_index);
2174         ri->tgt_index = 0;
2175         if (unlikely(!dev)) {
2176                 kfree_skb(skb);
2177                 return -EINVAL;
2178         }
2179
2180         return __bpf_redirect(skb, dev, ri->flags);
2181 }
2182
2183 static const struct bpf_func_proto bpf_redirect_proto = {
2184         .func           = bpf_redirect,
2185         .gpl_only       = false,
2186         .ret_type       = RET_INTEGER,
2187         .arg1_type      = ARG_ANYTHING,
2188         .arg2_type      = ARG_ANYTHING,
2189 };
2190
2191 BPF_CALL_2(bpf_msg_apply_bytes, struct sk_msg *, msg, u32, bytes)
2192 {
2193         msg->apply_bytes = bytes;
2194         return 0;
2195 }
2196
2197 static const struct bpf_func_proto bpf_msg_apply_bytes_proto = {
2198         .func           = bpf_msg_apply_bytes,
2199         .gpl_only       = false,
2200         .ret_type       = RET_INTEGER,
2201         .arg1_type      = ARG_PTR_TO_CTX,
2202         .arg2_type      = ARG_ANYTHING,
2203 };
2204
2205 BPF_CALL_2(bpf_msg_cork_bytes, struct sk_msg *, msg, u32, bytes)
2206 {
2207         msg->cork_bytes = bytes;
2208         return 0;
2209 }
2210
2211 static const struct bpf_func_proto bpf_msg_cork_bytes_proto = {
2212         .func           = bpf_msg_cork_bytes,
2213         .gpl_only       = false,
2214         .ret_type       = RET_INTEGER,
2215         .arg1_type      = ARG_PTR_TO_CTX,
2216         .arg2_type      = ARG_ANYTHING,
2217 };
2218
2219 BPF_CALL_4(bpf_msg_pull_data, struct sk_msg *, msg, u32, start,
2220            u32, end, u64, flags)
2221 {
2222         u32 len = 0, offset = 0, copy = 0, poffset = 0, bytes = end - start;
2223         u32 first_sge, last_sge, i, shift, bytes_sg_total;
2224         struct scatterlist *sge;
2225         u8 *raw, *to, *from;
2226         struct page *page;
2227
2228         if (unlikely(flags || end <= start))
2229                 return -EINVAL;
2230
2231         /* First find the starting scatterlist element */
2232         i = msg->sg.start;
2233         do {
2234                 offset += len;
2235                 len = sk_msg_elem(msg, i)->length;
2236                 if (start < offset + len)
2237                         break;
2238                 sk_msg_iter_var_next(i);
2239         } while (i != msg->sg.end);
2240
2241         if (unlikely(start >= offset + len))
2242                 return -EINVAL;
2243
2244         first_sge = i;
2245         /* The start may point into the sg element so we need to also
2246          * account for the headroom.
2247          */
2248         bytes_sg_total = start - offset + bytes;
2249         if (!test_bit(i, &msg->sg.copy) && bytes_sg_total <= len)
2250                 goto out;
2251
2252         /* At this point we need to linearize multiple scatterlist
2253          * elements or a single shared page. Either way we need to
2254          * copy into a linear buffer exclusively owned by BPF. Then
2255          * place the buffer in the scatterlist and fixup the original
2256          * entries by removing the entries now in the linear buffer
2257          * and shifting the remaining entries. For now we do not try
2258          * to copy partial entries to avoid complexity of running out
2259          * of sg_entry slots. The downside is reading a single byte
2260          * will copy the entire sg entry.
2261          */
2262         do {
2263                 copy += sk_msg_elem(msg, i)->length;
2264                 sk_msg_iter_var_next(i);
2265                 if (bytes_sg_total <= copy)
2266                         break;
2267         } while (i != msg->sg.end);
2268         last_sge = i;
2269
2270         if (unlikely(bytes_sg_total > copy))
2271                 return -EINVAL;
2272
2273         page = alloc_pages(__GFP_NOWARN | GFP_ATOMIC | __GFP_COMP,
2274                            get_order(copy));
2275         if (unlikely(!page))
2276                 return -ENOMEM;
2277
2278         raw = page_address(page);
2279         i = first_sge;
2280         do {
2281                 sge = sk_msg_elem(msg, i);
2282                 from = sg_virt(sge);
2283                 len = sge->length;
2284                 to = raw + poffset;
2285
2286                 memcpy(to, from, len);
2287                 poffset += len;
2288                 sge->length = 0;
2289                 put_page(sg_page(sge));
2290
2291                 sk_msg_iter_var_next(i);
2292         } while (i != last_sge);
2293
2294         sg_set_page(&msg->sg.data[first_sge], page, copy, 0);
2295
2296         /* To repair sg ring we need to shift entries. If we only
2297          * had a single entry though we can just replace it and
2298          * be done. Otherwise walk the ring and shift the entries.
2299          */
2300         WARN_ON_ONCE(last_sge == first_sge);
2301         shift = last_sge > first_sge ?
2302                 last_sge - first_sge - 1 :
2303                 NR_MSG_FRAG_IDS - first_sge + last_sge - 1;
2304         if (!shift)
2305                 goto out;
2306
2307         i = first_sge;
2308         sk_msg_iter_var_next(i);
2309         do {
2310                 u32 move_from;
2311
2312                 if (i + shift >= NR_MSG_FRAG_IDS)
2313                         move_from = i + shift - NR_MSG_FRAG_IDS;
2314                 else
2315                         move_from = i + shift;
2316                 if (move_from == msg->sg.end)
2317                         break;
2318
2319                 msg->sg.data[i] = msg->sg.data[move_from];
2320                 msg->sg.data[move_from].length = 0;
2321                 msg->sg.data[move_from].page_link = 0;
2322                 msg->sg.data[move_from].offset = 0;
2323                 sk_msg_iter_var_next(i);
2324         } while (1);
2325
2326         msg->sg.end = msg->sg.end - shift > msg->sg.end ?
2327                       msg->sg.end - shift + NR_MSG_FRAG_IDS :
2328                       msg->sg.end - shift;
2329 out:
2330         msg->data = sg_virt(&msg->sg.data[first_sge]) + start - offset;
2331         msg->data_end = msg->data + bytes;
2332         return 0;
2333 }
2334
2335 static const struct bpf_func_proto bpf_msg_pull_data_proto = {
2336         .func           = bpf_msg_pull_data,
2337         .gpl_only       = false,
2338         .ret_type       = RET_INTEGER,
2339         .arg1_type      = ARG_PTR_TO_CTX,
2340         .arg2_type      = ARG_ANYTHING,
2341         .arg3_type      = ARG_ANYTHING,
2342         .arg4_type      = ARG_ANYTHING,
2343 };
2344
2345 BPF_CALL_4(bpf_msg_push_data, struct sk_msg *, msg, u32, start,
2346            u32, len, u64, flags)
2347 {
2348         struct scatterlist sge, nsge, nnsge, rsge = {0}, *psge;
2349         u32 new, i = 0, l = 0, space, copy = 0, offset = 0;
2350         u8 *raw, *to, *from;
2351         struct page *page;
2352
2353         if (unlikely(flags))
2354                 return -EINVAL;
2355
2356         /* First find the starting scatterlist element */
2357         i = msg->sg.start;
2358         do {
2359                 offset += l;
2360                 l = sk_msg_elem(msg, i)->length;
2361
2362                 if (start < offset + l)
2363                         break;
2364                 sk_msg_iter_var_next(i);
2365         } while (i != msg->sg.end);
2366
2367         if (start >= offset + l)
2368                 return -EINVAL;
2369
2370         space = MAX_MSG_FRAGS - sk_msg_elem_used(msg);
2371
2372         /* If no space available will fallback to copy, we need at
2373          * least one scatterlist elem available to push data into
2374          * when start aligns to the beginning of an element or two
2375          * when it falls inside an element. We handle the start equals
2376          * offset case because its the common case for inserting a
2377          * header.
2378          */
2379         if (!space || (space == 1 && start != offset))
2380                 copy = msg->sg.data[i].length;
2381
2382         page = alloc_pages(__GFP_NOWARN | GFP_ATOMIC | __GFP_COMP,
2383                            get_order(copy + len));
2384         if (unlikely(!page))
2385                 return -ENOMEM;
2386
2387         if (copy) {
2388                 int front, back;
2389
2390                 raw = page_address(page);
2391
2392                 psge = sk_msg_elem(msg, i);
2393                 front = start - offset;
2394                 back = psge->length - front;
2395                 from = sg_virt(psge);
2396
2397                 if (front)
2398                         memcpy(raw, from, front);
2399
2400                 if (back) {
2401                         from += front;
2402                         to = raw + front + len;
2403
2404                         memcpy(to, from, back);
2405                 }
2406
2407                 put_page(sg_page(psge));
2408         } else if (start - offset) {
2409                 psge = sk_msg_elem(msg, i);
2410                 rsge = sk_msg_elem_cpy(msg, i);
2411
2412                 psge->length = start - offset;
2413                 rsge.length -= psge->length;
2414                 rsge.offset += start;
2415
2416                 sk_msg_iter_var_next(i);
2417                 sg_unmark_end(psge);
2418                 sg_unmark_end(&rsge);
2419                 sk_msg_iter_next(msg, end);
2420         }
2421
2422         /* Slot(s) to place newly allocated data */
2423         new = i;
2424
2425         /* Shift one or two slots as needed */
2426         if (!copy) {
2427                 sge = sk_msg_elem_cpy(msg, i);
2428
2429                 sk_msg_iter_var_next(i);
2430                 sg_unmark_end(&sge);
2431                 sk_msg_iter_next(msg, end);
2432
2433                 nsge = sk_msg_elem_cpy(msg, i);
2434                 if (rsge.length) {
2435                         sk_msg_iter_var_next(i);
2436                         nnsge = sk_msg_elem_cpy(msg, i);
2437                 }
2438
2439                 while (i != msg->sg.end) {
2440                         msg->sg.data[i] = sge;
2441                         sge = nsge;
2442                         sk_msg_iter_var_next(i);
2443                         if (rsge.length) {
2444                                 nsge = nnsge;
2445                                 nnsge = sk_msg_elem_cpy(msg, i);
2446                         } else {
2447                                 nsge = sk_msg_elem_cpy(msg, i);
2448                         }
2449                 }
2450         }
2451
2452         /* Place newly allocated data buffer */
2453         sk_mem_charge(msg->sk, len);
2454         msg->sg.size += len;
2455         __clear_bit(new, &msg->sg.copy);
2456         sg_set_page(&msg->sg.data[new], page, len + copy, 0);
2457         if (rsge.length) {
2458                 get_page(sg_page(&rsge));
2459                 sk_msg_iter_var_next(new);
2460                 msg->sg.data[new] = rsge;
2461         }
2462
2463         sk_msg_compute_data_pointers(msg);
2464         return 0;
2465 }
2466
2467 static const struct bpf_func_proto bpf_msg_push_data_proto = {
2468         .func           = bpf_msg_push_data,
2469         .gpl_only       = false,
2470         .ret_type       = RET_INTEGER,
2471         .arg1_type      = ARG_PTR_TO_CTX,
2472         .arg2_type      = ARG_ANYTHING,
2473         .arg3_type      = ARG_ANYTHING,
2474         .arg4_type      = ARG_ANYTHING,
2475 };
2476
2477 static void sk_msg_shift_left(struct sk_msg *msg, int i)
2478 {
2479         int prev;
2480
2481         do {
2482                 prev = i;
2483                 sk_msg_iter_var_next(i);
2484                 msg->sg.data[prev] = msg->sg.data[i];
2485         } while (i != msg->sg.end);
2486
2487         sk_msg_iter_prev(msg, end);
2488 }
2489
2490 static void sk_msg_shift_right(struct sk_msg *msg, int i)
2491 {
2492         struct scatterlist tmp, sge;
2493
2494         sk_msg_iter_next(msg, end);
2495         sge = sk_msg_elem_cpy(msg, i);
2496         sk_msg_iter_var_next(i);
2497         tmp = sk_msg_elem_cpy(msg, i);
2498
2499         while (i != msg->sg.end) {
2500                 msg->sg.data[i] = sge;
2501                 sk_msg_iter_var_next(i);
2502                 sge = tmp;
2503                 tmp = sk_msg_elem_cpy(msg, i);
2504         }
2505 }
2506
2507 BPF_CALL_4(bpf_msg_pop_data, struct sk_msg *, msg, u32, start,
2508            u32, len, u64, flags)
2509 {
2510         u32 i = 0, l = 0, space, offset = 0;
2511         u64 last = start + len;
2512         int pop;
2513
2514         if (unlikely(flags))
2515                 return -EINVAL;
2516
2517         /* First find the starting scatterlist element */
2518         i = msg->sg.start;
2519         do {
2520                 offset += l;
2521                 l = sk_msg_elem(msg, i)->length;
2522
2523                 if (start < offset + l)
2524                         break;
2525                 sk_msg_iter_var_next(i);
2526         } while (i != msg->sg.end);
2527
2528         /* Bounds checks: start and pop must be inside message */
2529         if (start >= offset + l || last >= msg->sg.size)
2530                 return -EINVAL;
2531
2532         space = MAX_MSG_FRAGS - sk_msg_elem_used(msg);
2533
2534         pop = len;
2535         /* --------------| offset
2536          * -| start      |-------- len -------|
2537          *
2538          *  |----- a ----|-------- pop -------|----- b ----|
2539          *  |______________________________________________| length
2540          *
2541          *
2542          * a:   region at front of scatter element to save
2543          * b:   region at back of scatter element to save when length > A + pop
2544          * pop: region to pop from element, same as input 'pop' here will be
2545          *      decremented below per iteration.
2546          *
2547          * Two top-level cases to handle when start != offset, first B is non
2548          * zero and second B is zero corresponding to when a pop includes more
2549          * than one element.
2550          *
2551          * Then if B is non-zero AND there is no space allocate space and
2552          * compact A, B regions into page. If there is space shift ring to
2553          * the rigth free'ing the next element in ring to place B, leaving
2554          * A untouched except to reduce length.
2555          */
2556         if (start != offset) {
2557                 struct scatterlist *nsge, *sge = sk_msg_elem(msg, i);
2558                 int a = start;
2559                 int b = sge->length - pop - a;
2560
2561                 sk_msg_iter_var_next(i);
2562
2563                 if (pop < sge->length - a) {
2564                         if (space) {
2565                                 sge->length = a;
2566                                 sk_msg_shift_right(msg, i);
2567                                 nsge = sk_msg_elem(msg, i);
2568                                 get_page(sg_page(sge));
2569                                 sg_set_page(nsge,
2570                                             sg_page(sge),
2571                                             b, sge->offset + pop + a);
2572                         } else {
2573                                 struct page *page, *orig;
2574                                 u8 *to, *from;
2575
2576                                 page = alloc_pages(__GFP_NOWARN |
2577                                                    __GFP_COMP   | GFP_ATOMIC,
2578                                                    get_order(a + b));
2579                                 if (unlikely(!page))
2580                                         return -ENOMEM;
2581
2582                                 sge->length = a;
2583                                 orig = sg_page(sge);
2584                                 from = sg_virt(sge);
2585                                 to = page_address(page);
2586                                 memcpy(to, from, a);
2587                                 memcpy(to + a, from + a + pop, b);
2588                                 sg_set_page(sge, page, a + b, 0);
2589                                 put_page(orig);
2590                         }
2591                         pop = 0;
2592                 } else if (pop >= sge->length - a) {
2593                         sge->length = a;
2594                         pop -= (sge->length - a);
2595                 }
2596         }
2597
2598         /* From above the current layout _must_ be as follows,
2599          *
2600          * -| offset
2601          * -| start
2602          *
2603          *  |---- pop ---|---------------- b ------------|
2604          *  |____________________________________________| length
2605          *
2606          * Offset and start of the current msg elem are equal because in the
2607          * previous case we handled offset != start and either consumed the
2608          * entire element and advanced to the next element OR pop == 0.
2609          *
2610          * Two cases to handle here are first pop is less than the length
2611          * leaving some remainder b above. Simply adjust the element's layout
2612          * in this case. Or pop >= length of the element so that b = 0. In this
2613          * case advance to next element decrementing pop.
2614          */
2615         while (pop) {
2616                 struct scatterlist *sge = sk_msg_elem(msg, i);
2617
2618                 if (pop < sge->length) {
2619                         sge->length -= pop;
2620                         sge->offset += pop;
2621                         pop = 0;
2622                 } else {
2623                         pop -= sge->length;
2624                         sk_msg_shift_left(msg, i);
2625                 }
2626                 sk_msg_iter_var_next(i);
2627         }
2628
2629         sk_mem_uncharge(msg->sk, len - pop);
2630         msg->sg.size -= (len - pop);
2631         sk_msg_compute_data_pointers(msg);
2632         return 0;
2633 }
2634
2635 static const struct bpf_func_proto bpf_msg_pop_data_proto = {
2636         .func           = bpf_msg_pop_data,
2637         .gpl_only       = false,
2638         .ret_type       = RET_INTEGER,
2639         .arg1_type      = ARG_PTR_TO_CTX,
2640         .arg2_type      = ARG_ANYTHING,
2641         .arg3_type      = ARG_ANYTHING,
2642         .arg4_type      = ARG_ANYTHING,
2643 };
2644
2645 #ifdef CONFIG_CGROUP_NET_CLASSID
2646 BPF_CALL_0(bpf_get_cgroup_classid_curr)
2647 {
2648         return __task_get_classid(current);
2649 }
2650
2651 static const struct bpf_func_proto bpf_get_cgroup_classid_curr_proto = {
2652         .func           = bpf_get_cgroup_classid_curr,
2653         .gpl_only       = false,
2654         .ret_type       = RET_INTEGER,
2655 };
2656 #endif
2657
2658 BPF_CALL_1(bpf_get_cgroup_classid, const struct sk_buff *, skb)
2659 {
2660         return task_get_classid(skb);
2661 }
2662
2663 static const struct bpf_func_proto bpf_get_cgroup_classid_proto = {
2664         .func           = bpf_get_cgroup_classid,
2665         .gpl_only       = false,
2666         .ret_type       = RET_INTEGER,
2667         .arg1_type      = ARG_PTR_TO_CTX,
2668 };
2669
2670 BPF_CALL_1(bpf_get_route_realm, const struct sk_buff *, skb)
2671 {
2672         return dst_tclassid(skb);
2673 }
2674
2675 static const struct bpf_func_proto bpf_get_route_realm_proto = {
2676         .func           = bpf_get_route_realm,
2677         .gpl_only       = false,
2678         .ret_type       = RET_INTEGER,
2679         .arg1_type      = ARG_PTR_TO_CTX,
2680 };
2681
2682 BPF_CALL_1(bpf_get_hash_recalc, struct sk_buff *, skb)
2683 {
2684         /* If skb_clear_hash() was called due to mangling, we can
2685          * trigger SW recalculation here. Later access to hash
2686          * can then use the inline skb->hash via context directly
2687          * instead of calling this helper again.
2688          */
2689         return skb_get_hash(skb);
2690 }
2691
2692 static const struct bpf_func_proto bpf_get_hash_recalc_proto = {
2693         .func           = bpf_get_hash_recalc,
2694         .gpl_only       = false,
2695         .ret_type       = RET_INTEGER,
2696         .arg1_type      = ARG_PTR_TO_CTX,
2697 };
2698
2699 BPF_CALL_1(bpf_set_hash_invalid, struct sk_buff *, skb)
2700 {
2701         /* After all direct packet write, this can be used once for
2702          * triggering a lazy recalc on next skb_get_hash() invocation.
2703          */
2704         skb_clear_hash(skb);
2705         return 0;
2706 }
2707
2708 static const struct bpf_func_proto bpf_set_hash_invalid_proto = {
2709         .func           = bpf_set_hash_invalid,
2710         .gpl_only       = false,
2711         .ret_type       = RET_INTEGER,
2712         .arg1_type      = ARG_PTR_TO_CTX,
2713 };
2714
2715 BPF_CALL_2(bpf_set_hash, struct sk_buff *, skb, u32, hash)
2716 {
2717         /* Set user specified hash as L4(+), so that it gets returned
2718          * on skb_get_hash() call unless BPF prog later on triggers a
2719          * skb_clear_hash().
2720          */
2721         __skb_set_sw_hash(skb, hash, true);
2722         return 0;
2723 }
2724
2725 static const struct bpf_func_proto bpf_set_hash_proto = {
2726         .func           = bpf_set_hash,
2727         .gpl_only       = false,
2728         .ret_type       = RET_INTEGER,
2729         .arg1_type      = ARG_PTR_TO_CTX,
2730         .arg2_type      = ARG_ANYTHING,
2731 };
2732
2733 BPF_CALL_3(bpf_skb_vlan_push, struct sk_buff *, skb, __be16, vlan_proto,
2734            u16, vlan_tci)
2735 {
2736         int ret;
2737
2738         if (unlikely(vlan_proto != htons(ETH_P_8021Q) &&
2739                      vlan_proto != htons(ETH_P_8021AD)))
2740                 vlan_proto = htons(ETH_P_8021Q);
2741
2742         bpf_push_mac_rcsum(skb);
2743         ret = skb_vlan_push(skb, vlan_proto, vlan_tci);
2744         bpf_pull_mac_rcsum(skb);
2745
2746         bpf_compute_data_pointers(skb);
2747         return ret;
2748 }
2749
2750 static const struct bpf_func_proto bpf_skb_vlan_push_proto = {
2751         .func           = bpf_skb_vlan_push,
2752         .gpl_only       = false,
2753         .ret_type       = RET_INTEGER,
2754         .arg1_type      = ARG_PTR_TO_CTX,
2755         .arg2_type      = ARG_ANYTHING,
2756         .arg3_type      = ARG_ANYTHING,
2757 };
2758
2759 BPF_CALL_1(bpf_skb_vlan_pop, struct sk_buff *, skb)
2760 {
2761         int ret;
2762
2763         bpf_push_mac_rcsum(skb);
2764         ret = skb_vlan_pop(skb);
2765         bpf_pull_mac_rcsum(skb);
2766
2767         bpf_compute_data_pointers(skb);
2768         return ret;
2769 }
2770
2771 static const struct bpf_func_proto bpf_skb_vlan_pop_proto = {
2772         .func           = bpf_skb_vlan_pop,
2773         .gpl_only       = false,
2774         .ret_type       = RET_INTEGER,
2775         .arg1_type      = ARG_PTR_TO_CTX,
2776 };
2777
2778 static int bpf_skb_generic_push(struct sk_buff *skb, u32 off, u32 len)
2779 {
2780         /* Caller already did skb_cow() with len as headroom,
2781          * so no need to do it here.
2782          */
2783         skb_push(skb, len);
2784         memmove(skb->data, skb->data + len, off);
2785         memset(skb->data + off, 0, len);
2786
2787         /* No skb_postpush_rcsum(skb, skb->data + off, len)
2788          * needed here as it does not change the skb->csum
2789          * result for checksum complete when summing over
2790          * zeroed blocks.
2791          */
2792         return 0;
2793 }
2794
2795 static int bpf_skb_generic_pop(struct sk_buff *skb, u32 off, u32 len)
2796 {
2797         /* skb_ensure_writable() is not needed here, as we're
2798          * already working on an uncloned skb.
2799          */
2800         if (unlikely(!pskb_may_pull(skb, off + len)))
2801                 return -ENOMEM;
2802
2803         skb_postpull_rcsum(skb, skb->data + off, len);
2804         memmove(skb->data + len, skb->data, off);
2805         __skb_pull(skb, len);
2806
2807         return 0;
2808 }
2809
2810 static int bpf_skb_net_hdr_push(struct sk_buff *skb, u32 off, u32 len)
2811 {
2812         bool trans_same = skb->transport_header == skb->network_header;
2813         int ret;
2814
2815         /* There's no need for __skb_push()/__skb_pull() pair to
2816          * get to the start of the mac header as we're guaranteed
2817          * to always start from here under eBPF.
2818          */
2819         ret = bpf_skb_generic_push(skb, off, len);
2820         if (likely(!ret)) {
2821                 skb->mac_header -= len;
2822                 skb->network_header -= len;
2823                 if (trans_same)
2824                         skb->transport_header = skb->network_header;
2825         }
2826
2827         return ret;
2828 }
2829
2830 static int bpf_skb_net_hdr_pop(struct sk_buff *skb, u32 off, u32 len)
2831 {
2832         bool trans_same = skb->transport_header == skb->network_header;
2833         int ret;
2834
2835         /* Same here, __skb_push()/__skb_pull() pair not needed. */
2836         ret = bpf_skb_generic_pop(skb, off, len);
2837         if (likely(!ret)) {
2838                 skb->mac_header += len;
2839                 skb->network_header += len;
2840                 if (trans_same)
2841                         skb->transport_header = skb->network_header;
2842         }
2843
2844         return ret;
2845 }
2846
2847 static int bpf_skb_proto_4_to_6(struct sk_buff *skb)
2848 {
2849         const u32 len_diff = sizeof(struct ipv6hdr) - sizeof(struct iphdr);
2850         u32 off = skb_mac_header_len(skb);
2851         int ret;
2852
2853         if (skb_is_gso(skb) && !skb_is_gso_tcp(skb))
2854                 return -ENOTSUPP;
2855
2856         ret = skb_cow(skb, len_diff);
2857         if (unlikely(ret < 0))
2858                 return ret;
2859
2860         ret = bpf_skb_net_hdr_push(skb, off, len_diff);
2861         if (unlikely(ret < 0))
2862                 return ret;
2863
2864         if (skb_is_gso(skb)) {
2865                 struct skb_shared_info *shinfo = skb_shinfo(skb);
2866
2867                 /* SKB_GSO_TCPV4 needs to be changed into
2868                  * SKB_GSO_TCPV6.
2869                  */
2870                 if (shinfo->gso_type & SKB_GSO_TCPV4) {
2871                         shinfo->gso_type &= ~SKB_GSO_TCPV4;
2872                         shinfo->gso_type |=  SKB_GSO_TCPV6;
2873                 }
2874
2875                 /* Due to IPv6 header, MSS needs to be downgraded. */
2876                 skb_decrease_gso_size(shinfo, len_diff);
2877                 /* Header must be checked, and gso_segs recomputed. */
2878                 shinfo->gso_type |= SKB_GSO_DODGY;
2879                 shinfo->gso_segs = 0;
2880         }
2881
2882         skb->protocol = htons(ETH_P_IPV6);
2883         skb_clear_hash(skb);
2884
2885         return 0;
2886 }
2887
2888 static int bpf_skb_proto_6_to_4(struct sk_buff *skb)
2889 {
2890         const u32 len_diff = sizeof(struct ipv6hdr) - sizeof(struct iphdr);
2891         u32 off = skb_mac_header_len(skb);
2892         int ret;
2893
2894         if (skb_is_gso(skb) && !skb_is_gso_tcp(skb))
2895                 return -ENOTSUPP;
2896
2897         ret = skb_unclone(skb, GFP_ATOMIC);
2898         if (unlikely(ret < 0))
2899                 return ret;
2900
2901         ret = bpf_skb_net_hdr_pop(skb, off, len_diff);
2902         if (unlikely(ret < 0))
2903                 return ret;
2904
2905         if (skb_is_gso(skb)) {
2906                 struct skb_shared_info *shinfo = skb_shinfo(skb);
2907
2908                 /* SKB_GSO_TCPV6 needs to be changed into
2909                  * SKB_GSO_TCPV4.
2910                  */
2911                 if (shinfo->gso_type & SKB_GSO_TCPV6) {
2912                         shinfo->gso_type &= ~SKB_GSO_TCPV6;
2913                         shinfo->gso_type |=  SKB_GSO_TCPV4;
2914                 }
2915
2916                 /* Due to IPv4 header, MSS can be upgraded. */
2917                 skb_increase_gso_size(shinfo, len_diff);
2918                 /* Header must be checked, and gso_segs recomputed. */
2919                 shinfo->gso_type |= SKB_GSO_DODGY;
2920                 shinfo->gso_segs = 0;
2921         }
2922
2923         skb->protocol = htons(ETH_P_IP);
2924         skb_clear_hash(skb);
2925
2926         return 0;
2927 }
2928
2929 static int bpf_skb_proto_xlat(struct sk_buff *skb, __be16 to_proto)
2930 {
2931         __be16 from_proto = skb->protocol;
2932
2933         if (from_proto == htons(ETH_P_IP) &&
2934               to_proto == htons(ETH_P_IPV6))
2935                 return bpf_skb_proto_4_to_6(skb);
2936
2937         if (from_proto == htons(ETH_P_IPV6) &&
2938               to_proto == htons(ETH_P_IP))
2939                 return bpf_skb_proto_6_to_4(skb);
2940
2941         return -ENOTSUPP;
2942 }
2943
2944 BPF_CALL_3(bpf_skb_change_proto, struct sk_buff *, skb, __be16, proto,
2945            u64, flags)
2946 {
2947         int ret;
2948
2949         if (unlikely(flags))
2950                 return -EINVAL;
2951
2952         /* General idea is that this helper does the basic groundwork
2953          * needed for changing the protocol, and eBPF program fills the
2954          * rest through bpf_skb_store_bytes(), bpf_lX_csum_replace()
2955          * and other helpers, rather than passing a raw buffer here.
2956          *
2957          * The rationale is to keep this minimal and without a need to
2958          * deal with raw packet data. F.e. even if we would pass buffers
2959          * here, the program still needs to call the bpf_lX_csum_replace()
2960          * helpers anyway. Plus, this way we keep also separation of
2961          * concerns, since f.e. bpf_skb_store_bytes() should only take
2962          * care of stores.
2963          *
2964          * Currently, additional options and extension header space are
2965          * not supported, but flags register is reserved so we can adapt
2966          * that. For offloads, we mark packet as dodgy, so that headers
2967          * need to be verified first.
2968          */
2969         ret = bpf_skb_proto_xlat(skb, proto);
2970         bpf_compute_data_pointers(skb);
2971         return ret;
2972 }
2973
2974 static const struct bpf_func_proto bpf_skb_change_proto_proto = {
2975         .func           = bpf_skb_change_proto,
2976         .gpl_only       = false,
2977         .ret_type       = RET_INTEGER,
2978         .arg1_type      = ARG_PTR_TO_CTX,
2979         .arg2_type      = ARG_ANYTHING,
2980         .arg3_type      = ARG_ANYTHING,
2981 };
2982
2983 BPF_CALL_2(bpf_skb_change_type, struct sk_buff *, skb, u32, pkt_type)
2984 {
2985         /* We only allow a restricted subset to be changed for now. */
2986         if (unlikely(!skb_pkt_type_ok(skb->pkt_type) ||
2987                      !skb_pkt_type_ok(pkt_type)))
2988                 return -EINVAL;
2989
2990         skb->pkt_type = pkt_type;
2991         return 0;
2992 }
2993
2994 static const struct bpf_func_proto bpf_skb_change_type_proto = {
2995         .func           = bpf_skb_change_type,
2996         .gpl_only       = false,
2997         .ret_type       = RET_INTEGER,
2998         .arg1_type      = ARG_PTR_TO_CTX,
2999         .arg2_type      = ARG_ANYTHING,
3000 };
3001
3002 static u32 bpf_skb_net_base_len(const struct sk_buff *skb)
3003 {
3004         switch (skb->protocol) {
3005         case htons(ETH_P_IP):
3006                 return sizeof(struct iphdr);
3007         case htons(ETH_P_IPV6):
3008                 return sizeof(struct ipv6hdr);
3009         default:
3010                 return ~0U;
3011         }
3012 }
3013
3014 #define BPF_F_ADJ_ROOM_ENCAP_L3_MASK    (BPF_F_ADJ_ROOM_ENCAP_L3_IPV4 | \
3015                                          BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3016
3017 #define BPF_F_ADJ_ROOM_MASK             (BPF_F_ADJ_ROOM_FIXED_GSO | \
3018                                          BPF_F_ADJ_ROOM_ENCAP_L3_MASK | \
3019                                          BPF_F_ADJ_ROOM_ENCAP_L4_GRE | \
3020                                          BPF_F_ADJ_ROOM_ENCAP_L4_UDP | \
3021                                          BPF_F_ADJ_ROOM_ENCAP_L2( \
3022                                           BPF_ADJ_ROOM_ENCAP_L2_MASK))
3023
3024 static int bpf_skb_net_grow(struct sk_buff *skb, u32 off, u32 len_diff,
3025                             u64 flags)
3026 {
3027         u8 inner_mac_len = flags >> BPF_ADJ_ROOM_ENCAP_L2_SHIFT;
3028         bool encap = flags & BPF_F_ADJ_ROOM_ENCAP_L3_MASK;
3029         u16 mac_len = 0, inner_net = 0, inner_trans = 0;
3030         unsigned int gso_type = SKB_GSO_DODGY;
3031         int ret;
3032
3033         if (skb_is_gso(skb) && !skb_is_gso_tcp(skb)) {
3034                 /* udp gso_size delineates datagrams, only allow if fixed */
3035                 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) ||
3036                     !(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3037                         return -ENOTSUPP;
3038         }
3039
3040         ret = skb_cow_head(skb, len_diff);
3041         if (unlikely(ret < 0))
3042                 return ret;
3043
3044         if (encap) {
3045                 if (skb->protocol != htons(ETH_P_IP) &&
3046                     skb->protocol != htons(ETH_P_IPV6))
3047                         return -ENOTSUPP;
3048
3049                 if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4 &&
3050                     flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3051                         return -EINVAL;
3052
3053                 if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE &&
3054                     flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP)
3055                         return -EINVAL;
3056
3057                 if (skb->encapsulation)
3058                         return -EALREADY;
3059
3060                 mac_len = skb->network_header - skb->mac_header;
3061                 inner_net = skb->network_header;
3062                 if (inner_mac_len > len_diff)
3063                         return -EINVAL;
3064                 inner_trans = skb->transport_header;
3065         }
3066
3067         ret = bpf_skb_net_hdr_push(skb, off, len_diff);
3068         if (unlikely(ret < 0))
3069                 return ret;
3070
3071         if (encap) {
3072                 skb->inner_mac_header = inner_net - inner_mac_len;
3073                 skb->inner_network_header = inner_net;
3074                 skb->inner_transport_header = inner_trans;
3075                 skb_set_inner_protocol(skb, skb->protocol);
3076
3077                 skb->encapsulation = 1;
3078                 skb_set_network_header(skb, mac_len);
3079
3080                 if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP)
3081                         gso_type |= SKB_GSO_UDP_TUNNEL;
3082                 else if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE)
3083                         gso_type |= SKB_GSO_GRE;
3084                 else if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3085                         gso_type |= SKB_GSO_IPXIP6;
3086                 else if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4)
3087                         gso_type |= SKB_GSO_IPXIP4;
3088
3089                 if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE ||
3090                     flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP) {
3091                         int nh_len = flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6 ?
3092                                         sizeof(struct ipv6hdr) :
3093                                         sizeof(struct iphdr);
3094
3095                         skb_set_transport_header(skb, mac_len + nh_len);
3096                 }
3097
3098                 /* Match skb->protocol to new outer l3 protocol */
3099                 if (skb->protocol == htons(ETH_P_IP) &&
3100                     flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3101                         skb->protocol = htons(ETH_P_IPV6);
3102                 else if (skb->protocol == htons(ETH_P_IPV6) &&
3103                          flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4)
3104                         skb->protocol = htons(ETH_P_IP);
3105         }
3106
3107         if (skb_is_gso(skb)) {
3108                 struct skb_shared_info *shinfo = skb_shinfo(skb);
3109
3110                 /* Due to header grow, MSS needs to be downgraded. */
3111                 if (!(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3112                         skb_decrease_gso_size(shinfo, len_diff);
3113
3114                 /* Header must be checked, and gso_segs recomputed. */
3115                 shinfo->gso_type |= gso_type;
3116                 shinfo->gso_segs = 0;
3117         }
3118
3119         return 0;
3120 }
3121
3122 static int bpf_skb_net_shrink(struct sk_buff *skb, u32 off, u32 len_diff,
3123                               u64 flags)
3124 {
3125         int ret;
3126
3127         if (flags & ~BPF_F_ADJ_ROOM_FIXED_GSO)
3128                 return -EINVAL;
3129
3130         if (skb_is_gso(skb) && !skb_is_gso_tcp(skb)) {
3131                 /* udp gso_size delineates datagrams, only allow if fixed */
3132                 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) ||
3133                     !(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3134                         return -ENOTSUPP;
3135         }
3136
3137         ret = skb_unclone(skb, GFP_ATOMIC);
3138         if (unlikely(ret < 0))
3139                 return ret;
3140
3141         ret = bpf_skb_net_hdr_pop(skb, off, len_diff);
3142         if (unlikely(ret < 0))
3143                 return ret;
3144
3145         if (skb_is_gso(skb)) {
3146                 struct skb_shared_info *shinfo = skb_shinfo(skb);
3147
3148                 /* Due to header shrink, MSS can be upgraded. */
3149                 if (!(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3150                         skb_increase_gso_size(shinfo, len_diff);
3151
3152                 /* Header must be checked, and gso_segs recomputed. */
3153                 shinfo->gso_type |= SKB_GSO_DODGY;
3154                 shinfo->gso_segs = 0;
3155         }
3156
3157         return 0;
3158 }
3159
3160 static u32 __bpf_skb_max_len(const struct sk_buff *skb)
3161 {
3162         return skb->dev ? skb->dev->mtu + skb->dev->hard_header_len :
3163                           SKB_MAX_ALLOC;
3164 }
3165
3166 BPF_CALL_4(bpf_skb_adjust_room, struct sk_buff *, skb, s32, len_diff,
3167            u32, mode, u64, flags)
3168 {
3169         u32 len_cur, len_diff_abs = abs(len_diff);
3170         u32 len_min = bpf_skb_net_base_len(skb);
3171         u32 len_max = __bpf_skb_max_len(skb);
3172         __be16 proto = skb->protocol;
3173         bool shrink = len_diff < 0;
3174         u32 off;
3175         int ret;
3176
3177         if (unlikely(flags & ~BPF_F_ADJ_ROOM_MASK))
3178                 return -EINVAL;
3179         if (unlikely(len_diff_abs > 0xfffU))
3180                 return -EFAULT;
3181         if (unlikely(proto != htons(ETH_P_IP) &&
3182                      proto != htons(ETH_P_IPV6)))
3183                 return -ENOTSUPP;
3184
3185         off = skb_mac_header_len(skb);
3186         switch (mode) {
3187         case BPF_ADJ_ROOM_NET:
3188                 off += bpf_skb_net_base_len(skb);
3189                 break;
3190         case BPF_ADJ_ROOM_MAC:
3191                 break;
3192         default:
3193                 return -ENOTSUPP;
3194         }
3195
3196         len_cur = skb->len - skb_network_offset(skb);
3197         if ((shrink && (len_diff_abs >= len_cur ||
3198                         len_cur - len_diff_abs < len_min)) ||
3199             (!shrink && (skb->len + len_diff_abs > len_max &&
3200                          !skb_is_gso(skb))))
3201                 return -ENOTSUPP;
3202
3203         ret = shrink ? bpf_skb_net_shrink(skb, off, len_diff_abs, flags) :
3204                        bpf_skb_net_grow(skb, off, len_diff_abs, flags);
3205
3206         bpf_compute_data_pointers(skb);
3207         return ret;
3208 }
3209
3210 static const struct bpf_func_proto bpf_skb_adjust_room_proto = {
3211         .func           = bpf_skb_adjust_room,
3212         .gpl_only       = false,
3213         .ret_type       = RET_INTEGER,
3214         .arg1_type      = ARG_PTR_TO_CTX,
3215         .arg2_type      = ARG_ANYTHING,
3216         .arg3_type      = ARG_ANYTHING,
3217         .arg4_type      = ARG_ANYTHING,
3218 };
3219
3220 static u32 __bpf_skb_min_len(const struct sk_buff *skb)
3221 {
3222         u32 min_len = skb_network_offset(skb);
3223
3224         if (skb_transport_header_was_set(skb))
3225                 min_len = skb_transport_offset(skb);
3226         if (skb->ip_summed == CHECKSUM_PARTIAL)
3227                 min_len = skb_checksum_start_offset(skb) +
3228                           skb->csum_offset + sizeof(__sum16);
3229         return min_len;
3230 }
3231
3232 static int bpf_skb_grow_rcsum(struct sk_buff *skb, unsigned int new_len)
3233 {
3234         unsigned int old_len = skb->len;
3235         int ret;
3236
3237         ret = __skb_grow_rcsum(skb, new_len);
3238         if (!ret)
3239                 memset(skb->data + old_len, 0, new_len - old_len);
3240         return ret;
3241 }
3242
3243 static int bpf_skb_trim_rcsum(struct sk_buff *skb, unsigned int new_len)
3244 {
3245         return __skb_trim_rcsum(skb, new_len);
3246 }
3247
3248 static inline int __bpf_skb_change_tail(struct sk_buff *skb, u32 new_len,
3249                                         u64 flags)
3250 {
3251         u32 max_len = __bpf_skb_max_len(skb);
3252         u32 min_len = __bpf_skb_min_len(skb);
3253         int ret;
3254
3255         if (unlikely(flags || new_len > max_len || new_len < min_len))
3256                 return -EINVAL;
3257         if (skb->encapsulation)
3258                 return -ENOTSUPP;
3259
3260         /* The basic idea of this helper is that it's performing the
3261          * needed work to either grow or trim an skb, and eBPF program
3262          * rewrites the rest via helpers like bpf_skb_store_bytes(),
3263          * bpf_lX_csum_replace() and others rather than passing a raw
3264          * buffer here. This one is a slow path helper and intended
3265          * for replies with control messages.
3266          *
3267          * Like in bpf_skb_change_proto(), we want to keep this rather
3268          * minimal and without protocol specifics so that we are able
3269          * to separate concerns as in bpf_skb_store_bytes() should only
3270          * be the one responsible for writing buffers.
3271          *
3272          * It's really expected to be a slow path operation here for
3273          * control message replies, so we're implicitly linearizing,
3274          * uncloning and drop offloads from the skb by this.
3275          */
3276         ret = __bpf_try_make_writable(skb, skb->len);
3277         if (!ret) {
3278                 if (new_len > skb->len)
3279                         ret = bpf_skb_grow_rcsum(skb, new_len);
3280                 else if (new_len < skb->len)
3281                         ret = bpf_skb_trim_rcsum(skb, new_len);
3282                 if (!ret && skb_is_gso(skb))
3283                         skb_gso_reset(skb);
3284         }
3285         return ret;
3286 }
3287
3288 BPF_CALL_3(bpf_skb_change_tail, struct sk_buff *, skb, u32, new_len,
3289            u64, flags)
3290 {
3291         int ret = __bpf_skb_change_tail(skb, new_len, flags);
3292
3293         bpf_compute_data_pointers(skb);
3294         return ret;
3295 }
3296
3297 static const struct bpf_func_proto bpf_skb_change_tail_proto = {
3298         .func           = bpf_skb_change_tail,
3299         .gpl_only       = false,
3300         .ret_type       = RET_INTEGER,
3301         .arg1_type      = ARG_PTR_TO_CTX,
3302         .arg2_type      = ARG_ANYTHING,
3303         .arg3_type      = ARG_ANYTHING,
3304 };
3305
3306 BPF_CALL_3(sk_skb_change_tail, struct sk_buff *, skb, u32, new_len,
3307            u64, flags)
3308 {
3309         int ret = __bpf_skb_change_tail(skb, new_len, flags);
3310
3311         bpf_compute_data_end_sk_skb(skb);
3312         return ret;
3313 }
3314
3315 static const struct bpf_func_proto sk_skb_change_tail_proto = {
3316         .func           = sk_skb_change_tail,
3317         .gpl_only       = false,
3318         .ret_type       = RET_INTEGER,
3319         .arg1_type      = ARG_PTR_TO_CTX,
3320         .arg2_type      = ARG_ANYTHING,
3321         .arg3_type      = ARG_ANYTHING,
3322 };
3323
3324 static inline int __bpf_skb_change_head(struct sk_buff *skb, u32 head_room,
3325                                         u64 flags)
3326 {
3327         u32 max_len = __bpf_skb_max_len(skb);
3328         u32 new_len = skb->len + head_room;
3329         int ret;
3330
3331         if (unlikely(flags || (!skb_is_gso(skb) && new_len > max_len) ||
3332                      new_len < skb->len))
3333                 return -EINVAL;
3334
3335         ret = skb_cow(skb, head_room);
3336         if (likely(!ret)) {
3337                 /* Idea for this helper is that we currently only
3338                  * allow to expand on mac header. This means that
3339                  * skb->protocol network header, etc, stay as is.
3340                  * Compared to bpf_skb_change_tail(), we're more
3341                  * flexible due to not needing to linearize or
3342                  * reset GSO. Intention for this helper is to be
3343                  * used by an L3 skb that needs to push mac header
3344                  * for redirection into L2 device.
3345                  */
3346                 __skb_push(skb, head_room);
3347                 memset(skb->data, 0, head_room);
3348                 skb_reset_mac_header(skb);
3349         }
3350
3351         return ret;
3352 }
3353
3354 BPF_CALL_3(bpf_skb_change_head, struct sk_buff *, skb, u32, head_room,
3355            u64, flags)
3356 {
3357         int ret = __bpf_skb_change_head(skb, head_room, flags);
3358
3359         bpf_compute_data_pointers(skb);
3360         return ret;
3361 }
3362
3363 static const struct bpf_func_proto bpf_skb_change_head_proto = {
3364         .func           = bpf_skb_change_head,
3365         .gpl_only       = false,
3366         .ret_type       = RET_INTEGER,
3367         .arg1_type      = ARG_PTR_TO_CTX,
3368         .arg2_type      = ARG_ANYTHING,
3369         .arg3_type      = ARG_ANYTHING,
3370 };
3371
3372 BPF_CALL_3(sk_skb_change_head, struct sk_buff *, skb, u32, head_room,
3373            u64, flags)
3374 {
3375         int ret = __bpf_skb_change_head(skb, head_room, flags);
3376
3377         bpf_compute_data_end_sk_skb(skb);
3378         return ret;
3379 }
3380
3381 static const struct bpf_func_proto sk_skb_change_head_proto = {
3382         .func           = sk_skb_change_head,
3383         .gpl_only       = false,
3384         .ret_type       = RET_INTEGER,
3385         .arg1_type      = ARG_PTR_TO_CTX,
3386         .arg2_type      = ARG_ANYTHING,
3387         .arg3_type      = ARG_ANYTHING,
3388 };
3389 static unsigned long xdp_get_metalen(const struct xdp_buff *xdp)
3390 {
3391         return xdp_data_meta_unsupported(xdp) ? 0 :
3392                xdp->data - xdp->data_meta;
3393 }
3394
3395 BPF_CALL_2(bpf_xdp_adjust_head, struct xdp_buff *, xdp, int, offset)
3396 {
3397         void *xdp_frame_end = xdp->data_hard_start + sizeof(struct xdp_frame);
3398         unsigned long metalen = xdp_get_metalen(xdp);
3399         void *data_start = xdp_frame_end + metalen;
3400         void *data = xdp->data + offset;
3401
3402         if (unlikely(data < data_start ||
3403                      data > xdp->data_end - ETH_HLEN))
3404                 return -EINVAL;
3405
3406         if (metalen)
3407                 memmove(xdp->data_meta + offset,
3408                         xdp->data_meta, metalen);
3409         xdp->data_meta += offset;
3410         xdp->data = data;
3411
3412         return 0;
3413 }
3414
3415 static const struct bpf_func_proto bpf_xdp_adjust_head_proto = {
3416         .func           = bpf_xdp_adjust_head,
3417         .gpl_only       = false,
3418         .ret_type       = RET_INTEGER,
3419         .arg1_type      = ARG_PTR_TO_CTX,
3420         .arg2_type      = ARG_ANYTHING,
3421 };
3422
3423 BPF_CALL_2(bpf_xdp_adjust_tail, struct xdp_buff *, xdp, int, offset)
3424 {
3425         void *data_end = xdp->data_end + offset;
3426
3427         /* only shrinking is allowed for now. */
3428         if (unlikely(offset >= 0))
3429                 return -EINVAL;
3430
3431         if (unlikely(data_end < xdp->data + ETH_HLEN))
3432                 return -EINVAL;
3433
3434         xdp->data_end = data_end;
3435
3436         return 0;
3437 }
3438
3439 static const struct bpf_func_proto bpf_xdp_adjust_tail_proto = {
3440         .func           = bpf_xdp_adjust_tail,
3441         .gpl_only       = false,
3442         .ret_type       = RET_INTEGER,
3443         .arg1_type      = ARG_PTR_TO_CTX,
3444         .arg2_type      = ARG_ANYTHING,
3445 };
3446
3447 BPF_CALL_2(bpf_xdp_adjust_meta, struct xdp_buff *, xdp, int, offset)
3448 {
3449         void *xdp_frame_end = xdp->data_hard_start + sizeof(struct xdp_frame);
3450         void *meta = xdp->data_meta + offset;
3451         unsigned long metalen = xdp->data - meta;
3452
3453         if (xdp_data_meta_unsupported(xdp))
3454                 return -ENOTSUPP;
3455         if (unlikely(meta < xdp_frame_end ||
3456                      meta > xdp->data))
3457                 return -EINVAL;
3458         if (unlikely((metalen & (sizeof(__u32) - 1)) ||
3459                      (metalen > 32)))
3460                 return -EACCES;
3461
3462         xdp->data_meta = meta;
3463
3464         return 0;
3465 }
3466
3467 static const struct bpf_func_proto bpf_xdp_adjust_meta_proto = {
3468         .func           = bpf_xdp_adjust_meta,
3469         .gpl_only       = false,
3470         .ret_type       = RET_INTEGER,
3471         .arg1_type      = ARG_PTR_TO_CTX,
3472         .arg2_type      = ARG_ANYTHING,
3473 };
3474
3475 static int __bpf_tx_xdp_map(struct net_device *dev_rx, void *fwd,
3476                             struct bpf_map *map, struct xdp_buff *xdp)
3477 {
3478         switch (map->map_type) {
3479         case BPF_MAP_TYPE_DEVMAP:
3480         case BPF_MAP_TYPE_DEVMAP_HASH:
3481                 return dev_map_enqueue(fwd, xdp, dev_rx);
3482         case BPF_MAP_TYPE_CPUMAP:
3483                 return cpu_map_enqueue(fwd, xdp, dev_rx);
3484         case BPF_MAP_TYPE_XSKMAP:
3485                 return __xsk_map_redirect(fwd, xdp);
3486         default:
3487                 return -EBADRQC;
3488         }
3489         return 0;
3490 }
3491
3492 void xdp_do_flush(void)
3493 {
3494         __dev_flush();
3495         __cpu_map_flush();
3496         __xsk_map_flush();
3497 }
3498 EXPORT_SYMBOL_GPL(xdp_do_flush);
3499
3500 static inline void *__xdp_map_lookup_elem(struct bpf_map *map, u32 index)
3501 {
3502         switch (map->map_type) {
3503         case BPF_MAP_TYPE_DEVMAP:
3504                 return __dev_map_lookup_elem(map, index);
3505         case BPF_MAP_TYPE_DEVMAP_HASH:
3506                 return __dev_map_hash_lookup_elem(map, index);
3507         case BPF_MAP_TYPE_CPUMAP:
3508                 return __cpu_map_lookup_elem(map, index);
3509         case BPF_MAP_TYPE_XSKMAP:
3510                 return __xsk_map_lookup_elem(map, index);
3511         default:
3512                 return NULL;
3513         }
3514 }
3515
3516 void bpf_clear_redirect_map(struct bpf_map *map)
3517 {
3518         struct bpf_redirect_info *ri;
3519         int cpu;
3520
3521         for_each_possible_cpu(cpu) {
3522                 ri = per_cpu_ptr(&bpf_redirect_info, cpu);
3523                 /* Avoid polluting remote cacheline due to writes if
3524                  * not needed. Once we pass this test, we need the
3525                  * cmpxchg() to make sure it hasn't been changed in
3526                  * the meantime by remote CPU.
3527                  */
3528                 if (unlikely(READ_ONCE(ri->map) == map))
3529                         cmpxchg(&ri->map, map, NULL);
3530         }
3531 }
3532
3533 int xdp_do_redirect(struct net_device *dev, struct xdp_buff *xdp,
3534                     struct bpf_prog *xdp_prog)
3535 {
3536         struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
3537         struct bpf_map *map = READ_ONCE(ri->map);
3538         u32 index = ri->tgt_index;
3539         void *fwd = ri->tgt_value;
3540         int err;
3541
3542         ri->tgt_index = 0;
3543         ri->tgt_value = NULL;
3544         WRITE_ONCE(ri->map, NULL);
3545
3546         if (unlikely(!map)) {
3547                 fwd = dev_get_by_index_rcu(dev_net(dev), index);
3548                 if (unlikely(!fwd)) {
3549                         err = -EINVAL;
3550                         goto err;
3551                 }
3552
3553                 err = dev_xdp_enqueue(fwd, xdp, dev);
3554         } else {
3555                 err = __bpf_tx_xdp_map(dev, fwd, map, xdp);
3556         }
3557
3558         if (unlikely(err))
3559                 goto err;
3560
3561         _trace_xdp_redirect_map(dev, xdp_prog, fwd, map, index);
3562         return 0;
3563 err:
3564         _trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map, index, err);
3565         return err;
3566 }
3567 EXPORT_SYMBOL_GPL(xdp_do_redirect);
3568
3569 static int xdp_do_generic_redirect_map(struct net_device *dev,
3570                                        struct sk_buff *skb,
3571                                        struct xdp_buff *xdp,
3572                                        struct bpf_prog *xdp_prog,
3573                                        struct bpf_map *map)
3574 {
3575         struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
3576         u32 index = ri->tgt_index;
3577         void *fwd = ri->tgt_value;
3578         int err = 0;
3579
3580         ri->tgt_index = 0;
3581         ri->tgt_value = NULL;
3582         WRITE_ONCE(ri->map, NULL);
3583
3584         if (map->map_type == BPF_MAP_TYPE_DEVMAP ||
3585             map->map_type == BPF_MAP_TYPE_DEVMAP_HASH) {
3586                 struct bpf_dtab_netdev *dst = fwd;
3587
3588                 err = dev_map_generic_redirect(dst, skb, xdp_prog);
3589                 if (unlikely(err))
3590                         goto err;
3591         } else if (map->map_type == BPF_MAP_TYPE_XSKMAP) {
3592                 struct xdp_sock *xs = fwd;
3593
3594                 err = xsk_generic_rcv(xs, xdp);
3595                 if (err)
3596                         goto err;
3597                 consume_skb(skb);
3598         } else {
3599                 /* TODO: Handle BPF_MAP_TYPE_CPUMAP */
3600                 err = -EBADRQC;
3601                 goto err;
3602         }
3603
3604         _trace_xdp_redirect_map(dev, xdp_prog, fwd, map, index);
3605         return 0;
3606 err:
3607         _trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map, index, err);
3608         return err;
3609 }
3610
3611 int xdp_do_generic_redirect(struct net_device *dev, struct sk_buff *skb,
3612                             struct xdp_buff *xdp, struct bpf_prog *xdp_prog)
3613 {
3614         struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
3615         struct bpf_map *map = READ_ONCE(ri->map);
3616         u32 index = ri->tgt_index;
3617         struct net_device *fwd;
3618         int err = 0;
3619
3620         if (map)
3621                 return xdp_do_generic_redirect_map(dev, skb, xdp, xdp_prog,
3622                                                    map);
3623         ri->tgt_index = 0;
3624         fwd = dev_get_by_index_rcu(dev_net(dev), index);
3625         if (unlikely(!fwd)) {
3626                 err = -EINVAL;
3627                 goto err;
3628         }
3629
3630         err = xdp_ok_fwd_dev(fwd, skb->len);
3631         if (unlikely(err))
3632                 goto err;
3633
3634         skb->dev = fwd;
3635         _trace_xdp_redirect(dev, xdp_prog, index);
3636         generic_xdp_tx(skb, xdp_prog);
3637         return 0;
3638 err:
3639         _trace_xdp_redirect_err(dev, xdp_prog, index, err);
3640         return err;
3641 }
3642
3643 BPF_CALL_2(bpf_xdp_redirect, u32, ifindex, u64, flags)
3644 {
3645         struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
3646
3647         if (unlikely(flags))
3648                 return XDP_ABORTED;
3649
3650         ri->flags = flags;
3651         ri->tgt_index = ifindex;
3652         ri->tgt_value = NULL;
3653         WRITE_ONCE(ri->map, NULL);
3654
3655         return XDP_REDIRECT;
3656 }
3657
3658 static const struct bpf_func_proto bpf_xdp_redirect_proto = {
3659         .func           = bpf_xdp_redirect,
3660         .gpl_only       = false,
3661         .ret_type       = RET_INTEGER,
3662         .arg1_type      = ARG_ANYTHING,
3663         .arg2_type      = ARG_ANYTHING,
3664 };
3665
3666 BPF_CALL_3(bpf_xdp_redirect_map, struct bpf_map *, map, u32, ifindex,
3667            u64, flags)
3668 {
3669         struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
3670
3671         /* Lower bits of the flags are used as return code on lookup failure */
3672         if (unlikely(flags > XDP_TX))
3673                 return XDP_ABORTED;
3674
3675         ri->tgt_value = __xdp_map_lookup_elem(map, ifindex);
3676         if (unlikely(!ri->tgt_value)) {
3677                 /* If the lookup fails we want to clear out the state in the
3678                  * redirect_info struct completely, so that if an eBPF program
3679                  * performs multiple lookups, the last one always takes
3680                  * precedence.
3681                  */
3682                 WRITE_ONCE(ri->map, NULL);
3683                 return flags;
3684         }
3685
3686         ri->flags = flags;
3687         ri->tgt_index = ifindex;
3688         WRITE_ONCE(ri->map, map);
3689
3690         return XDP_REDIRECT;
3691 }
3692
3693 static const struct bpf_func_proto bpf_xdp_redirect_map_proto = {
3694         .func           = bpf_xdp_redirect_map,
3695         .gpl_only       = false,
3696         .ret_type       = RET_INTEGER,
3697         .arg1_type      = ARG_CONST_MAP_PTR,
3698         .arg2_type      = ARG_ANYTHING,
3699         .arg3_type      = ARG_ANYTHING,
3700 };
3701
3702 static unsigned long bpf_skb_copy(void *dst_buff, const void *skb,
3703                                   unsigned long off, unsigned long len)
3704 {
3705         void *ptr = skb_header_pointer(skb, off, len, dst_buff);
3706
3707         if (unlikely(!ptr))
3708                 return len;
3709         if (ptr != dst_buff)
3710                 memcpy(dst_buff, ptr, len);
3711
3712         return 0;
3713 }
3714
3715 BPF_CALL_5(bpf_skb_event_output, struct sk_buff *, skb, struct bpf_map *, map,
3716            u64, flags, void *, meta, u64, meta_size)
3717 {
3718         u64 skb_size = (flags & BPF_F_CTXLEN_MASK) >> 32;
3719
3720         if (unlikely(flags & ~(BPF_F_CTXLEN_MASK | BPF_F_INDEX_MASK)))
3721                 return -EINVAL;
3722         if (unlikely(!skb || skb_size > skb->len))
3723                 return -EFAULT;
3724
3725         return bpf_event_output(map, flags, meta, meta_size, skb, skb_size,
3726                                 bpf_skb_copy);
3727 }
3728
3729 static const struct bpf_func_proto bpf_skb_event_output_proto = {
3730         .func           = bpf_skb_event_output,
3731         .gpl_only       = true,
3732         .ret_type       = RET_INTEGER,
3733         .arg1_type      = ARG_PTR_TO_CTX,
3734         .arg2_type      = ARG_CONST_MAP_PTR,
3735         .arg3_type      = ARG_ANYTHING,
3736         .arg4_type      = ARG_PTR_TO_MEM,
3737         .arg5_type      = ARG_CONST_SIZE_OR_ZERO,
3738 };
3739
3740 static int bpf_skb_output_btf_ids[5];
3741 const struct bpf_func_proto bpf_skb_output_proto = {
3742         .func           = bpf_skb_event_output,
3743         .gpl_only       = true,
3744         .ret_type       = RET_INTEGER,
3745         .arg1_type      = ARG_PTR_TO_BTF_ID,
3746         .arg2_type      = ARG_CONST_MAP_PTR,
3747         .arg3_type      = ARG_ANYTHING,
3748         .arg4_type      = ARG_PTR_TO_MEM,
3749         .arg5_type      = ARG_CONST_SIZE_OR_ZERO,
3750         .btf_id         = bpf_skb_output_btf_ids,
3751 };
3752
3753 static unsigned short bpf_tunnel_key_af(u64 flags)
3754 {
3755         return flags & BPF_F_TUNINFO_IPV6 ? AF_INET6 : AF_INET;
3756 }
3757
3758 BPF_CALL_4(bpf_skb_get_tunnel_key, struct sk_buff *, skb, struct bpf_tunnel_key *, to,
3759            u32, size, u64, flags)
3760 {
3761         const struct ip_tunnel_info *info = skb_tunnel_info(skb);
3762         u8 compat[sizeof(struct bpf_tunnel_key)];
3763         void *to_orig = to;
3764         int err;
3765
3766         if (unlikely(!info || (flags & ~(BPF_F_TUNINFO_IPV6)))) {
3767                 err = -EINVAL;
3768                 goto err_clear;
3769         }
3770         if (ip_tunnel_info_af(info) != bpf_tunnel_key_af(flags)) {
3771                 err = -EPROTO;
3772                 goto err_clear;
3773         }
3774         if (unlikely(size != sizeof(struct bpf_tunnel_key))) {
3775                 err = -EINVAL;
3776                 switch (size) {
3777                 case offsetof(struct bpf_tunnel_key, tunnel_label):
3778                 case offsetof(struct bpf_tunnel_key, tunnel_ext):
3779                         goto set_compat;
3780                 case offsetof(struct bpf_tunnel_key, remote_ipv6[1]):
3781                         /* Fixup deprecated structure layouts here, so we have
3782                          * a common path later on.
3783                          */
3784                         if (ip_tunnel_info_af(info) != AF_INET)
3785                                 goto err_clear;
3786 set_compat:
3787                         to = (struct bpf_tunnel_key *)compat;
3788                         break;
3789                 default:
3790                         goto err_clear;
3791                 }
3792         }
3793
3794         to->tunnel_id = be64_to_cpu(info->key.tun_id);
3795         to->tunnel_tos = info->key.tos;
3796         to->tunnel_ttl = info->key.ttl;
3797         to->tunnel_ext = 0;
3798
3799         if (flags & BPF_F_TUNINFO_IPV6) {
3800                 memcpy(to->remote_ipv6, &info->key.u.ipv6.src,
3801                        sizeof(to->remote_ipv6));
3802                 to->tunnel_label = be32_to_cpu(info->key.label);
3803         } else {
3804                 to->remote_ipv4 = be32_to_cpu(info->key.u.ipv4.src);
3805                 memset(&to->remote_ipv6[1], 0, sizeof(__u32) * 3);
3806                 to->tunnel_label = 0;
3807         }
3808
3809         if (unlikely(size != sizeof(struct bpf_tunnel_key)))
3810                 memcpy(to_orig, to, size);
3811
3812         return 0;
3813 err_clear:
3814         memset(to_orig, 0, size);
3815         return err;
3816 }
3817
3818 static const struct bpf_func_proto bpf_skb_get_tunnel_key_proto = {
3819         .func           = bpf_skb_get_tunnel_key,
3820         .gpl_only       = false,
3821         .ret_type       = RET_INTEGER,
3822         .arg1_type      = ARG_PTR_TO_CTX,
3823         .arg2_type      = ARG_PTR_TO_UNINIT_MEM,
3824         .arg3_type      = ARG_CONST_SIZE,
3825         .arg4_type      = ARG_ANYTHING,
3826 };
3827
3828 BPF_CALL_3(bpf_skb_get_tunnel_opt, struct sk_buff *, skb, u8 *, to, u32, size)
3829 {
3830         const struct ip_tunnel_info *info = skb_tunnel_info(skb);
3831         int err;
3832
3833         if (unlikely(!info ||
3834                      !(info->key.tun_flags & TUNNEL_OPTIONS_PRESENT))) {
3835                 err = -ENOENT;
3836                 goto err_clear;
3837         }
3838         if (unlikely(size < info->options_len)) {
3839                 err = -ENOMEM;
3840                 goto err_clear;
3841         }
3842
3843         ip_tunnel_info_opts_get(to, info);
3844         if (size > info->options_len)
3845                 memset(to + info->options_len, 0, size - info->options_len);
3846
3847         return info->options_len;
3848 err_clear:
3849         memset(to, 0, size);
3850         return err;
3851 }
3852
3853 static const struct bpf_func_proto bpf_skb_get_tunnel_opt_proto = {
3854         .func           = bpf_skb_get_tunnel_opt,
3855         .gpl_only       = false,
3856         .ret_type       = RET_INTEGER,
3857         .arg1_type      = ARG_PTR_TO_CTX,
3858         .arg2_type      = ARG_PTR_TO_UNINIT_MEM,
3859         .arg3_type      = ARG_CONST_SIZE,
3860 };
3861
3862 static struct metadata_dst __percpu *md_dst;
3863
3864 BPF_CALL_4(bpf_skb_set_tunnel_key, struct sk_buff *, skb,
3865            const struct bpf_tunnel_key *, from, u32, size, u64, flags)
3866 {
3867         struct metadata_dst *md = this_cpu_ptr(md_dst);
3868         u8 compat[sizeof(struct bpf_tunnel_key)];
3869         struct ip_tunnel_info *info;
3870
3871         if (unlikely(flags & ~(BPF_F_TUNINFO_IPV6 | BPF_F_ZERO_CSUM_TX |
3872                                BPF_F_DONT_FRAGMENT | BPF_F_SEQ_NUMBER)))
3873                 return -EINVAL;
3874         if (unlikely(size != sizeof(struct bpf_tunnel_key))) {
3875                 switch (size) {
3876                 case offsetof(struct bpf_tunnel_key, tunnel_label):
3877                 case offsetof(struct bpf_tunnel_key, tunnel_ext):
3878                 case offsetof(struct bpf_tunnel_key, remote_ipv6[1]):
3879                         /* Fixup deprecated structure layouts here, so we have
3880                          * a common path later on.
3881                          */
3882                         memcpy(compat, from, size);
3883                         memset(compat + size, 0, sizeof(compat) - size);
3884                         from = (const struct bpf_tunnel_key *) compat;
3885                         break;
3886                 default:
3887                         return -EINVAL;
3888                 }
3889         }
3890         if (unlikely((!(flags & BPF_F_TUNINFO_IPV6) && from->tunnel_label) ||
3891                      from->tunnel_ext))
3892                 return -EINVAL;
3893
3894         skb_dst_drop(skb);
3895         dst_hold((struct dst_entry *) md);
3896         skb_dst_set(skb, (struct dst_entry *) md);
3897
3898         info = &md->u.tun_info;
3899         memset(info, 0, sizeof(*info));
3900         info->mode = IP_TUNNEL_INFO_TX;
3901
3902         info->key.tun_flags = TUNNEL_KEY | TUNNEL_CSUM | TUNNEL_NOCACHE;
3903         if (flags & BPF_F_DONT_FRAGMENT)
3904                 info->key.tun_flags |= TUNNEL_DONT_FRAGMENT;
3905         if (flags & BPF_F_ZERO_CSUM_TX)
3906                 info->key.tun_flags &= ~TUNNEL_CSUM;
3907         if (flags & BPF_F_SEQ_NUMBER)
3908                 info->key.tun_flags |= TUNNEL_SEQ;
3909
3910         info->key.tun_id = cpu_to_be64(from->tunnel_id);
3911         info->key.tos = from->tunnel_tos;
3912         info->key.ttl = from->tunnel_ttl;
3913
3914         if (flags & BPF_F_TUNINFO_IPV6) {
3915                 info->mode |= IP_TUNNEL_INFO_IPV6;
3916                 memcpy(&info->key.u.ipv6.dst, from->remote_ipv6,
3917                        sizeof(from->remote_ipv6));
3918                 info->key.label = cpu_to_be32(from->tunnel_label) &
3919                                   IPV6_FLOWLABEL_MASK;
3920         } else {
3921                 info->key.u.ipv4.dst = cpu_to_be32(from->remote_ipv4);
3922         }
3923
3924         return 0;
3925 }
3926
3927 static const struct bpf_func_proto bpf_skb_set_tunnel_key_proto = {
3928         .func           = bpf_skb_set_tunnel_key,
3929         .gpl_only       = false,
3930         .ret_type       = RET_INTEGER,
3931         .arg1_type      = ARG_PTR_TO_CTX,
3932         .arg2_type      = ARG_PTR_TO_MEM,
3933         .arg3_type      = ARG_CONST_SIZE,
3934         .arg4_type      = ARG_ANYTHING,
3935 };
3936
3937 BPF_CALL_3(bpf_skb_set_tunnel_opt, struct sk_buff *, skb,
3938            const u8 *, from, u32, size)
3939 {
3940         struct ip_tunnel_info *info = skb_tunnel_info(skb);
3941         const struct metadata_dst *md = this_cpu_ptr(md_dst);
3942
3943         if (unlikely(info != &md->u.tun_info || (size & (sizeof(u32) - 1))))
3944                 return -EINVAL;
3945         if (unlikely(size > IP_TUNNEL_OPTS_MAX))
3946                 return -ENOMEM;
3947
3948         ip_tunnel_info_opts_set(info, from, size, TUNNEL_OPTIONS_PRESENT);
3949
3950         return 0;
3951 }
3952
3953 static const struct bpf_func_proto bpf_skb_set_tunnel_opt_proto = {
3954         .func           = bpf_skb_set_tunnel_opt,
3955         .gpl_only       = false,
3956         .ret_type       = RET_INTEGER,
3957         .arg1_type      = ARG_PTR_TO_CTX,
3958         .arg2_type      = ARG_PTR_TO_MEM,
3959         .arg3_type      = ARG_CONST_SIZE,
3960 };
3961
3962 static const struct bpf_func_proto *
3963 bpf_get_skb_set_tunnel_proto(enum bpf_func_id which)
3964 {
3965         if (!md_dst) {
3966                 struct metadata_dst __percpu *tmp;
3967
3968                 tmp = metadata_dst_alloc_percpu(IP_TUNNEL_OPTS_MAX,
3969                                                 METADATA_IP_TUNNEL,
3970                                                 GFP_KERNEL);
3971                 if (!tmp)
3972                         return NULL;
3973                 if (cmpxchg(&md_dst, NULL, tmp))
3974                         metadata_dst_free_percpu(tmp);
3975         }
3976
3977         switch (which) {
3978         case BPF_FUNC_skb_set_tunnel_key:
3979                 return &bpf_skb_set_tunnel_key_proto;
3980         case BPF_FUNC_skb_set_tunnel_opt:
3981                 return &bpf_skb_set_tunnel_opt_proto;
3982         default:
3983                 return NULL;
3984         }
3985 }
3986
3987 BPF_CALL_3(bpf_skb_under_cgroup, struct sk_buff *, skb, struct bpf_map *, map,
3988            u32, idx)
3989 {
3990         struct bpf_array *array = container_of(map, struct bpf_array, map);
3991         struct cgroup *cgrp;
3992         struct sock *sk;
3993
3994         sk = skb_to_full_sk(skb);
3995         if (!sk || !sk_fullsock(sk))
3996                 return -ENOENT;
3997         if (unlikely(idx >= array->map.max_entries))
3998                 return -E2BIG;
3999
4000         cgrp = READ_ONCE(array->ptrs[idx]);
4001         if (unlikely(!cgrp))
4002                 return -EAGAIN;
4003
4004         return sk_under_cgroup_hierarchy(sk, cgrp);
4005 }
4006
4007 static const struct bpf_func_proto bpf_skb_under_cgroup_proto = {
4008         .func           = bpf_skb_under_cgroup,
4009         .gpl_only       = false,
4010         .ret_type       = RET_INTEGER,
4011         .arg1_type      = ARG_PTR_TO_CTX,
4012         .arg2_type      = ARG_CONST_MAP_PTR,
4013         .arg3_type      = ARG_ANYTHING,
4014 };
4015
4016 #ifdef CONFIG_SOCK_CGROUP_DATA
4017 BPF_CALL_1(bpf_skb_cgroup_id, const struct sk_buff *, skb)
4018 {
4019         struct sock *sk = skb_to_full_sk(skb);
4020         struct cgroup *cgrp;
4021
4022         if (!sk || !sk_fullsock(sk))
4023                 return 0;
4024
4025         cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
4026         return cgroup_id(cgrp);
4027 }
4028
4029 static const struct bpf_func_proto bpf_skb_cgroup_id_proto = {
4030         .func           = bpf_skb_cgroup_id,
4031         .gpl_only       = false,
4032         .ret_type       = RET_INTEGER,
4033         .arg1_type      = ARG_PTR_TO_CTX,
4034 };
4035
4036 BPF_CALL_2(bpf_skb_ancestor_cgroup_id, const struct sk_buff *, skb, int,
4037            ancestor_level)
4038 {
4039         struct sock *sk = skb_to_full_sk(skb);
4040         struct cgroup *ancestor;
4041         struct cgroup *cgrp;
4042
4043         if (!sk || !sk_fullsock(sk))
4044                 return 0;
4045
4046         cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
4047         ancestor = cgroup_ancestor(cgrp, ancestor_level);
4048         if (!ancestor)
4049                 return 0;
4050
4051         return cgroup_id(ancestor);
4052 }
4053
4054 static const struct bpf_func_proto bpf_skb_ancestor_cgroup_id_proto = {
4055         .func           = bpf_skb_ancestor_cgroup_id,
4056         .gpl_only       = false,
4057         .ret_type       = RET_INTEGER,
4058         .arg1_type      = ARG_PTR_TO_CTX,
4059         .arg2_type      = ARG_ANYTHING,
4060 };
4061 #endif
4062
4063 static unsigned long bpf_xdp_copy(void *dst_buff, const void *src_buff,
4064                                   unsigned long off, unsigned long len)
4065 {
4066         memcpy(dst_buff, src_buff + off, len);
4067         return 0;
4068 }
4069
4070 BPF_CALL_5(bpf_xdp_event_output, struct xdp_buff *, xdp, struct bpf_map *, map,
4071            u64, flags, void *, meta, u64, meta_size)
4072 {
4073         u64 xdp_size = (flags & BPF_F_CTXLEN_MASK) >> 32;
4074
4075         if (unlikely(flags & ~(BPF_F_CTXLEN_MASK | BPF_F_INDEX_MASK)))
4076                 return -EINVAL;
4077         if (unlikely(!xdp ||
4078                      xdp_size > (unsigned long)(xdp->data_end - xdp->data)))
4079                 return -EFAULT;
4080
4081         return bpf_event_output(map, flags, meta, meta_size, xdp->data,
4082                                 xdp_size, bpf_xdp_copy);
4083 }
4084
4085 static const struct bpf_func_proto bpf_xdp_event_output_proto = {
4086         .func           = bpf_xdp_event_output,
4087         .gpl_only       = true,
4088         .ret_type       = RET_INTEGER,
4089         .arg1_type      = ARG_PTR_TO_CTX,
4090         .arg2_type      = ARG_CONST_MAP_PTR,
4091         .arg3_type      = ARG_ANYTHING,
4092         .arg4_type      = ARG_PTR_TO_MEM,
4093         .arg5_type      = ARG_CONST_SIZE_OR_ZERO,
4094 };
4095
4096 static int bpf_xdp_output_btf_ids[5];
4097 const struct bpf_func_proto bpf_xdp_output_proto = {
4098         .func           = bpf_xdp_event_output,
4099         .gpl_only       = true,
4100         .ret_type       = RET_INTEGER,
4101         .arg1_type      = ARG_PTR_TO_BTF_ID,
4102         .arg2_type      = ARG_CONST_MAP_PTR,
4103         .arg3_type      = ARG_ANYTHING,
4104         .arg4_type      = ARG_PTR_TO_MEM,
4105         .arg5_type      = ARG_CONST_SIZE_OR_ZERO,
4106         .btf_id         = bpf_xdp_output_btf_ids,
4107 };
4108
4109 BPF_CALL_1(bpf_get_socket_cookie, struct sk_buff *, skb)
4110 {
4111         return skb->sk ? sock_gen_cookie(skb->sk) : 0;
4112 }
4113
4114 static const struct bpf_func_proto bpf_get_socket_cookie_proto = {
4115         .func           = bpf_get_socket_cookie,
4116         .gpl_only       = false,
4117         .ret_type       = RET_INTEGER,
4118         .arg1_type      = ARG_PTR_TO_CTX,
4119 };
4120
4121 BPF_CALL_1(bpf_get_socket_cookie_sock_addr, struct bpf_sock_addr_kern *, ctx)
4122 {
4123         return sock_gen_cookie(ctx->sk);
4124 }
4125
4126 static const struct bpf_func_proto bpf_get_socket_cookie_sock_addr_proto = {
4127         .func           = bpf_get_socket_cookie_sock_addr,
4128         .gpl_only       = false,
4129         .ret_type       = RET_INTEGER,
4130         .arg1_type      = ARG_PTR_TO_CTX,
4131 };
4132
4133 BPF_CALL_1(bpf_get_socket_cookie_sock, struct sock *, ctx)
4134 {
4135         return sock_gen_cookie(ctx);
4136 }
4137
4138 static const struct bpf_func_proto bpf_get_socket_cookie_sock_proto = {
4139         .func           = bpf_get_socket_cookie_sock,
4140         .gpl_only       = false,
4141         .ret_type       = RET_INTEGER,
4142         .arg1_type      = ARG_PTR_TO_CTX,
4143 };
4144
4145 BPF_CALL_1(bpf_get_socket_cookie_sock_ops, struct bpf_sock_ops_kern *, ctx)
4146 {
4147         return sock_gen_cookie(ctx->sk);
4148 }
4149
4150 static const struct bpf_func_proto bpf_get_socket_cookie_sock_ops_proto = {
4151         .func           = bpf_get_socket_cookie_sock_ops,
4152         .gpl_only       = false,
4153         .ret_type       = RET_INTEGER,
4154         .arg1_type      = ARG_PTR_TO_CTX,
4155 };
4156
4157 static u64 __bpf_get_netns_cookie(struct sock *sk)
4158 {
4159 #ifdef CONFIG_NET_NS
4160         return net_gen_cookie(sk ? sk->sk_net.net : &init_net);
4161 #else
4162         return 0;
4163 #endif
4164 }
4165
4166 BPF_CALL_1(bpf_get_netns_cookie_sock, struct sock *, ctx)
4167 {
4168         return __bpf_get_netns_cookie(ctx);
4169 }
4170
4171 static const struct bpf_func_proto bpf_get_netns_cookie_sock_proto = {
4172         .func           = bpf_get_netns_cookie_sock,
4173         .gpl_only       = false,
4174         .ret_type       = RET_INTEGER,
4175         .arg1_type      = ARG_PTR_TO_CTX_OR_NULL,
4176 };
4177
4178 BPF_CALL_1(bpf_get_netns_cookie_sock_addr, struct bpf_sock_addr_kern *, ctx)
4179 {
4180         return __bpf_get_netns_cookie(ctx ? ctx->sk : NULL);
4181 }
4182
4183 static const struct bpf_func_proto bpf_get_netns_cookie_sock_addr_proto = {
4184         .func           = bpf_get_netns_cookie_sock_addr,
4185         .gpl_only       = false,
4186         .ret_type       = RET_INTEGER,
4187         .arg1_type      = ARG_PTR_TO_CTX_OR_NULL,
4188 };
4189
4190 BPF_CALL_1(bpf_get_socket_uid, struct sk_buff *, skb)
4191 {
4192         struct sock *sk = sk_to_full_sk(skb->sk);
4193         kuid_t kuid;
4194
4195         if (!sk || !sk_fullsock(sk))
4196                 return overflowuid;
4197         kuid = sock_net_uid(sock_net(sk), sk);
4198         return from_kuid_munged(sock_net(sk)->user_ns, kuid);
4199 }
4200
4201 static const struct bpf_func_proto bpf_get_socket_uid_proto = {
4202         .func           = bpf_get_socket_uid,
4203         .gpl_only       = false,
4204         .ret_type       = RET_INTEGER,
4205         .arg1_type      = ARG_PTR_TO_CTX,
4206 };
4207
4208 BPF_CALL_5(bpf_event_output_data, void *, ctx, struct bpf_map *, map, u64, flags,
4209            void *, data, u64, size)
4210 {
4211         if (unlikely(flags & ~(BPF_F_INDEX_MASK)))
4212                 return -EINVAL;
4213
4214         return bpf_event_output(map, flags, data, size, NULL, 0, NULL);
4215 }
4216
4217 static const struct bpf_func_proto bpf_event_output_data_proto =  {
4218         .func           = bpf_event_output_data,
4219         .gpl_only       = true,
4220         .ret_type       = RET_INTEGER,
4221         .arg1_type      = ARG_PTR_TO_CTX,
4222         .arg2_type      = ARG_CONST_MAP_PTR,
4223         .arg3_type      = ARG_ANYTHING,
4224         .arg4_type      = ARG_PTR_TO_MEM,
4225         .arg5_type      = ARG_CONST_SIZE_OR_ZERO,
4226 };
4227
4228 BPF_CALL_5(bpf_setsockopt, struct bpf_sock_ops_kern *, bpf_sock,
4229            int, level, int, optname, char *, optval, int, optlen)
4230 {
4231         struct sock *sk = bpf_sock->sk;
4232         int ret = 0;
4233         int val;
4234
4235         if (!sk_fullsock(sk))
4236                 return -EINVAL;
4237
4238         if (level == SOL_SOCKET) {
4239                 if (optlen != sizeof(int))
4240                         return -EINVAL;
4241                 val = *((int *)optval);
4242
4243                 /* Only some socketops are supported */
4244                 switch (optname) {
4245                 case SO_RCVBUF:
4246                         val = min_t(u32, val, sysctl_rmem_max);
4247                         sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
4248                         WRITE_ONCE(sk->sk_rcvbuf,
4249                                    max_t(int, val * 2, SOCK_MIN_RCVBUF));
4250                         break;
4251                 case SO_SNDBUF:
4252                         val = min_t(u32, val, sysctl_wmem_max);
4253                         sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
4254                         WRITE_ONCE(sk->sk_sndbuf,
4255                                    max_t(int, val * 2, SOCK_MIN_SNDBUF));
4256                         break;
4257                 case SO_MAX_PACING_RATE: /* 32bit version */
4258                         if (val != ~0U)
4259                                 cmpxchg(&sk->sk_pacing_status,
4260                                         SK_PACING_NONE,
4261                                         SK_PACING_NEEDED);
4262                         sk->sk_max_pacing_rate = (val == ~0U) ? ~0UL : val;
4263                         sk->sk_pacing_rate = min(sk->sk_pacing_rate,
4264                                                  sk->sk_max_pacing_rate);
4265                         break;
4266                 case SO_PRIORITY:
4267                         sk->sk_priority = val;
4268                         break;
4269                 case SO_RCVLOWAT:
4270                         if (val < 0)
4271                                 val = INT_MAX;
4272                         WRITE_ONCE(sk->sk_rcvlowat, val ? : 1);
4273                         break;
4274                 case SO_MARK:
4275                         if (sk->sk_mark != val) {
4276                                 sk->sk_mark = val;
4277                                 sk_dst_reset(sk);
4278                         }
4279                         break;
4280                 default:
4281                         ret = -EINVAL;
4282                 }
4283 #ifdef CONFIG_INET
4284         } else if (level == SOL_IP) {
4285                 if (optlen != sizeof(int) || sk->sk_family != AF_INET)
4286                         return -EINVAL;
4287
4288                 val = *((int *)optval);
4289                 /* Only some options are supported */
4290                 switch (optname) {
4291                 case IP_TOS:
4292                         if (val < -1 || val > 0xff) {
4293                                 ret = -EINVAL;
4294                         } else {
4295                                 struct inet_sock *inet = inet_sk(sk);
4296
4297                                 if (val == -1)
4298                                         val = 0;
4299                                 inet->tos = val;
4300                         }
4301                         break;
4302                 default:
4303                         ret = -EINVAL;
4304                 }
4305 #if IS_ENABLED(CONFIG_IPV6)
4306         } else if (level == SOL_IPV6) {
4307                 if (optlen != sizeof(int) || sk->sk_family != AF_INET6)
4308                         return -EINVAL;
4309
4310                 val = *((int *)optval);
4311                 /* Only some options are supported */
4312                 switch (optname) {
4313                 case IPV6_TCLASS:
4314                         if (val < -1 || val > 0xff) {
4315                                 ret = -EINVAL;
4316                         } else {
4317                                 struct ipv6_pinfo *np = inet6_sk(sk);
4318
4319                                 if (val == -1)
4320                                         val = 0;
4321                                 np->tclass = val;
4322                         }
4323                         break;
4324                 default:
4325                         ret = -EINVAL;
4326                 }
4327 #endif
4328         } else if (level == SOL_TCP &&
4329                    sk->sk_prot->setsockopt == tcp_setsockopt) {
4330                 if (optname == TCP_CONGESTION) {
4331                         char name[TCP_CA_NAME_MAX];
4332                         bool reinit = bpf_sock->op > BPF_SOCK_OPS_NEEDS_ECN;
4333
4334                         strncpy(name, optval, min_t(long, optlen,
4335                                                     TCP_CA_NAME_MAX-1));
4336                         name[TCP_CA_NAME_MAX-1] = 0;
4337                         ret = tcp_set_congestion_control(sk, name, false,
4338                                                          reinit, true);
4339                 } else {
4340                         struct tcp_sock *tp = tcp_sk(sk);
4341
4342                         if (optlen != sizeof(int))
4343                                 return -EINVAL;
4344
4345                         val = *((int *)optval);
4346                         /* Only some options are supported */
4347                         switch (optname) {
4348                         case TCP_BPF_IW:
4349                                 if (val <= 0 || tp->data_segs_out > tp->syn_data)
4350                                         ret = -EINVAL;
4351                                 else
4352                                         tp->snd_cwnd = val;
4353                                 break;
4354                         case TCP_BPF_SNDCWND_CLAMP:
4355                                 if (val <= 0) {
4356                                         ret = -EINVAL;
4357                                 } else {
4358                                         tp->snd_cwnd_clamp = val;
4359                                         tp->snd_ssthresh = val;
4360                                 }
4361                                 break;
4362                         case TCP_SAVE_SYN:
4363                                 if (val < 0 || val > 1)
4364                                         ret = -EINVAL;
4365                                 else
4366                                         tp->save_syn = val;
4367                                 break;
4368                         default:
4369                                 ret = -EINVAL;
4370                         }
4371                 }
4372 #endif
4373         } else {
4374                 ret = -EINVAL;
4375         }
4376         return ret;
4377 }
4378
4379 static const struct bpf_func_proto bpf_setsockopt_proto = {
4380         .func           = bpf_setsockopt,
4381         .gpl_only       = false,
4382         .ret_type       = RET_INTEGER,
4383         .arg1_type      = ARG_PTR_TO_CTX,
4384         .arg2_type      = ARG_ANYTHING,
4385         .arg3_type      = ARG_ANYTHING,
4386         .arg4_type      = ARG_PTR_TO_MEM,
4387         .arg5_type      = ARG_CONST_SIZE,
4388 };
4389
4390 BPF_CALL_5(bpf_getsockopt, struct bpf_sock_ops_kern *, bpf_sock,
4391            int, level, int, optname, char *, optval, int, optlen)
4392 {
4393         struct sock *sk = bpf_sock->sk;
4394
4395         if (!sk_fullsock(sk))
4396                 goto err_clear;
4397 #ifdef CONFIG_INET
4398         if (level == SOL_TCP && sk->sk_prot->getsockopt == tcp_getsockopt) {
4399                 struct inet_connection_sock *icsk;
4400                 struct tcp_sock *tp;
4401
4402                 switch (optname) {
4403                 case TCP_CONGESTION:
4404                         icsk = inet_csk(sk);
4405
4406                         if (!icsk->icsk_ca_ops || optlen <= 1)
4407                                 goto err_clear;
4408                         strncpy(optval, icsk->icsk_ca_ops->name, optlen);
4409                         optval[optlen - 1] = 0;
4410                         break;
4411                 case TCP_SAVED_SYN:
4412                         tp = tcp_sk(sk);
4413
4414                         if (optlen <= 0 || !tp->saved_syn ||
4415                             optlen > tp->saved_syn[0])
4416                                 goto err_clear;
4417                         memcpy(optval, tp->saved_syn + 1, optlen);
4418                         break;
4419                 default:
4420                         goto err_clear;
4421                 }
4422         } else if (level == SOL_IP) {
4423                 struct inet_sock *inet = inet_sk(sk);
4424
4425                 if (optlen != sizeof(int) || sk->sk_family != AF_INET)
4426                         goto err_clear;
4427
4428                 /* Only some options are supported */
4429                 switch (optname) {
4430                 case IP_TOS:
4431                         *((int *)optval) = (int)inet->tos;
4432                         break;
4433                 default:
4434                         goto err_clear;
4435                 }
4436 #if IS_ENABLED(CONFIG_IPV6)
4437         } else if (level == SOL_IPV6) {
4438                 struct ipv6_pinfo *np = inet6_sk(sk);
4439
4440                 if (optlen != sizeof(int) || sk->sk_family != AF_INET6)
4441                         goto err_clear;
4442
4443                 /* Only some options are supported */
4444                 switch (optname) {
4445                 case IPV6_TCLASS:
4446                         *((int *)optval) = (int)np->tclass;
4447                         break;
4448                 default:
4449                         goto err_clear;
4450                 }
4451 #endif
4452         } else {
4453                 goto err_clear;
4454         }
4455         return 0;
4456 #endif
4457 err_clear:
4458         memset(optval, 0, optlen);
4459         return -EINVAL;
4460 }
4461
4462 static const struct bpf_func_proto bpf_getsockopt_proto = {
4463         .func           = bpf_getsockopt,
4464         .gpl_only       = false,
4465         .ret_type       = RET_INTEGER,
4466         .arg1_type      = ARG_PTR_TO_CTX,
4467         .arg2_type      = ARG_ANYTHING,
4468         .arg3_type      = ARG_ANYTHING,
4469         .arg4_type      = ARG_PTR_TO_UNINIT_MEM,
4470         .arg5_type      = ARG_CONST_SIZE,
4471 };
4472
4473 BPF_CALL_2(bpf_sock_ops_cb_flags_set, struct bpf_sock_ops_kern *, bpf_sock,
4474            int, argval)
4475 {
4476         struct sock *sk = bpf_sock->sk;
4477         int val = argval & BPF_SOCK_OPS_ALL_CB_FLAGS;
4478
4479         if (!IS_ENABLED(CONFIG_INET) || !sk_fullsock(sk))
4480                 return -EINVAL;
4481
4482         tcp_sk(sk)->bpf_sock_ops_cb_flags = val;
4483
4484         return argval & (~BPF_SOCK_OPS_ALL_CB_FLAGS);
4485 }
4486
4487 static const struct bpf_func_proto bpf_sock_ops_cb_flags_set_proto = {
4488         .func           = bpf_sock_ops_cb_flags_set,
4489         .gpl_only       = false,
4490         .ret_type       = RET_INTEGER,
4491         .arg1_type      = ARG_PTR_TO_CTX,
4492         .arg2_type      = ARG_ANYTHING,
4493 };
4494
4495 const struct ipv6_bpf_stub *ipv6_bpf_stub __read_mostly;
4496 EXPORT_SYMBOL_GPL(ipv6_bpf_stub);
4497
4498 BPF_CALL_3(bpf_bind, struct bpf_sock_addr_kern *, ctx, struct sockaddr *, addr,
4499            int, addr_len)
4500 {
4501 #ifdef CONFIG_INET
4502         struct sock *sk = ctx->sk;
4503         int err;
4504
4505         /* Binding to port can be expensive so it's prohibited in the helper.
4506          * Only binding to IP is supported.
4507          */
4508         err = -EINVAL;
4509         if (addr_len < offsetofend(struct sockaddr, sa_family))
4510                 return err;
4511         if (addr->sa_family == AF_INET) {
4512                 if (addr_len < sizeof(struct sockaddr_in))
4513                         return err;
4514                 if (((struct sockaddr_in *)addr)->sin_port != htons(0))
4515                         return err;
4516                 return __inet_bind(sk, addr, addr_len, true, false);
4517 #if IS_ENABLED(CONFIG_IPV6)
4518         } else if (addr->sa_family == AF_INET6) {
4519                 if (addr_len < SIN6_LEN_RFC2133)
4520                         return err;
4521                 if (((struct sockaddr_in6 *)addr)->sin6_port != htons(0))
4522                         return err;
4523                 /* ipv6_bpf_stub cannot be NULL, since it's called from
4524                  * bpf_cgroup_inet6_connect hook and ipv6 is already loaded
4525                  */
4526                 return ipv6_bpf_stub->inet6_bind(sk, addr, addr_len, true, false);
4527 #endif /* CONFIG_IPV6 */
4528         }
4529 #endif /* CONFIG_INET */
4530
4531         return -EAFNOSUPPORT;
4532 }
4533
4534 static const struct bpf_func_proto bpf_bind_proto = {
4535         .func           = bpf_bind,
4536         .gpl_only       = false,
4537         .ret_type       = RET_INTEGER,
4538         .arg1_type      = ARG_PTR_TO_CTX,
4539         .arg2_type      = ARG_PTR_TO_MEM,
4540         .arg3_type      = ARG_CONST_SIZE,
4541 };
4542
4543 #ifdef CONFIG_XFRM
4544 BPF_CALL_5(bpf_skb_get_xfrm_state, struct sk_buff *, skb, u32, index,
4545            struct bpf_xfrm_state *, to, u32, size, u64, flags)
4546 {
4547         const struct sec_path *sp = skb_sec_path(skb);
4548         const struct xfrm_state *x;
4549
4550         if (!sp || unlikely(index >= sp->len || flags))
4551                 goto err_clear;
4552
4553         x = sp->xvec[index];
4554
4555         if (unlikely(size != sizeof(struct bpf_xfrm_state)))
4556                 goto err_clear;
4557
4558         to->reqid = x->props.reqid;
4559         to->spi = x->id.spi;
4560         to->family = x->props.family;
4561         to->ext = 0;
4562
4563         if (to->family == AF_INET6) {
4564                 memcpy(to->remote_ipv6, x->props.saddr.a6,
4565                        sizeof(to->remote_ipv6));
4566         } else {
4567                 to->remote_ipv4 = x->props.saddr.a4;
4568                 memset(&to->remote_ipv6[1], 0, sizeof(__u32) * 3);
4569         }
4570
4571         return 0;
4572 err_clear:
4573         memset(to, 0, size);
4574         return -EINVAL;
4575 }
4576
4577 static const struct bpf_func_proto bpf_skb_get_xfrm_state_proto = {
4578         .func           = bpf_skb_get_xfrm_state,
4579         .gpl_only       = false,
4580         .ret_type       = RET_INTEGER,
4581         .arg1_type      = ARG_PTR_TO_CTX,
4582         .arg2_type      = ARG_ANYTHING,
4583         .arg3_type      = ARG_PTR_TO_UNINIT_MEM,
4584         .arg4_type      = ARG_CONST_SIZE,
4585         .arg5_type      = ARG_ANYTHING,
4586 };
4587 #endif
4588
4589 #if IS_ENABLED(CONFIG_INET) || IS_ENABLED(CONFIG_IPV6)
4590 static int bpf_fib_set_fwd_params(struct bpf_fib_lookup *params,
4591                                   const struct neighbour *neigh,
4592                                   const struct net_device *dev)
4593 {
4594         memcpy(params->dmac, neigh->ha, ETH_ALEN);
4595         memcpy(params->smac, dev->dev_addr, ETH_ALEN);
4596         params->h_vlan_TCI = 0;
4597         params->h_vlan_proto = 0;
4598         params->ifindex = dev->ifindex;
4599
4600         return 0;
4601 }
4602 #endif
4603
4604 #if IS_ENABLED(CONFIG_INET)
4605 static int bpf_ipv4_fib_lookup(struct net *net, struct bpf_fib_lookup *params,
4606                                u32 flags, bool check_mtu)
4607 {
4608         struct fib_nh_common *nhc;
4609         struct in_device *in_dev;
4610         struct neighbour *neigh;
4611         struct net_device *dev;
4612         struct fib_result res;
4613         struct flowi4 fl4;
4614         int err;
4615         u32 mtu;
4616
4617         dev = dev_get_by_index_rcu(net, params->ifindex);
4618         if (unlikely(!dev))
4619                 return -ENODEV;
4620
4621         /* verify forwarding is enabled on this interface */
4622         in_dev = __in_dev_get_rcu(dev);
4623         if (unlikely(!in_dev || !IN_DEV_FORWARD(in_dev)))
4624                 return BPF_FIB_LKUP_RET_FWD_DISABLED;
4625
4626         if (flags & BPF_FIB_LOOKUP_OUTPUT) {
4627                 fl4.flowi4_iif = 1;
4628                 fl4.flowi4_oif = params->ifindex;
4629         } else {
4630                 fl4.flowi4_iif = params->ifindex;
4631                 fl4.flowi4_oif = 0;
4632         }
4633         fl4.flowi4_tos = params->tos & IPTOS_RT_MASK;
4634         fl4.flowi4_scope = RT_SCOPE_UNIVERSE;
4635         fl4.flowi4_flags = 0;
4636
4637         fl4.flowi4_proto = params->l4_protocol;
4638         fl4.daddr = params->ipv4_dst;
4639         fl4.saddr = params->ipv4_src;
4640         fl4.fl4_sport = params->sport;
4641         fl4.fl4_dport = params->dport;
4642
4643         if (flags & BPF_FIB_LOOKUP_DIRECT) {
4644                 u32 tbid = l3mdev_fib_table_rcu(dev) ? : RT_TABLE_MAIN;
4645                 struct fib_table *tb;
4646
4647                 tb = fib_get_table(net, tbid);
4648                 if (unlikely(!tb))
4649                         return BPF_FIB_LKUP_RET_NOT_FWDED;
4650
4651                 err = fib_table_lookup(tb, &fl4, &res, FIB_LOOKUP_NOREF);
4652         } else {
4653                 fl4.flowi4_mark = 0;
4654                 fl4.flowi4_secid = 0;
4655                 fl4.flowi4_tun_key.tun_id = 0;
4656                 fl4.flowi4_uid = sock_net_uid(net, NULL);
4657
4658                 err = fib_lookup(net, &fl4, &res, FIB_LOOKUP_NOREF);
4659         }
4660
4661         if (err) {
4662                 /* map fib lookup errors to RTN_ type */
4663                 if (err == -EINVAL)
4664                         return BPF_FIB_LKUP_RET_BLACKHOLE;
4665                 if (err == -EHOSTUNREACH)
4666                         return BPF_FIB_LKUP_RET_UNREACHABLE;
4667                 if (err == -EACCES)
4668                         return BPF_FIB_LKUP_RET_PROHIBIT;
4669
4670                 return BPF_FIB_LKUP_RET_NOT_FWDED;
4671         }
4672
4673         if (res.type != RTN_UNICAST)
4674                 return BPF_FIB_LKUP_RET_NOT_FWDED;
4675
4676         if (fib_info_num_path(res.fi) > 1)
4677                 fib_select_path(net, &res, &fl4, NULL);
4678
4679         if (check_mtu) {
4680                 mtu = ip_mtu_from_fib_result(&res, params->ipv4_dst);
4681                 if (params->tot_len > mtu)
4682                         return BPF_FIB_LKUP_RET_FRAG_NEEDED;
4683         }
4684
4685         nhc = res.nhc;
4686
4687         /* do not handle lwt encaps right now */
4688         if (nhc->nhc_lwtstate)
4689                 return BPF_FIB_LKUP_RET_UNSUPP_LWT;
4690
4691         dev = nhc->nhc_dev;
4692
4693         params->rt_metric = res.fi->fib_priority;
4694
4695         /* xdp and cls_bpf programs are run in RCU-bh so
4696          * rcu_read_lock_bh is not needed here
4697          */
4698         if (likely(nhc->nhc_gw_family != AF_INET6)) {
4699                 if (nhc->nhc_gw_family)
4700                         params->ipv4_dst = nhc->nhc_gw.ipv4;
4701
4702                 neigh = __ipv4_neigh_lookup_noref(dev,
4703                                                  (__force u32)params->ipv4_dst);
4704         } else {
4705                 struct in6_addr *dst = (struct in6_addr *)params->ipv6_dst;
4706
4707                 params->family = AF_INET6;
4708                 *dst = nhc->nhc_gw.ipv6;
4709                 neigh = __ipv6_neigh_lookup_noref_stub(dev, dst);
4710         }
4711
4712         if (!neigh)
4713                 return BPF_FIB_LKUP_RET_NO_NEIGH;
4714
4715         return bpf_fib_set_fwd_params(params, neigh, dev);
4716 }
4717 #endif
4718
4719 #if IS_ENABLED(CONFIG_IPV6)
4720 static int bpf_ipv6_fib_lookup(struct net *net, struct bpf_fib_lookup *params,
4721                                u32 flags, bool check_mtu)
4722 {
4723         struct in6_addr *src = (struct in6_addr *) params->ipv6_src;
4724         struct in6_addr *dst = (struct in6_addr *) params->ipv6_dst;
4725         struct fib6_result res = {};
4726         struct neighbour *neigh;
4727         struct net_device *dev;
4728         struct inet6_dev *idev;
4729         struct flowi6 fl6;
4730         int strict = 0;
4731         int oif, err;
4732         u32 mtu;
4733
4734         /* link local addresses are never forwarded */
4735         if (rt6_need_strict(dst) || rt6_need_strict(src))
4736                 return BPF_FIB_LKUP_RET_NOT_FWDED;
4737
4738         dev = dev_get_by_index_rcu(net, params->ifindex);
4739         if (unlikely(!dev))
4740                 return -ENODEV;
4741
4742         idev = __in6_dev_get_safely(dev);
4743         if (unlikely(!idev || !idev->cnf.forwarding))
4744                 return BPF_FIB_LKUP_RET_FWD_DISABLED;
4745
4746         if (flags & BPF_FIB_LOOKUP_OUTPUT) {
4747                 fl6.flowi6_iif = 1;
4748                 oif = fl6.flowi6_oif = params->ifindex;
4749         } else {
4750                 oif = fl6.flowi6_iif = params->ifindex;
4751                 fl6.flowi6_oif = 0;
4752                 strict = RT6_LOOKUP_F_HAS_SADDR;
4753         }
4754         fl6.flowlabel = params->flowinfo;
4755         fl6.flowi6_scope = 0;
4756         fl6.flowi6_flags = 0;
4757         fl6.mp_hash = 0;
4758
4759         fl6.flowi6_proto = params->l4_protocol;
4760         fl6.daddr = *dst;
4761         fl6.saddr = *src;
4762         fl6.fl6_sport = params->sport;
4763         fl6.fl6_dport = params->dport;
4764
4765         if (flags & BPF_FIB_LOOKUP_DIRECT) {
4766                 u32 tbid = l3mdev_fib_table_rcu(dev) ? : RT_TABLE_MAIN;
4767                 struct fib6_table *tb;
4768
4769                 tb = ipv6_stub->fib6_get_table(net, tbid);
4770                 if (unlikely(!tb))
4771                         return BPF_FIB_LKUP_RET_NOT_FWDED;
4772
4773                 err = ipv6_stub->fib6_table_lookup(net, tb, oif, &fl6, &res,
4774                                                    strict);
4775         } else {
4776                 fl6.flowi6_mark = 0;
4777                 fl6.flowi6_secid = 0;
4778                 fl6.flowi6_tun_key.tun_id = 0;
4779                 fl6.flowi6_uid = sock_net_uid(net, NULL);
4780
4781                 err = ipv6_stub->fib6_lookup(net, oif, &fl6, &res, strict);
4782         }
4783
4784         if (unlikely(err || IS_ERR_OR_NULL(res.f6i) ||
4785                      res.f6i == net->ipv6.fib6_null_entry))
4786                 return BPF_FIB_LKUP_RET_NOT_FWDED;
4787
4788         switch (res.fib6_type) {
4789         /* only unicast is forwarded */
4790         case RTN_UNICAST:
4791                 break;
4792         case RTN_BLACKHOLE:
4793                 return BPF_FIB_LKUP_RET_BLACKHOLE;
4794         case RTN_UNREACHABLE:
4795                 return BPF_FIB_LKUP_RET_UNREACHABLE;
4796         case RTN_PROHIBIT:
4797                 return BPF_FIB_LKUP_RET_PROHIBIT;
4798         default:
4799                 return BPF_FIB_LKUP_RET_NOT_FWDED;
4800         }
4801
4802         ipv6_stub->fib6_select_path(net, &res, &fl6, fl6.flowi6_oif,
4803                                     fl6.flowi6_oif != 0, NULL, strict);
4804
4805         if (check_mtu) {
4806                 mtu = ipv6_stub->ip6_mtu_from_fib6(&res, dst, src);
4807                 if (params->tot_len > mtu)
4808                         return BPF_FIB_LKUP_RET_FRAG_NEEDED;
4809         }
4810
4811         if (res.nh->fib_nh_lws)
4812                 return BPF_FIB_LKUP_RET_UNSUPP_LWT;
4813
4814         if (res.nh->fib_nh_gw_family)
4815                 *dst = res.nh->fib_nh_gw6;
4816
4817         dev = res.nh->fib_nh_dev;
4818         params->rt_metric = res.f6i->fib6_metric;
4819
4820         /* xdp and cls_bpf programs are run in RCU-bh so rcu_read_lock_bh is
4821          * not needed here.
4822          */
4823         neigh = __ipv6_neigh_lookup_noref_stub(dev, dst);
4824         if (!neigh)
4825                 return BPF_FIB_LKUP_RET_NO_NEIGH;
4826
4827         return bpf_fib_set_fwd_params(params, neigh, dev);
4828 }
4829 #endif
4830
4831 BPF_CALL_4(bpf_xdp_fib_lookup, struct xdp_buff *, ctx,
4832            struct bpf_fib_lookup *, params, int, plen, u32, flags)
4833 {
4834         if (plen < sizeof(*params))
4835                 return -EINVAL;
4836
4837         if (flags & ~(BPF_FIB_LOOKUP_DIRECT | BPF_FIB_LOOKUP_OUTPUT))
4838                 return -EINVAL;
4839
4840         switch (params->family) {
4841 #if IS_ENABLED(CONFIG_INET)
4842         case AF_INET:
4843                 return bpf_ipv4_fib_lookup(dev_net(ctx->rxq->dev), params,
4844                                            flags, true);
4845 #endif
4846 #if IS_ENABLED(CONFIG_IPV6)
4847         case AF_INET6:
4848                 return bpf_ipv6_fib_lookup(dev_net(ctx->rxq->dev), params,
4849                                            flags, true);
4850 #endif
4851         }
4852         return -EAFNOSUPPORT;
4853 }
4854
4855 static const struct bpf_func_proto bpf_xdp_fib_lookup_proto = {
4856         .func           = bpf_xdp_fib_lookup,
4857         .gpl_only       = true,
4858         .ret_type       = RET_INTEGER,
4859         .arg1_type      = ARG_PTR_TO_CTX,
4860         .arg2_type      = ARG_PTR_TO_MEM,
4861         .arg3_type      = ARG_CONST_SIZE,
4862         .arg4_type      = ARG_ANYTHING,
4863 };
4864
4865 BPF_CALL_4(bpf_skb_fib_lookup, struct sk_buff *, skb,
4866            struct bpf_fib_lookup *, params, int, plen, u32, flags)
4867 {
4868         struct net *net = dev_net(skb->dev);
4869         int rc = -EAFNOSUPPORT;
4870
4871         if (plen < sizeof(*params))
4872                 return -EINVAL;
4873
4874         if (flags & ~(BPF_FIB_LOOKUP_DIRECT | BPF_FIB_LOOKUP_OUTPUT))
4875                 return -EINVAL;
4876
4877         switch (params->family) {
4878 #if IS_ENABLED(CONFIG_INET)
4879         case AF_INET:
4880                 rc = bpf_ipv4_fib_lookup(net, params, flags, false);
4881                 break;
4882 #endif
4883 #if IS_ENABLED(CONFIG_IPV6)
4884         case AF_INET6:
4885                 rc = bpf_ipv6_fib_lookup(net, params, flags, false);
4886                 break;
4887 #endif
4888         }
4889
4890         if (!rc) {
4891                 struct net_device *dev;
4892
4893                 dev = dev_get_by_index_rcu(net, params->ifindex);
4894                 if (!is_skb_forwardable(dev, skb))
4895                         rc = BPF_FIB_LKUP_RET_FRAG_NEEDED;
4896         }
4897
4898         return rc;
4899 }
4900
4901 static const struct bpf_func_proto bpf_skb_fib_lookup_proto = {
4902         .func           = bpf_skb_fib_lookup,
4903         .gpl_only       = true,
4904         .ret_type       = RET_INTEGER,
4905         .arg1_type      = ARG_PTR_TO_CTX,
4906         .arg2_type      = ARG_PTR_TO_MEM,
4907         .arg3_type      = ARG_CONST_SIZE,
4908         .arg4_type      = ARG_ANYTHING,
4909 };
4910
4911 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
4912 static int bpf_push_seg6_encap(struct sk_buff *skb, u32 type, void *hdr, u32 len)
4913 {
4914         int err;
4915         struct ipv6_sr_hdr *srh = (struct ipv6_sr_hdr *)hdr;
4916
4917         if (!seg6_validate_srh(srh, len))
4918                 return -EINVAL;
4919
4920         switch (type) {
4921         case BPF_LWT_ENCAP_SEG6_INLINE:
4922                 if (skb->protocol != htons(ETH_P_IPV6))
4923                         return -EBADMSG;
4924
4925                 err = seg6_do_srh_inline(skb, srh);
4926                 break;
4927         case BPF_LWT_ENCAP_SEG6:
4928                 skb_reset_inner_headers(skb);
4929                 skb->encapsulation = 1;
4930                 err = seg6_do_srh_encap(skb, srh, IPPROTO_IPV6);
4931                 break;
4932         default:
4933                 return -EINVAL;
4934         }
4935
4936         bpf_compute_data_pointers(skb);
4937         if (err)
4938                 return err;
4939
4940         ipv6_hdr(skb)->payload_len = htons(skb->len - sizeof(struct ipv6hdr));
4941         skb_set_transport_header(skb, sizeof(struct ipv6hdr));
4942
4943         return seg6_lookup_nexthop(skb, NULL, 0);
4944 }
4945 #endif /* CONFIG_IPV6_SEG6_BPF */
4946
4947 #if IS_ENABLED(CONFIG_LWTUNNEL_BPF)
4948 static int bpf_push_ip_encap(struct sk_buff *skb, void *hdr, u32 len,
4949                              bool ingress)
4950 {
4951         return bpf_lwt_push_ip_encap(skb, hdr, len, ingress);
4952 }
4953 #endif
4954
4955 BPF_CALL_4(bpf_lwt_in_push_encap, struct sk_buff *, skb, u32, type, void *, hdr,
4956            u32, len)
4957 {
4958         switch (type) {
4959 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
4960         case BPF_LWT_ENCAP_SEG6:
4961         case BPF_LWT_ENCAP_SEG6_INLINE:
4962                 return bpf_push_seg6_encap(skb, type, hdr, len);
4963 #endif
4964 #if IS_ENABLED(CONFIG_LWTUNNEL_BPF)
4965         case BPF_LWT_ENCAP_IP:
4966                 return bpf_push_ip_encap(skb, hdr, len, true /* ingress */);
4967 #endif
4968         default:
4969                 return -EINVAL;
4970         }
4971 }
4972
4973 BPF_CALL_4(bpf_lwt_xmit_push_encap, struct sk_buff *, skb, u32, type,
4974            void *, hdr, u32, len)
4975 {
4976         switch (type) {
4977 #if IS_ENABLED(CONFIG_LWTUNNEL_BPF)
4978         case BPF_LWT_ENCAP_IP:
4979                 return bpf_push_ip_encap(skb, hdr, len, false /* egress */);
4980 #endif
4981         default:
4982                 return -EINVAL;
4983         }
4984 }
4985
4986 static const struct bpf_func_proto bpf_lwt_in_push_encap_proto = {
4987         .func           = bpf_lwt_in_push_encap,
4988         .gpl_only       = false,
4989         .ret_type       = RET_INTEGER,
4990         .arg1_type      = ARG_PTR_TO_CTX,
4991         .arg2_type      = ARG_ANYTHING,
4992         .arg3_type      = ARG_PTR_TO_MEM,
4993         .arg4_type      = ARG_CONST_SIZE
4994 };
4995
4996 static const struct bpf_func_proto bpf_lwt_xmit_push_encap_proto = {
4997         .func           = bpf_lwt_xmit_push_encap,
4998         .gpl_only       = false,
4999         .ret_type       = RET_INTEGER,
5000         .arg1_type      = ARG_PTR_TO_CTX,
5001         .arg2_type      = ARG_ANYTHING,
5002         .arg3_type      = ARG_PTR_TO_MEM,
5003         .arg4_type      = ARG_CONST_SIZE
5004 };
5005
5006 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
5007 BPF_CALL_4(bpf_lwt_seg6_store_bytes, struct sk_buff *, skb, u32, offset,
5008            const void *, from, u32, len)
5009 {
5010         struct seg6_bpf_srh_state *srh_state =
5011                 this_cpu_ptr(&seg6_bpf_srh_states);
5012         struct ipv6_sr_hdr *srh = srh_state->srh;
5013         void *srh_tlvs, *srh_end, *ptr;
5014         int srhoff = 0;
5015
5016         if (srh == NULL)
5017                 return -EINVAL;
5018
5019         srh_tlvs = (void *)((char *)srh + ((srh->first_segment + 1) << 4));
5020         srh_end = (void *)((char *)srh + sizeof(*srh) + srh_state->hdrlen);
5021
5022         ptr = skb->data + offset;
5023         if (ptr >= srh_tlvs && ptr + len <= srh_end)
5024                 srh_state->valid = false;
5025         else if (ptr < (void *)&srh->flags ||
5026                  ptr + len > (void *)&srh->segments)
5027                 return -EFAULT;
5028
5029         if (unlikely(bpf_try_make_writable(skb, offset + len)))
5030                 return -EFAULT;
5031         if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0)
5032                 return -EINVAL;
5033         srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
5034
5035         memcpy(skb->data + offset, from, len);
5036         return 0;
5037 }
5038
5039 static const struct bpf_func_proto bpf_lwt_seg6_store_bytes_proto = {
5040         .func           = bpf_lwt_seg6_store_bytes,
5041         .gpl_only       = false,
5042         .ret_type       = RET_INTEGER,
5043         .arg1_type      = ARG_PTR_TO_CTX,
5044         .arg2_type      = ARG_ANYTHING,
5045         .arg3_type      = ARG_PTR_TO_MEM,
5046         .arg4_type      = ARG_CONST_SIZE
5047 };
5048
5049 static void bpf_update_srh_state(struct sk_buff *skb)
5050 {
5051         struct seg6_bpf_srh_state *srh_state =
5052                 this_cpu_ptr(&seg6_bpf_srh_states);
5053         int srhoff = 0;
5054
5055         if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0) {
5056                 srh_state->srh = NULL;
5057         } else {
5058                 srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
5059                 srh_state->hdrlen = srh_state->srh->hdrlen << 3;
5060                 srh_state->valid = true;
5061         }
5062 }
5063
5064 BPF_CALL_4(bpf_lwt_seg6_action, struct sk_buff *, skb,
5065            u32, action, void *, param, u32, param_len)
5066 {
5067         struct seg6_bpf_srh_state *srh_state =
5068                 this_cpu_ptr(&seg6_bpf_srh_states);
5069         int hdroff = 0;
5070         int err;
5071
5072         switch (action) {
5073         case SEG6_LOCAL_ACTION_END_X:
5074                 if (!seg6_bpf_has_valid_srh(skb))
5075                         return -EBADMSG;
5076                 if (param_len != sizeof(struct in6_addr))
5077                         return -EINVAL;
5078                 return seg6_lookup_nexthop(skb, (struct in6_addr *)param, 0);
5079         case SEG6_LOCAL_ACTION_END_T:
5080                 if (!seg6_bpf_has_valid_srh(skb))
5081                         return -EBADMSG;
5082                 if (param_len != sizeof(int))
5083                         return -EINVAL;
5084                 return seg6_lookup_nexthop(skb, NULL, *(int *)param);
5085         case SEG6_LOCAL_ACTION_END_DT6:
5086                 if (!seg6_bpf_has_valid_srh(skb))
5087                         return -EBADMSG;
5088                 if (param_len != sizeof(int))
5089                         return -EINVAL;
5090
5091                 if (ipv6_find_hdr(skb, &hdroff, IPPROTO_IPV6, NULL, NULL) < 0)
5092                         return -EBADMSG;
5093                 if (!pskb_pull(skb, hdroff))
5094                         return -EBADMSG;
5095
5096                 skb_postpull_rcsum(skb, skb_network_header(skb), hdroff);
5097                 skb_reset_network_header(skb);
5098                 skb_reset_transport_header(skb);
5099                 skb->encapsulation = 0;
5100
5101                 bpf_compute_data_pointers(skb);
5102                 bpf_update_srh_state(skb);
5103                 return seg6_lookup_nexthop(skb, NULL, *(int *)param);
5104         case SEG6_LOCAL_ACTION_END_B6:
5105                 if (srh_state->srh && !seg6_bpf_has_valid_srh(skb))
5106                         return -EBADMSG;
5107                 err = bpf_push_seg6_encap(skb, BPF_LWT_ENCAP_SEG6_INLINE,
5108                                           param, param_len);
5109                 if (!err)
5110                         bpf_update_srh_state(skb);
5111
5112                 return err;
5113         case SEG6_LOCAL_ACTION_END_B6_ENCAP:
5114                 if (srh_state->srh && !seg6_bpf_has_valid_srh(skb))
5115                         return -EBADMSG;
5116                 err = bpf_push_seg6_encap(skb, BPF_LWT_ENCAP_SEG6,
5117                                           param, param_len);
5118                 if (!err)
5119                         bpf_update_srh_state(skb);
5120
5121                 return err;
5122         default:
5123                 return -EINVAL;
5124         }
5125 }
5126
5127 static const struct bpf_func_proto bpf_lwt_seg6_action_proto = {
5128         .func           = bpf_lwt_seg6_action,
5129         .gpl_only       = false,
5130         .ret_type       = RET_INTEGER,
5131         .arg1_type      = ARG_PTR_TO_CTX,
5132         .arg2_type      = ARG_ANYTHING,
5133         .arg3_type      = ARG_PTR_TO_MEM,
5134         .arg4_type      = ARG_CONST_SIZE
5135 };
5136
5137 BPF_CALL_3(bpf_lwt_seg6_adjust_srh, struct sk_buff *, skb, u32, offset,
5138            s32, len)
5139 {
5140         struct seg6_bpf_srh_state *srh_state =
5141                 this_cpu_ptr(&seg6_bpf_srh_states);
5142         struct ipv6_sr_hdr *srh = srh_state->srh;
5143         void *srh_end, *srh_tlvs, *ptr;
5144         struct ipv6hdr *hdr;
5145         int srhoff = 0;
5146         int ret;
5147
5148         if (unlikely(srh == NULL))
5149                 return -EINVAL;
5150
5151         srh_tlvs = (void *)((unsigned char *)srh + sizeof(*srh) +
5152                         ((srh->first_segment + 1) << 4));
5153         srh_end = (void *)((unsigned char *)srh + sizeof(*srh) +
5154                         srh_state->hdrlen);
5155         ptr = skb->data + offset;
5156
5157         if (unlikely(ptr < srh_tlvs || ptr > srh_end))
5158                 return -EFAULT;
5159         if (unlikely(len < 0 && (void *)((char *)ptr - len) > srh_end))
5160                 return -EFAULT;
5161
5162         if (len > 0) {
5163                 ret = skb_cow_head(skb, len);
5164                 if (unlikely(ret < 0))
5165                         return ret;
5166
5167                 ret = bpf_skb_net_hdr_push(skb, offset, len);
5168         } else {
5169                 ret = bpf_skb_net_hdr_pop(skb, offset, -1 * len);
5170         }
5171
5172         bpf_compute_data_pointers(skb);
5173         if (unlikely(ret < 0))
5174                 return ret;
5175
5176         hdr = (struct ipv6hdr *)skb->data;
5177         hdr->payload_len = htons(skb->len - sizeof(struct ipv6hdr));
5178
5179         if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0)
5180                 return -EINVAL;
5181         srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
5182         srh_state->hdrlen += len;
5183         srh_state->valid = false;
5184         return 0;
5185 }
5186
5187 static const struct bpf_func_proto bpf_lwt_seg6_adjust_srh_proto = {
5188         .func           = bpf_lwt_seg6_adjust_srh,
5189         .gpl_only       = false,
5190         .ret_type       = RET_INTEGER,
5191         .arg1_type      = ARG_PTR_TO_CTX,
5192         .arg2_type      = ARG_ANYTHING,
5193         .arg3_type      = ARG_ANYTHING,
5194 };
5195 #endif /* CONFIG_IPV6_SEG6_BPF */
5196
5197 #ifdef CONFIG_INET
5198 static struct sock *sk_lookup(struct net *net, struct bpf_sock_tuple *tuple,
5199                               int dif, int sdif, u8 family, u8 proto)
5200 {
5201         bool refcounted = false;
5202         struct sock *sk = NULL;
5203
5204         if (family == AF_INET) {
5205                 __be32 src4 = tuple->ipv4.saddr;
5206                 __be32 dst4 = tuple->ipv4.daddr;
5207
5208                 if (proto == IPPROTO_TCP)
5209                         sk = __inet_lookup(net, &tcp_hashinfo, NULL, 0,
5210                                            src4, tuple->ipv4.sport,
5211                                            dst4, tuple->ipv4.dport,
5212                                            dif, sdif, &refcounted);
5213                 else
5214                         sk = __udp4_lib_lookup(net, src4, tuple->ipv4.sport,
5215                                                dst4, tuple->ipv4.dport,
5216                                                dif, sdif, &udp_table, NULL);
5217 #if IS_ENABLED(CONFIG_IPV6)
5218         } else {
5219                 struct in6_addr *src6 = (struct in6_addr *)&tuple->ipv6.saddr;
5220                 struct in6_addr *dst6 = (struct in6_addr *)&tuple->ipv6.daddr;
5221
5222                 if (proto == IPPROTO_TCP)
5223                         sk = __inet6_lookup(net, &tcp_hashinfo, NULL, 0,
5224                                             src6, tuple->ipv6.sport,
5225                                             dst6, ntohs(tuple->ipv6.dport),
5226                                             dif, sdif, &refcounted);
5227                 else if (likely(ipv6_bpf_stub))
5228                         sk = ipv6_bpf_stub->udp6_lib_lookup(net,
5229                                                             src6, tuple->ipv6.sport,
5230                                                             dst6, tuple->ipv6.dport,
5231                                                             dif, sdif,
5232                                                             &udp_table, NULL);
5233 #endif
5234         }
5235
5236         if (unlikely(sk && !refcounted && !sock_flag(sk, SOCK_RCU_FREE))) {
5237                 WARN_ONCE(1, "Found non-RCU, unreferenced socket!");
5238                 sk = NULL;
5239         }
5240         return sk;
5241 }
5242
5243 /* bpf_skc_lookup performs the core lookup for different types of sockets,
5244  * taking a reference on the socket if it doesn't have the flag SOCK_RCU_FREE.
5245  * Returns the socket as an 'unsigned long' to simplify the casting in the
5246  * callers to satisfy BPF_CALL declarations.
5247  */
5248 static struct sock *
5249 __bpf_skc_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
5250                  struct net *caller_net, u32 ifindex, u8 proto, u64 netns_id,
5251                  u64 flags)
5252 {
5253         struct sock *sk = NULL;
5254         u8 family = AF_UNSPEC;
5255         struct net *net;
5256         int sdif;
5257
5258         if (len == sizeof(tuple->ipv4))
5259                 family = AF_INET;
5260         else if (len == sizeof(tuple->ipv6))
5261                 family = AF_INET6;
5262         else
5263                 return NULL;
5264
5265         if (unlikely(family == AF_UNSPEC || flags ||
5266                      !((s32)netns_id < 0 || netns_id <= S32_MAX)))
5267                 goto out;
5268
5269         if (family == AF_INET)
5270                 sdif = inet_sdif(skb);
5271         else
5272                 sdif = inet6_sdif(skb);
5273
5274         if ((s32)netns_id < 0) {
5275                 net = caller_net;
5276                 sk = sk_lookup(net, tuple, ifindex, sdif, family, proto);
5277         } else {
5278                 net = get_net_ns_by_id(caller_net, netns_id);
5279                 if (unlikely(!net))
5280                         goto out;
5281                 sk = sk_lookup(net, tuple, ifindex, sdif, family, proto);
5282                 put_net(net);
5283         }
5284
5285 out:
5286         return sk;
5287 }
5288
5289 static struct sock *
5290 __bpf_sk_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
5291                 struct net *caller_net, u32 ifindex, u8 proto, u64 netns_id,
5292                 u64 flags)
5293 {
5294         struct sock *sk = __bpf_skc_lookup(skb, tuple, len, caller_net,
5295                                            ifindex, proto, netns_id, flags);
5296
5297         if (sk) {
5298                 sk = sk_to_full_sk(sk);
5299                 if (!sk_fullsock(sk)) {
5300                         sock_gen_put(sk);
5301                         return NULL;
5302                 }
5303         }
5304
5305         return sk;
5306 }
5307
5308 static struct sock *
5309 bpf_skc_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
5310                u8 proto, u64 netns_id, u64 flags)
5311 {
5312         struct net *caller_net;
5313         int ifindex;
5314
5315         if (skb->dev) {
5316                 caller_net = dev_net(skb->dev);
5317                 ifindex = skb->dev->ifindex;
5318         } else {
5319                 caller_net = sock_net(skb->sk);
5320                 ifindex = 0;
5321         }
5322
5323         return __bpf_skc_lookup(skb, tuple, len, caller_net, ifindex, proto,
5324                                 netns_id, flags);
5325 }
5326
5327 static struct sock *
5328 bpf_sk_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
5329               u8 proto, u64 netns_id, u64 flags)
5330 {
5331         struct sock *sk = bpf_skc_lookup(skb, tuple, len, proto, netns_id,
5332                                          flags);
5333
5334         if (sk) {
5335                 sk = sk_to_full_sk(sk);
5336                 if (!sk_fullsock(sk)) {
5337                         sock_gen_put(sk);
5338                         return NULL;
5339                 }
5340         }
5341
5342         return sk;
5343 }
5344
5345 BPF_CALL_5(bpf_skc_lookup_tcp, struct sk_buff *, skb,
5346            struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
5347 {
5348         return (unsigned long)bpf_skc_lookup(skb, tuple, len, IPPROTO_TCP,
5349                                              netns_id, flags);
5350 }
5351
5352 static const struct bpf_func_proto bpf_skc_lookup_tcp_proto = {
5353         .func           = bpf_skc_lookup_tcp,
5354         .gpl_only       = false,
5355         .pkt_access     = true,
5356         .ret_type       = RET_PTR_TO_SOCK_COMMON_OR_NULL,
5357         .arg1_type      = ARG_PTR_TO_CTX,
5358         .arg2_type      = ARG_PTR_TO_MEM,
5359         .arg3_type      = ARG_CONST_SIZE,
5360         .arg4_type      = ARG_ANYTHING,
5361         .arg5_type      = ARG_ANYTHING,
5362 };
5363
5364 BPF_CALL_5(bpf_sk_lookup_tcp, struct sk_buff *, skb,
5365            struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
5366 {
5367         return (unsigned long)bpf_sk_lookup(skb, tuple, len, IPPROTO_TCP,
5368                                             netns_id, flags);
5369 }
5370
5371 static const struct bpf_func_proto bpf_sk_lookup_tcp_proto = {
5372         .func           = bpf_sk_lookup_tcp,
5373         .gpl_only       = false,
5374         .pkt_access     = true,
5375         .ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
5376         .arg1_type      = ARG_PTR_TO_CTX,
5377         .arg2_type      = ARG_PTR_TO_MEM,
5378         .arg3_type      = ARG_CONST_SIZE,
5379         .arg4_type      = ARG_ANYTHING,
5380         .arg5_type      = ARG_ANYTHING,
5381 };
5382
5383 BPF_CALL_5(bpf_sk_lookup_udp, struct sk_buff *, skb,
5384            struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
5385 {
5386         return (unsigned long)bpf_sk_lookup(skb, tuple, len, IPPROTO_UDP,
5387                                             netns_id, flags);
5388 }
5389
5390 static const struct bpf_func_proto bpf_sk_lookup_udp_proto = {
5391         .func           = bpf_sk_lookup_udp,
5392         .gpl_only       = false,
5393         .pkt_access     = true,
5394         .ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
5395         .arg1_type      = ARG_PTR_TO_CTX,
5396         .arg2_type      = ARG_PTR_TO_MEM,
5397         .arg3_type      = ARG_CONST_SIZE,
5398         .arg4_type      = ARG_ANYTHING,
5399         .arg5_type      = ARG_ANYTHING,
5400 };
5401
5402 BPF_CALL_1(bpf_sk_release, struct sock *, sk)
5403 {
5404         if (sk_is_refcounted(sk))
5405                 sock_gen_put(sk);
5406         return 0;
5407 }
5408
5409 static const struct bpf_func_proto bpf_sk_release_proto = {
5410         .func           = bpf_sk_release,
5411         .gpl_only       = false,
5412         .ret_type       = RET_INTEGER,
5413         .arg1_type      = ARG_PTR_TO_SOCK_COMMON,
5414 };
5415
5416 BPF_CALL_5(bpf_xdp_sk_lookup_udp, struct xdp_buff *, ctx,
5417            struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
5418 {
5419         struct net *caller_net = dev_net(ctx->rxq->dev);
5420         int ifindex = ctx->rxq->dev->ifindex;
5421
5422         return (unsigned long)__bpf_sk_lookup(NULL, tuple, len, caller_net,
5423                                               ifindex, IPPROTO_UDP, netns_id,
5424                                               flags);
5425 }
5426
5427 static const struct bpf_func_proto bpf_xdp_sk_lookup_udp_proto = {
5428         .func           = bpf_xdp_sk_lookup_udp,
5429         .gpl_only       = false,
5430         .pkt_access     = true,
5431         .ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
5432         .arg1_type      = ARG_PTR_TO_CTX,
5433         .arg2_type      = ARG_PTR_TO_MEM,
5434         .arg3_type      = ARG_CONST_SIZE,
5435         .arg4_type      = ARG_ANYTHING,
5436         .arg5_type      = ARG_ANYTHING,
5437 };
5438
5439 BPF_CALL_5(bpf_xdp_skc_lookup_tcp, struct xdp_buff *, ctx,
5440            struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
5441 {
5442         struct net *caller_net = dev_net(ctx->rxq->dev);
5443         int ifindex = ctx->rxq->dev->ifindex;
5444
5445         return (unsigned long)__bpf_skc_lookup(NULL, tuple, len, caller_net,
5446                                                ifindex, IPPROTO_TCP, netns_id,
5447                                                flags);
5448 }
5449
5450 static const struct bpf_func_proto bpf_xdp_skc_lookup_tcp_proto = {
5451         .func           = bpf_xdp_skc_lookup_tcp,
5452         .gpl_only       = false,
5453         .pkt_access     = true,
5454         .ret_type       = RET_PTR_TO_SOCK_COMMON_OR_NULL,
5455         .arg1_type      = ARG_PTR_TO_CTX,
5456         .arg2_type      = ARG_PTR_TO_MEM,
5457         .arg3_type      = ARG_CONST_SIZE,
5458         .arg4_type      = ARG_ANYTHING,
5459         .arg5_type      = ARG_ANYTHING,
5460 };
5461
5462 BPF_CALL_5(bpf_xdp_sk_lookup_tcp, struct xdp_buff *, ctx,
5463            struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
5464 {
5465         struct net *caller_net = dev_net(ctx->rxq->dev);
5466         int ifindex = ctx->rxq->dev->ifindex;
5467
5468         return (unsigned long)__bpf_sk_lookup(NULL, tuple, len, caller_net,
5469                                               ifindex, IPPROTO_TCP, netns_id,
5470                                               flags);
5471 }
5472
5473 static const struct bpf_func_proto bpf_xdp_sk_lookup_tcp_proto = {
5474         .func           = bpf_xdp_sk_lookup_tcp,
5475         .gpl_only       = false,
5476         .pkt_access     = true,
5477         .ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
5478         .arg1_type      = ARG_PTR_TO_CTX,
5479         .arg2_type      = ARG_PTR_TO_MEM,
5480         .arg3_type      = ARG_CONST_SIZE,
5481         .arg4_type      = ARG_ANYTHING,
5482         .arg5_type      = ARG_ANYTHING,
5483 };
5484
5485 BPF_CALL_5(bpf_sock_addr_skc_lookup_tcp, struct bpf_sock_addr_kern *, ctx,
5486            struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
5487 {
5488         return (unsigned long)__bpf_skc_lookup(NULL, tuple, len,
5489                                                sock_net(ctx->sk), 0,
5490                                                IPPROTO_TCP, netns_id, flags);
5491 }
5492
5493 static const struct bpf_func_proto bpf_sock_addr_skc_lookup_tcp_proto = {
5494         .func           = bpf_sock_addr_skc_lookup_tcp,
5495         .gpl_only       = false,
5496         .ret_type       = RET_PTR_TO_SOCK_COMMON_OR_NULL,
5497         .arg1_type      = ARG_PTR_TO_CTX,
5498         .arg2_type      = ARG_PTR_TO_MEM,
5499         .arg3_type      = ARG_CONST_SIZE,
5500         .arg4_type      = ARG_ANYTHING,
5501         .arg5_type      = ARG_ANYTHING,
5502 };
5503
5504 BPF_CALL_5(bpf_sock_addr_sk_lookup_tcp, struct bpf_sock_addr_kern *, ctx,
5505            struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
5506 {
5507         return (unsigned long)__bpf_sk_lookup(NULL, tuple, len,
5508                                               sock_net(ctx->sk), 0, IPPROTO_TCP,
5509                                               netns_id, flags);
5510 }
5511
5512 static const struct bpf_func_proto bpf_sock_addr_sk_lookup_tcp_proto = {
5513         .func           = bpf_sock_addr_sk_lookup_tcp,
5514         .gpl_only       = false,
5515         .ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
5516         .arg1_type      = ARG_PTR_TO_CTX,
5517         .arg2_type      = ARG_PTR_TO_MEM,
5518         .arg3_type      = ARG_CONST_SIZE,
5519         .arg4_type      = ARG_ANYTHING,
5520         .arg5_type      = ARG_ANYTHING,
5521 };
5522
5523 BPF_CALL_5(bpf_sock_addr_sk_lookup_udp, struct bpf_sock_addr_kern *, ctx,
5524            struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
5525 {
5526         return (unsigned long)__bpf_sk_lookup(NULL, tuple, len,
5527                                               sock_net(ctx->sk), 0, IPPROTO_UDP,
5528                                               netns_id, flags);
5529 }
5530
5531 static const struct bpf_func_proto bpf_sock_addr_sk_lookup_udp_proto = {
5532         .func           = bpf_sock_addr_sk_lookup_udp,
5533         .gpl_only       = false,
5534         .ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
5535         .arg1_type      = ARG_PTR_TO_CTX,
5536         .arg2_type      = ARG_PTR_TO_MEM,
5537         .arg3_type      = ARG_CONST_SIZE,
5538         .arg4_type      = ARG_ANYTHING,
5539         .arg5_type      = ARG_ANYTHING,
5540 };
5541
5542 bool bpf_tcp_sock_is_valid_access(int off, int size, enum bpf_access_type type,
5543                                   struct bpf_insn_access_aux *info)
5544 {
5545         if (off < 0 || off >= offsetofend(struct bpf_tcp_sock,
5546                                           icsk_retransmits))
5547                 return false;
5548
5549         if (off % size != 0)
5550                 return false;
5551
5552         switch (off) {
5553         case offsetof(struct bpf_tcp_sock, bytes_received):
5554         case offsetof(struct bpf_tcp_sock, bytes_acked):
5555                 return size == sizeof(__u64);
5556         default:
5557                 return size == sizeof(__u32);
5558         }
5559 }
5560
5561 u32 bpf_tcp_sock_convert_ctx_access(enum bpf_access_type type,
5562                                     const struct bpf_insn *si,
5563                                     struct bpf_insn *insn_buf,
5564                                     struct bpf_prog *prog, u32 *target_size)
5565 {
5566         struct bpf_insn *insn = insn_buf;
5567
5568 #define BPF_TCP_SOCK_GET_COMMON(FIELD)                                  \
5569         do {                                                            \
5570                 BUILD_BUG_ON(sizeof_field(struct tcp_sock, FIELD) >     \
5571                              sizeof_field(struct bpf_tcp_sock, FIELD)); \
5572                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct tcp_sock, FIELD),\
5573                                       si->dst_reg, si->src_reg,         \
5574                                       offsetof(struct tcp_sock, FIELD)); \
5575         } while (0)
5576
5577 #define BPF_INET_SOCK_GET_COMMON(FIELD)                                 \
5578         do {                                                            \
5579                 BUILD_BUG_ON(sizeof_field(struct inet_connection_sock,  \
5580                                           FIELD) >                      \
5581                              sizeof_field(struct bpf_tcp_sock, FIELD)); \
5582                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(                 \
5583                                         struct inet_connection_sock,    \
5584                                         FIELD),                         \
5585                                       si->dst_reg, si->src_reg,         \
5586                                       offsetof(                         \
5587                                         struct inet_connection_sock,    \
5588                                         FIELD));                        \
5589         } while (0)
5590
5591         if (insn > insn_buf)
5592                 return insn - insn_buf;
5593
5594         switch (si->off) {
5595         case offsetof(struct bpf_tcp_sock, rtt_min):
5596                 BUILD_BUG_ON(sizeof_field(struct tcp_sock, rtt_min) !=
5597                              sizeof(struct minmax));
5598                 BUILD_BUG_ON(sizeof(struct minmax) <
5599                              sizeof(struct minmax_sample));
5600
5601                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
5602                                       offsetof(struct tcp_sock, rtt_min) +
5603                                       offsetof(struct minmax_sample, v));
5604                 break;
5605         case offsetof(struct bpf_tcp_sock, snd_cwnd):
5606                 BPF_TCP_SOCK_GET_COMMON(snd_cwnd);
5607                 break;
5608         case offsetof(struct bpf_tcp_sock, srtt_us):
5609                 BPF_TCP_SOCK_GET_COMMON(srtt_us);
5610                 break;
5611         case offsetof(struct bpf_tcp_sock, snd_ssthresh):
5612                 BPF_TCP_SOCK_GET_COMMON(snd_ssthresh);
5613                 break;
5614         case offsetof(struct bpf_tcp_sock, rcv_nxt):
5615                 BPF_TCP_SOCK_GET_COMMON(rcv_nxt);
5616                 break;
5617         case offsetof(struct bpf_tcp_sock, snd_nxt):
5618                 BPF_TCP_SOCK_GET_COMMON(snd_nxt);
5619                 break;
5620         case offsetof(struct bpf_tcp_sock, snd_una):
5621                 BPF_TCP_SOCK_GET_COMMON(snd_una);
5622                 break;
5623         case offsetof(struct bpf_tcp_sock, mss_cache):
5624                 BPF_TCP_SOCK_GET_COMMON(mss_cache);
5625                 break;
5626         case offsetof(struct bpf_tcp_sock, ecn_flags):
5627                 BPF_TCP_SOCK_GET_COMMON(ecn_flags);
5628                 break;
5629         case offsetof(struct bpf_tcp_sock, rate_delivered):
5630                 BPF_TCP_SOCK_GET_COMMON(rate_delivered);
5631                 break;
5632         case offsetof(struct bpf_tcp_sock, rate_interval_us):
5633                 BPF_TCP_SOCK_GET_COMMON(rate_interval_us);
5634                 break;
5635         case offsetof(struct bpf_tcp_sock, packets_out):
5636                 BPF_TCP_SOCK_GET_COMMON(packets_out);
5637                 break;
5638         case offsetof(struct bpf_tcp_sock, retrans_out):
5639                 BPF_TCP_SOCK_GET_COMMON(retrans_out);
5640                 break;
5641         case offsetof(struct bpf_tcp_sock, total_retrans):
5642                 BPF_TCP_SOCK_GET_COMMON(total_retrans);
5643                 break;
5644         case offsetof(struct bpf_tcp_sock, segs_in):
5645                 BPF_TCP_SOCK_GET_COMMON(segs_in);
5646                 break;
5647         case offsetof(struct bpf_tcp_sock, data_segs_in):
5648                 BPF_TCP_SOCK_GET_COMMON(data_segs_in);
5649                 break;
5650         case offsetof(struct bpf_tcp_sock, segs_out):
5651                 BPF_TCP_SOCK_GET_COMMON(segs_out);
5652                 break;
5653         case offsetof(struct bpf_tcp_sock, data_segs_out):
5654                 BPF_TCP_SOCK_GET_COMMON(data_segs_out);
5655                 break;
5656         case offsetof(struct bpf_tcp_sock, lost_out):
5657                 BPF_TCP_SOCK_GET_COMMON(lost_out);
5658                 break;
5659         case offsetof(struct bpf_tcp_sock, sacked_out):
5660                 BPF_TCP_SOCK_GET_COMMON(sacked_out);
5661                 break;
5662         case offsetof(struct bpf_tcp_sock, bytes_received):
5663                 BPF_TCP_SOCK_GET_COMMON(bytes_received);
5664                 break;
5665         case offsetof(struct bpf_tcp_sock, bytes_acked):
5666                 BPF_TCP_SOCK_GET_COMMON(bytes_acked);
5667                 break;
5668         case offsetof(struct bpf_tcp_sock, dsack_dups):
5669                 BPF_TCP_SOCK_GET_COMMON(dsack_dups);
5670                 break;
5671         case offsetof(struct bpf_tcp_sock, delivered):
5672                 BPF_TCP_SOCK_GET_COMMON(delivered);
5673                 break;
5674         case offsetof(struct bpf_tcp_sock, delivered_ce):
5675                 BPF_TCP_SOCK_GET_COMMON(delivered_ce);
5676                 break;
5677         case offsetof(struct bpf_tcp_sock, icsk_retransmits):
5678                 BPF_INET_SOCK_GET_COMMON(icsk_retransmits);
5679                 break;
5680         }
5681
5682         return insn - insn_buf;
5683 }
5684
5685 BPF_CALL_1(bpf_tcp_sock, struct sock *, sk)
5686 {
5687         if (sk_fullsock(sk) && sk->sk_protocol == IPPROTO_TCP)
5688                 return (unsigned long)sk;
5689
5690         return (unsigned long)NULL;
5691 }
5692
5693 const struct bpf_func_proto bpf_tcp_sock_proto = {
5694         .func           = bpf_tcp_sock,
5695         .gpl_only       = false,
5696         .ret_type       = RET_PTR_TO_TCP_SOCK_OR_NULL,
5697         .arg1_type      = ARG_PTR_TO_SOCK_COMMON,
5698 };
5699
5700 BPF_CALL_1(bpf_get_listener_sock, struct sock *, sk)
5701 {
5702         sk = sk_to_full_sk(sk);
5703
5704         if (sk->sk_state == TCP_LISTEN && sock_flag(sk, SOCK_RCU_FREE))
5705                 return (unsigned long)sk;
5706
5707         return (unsigned long)NULL;
5708 }
5709
5710 static const struct bpf_func_proto bpf_get_listener_sock_proto = {
5711         .func           = bpf_get_listener_sock,
5712         .gpl_only       = false,
5713         .ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
5714         .arg1_type      = ARG_PTR_TO_SOCK_COMMON,
5715 };
5716
5717 BPF_CALL_1(bpf_skb_ecn_set_ce, struct sk_buff *, skb)
5718 {
5719         unsigned int iphdr_len;
5720
5721         if (skb->protocol == cpu_to_be16(ETH_P_IP))
5722                 iphdr_len = sizeof(struct iphdr);
5723         else if (skb->protocol == cpu_to_be16(ETH_P_IPV6))
5724                 iphdr_len = sizeof(struct ipv6hdr);
5725         else
5726                 return 0;
5727
5728         if (skb_headlen(skb) < iphdr_len)
5729                 return 0;
5730
5731         if (skb_cloned(skb) && !skb_clone_writable(skb, iphdr_len))
5732                 return 0;
5733
5734         return INET_ECN_set_ce(skb);
5735 }
5736
5737 bool bpf_xdp_sock_is_valid_access(int off, int size, enum bpf_access_type type,
5738                                   struct bpf_insn_access_aux *info)
5739 {
5740         if (off < 0 || off >= offsetofend(struct bpf_xdp_sock, queue_id))
5741                 return false;
5742
5743         if (off % size != 0)
5744                 return false;
5745
5746         switch (off) {
5747         default:
5748                 return size == sizeof(__u32);
5749         }
5750 }
5751
5752 u32 bpf_xdp_sock_convert_ctx_access(enum bpf_access_type type,
5753                                     const struct bpf_insn *si,
5754                                     struct bpf_insn *insn_buf,
5755                                     struct bpf_prog *prog, u32 *target_size)
5756 {
5757         struct bpf_insn *insn = insn_buf;
5758
5759 #define BPF_XDP_SOCK_GET(FIELD)                                         \
5760         do {                                                            \
5761                 BUILD_BUG_ON(sizeof_field(struct xdp_sock, FIELD) >     \
5762                              sizeof_field(struct bpf_xdp_sock, FIELD)); \
5763                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_sock, FIELD),\
5764                                       si->dst_reg, si->src_reg,         \
5765                                       offsetof(struct xdp_sock, FIELD)); \
5766         } while (0)
5767
5768         switch (si->off) {
5769         case offsetof(struct bpf_xdp_sock, queue_id):
5770                 BPF_XDP_SOCK_GET(queue_id);
5771                 break;
5772         }
5773
5774         return insn - insn_buf;
5775 }
5776
5777 static const struct bpf_func_proto bpf_skb_ecn_set_ce_proto = {
5778         .func           = bpf_skb_ecn_set_ce,
5779         .gpl_only       = false,
5780         .ret_type       = RET_INTEGER,
5781         .arg1_type      = ARG_PTR_TO_CTX,
5782 };
5783
5784 BPF_CALL_5(bpf_tcp_check_syncookie, struct sock *, sk, void *, iph, u32, iph_len,
5785            struct tcphdr *, th, u32, th_len)
5786 {
5787 #ifdef CONFIG_SYN_COOKIES
5788         u32 cookie;
5789         int ret;
5790
5791         if (unlikely(th_len < sizeof(*th)))
5792                 return -EINVAL;
5793
5794         /* sk_listener() allows TCP_NEW_SYN_RECV, which makes no sense here. */
5795         if (sk->sk_protocol != IPPROTO_TCP || sk->sk_state != TCP_LISTEN)
5796                 return -EINVAL;
5797
5798         if (!sock_net(sk)->ipv4.sysctl_tcp_syncookies)
5799                 return -EINVAL;
5800
5801         if (!th->ack || th->rst || th->syn)
5802                 return -ENOENT;
5803
5804         if (tcp_synq_no_recent_overflow(sk))
5805                 return -ENOENT;
5806
5807         cookie = ntohl(th->ack_seq) - 1;
5808
5809         switch (sk->sk_family) {
5810         case AF_INET:
5811                 if (unlikely(iph_len < sizeof(struct iphdr)))
5812                         return -EINVAL;
5813
5814                 ret = __cookie_v4_check((struct iphdr *)iph, th, cookie);
5815                 break;
5816
5817 #if IS_BUILTIN(CONFIG_IPV6)
5818         case AF_INET6:
5819                 if (unlikely(iph_len < sizeof(struct ipv6hdr)))
5820                         return -EINVAL;
5821
5822                 ret = __cookie_v6_check((struct ipv6hdr *)iph, th, cookie);
5823                 break;
5824 #endif /* CONFIG_IPV6 */
5825
5826         default:
5827                 return -EPROTONOSUPPORT;
5828         }
5829
5830         if (ret > 0)
5831                 return 0;
5832
5833         return -ENOENT;
5834 #else
5835         return -ENOTSUPP;
5836 #endif
5837 }
5838
5839 static const struct bpf_func_proto bpf_tcp_check_syncookie_proto = {
5840         .func           = bpf_tcp_check_syncookie,
5841         .gpl_only       = true,
5842         .pkt_access     = true,
5843         .ret_type       = RET_INTEGER,
5844         .arg1_type      = ARG_PTR_TO_SOCK_COMMON,
5845         .arg2_type      = ARG_PTR_TO_MEM,
5846         .arg3_type      = ARG_CONST_SIZE,
5847         .arg4_type      = ARG_PTR_TO_MEM,
5848         .arg5_type      = ARG_CONST_SIZE,
5849 };
5850
5851 BPF_CALL_5(bpf_tcp_gen_syncookie, struct sock *, sk, void *, iph, u32, iph_len,
5852            struct tcphdr *, th, u32, th_len)
5853 {
5854 #ifdef CONFIG_SYN_COOKIES
5855         u32 cookie;
5856         u16 mss;
5857
5858         if (unlikely(th_len < sizeof(*th) || th_len != th->doff * 4))
5859                 return -EINVAL;
5860
5861         if (sk->sk_protocol != IPPROTO_TCP || sk->sk_state != TCP_LISTEN)
5862                 return -EINVAL;
5863
5864         if (!sock_net(sk)->ipv4.sysctl_tcp_syncookies)
5865                 return -ENOENT;
5866
5867         if (!th->syn || th->ack || th->fin || th->rst)
5868                 return -EINVAL;
5869
5870         if (unlikely(iph_len < sizeof(struct iphdr)))
5871                 return -EINVAL;
5872
5873         /* Both struct iphdr and struct ipv6hdr have the version field at the
5874          * same offset so we can cast to the shorter header (struct iphdr).
5875          */
5876         switch (((struct iphdr *)iph)->version) {
5877         case 4:
5878                 if (sk->sk_family == AF_INET6 && sk->sk_ipv6only)
5879                         return -EINVAL;
5880
5881                 mss = tcp_v4_get_syncookie(sk, iph, th, &cookie);
5882                 break;
5883
5884 #if IS_BUILTIN(CONFIG_IPV6)
5885         case 6:
5886                 if (unlikely(iph_len < sizeof(struct ipv6hdr)))
5887                         return -EINVAL;
5888
5889                 if (sk->sk_family != AF_INET6)
5890                         return -EINVAL;
5891
5892                 mss = tcp_v6_get_syncookie(sk, iph, th, &cookie);
5893                 break;
5894 #endif /* CONFIG_IPV6 */
5895
5896         default:
5897                 return -EPROTONOSUPPORT;
5898         }
5899         if (mss == 0)
5900                 return -ENOENT;
5901
5902         return cookie | ((u64)mss << 32);
5903 #else
5904         return -EOPNOTSUPP;
5905 #endif /* CONFIG_SYN_COOKIES */
5906 }
5907
5908 static const struct bpf_func_proto bpf_tcp_gen_syncookie_proto = {
5909         .func           = bpf_tcp_gen_syncookie,
5910         .gpl_only       = true, /* __cookie_v*_init_sequence() is GPL */
5911         .pkt_access     = true,
5912         .ret_type       = RET_INTEGER,
5913         .arg1_type      = ARG_PTR_TO_SOCK_COMMON,
5914         .arg2_type      = ARG_PTR_TO_MEM,
5915         .arg3_type      = ARG_CONST_SIZE,
5916         .arg4_type      = ARG_PTR_TO_MEM,
5917         .arg5_type      = ARG_CONST_SIZE,
5918 };
5919
5920 BPF_CALL_3(bpf_sk_assign, struct sk_buff *, skb, struct sock *, sk, u64, flags)
5921 {
5922         if (flags != 0)
5923                 return -EINVAL;
5924         if (!skb_at_tc_ingress(skb))
5925                 return -EOPNOTSUPP;
5926         if (unlikely(dev_net(skb->dev) != sock_net(sk)))
5927                 return -ENETUNREACH;
5928         if (unlikely(sk_fullsock(sk) && sk->sk_reuseport))
5929                 return -ESOCKTNOSUPPORT;
5930         if (sk_is_refcounted(sk) &&
5931             unlikely(!refcount_inc_not_zero(&sk->sk_refcnt)))
5932                 return -ENOENT;
5933
5934         skb_orphan(skb);
5935         skb->sk = sk;
5936         skb->destructor = sock_pfree;
5937
5938         return 0;
5939 }
5940
5941 static const struct bpf_func_proto bpf_sk_assign_proto = {
5942         .func           = bpf_sk_assign,
5943         .gpl_only       = false,
5944         .ret_type       = RET_INTEGER,
5945         .arg1_type      = ARG_PTR_TO_CTX,
5946         .arg2_type      = ARG_PTR_TO_SOCK_COMMON,
5947         .arg3_type      = ARG_ANYTHING,
5948 };
5949
5950 #endif /* CONFIG_INET */
5951
5952 bool bpf_helper_changes_pkt_data(void *func)
5953 {
5954         if (func == bpf_skb_vlan_push ||
5955             func == bpf_skb_vlan_pop ||
5956             func == bpf_skb_store_bytes ||
5957             func == bpf_skb_change_proto ||
5958             func == bpf_skb_change_head ||
5959             func == sk_skb_change_head ||
5960             func == bpf_skb_change_tail ||
5961             func == sk_skb_change_tail ||
5962             func == bpf_skb_adjust_room ||
5963             func == bpf_skb_pull_data ||
5964             func == sk_skb_pull_data ||
5965             func == bpf_clone_redirect ||
5966             func == bpf_l3_csum_replace ||
5967             func == bpf_l4_csum_replace ||
5968             func == bpf_xdp_adjust_head ||
5969             func == bpf_xdp_adjust_meta ||
5970             func == bpf_msg_pull_data ||
5971             func == bpf_msg_push_data ||
5972             func == bpf_msg_pop_data ||
5973             func == bpf_xdp_adjust_tail ||
5974 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
5975             func == bpf_lwt_seg6_store_bytes ||
5976             func == bpf_lwt_seg6_adjust_srh ||
5977             func == bpf_lwt_seg6_action ||
5978 #endif
5979             func == bpf_lwt_in_push_encap ||
5980             func == bpf_lwt_xmit_push_encap)
5981                 return true;
5982
5983         return false;
5984 }
5985
5986 const struct bpf_func_proto *
5987 bpf_base_func_proto(enum bpf_func_id func_id)
5988 {
5989         switch (func_id) {
5990         case BPF_FUNC_map_lookup_elem:
5991                 return &bpf_map_lookup_elem_proto;
5992         case BPF_FUNC_map_update_elem:
5993                 return &bpf_map_update_elem_proto;
5994         case BPF_FUNC_map_delete_elem:
5995                 return &bpf_map_delete_elem_proto;
5996         case BPF_FUNC_map_push_elem:
5997                 return &bpf_map_push_elem_proto;
5998         case BPF_FUNC_map_pop_elem:
5999                 return &bpf_map_pop_elem_proto;
6000         case BPF_FUNC_map_peek_elem:
6001                 return &bpf_map_peek_elem_proto;
6002         case BPF_FUNC_get_prandom_u32:
6003                 return &bpf_get_prandom_u32_proto;
6004         case BPF_FUNC_get_smp_processor_id:
6005                 return &bpf_get_raw_smp_processor_id_proto;
6006         case BPF_FUNC_get_numa_node_id:
6007                 return &bpf_get_numa_node_id_proto;
6008         case BPF_FUNC_tail_call:
6009                 return &bpf_tail_call_proto;
6010         case BPF_FUNC_ktime_get_ns:
6011                 return &bpf_ktime_get_ns_proto;
6012         default:
6013                 break;
6014         }
6015
6016         if (!capable(CAP_SYS_ADMIN))
6017                 return NULL;
6018
6019         switch (func_id) {
6020         case BPF_FUNC_spin_lock:
6021                 return &bpf_spin_lock_proto;
6022         case BPF_FUNC_spin_unlock:
6023                 return &bpf_spin_unlock_proto;
6024         case BPF_FUNC_trace_printk:
6025                 return bpf_get_trace_printk_proto();
6026         case BPF_FUNC_jiffies64:
6027                 return &bpf_jiffies64_proto;
6028         default:
6029                 return NULL;
6030         }
6031 }
6032
6033 static const struct bpf_func_proto *
6034 sock_filter_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
6035 {
6036         switch (func_id) {
6037         /* inet and inet6 sockets are created in a process
6038          * context so there is always a valid uid/gid
6039          */
6040         case BPF_FUNC_get_current_uid_gid:
6041                 return &bpf_get_current_uid_gid_proto;
6042         case BPF_FUNC_get_local_storage:
6043                 return &bpf_get_local_storage_proto;
6044         case BPF_FUNC_get_socket_cookie:
6045                 return &bpf_get_socket_cookie_sock_proto;
6046         case BPF_FUNC_get_netns_cookie:
6047                 return &bpf_get_netns_cookie_sock_proto;
6048         case BPF_FUNC_perf_event_output:
6049                 return &bpf_event_output_data_proto;
6050         case BPF_FUNC_get_current_pid_tgid:
6051                 return &bpf_get_current_pid_tgid_proto;
6052         case BPF_FUNC_get_current_comm:
6053                 return &bpf_get_current_comm_proto;
6054 #ifdef CONFIG_CGROUPS
6055         case BPF_FUNC_get_current_cgroup_id:
6056                 return &bpf_get_current_cgroup_id_proto;
6057         case BPF_FUNC_get_current_ancestor_cgroup_id:
6058                 return &bpf_get_current_ancestor_cgroup_id_proto;
6059 #endif
6060 #ifdef CONFIG_CGROUP_NET_CLASSID
6061         case BPF_FUNC_get_cgroup_classid:
6062                 return &bpf_get_cgroup_classid_curr_proto;
6063 #endif
6064         default:
6065                 return bpf_base_func_proto(func_id);
6066         }
6067 }
6068
6069 static const struct bpf_func_proto *
6070 sock_addr_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
6071 {
6072         switch (func_id) {
6073         /* inet and inet6 sockets are created in a process
6074          * context so there is always a valid uid/gid
6075          */
6076         case BPF_FUNC_get_current_uid_gid:
6077                 return &bpf_get_current_uid_gid_proto;
6078         case BPF_FUNC_bind:
6079                 switch (prog->expected_attach_type) {
6080                 case BPF_CGROUP_INET4_CONNECT:
6081                 case BPF_CGROUP_INET6_CONNECT:
6082                         return &bpf_bind_proto;
6083                 default:
6084                         return NULL;
6085                 }
6086         case BPF_FUNC_get_socket_cookie:
6087                 return &bpf_get_socket_cookie_sock_addr_proto;
6088         case BPF_FUNC_get_netns_cookie:
6089                 return &bpf_get_netns_cookie_sock_addr_proto;
6090         case BPF_FUNC_get_local_storage:
6091                 return &bpf_get_local_storage_proto;
6092         case BPF_FUNC_perf_event_output:
6093                 return &bpf_event_output_data_proto;
6094         case BPF_FUNC_get_current_pid_tgid:
6095                 return &bpf_get_current_pid_tgid_proto;
6096         case BPF_FUNC_get_current_comm:
6097                 return &bpf_get_current_comm_proto;
6098 #ifdef CONFIG_CGROUPS
6099         case BPF_FUNC_get_current_cgroup_id:
6100                 return &bpf_get_current_cgroup_id_proto;
6101         case BPF_FUNC_get_current_ancestor_cgroup_id:
6102                 return &bpf_get_current_ancestor_cgroup_id_proto;
6103 #endif
6104 #ifdef CONFIG_CGROUP_NET_CLASSID
6105         case BPF_FUNC_get_cgroup_classid:
6106                 return &bpf_get_cgroup_classid_curr_proto;
6107 #endif
6108 #ifdef CONFIG_INET
6109         case BPF_FUNC_sk_lookup_tcp:
6110                 return &bpf_sock_addr_sk_lookup_tcp_proto;
6111         case BPF_FUNC_sk_lookup_udp:
6112                 return &bpf_sock_addr_sk_lookup_udp_proto;
6113         case BPF_FUNC_sk_release:
6114                 return &bpf_sk_release_proto;
6115         case BPF_FUNC_skc_lookup_tcp:
6116                 return &bpf_sock_addr_skc_lookup_tcp_proto;
6117 #endif /* CONFIG_INET */
6118         case BPF_FUNC_sk_storage_get:
6119                 return &bpf_sk_storage_get_proto;
6120         case BPF_FUNC_sk_storage_delete:
6121                 return &bpf_sk_storage_delete_proto;
6122         default:
6123                 return bpf_base_func_proto(func_id);
6124         }
6125 }
6126
6127 static const struct bpf_func_proto *
6128 sk_filter_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
6129 {
6130         switch (func_id) {
6131         case BPF_FUNC_skb_load_bytes:
6132                 return &bpf_skb_load_bytes_proto;
6133         case BPF_FUNC_skb_load_bytes_relative:
6134                 return &bpf_skb_load_bytes_relative_proto;
6135         case BPF_FUNC_get_socket_cookie:
6136                 return &bpf_get_socket_cookie_proto;
6137         case BPF_FUNC_get_socket_uid:
6138                 return &bpf_get_socket_uid_proto;
6139         case BPF_FUNC_perf_event_output:
6140                 return &bpf_skb_event_output_proto;
6141         default:
6142                 return bpf_base_func_proto(func_id);
6143         }
6144 }
6145
6146 const struct bpf_func_proto bpf_sk_storage_get_proto __weak;
6147 const struct bpf_func_proto bpf_sk_storage_delete_proto __weak;
6148
6149 static const struct bpf_func_proto *
6150 cg_skb_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
6151 {
6152         switch (func_id) {
6153         case BPF_FUNC_get_local_storage:
6154                 return &bpf_get_local_storage_proto;
6155         case BPF_FUNC_sk_fullsock:
6156                 return &bpf_sk_fullsock_proto;
6157         case BPF_FUNC_sk_storage_get:
6158                 return &bpf_sk_storage_get_proto;
6159         case BPF_FUNC_sk_storage_delete:
6160                 return &bpf_sk_storage_delete_proto;
6161         case BPF_FUNC_perf_event_output:
6162                 return &bpf_skb_event_output_proto;
6163 #ifdef CONFIG_SOCK_CGROUP_DATA
6164         case BPF_FUNC_skb_cgroup_id:
6165                 return &bpf_skb_cgroup_id_proto;
6166 #endif
6167 #ifdef CONFIG_INET
6168         case BPF_FUNC_tcp_sock:
6169                 return &bpf_tcp_sock_proto;
6170         case BPF_FUNC_get_listener_sock:
6171                 return &bpf_get_listener_sock_proto;
6172         case BPF_FUNC_skb_ecn_set_ce:
6173                 return &bpf_skb_ecn_set_ce_proto;
6174 #endif
6175         default:
6176                 return sk_filter_func_proto(func_id, prog);
6177         }
6178 }
6179
6180 static const struct bpf_func_proto *
6181 tc_cls_act_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
6182 {
6183         switch (func_id) {
6184         case BPF_FUNC_skb_store_bytes:
6185                 return &bpf_skb_store_bytes_proto;
6186         case BPF_FUNC_skb_load_bytes:
6187                 return &bpf_skb_load_bytes_proto;
6188         case BPF_FUNC_skb_load_bytes_relative:
6189                 return &bpf_skb_load_bytes_relative_proto;
6190         case BPF_FUNC_skb_pull_data:
6191                 return &bpf_skb_pull_data_proto;
6192         case BPF_FUNC_csum_diff:
6193                 return &bpf_csum_diff_proto;
6194         case BPF_FUNC_csum_update:
6195                 return &bpf_csum_update_proto;
6196         case BPF_FUNC_l3_csum_replace:
6197                 return &bpf_l3_csum_replace_proto;
6198         case BPF_FUNC_l4_csum_replace:
6199                 return &bpf_l4_csum_replace_proto;
6200         case BPF_FUNC_clone_redirect:
6201                 return &bpf_clone_redirect_proto;
6202         case BPF_FUNC_get_cgroup_classid:
6203                 return &bpf_get_cgroup_classid_proto;
6204         case BPF_FUNC_skb_vlan_push:
6205                 return &bpf_skb_vlan_push_proto;
6206         case BPF_FUNC_skb_vlan_pop:
6207                 return &bpf_skb_vlan_pop_proto;
6208         case BPF_FUNC_skb_change_proto:
6209                 return &bpf_skb_change_proto_proto;
6210         case BPF_FUNC_skb_change_type:
6211                 return &bpf_skb_change_type_proto;
6212         case BPF_FUNC_skb_adjust_room:
6213                 return &bpf_skb_adjust_room_proto;
6214         case BPF_FUNC_skb_change_tail:
6215                 return &bpf_skb_change_tail_proto;
6216         case BPF_FUNC_skb_get_tunnel_key:
6217                 return &bpf_skb_get_tunnel_key_proto;
6218         case BPF_FUNC_skb_set_tunnel_key:
6219                 return bpf_get_skb_set_tunnel_proto(func_id);
6220         case BPF_FUNC_skb_get_tunnel_opt:
6221                 return &bpf_skb_get_tunnel_opt_proto;
6222         case BPF_FUNC_skb_set_tunnel_opt:
6223                 return bpf_get_skb_set_tunnel_proto(func_id);
6224         case BPF_FUNC_redirect:
6225                 return &bpf_redirect_proto;
6226         case BPF_FUNC_get_route_realm:
6227                 return &bpf_get_route_realm_proto;
6228         case BPF_FUNC_get_hash_recalc:
6229                 return &bpf_get_hash_recalc_proto;
6230         case BPF_FUNC_set_hash_invalid:
6231                 return &bpf_set_hash_invalid_proto;
6232         case BPF_FUNC_set_hash:
6233                 return &bpf_set_hash_proto;
6234         case BPF_FUNC_perf_event_output:
6235                 return &bpf_skb_event_output_proto;
6236         case BPF_FUNC_get_smp_processor_id:
6237                 return &bpf_get_smp_processor_id_proto;
6238         case BPF_FUNC_skb_under_cgroup:
6239                 return &bpf_skb_under_cgroup_proto;
6240         case BPF_FUNC_get_socket_cookie:
6241                 return &bpf_get_socket_cookie_proto;
6242         case BPF_FUNC_get_socket_uid:
6243                 return &bpf_get_socket_uid_proto;
6244         case BPF_FUNC_fib_lookup:
6245                 return &bpf_skb_fib_lookup_proto;
6246         case BPF_FUNC_sk_fullsock:
6247                 return &bpf_sk_fullsock_proto;
6248         case BPF_FUNC_sk_storage_get:
6249                 return &bpf_sk_storage_get_proto;
6250         case BPF_FUNC_sk_storage_delete:
6251                 return &bpf_sk_storage_delete_proto;
6252 #ifdef CONFIG_XFRM
6253         case BPF_FUNC_skb_get_xfrm_state:
6254                 return &bpf_skb_get_xfrm_state_proto;
6255 #endif
6256 #ifdef CONFIG_SOCK_CGROUP_DATA
6257         case BPF_FUNC_skb_cgroup_id:
6258                 return &bpf_skb_cgroup_id_proto;
6259         case BPF_FUNC_skb_ancestor_cgroup_id:
6260                 return &bpf_skb_ancestor_cgroup_id_proto;
6261 #endif
6262 #ifdef CONFIG_INET
6263         case BPF_FUNC_sk_lookup_tcp:
6264                 return &bpf_sk_lookup_tcp_proto;
6265         case BPF_FUNC_sk_lookup_udp:
6266                 return &bpf_sk_lookup_udp_proto;
6267         case BPF_FUNC_sk_release:
6268                 return &bpf_sk_release_proto;
6269         case BPF_FUNC_tcp_sock:
6270                 return &bpf_tcp_sock_proto;
6271         case BPF_FUNC_get_listener_sock:
6272                 return &bpf_get_listener_sock_proto;
6273         case BPF_FUNC_skc_lookup_tcp:
6274                 return &bpf_skc_lookup_tcp_proto;
6275         case BPF_FUNC_tcp_check_syncookie:
6276                 return &bpf_tcp_check_syncookie_proto;
6277         case BPF_FUNC_skb_ecn_set_ce:
6278                 return &bpf_skb_ecn_set_ce_proto;
6279         case BPF_FUNC_tcp_gen_syncookie:
6280                 return &bpf_tcp_gen_syncookie_proto;
6281         case BPF_FUNC_sk_assign:
6282                 return &bpf_sk_assign_proto;
6283 #endif
6284         default:
6285                 return bpf_base_func_proto(func_id);
6286         }
6287 }
6288
6289 static const struct bpf_func_proto *
6290 xdp_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
6291 {
6292         switch (func_id) {
6293         case BPF_FUNC_perf_event_output:
6294                 return &bpf_xdp_event_output_proto;
6295         case BPF_FUNC_get_smp_processor_id:
6296                 return &bpf_get_smp_processor_id_proto;
6297         case BPF_FUNC_csum_diff:
6298                 return &bpf_csum_diff_proto;
6299         case BPF_FUNC_xdp_adjust_head:
6300                 return &bpf_xdp_adjust_head_proto;
6301         case BPF_FUNC_xdp_adjust_meta:
6302                 return &bpf_xdp_adjust_meta_proto;
6303         case BPF_FUNC_redirect:
6304                 return &bpf_xdp_redirect_proto;
6305         case BPF_FUNC_redirect_map:
6306                 return &bpf_xdp_redirect_map_proto;
6307         case BPF_FUNC_xdp_adjust_tail:
6308                 return &bpf_xdp_adjust_tail_proto;
6309         case BPF_FUNC_fib_lookup:
6310                 return &bpf_xdp_fib_lookup_proto;
6311 #ifdef CONFIG_INET
6312         case BPF_FUNC_sk_lookup_udp:
6313                 return &bpf_xdp_sk_lookup_udp_proto;
6314         case BPF_FUNC_sk_lookup_tcp:
6315                 return &bpf_xdp_sk_lookup_tcp_proto;
6316         case BPF_FUNC_sk_release:
6317                 return &bpf_sk_release_proto;
6318         case BPF_FUNC_skc_lookup_tcp:
6319                 return &bpf_xdp_skc_lookup_tcp_proto;
6320         case BPF_FUNC_tcp_check_syncookie:
6321                 return &bpf_tcp_check_syncookie_proto;
6322         case BPF_FUNC_tcp_gen_syncookie:
6323                 return &bpf_tcp_gen_syncookie_proto;
6324 #endif
6325         default:
6326                 return bpf_base_func_proto(func_id);
6327         }
6328 }
6329
6330 const struct bpf_func_proto bpf_sock_map_update_proto __weak;
6331 const struct bpf_func_proto bpf_sock_hash_update_proto __weak;
6332
6333 static const struct bpf_func_proto *
6334 sock_ops_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
6335 {
6336         switch (func_id) {
6337         case BPF_FUNC_setsockopt:
6338                 return &bpf_setsockopt_proto;
6339         case BPF_FUNC_getsockopt:
6340                 return &bpf_getsockopt_proto;
6341         case BPF_FUNC_sock_ops_cb_flags_set:
6342                 return &bpf_sock_ops_cb_flags_set_proto;
6343         case BPF_FUNC_sock_map_update:
6344                 return &bpf_sock_map_update_proto;
6345         case BPF_FUNC_sock_hash_update:
6346                 return &bpf_sock_hash_update_proto;
6347         case BPF_FUNC_get_socket_cookie:
6348                 return &bpf_get_socket_cookie_sock_ops_proto;
6349         case BPF_FUNC_get_local_storage:
6350                 return &bpf_get_local_storage_proto;
6351         case BPF_FUNC_perf_event_output:
6352                 return &bpf_event_output_data_proto;
6353         case BPF_FUNC_sk_storage_get:
6354                 return &bpf_sk_storage_get_proto;
6355         case BPF_FUNC_sk_storage_delete:
6356                 return &bpf_sk_storage_delete_proto;
6357 #ifdef CONFIG_INET
6358         case BPF_FUNC_tcp_sock:
6359                 return &bpf_tcp_sock_proto;
6360 #endif /* CONFIG_INET */
6361         default:
6362                 return bpf_base_func_proto(func_id);
6363         }
6364 }
6365
6366 const struct bpf_func_proto bpf_msg_redirect_map_proto __weak;
6367 const struct bpf_func_proto bpf_msg_redirect_hash_proto __weak;
6368
6369 static const struct bpf_func_proto *
6370 sk_msg_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
6371 {
6372         switch (func_id) {
6373         case BPF_FUNC_msg_redirect_map:
6374                 return &bpf_msg_redirect_map_proto;
6375         case BPF_FUNC_msg_redirect_hash:
6376                 return &bpf_msg_redirect_hash_proto;
6377         case BPF_FUNC_msg_apply_bytes:
6378                 return &bpf_msg_apply_bytes_proto;
6379         case BPF_FUNC_msg_cork_bytes:
6380                 return &bpf_msg_cork_bytes_proto;
6381         case BPF_FUNC_msg_pull_data:
6382                 return &bpf_msg_pull_data_proto;
6383         case BPF_FUNC_msg_push_data:
6384                 return &bpf_msg_push_data_proto;
6385         case BPF_FUNC_msg_pop_data:
6386                 return &bpf_msg_pop_data_proto;
6387         default:
6388                 return bpf_base_func_proto(func_id);
6389         }
6390 }
6391
6392 const struct bpf_func_proto bpf_sk_redirect_map_proto __weak;
6393 const struct bpf_func_proto bpf_sk_redirect_hash_proto __weak;
6394
6395 static const struct bpf_func_proto *
6396 sk_skb_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
6397 {
6398         switch (func_id) {
6399         case BPF_FUNC_skb_store_bytes:
6400                 return &bpf_skb_store_bytes_proto;
6401         case BPF_FUNC_skb_load_bytes:
6402                 return &bpf_skb_load_bytes_proto;
6403         case BPF_FUNC_skb_pull_data:
6404                 return &sk_skb_pull_data_proto;
6405         case BPF_FUNC_skb_change_tail:
6406                 return &sk_skb_change_tail_proto;
6407         case BPF_FUNC_skb_change_head:
6408                 return &sk_skb_change_head_proto;
6409         case BPF_FUNC_get_socket_cookie:
6410                 return &bpf_get_socket_cookie_proto;
6411         case BPF_FUNC_get_socket_uid:
6412                 return &bpf_get_socket_uid_proto;
6413         case BPF_FUNC_sk_redirect_map:
6414                 return &bpf_sk_redirect_map_proto;
6415         case BPF_FUNC_sk_redirect_hash:
6416                 return &bpf_sk_redirect_hash_proto;
6417         case BPF_FUNC_perf_event_output:
6418                 return &bpf_skb_event_output_proto;
6419 #ifdef CONFIG_INET
6420         case BPF_FUNC_sk_lookup_tcp:
6421                 return &bpf_sk_lookup_tcp_proto;
6422         case BPF_FUNC_sk_lookup_udp:
6423                 return &bpf_sk_lookup_udp_proto;
6424         case BPF_FUNC_sk_release:
6425                 return &bpf_sk_release_proto;
6426         case BPF_FUNC_skc_lookup_tcp:
6427                 return &bpf_skc_lookup_tcp_proto;
6428 #endif
6429         default:
6430                 return bpf_base_func_proto(func_id);
6431         }
6432 }
6433
6434 static const struct bpf_func_proto *
6435 flow_dissector_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
6436 {
6437         switch (func_id) {
6438         case BPF_FUNC_skb_load_bytes:
6439                 return &bpf_flow_dissector_load_bytes_proto;
6440         default:
6441                 return bpf_base_func_proto(func_id);
6442         }
6443 }
6444
6445 static const struct bpf_func_proto *
6446 lwt_out_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
6447 {
6448         switch (func_id) {
6449         case BPF_FUNC_skb_load_bytes:
6450                 return &bpf_skb_load_bytes_proto;
6451         case BPF_FUNC_skb_pull_data:
6452                 return &bpf_skb_pull_data_proto;
6453         case BPF_FUNC_csum_diff:
6454                 return &bpf_csum_diff_proto;
6455         case BPF_FUNC_get_cgroup_classid:
6456                 return &bpf_get_cgroup_classid_proto;
6457         case BPF_FUNC_get_route_realm:
6458                 return &bpf_get_route_realm_proto;
6459         case BPF_FUNC_get_hash_recalc:
6460                 return &bpf_get_hash_recalc_proto;
6461         case BPF_FUNC_perf_event_output:
6462                 return &bpf_skb_event_output_proto;
6463         case BPF_FUNC_get_smp_processor_id:
6464                 return &bpf_get_smp_processor_id_proto;
6465         case BPF_FUNC_skb_under_cgroup:
6466                 return &bpf_skb_under_cgroup_proto;
6467         default:
6468                 return bpf_base_func_proto(func_id);
6469         }
6470 }
6471
6472 static const struct bpf_func_proto *
6473 lwt_in_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
6474 {
6475         switch (func_id) {
6476         case BPF_FUNC_lwt_push_encap:
6477                 return &bpf_lwt_in_push_encap_proto;
6478         default:
6479                 return lwt_out_func_proto(func_id, prog);
6480         }
6481 }
6482
6483 static const struct bpf_func_proto *
6484 lwt_xmit_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
6485 {
6486         switch (func_id) {
6487         case BPF_FUNC_skb_get_tunnel_key:
6488                 return &bpf_skb_get_tunnel_key_proto;
6489         case BPF_FUNC_skb_set_tunnel_key:
6490                 return bpf_get_skb_set_tunnel_proto(func_id);
6491         case BPF_FUNC_skb_get_tunnel_opt:
6492                 return &bpf_skb_get_tunnel_opt_proto;
6493         case BPF_FUNC_skb_set_tunnel_opt:
6494                 return bpf_get_skb_set_tunnel_proto(func_id);
6495         case BPF_FUNC_redirect:
6496                 return &bpf_redirect_proto;
6497         case BPF_FUNC_clone_redirect:
6498                 return &bpf_clone_redirect_proto;
6499         case BPF_FUNC_skb_change_tail:
6500                 return &bpf_skb_change_tail_proto;
6501         case BPF_FUNC_skb_change_head:
6502                 return &bpf_skb_change_head_proto;
6503         case BPF_FUNC_skb_store_bytes:
6504                 return &bpf_skb_store_bytes_proto;
6505         case BPF_FUNC_csum_update:
6506                 return &bpf_csum_update_proto;
6507         case BPF_FUNC_l3_csum_replace:
6508                 return &bpf_l3_csum_replace_proto;
6509         case BPF_FUNC_l4_csum_replace:
6510                 return &bpf_l4_csum_replace_proto;
6511         case BPF_FUNC_set_hash_invalid:
6512                 return &bpf_set_hash_invalid_proto;
6513         case BPF_FUNC_lwt_push_encap:
6514                 return &bpf_lwt_xmit_push_encap_proto;
6515         default:
6516                 return lwt_out_func_proto(func_id, prog);
6517         }
6518 }
6519
6520 static const struct bpf_func_proto *
6521 lwt_seg6local_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
6522 {
6523         switch (func_id) {
6524 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
6525         case BPF_FUNC_lwt_seg6_store_bytes:
6526                 return &bpf_lwt_seg6_store_bytes_proto;
6527         case BPF_FUNC_lwt_seg6_action:
6528                 return &bpf_lwt_seg6_action_proto;
6529         case BPF_FUNC_lwt_seg6_adjust_srh:
6530                 return &bpf_lwt_seg6_adjust_srh_proto;
6531 #endif
6532         default:
6533                 return lwt_out_func_proto(func_id, prog);
6534         }
6535 }
6536
6537 static bool bpf_skb_is_valid_access(int off, int size, enum bpf_access_type type,
6538                                     const struct bpf_prog *prog,
6539                                     struct bpf_insn_access_aux *info)
6540 {
6541         const int size_default = sizeof(__u32);
6542
6543         if (off < 0 || off >= sizeof(struct __sk_buff))
6544                 return false;
6545
6546         /* The verifier guarantees that size > 0. */
6547         if (off % size != 0)
6548                 return false;
6549
6550         switch (off) {
6551         case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
6552                 if (off + size > offsetofend(struct __sk_buff, cb[4]))
6553                         return false;
6554                 break;
6555         case bpf_ctx_range_till(struct __sk_buff, remote_ip6[0], remote_ip6[3]):
6556         case bpf_ctx_range_till(struct __sk_buff, local_ip6[0], local_ip6[3]):
6557         case bpf_ctx_range_till(struct __sk_buff, remote_ip4, remote_ip4):
6558         case bpf_ctx_range_till(struct __sk_buff, local_ip4, local_ip4):
6559         case bpf_ctx_range(struct __sk_buff, data):
6560         case bpf_ctx_range(struct __sk_buff, data_meta):
6561         case bpf_ctx_range(struct __sk_buff, data_end):
6562                 if (size != size_default)
6563                         return false;
6564                 break;
6565         case bpf_ctx_range_ptr(struct __sk_buff, flow_keys):
6566                 return false;
6567         case bpf_ctx_range(struct __sk_buff, tstamp):
6568                 if (size != sizeof(__u64))
6569                         return false;
6570                 break;
6571         case offsetof(struct __sk_buff, sk):
6572                 if (type == BPF_WRITE || size != sizeof(__u64))
6573                         return false;
6574                 info->reg_type = PTR_TO_SOCK_COMMON_OR_NULL;
6575                 break;
6576         default:
6577                 /* Only narrow read access allowed for now. */
6578                 if (type == BPF_WRITE) {
6579                         if (size != size_default)
6580                                 return false;
6581                 } else {
6582                         bpf_ctx_record_field_size(info, size_default);
6583                         if (!bpf_ctx_narrow_access_ok(off, size, size_default))
6584                                 return false;
6585                 }
6586         }
6587
6588         return true;
6589 }
6590
6591 static bool sk_filter_is_valid_access(int off, int size,
6592                                       enum bpf_access_type type,
6593                                       const struct bpf_prog *prog,
6594                                       struct bpf_insn_access_aux *info)
6595 {
6596         switch (off) {
6597         case bpf_ctx_range(struct __sk_buff, tc_classid):
6598         case bpf_ctx_range(struct __sk_buff, data):
6599         case bpf_ctx_range(struct __sk_buff, data_meta):
6600         case bpf_ctx_range(struct __sk_buff, data_end):
6601         case bpf_ctx_range_till(struct __sk_buff, family, local_port):
6602         case bpf_ctx_range(struct __sk_buff, tstamp):
6603         case bpf_ctx_range(struct __sk_buff, wire_len):
6604                 return false;
6605         }
6606
6607         if (type == BPF_WRITE) {
6608                 switch (off) {
6609                 case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
6610                         break;
6611                 default:
6612                         return false;
6613                 }
6614         }
6615
6616         return bpf_skb_is_valid_access(off, size, type, prog, info);
6617 }
6618
6619 static bool cg_skb_is_valid_access(int off, int size,
6620                                    enum bpf_access_type type,
6621                                    const struct bpf_prog *prog,
6622                                    struct bpf_insn_access_aux *info)
6623 {
6624         switch (off) {
6625         case bpf_ctx_range(struct __sk_buff, tc_classid):
6626         case bpf_ctx_range(struct __sk_buff, data_meta):
6627         case bpf_ctx_range(struct __sk_buff, wire_len):
6628                 return false;
6629         case bpf_ctx_range(struct __sk_buff, data):
6630         case bpf_ctx_range(struct __sk_buff, data_end):
6631                 if (!capable(CAP_SYS_ADMIN))
6632                         return false;
6633                 break;
6634         }
6635
6636         if (type == BPF_WRITE) {
6637                 switch (off) {
6638                 case bpf_ctx_range(struct __sk_buff, mark):
6639                 case bpf_ctx_range(struct __sk_buff, priority):
6640                 case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
6641                         break;
6642                 case bpf_ctx_range(struct __sk_buff, tstamp):
6643                         if (!capable(CAP_SYS_ADMIN))
6644                                 return false;
6645                         break;
6646                 default:
6647                         return false;
6648                 }
6649         }
6650
6651         switch (off) {
6652         case bpf_ctx_range(struct __sk_buff, data):
6653                 info->reg_type = PTR_TO_PACKET;
6654                 break;
6655         case bpf_ctx_range(struct __sk_buff, data_end):
6656                 info->reg_type = PTR_TO_PACKET_END;
6657                 break;
6658         }
6659
6660         return bpf_skb_is_valid_access(off, size, type, prog, info);
6661 }
6662
6663 static bool lwt_is_valid_access(int off, int size,
6664                                 enum bpf_access_type type,
6665                                 const struct bpf_prog *prog,
6666                                 struct bpf_insn_access_aux *info)
6667 {
6668         switch (off) {
6669         case bpf_ctx_range(struct __sk_buff, tc_classid):
6670         case bpf_ctx_range_till(struct __sk_buff, family, local_port):
6671         case bpf_ctx_range(struct __sk_buff, data_meta):
6672         case bpf_ctx_range(struct __sk_buff, tstamp):
6673         case bpf_ctx_range(struct __sk_buff, wire_len):
6674                 return false;
6675         }
6676
6677         if (type == BPF_WRITE) {
6678                 switch (off) {
6679                 case bpf_ctx_range(struct __sk_buff, mark):
6680                 case bpf_ctx_range(struct __sk_buff, priority):
6681                 case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
6682                         break;
6683                 default:
6684                         return false;
6685                 }
6686         }
6687
6688         switch (off) {
6689         case bpf_ctx_range(struct __sk_buff, data):
6690                 info->reg_type = PTR_TO_PACKET;
6691                 break;
6692         case bpf_ctx_range(struct __sk_buff, data_end):
6693                 info->reg_type = PTR_TO_PACKET_END;
6694                 break;
6695         }
6696
6697         return bpf_skb_is_valid_access(off, size, type, prog, info);
6698 }
6699
6700 /* Attach type specific accesses */
6701 static bool __sock_filter_check_attach_type(int off,
6702                                             enum bpf_access_type access_type,
6703                                             enum bpf_attach_type attach_type)
6704 {
6705         switch (off) {
6706         case offsetof(struct bpf_sock, bound_dev_if):
6707         case offsetof(struct bpf_sock, mark):
6708         case offsetof(struct bpf_sock, priority):
6709                 switch (attach_type) {
6710                 case BPF_CGROUP_INET_SOCK_CREATE:
6711                         goto full_access;
6712                 default:
6713                         return false;
6714                 }
6715         case bpf_ctx_range(struct bpf_sock, src_ip4):
6716                 switch (attach_type) {
6717                 case BPF_CGROUP_INET4_POST_BIND:
6718                         goto read_only;
6719                 default:
6720                         return false;
6721                 }
6722         case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
6723                 switch (attach_type) {
6724                 case BPF_CGROUP_INET6_POST_BIND:
6725                         goto read_only;
6726                 default:
6727                         return false;
6728                 }
6729         case bpf_ctx_range(struct bpf_sock, src_port):
6730                 switch (attach_type) {
6731                 case BPF_CGROUP_INET4_POST_BIND:
6732                 case BPF_CGROUP_INET6_POST_BIND:
6733                         goto read_only;
6734                 default:
6735                         return false;
6736                 }
6737         }
6738 read_only:
6739         return access_type == BPF_READ;
6740 full_access:
6741         return true;
6742 }
6743
6744 bool bpf_sock_common_is_valid_access(int off, int size,
6745                                      enum bpf_access_type type,
6746                                      struct bpf_insn_access_aux *info)
6747 {
6748         switch (off) {
6749         case bpf_ctx_range_till(struct bpf_sock, type, priority):
6750                 return false;
6751         default:
6752                 return bpf_sock_is_valid_access(off, size, type, info);
6753         }
6754 }
6755
6756 bool bpf_sock_is_valid_access(int off, int size, enum bpf_access_type type,
6757                               struct bpf_insn_access_aux *info)
6758 {
6759         const int size_default = sizeof(__u32);
6760
6761         if (off < 0 || off >= sizeof(struct bpf_sock))
6762                 return false;
6763         if (off % size != 0)
6764                 return false;
6765
6766         switch (off) {
6767         case offsetof(struct bpf_sock, state):
6768         case offsetof(struct bpf_sock, family):
6769         case offsetof(struct bpf_sock, type):
6770         case offsetof(struct bpf_sock, protocol):
6771         case offsetof(struct bpf_sock, dst_port):
6772         case offsetof(struct bpf_sock, src_port):
6773         case bpf_ctx_range(struct bpf_sock, src_ip4):
6774         case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
6775         case bpf_ctx_range(struct bpf_sock, dst_ip4):
6776         case bpf_ctx_range_till(struct bpf_sock, dst_ip6[0], dst_ip6[3]):
6777                 bpf_ctx_record_field_size(info, size_default);
6778                 return bpf_ctx_narrow_access_ok(off, size, size_default);
6779         }
6780
6781         return size == size_default;
6782 }
6783
6784 static bool sock_filter_is_valid_access(int off, int size,
6785                                         enum bpf_access_type type,
6786                                         const struct bpf_prog *prog,
6787                                         struct bpf_insn_access_aux *info)
6788 {
6789         if (!bpf_sock_is_valid_access(off, size, type, info))
6790                 return false;
6791         return __sock_filter_check_attach_type(off, type,
6792                                                prog->expected_attach_type);
6793 }
6794
6795 static int bpf_noop_prologue(struct bpf_insn *insn_buf, bool direct_write,
6796                              const struct bpf_prog *prog)
6797 {
6798         /* Neither direct read nor direct write requires any preliminary
6799          * action.
6800          */
6801         return 0;
6802 }
6803
6804 static int bpf_unclone_prologue(struct bpf_insn *insn_buf, bool direct_write,
6805                                 const struct bpf_prog *prog, int drop_verdict)
6806 {
6807         struct bpf_insn *insn = insn_buf;
6808
6809         if (!direct_write)
6810                 return 0;
6811
6812         /* if (!skb->cloned)
6813          *       goto start;
6814          *
6815          * (Fast-path, otherwise approximation that we might be
6816          *  a clone, do the rest in helper.)
6817          */
6818         *insn++ = BPF_LDX_MEM(BPF_B, BPF_REG_6, BPF_REG_1, CLONED_OFFSET());
6819         *insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_6, CLONED_MASK);
6820         *insn++ = BPF_JMP_IMM(BPF_JEQ, BPF_REG_6, 0, 7);
6821
6822         /* ret = bpf_skb_pull_data(skb, 0); */
6823         *insn++ = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1);
6824         *insn++ = BPF_ALU64_REG(BPF_XOR, BPF_REG_2, BPF_REG_2);
6825         *insn++ = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
6826                                BPF_FUNC_skb_pull_data);
6827         /* if (!ret)
6828          *      goto restore;
6829          * return TC_ACT_SHOT;
6830          */
6831         *insn++ = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 2);
6832         *insn++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_0, drop_verdict);
6833         *insn++ = BPF_EXIT_INSN();
6834
6835         /* restore: */
6836         *insn++ = BPF_MOV64_REG(BPF_REG_1, BPF_REG_6);
6837         /* start: */
6838         *insn++ = prog->insnsi[0];
6839
6840         return insn - insn_buf;
6841 }
6842
6843 static int bpf_gen_ld_abs(const struct bpf_insn *orig,
6844                           struct bpf_insn *insn_buf)
6845 {
6846         bool indirect = BPF_MODE(orig->code) == BPF_IND;
6847         struct bpf_insn *insn = insn_buf;
6848
6849         /* We're guaranteed here that CTX is in R6. */
6850         *insn++ = BPF_MOV64_REG(BPF_REG_1, BPF_REG_CTX);
6851         if (!indirect) {
6852                 *insn++ = BPF_MOV64_IMM(BPF_REG_2, orig->imm);
6853         } else {
6854                 *insn++ = BPF_MOV64_REG(BPF_REG_2, orig->src_reg);
6855                 if (orig->imm)
6856                         *insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, orig->imm);
6857         }
6858
6859         switch (BPF_SIZE(orig->code)) {
6860         case BPF_B:
6861                 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_8_no_cache);
6862                 break;
6863         case BPF_H:
6864                 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_16_no_cache);
6865                 break;
6866         case BPF_W:
6867                 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_32_no_cache);
6868                 break;
6869         }
6870
6871         *insn++ = BPF_JMP_IMM(BPF_JSGE, BPF_REG_0, 0, 2);
6872         *insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_0, BPF_REG_0);
6873         *insn++ = BPF_EXIT_INSN();
6874
6875         return insn - insn_buf;
6876 }
6877
6878 static int tc_cls_act_prologue(struct bpf_insn *insn_buf, bool direct_write,
6879                                const struct bpf_prog *prog)
6880 {
6881         return bpf_unclone_prologue(insn_buf, direct_write, prog, TC_ACT_SHOT);
6882 }
6883
6884 static bool tc_cls_act_is_valid_access(int off, int size,
6885                                        enum bpf_access_type type,
6886                                        const struct bpf_prog *prog,
6887                                        struct bpf_insn_access_aux *info)
6888 {
6889         if (type == BPF_WRITE) {
6890                 switch (off) {
6891                 case bpf_ctx_range(struct __sk_buff, mark):
6892                 case bpf_ctx_range(struct __sk_buff, tc_index):
6893                 case bpf_ctx_range(struct __sk_buff, priority):
6894                 case bpf_ctx_range(struct __sk_buff, tc_classid):
6895                 case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
6896                 case bpf_ctx_range(struct __sk_buff, tstamp):
6897                 case bpf_ctx_range(struct __sk_buff, queue_mapping):
6898                         break;
6899                 default:
6900                         return false;
6901                 }
6902         }
6903
6904         switch (off) {
6905         case bpf_ctx_range(struct __sk_buff, data):
6906                 info->reg_type = PTR_TO_PACKET;
6907                 break;
6908         case bpf_ctx_range(struct __sk_buff, data_meta):
6909                 info->reg_type = PTR_TO_PACKET_META;
6910                 break;
6911         case bpf_ctx_range(struct __sk_buff, data_end):
6912                 info->reg_type = PTR_TO_PACKET_END;
6913                 break;
6914         case bpf_ctx_range_till(struct __sk_buff, family, local_port):
6915                 return false;
6916         }
6917
6918         return bpf_skb_is_valid_access(off, size, type, prog, info);
6919 }
6920
6921 static bool __is_valid_xdp_access(int off, int size)
6922 {
6923         if (off < 0 || off >= sizeof(struct xdp_md))
6924                 return false;
6925         if (off % size != 0)
6926                 return false;
6927         if (size != sizeof(__u32))
6928                 return false;
6929
6930         return true;
6931 }
6932
6933 static bool xdp_is_valid_access(int off, int size,
6934                                 enum bpf_access_type type,
6935                                 const struct bpf_prog *prog,
6936                                 struct bpf_insn_access_aux *info)
6937 {
6938         if (type == BPF_WRITE) {
6939                 if (bpf_prog_is_dev_bound(prog->aux)) {
6940                         switch (off) {
6941                         case offsetof(struct xdp_md, rx_queue_index):
6942                                 return __is_valid_xdp_access(off, size);
6943                         }
6944                 }
6945                 return false;
6946         }
6947
6948         switch (off) {
6949         case offsetof(struct xdp_md, data):
6950                 info->reg_type = PTR_TO_PACKET;
6951                 break;
6952         case offsetof(struct xdp_md, data_meta):
6953                 info->reg_type = PTR_TO_PACKET_META;
6954                 break;
6955         case offsetof(struct xdp_md, data_end):
6956                 info->reg_type = PTR_TO_PACKET_END;
6957                 break;
6958         }
6959
6960         return __is_valid_xdp_access(off, size);
6961 }
6962
6963 void bpf_warn_invalid_xdp_action(u32 act)
6964 {
6965         const u32 act_max = XDP_REDIRECT;
6966
6967         WARN_ONCE(1, "%s XDP return value %u, expect packet loss!\n",
6968                   act > act_max ? "Illegal" : "Driver unsupported",
6969                   act);
6970 }
6971 EXPORT_SYMBOL_GPL(bpf_warn_invalid_xdp_action);
6972
6973 static bool sock_addr_is_valid_access(int off, int size,
6974                                       enum bpf_access_type type,
6975                                       const struct bpf_prog *prog,
6976                                       struct bpf_insn_access_aux *info)
6977 {
6978         const int size_default = sizeof(__u32);
6979
6980         if (off < 0 || off >= sizeof(struct bpf_sock_addr))
6981                 return false;
6982         if (off % size != 0)
6983                 return false;
6984
6985         /* Disallow access to IPv6 fields from IPv4 contex and vise
6986          * versa.
6987          */
6988         switch (off) {
6989         case bpf_ctx_range(struct bpf_sock_addr, user_ip4):
6990                 switch (prog->expected_attach_type) {
6991                 case BPF_CGROUP_INET4_BIND:
6992                 case BPF_CGROUP_INET4_CONNECT:
6993                 case BPF_CGROUP_UDP4_SENDMSG:
6994                 case BPF_CGROUP_UDP4_RECVMSG:
6995                         break;
6996                 default:
6997                         return false;
6998                 }
6999                 break;
7000         case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
7001                 switch (prog->expected_attach_type) {
7002                 case BPF_CGROUP_INET6_BIND:
7003                 case BPF_CGROUP_INET6_CONNECT:
7004                 case BPF_CGROUP_UDP6_SENDMSG:
7005                 case BPF_CGROUP_UDP6_RECVMSG:
7006                         break;
7007                 default:
7008                         return false;
7009                 }
7010                 break;
7011         case bpf_ctx_range(struct bpf_sock_addr, msg_src_ip4):
7012                 switch (prog->expected_attach_type) {
7013                 case BPF_CGROUP_UDP4_SENDMSG:
7014                         break;
7015                 default:
7016                         return false;
7017                 }
7018                 break;
7019         case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
7020                                 msg_src_ip6[3]):
7021                 switch (prog->expected_attach_type) {
7022                 case BPF_CGROUP_UDP6_SENDMSG:
7023                         break;
7024                 default:
7025                         return false;
7026                 }
7027                 break;
7028         }
7029
7030         switch (off) {
7031         case bpf_ctx_range(struct bpf_sock_addr, user_ip4):
7032         case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
7033         case bpf_ctx_range(struct bpf_sock_addr, msg_src_ip4):
7034         case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
7035                                 msg_src_ip6[3]):
7036                 if (type == BPF_READ) {
7037                         bpf_ctx_record_field_size(info, size_default);
7038
7039                         if (bpf_ctx_wide_access_ok(off, size,
7040                                                    struct bpf_sock_addr,
7041                                                    user_ip6))
7042                                 return true;
7043
7044                         if (bpf_ctx_wide_access_ok(off, size,
7045                                                    struct bpf_sock_addr,
7046                                                    msg_src_ip6))
7047                                 return true;
7048
7049                         if (!bpf_ctx_narrow_access_ok(off, size, size_default))
7050                                 return false;
7051                 } else {
7052                         if (bpf_ctx_wide_access_ok(off, size,
7053                                                    struct bpf_sock_addr,
7054                                                    user_ip6))
7055                                 return true;
7056
7057                         if (bpf_ctx_wide_access_ok(off, size,
7058                                                    struct bpf_sock_addr,
7059                                                    msg_src_ip6))
7060                                 return true;
7061
7062                         if (size != size_default)
7063                                 return false;
7064                 }
7065                 break;
7066         case bpf_ctx_range(struct bpf_sock_addr, user_port):
7067                 if (size != size_default)
7068                         return false;
7069                 break;
7070         case offsetof(struct bpf_sock_addr, sk):
7071                 if (type != BPF_READ)
7072                         return false;
7073                 if (size != sizeof(__u64))
7074                         return false;
7075                 info->reg_type = PTR_TO_SOCKET;
7076                 break;
7077         default:
7078                 if (type == BPF_READ) {
7079                         if (size != size_default)
7080                                 return false;
7081                 } else {
7082                         return false;
7083                 }
7084         }
7085
7086         return true;
7087 }
7088
7089 static bool sock_ops_is_valid_access(int off, int size,
7090                                      enum bpf_access_type type,
7091                                      const struct bpf_prog *prog,
7092                                      struct bpf_insn_access_aux *info)
7093 {
7094         const int size_default = sizeof(__u32);
7095
7096         if (off < 0 || off >= sizeof(struct bpf_sock_ops))
7097                 return false;
7098
7099         /* The verifier guarantees that size > 0. */
7100         if (off % size != 0)
7101                 return false;
7102
7103         if (type == BPF_WRITE) {
7104                 switch (off) {
7105                 case offsetof(struct bpf_sock_ops, reply):
7106                 case offsetof(struct bpf_sock_ops, sk_txhash):
7107                         if (size != size_default)
7108                                 return false;
7109                         break;
7110                 default:
7111                         return false;
7112                 }
7113         } else {
7114                 switch (off) {
7115                 case bpf_ctx_range_till(struct bpf_sock_ops, bytes_received,
7116                                         bytes_acked):
7117                         if (size != sizeof(__u64))
7118                                 return false;
7119                         break;
7120                 case offsetof(struct bpf_sock_ops, sk):
7121                         if (size != sizeof(__u64))
7122                                 return false;
7123                         info->reg_type = PTR_TO_SOCKET_OR_NULL;
7124                         break;
7125                 default:
7126                         if (size != size_default)
7127                                 return false;
7128                         break;
7129                 }
7130         }
7131
7132         return true;
7133 }
7134
7135 static int sk_skb_prologue(struct bpf_insn *insn_buf, bool direct_write,
7136                            const struct bpf_prog *prog)
7137 {
7138         return bpf_unclone_prologue(insn_buf, direct_write, prog, SK_DROP);
7139 }
7140
7141 static bool sk_skb_is_valid_access(int off, int size,
7142                                    enum bpf_access_type type,
7143                                    const struct bpf_prog *prog,
7144                                    struct bpf_insn_access_aux *info)
7145 {
7146         switch (off) {
7147         case bpf_ctx_range(struct __sk_buff, tc_classid):
7148         case bpf_ctx_range(struct __sk_buff, data_meta):
7149         case bpf_ctx_range(struct __sk_buff, tstamp):
7150         case bpf_ctx_range(struct __sk_buff, wire_len):
7151                 return false;
7152         }
7153
7154         if (type == BPF_WRITE) {
7155                 switch (off) {
7156                 case bpf_ctx_range(struct __sk_buff, tc_index):
7157                 case bpf_ctx_range(struct __sk_buff, priority):
7158                         break;
7159                 default:
7160                         return false;
7161                 }
7162         }
7163
7164         switch (off) {
7165         case bpf_ctx_range(struct __sk_buff, mark):
7166                 return false;
7167         case bpf_ctx_range(struct __sk_buff, data):
7168                 info->reg_type = PTR_TO_PACKET;
7169                 break;
7170         case bpf_ctx_range(struct __sk_buff, data_end):
7171                 info->reg_type = PTR_TO_PACKET_END;
7172                 break;
7173         }
7174
7175         return bpf_skb_is_valid_access(off, size, type, prog, info);
7176 }
7177
7178 static bool sk_msg_is_valid_access(int off, int size,
7179                                    enum bpf_access_type type,
7180                                    const struct bpf_prog *prog,
7181                                    struct bpf_insn_access_aux *info)
7182 {
7183         if (type == BPF_WRITE)
7184                 return false;
7185
7186         if (off % size != 0)
7187                 return false;
7188
7189         switch (off) {
7190         case offsetof(struct sk_msg_md, data):
7191                 info->reg_type = PTR_TO_PACKET;
7192                 if (size != sizeof(__u64))
7193                         return false;
7194                 break;
7195         case offsetof(struct sk_msg_md, data_end):
7196                 info->reg_type = PTR_TO_PACKET_END;
7197                 if (size != sizeof(__u64))
7198                         return false;
7199                 break;
7200         case bpf_ctx_range(struct sk_msg_md, family):
7201         case bpf_ctx_range(struct sk_msg_md, remote_ip4):
7202         case bpf_ctx_range(struct sk_msg_md, local_ip4):
7203         case bpf_ctx_range_till(struct sk_msg_md, remote_ip6[0], remote_ip6[3]):
7204         case bpf_ctx_range_till(struct sk_msg_md, local_ip6[0], local_ip6[3]):
7205         case bpf_ctx_range(struct sk_msg_md, remote_port):
7206         case bpf_ctx_range(struct sk_msg_md, local_port):
7207         case bpf_ctx_range(struct sk_msg_md, size):
7208                 if (size != sizeof(__u32))
7209                         return false;
7210                 break;
7211         default:
7212                 return false;
7213         }
7214         return true;
7215 }
7216
7217 static bool flow_dissector_is_valid_access(int off, int size,
7218                                            enum bpf_access_type type,
7219                                            const struct bpf_prog *prog,
7220                                            struct bpf_insn_access_aux *info)
7221 {
7222         const int size_default = sizeof(__u32);
7223
7224         if (off < 0 || off >= sizeof(struct __sk_buff))
7225                 return false;
7226
7227         if (type == BPF_WRITE)
7228                 return false;
7229
7230         switch (off) {
7231         case bpf_ctx_range(struct __sk_buff, data):
7232                 if (size != size_default)
7233                         return false;
7234                 info->reg_type = PTR_TO_PACKET;
7235                 return true;
7236         case bpf_ctx_range(struct __sk_buff, data_end):
7237                 if (size != size_default)
7238                         return false;
7239                 info->reg_type = PTR_TO_PACKET_END;
7240                 return true;
7241         case bpf_ctx_range_ptr(struct __sk_buff, flow_keys):
7242                 if (size != sizeof(__u64))
7243                         return false;
7244                 info->reg_type = PTR_TO_FLOW_KEYS;
7245                 return true;
7246         default:
7247                 return false;
7248         }
7249 }
7250
7251 static u32 flow_dissector_convert_ctx_access(enum bpf_access_type type,
7252                                              const struct bpf_insn *si,
7253                                              struct bpf_insn *insn_buf,
7254                                              struct bpf_prog *prog,
7255                                              u32 *target_size)
7256
7257 {
7258         struct bpf_insn *insn = insn_buf;
7259
7260         switch (si->off) {
7261         case offsetof(struct __sk_buff, data):
7262                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, data),
7263                                       si->dst_reg, si->src_reg,
7264                                       offsetof(struct bpf_flow_dissector, data));
7265                 break;
7266
7267         case offsetof(struct __sk_buff, data_end):
7268                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, data_end),
7269                                       si->dst_reg, si->src_reg,
7270                                       offsetof(struct bpf_flow_dissector, data_end));
7271                 break;
7272
7273         case offsetof(struct __sk_buff, flow_keys):
7274                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, flow_keys),
7275                                       si->dst_reg, si->src_reg,
7276                                       offsetof(struct bpf_flow_dissector, flow_keys));
7277                 break;
7278         }
7279
7280         return insn - insn_buf;
7281 }
7282
7283 static struct bpf_insn *bpf_convert_shinfo_access(const struct bpf_insn *si,
7284                                                   struct bpf_insn *insn)
7285 {
7286         /* si->dst_reg = skb_shinfo(SKB); */
7287 #ifdef NET_SKBUFF_DATA_USES_OFFSET
7288         *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, end),
7289                               BPF_REG_AX, si->src_reg,
7290                               offsetof(struct sk_buff, end));
7291         *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, head),
7292                               si->dst_reg, si->src_reg,
7293                               offsetof(struct sk_buff, head));
7294         *insn++ = BPF_ALU64_REG(BPF_ADD, si->dst_reg, BPF_REG_AX);
7295 #else
7296         *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, end),
7297                               si->dst_reg, si->src_reg,
7298                               offsetof(struct sk_buff, end));
7299 #endif
7300
7301         return insn;
7302 }
7303
7304 static u32 bpf_convert_ctx_access(enum bpf_access_type type,
7305                                   const struct bpf_insn *si,
7306                                   struct bpf_insn *insn_buf,
7307                                   struct bpf_prog *prog, u32 *target_size)
7308 {
7309         struct bpf_insn *insn = insn_buf;
7310         int off;
7311
7312         switch (si->off) {
7313         case offsetof(struct __sk_buff, len):
7314                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
7315                                       bpf_target_off(struct sk_buff, len, 4,
7316                                                      target_size));
7317                 break;
7318
7319         case offsetof(struct __sk_buff, protocol):
7320                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
7321                                       bpf_target_off(struct sk_buff, protocol, 2,
7322                                                      target_size));
7323                 break;
7324
7325         case offsetof(struct __sk_buff, vlan_proto):
7326                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
7327                                       bpf_target_off(struct sk_buff, vlan_proto, 2,
7328                                                      target_size));
7329                 break;
7330
7331         case offsetof(struct __sk_buff, priority):
7332                 if (type == BPF_WRITE)
7333                         *insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
7334                                               bpf_target_off(struct sk_buff, priority, 4,
7335                                                              target_size));
7336                 else
7337                         *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
7338                                               bpf_target_off(struct sk_buff, priority, 4,
7339                                                              target_size));
7340                 break;
7341
7342         case offsetof(struct __sk_buff, ingress_ifindex):
7343                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
7344                                       bpf_target_off(struct sk_buff, skb_iif, 4,
7345                                                      target_size));
7346                 break;
7347
7348         case offsetof(struct __sk_buff, ifindex):
7349                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
7350                                       si->dst_reg, si->src_reg,
7351                                       offsetof(struct sk_buff, dev));
7352                 *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
7353                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
7354                                       bpf_target_off(struct net_device, ifindex, 4,
7355                                                      target_size));
7356                 break;
7357
7358         case offsetof(struct __sk_buff, hash):
7359                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
7360                                       bpf_target_off(struct sk_buff, hash, 4,
7361                                                      target_size));
7362                 break;
7363
7364         case offsetof(struct __sk_buff, mark):
7365                 if (type == BPF_WRITE)
7366                         *insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
7367                                               bpf_target_off(struct sk_buff, mark, 4,
7368                                                              target_size));
7369                 else
7370                         *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
7371                                               bpf_target_off(struct sk_buff, mark, 4,
7372                                                              target_size));
7373                 break;
7374
7375         case offsetof(struct __sk_buff, pkt_type):
7376                 *target_size = 1;
7377                 *insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->src_reg,
7378                                       PKT_TYPE_OFFSET());
7379                 *insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, PKT_TYPE_MAX);
7380 #ifdef __BIG_ENDIAN_BITFIELD
7381                 *insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, 5);
7382 #endif
7383                 break;
7384
7385         case offsetof(struct __sk_buff, queue_mapping):
7386                 if (type == BPF_WRITE) {
7387                         *insn++ = BPF_JMP_IMM(BPF_JGE, si->src_reg, NO_QUEUE_MAPPING, 1);
7388                         *insn++ = BPF_STX_MEM(BPF_H, si->dst_reg, si->src_reg,
7389                                               bpf_target_off(struct sk_buff,
7390                                                              queue_mapping,
7391                                                              2, target_size));
7392                 } else {
7393                         *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
7394                                               bpf_target_off(struct sk_buff,
7395                                                              queue_mapping,
7396                                                              2, target_size));
7397                 }
7398                 break;
7399
7400         case offsetof(struct __sk_buff, vlan_present):
7401                 *target_size = 1;
7402                 *insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->src_reg,
7403                                       PKT_VLAN_PRESENT_OFFSET());
7404                 if (PKT_VLAN_PRESENT_BIT)
7405                         *insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, PKT_VLAN_PRESENT_BIT);
7406                 if (PKT_VLAN_PRESENT_BIT < 7)
7407                         *insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, 1);
7408                 break;
7409
7410         case offsetof(struct __sk_buff, vlan_tci):
7411                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
7412                                       bpf_target_off(struct sk_buff, vlan_tci, 2,
7413                                                      target_size));
7414                 break;
7415
7416         case offsetof(struct __sk_buff, cb[0]) ...
7417              offsetofend(struct __sk_buff, cb[4]) - 1:
7418                 BUILD_BUG_ON(sizeof_field(struct qdisc_skb_cb, data) < 20);
7419                 BUILD_BUG_ON((offsetof(struct sk_buff, cb) +
7420                               offsetof(struct qdisc_skb_cb, data)) %
7421                              sizeof(__u64));
7422
7423                 prog->cb_access = 1;
7424                 off  = si->off;
7425                 off -= offsetof(struct __sk_buff, cb[0]);
7426                 off += offsetof(struct sk_buff, cb);
7427                 off += offsetof(struct qdisc_skb_cb, data);
7428                 if (type == BPF_WRITE)
7429                         *insn++ = BPF_STX_MEM(BPF_SIZE(si->code), si->dst_reg,
7430                                               si->src_reg, off);
7431                 else
7432                         *insn++ = BPF_LDX_MEM(BPF_SIZE(si->code), si->dst_reg,
7433                                               si->src_reg, off);
7434                 break;
7435
7436         case offsetof(struct __sk_buff, tc_classid):
7437                 BUILD_BUG_ON(sizeof_field(struct qdisc_skb_cb, tc_classid) != 2);
7438
7439                 off  = si->off;
7440                 off -= offsetof(struct __sk_buff, tc_classid);
7441                 off += offsetof(struct sk_buff, cb);
7442                 off += offsetof(struct qdisc_skb_cb, tc_classid);
7443                 *target_size = 2;
7444                 if (type == BPF_WRITE)
7445                         *insn++ = BPF_STX_MEM(BPF_H, si->dst_reg,
7446                                               si->src_reg, off);
7447                 else
7448                         *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg,
7449                                               si->src_reg, off);
7450                 break;
7451
7452         case offsetof(struct __sk_buff, data):
7453                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
7454                                       si->dst_reg, si->src_reg,
7455                                       offsetof(struct sk_buff, data));
7456                 break;
7457
7458         case offsetof(struct __sk_buff, data_meta):
7459                 off  = si->off;
7460                 off -= offsetof(struct __sk_buff, data_meta);
7461                 off += offsetof(struct sk_buff, cb);
7462                 off += offsetof(struct bpf_skb_data_end, data_meta);
7463                 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
7464                                       si->src_reg, off);
7465                 break;
7466
7467         case offsetof(struct __sk_buff, data_end):
7468                 off  = si->off;
7469                 off -= offsetof(struct __sk_buff, data_end);
7470                 off += offsetof(struct sk_buff, cb);
7471                 off += offsetof(struct bpf_skb_data_end, data_end);
7472                 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
7473                                       si->src_reg, off);
7474                 break;
7475
7476         case offsetof(struct __sk_buff, tc_index):
7477 #ifdef CONFIG_NET_SCHED
7478                 if (type == BPF_WRITE)
7479                         *insn++ = BPF_STX_MEM(BPF_H, si->dst_reg, si->src_reg,
7480                                               bpf_target_off(struct sk_buff, tc_index, 2,
7481                                                              target_size));
7482                 else
7483                         *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
7484                                               bpf_target_off(struct sk_buff, tc_index, 2,
7485                                                              target_size));
7486 #else
7487                 *target_size = 2;
7488                 if (type == BPF_WRITE)
7489                         *insn++ = BPF_MOV64_REG(si->dst_reg, si->dst_reg);
7490                 else
7491                         *insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
7492 #endif
7493                 break;
7494
7495         case offsetof(struct __sk_buff, napi_id):
7496 #if defined(CONFIG_NET_RX_BUSY_POLL)
7497                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
7498                                       bpf_target_off(struct sk_buff, napi_id, 4,
7499                                                      target_size));
7500                 *insn++ = BPF_JMP_IMM(BPF_JGE, si->dst_reg, MIN_NAPI_ID, 1);
7501                 *insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
7502 #else
7503                 *target_size = 4;
7504                 *insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
7505 #endif
7506                 break;
7507         case offsetof(struct __sk_buff, family):
7508                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_family) != 2);
7509
7510                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
7511                                       si->dst_reg, si->src_reg,
7512                                       offsetof(struct sk_buff, sk));
7513                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
7514                                       bpf_target_off(struct sock_common,
7515                                                      skc_family,
7516                                                      2, target_size));
7517                 break;
7518         case offsetof(struct __sk_buff, remote_ip4):
7519                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_daddr) != 4);
7520
7521                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
7522                                       si->dst_reg, si->src_reg,
7523                                       offsetof(struct sk_buff, sk));
7524                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
7525                                       bpf_target_off(struct sock_common,
7526                                                      skc_daddr,
7527                                                      4, target_size));
7528                 break;
7529         case offsetof(struct __sk_buff, local_ip4):
7530                 BUILD_BUG_ON(sizeof_field(struct sock_common,
7531                                           skc_rcv_saddr) != 4);
7532
7533                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
7534                                       si->dst_reg, si->src_reg,
7535                                       offsetof(struct sk_buff, sk));
7536                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
7537                                       bpf_target_off(struct sock_common,
7538                                                      skc_rcv_saddr,
7539                                                      4, target_size));
7540                 break;
7541         case offsetof(struct __sk_buff, remote_ip6[0]) ...
7542              offsetof(struct __sk_buff, remote_ip6[3]):
7543 #if IS_ENABLED(CONFIG_IPV6)
7544                 BUILD_BUG_ON(sizeof_field(struct sock_common,
7545                                           skc_v6_daddr.s6_addr32[0]) != 4);
7546
7547                 off = si->off;
7548                 off -= offsetof(struct __sk_buff, remote_ip6[0]);
7549
7550                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
7551                                       si->dst_reg, si->src_reg,
7552                                       offsetof(struct sk_buff, sk));
7553                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
7554                                       offsetof(struct sock_common,
7555                                                skc_v6_daddr.s6_addr32[0]) +
7556                                       off);
7557 #else
7558                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
7559 #endif
7560                 break;
7561         case offsetof(struct __sk_buff, local_ip6[0]) ...
7562              offsetof(struct __sk_buff, local_ip6[3]):
7563 #if IS_ENABLED(CONFIG_IPV6)
7564                 BUILD_BUG_ON(sizeof_field(struct sock_common,
7565                                           skc_v6_rcv_saddr.s6_addr32[0]) != 4);
7566
7567                 off = si->off;
7568                 off -= offsetof(struct __sk_buff, local_ip6[0]);
7569
7570                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
7571                                       si->dst_reg, si->src_reg,
7572                                       offsetof(struct sk_buff, sk));
7573                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
7574                                       offsetof(struct sock_common,
7575                                                skc_v6_rcv_saddr.s6_addr32[0]) +
7576                                       off);
7577 #else
7578                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
7579 #endif
7580                 break;
7581
7582         case offsetof(struct __sk_buff, remote_port):
7583                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_dport) != 2);
7584
7585                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
7586                                       si->dst_reg, si->src_reg,
7587                                       offsetof(struct sk_buff, sk));
7588                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
7589                                       bpf_target_off(struct sock_common,
7590                                                      skc_dport,
7591                                                      2, target_size));
7592 #ifndef __BIG_ENDIAN_BITFIELD
7593                 *insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
7594 #endif
7595                 break;
7596
7597         case offsetof(struct __sk_buff, local_port):
7598                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_num) != 2);
7599
7600                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
7601                                       si->dst_reg, si->src_reg,
7602                                       offsetof(struct sk_buff, sk));
7603                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
7604                                       bpf_target_off(struct sock_common,
7605                                                      skc_num, 2, target_size));
7606                 break;
7607
7608         case offsetof(struct __sk_buff, tstamp):
7609                 BUILD_BUG_ON(sizeof_field(struct sk_buff, tstamp) != 8);
7610
7611                 if (type == BPF_WRITE)
7612                         *insn++ = BPF_STX_MEM(BPF_DW,
7613                                               si->dst_reg, si->src_reg,
7614                                               bpf_target_off(struct sk_buff,
7615                                                              tstamp, 8,
7616                                                              target_size));
7617                 else
7618                         *insn++ = BPF_LDX_MEM(BPF_DW,
7619                                               si->dst_reg, si->src_reg,
7620                                               bpf_target_off(struct sk_buff,
7621                                                              tstamp, 8,
7622                                                              target_size));
7623                 break;
7624
7625         case offsetof(struct __sk_buff, gso_segs):
7626                 insn = bpf_convert_shinfo_access(si, insn);
7627                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct skb_shared_info, gso_segs),
7628                                       si->dst_reg, si->dst_reg,
7629                                       bpf_target_off(struct skb_shared_info,
7630                                                      gso_segs, 2,
7631                                                      target_size));
7632                 break;
7633         case offsetof(struct __sk_buff, gso_size):
7634                 insn = bpf_convert_shinfo_access(si, insn);
7635                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct skb_shared_info, gso_size),
7636                                       si->dst_reg, si->dst_reg,
7637                                       bpf_target_off(struct skb_shared_info,
7638                                                      gso_size, 2,
7639                                                      target_size));
7640                 break;
7641         case offsetof(struct __sk_buff, wire_len):
7642                 BUILD_BUG_ON(sizeof_field(struct qdisc_skb_cb, pkt_len) != 4);
7643
7644                 off = si->off;
7645                 off -= offsetof(struct __sk_buff, wire_len);
7646                 off += offsetof(struct sk_buff, cb);
7647                 off += offsetof(struct qdisc_skb_cb, pkt_len);
7648                 *target_size = 4;
7649                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg, off);
7650                 break;
7651
7652         case offsetof(struct __sk_buff, sk):
7653                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
7654                                       si->dst_reg, si->src_reg,
7655                                       offsetof(struct sk_buff, sk));
7656                 break;
7657         }
7658
7659         return insn - insn_buf;
7660 }
7661
7662 u32 bpf_sock_convert_ctx_access(enum bpf_access_type type,
7663                                 const struct bpf_insn *si,
7664                                 struct bpf_insn *insn_buf,
7665                                 struct bpf_prog *prog, u32 *target_size)
7666 {
7667         struct bpf_insn *insn = insn_buf;
7668         int off;
7669
7670         switch (si->off) {
7671         case offsetof(struct bpf_sock, bound_dev_if):
7672                 BUILD_BUG_ON(sizeof_field(struct sock, sk_bound_dev_if) != 4);
7673
7674                 if (type == BPF_WRITE)
7675                         *insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
7676                                         offsetof(struct sock, sk_bound_dev_if));
7677                 else
7678                         *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
7679                                       offsetof(struct sock, sk_bound_dev_if));
7680                 break;
7681
7682         case offsetof(struct bpf_sock, mark):
7683                 BUILD_BUG_ON(sizeof_field(struct sock, sk_mark) != 4);
7684
7685                 if (type == BPF_WRITE)
7686                         *insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
7687                                         offsetof(struct sock, sk_mark));
7688                 else
7689                         *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
7690                                       offsetof(struct sock, sk_mark));
7691                 break;
7692
7693         case offsetof(struct bpf_sock, priority):
7694                 BUILD_BUG_ON(sizeof_field(struct sock, sk_priority) != 4);
7695
7696                 if (type == BPF_WRITE)
7697                         *insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
7698                                         offsetof(struct sock, sk_priority));
7699                 else
7700                         *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
7701                                       offsetof(struct sock, sk_priority));
7702                 break;
7703
7704         case offsetof(struct bpf_sock, family):
7705                 *insn++ = BPF_LDX_MEM(
7706                         BPF_FIELD_SIZEOF(struct sock_common, skc_family),
7707                         si->dst_reg, si->src_reg,
7708                         bpf_target_off(struct sock_common,
7709                                        skc_family,
7710                                        sizeof_field(struct sock_common,
7711                                                     skc_family),
7712                                        target_size));
7713                 break;
7714
7715         case offsetof(struct bpf_sock, type):
7716                 *insn++ = BPF_LDX_MEM(
7717                         BPF_FIELD_SIZEOF(struct sock, sk_type),
7718                         si->dst_reg, si->src_reg,
7719                         bpf_target_off(struct sock, sk_type,
7720                                        sizeof_field(struct sock, sk_type),
7721                                        target_size));
7722                 break;
7723
7724         case offsetof(struct bpf_sock, protocol):
7725                 *insn++ = BPF_LDX_MEM(
7726                         BPF_FIELD_SIZEOF(struct sock, sk_protocol),
7727                         si->dst_reg, si->src_reg,
7728                         bpf_target_off(struct sock, sk_protocol,
7729                                        sizeof_field(struct sock, sk_protocol),
7730                                        target_size));
7731                 break;
7732
7733         case offsetof(struct bpf_sock, src_ip4):
7734                 *insn++ = BPF_LDX_MEM(
7735                         BPF_SIZE(si->code), si->dst_reg, si->src_reg,
7736                         bpf_target_off(struct sock_common, skc_rcv_saddr,
7737                                        sizeof_field(struct sock_common,
7738                                                     skc_rcv_saddr),
7739                                        target_size));
7740                 break;
7741
7742         case offsetof(struct bpf_sock, dst_ip4):
7743                 *insn++ = BPF_LDX_MEM(
7744                         BPF_SIZE(si->code), si->dst_reg, si->src_reg,
7745                         bpf_target_off(struct sock_common, skc_daddr,
7746                                        sizeof_field(struct sock_common,
7747                                                     skc_daddr),
7748                                        target_size));
7749                 break;
7750
7751         case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
7752 #if IS_ENABLED(CONFIG_IPV6)
7753                 off = si->off;
7754                 off -= offsetof(struct bpf_sock, src_ip6[0]);
7755                 *insn++ = BPF_LDX_MEM(
7756                         BPF_SIZE(si->code), si->dst_reg, si->src_reg,
7757                         bpf_target_off(
7758                                 struct sock_common,
7759                                 skc_v6_rcv_saddr.s6_addr32[0],
7760                                 sizeof_field(struct sock_common,
7761                                              skc_v6_rcv_saddr.s6_addr32[0]),
7762                                 target_size) + off);
7763 #else
7764                 (void)off;
7765                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
7766 #endif
7767                 break;
7768
7769         case bpf_ctx_range_till(struct bpf_sock, dst_ip6[0], dst_ip6[3]):
7770 #if IS_ENABLED(CONFIG_IPV6)
7771                 off = si->off;
7772                 off -= offsetof(struct bpf_sock, dst_ip6[0]);
7773                 *insn++ = BPF_LDX_MEM(
7774                         BPF_SIZE(si->code), si->dst_reg, si->src_reg,
7775                         bpf_target_off(struct sock_common,
7776                                        skc_v6_daddr.s6_addr32[0],
7777                                        sizeof_field(struct sock_common,
7778                                                     skc_v6_daddr.s6_addr32[0]),
7779                                        target_size) + off);
7780 #else
7781                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
7782                 *target_size = 4;
7783 #endif
7784                 break;
7785
7786         case offsetof(struct bpf_sock, src_port):
7787                 *insn++ = BPF_LDX_MEM(
7788                         BPF_FIELD_SIZEOF(struct sock_common, skc_num),
7789                         si->dst_reg, si->src_reg,
7790                         bpf_target_off(struct sock_common, skc_num,
7791                                        sizeof_field(struct sock_common,
7792                                                     skc_num),
7793                                        target_size));
7794                 break;
7795
7796         case offsetof(struct bpf_sock, dst_port):
7797                 *insn++ = BPF_LDX_MEM(
7798                         BPF_FIELD_SIZEOF(struct sock_common, skc_dport),
7799                         si->dst_reg, si->src_reg,
7800                         bpf_target_off(struct sock_common, skc_dport,
7801                                        sizeof_field(struct sock_common,
7802                                                     skc_dport),
7803                                        target_size));
7804                 break;
7805
7806         case offsetof(struct bpf_sock, state):
7807                 *insn++ = BPF_LDX_MEM(
7808                         BPF_FIELD_SIZEOF(struct sock_common, skc_state),
7809                         si->dst_reg, si->src_reg,
7810                         bpf_target_off(struct sock_common, skc_state,
7811                                        sizeof_field(struct sock_common,
7812                                                     skc_state),
7813                                        target_size));
7814                 break;
7815         }
7816
7817         return insn - insn_buf;
7818 }
7819
7820 static u32 tc_cls_act_convert_ctx_access(enum bpf_access_type type,
7821                                          const struct bpf_insn *si,
7822                                          struct bpf_insn *insn_buf,
7823                                          struct bpf_prog *prog, u32 *target_size)
7824 {
7825         struct bpf_insn *insn = insn_buf;
7826
7827         switch (si->off) {
7828         case offsetof(struct __sk_buff, ifindex):
7829                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
7830                                       si->dst_reg, si->src_reg,
7831                                       offsetof(struct sk_buff, dev));
7832                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
7833                                       bpf_target_off(struct net_device, ifindex, 4,
7834                                                      target_size));
7835                 break;
7836         default:
7837                 return bpf_convert_ctx_access(type, si, insn_buf, prog,
7838                                               target_size);
7839         }
7840
7841         return insn - insn_buf;
7842 }
7843
7844 static u32 xdp_convert_ctx_access(enum bpf_access_type type,
7845                                   const struct bpf_insn *si,
7846                                   struct bpf_insn *insn_buf,
7847                                   struct bpf_prog *prog, u32 *target_size)
7848 {
7849         struct bpf_insn *insn = insn_buf;
7850
7851         switch (si->off) {
7852         case offsetof(struct xdp_md, data):
7853                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data),
7854                                       si->dst_reg, si->src_reg,
7855                                       offsetof(struct xdp_buff, data));
7856                 break;
7857         case offsetof(struct xdp_md, data_meta):
7858                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data_meta),
7859                                       si->dst_reg, si->src_reg,
7860                                       offsetof(struct xdp_buff, data_meta));
7861                 break;
7862         case offsetof(struct xdp_md, data_end):
7863                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data_end),
7864                                       si->dst_reg, si->src_reg,
7865                                       offsetof(struct xdp_buff, data_end));
7866                 break;
7867         case offsetof(struct xdp_md, ingress_ifindex):
7868                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, rxq),
7869                                       si->dst_reg, si->src_reg,
7870                                       offsetof(struct xdp_buff, rxq));
7871                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_rxq_info, dev),
7872                                       si->dst_reg, si->dst_reg,
7873                                       offsetof(struct xdp_rxq_info, dev));
7874                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
7875                                       offsetof(struct net_device, ifindex));
7876                 break;
7877         case offsetof(struct xdp_md, rx_queue_index):
7878                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, rxq),
7879                                       si->dst_reg, si->src_reg,
7880                                       offsetof(struct xdp_buff, rxq));
7881                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
7882                                       offsetof(struct xdp_rxq_info,
7883                                                queue_index));
7884                 break;
7885         }
7886
7887         return insn - insn_buf;
7888 }
7889
7890 /* SOCK_ADDR_LOAD_NESTED_FIELD() loads Nested Field S.F.NF where S is type of
7891  * context Structure, F is Field in context structure that contains a pointer
7892  * to Nested Structure of type NS that has the field NF.
7893  *
7894  * SIZE encodes the load size (BPF_B, BPF_H, etc). It's up to caller to make
7895  * sure that SIZE is not greater than actual size of S.F.NF.
7896  *
7897  * If offset OFF is provided, the load happens from that offset relative to
7898  * offset of NF.
7899  */
7900 #define SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(S, NS, F, NF, SIZE, OFF)          \
7901         do {                                                                   \
7902                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(S, F), si->dst_reg,     \
7903                                       si->src_reg, offsetof(S, F));            \
7904                 *insn++ = BPF_LDX_MEM(                                         \
7905                         SIZE, si->dst_reg, si->dst_reg,                        \
7906                         bpf_target_off(NS, NF, sizeof_field(NS, NF),           \
7907                                        target_size)                            \
7908                                 + OFF);                                        \
7909         } while (0)
7910
7911 #define SOCK_ADDR_LOAD_NESTED_FIELD(S, NS, F, NF)                              \
7912         SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(S, NS, F, NF,                     \
7913                                              BPF_FIELD_SIZEOF(NS, NF), 0)
7914
7915 /* SOCK_ADDR_STORE_NESTED_FIELD_OFF() has semantic similar to
7916  * SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF() but for store operation.
7917  *
7918  * In addition it uses Temporary Field TF (member of struct S) as the 3rd
7919  * "register" since two registers available in convert_ctx_access are not
7920  * enough: we can't override neither SRC, since it contains value to store, nor
7921  * DST since it contains pointer to context that may be used by later
7922  * instructions. But we need a temporary place to save pointer to nested
7923  * structure whose field we want to store to.
7924  */
7925 #define SOCK_ADDR_STORE_NESTED_FIELD_OFF(S, NS, F, NF, SIZE, OFF, TF)          \
7926         do {                                                                   \
7927                 int tmp_reg = BPF_REG_9;                                       \
7928                 if (si->src_reg == tmp_reg || si->dst_reg == tmp_reg)          \
7929                         --tmp_reg;                                             \
7930                 if (si->src_reg == tmp_reg || si->dst_reg == tmp_reg)          \
7931                         --tmp_reg;                                             \
7932                 *insn++ = BPF_STX_MEM(BPF_DW, si->dst_reg, tmp_reg,            \
7933                                       offsetof(S, TF));                        \
7934                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(S, F), tmp_reg,         \
7935                                       si->dst_reg, offsetof(S, F));            \
7936                 *insn++ = BPF_STX_MEM(SIZE, tmp_reg, si->src_reg,              \
7937                         bpf_target_off(NS, NF, sizeof_field(NS, NF),           \
7938                                        target_size)                            \
7939                                 + OFF);                                        \
7940                 *insn++ = BPF_LDX_MEM(BPF_DW, tmp_reg, si->dst_reg,            \
7941                                       offsetof(S, TF));                        \
7942         } while (0)
7943
7944 #define SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(S, NS, F, NF, SIZE, OFF, \
7945                                                       TF)                      \
7946         do {                                                                   \
7947                 if (type == BPF_WRITE) {                                       \
7948                         SOCK_ADDR_STORE_NESTED_FIELD_OFF(S, NS, F, NF, SIZE,   \
7949                                                          OFF, TF);             \
7950                 } else {                                                       \
7951                         SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(                  \
7952                                 S, NS, F, NF, SIZE, OFF);  \
7953                 }                                                              \
7954         } while (0)
7955
7956 #define SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD(S, NS, F, NF, TF)                 \
7957         SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(                         \
7958                 S, NS, F, NF, BPF_FIELD_SIZEOF(NS, NF), 0, TF)
7959
7960 static u32 sock_addr_convert_ctx_access(enum bpf_access_type type,
7961                                         const struct bpf_insn *si,
7962                                         struct bpf_insn *insn_buf,
7963                                         struct bpf_prog *prog, u32 *target_size)
7964 {
7965         struct bpf_insn *insn = insn_buf;
7966         int off;
7967
7968         switch (si->off) {
7969         case offsetof(struct bpf_sock_addr, user_family):
7970                 SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
7971                                             struct sockaddr, uaddr, sa_family);
7972                 break;
7973
7974         case offsetof(struct bpf_sock_addr, user_ip4):
7975                 SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
7976                         struct bpf_sock_addr_kern, struct sockaddr_in, uaddr,
7977                         sin_addr, BPF_SIZE(si->code), 0, tmp_reg);
7978                 break;
7979
7980         case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
7981                 off = si->off;
7982                 off -= offsetof(struct bpf_sock_addr, user_ip6[0]);
7983                 SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
7984                         struct bpf_sock_addr_kern, struct sockaddr_in6, uaddr,
7985                         sin6_addr.s6_addr32[0], BPF_SIZE(si->code), off,
7986                         tmp_reg);
7987                 break;
7988
7989         case offsetof(struct bpf_sock_addr, user_port):
7990                 /* To get port we need to know sa_family first and then treat
7991                  * sockaddr as either sockaddr_in or sockaddr_in6.
7992                  * Though we can simplify since port field has same offset and
7993                  * size in both structures.
7994                  * Here we check this invariant and use just one of the
7995                  * structures if it's true.
7996                  */
7997                 BUILD_BUG_ON(offsetof(struct sockaddr_in, sin_port) !=
7998                              offsetof(struct sockaddr_in6, sin6_port));
7999                 BUILD_BUG_ON(sizeof_field(struct sockaddr_in, sin_port) !=
8000                              sizeof_field(struct sockaddr_in6, sin6_port));
8001                 SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD(struct bpf_sock_addr_kern,
8002                                                      struct sockaddr_in6, uaddr,
8003                                                      sin6_port, tmp_reg);
8004                 break;
8005
8006         case offsetof(struct bpf_sock_addr, family):
8007                 SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
8008                                             struct sock, sk, sk_family);
8009                 break;
8010
8011         case offsetof(struct bpf_sock_addr, type):
8012                 SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
8013                                             struct sock, sk, sk_type);
8014                 break;
8015
8016         case offsetof(struct bpf_sock_addr, protocol):
8017                 SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
8018                                             struct sock, sk, sk_protocol);
8019                 break;
8020
8021         case offsetof(struct bpf_sock_addr, msg_src_ip4):
8022                 /* Treat t_ctx as struct in_addr for msg_src_ip4. */
8023                 SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
8024                         struct bpf_sock_addr_kern, struct in_addr, t_ctx,
8025                         s_addr, BPF_SIZE(si->code), 0, tmp_reg);
8026                 break;
8027
8028         case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
8029                                 msg_src_ip6[3]):
8030                 off = si->off;
8031                 off -= offsetof(struct bpf_sock_addr, msg_src_ip6[0]);
8032                 /* Treat t_ctx as struct in6_addr for msg_src_ip6. */
8033                 SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
8034                         struct bpf_sock_addr_kern, struct in6_addr, t_ctx,
8035                         s6_addr32[0], BPF_SIZE(si->code), off, tmp_reg);
8036                 break;
8037         case offsetof(struct bpf_sock_addr, sk):
8038                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_addr_kern, sk),
8039                                       si->dst_reg, si->src_reg,
8040                                       offsetof(struct bpf_sock_addr_kern, sk));
8041                 break;
8042         }
8043
8044         return insn - insn_buf;
8045 }
8046
8047 static u32 sock_ops_convert_ctx_access(enum bpf_access_type type,
8048                                        const struct bpf_insn *si,
8049                                        struct bpf_insn *insn_buf,
8050                                        struct bpf_prog *prog,
8051                                        u32 *target_size)
8052 {
8053         struct bpf_insn *insn = insn_buf;
8054         int off;
8055
8056 /* Helper macro for adding read access to tcp_sock or sock fields. */
8057 #define SOCK_OPS_GET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ)                         \
8058         do {                                                                  \
8059                 BUILD_BUG_ON(sizeof_field(OBJ, OBJ_FIELD) >                   \
8060                              sizeof_field(struct bpf_sock_ops, BPF_FIELD));   \
8061                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(                       \
8062                                                 struct bpf_sock_ops_kern,     \
8063                                                 is_fullsock),                 \
8064                                       si->dst_reg, si->src_reg,               \
8065                                       offsetof(struct bpf_sock_ops_kern,      \
8066                                                is_fullsock));                 \
8067                 *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 2);            \
8068                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(                       \
8069                                                 struct bpf_sock_ops_kern, sk),\
8070                                       si->dst_reg, si->src_reg,               \
8071                                       offsetof(struct bpf_sock_ops_kern, sk));\
8072                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(OBJ,                   \
8073                                                        OBJ_FIELD),            \
8074                                       si->dst_reg, si->dst_reg,               \
8075                                       offsetof(OBJ, OBJ_FIELD));              \
8076         } while (0)
8077
8078 #define SOCK_OPS_GET_TCP_SOCK_FIELD(FIELD) \
8079                 SOCK_OPS_GET_FIELD(FIELD, FIELD, struct tcp_sock)
8080
8081 /* Helper macro for adding write access to tcp_sock or sock fields.
8082  * The macro is called with two registers, dst_reg which contains a pointer
8083  * to ctx (context) and src_reg which contains the value that should be
8084  * stored. However, we need an additional register since we cannot overwrite
8085  * dst_reg because it may be used later in the program.
8086  * Instead we "borrow" one of the other register. We first save its value
8087  * into a new (temp) field in bpf_sock_ops_kern, use it, and then restore
8088  * it at the end of the macro.
8089  */
8090 #define SOCK_OPS_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ)                         \
8091         do {                                                                  \
8092                 int reg = BPF_REG_9;                                          \
8093                 BUILD_BUG_ON(sizeof_field(OBJ, OBJ_FIELD) >                   \
8094                              sizeof_field(struct bpf_sock_ops, BPF_FIELD));   \
8095                 if (si->dst_reg == reg || si->src_reg == reg)                 \
8096                         reg--;                                                \
8097                 if (si->dst_reg == reg || si->src_reg == reg)                 \
8098                         reg--;                                                \
8099                 *insn++ = BPF_STX_MEM(BPF_DW, si->dst_reg, reg,               \
8100                                       offsetof(struct bpf_sock_ops_kern,      \
8101                                                temp));                        \
8102                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(                       \
8103                                                 struct bpf_sock_ops_kern,     \
8104                                                 is_fullsock),                 \
8105                                       reg, si->dst_reg,                       \
8106                                       offsetof(struct bpf_sock_ops_kern,      \
8107                                                is_fullsock));                 \
8108                 *insn++ = BPF_JMP_IMM(BPF_JEQ, reg, 0, 2);                    \
8109                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(                       \
8110                                                 struct bpf_sock_ops_kern, sk),\
8111                                       reg, si->dst_reg,                       \
8112                                       offsetof(struct bpf_sock_ops_kern, sk));\
8113                 *insn++ = BPF_STX_MEM(BPF_FIELD_SIZEOF(OBJ, OBJ_FIELD),       \
8114                                       reg, si->src_reg,                       \
8115                                       offsetof(OBJ, OBJ_FIELD));              \
8116                 *insn++ = BPF_LDX_MEM(BPF_DW, reg, si->dst_reg,               \
8117                                       offsetof(struct bpf_sock_ops_kern,      \
8118                                                temp));                        \
8119         } while (0)
8120
8121 #define SOCK_OPS_GET_OR_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ, TYPE)            \
8122         do {                                                                  \
8123                 if (TYPE == BPF_WRITE)                                        \
8124                         SOCK_OPS_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ);        \
8125                 else                                                          \
8126                         SOCK_OPS_GET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ);        \
8127         } while (0)
8128
8129         if (insn > insn_buf)
8130                 return insn - insn_buf;
8131
8132         switch (si->off) {
8133         case offsetof(struct bpf_sock_ops, op) ...
8134              offsetof(struct bpf_sock_ops, replylong[3]):
8135                 BUILD_BUG_ON(sizeof_field(struct bpf_sock_ops, op) !=
8136                              sizeof_field(struct bpf_sock_ops_kern, op));
8137                 BUILD_BUG_ON(sizeof_field(struct bpf_sock_ops, reply) !=
8138                              sizeof_field(struct bpf_sock_ops_kern, reply));
8139                 BUILD_BUG_ON(sizeof_field(struct bpf_sock_ops, replylong) !=
8140                              sizeof_field(struct bpf_sock_ops_kern, replylong));
8141                 off = si->off;
8142                 off -= offsetof(struct bpf_sock_ops, op);
8143                 off += offsetof(struct bpf_sock_ops_kern, op);
8144                 if (type == BPF_WRITE)
8145                         *insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
8146                                               off);
8147                 else
8148                         *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
8149                                               off);
8150                 break;
8151
8152         case offsetof(struct bpf_sock_ops, family):
8153                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_family) != 2);
8154
8155                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
8156                                               struct bpf_sock_ops_kern, sk),
8157                                       si->dst_reg, si->src_reg,
8158                                       offsetof(struct bpf_sock_ops_kern, sk));
8159                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
8160                                       offsetof(struct sock_common, skc_family));
8161                 break;
8162
8163         case offsetof(struct bpf_sock_ops, remote_ip4):
8164                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_daddr) != 4);
8165
8166                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
8167                                                 struct bpf_sock_ops_kern, sk),
8168                                       si->dst_reg, si->src_reg,
8169                                       offsetof(struct bpf_sock_ops_kern, sk));
8170                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8171                                       offsetof(struct sock_common, skc_daddr));
8172                 break;
8173
8174         case offsetof(struct bpf_sock_ops, local_ip4):
8175                 BUILD_BUG_ON(sizeof_field(struct sock_common,
8176                                           skc_rcv_saddr) != 4);
8177
8178                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
8179                                               struct bpf_sock_ops_kern, sk),
8180                                       si->dst_reg, si->src_reg,
8181                                       offsetof(struct bpf_sock_ops_kern, sk));
8182                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8183                                       offsetof(struct sock_common,
8184                                                skc_rcv_saddr));
8185                 break;
8186
8187         case offsetof(struct bpf_sock_ops, remote_ip6[0]) ...
8188              offsetof(struct bpf_sock_ops, remote_ip6[3]):
8189 #if IS_ENABLED(CONFIG_IPV6)
8190                 BUILD_BUG_ON(sizeof_field(struct sock_common,
8191                                           skc_v6_daddr.s6_addr32[0]) != 4);
8192
8193                 off = si->off;
8194                 off -= offsetof(struct bpf_sock_ops, remote_ip6[0]);
8195                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
8196                                                 struct bpf_sock_ops_kern, sk),
8197                                       si->dst_reg, si->src_reg,
8198                                       offsetof(struct bpf_sock_ops_kern, sk));
8199                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8200                                       offsetof(struct sock_common,
8201                                                skc_v6_daddr.s6_addr32[0]) +
8202                                       off);
8203 #else
8204                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
8205 #endif
8206                 break;
8207
8208         case offsetof(struct bpf_sock_ops, local_ip6[0]) ...
8209              offsetof(struct bpf_sock_ops, local_ip6[3]):
8210 #if IS_ENABLED(CONFIG_IPV6)
8211                 BUILD_BUG_ON(sizeof_field(struct sock_common,
8212                                           skc_v6_rcv_saddr.s6_addr32[0]) != 4);
8213
8214                 off = si->off;
8215                 off -= offsetof(struct bpf_sock_ops, local_ip6[0]);
8216                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
8217                                                 struct bpf_sock_ops_kern, sk),
8218                                       si->dst_reg, si->src_reg,
8219                                       offsetof(struct bpf_sock_ops_kern, sk));
8220                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8221                                       offsetof(struct sock_common,
8222                                                skc_v6_rcv_saddr.s6_addr32[0]) +
8223                                       off);
8224 #else
8225                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
8226 #endif
8227                 break;
8228
8229         case offsetof(struct bpf_sock_ops, remote_port):
8230                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_dport) != 2);
8231
8232                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
8233                                                 struct bpf_sock_ops_kern, sk),
8234                                       si->dst_reg, si->src_reg,
8235                                       offsetof(struct bpf_sock_ops_kern, sk));
8236                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
8237                                       offsetof(struct sock_common, skc_dport));
8238 #ifndef __BIG_ENDIAN_BITFIELD
8239                 *insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
8240 #endif
8241                 break;
8242
8243         case offsetof(struct bpf_sock_ops, local_port):
8244                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_num) != 2);
8245
8246                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
8247                                                 struct bpf_sock_ops_kern, sk),
8248                                       si->dst_reg, si->src_reg,
8249                                       offsetof(struct bpf_sock_ops_kern, sk));
8250                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
8251                                       offsetof(struct sock_common, skc_num));
8252                 break;
8253
8254         case offsetof(struct bpf_sock_ops, is_fullsock):
8255                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
8256                                                 struct bpf_sock_ops_kern,
8257                                                 is_fullsock),
8258                                       si->dst_reg, si->src_reg,
8259                                       offsetof(struct bpf_sock_ops_kern,
8260                                                is_fullsock));
8261                 break;
8262
8263         case offsetof(struct bpf_sock_ops, state):
8264                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_state) != 1);
8265
8266                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
8267                                                 struct bpf_sock_ops_kern, sk),
8268                                       si->dst_reg, si->src_reg,
8269                                       offsetof(struct bpf_sock_ops_kern, sk));
8270                 *insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->dst_reg,
8271                                       offsetof(struct sock_common, skc_state));
8272                 break;
8273
8274         case offsetof(struct bpf_sock_ops, rtt_min):
8275                 BUILD_BUG_ON(sizeof_field(struct tcp_sock, rtt_min) !=
8276                              sizeof(struct minmax));
8277                 BUILD_BUG_ON(sizeof(struct minmax) <
8278                              sizeof(struct minmax_sample));
8279
8280                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
8281                                                 struct bpf_sock_ops_kern, sk),
8282                                       si->dst_reg, si->src_reg,
8283                                       offsetof(struct bpf_sock_ops_kern, sk));
8284                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8285                                       offsetof(struct tcp_sock, rtt_min) +
8286                                       sizeof_field(struct minmax_sample, t));
8287                 break;
8288
8289         case offsetof(struct bpf_sock_ops, bpf_sock_ops_cb_flags):
8290                 SOCK_OPS_GET_FIELD(bpf_sock_ops_cb_flags, bpf_sock_ops_cb_flags,
8291                                    struct tcp_sock);
8292                 break;
8293
8294         case offsetof(struct bpf_sock_ops, sk_txhash):
8295                 SOCK_OPS_GET_OR_SET_FIELD(sk_txhash, sk_txhash,
8296                                           struct sock, type);
8297                 break;
8298         case offsetof(struct bpf_sock_ops, snd_cwnd):
8299                 SOCK_OPS_GET_TCP_SOCK_FIELD(snd_cwnd);
8300                 break;
8301         case offsetof(struct bpf_sock_ops, srtt_us):
8302                 SOCK_OPS_GET_TCP_SOCK_FIELD(srtt_us);
8303                 break;
8304         case offsetof(struct bpf_sock_ops, snd_ssthresh):
8305                 SOCK_OPS_GET_TCP_SOCK_FIELD(snd_ssthresh);
8306                 break;
8307         case offsetof(struct bpf_sock_ops, rcv_nxt):
8308                 SOCK_OPS_GET_TCP_SOCK_FIELD(rcv_nxt);
8309                 break;
8310         case offsetof(struct bpf_sock_ops, snd_nxt):
8311                 SOCK_OPS_GET_TCP_SOCK_FIELD(snd_nxt);
8312                 break;
8313         case offsetof(struct bpf_sock_ops, snd_una):
8314                 SOCK_OPS_GET_TCP_SOCK_FIELD(snd_una);
8315                 break;
8316         case offsetof(struct bpf_sock_ops, mss_cache):
8317                 SOCK_OPS_GET_TCP_SOCK_FIELD(mss_cache);
8318                 break;
8319         case offsetof(struct bpf_sock_ops, ecn_flags):
8320                 SOCK_OPS_GET_TCP_SOCK_FIELD(ecn_flags);
8321                 break;
8322         case offsetof(struct bpf_sock_ops, rate_delivered):
8323                 SOCK_OPS_GET_TCP_SOCK_FIELD(rate_delivered);
8324                 break;
8325         case offsetof(struct bpf_sock_ops, rate_interval_us):
8326                 SOCK_OPS_GET_TCP_SOCK_FIELD(rate_interval_us);
8327                 break;
8328         case offsetof(struct bpf_sock_ops, packets_out):
8329                 SOCK_OPS_GET_TCP_SOCK_FIELD(packets_out);
8330                 break;
8331         case offsetof(struct bpf_sock_ops, retrans_out):
8332                 SOCK_OPS_GET_TCP_SOCK_FIELD(retrans_out);
8333                 break;
8334         case offsetof(struct bpf_sock_ops, total_retrans):
8335                 SOCK_OPS_GET_TCP_SOCK_FIELD(total_retrans);
8336                 break;
8337         case offsetof(struct bpf_sock_ops, segs_in):
8338                 SOCK_OPS_GET_TCP_SOCK_FIELD(segs_in);
8339                 break;
8340         case offsetof(struct bpf_sock_ops, data_segs_in):
8341                 SOCK_OPS_GET_TCP_SOCK_FIELD(data_segs_in);
8342                 break;
8343         case offsetof(struct bpf_sock_ops, segs_out):
8344                 SOCK_OPS_GET_TCP_SOCK_FIELD(segs_out);
8345                 break;
8346         case offsetof(struct bpf_sock_ops, data_segs_out):
8347                 SOCK_OPS_GET_TCP_SOCK_FIELD(data_segs_out);
8348                 break;
8349         case offsetof(struct bpf_sock_ops, lost_out):
8350                 SOCK_OPS_GET_TCP_SOCK_FIELD(lost_out);
8351                 break;
8352         case offsetof(struct bpf_sock_ops, sacked_out):
8353                 SOCK_OPS_GET_TCP_SOCK_FIELD(sacked_out);
8354                 break;
8355         case offsetof(struct bpf_sock_ops, bytes_received):
8356                 SOCK_OPS_GET_TCP_SOCK_FIELD(bytes_received);
8357                 break;
8358         case offsetof(struct bpf_sock_ops, bytes_acked):
8359                 SOCK_OPS_GET_TCP_SOCK_FIELD(bytes_acked);
8360                 break;
8361         case offsetof(struct bpf_sock_ops, sk):
8362                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
8363                                                 struct bpf_sock_ops_kern,
8364                                                 is_fullsock),
8365                                       si->dst_reg, si->src_reg,
8366                                       offsetof(struct bpf_sock_ops_kern,
8367                                                is_fullsock));
8368                 *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
8369                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
8370                                                 struct bpf_sock_ops_kern, sk),
8371                                       si->dst_reg, si->src_reg,
8372                                       offsetof(struct bpf_sock_ops_kern, sk));
8373                 break;
8374         }
8375         return insn - insn_buf;
8376 }
8377
8378 static u32 sk_skb_convert_ctx_access(enum bpf_access_type type,
8379                                      const struct bpf_insn *si,
8380                                      struct bpf_insn *insn_buf,
8381                                      struct bpf_prog *prog, u32 *target_size)
8382 {
8383         struct bpf_insn *insn = insn_buf;
8384         int off;
8385
8386         switch (si->off) {
8387         case offsetof(struct __sk_buff, data_end):
8388                 off  = si->off;
8389                 off -= offsetof(struct __sk_buff, data_end);
8390                 off += offsetof(struct sk_buff, cb);
8391                 off += offsetof(struct tcp_skb_cb, bpf.data_end);
8392                 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
8393                                       si->src_reg, off);
8394                 break;
8395         default:
8396                 return bpf_convert_ctx_access(type, si, insn_buf, prog,
8397                                               target_size);
8398         }
8399
8400         return insn - insn_buf;
8401 }
8402
8403 static u32 sk_msg_convert_ctx_access(enum bpf_access_type type,
8404                                      const struct bpf_insn *si,
8405                                      struct bpf_insn *insn_buf,
8406                                      struct bpf_prog *prog, u32 *target_size)
8407 {
8408         struct bpf_insn *insn = insn_buf;
8409 #if IS_ENABLED(CONFIG_IPV6)
8410         int off;
8411 #endif
8412
8413         /* convert ctx uses the fact sg element is first in struct */
8414         BUILD_BUG_ON(offsetof(struct sk_msg, sg) != 0);
8415
8416         switch (si->off) {
8417         case offsetof(struct sk_msg_md, data):
8418                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, data),
8419                                       si->dst_reg, si->src_reg,
8420                                       offsetof(struct sk_msg, data));
8421                 break;
8422         case offsetof(struct sk_msg_md, data_end):
8423                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, data_end),
8424                                       si->dst_reg, si->src_reg,
8425                                       offsetof(struct sk_msg, data_end));
8426                 break;
8427         case offsetof(struct sk_msg_md, family):
8428                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_family) != 2);
8429
8430                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
8431                                               struct sk_msg, sk),
8432                                       si->dst_reg, si->src_reg,
8433                                       offsetof(struct sk_msg, sk));
8434                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
8435                                       offsetof(struct sock_common, skc_family));
8436                 break;
8437
8438         case offsetof(struct sk_msg_md, remote_ip4):
8439                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_daddr) != 4);
8440
8441                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
8442                                                 struct sk_msg, sk),
8443                                       si->dst_reg, si->src_reg,
8444                                       offsetof(struct sk_msg, sk));
8445                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8446                                       offsetof(struct sock_common, skc_daddr));
8447                 break;
8448
8449         case offsetof(struct sk_msg_md, local_ip4):
8450                 BUILD_BUG_ON(sizeof_field(struct sock_common,
8451                                           skc_rcv_saddr) != 4);
8452
8453                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
8454                                               struct sk_msg, sk),
8455                                       si->dst_reg, si->src_reg,
8456                                       offsetof(struct sk_msg, sk));
8457                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8458                                       offsetof(struct sock_common,
8459                                                skc_rcv_saddr));
8460                 break;
8461
8462         case offsetof(struct sk_msg_md, remote_ip6[0]) ...
8463              offsetof(struct sk_msg_md, remote_ip6[3]):
8464 #if IS_ENABLED(CONFIG_IPV6)
8465                 BUILD_BUG_ON(sizeof_field(struct sock_common,
8466                                           skc_v6_daddr.s6_addr32[0]) != 4);
8467
8468                 off = si->off;
8469                 off -= offsetof(struct sk_msg_md, remote_ip6[0]);
8470                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
8471                                                 struct sk_msg, sk),
8472                                       si->dst_reg, si->src_reg,
8473                                       offsetof(struct sk_msg, sk));
8474                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8475                                       offsetof(struct sock_common,
8476                                                skc_v6_daddr.s6_addr32[0]) +
8477                                       off);
8478 #else
8479                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
8480 #endif
8481                 break;
8482
8483         case offsetof(struct sk_msg_md, local_ip6[0]) ...
8484              offsetof(struct sk_msg_md, local_ip6[3]):
8485 #if IS_ENABLED(CONFIG_IPV6)
8486                 BUILD_BUG_ON(sizeof_field(struct sock_common,
8487                                           skc_v6_rcv_saddr.s6_addr32[0]) != 4);
8488
8489                 off = si->off;
8490                 off -= offsetof(struct sk_msg_md, local_ip6[0]);
8491                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
8492                                                 struct sk_msg, sk),
8493                                       si->dst_reg, si->src_reg,
8494                                       offsetof(struct sk_msg, sk));
8495                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8496                                       offsetof(struct sock_common,
8497                                                skc_v6_rcv_saddr.s6_addr32[0]) +
8498                                       off);
8499 #else
8500                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
8501 #endif
8502                 break;
8503
8504         case offsetof(struct sk_msg_md, remote_port):
8505                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_dport) != 2);
8506
8507                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
8508                                                 struct sk_msg, sk),
8509                                       si->dst_reg, si->src_reg,
8510                                       offsetof(struct sk_msg, sk));
8511                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
8512                                       offsetof(struct sock_common, skc_dport));
8513 #ifndef __BIG_ENDIAN_BITFIELD
8514                 *insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
8515 #endif
8516                 break;
8517
8518         case offsetof(struct sk_msg_md, local_port):
8519                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_num) != 2);
8520
8521                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
8522                                                 struct sk_msg, sk),
8523                                       si->dst_reg, si->src_reg,
8524                                       offsetof(struct sk_msg, sk));
8525                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
8526                                       offsetof(struct sock_common, skc_num));
8527                 break;
8528
8529         case offsetof(struct sk_msg_md, size):
8530                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg_sg, size),
8531                                       si->dst_reg, si->src_reg,
8532                                       offsetof(struct sk_msg_sg, size));
8533                 break;
8534         }
8535
8536         return insn - insn_buf;
8537 }
8538
8539 const struct bpf_verifier_ops sk_filter_verifier_ops = {
8540         .get_func_proto         = sk_filter_func_proto,
8541         .is_valid_access        = sk_filter_is_valid_access,
8542         .convert_ctx_access     = bpf_convert_ctx_access,
8543         .gen_ld_abs             = bpf_gen_ld_abs,
8544 };
8545
8546 const struct bpf_prog_ops sk_filter_prog_ops = {
8547         .test_run               = bpf_prog_test_run_skb,
8548 };
8549
8550 const struct bpf_verifier_ops tc_cls_act_verifier_ops = {
8551         .get_func_proto         = tc_cls_act_func_proto,
8552         .is_valid_access        = tc_cls_act_is_valid_access,
8553         .convert_ctx_access     = tc_cls_act_convert_ctx_access,
8554         .gen_prologue           = tc_cls_act_prologue,
8555         .gen_ld_abs             = bpf_gen_ld_abs,
8556 };
8557
8558 const struct bpf_prog_ops tc_cls_act_prog_ops = {
8559         .test_run               = bpf_prog_test_run_skb,
8560 };
8561
8562 const struct bpf_verifier_ops xdp_verifier_ops = {
8563         .get_func_proto         = xdp_func_proto,
8564         .is_valid_access        = xdp_is_valid_access,
8565         .convert_ctx_access     = xdp_convert_ctx_access,
8566         .gen_prologue           = bpf_noop_prologue,
8567 };
8568
8569 const struct bpf_prog_ops xdp_prog_ops = {
8570         .test_run               = bpf_prog_test_run_xdp,
8571 };
8572
8573 const struct bpf_verifier_ops cg_skb_verifier_ops = {
8574         .get_func_proto         = cg_skb_func_proto,
8575         .is_valid_access        = cg_skb_is_valid_access,
8576         .convert_ctx_access     = bpf_convert_ctx_access,
8577 };
8578
8579 const struct bpf_prog_ops cg_skb_prog_ops = {
8580         .test_run               = bpf_prog_test_run_skb,
8581 };
8582
8583 const struct bpf_verifier_ops lwt_in_verifier_ops = {
8584         .get_func_proto         = lwt_in_func_proto,
8585         .is_valid_access        = lwt_is_valid_access,
8586         .convert_ctx_access     = bpf_convert_ctx_access,
8587 };
8588
8589 const struct bpf_prog_ops lwt_in_prog_ops = {
8590         .test_run               = bpf_prog_test_run_skb,
8591 };
8592
8593 const struct bpf_verifier_ops lwt_out_verifier_ops = {
8594         .get_func_proto         = lwt_out_func_proto,
8595         .is_valid_access        = lwt_is_valid_access,
8596         .convert_ctx_access     = bpf_convert_ctx_access,
8597 };
8598
8599 const struct bpf_prog_ops lwt_out_prog_ops = {
8600         .test_run               = bpf_prog_test_run_skb,
8601 };
8602
8603 const struct bpf_verifier_ops lwt_xmit_verifier_ops = {
8604         .get_func_proto         = lwt_xmit_func_proto,
8605         .is_valid_access        = lwt_is_valid_access,
8606         .convert_ctx_access     = bpf_convert_ctx_access,
8607         .gen_prologue           = tc_cls_act_prologue,
8608 };
8609
8610 const struct bpf_prog_ops lwt_xmit_prog_ops = {
8611         .test_run               = bpf_prog_test_run_skb,
8612 };
8613
8614 const struct bpf_verifier_ops lwt_seg6local_verifier_ops = {
8615         .get_func_proto         = lwt_seg6local_func_proto,
8616         .is_valid_access        = lwt_is_valid_access,
8617         .convert_ctx_access     = bpf_convert_ctx_access,
8618 };
8619
8620 const struct bpf_prog_ops lwt_seg6local_prog_ops = {
8621         .test_run               = bpf_prog_test_run_skb,
8622 };
8623
8624 const struct bpf_verifier_ops cg_sock_verifier_ops = {
8625         .get_func_proto         = sock_filter_func_proto,
8626         .is_valid_access        = sock_filter_is_valid_access,
8627         .convert_ctx_access     = bpf_sock_convert_ctx_access,
8628 };
8629
8630 const struct bpf_prog_ops cg_sock_prog_ops = {
8631 };
8632
8633 const struct bpf_verifier_ops cg_sock_addr_verifier_ops = {
8634         .get_func_proto         = sock_addr_func_proto,
8635         .is_valid_access        = sock_addr_is_valid_access,
8636         .convert_ctx_access     = sock_addr_convert_ctx_access,
8637 };
8638
8639 const struct bpf_prog_ops cg_sock_addr_prog_ops = {
8640 };
8641
8642 const struct bpf_verifier_ops sock_ops_verifier_ops = {
8643         .get_func_proto         = sock_ops_func_proto,
8644         .is_valid_access        = sock_ops_is_valid_access,
8645         .convert_ctx_access     = sock_ops_convert_ctx_access,
8646 };
8647
8648 const struct bpf_prog_ops sock_ops_prog_ops = {
8649 };
8650
8651 const struct bpf_verifier_ops sk_skb_verifier_ops = {
8652         .get_func_proto         = sk_skb_func_proto,
8653         .is_valid_access        = sk_skb_is_valid_access,
8654         .convert_ctx_access     = sk_skb_convert_ctx_access,
8655         .gen_prologue           = sk_skb_prologue,
8656 };
8657
8658 const struct bpf_prog_ops sk_skb_prog_ops = {
8659 };
8660
8661 const struct bpf_verifier_ops sk_msg_verifier_ops = {
8662         .get_func_proto         = sk_msg_func_proto,
8663         .is_valid_access        = sk_msg_is_valid_access,
8664         .convert_ctx_access     = sk_msg_convert_ctx_access,
8665         .gen_prologue           = bpf_noop_prologue,
8666 };
8667
8668 const struct bpf_prog_ops sk_msg_prog_ops = {
8669 };
8670
8671 const struct bpf_verifier_ops flow_dissector_verifier_ops = {
8672         .get_func_proto         = flow_dissector_func_proto,
8673         .is_valid_access        = flow_dissector_is_valid_access,
8674         .convert_ctx_access     = flow_dissector_convert_ctx_access,
8675 };
8676
8677 const struct bpf_prog_ops flow_dissector_prog_ops = {
8678         .test_run               = bpf_prog_test_run_flow_dissector,
8679 };
8680
8681 int sk_detach_filter(struct sock *sk)
8682 {
8683         int ret = -ENOENT;
8684         struct sk_filter *filter;
8685
8686         if (sock_flag(sk, SOCK_FILTER_LOCKED))
8687                 return -EPERM;
8688
8689         filter = rcu_dereference_protected(sk->sk_filter,
8690                                            lockdep_sock_is_held(sk));
8691         if (filter) {
8692                 RCU_INIT_POINTER(sk->sk_filter, NULL);
8693                 sk_filter_uncharge(sk, filter);
8694                 ret = 0;
8695         }
8696
8697         return ret;
8698 }
8699 EXPORT_SYMBOL_GPL(sk_detach_filter);
8700
8701 int sk_get_filter(struct sock *sk, struct sock_filter __user *ubuf,
8702                   unsigned int len)
8703 {
8704         struct sock_fprog_kern *fprog;
8705         struct sk_filter *filter;
8706         int ret = 0;
8707
8708         lock_sock(sk);
8709         filter = rcu_dereference_protected(sk->sk_filter,
8710                                            lockdep_sock_is_held(sk));
8711         if (!filter)
8712                 goto out;
8713
8714         /* We're copying the filter that has been originally attached,
8715          * so no conversion/decode needed anymore. eBPF programs that
8716          * have no original program cannot be dumped through this.
8717          */
8718         ret = -EACCES;
8719         fprog = filter->prog->orig_prog;
8720         if (!fprog)
8721                 goto out;
8722
8723         ret = fprog->len;
8724         if (!len)
8725                 /* User space only enquires number of filter blocks. */
8726                 goto out;
8727
8728         ret = -EINVAL;
8729         if (len < fprog->len)
8730                 goto out;
8731
8732         ret = -EFAULT;
8733         if (copy_to_user(ubuf, fprog->filter, bpf_classic_proglen(fprog)))
8734                 goto out;
8735
8736         /* Instead of bytes, the API requests to return the number
8737          * of filter blocks.
8738          */
8739         ret = fprog->len;
8740 out:
8741         release_sock(sk);
8742         return ret;
8743 }
8744
8745 #ifdef CONFIG_INET
8746 static void bpf_init_reuseport_kern(struct sk_reuseport_kern *reuse_kern,
8747                                     struct sock_reuseport *reuse,
8748                                     struct sock *sk, struct sk_buff *skb,
8749                                     u32 hash)
8750 {
8751         reuse_kern->skb = skb;
8752         reuse_kern->sk = sk;
8753         reuse_kern->selected_sk = NULL;
8754         reuse_kern->data_end = skb->data + skb_headlen(skb);
8755         reuse_kern->hash = hash;
8756         reuse_kern->reuseport_id = reuse->reuseport_id;
8757         reuse_kern->bind_inany = reuse->bind_inany;
8758 }
8759
8760 struct sock *bpf_run_sk_reuseport(struct sock_reuseport *reuse, struct sock *sk,
8761                                   struct bpf_prog *prog, struct sk_buff *skb,
8762                                   u32 hash)
8763 {
8764         struct sk_reuseport_kern reuse_kern;
8765         enum sk_action action;
8766
8767         bpf_init_reuseport_kern(&reuse_kern, reuse, sk, skb, hash);
8768         action = BPF_PROG_RUN(prog, &reuse_kern);
8769
8770         if (action == SK_PASS)
8771                 return reuse_kern.selected_sk;
8772         else
8773                 return ERR_PTR(-ECONNREFUSED);
8774 }
8775
8776 BPF_CALL_4(sk_select_reuseport, struct sk_reuseport_kern *, reuse_kern,
8777            struct bpf_map *, map, void *, key, u32, flags)
8778 {
8779         bool is_sockarray = map->map_type == BPF_MAP_TYPE_REUSEPORT_SOCKARRAY;
8780         struct sock_reuseport *reuse;
8781         struct sock *selected_sk;
8782
8783         selected_sk = map->ops->map_lookup_elem(map, key);
8784         if (!selected_sk)
8785                 return -ENOENT;
8786
8787         reuse = rcu_dereference(selected_sk->sk_reuseport_cb);
8788         if (!reuse) {
8789                 /* reuseport_array has only sk with non NULL sk_reuseport_cb.
8790                  * The only (!reuse) case here is - the sk has already been
8791                  * unhashed (e.g. by close()), so treat it as -ENOENT.
8792                  *
8793                  * Other maps (e.g. sock_map) do not provide this guarantee and
8794                  * the sk may never be in the reuseport group to begin with.
8795                  */
8796                 return is_sockarray ? -ENOENT : -EINVAL;
8797         }
8798
8799         if (unlikely(reuse->reuseport_id != reuse_kern->reuseport_id)) {
8800                 struct sock *sk = reuse_kern->sk;
8801
8802                 if (sk->sk_protocol != selected_sk->sk_protocol)
8803                         return -EPROTOTYPE;
8804                 else if (sk->sk_family != selected_sk->sk_family)
8805                         return -EAFNOSUPPORT;
8806
8807                 /* Catch all. Likely bound to a different sockaddr. */
8808                 return -EBADFD;
8809         }
8810
8811         reuse_kern->selected_sk = selected_sk;
8812
8813         return 0;
8814 }
8815
8816 static const struct bpf_func_proto sk_select_reuseport_proto = {
8817         .func           = sk_select_reuseport,
8818         .gpl_only       = false,
8819         .ret_type       = RET_INTEGER,
8820         .arg1_type      = ARG_PTR_TO_CTX,
8821         .arg2_type      = ARG_CONST_MAP_PTR,
8822         .arg3_type      = ARG_PTR_TO_MAP_KEY,
8823         .arg4_type      = ARG_ANYTHING,
8824 };
8825
8826 BPF_CALL_4(sk_reuseport_load_bytes,
8827            const struct sk_reuseport_kern *, reuse_kern, u32, offset,
8828            void *, to, u32, len)
8829 {
8830         return ____bpf_skb_load_bytes(reuse_kern->skb, offset, to, len);
8831 }
8832
8833 static const struct bpf_func_proto sk_reuseport_load_bytes_proto = {
8834         .func           = sk_reuseport_load_bytes,
8835         .gpl_only       = false,
8836         .ret_type       = RET_INTEGER,
8837         .arg1_type      = ARG_PTR_TO_CTX,
8838         .arg2_type      = ARG_ANYTHING,
8839         .arg3_type      = ARG_PTR_TO_UNINIT_MEM,
8840         .arg4_type      = ARG_CONST_SIZE,
8841 };
8842
8843 BPF_CALL_5(sk_reuseport_load_bytes_relative,
8844            const struct sk_reuseport_kern *, reuse_kern, u32, offset,
8845            void *, to, u32, len, u32, start_header)
8846 {
8847         return ____bpf_skb_load_bytes_relative(reuse_kern->skb, offset, to,
8848                                                len, start_header);
8849 }
8850
8851 static const struct bpf_func_proto sk_reuseport_load_bytes_relative_proto = {
8852         .func           = sk_reuseport_load_bytes_relative,
8853         .gpl_only       = false,
8854         .ret_type       = RET_INTEGER,
8855         .arg1_type      = ARG_PTR_TO_CTX,
8856         .arg2_type      = ARG_ANYTHING,
8857         .arg3_type      = ARG_PTR_TO_UNINIT_MEM,
8858         .arg4_type      = ARG_CONST_SIZE,
8859         .arg5_type      = ARG_ANYTHING,
8860 };
8861
8862 static const struct bpf_func_proto *
8863 sk_reuseport_func_proto(enum bpf_func_id func_id,
8864                         const struct bpf_prog *prog)
8865 {
8866         switch (func_id) {
8867         case BPF_FUNC_sk_select_reuseport:
8868                 return &sk_select_reuseport_proto;
8869         case BPF_FUNC_skb_load_bytes:
8870                 return &sk_reuseport_load_bytes_proto;
8871         case BPF_FUNC_skb_load_bytes_relative:
8872                 return &sk_reuseport_load_bytes_relative_proto;
8873         default:
8874                 return bpf_base_func_proto(func_id);
8875         }
8876 }
8877
8878 static bool
8879 sk_reuseport_is_valid_access(int off, int size,
8880                              enum bpf_access_type type,
8881                              const struct bpf_prog *prog,
8882                              struct bpf_insn_access_aux *info)
8883 {
8884         const u32 size_default = sizeof(__u32);
8885
8886         if (off < 0 || off >= sizeof(struct sk_reuseport_md) ||
8887             off % size || type != BPF_READ)
8888                 return false;
8889
8890         switch (off) {
8891         case offsetof(struct sk_reuseport_md, data):
8892                 info->reg_type = PTR_TO_PACKET;
8893                 return size == sizeof(__u64);
8894
8895         case offsetof(struct sk_reuseport_md, data_end):
8896                 info->reg_type = PTR_TO_PACKET_END;
8897                 return size == sizeof(__u64);
8898
8899         case offsetof(struct sk_reuseport_md, hash):
8900                 return size == size_default;
8901
8902         /* Fields that allow narrowing */
8903         case bpf_ctx_range(struct sk_reuseport_md, eth_protocol):
8904                 if (size < sizeof_field(struct sk_buff, protocol))
8905                         return false;
8906                 /* fall through */
8907         case bpf_ctx_range(struct sk_reuseport_md, ip_protocol):
8908         case bpf_ctx_range(struct sk_reuseport_md, bind_inany):
8909         case bpf_ctx_range(struct sk_reuseport_md, len):
8910                 bpf_ctx_record_field_size(info, size_default);
8911                 return bpf_ctx_narrow_access_ok(off, size, size_default);
8912
8913         default:
8914                 return false;
8915         }
8916 }
8917
8918 #define SK_REUSEPORT_LOAD_FIELD(F) ({                                   \
8919         *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_reuseport_kern, F), \
8920                               si->dst_reg, si->src_reg,                 \
8921                               bpf_target_off(struct sk_reuseport_kern, F, \
8922                                              sizeof_field(struct sk_reuseport_kern, F), \
8923                                              target_size));             \
8924         })
8925
8926 #define SK_REUSEPORT_LOAD_SKB_FIELD(SKB_FIELD)                          \
8927         SOCK_ADDR_LOAD_NESTED_FIELD(struct sk_reuseport_kern,           \
8928                                     struct sk_buff,                     \
8929                                     skb,                                \
8930                                     SKB_FIELD)
8931
8932 #define SK_REUSEPORT_LOAD_SK_FIELD(SK_FIELD)                            \
8933         SOCK_ADDR_LOAD_NESTED_FIELD(struct sk_reuseport_kern,           \
8934                                     struct sock,                        \
8935                                     sk,                                 \
8936                                     SK_FIELD)
8937
8938 static u32 sk_reuseport_convert_ctx_access(enum bpf_access_type type,
8939                                            const struct bpf_insn *si,
8940                                            struct bpf_insn *insn_buf,
8941                                            struct bpf_prog *prog,
8942                                            u32 *target_size)
8943 {
8944         struct bpf_insn *insn = insn_buf;
8945
8946         switch (si->off) {
8947         case offsetof(struct sk_reuseport_md, data):
8948                 SK_REUSEPORT_LOAD_SKB_FIELD(data);
8949                 break;
8950
8951         case offsetof(struct sk_reuseport_md, len):
8952                 SK_REUSEPORT_LOAD_SKB_FIELD(len);
8953                 break;
8954
8955         case offsetof(struct sk_reuseport_md, eth_protocol):
8956                 SK_REUSEPORT_LOAD_SKB_FIELD(protocol);
8957                 break;
8958
8959         case offsetof(struct sk_reuseport_md, ip_protocol):
8960                 SK_REUSEPORT_LOAD_SK_FIELD(sk_protocol);
8961                 break;
8962
8963         case offsetof(struct sk_reuseport_md, data_end):
8964                 SK_REUSEPORT_LOAD_FIELD(data_end);
8965                 break;
8966
8967         case offsetof(struct sk_reuseport_md, hash):
8968                 SK_REUSEPORT_LOAD_FIELD(hash);
8969                 break;
8970
8971         case offsetof(struct sk_reuseport_md, bind_inany):
8972                 SK_REUSEPORT_LOAD_FIELD(bind_inany);
8973                 break;
8974         }
8975
8976         return insn - insn_buf;
8977 }
8978
8979 const struct bpf_verifier_ops sk_reuseport_verifier_ops = {
8980         .get_func_proto         = sk_reuseport_func_proto,
8981         .is_valid_access        = sk_reuseport_is_valid_access,
8982         .convert_ctx_access     = sk_reuseport_convert_ctx_access,
8983 };
8984
8985 const struct bpf_prog_ops sk_reuseport_prog_ops = {
8986 };
8987 #endif /* CONFIG_INET */
8988
8989 DEFINE_BPF_DISPATCHER(xdp)
8990
8991 void bpf_prog_change_xdp(struct bpf_prog *prev_prog, struct bpf_prog *prog)
8992 {
8993         bpf_dispatcher_change_prog(BPF_DISPATCHER_PTR(xdp), prev_prog, prog);
8994 }