OSDN Git Service

net: Add compat ioctl support for the ipv4 multicast ioctl SIOCGETSGCNT
[uclinux-h8/linux.git] / net / ipv4 / ipmr.c
1 /*
2  *      IP multicast routing support for mrouted 3.6/3.8
3  *
4  *              (c) 1995 Alan Cox, <alan@lxorguk.ukuu.org.uk>
5  *        Linux Consultancy and Custom Driver Development
6  *
7  *      This program is free software; you can redistribute it and/or
8  *      modify it under the terms of the GNU General Public License
9  *      as published by the Free Software Foundation; either version
10  *      2 of the License, or (at your option) any later version.
11  *
12  *      Fixes:
13  *      Michael Chastain        :       Incorrect size of copying.
14  *      Alan Cox                :       Added the cache manager code
15  *      Alan Cox                :       Fixed the clone/copy bug and device race.
16  *      Mike McLagan            :       Routing by source
17  *      Malcolm Beattie         :       Buffer handling fixes.
18  *      Alexey Kuznetsov        :       Double buffer free and other fixes.
19  *      SVR Anand               :       Fixed several multicast bugs and problems.
20  *      Alexey Kuznetsov        :       Status, optimisations and more.
21  *      Brad Parker             :       Better behaviour on mrouted upcall
22  *                                      overflow.
23  *      Carlos Picoto           :       PIMv1 Support
24  *      Pavlin Ivanov Radoslavov:       PIMv2 Registers must checksum only PIM header
25  *                                      Relax this requirement to work with older peers.
26  *
27  */
28
29 #include <asm/system.h>
30 #include <asm/uaccess.h>
31 #include <linux/types.h>
32 #include <linux/capability.h>
33 #include <linux/errno.h>
34 #include <linux/timer.h>
35 #include <linux/mm.h>
36 #include <linux/kernel.h>
37 #include <linux/fcntl.h>
38 #include <linux/stat.h>
39 #include <linux/socket.h>
40 #include <linux/in.h>
41 #include <linux/inet.h>
42 #include <linux/netdevice.h>
43 #include <linux/inetdevice.h>
44 #include <linux/igmp.h>
45 #include <linux/proc_fs.h>
46 #include <linux/seq_file.h>
47 #include <linux/mroute.h>
48 #include <linux/init.h>
49 #include <linux/if_ether.h>
50 #include <linux/slab.h>
51 #include <net/net_namespace.h>
52 #include <net/ip.h>
53 #include <net/protocol.h>
54 #include <linux/skbuff.h>
55 #include <net/route.h>
56 #include <net/sock.h>
57 #include <net/icmp.h>
58 #include <net/udp.h>
59 #include <net/raw.h>
60 #include <linux/notifier.h>
61 #include <linux/if_arp.h>
62 #include <linux/netfilter_ipv4.h>
63 #include <linux/compat.h>
64 #include <net/ipip.h>
65 #include <net/checksum.h>
66 #include <net/netlink.h>
67 #include <net/fib_rules.h>
68
69 #if defined(CONFIG_IP_PIMSM_V1) || defined(CONFIG_IP_PIMSM_V2)
70 #define CONFIG_IP_PIMSM 1
71 #endif
72
73 struct mr_table {
74         struct list_head        list;
75 #ifdef CONFIG_NET_NS
76         struct net              *net;
77 #endif
78         u32                     id;
79         struct sock __rcu       *mroute_sk;
80         struct timer_list       ipmr_expire_timer;
81         struct list_head        mfc_unres_queue;
82         struct list_head        mfc_cache_array[MFC_LINES];
83         struct vif_device       vif_table[MAXVIFS];
84         int                     maxvif;
85         atomic_t                cache_resolve_queue_len;
86         int                     mroute_do_assert;
87         int                     mroute_do_pim;
88 #if defined(CONFIG_IP_PIMSM_V1) || defined(CONFIG_IP_PIMSM_V2)
89         int                     mroute_reg_vif_num;
90 #endif
91 };
92
93 struct ipmr_rule {
94         struct fib_rule         common;
95 };
96
97 struct ipmr_result {
98         struct mr_table         *mrt;
99 };
100
101 /* Big lock, protecting vif table, mrt cache and mroute socket state.
102  * Note that the changes are semaphored via rtnl_lock.
103  */
104
105 static DEFINE_RWLOCK(mrt_lock);
106
107 /*
108  *      Multicast router control variables
109  */
110
111 #define VIF_EXISTS(_mrt, _idx) ((_mrt)->vif_table[_idx].dev != NULL)
112
113 /* Special spinlock for queue of unresolved entries */
114 static DEFINE_SPINLOCK(mfc_unres_lock);
115
116 /* We return to original Alan's scheme. Hash table of resolved
117  * entries is changed only in process context and protected
118  * with weak lock mrt_lock. Queue of unresolved entries is protected
119  * with strong spinlock mfc_unres_lock.
120  *
121  * In this case data path is free of exclusive locks at all.
122  */
123
124 static struct kmem_cache *mrt_cachep __read_mostly;
125
126 static struct mr_table *ipmr_new_table(struct net *net, u32 id);
127 static int ip_mr_forward(struct net *net, struct mr_table *mrt,
128                          struct sk_buff *skb, struct mfc_cache *cache,
129                          int local);
130 static int ipmr_cache_report(struct mr_table *mrt,
131                              struct sk_buff *pkt, vifi_t vifi, int assert);
132 static int __ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
133                               struct mfc_cache *c, struct rtmsg *rtm);
134 static void ipmr_expire_process(unsigned long arg);
135
136 #ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES
137 #define ipmr_for_each_table(mrt, net) \
138         list_for_each_entry_rcu(mrt, &net->ipv4.mr_tables, list)
139
140 static struct mr_table *ipmr_get_table(struct net *net, u32 id)
141 {
142         struct mr_table *mrt;
143
144         ipmr_for_each_table(mrt, net) {
145                 if (mrt->id == id)
146                         return mrt;
147         }
148         return NULL;
149 }
150
151 static int ipmr_fib_lookup(struct net *net, struct flowi *flp,
152                            struct mr_table **mrt)
153 {
154         struct ipmr_result res;
155         struct fib_lookup_arg arg = { .result = &res, };
156         int err;
157
158         err = fib_rules_lookup(net->ipv4.mr_rules_ops, flp, 0, &arg);
159         if (err < 0)
160                 return err;
161         *mrt = res.mrt;
162         return 0;
163 }
164
165 static int ipmr_rule_action(struct fib_rule *rule, struct flowi *flp,
166                             int flags, struct fib_lookup_arg *arg)
167 {
168         struct ipmr_result *res = arg->result;
169         struct mr_table *mrt;
170
171         switch (rule->action) {
172         case FR_ACT_TO_TBL:
173                 break;
174         case FR_ACT_UNREACHABLE:
175                 return -ENETUNREACH;
176         case FR_ACT_PROHIBIT:
177                 return -EACCES;
178         case FR_ACT_BLACKHOLE:
179         default:
180                 return -EINVAL;
181         }
182
183         mrt = ipmr_get_table(rule->fr_net, rule->table);
184         if (mrt == NULL)
185                 return -EAGAIN;
186         res->mrt = mrt;
187         return 0;
188 }
189
190 static int ipmr_rule_match(struct fib_rule *rule, struct flowi *fl, int flags)
191 {
192         return 1;
193 }
194
195 static const struct nla_policy ipmr_rule_policy[FRA_MAX + 1] = {
196         FRA_GENERIC_POLICY,
197 };
198
199 static int ipmr_rule_configure(struct fib_rule *rule, struct sk_buff *skb,
200                                struct fib_rule_hdr *frh, struct nlattr **tb)
201 {
202         return 0;
203 }
204
205 static int ipmr_rule_compare(struct fib_rule *rule, struct fib_rule_hdr *frh,
206                              struct nlattr **tb)
207 {
208         return 1;
209 }
210
211 static int ipmr_rule_fill(struct fib_rule *rule, struct sk_buff *skb,
212                           struct fib_rule_hdr *frh)
213 {
214         frh->dst_len = 0;
215         frh->src_len = 0;
216         frh->tos     = 0;
217         return 0;
218 }
219
220 static const struct fib_rules_ops __net_initdata ipmr_rules_ops_template = {
221         .family         = RTNL_FAMILY_IPMR,
222         .rule_size      = sizeof(struct ipmr_rule),
223         .addr_size      = sizeof(u32),
224         .action         = ipmr_rule_action,
225         .match          = ipmr_rule_match,
226         .configure      = ipmr_rule_configure,
227         .compare        = ipmr_rule_compare,
228         .default_pref   = fib_default_rule_pref,
229         .fill           = ipmr_rule_fill,
230         .nlgroup        = RTNLGRP_IPV4_RULE,
231         .policy         = ipmr_rule_policy,
232         .owner          = THIS_MODULE,
233 };
234
235 static int __net_init ipmr_rules_init(struct net *net)
236 {
237         struct fib_rules_ops *ops;
238         struct mr_table *mrt;
239         int err;
240
241         ops = fib_rules_register(&ipmr_rules_ops_template, net);
242         if (IS_ERR(ops))
243                 return PTR_ERR(ops);
244
245         INIT_LIST_HEAD(&net->ipv4.mr_tables);
246
247         mrt = ipmr_new_table(net, RT_TABLE_DEFAULT);
248         if (mrt == NULL) {
249                 err = -ENOMEM;
250                 goto err1;
251         }
252
253         err = fib_default_rule_add(ops, 0x7fff, RT_TABLE_DEFAULT, 0);
254         if (err < 0)
255                 goto err2;
256
257         net->ipv4.mr_rules_ops = ops;
258         return 0;
259
260 err2:
261         kfree(mrt);
262 err1:
263         fib_rules_unregister(ops);
264         return err;
265 }
266
267 static void __net_exit ipmr_rules_exit(struct net *net)
268 {
269         struct mr_table *mrt, *next;
270
271         list_for_each_entry_safe(mrt, next, &net->ipv4.mr_tables, list) {
272                 list_del(&mrt->list);
273                 kfree(mrt);
274         }
275         fib_rules_unregister(net->ipv4.mr_rules_ops);
276 }
277 #else
278 #define ipmr_for_each_table(mrt, net) \
279         for (mrt = net->ipv4.mrt; mrt; mrt = NULL)
280
281 static struct mr_table *ipmr_get_table(struct net *net, u32 id)
282 {
283         return net->ipv4.mrt;
284 }
285
286 static int ipmr_fib_lookup(struct net *net, struct flowi *flp,
287                            struct mr_table **mrt)
288 {
289         *mrt = net->ipv4.mrt;
290         return 0;
291 }
292
293 static int __net_init ipmr_rules_init(struct net *net)
294 {
295         net->ipv4.mrt = ipmr_new_table(net, RT_TABLE_DEFAULT);
296         return net->ipv4.mrt ? 0 : -ENOMEM;
297 }
298
299 static void __net_exit ipmr_rules_exit(struct net *net)
300 {
301         kfree(net->ipv4.mrt);
302 }
303 #endif
304
305 static struct mr_table *ipmr_new_table(struct net *net, u32 id)
306 {
307         struct mr_table *mrt;
308         unsigned int i;
309
310         mrt = ipmr_get_table(net, id);
311         if (mrt != NULL)
312                 return mrt;
313
314         mrt = kzalloc(sizeof(*mrt), GFP_KERNEL);
315         if (mrt == NULL)
316                 return NULL;
317         write_pnet(&mrt->net, net);
318         mrt->id = id;
319
320         /* Forwarding cache */
321         for (i = 0; i < MFC_LINES; i++)
322                 INIT_LIST_HEAD(&mrt->mfc_cache_array[i]);
323
324         INIT_LIST_HEAD(&mrt->mfc_unres_queue);
325
326         setup_timer(&mrt->ipmr_expire_timer, ipmr_expire_process,
327                     (unsigned long)mrt);
328
329 #ifdef CONFIG_IP_PIMSM
330         mrt->mroute_reg_vif_num = -1;
331 #endif
332 #ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES
333         list_add_tail_rcu(&mrt->list, &net->ipv4.mr_tables);
334 #endif
335         return mrt;
336 }
337
338 /* Service routines creating virtual interfaces: DVMRP tunnels and PIMREG */
339
340 static void ipmr_del_tunnel(struct net_device *dev, struct vifctl *v)
341 {
342         struct net *net = dev_net(dev);
343
344         dev_close(dev);
345
346         dev = __dev_get_by_name(net, "tunl0");
347         if (dev) {
348                 const struct net_device_ops *ops = dev->netdev_ops;
349                 struct ifreq ifr;
350                 struct ip_tunnel_parm p;
351
352                 memset(&p, 0, sizeof(p));
353                 p.iph.daddr = v->vifc_rmt_addr.s_addr;
354                 p.iph.saddr = v->vifc_lcl_addr.s_addr;
355                 p.iph.version = 4;
356                 p.iph.ihl = 5;
357                 p.iph.protocol = IPPROTO_IPIP;
358                 sprintf(p.name, "dvmrp%d", v->vifc_vifi);
359                 ifr.ifr_ifru.ifru_data = (__force void __user *)&p;
360
361                 if (ops->ndo_do_ioctl) {
362                         mm_segment_t oldfs = get_fs();
363
364                         set_fs(KERNEL_DS);
365                         ops->ndo_do_ioctl(dev, &ifr, SIOCDELTUNNEL);
366                         set_fs(oldfs);
367                 }
368         }
369 }
370
371 static
372 struct net_device *ipmr_new_tunnel(struct net *net, struct vifctl *v)
373 {
374         struct net_device  *dev;
375
376         dev = __dev_get_by_name(net, "tunl0");
377
378         if (dev) {
379                 const struct net_device_ops *ops = dev->netdev_ops;
380                 int err;
381                 struct ifreq ifr;
382                 struct ip_tunnel_parm p;
383                 struct in_device  *in_dev;
384
385                 memset(&p, 0, sizeof(p));
386                 p.iph.daddr = v->vifc_rmt_addr.s_addr;
387                 p.iph.saddr = v->vifc_lcl_addr.s_addr;
388                 p.iph.version = 4;
389                 p.iph.ihl = 5;
390                 p.iph.protocol = IPPROTO_IPIP;
391                 sprintf(p.name, "dvmrp%d", v->vifc_vifi);
392                 ifr.ifr_ifru.ifru_data = (__force void __user *)&p;
393
394                 if (ops->ndo_do_ioctl) {
395                         mm_segment_t oldfs = get_fs();
396
397                         set_fs(KERNEL_DS);
398                         err = ops->ndo_do_ioctl(dev, &ifr, SIOCADDTUNNEL);
399                         set_fs(oldfs);
400                 } else {
401                         err = -EOPNOTSUPP;
402                 }
403                 dev = NULL;
404
405                 if (err == 0 &&
406                     (dev = __dev_get_by_name(net, p.name)) != NULL) {
407                         dev->flags |= IFF_MULTICAST;
408
409                         in_dev = __in_dev_get_rtnl(dev);
410                         if (in_dev == NULL)
411                                 goto failure;
412
413                         ipv4_devconf_setall(in_dev);
414                         IPV4_DEVCONF(in_dev->cnf, RP_FILTER) = 0;
415
416                         if (dev_open(dev))
417                                 goto failure;
418                         dev_hold(dev);
419                 }
420         }
421         return dev;
422
423 failure:
424         /* allow the register to be completed before unregistering. */
425         rtnl_unlock();
426         rtnl_lock();
427
428         unregister_netdevice(dev);
429         return NULL;
430 }
431
432 #ifdef CONFIG_IP_PIMSM
433
434 static netdev_tx_t reg_vif_xmit(struct sk_buff *skb, struct net_device *dev)
435 {
436         struct net *net = dev_net(dev);
437         struct mr_table *mrt;
438         struct flowi fl = {
439                 .oif            = dev->ifindex,
440                 .iif            = skb->skb_iif,
441                 .mark           = skb->mark,
442         };
443         int err;
444
445         err = ipmr_fib_lookup(net, &fl, &mrt);
446         if (err < 0) {
447                 kfree_skb(skb);
448                 return err;
449         }
450
451         read_lock(&mrt_lock);
452         dev->stats.tx_bytes += skb->len;
453         dev->stats.tx_packets++;
454         ipmr_cache_report(mrt, skb, mrt->mroute_reg_vif_num, IGMPMSG_WHOLEPKT);
455         read_unlock(&mrt_lock);
456         kfree_skb(skb);
457         return NETDEV_TX_OK;
458 }
459
460 static const struct net_device_ops reg_vif_netdev_ops = {
461         .ndo_start_xmit = reg_vif_xmit,
462 };
463
464 static void reg_vif_setup(struct net_device *dev)
465 {
466         dev->type               = ARPHRD_PIMREG;
467         dev->mtu                = ETH_DATA_LEN - sizeof(struct iphdr) - 8;
468         dev->flags              = IFF_NOARP;
469         dev->netdev_ops         = &reg_vif_netdev_ops,
470         dev->destructor         = free_netdev;
471         dev->features           |= NETIF_F_NETNS_LOCAL;
472 }
473
474 static struct net_device *ipmr_reg_vif(struct net *net, struct mr_table *mrt)
475 {
476         struct net_device *dev;
477         struct in_device *in_dev;
478         char name[IFNAMSIZ];
479
480         if (mrt->id == RT_TABLE_DEFAULT)
481                 sprintf(name, "pimreg");
482         else
483                 sprintf(name, "pimreg%u", mrt->id);
484
485         dev = alloc_netdev(0, name, reg_vif_setup);
486
487         if (dev == NULL)
488                 return NULL;
489
490         dev_net_set(dev, net);
491
492         if (register_netdevice(dev)) {
493                 free_netdev(dev);
494                 return NULL;
495         }
496         dev->iflink = 0;
497
498         rcu_read_lock();
499         in_dev = __in_dev_get_rcu(dev);
500         if (!in_dev) {
501                 rcu_read_unlock();
502                 goto failure;
503         }
504
505         ipv4_devconf_setall(in_dev);
506         IPV4_DEVCONF(in_dev->cnf, RP_FILTER) = 0;
507         rcu_read_unlock();
508
509         if (dev_open(dev))
510                 goto failure;
511
512         dev_hold(dev);
513
514         return dev;
515
516 failure:
517         /* allow the register to be completed before unregistering. */
518         rtnl_unlock();
519         rtnl_lock();
520
521         unregister_netdevice(dev);
522         return NULL;
523 }
524 #endif
525
526 /*
527  *      Delete a VIF entry
528  *      @notify: Set to 1, if the caller is a notifier_call
529  */
530
531 static int vif_delete(struct mr_table *mrt, int vifi, int notify,
532                       struct list_head *head)
533 {
534         struct vif_device *v;
535         struct net_device *dev;
536         struct in_device *in_dev;
537
538         if (vifi < 0 || vifi >= mrt->maxvif)
539                 return -EADDRNOTAVAIL;
540
541         v = &mrt->vif_table[vifi];
542
543         write_lock_bh(&mrt_lock);
544         dev = v->dev;
545         v->dev = NULL;
546
547         if (!dev) {
548                 write_unlock_bh(&mrt_lock);
549                 return -EADDRNOTAVAIL;
550         }
551
552 #ifdef CONFIG_IP_PIMSM
553         if (vifi == mrt->mroute_reg_vif_num)
554                 mrt->mroute_reg_vif_num = -1;
555 #endif
556
557         if (vifi + 1 == mrt->maxvif) {
558                 int tmp;
559
560                 for (tmp = vifi - 1; tmp >= 0; tmp--) {
561                         if (VIF_EXISTS(mrt, tmp))
562                                 break;
563                 }
564                 mrt->maxvif = tmp+1;
565         }
566
567         write_unlock_bh(&mrt_lock);
568
569         dev_set_allmulti(dev, -1);
570
571         in_dev = __in_dev_get_rtnl(dev);
572         if (in_dev) {
573                 IPV4_DEVCONF(in_dev->cnf, MC_FORWARDING)--;
574                 ip_rt_multicast_event(in_dev);
575         }
576
577         if (v->flags & (VIFF_TUNNEL | VIFF_REGISTER) && !notify)
578                 unregister_netdevice_queue(dev, head);
579
580         dev_put(dev);
581         return 0;
582 }
583
584 static void ipmr_cache_free_rcu(struct rcu_head *head)
585 {
586         struct mfc_cache *c = container_of(head, struct mfc_cache, rcu);
587
588         kmem_cache_free(mrt_cachep, c);
589 }
590
591 static inline void ipmr_cache_free(struct mfc_cache *c)
592 {
593         call_rcu(&c->rcu, ipmr_cache_free_rcu);
594 }
595
596 /* Destroy an unresolved cache entry, killing queued skbs
597  * and reporting error to netlink readers.
598  */
599
600 static void ipmr_destroy_unres(struct mr_table *mrt, struct mfc_cache *c)
601 {
602         struct net *net = read_pnet(&mrt->net);
603         struct sk_buff *skb;
604         struct nlmsgerr *e;
605
606         atomic_dec(&mrt->cache_resolve_queue_len);
607
608         while ((skb = skb_dequeue(&c->mfc_un.unres.unresolved))) {
609                 if (ip_hdr(skb)->version == 0) {
610                         struct nlmsghdr *nlh = (struct nlmsghdr *)skb_pull(skb, sizeof(struct iphdr));
611                         nlh->nlmsg_type = NLMSG_ERROR;
612                         nlh->nlmsg_len = NLMSG_LENGTH(sizeof(struct nlmsgerr));
613                         skb_trim(skb, nlh->nlmsg_len);
614                         e = NLMSG_DATA(nlh);
615                         e->error = -ETIMEDOUT;
616                         memset(&e->msg, 0, sizeof(e->msg));
617
618                         rtnl_unicast(skb, net, NETLINK_CB(skb).pid);
619                 } else {
620                         kfree_skb(skb);
621                 }
622         }
623
624         ipmr_cache_free(c);
625 }
626
627
628 /* Timer process for the unresolved queue. */
629
630 static void ipmr_expire_process(unsigned long arg)
631 {
632         struct mr_table *mrt = (struct mr_table *)arg;
633         unsigned long now;
634         unsigned long expires;
635         struct mfc_cache *c, *next;
636
637         if (!spin_trylock(&mfc_unres_lock)) {
638                 mod_timer(&mrt->ipmr_expire_timer, jiffies+HZ/10);
639                 return;
640         }
641
642         if (list_empty(&mrt->mfc_unres_queue))
643                 goto out;
644
645         now = jiffies;
646         expires = 10*HZ;
647
648         list_for_each_entry_safe(c, next, &mrt->mfc_unres_queue, list) {
649                 if (time_after(c->mfc_un.unres.expires, now)) {
650                         unsigned long interval = c->mfc_un.unres.expires - now;
651                         if (interval < expires)
652                                 expires = interval;
653                         continue;
654                 }
655
656                 list_del(&c->list);
657                 ipmr_destroy_unres(mrt, c);
658         }
659
660         if (!list_empty(&mrt->mfc_unres_queue))
661                 mod_timer(&mrt->ipmr_expire_timer, jiffies + expires);
662
663 out:
664         spin_unlock(&mfc_unres_lock);
665 }
666
667 /* Fill oifs list. It is called under write locked mrt_lock. */
668
669 static void ipmr_update_thresholds(struct mr_table *mrt, struct mfc_cache *cache,
670                                    unsigned char *ttls)
671 {
672         int vifi;
673
674         cache->mfc_un.res.minvif = MAXVIFS;
675         cache->mfc_un.res.maxvif = 0;
676         memset(cache->mfc_un.res.ttls, 255, MAXVIFS);
677
678         for (vifi = 0; vifi < mrt->maxvif; vifi++) {
679                 if (VIF_EXISTS(mrt, vifi) &&
680                     ttls[vifi] && ttls[vifi] < 255) {
681                         cache->mfc_un.res.ttls[vifi] = ttls[vifi];
682                         if (cache->mfc_un.res.minvif > vifi)
683                                 cache->mfc_un.res.minvif = vifi;
684                         if (cache->mfc_un.res.maxvif <= vifi)
685                                 cache->mfc_un.res.maxvif = vifi + 1;
686                 }
687         }
688 }
689
690 static int vif_add(struct net *net, struct mr_table *mrt,
691                    struct vifctl *vifc, int mrtsock)
692 {
693         int vifi = vifc->vifc_vifi;
694         struct vif_device *v = &mrt->vif_table[vifi];
695         struct net_device *dev;
696         struct in_device *in_dev;
697         int err;
698
699         /* Is vif busy ? */
700         if (VIF_EXISTS(mrt, vifi))
701                 return -EADDRINUSE;
702
703         switch (vifc->vifc_flags) {
704 #ifdef CONFIG_IP_PIMSM
705         case VIFF_REGISTER:
706                 /*
707                  * Special Purpose VIF in PIM
708                  * All the packets will be sent to the daemon
709                  */
710                 if (mrt->mroute_reg_vif_num >= 0)
711                         return -EADDRINUSE;
712                 dev = ipmr_reg_vif(net, mrt);
713                 if (!dev)
714                         return -ENOBUFS;
715                 err = dev_set_allmulti(dev, 1);
716                 if (err) {
717                         unregister_netdevice(dev);
718                         dev_put(dev);
719                         return err;
720                 }
721                 break;
722 #endif
723         case VIFF_TUNNEL:
724                 dev = ipmr_new_tunnel(net, vifc);
725                 if (!dev)
726                         return -ENOBUFS;
727                 err = dev_set_allmulti(dev, 1);
728                 if (err) {
729                         ipmr_del_tunnel(dev, vifc);
730                         dev_put(dev);
731                         return err;
732                 }
733                 break;
734
735         case VIFF_USE_IFINDEX:
736         case 0:
737                 if (vifc->vifc_flags == VIFF_USE_IFINDEX) {
738                         dev = dev_get_by_index(net, vifc->vifc_lcl_ifindex);
739                         if (dev && __in_dev_get_rtnl(dev) == NULL) {
740                                 dev_put(dev);
741                                 return -EADDRNOTAVAIL;
742                         }
743                 } else {
744                         dev = ip_dev_find(net, vifc->vifc_lcl_addr.s_addr);
745                 }
746                 if (!dev)
747                         return -EADDRNOTAVAIL;
748                 err = dev_set_allmulti(dev, 1);
749                 if (err) {
750                         dev_put(dev);
751                         return err;
752                 }
753                 break;
754         default:
755                 return -EINVAL;
756         }
757
758         in_dev = __in_dev_get_rtnl(dev);
759         if (!in_dev) {
760                 dev_put(dev);
761                 return -EADDRNOTAVAIL;
762         }
763         IPV4_DEVCONF(in_dev->cnf, MC_FORWARDING)++;
764         ip_rt_multicast_event(in_dev);
765
766         /* Fill in the VIF structures */
767
768         v->rate_limit = vifc->vifc_rate_limit;
769         v->local = vifc->vifc_lcl_addr.s_addr;
770         v->remote = vifc->vifc_rmt_addr.s_addr;
771         v->flags = vifc->vifc_flags;
772         if (!mrtsock)
773                 v->flags |= VIFF_STATIC;
774         v->threshold = vifc->vifc_threshold;
775         v->bytes_in = 0;
776         v->bytes_out = 0;
777         v->pkt_in = 0;
778         v->pkt_out = 0;
779         v->link = dev->ifindex;
780         if (v->flags & (VIFF_TUNNEL | VIFF_REGISTER))
781                 v->link = dev->iflink;
782
783         /* And finish update writing critical data */
784         write_lock_bh(&mrt_lock);
785         v->dev = dev;
786 #ifdef CONFIG_IP_PIMSM
787         if (v->flags & VIFF_REGISTER)
788                 mrt->mroute_reg_vif_num = vifi;
789 #endif
790         if (vifi+1 > mrt->maxvif)
791                 mrt->maxvif = vifi+1;
792         write_unlock_bh(&mrt_lock);
793         return 0;
794 }
795
796 /* called with rcu_read_lock() */
797 static struct mfc_cache *ipmr_cache_find(struct mr_table *mrt,
798                                          __be32 origin,
799                                          __be32 mcastgrp)
800 {
801         int line = MFC_HASH(mcastgrp, origin);
802         struct mfc_cache *c;
803
804         list_for_each_entry_rcu(c, &mrt->mfc_cache_array[line], list) {
805                 if (c->mfc_origin == origin && c->mfc_mcastgrp == mcastgrp)
806                         return c;
807         }
808         return NULL;
809 }
810
811 /*
812  *      Allocate a multicast cache entry
813  */
814 static struct mfc_cache *ipmr_cache_alloc(void)
815 {
816         struct mfc_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_KERNEL);
817
818         if (c)
819                 c->mfc_un.res.minvif = MAXVIFS;
820         return c;
821 }
822
823 static struct mfc_cache *ipmr_cache_alloc_unres(void)
824 {
825         struct mfc_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_ATOMIC);
826
827         if (c) {
828                 skb_queue_head_init(&c->mfc_un.unres.unresolved);
829                 c->mfc_un.unres.expires = jiffies + 10*HZ;
830         }
831         return c;
832 }
833
834 /*
835  *      A cache entry has gone into a resolved state from queued
836  */
837
838 static void ipmr_cache_resolve(struct net *net, struct mr_table *mrt,
839                                struct mfc_cache *uc, struct mfc_cache *c)
840 {
841         struct sk_buff *skb;
842         struct nlmsgerr *e;
843
844         /* Play the pending entries through our router */
845
846         while ((skb = __skb_dequeue(&uc->mfc_un.unres.unresolved))) {
847                 if (ip_hdr(skb)->version == 0) {
848                         struct nlmsghdr *nlh = (struct nlmsghdr *)skb_pull(skb, sizeof(struct iphdr));
849
850                         if (__ipmr_fill_mroute(mrt, skb, c, NLMSG_DATA(nlh)) > 0) {
851                                 nlh->nlmsg_len = skb_tail_pointer(skb) -
852                                                  (u8 *)nlh;
853                         } else {
854                                 nlh->nlmsg_type = NLMSG_ERROR;
855                                 nlh->nlmsg_len = NLMSG_LENGTH(sizeof(struct nlmsgerr));
856                                 skb_trim(skb, nlh->nlmsg_len);
857                                 e = NLMSG_DATA(nlh);
858                                 e->error = -EMSGSIZE;
859                                 memset(&e->msg, 0, sizeof(e->msg));
860                         }
861
862                         rtnl_unicast(skb, net, NETLINK_CB(skb).pid);
863                 } else {
864                         ip_mr_forward(net, mrt, skb, c, 0);
865                 }
866         }
867 }
868
869 /*
870  *      Bounce a cache query up to mrouted. We could use netlink for this but mrouted
871  *      expects the following bizarre scheme.
872  *
873  *      Called under mrt_lock.
874  */
875
876 static int ipmr_cache_report(struct mr_table *mrt,
877                              struct sk_buff *pkt, vifi_t vifi, int assert)
878 {
879         struct sk_buff *skb;
880         const int ihl = ip_hdrlen(pkt);
881         struct igmphdr *igmp;
882         struct igmpmsg *msg;
883         struct sock *mroute_sk;
884         int ret;
885
886 #ifdef CONFIG_IP_PIMSM
887         if (assert == IGMPMSG_WHOLEPKT)
888                 skb = skb_realloc_headroom(pkt, sizeof(struct iphdr));
889         else
890 #endif
891                 skb = alloc_skb(128, GFP_ATOMIC);
892
893         if (!skb)
894                 return -ENOBUFS;
895
896 #ifdef CONFIG_IP_PIMSM
897         if (assert == IGMPMSG_WHOLEPKT) {
898                 /* Ugly, but we have no choice with this interface.
899                  * Duplicate old header, fix ihl, length etc.
900                  * And all this only to mangle msg->im_msgtype and
901                  * to set msg->im_mbz to "mbz" :-)
902                  */
903                 skb_push(skb, sizeof(struct iphdr));
904                 skb_reset_network_header(skb);
905                 skb_reset_transport_header(skb);
906                 msg = (struct igmpmsg *)skb_network_header(skb);
907                 memcpy(msg, skb_network_header(pkt), sizeof(struct iphdr));
908                 msg->im_msgtype = IGMPMSG_WHOLEPKT;
909                 msg->im_mbz = 0;
910                 msg->im_vif = mrt->mroute_reg_vif_num;
911                 ip_hdr(skb)->ihl = sizeof(struct iphdr) >> 2;
912                 ip_hdr(skb)->tot_len = htons(ntohs(ip_hdr(pkt)->tot_len) +
913                                              sizeof(struct iphdr));
914         } else
915 #endif
916         {
917
918         /* Copy the IP header */
919
920         skb->network_header = skb->tail;
921         skb_put(skb, ihl);
922         skb_copy_to_linear_data(skb, pkt->data, ihl);
923         ip_hdr(skb)->protocol = 0;      /* Flag to the kernel this is a route add */
924         msg = (struct igmpmsg *)skb_network_header(skb);
925         msg->im_vif = vifi;
926         skb_dst_set(skb, dst_clone(skb_dst(pkt)));
927
928         /* Add our header */
929
930         igmp = (struct igmphdr *)skb_put(skb, sizeof(struct igmphdr));
931         igmp->type      =
932         msg->im_msgtype = assert;
933         igmp->code      = 0;
934         ip_hdr(skb)->tot_len = htons(skb->len);         /* Fix the length */
935         skb->transport_header = skb->network_header;
936         }
937
938         rcu_read_lock();
939         mroute_sk = rcu_dereference(mrt->mroute_sk);
940         if (mroute_sk == NULL) {
941                 rcu_read_unlock();
942                 kfree_skb(skb);
943                 return -EINVAL;
944         }
945
946         /* Deliver to mrouted */
947
948         ret = sock_queue_rcv_skb(mroute_sk, skb);
949         rcu_read_unlock();
950         if (ret < 0) {
951                 if (net_ratelimit())
952                         printk(KERN_WARNING "mroute: pending queue full, dropping entries.\n");
953                 kfree_skb(skb);
954         }
955
956         return ret;
957 }
958
959 /*
960  *      Queue a packet for resolution. It gets locked cache entry!
961  */
962
963 static int
964 ipmr_cache_unresolved(struct mr_table *mrt, vifi_t vifi, struct sk_buff *skb)
965 {
966         bool found = false;
967         int err;
968         struct mfc_cache *c;
969         const struct iphdr *iph = ip_hdr(skb);
970
971         spin_lock_bh(&mfc_unres_lock);
972         list_for_each_entry(c, &mrt->mfc_unres_queue, list) {
973                 if (c->mfc_mcastgrp == iph->daddr &&
974                     c->mfc_origin == iph->saddr) {
975                         found = true;
976                         break;
977                 }
978         }
979
980         if (!found) {
981                 /* Create a new entry if allowable */
982
983                 if (atomic_read(&mrt->cache_resolve_queue_len) >= 10 ||
984                     (c = ipmr_cache_alloc_unres()) == NULL) {
985                         spin_unlock_bh(&mfc_unres_lock);
986
987                         kfree_skb(skb);
988                         return -ENOBUFS;
989                 }
990
991                 /* Fill in the new cache entry */
992
993                 c->mfc_parent   = -1;
994                 c->mfc_origin   = iph->saddr;
995                 c->mfc_mcastgrp = iph->daddr;
996
997                 /* Reflect first query at mrouted. */
998
999                 err = ipmr_cache_report(mrt, skb, vifi, IGMPMSG_NOCACHE);
1000                 if (err < 0) {
1001                         /* If the report failed throw the cache entry
1002                            out - Brad Parker
1003                          */
1004                         spin_unlock_bh(&mfc_unres_lock);
1005
1006                         ipmr_cache_free(c);
1007                         kfree_skb(skb);
1008                         return err;
1009                 }
1010
1011                 atomic_inc(&mrt->cache_resolve_queue_len);
1012                 list_add(&c->list, &mrt->mfc_unres_queue);
1013
1014                 if (atomic_read(&mrt->cache_resolve_queue_len) == 1)
1015                         mod_timer(&mrt->ipmr_expire_timer, c->mfc_un.unres.expires);
1016         }
1017
1018         /* See if we can append the packet */
1019
1020         if (c->mfc_un.unres.unresolved.qlen > 3) {
1021                 kfree_skb(skb);
1022                 err = -ENOBUFS;
1023         } else {
1024                 skb_queue_tail(&c->mfc_un.unres.unresolved, skb);
1025                 err = 0;
1026         }
1027
1028         spin_unlock_bh(&mfc_unres_lock);
1029         return err;
1030 }
1031
1032 /*
1033  *      MFC cache manipulation by user space mroute daemon
1034  */
1035
1036 static int ipmr_mfc_delete(struct mr_table *mrt, struct mfcctl *mfc)
1037 {
1038         int line;
1039         struct mfc_cache *c, *next;
1040
1041         line = MFC_HASH(mfc->mfcc_mcastgrp.s_addr, mfc->mfcc_origin.s_addr);
1042
1043         list_for_each_entry_safe(c, next, &mrt->mfc_cache_array[line], list) {
1044                 if (c->mfc_origin == mfc->mfcc_origin.s_addr &&
1045                     c->mfc_mcastgrp == mfc->mfcc_mcastgrp.s_addr) {
1046                         list_del_rcu(&c->list);
1047
1048                         ipmr_cache_free(c);
1049                         return 0;
1050                 }
1051         }
1052         return -ENOENT;
1053 }
1054
1055 static int ipmr_mfc_add(struct net *net, struct mr_table *mrt,
1056                         struct mfcctl *mfc, int mrtsock)
1057 {
1058         bool found = false;
1059         int line;
1060         struct mfc_cache *uc, *c;
1061
1062         if (mfc->mfcc_parent >= MAXVIFS)
1063                 return -ENFILE;
1064
1065         line = MFC_HASH(mfc->mfcc_mcastgrp.s_addr, mfc->mfcc_origin.s_addr);
1066
1067         list_for_each_entry(c, &mrt->mfc_cache_array[line], list) {
1068                 if (c->mfc_origin == mfc->mfcc_origin.s_addr &&
1069                     c->mfc_mcastgrp == mfc->mfcc_mcastgrp.s_addr) {
1070                         found = true;
1071                         break;
1072                 }
1073         }
1074
1075         if (found) {
1076                 write_lock_bh(&mrt_lock);
1077                 c->mfc_parent = mfc->mfcc_parent;
1078                 ipmr_update_thresholds(mrt, c, mfc->mfcc_ttls);
1079                 if (!mrtsock)
1080                         c->mfc_flags |= MFC_STATIC;
1081                 write_unlock_bh(&mrt_lock);
1082                 return 0;
1083         }
1084
1085         if (!ipv4_is_multicast(mfc->mfcc_mcastgrp.s_addr))
1086                 return -EINVAL;
1087
1088         c = ipmr_cache_alloc();
1089         if (c == NULL)
1090                 return -ENOMEM;
1091
1092         c->mfc_origin = mfc->mfcc_origin.s_addr;
1093         c->mfc_mcastgrp = mfc->mfcc_mcastgrp.s_addr;
1094         c->mfc_parent = mfc->mfcc_parent;
1095         ipmr_update_thresholds(mrt, c, mfc->mfcc_ttls);
1096         if (!mrtsock)
1097                 c->mfc_flags |= MFC_STATIC;
1098
1099         list_add_rcu(&c->list, &mrt->mfc_cache_array[line]);
1100
1101         /*
1102          *      Check to see if we resolved a queued list. If so we
1103          *      need to send on the frames and tidy up.
1104          */
1105         found = false;
1106         spin_lock_bh(&mfc_unres_lock);
1107         list_for_each_entry(uc, &mrt->mfc_unres_queue, list) {
1108                 if (uc->mfc_origin == c->mfc_origin &&
1109                     uc->mfc_mcastgrp == c->mfc_mcastgrp) {
1110                         list_del(&uc->list);
1111                         atomic_dec(&mrt->cache_resolve_queue_len);
1112                         found = true;
1113                         break;
1114                 }
1115         }
1116         if (list_empty(&mrt->mfc_unres_queue))
1117                 del_timer(&mrt->ipmr_expire_timer);
1118         spin_unlock_bh(&mfc_unres_lock);
1119
1120         if (found) {
1121                 ipmr_cache_resolve(net, mrt, uc, c);
1122                 ipmr_cache_free(uc);
1123         }
1124         return 0;
1125 }
1126
1127 /*
1128  *      Close the multicast socket, and clear the vif tables etc
1129  */
1130
1131 static void mroute_clean_tables(struct mr_table *mrt)
1132 {
1133         int i;
1134         LIST_HEAD(list);
1135         struct mfc_cache *c, *next;
1136
1137         /* Shut down all active vif entries */
1138
1139         for (i = 0; i < mrt->maxvif; i++) {
1140                 if (!(mrt->vif_table[i].flags & VIFF_STATIC))
1141                         vif_delete(mrt, i, 0, &list);
1142         }
1143         unregister_netdevice_many(&list);
1144
1145         /* Wipe the cache */
1146
1147         for (i = 0; i < MFC_LINES; i++) {
1148                 list_for_each_entry_safe(c, next, &mrt->mfc_cache_array[i], list) {
1149                         if (c->mfc_flags & MFC_STATIC)
1150                                 continue;
1151                         list_del_rcu(&c->list);
1152                         ipmr_cache_free(c);
1153                 }
1154         }
1155
1156         if (atomic_read(&mrt->cache_resolve_queue_len) != 0) {
1157                 spin_lock_bh(&mfc_unres_lock);
1158                 list_for_each_entry_safe(c, next, &mrt->mfc_unres_queue, list) {
1159                         list_del(&c->list);
1160                         ipmr_destroy_unres(mrt, c);
1161                 }
1162                 spin_unlock_bh(&mfc_unres_lock);
1163         }
1164 }
1165
1166 /* called from ip_ra_control(), before an RCU grace period,
1167  * we dont need to call synchronize_rcu() here
1168  */
1169 static void mrtsock_destruct(struct sock *sk)
1170 {
1171         struct net *net = sock_net(sk);
1172         struct mr_table *mrt;
1173
1174         rtnl_lock();
1175         ipmr_for_each_table(mrt, net) {
1176                 if (sk == rtnl_dereference(mrt->mroute_sk)) {
1177                         IPV4_DEVCONF_ALL(net, MC_FORWARDING)--;
1178                         rcu_assign_pointer(mrt->mroute_sk, NULL);
1179                         mroute_clean_tables(mrt);
1180                 }
1181         }
1182         rtnl_unlock();
1183 }
1184
1185 /*
1186  *      Socket options and virtual interface manipulation. The whole
1187  *      virtual interface system is a complete heap, but unfortunately
1188  *      that's how BSD mrouted happens to think. Maybe one day with a proper
1189  *      MOSPF/PIM router set up we can clean this up.
1190  */
1191
1192 int ip_mroute_setsockopt(struct sock *sk, int optname, char __user *optval, unsigned int optlen)
1193 {
1194         int ret;
1195         struct vifctl vif;
1196         struct mfcctl mfc;
1197         struct net *net = sock_net(sk);
1198         struct mr_table *mrt;
1199
1200         mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1201         if (mrt == NULL)
1202                 return -ENOENT;
1203
1204         if (optname != MRT_INIT) {
1205                 if (sk != rcu_dereference_raw(mrt->mroute_sk) &&
1206                     !capable(CAP_NET_ADMIN))
1207                         return -EACCES;
1208         }
1209
1210         switch (optname) {
1211         case MRT_INIT:
1212                 if (sk->sk_type != SOCK_RAW ||
1213                     inet_sk(sk)->inet_num != IPPROTO_IGMP)
1214                         return -EOPNOTSUPP;
1215                 if (optlen != sizeof(int))
1216                         return -ENOPROTOOPT;
1217
1218                 rtnl_lock();
1219                 if (rtnl_dereference(mrt->mroute_sk)) {
1220                         rtnl_unlock();
1221                         return -EADDRINUSE;
1222                 }
1223
1224                 ret = ip_ra_control(sk, 1, mrtsock_destruct);
1225                 if (ret == 0) {
1226                         rcu_assign_pointer(mrt->mroute_sk, sk);
1227                         IPV4_DEVCONF_ALL(net, MC_FORWARDING)++;
1228                 }
1229                 rtnl_unlock();
1230                 return ret;
1231         case MRT_DONE:
1232                 if (sk != rcu_dereference_raw(mrt->mroute_sk))
1233                         return -EACCES;
1234                 return ip_ra_control(sk, 0, NULL);
1235         case MRT_ADD_VIF:
1236         case MRT_DEL_VIF:
1237                 if (optlen != sizeof(vif))
1238                         return -EINVAL;
1239                 if (copy_from_user(&vif, optval, sizeof(vif)))
1240                         return -EFAULT;
1241                 if (vif.vifc_vifi >= MAXVIFS)
1242                         return -ENFILE;
1243                 rtnl_lock();
1244                 if (optname == MRT_ADD_VIF) {
1245                         ret = vif_add(net, mrt, &vif,
1246                                       sk == rtnl_dereference(mrt->mroute_sk));
1247                 } else {
1248                         ret = vif_delete(mrt, vif.vifc_vifi, 0, NULL);
1249                 }
1250                 rtnl_unlock();
1251                 return ret;
1252
1253                 /*
1254                  *      Manipulate the forwarding caches. These live
1255                  *      in a sort of kernel/user symbiosis.
1256                  */
1257         case MRT_ADD_MFC:
1258         case MRT_DEL_MFC:
1259                 if (optlen != sizeof(mfc))
1260                         return -EINVAL;
1261                 if (copy_from_user(&mfc, optval, sizeof(mfc)))
1262                         return -EFAULT;
1263                 rtnl_lock();
1264                 if (optname == MRT_DEL_MFC)
1265                         ret = ipmr_mfc_delete(mrt, &mfc);
1266                 else
1267                         ret = ipmr_mfc_add(net, mrt, &mfc,
1268                                            sk == rtnl_dereference(mrt->mroute_sk));
1269                 rtnl_unlock();
1270                 return ret;
1271                 /*
1272                  *      Control PIM assert.
1273                  */
1274         case MRT_ASSERT:
1275         {
1276                 int v;
1277                 if (get_user(v, (int __user *)optval))
1278                         return -EFAULT;
1279                 mrt->mroute_do_assert = (v) ? 1 : 0;
1280                 return 0;
1281         }
1282 #ifdef CONFIG_IP_PIMSM
1283         case MRT_PIM:
1284         {
1285                 int v;
1286
1287                 if (get_user(v, (int __user *)optval))
1288                         return -EFAULT;
1289                 v = (v) ? 1 : 0;
1290
1291                 rtnl_lock();
1292                 ret = 0;
1293                 if (v != mrt->mroute_do_pim) {
1294                         mrt->mroute_do_pim = v;
1295                         mrt->mroute_do_assert = v;
1296                 }
1297                 rtnl_unlock();
1298                 return ret;
1299         }
1300 #endif
1301 #ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES
1302         case MRT_TABLE:
1303         {
1304                 u32 v;
1305
1306                 if (optlen != sizeof(u32))
1307                         return -EINVAL;
1308                 if (get_user(v, (u32 __user *)optval))
1309                         return -EFAULT;
1310
1311                 rtnl_lock();
1312                 ret = 0;
1313                 if (sk == rtnl_dereference(mrt->mroute_sk)) {
1314                         ret = -EBUSY;
1315                 } else {
1316                         if (!ipmr_new_table(net, v))
1317                                 ret = -ENOMEM;
1318                         raw_sk(sk)->ipmr_table = v;
1319                 }
1320                 rtnl_unlock();
1321                 return ret;
1322         }
1323 #endif
1324         /*
1325          *      Spurious command, or MRT_VERSION which you cannot
1326          *      set.
1327          */
1328         default:
1329                 return -ENOPROTOOPT;
1330         }
1331 }
1332
1333 /*
1334  *      Getsock opt support for the multicast routing system.
1335  */
1336
1337 int ip_mroute_getsockopt(struct sock *sk, int optname, char __user *optval, int __user *optlen)
1338 {
1339         int olr;
1340         int val;
1341         struct net *net = sock_net(sk);
1342         struct mr_table *mrt;
1343
1344         mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1345         if (mrt == NULL)
1346                 return -ENOENT;
1347
1348         if (optname != MRT_VERSION &&
1349 #ifdef CONFIG_IP_PIMSM
1350            optname != MRT_PIM &&
1351 #endif
1352            optname != MRT_ASSERT)
1353                 return -ENOPROTOOPT;
1354
1355         if (get_user(olr, optlen))
1356                 return -EFAULT;
1357
1358         olr = min_t(unsigned int, olr, sizeof(int));
1359         if (olr < 0)
1360                 return -EINVAL;
1361
1362         if (put_user(olr, optlen))
1363                 return -EFAULT;
1364         if (optname == MRT_VERSION)
1365                 val = 0x0305;
1366 #ifdef CONFIG_IP_PIMSM
1367         else if (optname == MRT_PIM)
1368                 val = mrt->mroute_do_pim;
1369 #endif
1370         else
1371                 val = mrt->mroute_do_assert;
1372         if (copy_to_user(optval, &val, olr))
1373                 return -EFAULT;
1374         return 0;
1375 }
1376
1377 /*
1378  *      The IP multicast ioctl support routines.
1379  */
1380
1381 int ipmr_ioctl(struct sock *sk, int cmd, void __user *arg)
1382 {
1383         struct sioc_sg_req sr;
1384         struct sioc_vif_req vr;
1385         struct vif_device *vif;
1386         struct mfc_cache *c;
1387         struct net *net = sock_net(sk);
1388         struct mr_table *mrt;
1389
1390         mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1391         if (mrt == NULL)
1392                 return -ENOENT;
1393
1394         switch (cmd) {
1395         case SIOCGETVIFCNT:
1396                 if (copy_from_user(&vr, arg, sizeof(vr)))
1397                         return -EFAULT;
1398                 if (vr.vifi >= mrt->maxvif)
1399                         return -EINVAL;
1400                 read_lock(&mrt_lock);
1401                 vif = &mrt->vif_table[vr.vifi];
1402                 if (VIF_EXISTS(mrt, vr.vifi)) {
1403                         vr.icount = vif->pkt_in;
1404                         vr.ocount = vif->pkt_out;
1405                         vr.ibytes = vif->bytes_in;
1406                         vr.obytes = vif->bytes_out;
1407                         read_unlock(&mrt_lock);
1408
1409                         if (copy_to_user(arg, &vr, sizeof(vr)))
1410                                 return -EFAULT;
1411                         return 0;
1412                 }
1413                 read_unlock(&mrt_lock);
1414                 return -EADDRNOTAVAIL;
1415         case SIOCGETSGCNT:
1416                 if (copy_from_user(&sr, arg, sizeof(sr)))
1417                         return -EFAULT;
1418
1419                 rcu_read_lock();
1420                 c = ipmr_cache_find(mrt, sr.src.s_addr, sr.grp.s_addr);
1421                 if (c) {
1422                         sr.pktcnt = c->mfc_un.res.pkt;
1423                         sr.bytecnt = c->mfc_un.res.bytes;
1424                         sr.wrong_if = c->mfc_un.res.wrong_if;
1425                         rcu_read_unlock();
1426
1427                         if (copy_to_user(arg, &sr, sizeof(sr)))
1428                                 return -EFAULT;
1429                         return 0;
1430                 }
1431                 rcu_read_unlock();
1432                 return -EADDRNOTAVAIL;
1433         default:
1434                 return -ENOIOCTLCMD;
1435         }
1436 }
1437
1438 #ifdef CONFIG_COMPAT
1439 struct compat_sioc_sg_req {
1440         struct in_addr src;
1441         struct in_addr grp;
1442         compat_ulong_t pktcnt;
1443         compat_ulong_t bytecnt;
1444         compat_ulong_t wrong_if;
1445 };
1446
1447 int ipmr_compat_ioctl(struct sock *sk, unsigned int cmd, void __user *arg)
1448 {
1449         struct sioc_sg_req sr;
1450         struct mfc_cache *c;
1451         struct net *net = sock_net(sk);
1452         struct mr_table *mrt;
1453
1454         mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1455         if (mrt == NULL)
1456                 return -ENOENT;
1457
1458         switch (cmd) {
1459         case SIOCGETSGCNT:
1460                 if (copy_from_user(&sr, arg, sizeof(sr)))
1461                         return -EFAULT;
1462
1463                 rcu_read_lock();
1464                 c = ipmr_cache_find(mrt, sr.src.s_addr, sr.grp.s_addr);
1465                 if (c) {
1466                         sr.pktcnt = c->mfc_un.res.pkt;
1467                         sr.bytecnt = c->mfc_un.res.bytes;
1468                         sr.wrong_if = c->mfc_un.res.wrong_if;
1469                         rcu_read_unlock();
1470
1471                         if (copy_to_user(arg, &sr, sizeof(sr)))
1472                                 return -EFAULT;
1473                         return 0;
1474                 }
1475                 rcu_read_unlock();
1476                 return -EADDRNOTAVAIL;
1477         default:
1478                 return -ENOIOCTLCMD;
1479         }
1480 }
1481 #endif
1482
1483
1484 static int ipmr_device_event(struct notifier_block *this, unsigned long event, void *ptr)
1485 {
1486         struct net_device *dev = ptr;
1487         struct net *net = dev_net(dev);
1488         struct mr_table *mrt;
1489         struct vif_device *v;
1490         int ct;
1491         LIST_HEAD(list);
1492
1493         if (event != NETDEV_UNREGISTER)
1494                 return NOTIFY_DONE;
1495
1496         ipmr_for_each_table(mrt, net) {
1497                 v = &mrt->vif_table[0];
1498                 for (ct = 0; ct < mrt->maxvif; ct++, v++) {
1499                         if (v->dev == dev)
1500                                 vif_delete(mrt, ct, 1, &list);
1501                 }
1502         }
1503         unregister_netdevice_many(&list);
1504         return NOTIFY_DONE;
1505 }
1506
1507
1508 static struct notifier_block ip_mr_notifier = {
1509         .notifier_call = ipmr_device_event,
1510 };
1511
1512 /*
1513  *      Encapsulate a packet by attaching a valid IPIP header to it.
1514  *      This avoids tunnel drivers and other mess and gives us the speed so
1515  *      important for multicast video.
1516  */
1517
1518 static void ip_encap(struct sk_buff *skb, __be32 saddr, __be32 daddr)
1519 {
1520         struct iphdr *iph;
1521         struct iphdr *old_iph = ip_hdr(skb);
1522
1523         skb_push(skb, sizeof(struct iphdr));
1524         skb->transport_header = skb->network_header;
1525         skb_reset_network_header(skb);
1526         iph = ip_hdr(skb);
1527
1528         iph->version    =       4;
1529         iph->tos        =       old_iph->tos;
1530         iph->ttl        =       old_iph->ttl;
1531         iph->frag_off   =       0;
1532         iph->daddr      =       daddr;
1533         iph->saddr      =       saddr;
1534         iph->protocol   =       IPPROTO_IPIP;
1535         iph->ihl        =       5;
1536         iph->tot_len    =       htons(skb->len);
1537         ip_select_ident(iph, skb_dst(skb), NULL);
1538         ip_send_check(iph);
1539
1540         memset(&(IPCB(skb)->opt), 0, sizeof(IPCB(skb)->opt));
1541         nf_reset(skb);
1542 }
1543
1544 static inline int ipmr_forward_finish(struct sk_buff *skb)
1545 {
1546         struct ip_options *opt = &(IPCB(skb)->opt);
1547
1548         IP_INC_STATS_BH(dev_net(skb_dst(skb)->dev), IPSTATS_MIB_OUTFORWDATAGRAMS);
1549
1550         if (unlikely(opt->optlen))
1551                 ip_forward_options(skb);
1552
1553         return dst_output(skb);
1554 }
1555
1556 /*
1557  *      Processing handlers for ipmr_forward
1558  */
1559
1560 static void ipmr_queue_xmit(struct net *net, struct mr_table *mrt,
1561                             struct sk_buff *skb, struct mfc_cache *c, int vifi)
1562 {
1563         const struct iphdr *iph = ip_hdr(skb);
1564         struct vif_device *vif = &mrt->vif_table[vifi];
1565         struct net_device *dev;
1566         struct rtable *rt;
1567         int    encap = 0;
1568
1569         if (vif->dev == NULL)
1570                 goto out_free;
1571
1572 #ifdef CONFIG_IP_PIMSM
1573         if (vif->flags & VIFF_REGISTER) {
1574                 vif->pkt_out++;
1575                 vif->bytes_out += skb->len;
1576                 vif->dev->stats.tx_bytes += skb->len;
1577                 vif->dev->stats.tx_packets++;
1578                 ipmr_cache_report(mrt, skb, vifi, IGMPMSG_WHOLEPKT);
1579                 goto out_free;
1580         }
1581 #endif
1582
1583         if (vif->flags & VIFF_TUNNEL) {
1584                 struct flowi fl = {
1585                         .oif = vif->link,
1586                         .fl4_dst = vif->remote,
1587                         .fl4_src = vif->local,
1588                         .fl4_tos = RT_TOS(iph->tos),
1589                         .proto = IPPROTO_IPIP
1590                 };
1591
1592                 if (ip_route_output_key(net, &rt, &fl))
1593                         goto out_free;
1594                 encap = sizeof(struct iphdr);
1595         } else {
1596                 struct flowi fl = {
1597                         .oif = vif->link,
1598                         .fl4_dst = iph->daddr,
1599                         .fl4_tos = RT_TOS(iph->tos),
1600                         .proto = IPPROTO_IPIP
1601                 };
1602
1603                 if (ip_route_output_key(net, &rt, &fl))
1604                         goto out_free;
1605         }
1606
1607         dev = rt->dst.dev;
1608
1609         if (skb->len+encap > dst_mtu(&rt->dst) && (ntohs(iph->frag_off) & IP_DF)) {
1610                 /* Do not fragment multicasts. Alas, IPv4 does not
1611                  * allow to send ICMP, so that packets will disappear
1612                  * to blackhole.
1613                  */
1614
1615                 IP_INC_STATS_BH(dev_net(dev), IPSTATS_MIB_FRAGFAILS);
1616                 ip_rt_put(rt);
1617                 goto out_free;
1618         }
1619
1620         encap += LL_RESERVED_SPACE(dev) + rt->dst.header_len;
1621
1622         if (skb_cow(skb, encap)) {
1623                 ip_rt_put(rt);
1624                 goto out_free;
1625         }
1626
1627         vif->pkt_out++;
1628         vif->bytes_out += skb->len;
1629
1630         skb_dst_drop(skb);
1631         skb_dst_set(skb, &rt->dst);
1632         ip_decrease_ttl(ip_hdr(skb));
1633
1634         /* FIXME: forward and output firewalls used to be called here.
1635          * What do we do with netfilter? -- RR
1636          */
1637         if (vif->flags & VIFF_TUNNEL) {
1638                 ip_encap(skb, vif->local, vif->remote);
1639                 /* FIXME: extra output firewall step used to be here. --RR */
1640                 vif->dev->stats.tx_packets++;
1641                 vif->dev->stats.tx_bytes += skb->len;
1642         }
1643
1644         IPCB(skb)->flags |= IPSKB_FORWARDED;
1645
1646         /*
1647          * RFC1584 teaches, that DVMRP/PIM router must deliver packets locally
1648          * not only before forwarding, but after forwarding on all output
1649          * interfaces. It is clear, if mrouter runs a multicasting
1650          * program, it should receive packets not depending to what interface
1651          * program is joined.
1652          * If we will not make it, the program will have to join on all
1653          * interfaces. On the other hand, multihoming host (or router, but
1654          * not mrouter) cannot join to more than one interface - it will
1655          * result in receiving multiple packets.
1656          */
1657         NF_HOOK(NFPROTO_IPV4, NF_INET_FORWARD, skb, skb->dev, dev,
1658                 ipmr_forward_finish);
1659         return;
1660
1661 out_free:
1662         kfree_skb(skb);
1663 }
1664
1665 static int ipmr_find_vif(struct mr_table *mrt, struct net_device *dev)
1666 {
1667         int ct;
1668
1669         for (ct = mrt->maxvif-1; ct >= 0; ct--) {
1670                 if (mrt->vif_table[ct].dev == dev)
1671                         break;
1672         }
1673         return ct;
1674 }
1675
1676 /* "local" means that we should preserve one skb (for local delivery) */
1677
1678 static int ip_mr_forward(struct net *net, struct mr_table *mrt,
1679                          struct sk_buff *skb, struct mfc_cache *cache,
1680                          int local)
1681 {
1682         int psend = -1;
1683         int vif, ct;
1684
1685         vif = cache->mfc_parent;
1686         cache->mfc_un.res.pkt++;
1687         cache->mfc_un.res.bytes += skb->len;
1688
1689         /*
1690          * Wrong interface: drop packet and (maybe) send PIM assert.
1691          */
1692         if (mrt->vif_table[vif].dev != skb->dev) {
1693                 int true_vifi;
1694
1695                 if (rt_is_output_route(skb_rtable(skb))) {
1696                         /* It is our own packet, looped back.
1697                          * Very complicated situation...
1698                          *
1699                          * The best workaround until routing daemons will be
1700                          * fixed is not to redistribute packet, if it was
1701                          * send through wrong interface. It means, that
1702                          * multicast applications WILL NOT work for
1703                          * (S,G), which have default multicast route pointing
1704                          * to wrong oif. In any case, it is not a good
1705                          * idea to use multicasting applications on router.
1706                          */
1707                         goto dont_forward;
1708                 }
1709
1710                 cache->mfc_un.res.wrong_if++;
1711                 true_vifi = ipmr_find_vif(mrt, skb->dev);
1712
1713                 if (true_vifi >= 0 && mrt->mroute_do_assert &&
1714                     /* pimsm uses asserts, when switching from RPT to SPT,
1715                      * so that we cannot check that packet arrived on an oif.
1716                      * It is bad, but otherwise we would need to move pretty
1717                      * large chunk of pimd to kernel. Ough... --ANK
1718                      */
1719                     (mrt->mroute_do_pim ||
1720                      cache->mfc_un.res.ttls[true_vifi] < 255) &&
1721                     time_after(jiffies,
1722                                cache->mfc_un.res.last_assert + MFC_ASSERT_THRESH)) {
1723                         cache->mfc_un.res.last_assert = jiffies;
1724                         ipmr_cache_report(mrt, skb, true_vifi, IGMPMSG_WRONGVIF);
1725                 }
1726                 goto dont_forward;
1727         }
1728
1729         mrt->vif_table[vif].pkt_in++;
1730         mrt->vif_table[vif].bytes_in += skb->len;
1731
1732         /*
1733          *      Forward the frame
1734          */
1735         for (ct = cache->mfc_un.res.maxvif - 1;
1736              ct >= cache->mfc_un.res.minvif; ct--) {
1737                 if (ip_hdr(skb)->ttl > cache->mfc_un.res.ttls[ct]) {
1738                         if (psend != -1) {
1739                                 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
1740
1741                                 if (skb2)
1742                                         ipmr_queue_xmit(net, mrt, skb2, cache,
1743                                                         psend);
1744                         }
1745                         psend = ct;
1746                 }
1747         }
1748         if (psend != -1) {
1749                 if (local) {
1750                         struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
1751
1752                         if (skb2)
1753                                 ipmr_queue_xmit(net, mrt, skb2, cache, psend);
1754                 } else {
1755                         ipmr_queue_xmit(net, mrt, skb, cache, psend);
1756                         return 0;
1757                 }
1758         }
1759
1760 dont_forward:
1761         if (!local)
1762                 kfree_skb(skb);
1763         return 0;
1764 }
1765
1766
1767 /*
1768  *      Multicast packets for forwarding arrive here
1769  *      Called with rcu_read_lock();
1770  */
1771
1772 int ip_mr_input(struct sk_buff *skb)
1773 {
1774         struct mfc_cache *cache;
1775         struct net *net = dev_net(skb->dev);
1776         int local = skb_rtable(skb)->rt_flags & RTCF_LOCAL;
1777         struct mr_table *mrt;
1778         int err;
1779
1780         /* Packet is looped back after forward, it should not be
1781          * forwarded second time, but still can be delivered locally.
1782          */
1783         if (IPCB(skb)->flags & IPSKB_FORWARDED)
1784                 goto dont_forward;
1785
1786         err = ipmr_fib_lookup(net, &skb_rtable(skb)->fl, &mrt);
1787         if (err < 0) {
1788                 kfree_skb(skb);
1789                 return err;
1790         }
1791
1792         if (!local) {
1793                 if (IPCB(skb)->opt.router_alert) {
1794                         if (ip_call_ra_chain(skb))
1795                                 return 0;
1796                 } else if (ip_hdr(skb)->protocol == IPPROTO_IGMP) {
1797                         /* IGMPv1 (and broken IGMPv2 implementations sort of
1798                          * Cisco IOS <= 11.2(8)) do not put router alert
1799                          * option to IGMP packets destined to routable
1800                          * groups. It is very bad, because it means
1801                          * that we can forward NO IGMP messages.
1802                          */
1803                         struct sock *mroute_sk;
1804
1805                         mroute_sk = rcu_dereference(mrt->mroute_sk);
1806                         if (mroute_sk) {
1807                                 nf_reset(skb);
1808                                 raw_rcv(mroute_sk, skb);
1809                                 return 0;
1810                         }
1811                     }
1812         }
1813
1814         /* already under rcu_read_lock() */
1815         cache = ipmr_cache_find(mrt, ip_hdr(skb)->saddr, ip_hdr(skb)->daddr);
1816
1817         /*
1818          *      No usable cache entry
1819          */
1820         if (cache == NULL) {
1821                 int vif;
1822
1823                 if (local) {
1824                         struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
1825                         ip_local_deliver(skb);
1826                         if (skb2 == NULL)
1827                                 return -ENOBUFS;
1828                         skb = skb2;
1829                 }
1830
1831                 read_lock(&mrt_lock);
1832                 vif = ipmr_find_vif(mrt, skb->dev);
1833                 if (vif >= 0) {
1834                         int err2 = ipmr_cache_unresolved(mrt, vif, skb);
1835                         read_unlock(&mrt_lock);
1836
1837                         return err2;
1838                 }
1839                 read_unlock(&mrt_lock);
1840                 kfree_skb(skb);
1841                 return -ENODEV;
1842         }
1843
1844         read_lock(&mrt_lock);
1845         ip_mr_forward(net, mrt, skb, cache, local);
1846         read_unlock(&mrt_lock);
1847
1848         if (local)
1849                 return ip_local_deliver(skb);
1850
1851         return 0;
1852
1853 dont_forward:
1854         if (local)
1855                 return ip_local_deliver(skb);
1856         kfree_skb(skb);
1857         return 0;
1858 }
1859
1860 #ifdef CONFIG_IP_PIMSM
1861 /* called with rcu_read_lock() */
1862 static int __pim_rcv(struct mr_table *mrt, struct sk_buff *skb,
1863                      unsigned int pimlen)
1864 {
1865         struct net_device *reg_dev = NULL;
1866         struct iphdr *encap;
1867
1868         encap = (struct iphdr *)(skb_transport_header(skb) + pimlen);
1869         /*
1870          * Check that:
1871          * a. packet is really sent to a multicast group
1872          * b. packet is not a NULL-REGISTER
1873          * c. packet is not truncated
1874          */
1875         if (!ipv4_is_multicast(encap->daddr) ||
1876             encap->tot_len == 0 ||
1877             ntohs(encap->tot_len) + pimlen > skb->len)
1878                 return 1;
1879
1880         read_lock(&mrt_lock);
1881         if (mrt->mroute_reg_vif_num >= 0)
1882                 reg_dev = mrt->vif_table[mrt->mroute_reg_vif_num].dev;
1883         read_unlock(&mrt_lock);
1884
1885         if (reg_dev == NULL)
1886                 return 1;
1887
1888         skb->mac_header = skb->network_header;
1889         skb_pull(skb, (u8 *)encap - skb->data);
1890         skb_reset_network_header(skb);
1891         skb->protocol = htons(ETH_P_IP);
1892         skb->ip_summed = CHECKSUM_NONE;
1893         skb->pkt_type = PACKET_HOST;
1894
1895         skb_tunnel_rx(skb, reg_dev);
1896
1897         netif_rx(skb);
1898
1899         return NET_RX_SUCCESS;
1900 }
1901 #endif
1902
1903 #ifdef CONFIG_IP_PIMSM_V1
1904 /*
1905  * Handle IGMP messages of PIMv1
1906  */
1907
1908 int pim_rcv_v1(struct sk_buff *skb)
1909 {
1910         struct igmphdr *pim;
1911         struct net *net = dev_net(skb->dev);
1912         struct mr_table *mrt;
1913
1914         if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(struct iphdr)))
1915                 goto drop;
1916
1917         pim = igmp_hdr(skb);
1918
1919         if (ipmr_fib_lookup(net, &skb_rtable(skb)->fl, &mrt) < 0)
1920                 goto drop;
1921
1922         if (!mrt->mroute_do_pim ||
1923             pim->group != PIM_V1_VERSION || pim->code != PIM_V1_REGISTER)
1924                 goto drop;
1925
1926         if (__pim_rcv(mrt, skb, sizeof(*pim))) {
1927 drop:
1928                 kfree_skb(skb);
1929         }
1930         return 0;
1931 }
1932 #endif
1933
1934 #ifdef CONFIG_IP_PIMSM_V2
1935 static int pim_rcv(struct sk_buff *skb)
1936 {
1937         struct pimreghdr *pim;
1938         struct net *net = dev_net(skb->dev);
1939         struct mr_table *mrt;
1940
1941         if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(struct iphdr)))
1942                 goto drop;
1943
1944         pim = (struct pimreghdr *)skb_transport_header(skb);
1945         if (pim->type != ((PIM_VERSION << 4) | (PIM_REGISTER)) ||
1946             (pim->flags & PIM_NULL_REGISTER) ||
1947             (ip_compute_csum((void *)pim, sizeof(*pim)) != 0 &&
1948              csum_fold(skb_checksum(skb, 0, skb->len, 0))))
1949                 goto drop;
1950
1951         if (ipmr_fib_lookup(net, &skb_rtable(skb)->fl, &mrt) < 0)
1952                 goto drop;
1953
1954         if (__pim_rcv(mrt, skb, sizeof(*pim))) {
1955 drop:
1956                 kfree_skb(skb);
1957         }
1958         return 0;
1959 }
1960 #endif
1961
1962 static int __ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
1963                               struct mfc_cache *c, struct rtmsg *rtm)
1964 {
1965         int ct;
1966         struct rtnexthop *nhp;
1967         u8 *b = skb_tail_pointer(skb);
1968         struct rtattr *mp_head;
1969
1970         /* If cache is unresolved, don't try to parse IIF and OIF */
1971         if (c->mfc_parent >= MAXVIFS)
1972                 return -ENOENT;
1973
1974         if (VIF_EXISTS(mrt, c->mfc_parent))
1975                 RTA_PUT(skb, RTA_IIF, 4, &mrt->vif_table[c->mfc_parent].dev->ifindex);
1976
1977         mp_head = (struct rtattr *)skb_put(skb, RTA_LENGTH(0));
1978
1979         for (ct = c->mfc_un.res.minvif; ct < c->mfc_un.res.maxvif; ct++) {
1980                 if (VIF_EXISTS(mrt, ct) && c->mfc_un.res.ttls[ct] < 255) {
1981                         if (skb_tailroom(skb) < RTA_ALIGN(RTA_ALIGN(sizeof(*nhp)) + 4))
1982                                 goto rtattr_failure;
1983                         nhp = (struct rtnexthop *)skb_put(skb, RTA_ALIGN(sizeof(*nhp)));
1984                         nhp->rtnh_flags = 0;
1985                         nhp->rtnh_hops = c->mfc_un.res.ttls[ct];
1986                         nhp->rtnh_ifindex = mrt->vif_table[ct].dev->ifindex;
1987                         nhp->rtnh_len = sizeof(*nhp);
1988                 }
1989         }
1990         mp_head->rta_type = RTA_MULTIPATH;
1991         mp_head->rta_len = skb_tail_pointer(skb) - (u8 *)mp_head;
1992         rtm->rtm_type = RTN_MULTICAST;
1993         return 1;
1994
1995 rtattr_failure:
1996         nlmsg_trim(skb, b);
1997         return -EMSGSIZE;
1998 }
1999
2000 int ipmr_get_route(struct net *net,
2001                    struct sk_buff *skb, struct rtmsg *rtm, int nowait)
2002 {
2003         int err;
2004         struct mr_table *mrt;
2005         struct mfc_cache *cache;
2006         struct rtable *rt = skb_rtable(skb);
2007
2008         mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
2009         if (mrt == NULL)
2010                 return -ENOENT;
2011
2012         rcu_read_lock();
2013         cache = ipmr_cache_find(mrt, rt->rt_src, rt->rt_dst);
2014
2015         if (cache == NULL) {
2016                 struct sk_buff *skb2;
2017                 struct iphdr *iph;
2018                 struct net_device *dev;
2019                 int vif = -1;
2020
2021                 if (nowait) {
2022                         rcu_read_unlock();
2023                         return -EAGAIN;
2024                 }
2025
2026                 dev = skb->dev;
2027                 read_lock(&mrt_lock);
2028                 if (dev)
2029                         vif = ipmr_find_vif(mrt, dev);
2030                 if (vif < 0) {
2031                         read_unlock(&mrt_lock);
2032                         rcu_read_unlock();
2033                         return -ENODEV;
2034                 }
2035                 skb2 = skb_clone(skb, GFP_ATOMIC);
2036                 if (!skb2) {
2037                         read_unlock(&mrt_lock);
2038                         rcu_read_unlock();
2039                         return -ENOMEM;
2040                 }
2041
2042                 skb_push(skb2, sizeof(struct iphdr));
2043                 skb_reset_network_header(skb2);
2044                 iph = ip_hdr(skb2);
2045                 iph->ihl = sizeof(struct iphdr) >> 2;
2046                 iph->saddr = rt->rt_src;
2047                 iph->daddr = rt->rt_dst;
2048                 iph->version = 0;
2049                 err = ipmr_cache_unresolved(mrt, vif, skb2);
2050                 read_unlock(&mrt_lock);
2051                 rcu_read_unlock();
2052                 return err;
2053         }
2054
2055         read_lock(&mrt_lock);
2056         if (!nowait && (rtm->rtm_flags & RTM_F_NOTIFY))
2057                 cache->mfc_flags |= MFC_NOTIFY;
2058         err = __ipmr_fill_mroute(mrt, skb, cache, rtm);
2059         read_unlock(&mrt_lock);
2060         rcu_read_unlock();
2061         return err;
2062 }
2063
2064 static int ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
2065                             u32 pid, u32 seq, struct mfc_cache *c)
2066 {
2067         struct nlmsghdr *nlh;
2068         struct rtmsg *rtm;
2069
2070         nlh = nlmsg_put(skb, pid, seq, RTM_NEWROUTE, sizeof(*rtm), NLM_F_MULTI);
2071         if (nlh == NULL)
2072                 return -EMSGSIZE;
2073
2074         rtm = nlmsg_data(nlh);
2075         rtm->rtm_family   = RTNL_FAMILY_IPMR;
2076         rtm->rtm_dst_len  = 32;
2077         rtm->rtm_src_len  = 32;
2078         rtm->rtm_tos      = 0;
2079         rtm->rtm_table    = mrt->id;
2080         NLA_PUT_U32(skb, RTA_TABLE, mrt->id);
2081         rtm->rtm_type     = RTN_MULTICAST;
2082         rtm->rtm_scope    = RT_SCOPE_UNIVERSE;
2083         rtm->rtm_protocol = RTPROT_UNSPEC;
2084         rtm->rtm_flags    = 0;
2085
2086         NLA_PUT_BE32(skb, RTA_SRC, c->mfc_origin);
2087         NLA_PUT_BE32(skb, RTA_DST, c->mfc_mcastgrp);
2088
2089         if (__ipmr_fill_mroute(mrt, skb, c, rtm) < 0)
2090                 goto nla_put_failure;
2091
2092         return nlmsg_end(skb, nlh);
2093
2094 nla_put_failure:
2095         nlmsg_cancel(skb, nlh);
2096         return -EMSGSIZE;
2097 }
2098
2099 static int ipmr_rtm_dumproute(struct sk_buff *skb, struct netlink_callback *cb)
2100 {
2101         struct net *net = sock_net(skb->sk);
2102         struct mr_table *mrt;
2103         struct mfc_cache *mfc;
2104         unsigned int t = 0, s_t;
2105         unsigned int h = 0, s_h;
2106         unsigned int e = 0, s_e;
2107
2108         s_t = cb->args[0];
2109         s_h = cb->args[1];
2110         s_e = cb->args[2];
2111
2112         rcu_read_lock();
2113         ipmr_for_each_table(mrt, net) {
2114                 if (t < s_t)
2115                         goto next_table;
2116                 if (t > s_t)
2117                         s_h = 0;
2118                 for (h = s_h; h < MFC_LINES; h++) {
2119                         list_for_each_entry_rcu(mfc, &mrt->mfc_cache_array[h], list) {
2120                                 if (e < s_e)
2121                                         goto next_entry;
2122                                 if (ipmr_fill_mroute(mrt, skb,
2123                                                      NETLINK_CB(cb->skb).pid,
2124                                                      cb->nlh->nlmsg_seq,
2125                                                      mfc) < 0)
2126                                         goto done;
2127 next_entry:
2128                                 e++;
2129                         }
2130                         e = s_e = 0;
2131                 }
2132                 s_h = 0;
2133 next_table:
2134                 t++;
2135         }
2136 done:
2137         rcu_read_unlock();
2138
2139         cb->args[2] = e;
2140         cb->args[1] = h;
2141         cb->args[0] = t;
2142
2143         return skb->len;
2144 }
2145
2146 #ifdef CONFIG_PROC_FS
2147 /*
2148  *      The /proc interfaces to multicast routing :
2149  *      /proc/net/ip_mr_cache & /proc/net/ip_mr_vif
2150  */
2151 struct ipmr_vif_iter {
2152         struct seq_net_private p;
2153         struct mr_table *mrt;
2154         int ct;
2155 };
2156
2157 static struct vif_device *ipmr_vif_seq_idx(struct net *net,
2158                                            struct ipmr_vif_iter *iter,
2159                                            loff_t pos)
2160 {
2161         struct mr_table *mrt = iter->mrt;
2162
2163         for (iter->ct = 0; iter->ct < mrt->maxvif; ++iter->ct) {
2164                 if (!VIF_EXISTS(mrt, iter->ct))
2165                         continue;
2166                 if (pos-- == 0)
2167                         return &mrt->vif_table[iter->ct];
2168         }
2169         return NULL;
2170 }
2171
2172 static void *ipmr_vif_seq_start(struct seq_file *seq, loff_t *pos)
2173         __acquires(mrt_lock)
2174 {
2175         struct ipmr_vif_iter *iter = seq->private;
2176         struct net *net = seq_file_net(seq);
2177         struct mr_table *mrt;
2178
2179         mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
2180         if (mrt == NULL)
2181                 return ERR_PTR(-ENOENT);
2182
2183         iter->mrt = mrt;
2184
2185         read_lock(&mrt_lock);
2186         return *pos ? ipmr_vif_seq_idx(net, seq->private, *pos - 1)
2187                 : SEQ_START_TOKEN;
2188 }
2189
2190 static void *ipmr_vif_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2191 {
2192         struct ipmr_vif_iter *iter = seq->private;
2193         struct net *net = seq_file_net(seq);
2194         struct mr_table *mrt = iter->mrt;
2195
2196         ++*pos;
2197         if (v == SEQ_START_TOKEN)
2198                 return ipmr_vif_seq_idx(net, iter, 0);
2199
2200         while (++iter->ct < mrt->maxvif) {
2201                 if (!VIF_EXISTS(mrt, iter->ct))
2202                         continue;
2203                 return &mrt->vif_table[iter->ct];
2204         }
2205         return NULL;
2206 }
2207
2208 static void ipmr_vif_seq_stop(struct seq_file *seq, void *v)
2209         __releases(mrt_lock)
2210 {
2211         read_unlock(&mrt_lock);
2212 }
2213
2214 static int ipmr_vif_seq_show(struct seq_file *seq, void *v)
2215 {
2216         struct ipmr_vif_iter *iter = seq->private;
2217         struct mr_table *mrt = iter->mrt;
2218
2219         if (v == SEQ_START_TOKEN) {
2220                 seq_puts(seq,
2221                          "Interface      BytesIn  PktsIn  BytesOut PktsOut Flags Local    Remote\n");
2222         } else {
2223                 const struct vif_device *vif = v;
2224                 const char *name =  vif->dev ? vif->dev->name : "none";
2225
2226                 seq_printf(seq,
2227                            "%2Zd %-10s %8ld %7ld  %8ld %7ld %05X %08X %08X\n",
2228                            vif - mrt->vif_table,
2229                            name, vif->bytes_in, vif->pkt_in,
2230                            vif->bytes_out, vif->pkt_out,
2231                            vif->flags, vif->local, vif->remote);
2232         }
2233         return 0;
2234 }
2235
2236 static const struct seq_operations ipmr_vif_seq_ops = {
2237         .start = ipmr_vif_seq_start,
2238         .next  = ipmr_vif_seq_next,
2239         .stop  = ipmr_vif_seq_stop,
2240         .show  = ipmr_vif_seq_show,
2241 };
2242
2243 static int ipmr_vif_open(struct inode *inode, struct file *file)
2244 {
2245         return seq_open_net(inode, file, &ipmr_vif_seq_ops,
2246                             sizeof(struct ipmr_vif_iter));
2247 }
2248
2249 static const struct file_operations ipmr_vif_fops = {
2250         .owner   = THIS_MODULE,
2251         .open    = ipmr_vif_open,
2252         .read    = seq_read,
2253         .llseek  = seq_lseek,
2254         .release = seq_release_net,
2255 };
2256
2257 struct ipmr_mfc_iter {
2258         struct seq_net_private p;
2259         struct mr_table *mrt;
2260         struct list_head *cache;
2261         int ct;
2262 };
2263
2264
2265 static struct mfc_cache *ipmr_mfc_seq_idx(struct net *net,
2266                                           struct ipmr_mfc_iter *it, loff_t pos)
2267 {
2268         struct mr_table *mrt = it->mrt;
2269         struct mfc_cache *mfc;
2270
2271         rcu_read_lock();
2272         for (it->ct = 0; it->ct < MFC_LINES; it->ct++) {
2273                 it->cache = &mrt->mfc_cache_array[it->ct];
2274                 list_for_each_entry_rcu(mfc, it->cache, list)
2275                         if (pos-- == 0)
2276                                 return mfc;
2277         }
2278         rcu_read_unlock();
2279
2280         spin_lock_bh(&mfc_unres_lock);
2281         it->cache = &mrt->mfc_unres_queue;
2282         list_for_each_entry(mfc, it->cache, list)
2283                 if (pos-- == 0)
2284                         return mfc;
2285         spin_unlock_bh(&mfc_unres_lock);
2286
2287         it->cache = NULL;
2288         return NULL;
2289 }
2290
2291
2292 static void *ipmr_mfc_seq_start(struct seq_file *seq, loff_t *pos)
2293 {
2294         struct ipmr_mfc_iter *it = seq->private;
2295         struct net *net = seq_file_net(seq);
2296         struct mr_table *mrt;
2297
2298         mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
2299         if (mrt == NULL)
2300                 return ERR_PTR(-ENOENT);
2301
2302         it->mrt = mrt;
2303         it->cache = NULL;
2304         it->ct = 0;
2305         return *pos ? ipmr_mfc_seq_idx(net, seq->private, *pos - 1)
2306                 : SEQ_START_TOKEN;
2307 }
2308
2309 static void *ipmr_mfc_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2310 {
2311         struct mfc_cache *mfc = v;
2312         struct ipmr_mfc_iter *it = seq->private;
2313         struct net *net = seq_file_net(seq);
2314         struct mr_table *mrt = it->mrt;
2315
2316         ++*pos;
2317
2318         if (v == SEQ_START_TOKEN)
2319                 return ipmr_mfc_seq_idx(net, seq->private, 0);
2320
2321         if (mfc->list.next != it->cache)
2322                 return list_entry(mfc->list.next, struct mfc_cache, list);
2323
2324         if (it->cache == &mrt->mfc_unres_queue)
2325                 goto end_of_list;
2326
2327         BUG_ON(it->cache != &mrt->mfc_cache_array[it->ct]);
2328
2329         while (++it->ct < MFC_LINES) {
2330                 it->cache = &mrt->mfc_cache_array[it->ct];
2331                 if (list_empty(it->cache))
2332                         continue;
2333                 return list_first_entry(it->cache, struct mfc_cache, list);
2334         }
2335
2336         /* exhausted cache_array, show unresolved */
2337         rcu_read_unlock();
2338         it->cache = &mrt->mfc_unres_queue;
2339         it->ct = 0;
2340
2341         spin_lock_bh(&mfc_unres_lock);
2342         if (!list_empty(it->cache))
2343                 return list_first_entry(it->cache, struct mfc_cache, list);
2344
2345 end_of_list:
2346         spin_unlock_bh(&mfc_unres_lock);
2347         it->cache = NULL;
2348
2349         return NULL;
2350 }
2351
2352 static void ipmr_mfc_seq_stop(struct seq_file *seq, void *v)
2353 {
2354         struct ipmr_mfc_iter *it = seq->private;
2355         struct mr_table *mrt = it->mrt;
2356
2357         if (it->cache == &mrt->mfc_unres_queue)
2358                 spin_unlock_bh(&mfc_unres_lock);
2359         else if (it->cache == &mrt->mfc_cache_array[it->ct])
2360                 rcu_read_unlock();
2361 }
2362
2363 static int ipmr_mfc_seq_show(struct seq_file *seq, void *v)
2364 {
2365         int n;
2366
2367         if (v == SEQ_START_TOKEN) {
2368                 seq_puts(seq,
2369                  "Group    Origin   Iif     Pkts    Bytes    Wrong Oifs\n");
2370         } else {
2371                 const struct mfc_cache *mfc = v;
2372                 const struct ipmr_mfc_iter *it = seq->private;
2373                 const struct mr_table *mrt = it->mrt;
2374
2375                 seq_printf(seq, "%08X %08X %-3hd",
2376                            (__force u32) mfc->mfc_mcastgrp,
2377                            (__force u32) mfc->mfc_origin,
2378                            mfc->mfc_parent);
2379
2380                 if (it->cache != &mrt->mfc_unres_queue) {
2381                         seq_printf(seq, " %8lu %8lu %8lu",
2382                                    mfc->mfc_un.res.pkt,
2383                                    mfc->mfc_un.res.bytes,
2384                                    mfc->mfc_un.res.wrong_if);
2385                         for (n = mfc->mfc_un.res.minvif;
2386                              n < mfc->mfc_un.res.maxvif; n++) {
2387                                 if (VIF_EXISTS(mrt, n) &&
2388                                     mfc->mfc_un.res.ttls[n] < 255)
2389                                         seq_printf(seq,
2390                                            " %2d:%-3d",
2391                                            n, mfc->mfc_un.res.ttls[n]);
2392                         }
2393                 } else {
2394                         /* unresolved mfc_caches don't contain
2395                          * pkt, bytes and wrong_if values
2396                          */
2397                         seq_printf(seq, " %8lu %8lu %8lu", 0ul, 0ul, 0ul);
2398                 }
2399                 seq_putc(seq, '\n');
2400         }
2401         return 0;
2402 }
2403
2404 static const struct seq_operations ipmr_mfc_seq_ops = {
2405         .start = ipmr_mfc_seq_start,
2406         .next  = ipmr_mfc_seq_next,
2407         .stop  = ipmr_mfc_seq_stop,
2408         .show  = ipmr_mfc_seq_show,
2409 };
2410
2411 static int ipmr_mfc_open(struct inode *inode, struct file *file)
2412 {
2413         return seq_open_net(inode, file, &ipmr_mfc_seq_ops,
2414                             sizeof(struct ipmr_mfc_iter));
2415 }
2416
2417 static const struct file_operations ipmr_mfc_fops = {
2418         .owner   = THIS_MODULE,
2419         .open    = ipmr_mfc_open,
2420         .read    = seq_read,
2421         .llseek  = seq_lseek,
2422         .release = seq_release_net,
2423 };
2424 #endif
2425
2426 #ifdef CONFIG_IP_PIMSM_V2
2427 static const struct net_protocol pim_protocol = {
2428         .handler        =       pim_rcv,
2429         .netns_ok       =       1,
2430 };
2431 #endif
2432
2433
2434 /*
2435  *      Setup for IP multicast routing
2436  */
2437 static int __net_init ipmr_net_init(struct net *net)
2438 {
2439         int err;
2440
2441         err = ipmr_rules_init(net);
2442         if (err < 0)
2443                 goto fail;
2444
2445 #ifdef CONFIG_PROC_FS
2446         err = -ENOMEM;
2447         if (!proc_net_fops_create(net, "ip_mr_vif", 0, &ipmr_vif_fops))
2448                 goto proc_vif_fail;
2449         if (!proc_net_fops_create(net, "ip_mr_cache", 0, &ipmr_mfc_fops))
2450                 goto proc_cache_fail;
2451 #endif
2452         return 0;
2453
2454 #ifdef CONFIG_PROC_FS
2455 proc_cache_fail:
2456         proc_net_remove(net, "ip_mr_vif");
2457 proc_vif_fail:
2458         ipmr_rules_exit(net);
2459 #endif
2460 fail:
2461         return err;
2462 }
2463
2464 static void __net_exit ipmr_net_exit(struct net *net)
2465 {
2466 #ifdef CONFIG_PROC_FS
2467         proc_net_remove(net, "ip_mr_cache");
2468         proc_net_remove(net, "ip_mr_vif");
2469 #endif
2470         ipmr_rules_exit(net);
2471 }
2472
2473 static struct pernet_operations ipmr_net_ops = {
2474         .init = ipmr_net_init,
2475         .exit = ipmr_net_exit,
2476 };
2477
2478 int __init ip_mr_init(void)
2479 {
2480         int err;
2481
2482         mrt_cachep = kmem_cache_create("ip_mrt_cache",
2483                                        sizeof(struct mfc_cache),
2484                                        0, SLAB_HWCACHE_ALIGN | SLAB_PANIC,
2485                                        NULL);
2486         if (!mrt_cachep)
2487                 return -ENOMEM;
2488
2489         err = register_pernet_subsys(&ipmr_net_ops);
2490         if (err)
2491                 goto reg_pernet_fail;
2492
2493         err = register_netdevice_notifier(&ip_mr_notifier);
2494         if (err)
2495                 goto reg_notif_fail;
2496 #ifdef CONFIG_IP_PIMSM_V2
2497         if (inet_add_protocol(&pim_protocol, IPPROTO_PIM) < 0) {
2498                 printk(KERN_ERR "ip_mr_init: can't add PIM protocol\n");
2499                 err = -EAGAIN;
2500                 goto add_proto_fail;
2501         }
2502 #endif
2503         rtnl_register(RTNL_FAMILY_IPMR, RTM_GETROUTE, NULL, ipmr_rtm_dumproute);
2504         return 0;
2505
2506 #ifdef CONFIG_IP_PIMSM_V2
2507 add_proto_fail:
2508         unregister_netdevice_notifier(&ip_mr_notifier);
2509 #endif
2510 reg_notif_fail:
2511         unregister_pernet_subsys(&ipmr_net_ops);
2512 reg_pernet_fail:
2513         kmem_cache_destroy(mrt_cachep);
2514         return err;
2515 }