OSDN Git Service

Revert "openvswitch: Add erspan tunnel support."
[uclinux-h8/linux.git] / net / openvswitch / flow_netlink.c
1 /*
2  * Copyright (c) 2007-2017 Nicira, Inc.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of version 2 of the GNU General Public
6  * License as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful, but
9  * WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public License
14  * along with this program; if not, write to the Free Software
15  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
16  * 02110-1301, USA
17  */
18
19 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
20
21 #include "flow.h"
22 #include "datapath.h"
23 #include <linux/uaccess.h>
24 #include <linux/netdevice.h>
25 #include <linux/etherdevice.h>
26 #include <linux/if_ether.h>
27 #include <linux/if_vlan.h>
28 #include <net/llc_pdu.h>
29 #include <linux/kernel.h>
30 #include <linux/jhash.h>
31 #include <linux/jiffies.h>
32 #include <linux/llc.h>
33 #include <linux/module.h>
34 #include <linux/in.h>
35 #include <linux/rcupdate.h>
36 #include <linux/if_arp.h>
37 #include <linux/ip.h>
38 #include <linux/ipv6.h>
39 #include <linux/sctp.h>
40 #include <linux/tcp.h>
41 #include <linux/udp.h>
42 #include <linux/icmp.h>
43 #include <linux/icmpv6.h>
44 #include <linux/rculist.h>
45 #include <net/geneve.h>
46 #include <net/ip.h>
47 #include <net/ipv6.h>
48 #include <net/ndisc.h>
49 #include <net/mpls.h>
50 #include <net/vxlan.h>
51 #include <net/tun_proto.h>
52
53 #include "flow_netlink.h"
54
55 struct ovs_len_tbl {
56         int len;
57         const struct ovs_len_tbl *next;
58 };
59
60 #define OVS_ATTR_NESTED -1
61 #define OVS_ATTR_VARIABLE -2
62
63 static bool actions_may_change_flow(const struct nlattr *actions)
64 {
65         struct nlattr *nla;
66         int rem;
67
68         nla_for_each_nested(nla, actions, rem) {
69                 u16 action = nla_type(nla);
70
71                 switch (action) {
72                 case OVS_ACTION_ATTR_OUTPUT:
73                 case OVS_ACTION_ATTR_RECIRC:
74                 case OVS_ACTION_ATTR_TRUNC:
75                 case OVS_ACTION_ATTR_USERSPACE:
76                         break;
77
78                 case OVS_ACTION_ATTR_CT:
79                 case OVS_ACTION_ATTR_CT_CLEAR:
80                 case OVS_ACTION_ATTR_HASH:
81                 case OVS_ACTION_ATTR_POP_ETH:
82                 case OVS_ACTION_ATTR_POP_MPLS:
83                 case OVS_ACTION_ATTR_POP_NSH:
84                 case OVS_ACTION_ATTR_POP_VLAN:
85                 case OVS_ACTION_ATTR_PUSH_ETH:
86                 case OVS_ACTION_ATTR_PUSH_MPLS:
87                 case OVS_ACTION_ATTR_PUSH_NSH:
88                 case OVS_ACTION_ATTR_PUSH_VLAN:
89                 case OVS_ACTION_ATTR_SAMPLE:
90                 case OVS_ACTION_ATTR_SET:
91                 case OVS_ACTION_ATTR_SET_MASKED:
92                 case OVS_ACTION_ATTR_METER:
93                 default:
94                         return true;
95                 }
96         }
97         return false;
98 }
99
100 static void update_range(struct sw_flow_match *match,
101                          size_t offset, size_t size, bool is_mask)
102 {
103         struct sw_flow_key_range *range;
104         size_t start = rounddown(offset, sizeof(long));
105         size_t end = roundup(offset + size, sizeof(long));
106
107         if (!is_mask)
108                 range = &match->range;
109         else
110                 range = &match->mask->range;
111
112         if (range->start == range->end) {
113                 range->start = start;
114                 range->end = end;
115                 return;
116         }
117
118         if (range->start > start)
119                 range->start = start;
120
121         if (range->end < end)
122                 range->end = end;
123 }
124
125 #define SW_FLOW_KEY_PUT(match, field, value, is_mask) \
126         do { \
127                 update_range(match, offsetof(struct sw_flow_key, field),    \
128                              sizeof((match)->key->field), is_mask);         \
129                 if (is_mask)                                                \
130                         (match)->mask->key.field = value;                   \
131                 else                                                        \
132                         (match)->key->field = value;                        \
133         } while (0)
134
135 #define SW_FLOW_KEY_MEMCPY_OFFSET(match, offset, value_p, len, is_mask)     \
136         do {                                                                \
137                 update_range(match, offset, len, is_mask);                  \
138                 if (is_mask)                                                \
139                         memcpy((u8 *)&(match)->mask->key + offset, value_p, \
140                                len);                                       \
141                 else                                                        \
142                         memcpy((u8 *)(match)->key + offset, value_p, len);  \
143         } while (0)
144
145 #define SW_FLOW_KEY_MEMCPY(match, field, value_p, len, is_mask)               \
146         SW_FLOW_KEY_MEMCPY_OFFSET(match, offsetof(struct sw_flow_key, field), \
147                                   value_p, len, is_mask)
148
149 #define SW_FLOW_KEY_MEMSET_FIELD(match, field, value, is_mask)              \
150         do {                                                                \
151                 update_range(match, offsetof(struct sw_flow_key, field),    \
152                              sizeof((match)->key->field), is_mask);         \
153                 if (is_mask)                                                \
154                         memset((u8 *)&(match)->mask->key.field, value,      \
155                                sizeof((match)->mask->key.field));           \
156                 else                                                        \
157                         memset((u8 *)&(match)->key->field, value,           \
158                                sizeof((match)->key->field));                \
159         } while (0)
160
161 static bool match_validate(const struct sw_flow_match *match,
162                            u64 key_attrs, u64 mask_attrs, bool log)
163 {
164         u64 key_expected = 0;
165         u64 mask_allowed = key_attrs;  /* At most allow all key attributes */
166
167         /* The following mask attributes allowed only if they
168          * pass the validation tests. */
169         mask_allowed &= ~((1 << OVS_KEY_ATTR_IPV4)
170                         | (1 << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4)
171                         | (1 << OVS_KEY_ATTR_IPV6)
172                         | (1 << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6)
173                         | (1 << OVS_KEY_ATTR_TCP)
174                         | (1 << OVS_KEY_ATTR_TCP_FLAGS)
175                         | (1 << OVS_KEY_ATTR_UDP)
176                         | (1 << OVS_KEY_ATTR_SCTP)
177                         | (1 << OVS_KEY_ATTR_ICMP)
178                         | (1 << OVS_KEY_ATTR_ICMPV6)
179                         | (1 << OVS_KEY_ATTR_ARP)
180                         | (1 << OVS_KEY_ATTR_ND)
181                         | (1 << OVS_KEY_ATTR_MPLS)
182                         | (1 << OVS_KEY_ATTR_NSH));
183
184         /* Always allowed mask fields. */
185         mask_allowed |= ((1 << OVS_KEY_ATTR_TUNNEL)
186                        | (1 << OVS_KEY_ATTR_IN_PORT)
187                        | (1 << OVS_KEY_ATTR_ETHERTYPE));
188
189         /* Check key attributes. */
190         if (match->key->eth.type == htons(ETH_P_ARP)
191                         || match->key->eth.type == htons(ETH_P_RARP)) {
192                 key_expected |= 1 << OVS_KEY_ATTR_ARP;
193                 if (match->mask && (match->mask->key.eth.type == htons(0xffff)))
194                         mask_allowed |= 1 << OVS_KEY_ATTR_ARP;
195         }
196
197         if (eth_p_mpls(match->key->eth.type)) {
198                 key_expected |= 1 << OVS_KEY_ATTR_MPLS;
199                 if (match->mask && (match->mask->key.eth.type == htons(0xffff)))
200                         mask_allowed |= 1 << OVS_KEY_ATTR_MPLS;
201         }
202
203         if (match->key->eth.type == htons(ETH_P_IP)) {
204                 key_expected |= 1 << OVS_KEY_ATTR_IPV4;
205                 if (match->mask && match->mask->key.eth.type == htons(0xffff)) {
206                         mask_allowed |= 1 << OVS_KEY_ATTR_IPV4;
207                         mask_allowed |= 1 << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4;
208                 }
209
210                 if (match->key->ip.frag != OVS_FRAG_TYPE_LATER) {
211                         if (match->key->ip.proto == IPPROTO_UDP) {
212                                 key_expected |= 1 << OVS_KEY_ATTR_UDP;
213                                 if (match->mask && (match->mask->key.ip.proto == 0xff))
214                                         mask_allowed |= 1 << OVS_KEY_ATTR_UDP;
215                         }
216
217                         if (match->key->ip.proto == IPPROTO_SCTP) {
218                                 key_expected |= 1 << OVS_KEY_ATTR_SCTP;
219                                 if (match->mask && (match->mask->key.ip.proto == 0xff))
220                                         mask_allowed |= 1 << OVS_KEY_ATTR_SCTP;
221                         }
222
223                         if (match->key->ip.proto == IPPROTO_TCP) {
224                                 key_expected |= 1 << OVS_KEY_ATTR_TCP;
225                                 key_expected |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
226                                 if (match->mask && (match->mask->key.ip.proto == 0xff)) {
227                                         mask_allowed |= 1 << OVS_KEY_ATTR_TCP;
228                                         mask_allowed |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
229                                 }
230                         }
231
232                         if (match->key->ip.proto == IPPROTO_ICMP) {
233                                 key_expected |= 1 << OVS_KEY_ATTR_ICMP;
234                                 if (match->mask && (match->mask->key.ip.proto == 0xff))
235                                         mask_allowed |= 1 << OVS_KEY_ATTR_ICMP;
236                         }
237                 }
238         }
239
240         if (match->key->eth.type == htons(ETH_P_IPV6)) {
241                 key_expected |= 1 << OVS_KEY_ATTR_IPV6;
242                 if (match->mask && match->mask->key.eth.type == htons(0xffff)) {
243                         mask_allowed |= 1 << OVS_KEY_ATTR_IPV6;
244                         mask_allowed |= 1 << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6;
245                 }
246
247                 if (match->key->ip.frag != OVS_FRAG_TYPE_LATER) {
248                         if (match->key->ip.proto == IPPROTO_UDP) {
249                                 key_expected |= 1 << OVS_KEY_ATTR_UDP;
250                                 if (match->mask && (match->mask->key.ip.proto == 0xff))
251                                         mask_allowed |= 1 << OVS_KEY_ATTR_UDP;
252                         }
253
254                         if (match->key->ip.proto == IPPROTO_SCTP) {
255                                 key_expected |= 1 << OVS_KEY_ATTR_SCTP;
256                                 if (match->mask && (match->mask->key.ip.proto == 0xff))
257                                         mask_allowed |= 1 << OVS_KEY_ATTR_SCTP;
258                         }
259
260                         if (match->key->ip.proto == IPPROTO_TCP) {
261                                 key_expected |= 1 << OVS_KEY_ATTR_TCP;
262                                 key_expected |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
263                                 if (match->mask && (match->mask->key.ip.proto == 0xff)) {
264                                         mask_allowed |= 1 << OVS_KEY_ATTR_TCP;
265                                         mask_allowed |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
266                                 }
267                         }
268
269                         if (match->key->ip.proto == IPPROTO_ICMPV6) {
270                                 key_expected |= 1 << OVS_KEY_ATTR_ICMPV6;
271                                 if (match->mask && (match->mask->key.ip.proto == 0xff))
272                                         mask_allowed |= 1 << OVS_KEY_ATTR_ICMPV6;
273
274                                 if (match->key->tp.src ==
275                                                 htons(NDISC_NEIGHBOUR_SOLICITATION) ||
276                                     match->key->tp.src == htons(NDISC_NEIGHBOUR_ADVERTISEMENT)) {
277                                         key_expected |= 1 << OVS_KEY_ATTR_ND;
278                                         /* Original direction conntrack tuple
279                                          * uses the same space as the ND fields
280                                          * in the key, so both are not allowed
281                                          * at the same time.
282                                          */
283                                         mask_allowed &= ~(1ULL << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6);
284                                         if (match->mask && (match->mask->key.tp.src == htons(0xff)))
285                                                 mask_allowed |= 1 << OVS_KEY_ATTR_ND;
286                                 }
287                         }
288                 }
289         }
290
291         if (match->key->eth.type == htons(ETH_P_NSH)) {
292                 key_expected |= 1 << OVS_KEY_ATTR_NSH;
293                 if (match->mask &&
294                     match->mask->key.eth.type == htons(0xffff)) {
295                         mask_allowed |= 1 << OVS_KEY_ATTR_NSH;
296                 }
297         }
298
299         if ((key_attrs & key_expected) != key_expected) {
300                 /* Key attributes check failed. */
301                 OVS_NLERR(log, "Missing key (keys=%llx, expected=%llx)",
302                           (unsigned long long)key_attrs,
303                           (unsigned long long)key_expected);
304                 return false;
305         }
306
307         if ((mask_attrs & mask_allowed) != mask_attrs) {
308                 /* Mask attributes check failed. */
309                 OVS_NLERR(log, "Unexpected mask (mask=%llx, allowed=%llx)",
310                           (unsigned long long)mask_attrs,
311                           (unsigned long long)mask_allowed);
312                 return false;
313         }
314
315         return true;
316 }
317
318 size_t ovs_tun_key_attr_size(void)
319 {
320         /* Whenever adding new OVS_TUNNEL_KEY_ FIELDS, we should consider
321          * updating this function.
322          */
323         return    nla_total_size_64bit(8) /* OVS_TUNNEL_KEY_ATTR_ID */
324                 + nla_total_size(16)   /* OVS_TUNNEL_KEY_ATTR_IPV[46]_SRC */
325                 + nla_total_size(16)   /* OVS_TUNNEL_KEY_ATTR_IPV[46]_DST */
326                 + nla_total_size(1)    /* OVS_TUNNEL_KEY_ATTR_TOS */
327                 + nla_total_size(1)    /* OVS_TUNNEL_KEY_ATTR_TTL */
328                 + nla_total_size(0)    /* OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT */
329                 + nla_total_size(0)    /* OVS_TUNNEL_KEY_ATTR_CSUM */
330                 + nla_total_size(0)    /* OVS_TUNNEL_KEY_ATTR_OAM */
331                 + nla_total_size(256)  /* OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS */
332                 /* OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS is mutually exclusive with
333                  * OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS and covered by it.
334                  */
335                 + nla_total_size(2)    /* OVS_TUNNEL_KEY_ATTR_TP_SRC */
336                 + nla_total_size(2);   /* OVS_TUNNEL_KEY_ATTR_TP_DST */
337 }
338
339 static size_t ovs_nsh_key_attr_size(void)
340 {
341         /* Whenever adding new OVS_NSH_KEY_ FIELDS, we should consider
342          * updating this function.
343          */
344         return  nla_total_size(NSH_BASE_HDR_LEN) /* OVS_NSH_KEY_ATTR_BASE */
345                 /* OVS_NSH_KEY_ATTR_MD1 and OVS_NSH_KEY_ATTR_MD2 are
346                  * mutually exclusive, so the bigger one can cover
347                  * the small one.
348                  */
349                 + nla_total_size(NSH_CTX_HDRS_MAX_LEN);
350 }
351
352 size_t ovs_key_attr_size(void)
353 {
354         /* Whenever adding new OVS_KEY_ FIELDS, we should consider
355          * updating this function.
356          */
357         BUILD_BUG_ON(OVS_KEY_ATTR_TUNNEL_INFO != 29);
358
359         return    nla_total_size(4)   /* OVS_KEY_ATTR_PRIORITY */
360                 + nla_total_size(0)   /* OVS_KEY_ATTR_TUNNEL */
361                   + ovs_tun_key_attr_size()
362                 + nla_total_size(4)   /* OVS_KEY_ATTR_IN_PORT */
363                 + nla_total_size(4)   /* OVS_KEY_ATTR_SKB_MARK */
364                 + nla_total_size(4)   /* OVS_KEY_ATTR_DP_HASH */
365                 + nla_total_size(4)   /* OVS_KEY_ATTR_RECIRC_ID */
366                 + nla_total_size(4)   /* OVS_KEY_ATTR_CT_STATE */
367                 + nla_total_size(2)   /* OVS_KEY_ATTR_CT_ZONE */
368                 + nla_total_size(4)   /* OVS_KEY_ATTR_CT_MARK */
369                 + nla_total_size(16)  /* OVS_KEY_ATTR_CT_LABELS */
370                 + nla_total_size(40)  /* OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6 */
371                 + nla_total_size(0)   /* OVS_KEY_ATTR_NSH */
372                   + ovs_nsh_key_attr_size()
373                 + nla_total_size(12)  /* OVS_KEY_ATTR_ETHERNET */
374                 + nla_total_size(2)   /* OVS_KEY_ATTR_ETHERTYPE */
375                 + nla_total_size(4)   /* OVS_KEY_ATTR_VLAN */
376                 + nla_total_size(0)   /* OVS_KEY_ATTR_ENCAP */
377                 + nla_total_size(2)   /* OVS_KEY_ATTR_ETHERTYPE */
378                 + nla_total_size(40)  /* OVS_KEY_ATTR_IPV6 */
379                 + nla_total_size(2)   /* OVS_KEY_ATTR_ICMPV6 */
380                 + nla_total_size(28); /* OVS_KEY_ATTR_ND */
381 }
382
383 static const struct ovs_len_tbl ovs_vxlan_ext_key_lens[OVS_VXLAN_EXT_MAX + 1] = {
384         [OVS_VXLAN_EXT_GBP]         = { .len = sizeof(u32) },
385 };
386
387 static const struct ovs_len_tbl ovs_tunnel_key_lens[OVS_TUNNEL_KEY_ATTR_MAX + 1] = {
388         [OVS_TUNNEL_KEY_ATTR_ID]            = { .len = sizeof(u64) },
389         [OVS_TUNNEL_KEY_ATTR_IPV4_SRC]      = { .len = sizeof(u32) },
390         [OVS_TUNNEL_KEY_ATTR_IPV4_DST]      = { .len = sizeof(u32) },
391         [OVS_TUNNEL_KEY_ATTR_TOS]           = { .len = 1 },
392         [OVS_TUNNEL_KEY_ATTR_TTL]           = { .len = 1 },
393         [OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT] = { .len = 0 },
394         [OVS_TUNNEL_KEY_ATTR_CSUM]          = { .len = 0 },
395         [OVS_TUNNEL_KEY_ATTR_TP_SRC]        = { .len = sizeof(u16) },
396         [OVS_TUNNEL_KEY_ATTR_TP_DST]        = { .len = sizeof(u16) },
397         [OVS_TUNNEL_KEY_ATTR_OAM]           = { .len = 0 },
398         [OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS]   = { .len = OVS_ATTR_VARIABLE },
399         [OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS]    = { .len = OVS_ATTR_NESTED,
400                                                 .next = ovs_vxlan_ext_key_lens },
401         [OVS_TUNNEL_KEY_ATTR_IPV6_SRC]      = { .len = sizeof(struct in6_addr) },
402         [OVS_TUNNEL_KEY_ATTR_IPV6_DST]      = { .len = sizeof(struct in6_addr) },
403 };
404
405 static const struct ovs_len_tbl
406 ovs_nsh_key_attr_lens[OVS_NSH_KEY_ATTR_MAX + 1] = {
407         [OVS_NSH_KEY_ATTR_BASE] = { .len = sizeof(struct ovs_nsh_key_base) },
408         [OVS_NSH_KEY_ATTR_MD1]  = { .len = sizeof(struct ovs_nsh_key_md1) },
409         [OVS_NSH_KEY_ATTR_MD2]  = { .len = OVS_ATTR_VARIABLE },
410 };
411
412 /* The size of the argument for each %OVS_KEY_ATTR_* Netlink attribute.  */
413 static const struct ovs_len_tbl ovs_key_lens[OVS_KEY_ATTR_MAX + 1] = {
414         [OVS_KEY_ATTR_ENCAP]     = { .len = OVS_ATTR_NESTED },
415         [OVS_KEY_ATTR_PRIORITY]  = { .len = sizeof(u32) },
416         [OVS_KEY_ATTR_IN_PORT]   = { .len = sizeof(u32) },
417         [OVS_KEY_ATTR_SKB_MARK]  = { .len = sizeof(u32) },
418         [OVS_KEY_ATTR_ETHERNET]  = { .len = sizeof(struct ovs_key_ethernet) },
419         [OVS_KEY_ATTR_VLAN]      = { .len = sizeof(__be16) },
420         [OVS_KEY_ATTR_ETHERTYPE] = { .len = sizeof(__be16) },
421         [OVS_KEY_ATTR_IPV4]      = { .len = sizeof(struct ovs_key_ipv4) },
422         [OVS_KEY_ATTR_IPV6]      = { .len = sizeof(struct ovs_key_ipv6) },
423         [OVS_KEY_ATTR_TCP]       = { .len = sizeof(struct ovs_key_tcp) },
424         [OVS_KEY_ATTR_TCP_FLAGS] = { .len = sizeof(__be16) },
425         [OVS_KEY_ATTR_UDP]       = { .len = sizeof(struct ovs_key_udp) },
426         [OVS_KEY_ATTR_SCTP]      = { .len = sizeof(struct ovs_key_sctp) },
427         [OVS_KEY_ATTR_ICMP]      = { .len = sizeof(struct ovs_key_icmp) },
428         [OVS_KEY_ATTR_ICMPV6]    = { .len = sizeof(struct ovs_key_icmpv6) },
429         [OVS_KEY_ATTR_ARP]       = { .len = sizeof(struct ovs_key_arp) },
430         [OVS_KEY_ATTR_ND]        = { .len = sizeof(struct ovs_key_nd) },
431         [OVS_KEY_ATTR_RECIRC_ID] = { .len = sizeof(u32) },
432         [OVS_KEY_ATTR_DP_HASH]   = { .len = sizeof(u32) },
433         [OVS_KEY_ATTR_TUNNEL]    = { .len = OVS_ATTR_NESTED,
434                                      .next = ovs_tunnel_key_lens, },
435         [OVS_KEY_ATTR_MPLS]      = { .len = sizeof(struct ovs_key_mpls) },
436         [OVS_KEY_ATTR_CT_STATE]  = { .len = sizeof(u32) },
437         [OVS_KEY_ATTR_CT_ZONE]   = { .len = sizeof(u16) },
438         [OVS_KEY_ATTR_CT_MARK]   = { .len = sizeof(u32) },
439         [OVS_KEY_ATTR_CT_LABELS] = { .len = sizeof(struct ovs_key_ct_labels) },
440         [OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4] = {
441                 .len = sizeof(struct ovs_key_ct_tuple_ipv4) },
442         [OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6] = {
443                 .len = sizeof(struct ovs_key_ct_tuple_ipv6) },
444         [OVS_KEY_ATTR_NSH]       = { .len = OVS_ATTR_NESTED,
445                                      .next = ovs_nsh_key_attr_lens, },
446 };
447
448 static bool check_attr_len(unsigned int attr_len, unsigned int expected_len)
449 {
450         return expected_len == attr_len ||
451                expected_len == OVS_ATTR_NESTED ||
452                expected_len == OVS_ATTR_VARIABLE;
453 }
454
455 static bool is_all_zero(const u8 *fp, size_t size)
456 {
457         int i;
458
459         if (!fp)
460                 return false;
461
462         for (i = 0; i < size; i++)
463                 if (fp[i])
464                         return false;
465
466         return true;
467 }
468
469 static int __parse_flow_nlattrs(const struct nlattr *attr,
470                                 const struct nlattr *a[],
471                                 u64 *attrsp, bool log, bool nz)
472 {
473         const struct nlattr *nla;
474         u64 attrs;
475         int rem;
476
477         attrs = *attrsp;
478         nla_for_each_nested(nla, attr, rem) {
479                 u16 type = nla_type(nla);
480                 int expected_len;
481
482                 if (type > OVS_KEY_ATTR_MAX) {
483                         OVS_NLERR(log, "Key type %d is out of range max %d",
484                                   type, OVS_KEY_ATTR_MAX);
485                         return -EINVAL;
486                 }
487
488                 if (attrs & (1 << type)) {
489                         OVS_NLERR(log, "Duplicate key (type %d).", type);
490                         return -EINVAL;
491                 }
492
493                 expected_len = ovs_key_lens[type].len;
494                 if (!check_attr_len(nla_len(nla), expected_len)) {
495                         OVS_NLERR(log, "Key %d has unexpected len %d expected %d",
496                                   type, nla_len(nla), expected_len);
497                         return -EINVAL;
498                 }
499
500                 if (!nz || !is_all_zero(nla_data(nla), expected_len)) {
501                         attrs |= 1 << type;
502                         a[type] = nla;
503                 }
504         }
505         if (rem) {
506                 OVS_NLERR(log, "Message has %d unknown bytes.", rem);
507                 return -EINVAL;
508         }
509
510         *attrsp = attrs;
511         return 0;
512 }
513
514 static int parse_flow_mask_nlattrs(const struct nlattr *attr,
515                                    const struct nlattr *a[], u64 *attrsp,
516                                    bool log)
517 {
518         return __parse_flow_nlattrs(attr, a, attrsp, log, true);
519 }
520
521 int parse_flow_nlattrs(const struct nlattr *attr, const struct nlattr *a[],
522                        u64 *attrsp, bool log)
523 {
524         return __parse_flow_nlattrs(attr, a, attrsp, log, false);
525 }
526
527 static int genev_tun_opt_from_nlattr(const struct nlattr *a,
528                                      struct sw_flow_match *match, bool is_mask,
529                                      bool log)
530 {
531         unsigned long opt_key_offset;
532
533         if (nla_len(a) > sizeof(match->key->tun_opts)) {
534                 OVS_NLERR(log, "Geneve option length err (len %d, max %zu).",
535                           nla_len(a), sizeof(match->key->tun_opts));
536                 return -EINVAL;
537         }
538
539         if (nla_len(a) % 4 != 0) {
540                 OVS_NLERR(log, "Geneve opt len %d is not a multiple of 4.",
541                           nla_len(a));
542                 return -EINVAL;
543         }
544
545         /* We need to record the length of the options passed
546          * down, otherwise packets with the same format but
547          * additional options will be silently matched.
548          */
549         if (!is_mask) {
550                 SW_FLOW_KEY_PUT(match, tun_opts_len, nla_len(a),
551                                 false);
552         } else {
553                 /* This is somewhat unusual because it looks at
554                  * both the key and mask while parsing the
555                  * attributes (and by extension assumes the key
556                  * is parsed first). Normally, we would verify
557                  * that each is the correct length and that the
558                  * attributes line up in the validate function.
559                  * However, that is difficult because this is
560                  * variable length and we won't have the
561                  * information later.
562                  */
563                 if (match->key->tun_opts_len != nla_len(a)) {
564                         OVS_NLERR(log, "Geneve option len %d != mask len %d",
565                                   match->key->tun_opts_len, nla_len(a));
566                         return -EINVAL;
567                 }
568
569                 SW_FLOW_KEY_PUT(match, tun_opts_len, 0xff, true);
570         }
571
572         opt_key_offset = TUN_METADATA_OFFSET(nla_len(a));
573         SW_FLOW_KEY_MEMCPY_OFFSET(match, opt_key_offset, nla_data(a),
574                                   nla_len(a), is_mask);
575         return 0;
576 }
577
578 static int vxlan_tun_opt_from_nlattr(const struct nlattr *attr,
579                                      struct sw_flow_match *match, bool is_mask,
580                                      bool log)
581 {
582         struct nlattr *a;
583         int rem;
584         unsigned long opt_key_offset;
585         struct vxlan_metadata opts;
586
587         BUILD_BUG_ON(sizeof(opts) > sizeof(match->key->tun_opts));
588
589         memset(&opts, 0, sizeof(opts));
590         nla_for_each_nested(a, attr, rem) {
591                 int type = nla_type(a);
592
593                 if (type > OVS_VXLAN_EXT_MAX) {
594                         OVS_NLERR(log, "VXLAN extension %d out of range max %d",
595                                   type, OVS_VXLAN_EXT_MAX);
596                         return -EINVAL;
597                 }
598
599                 if (!check_attr_len(nla_len(a),
600                                     ovs_vxlan_ext_key_lens[type].len)) {
601                         OVS_NLERR(log, "VXLAN extension %d has unexpected len %d expected %d",
602                                   type, nla_len(a),
603                                   ovs_vxlan_ext_key_lens[type].len);
604                         return -EINVAL;
605                 }
606
607                 switch (type) {
608                 case OVS_VXLAN_EXT_GBP:
609                         opts.gbp = nla_get_u32(a);
610                         break;
611                 default:
612                         OVS_NLERR(log, "Unknown VXLAN extension attribute %d",
613                                   type);
614                         return -EINVAL;
615                 }
616         }
617         if (rem) {
618                 OVS_NLERR(log, "VXLAN extension message has %d unknown bytes.",
619                           rem);
620                 return -EINVAL;
621         }
622
623         if (!is_mask)
624                 SW_FLOW_KEY_PUT(match, tun_opts_len, sizeof(opts), false);
625         else
626                 SW_FLOW_KEY_PUT(match, tun_opts_len, 0xff, true);
627
628         opt_key_offset = TUN_METADATA_OFFSET(sizeof(opts));
629         SW_FLOW_KEY_MEMCPY_OFFSET(match, opt_key_offset, &opts, sizeof(opts),
630                                   is_mask);
631         return 0;
632 }
633
634 static int ip_tun_from_nlattr(const struct nlattr *attr,
635                               struct sw_flow_match *match, bool is_mask,
636                               bool log)
637 {
638         bool ttl = false, ipv4 = false, ipv6 = false;
639         __be16 tun_flags = 0;
640         int opts_type = 0;
641         struct nlattr *a;
642         int rem;
643
644         nla_for_each_nested(a, attr, rem) {
645                 int type = nla_type(a);
646                 int err;
647
648                 if (type > OVS_TUNNEL_KEY_ATTR_MAX) {
649                         OVS_NLERR(log, "Tunnel attr %d out of range max %d",
650                                   type, OVS_TUNNEL_KEY_ATTR_MAX);
651                         return -EINVAL;
652                 }
653
654                 if (!check_attr_len(nla_len(a),
655                                     ovs_tunnel_key_lens[type].len)) {
656                         OVS_NLERR(log, "Tunnel attr %d has unexpected len %d expected %d",
657                                   type, nla_len(a), ovs_tunnel_key_lens[type].len);
658                         return -EINVAL;
659                 }
660
661                 switch (type) {
662                 case OVS_TUNNEL_KEY_ATTR_ID:
663                         SW_FLOW_KEY_PUT(match, tun_key.tun_id,
664                                         nla_get_be64(a), is_mask);
665                         tun_flags |= TUNNEL_KEY;
666                         break;
667                 case OVS_TUNNEL_KEY_ATTR_IPV4_SRC:
668                         SW_FLOW_KEY_PUT(match, tun_key.u.ipv4.src,
669                                         nla_get_in_addr(a), is_mask);
670                         ipv4 = true;
671                         break;
672                 case OVS_TUNNEL_KEY_ATTR_IPV4_DST:
673                         SW_FLOW_KEY_PUT(match, tun_key.u.ipv4.dst,
674                                         nla_get_in_addr(a), is_mask);
675                         ipv4 = true;
676                         break;
677                 case OVS_TUNNEL_KEY_ATTR_IPV6_SRC:
678                         SW_FLOW_KEY_PUT(match, tun_key.u.ipv6.src,
679                                         nla_get_in6_addr(a), is_mask);
680                         ipv6 = true;
681                         break;
682                 case OVS_TUNNEL_KEY_ATTR_IPV6_DST:
683                         SW_FLOW_KEY_PUT(match, tun_key.u.ipv6.dst,
684                                         nla_get_in6_addr(a), is_mask);
685                         ipv6 = true;
686                         break;
687                 case OVS_TUNNEL_KEY_ATTR_TOS:
688                         SW_FLOW_KEY_PUT(match, tun_key.tos,
689                                         nla_get_u8(a), is_mask);
690                         break;
691                 case OVS_TUNNEL_KEY_ATTR_TTL:
692                         SW_FLOW_KEY_PUT(match, tun_key.ttl,
693                                         nla_get_u8(a), is_mask);
694                         ttl = true;
695                         break;
696                 case OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT:
697                         tun_flags |= TUNNEL_DONT_FRAGMENT;
698                         break;
699                 case OVS_TUNNEL_KEY_ATTR_CSUM:
700                         tun_flags |= TUNNEL_CSUM;
701                         break;
702                 case OVS_TUNNEL_KEY_ATTR_TP_SRC:
703                         SW_FLOW_KEY_PUT(match, tun_key.tp_src,
704                                         nla_get_be16(a), is_mask);
705                         break;
706                 case OVS_TUNNEL_KEY_ATTR_TP_DST:
707                         SW_FLOW_KEY_PUT(match, tun_key.tp_dst,
708                                         nla_get_be16(a), is_mask);
709                         break;
710                 case OVS_TUNNEL_KEY_ATTR_OAM:
711                         tun_flags |= TUNNEL_OAM;
712                         break;
713                 case OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS:
714                         if (opts_type) {
715                                 OVS_NLERR(log, "Multiple metadata blocks provided");
716                                 return -EINVAL;
717                         }
718
719                         err = genev_tun_opt_from_nlattr(a, match, is_mask, log);
720                         if (err)
721                                 return err;
722
723                         tun_flags |= TUNNEL_GENEVE_OPT;
724                         opts_type = type;
725                         break;
726                 case OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS:
727                         if (opts_type) {
728                                 OVS_NLERR(log, "Multiple metadata blocks provided");
729                                 return -EINVAL;
730                         }
731
732                         err = vxlan_tun_opt_from_nlattr(a, match, is_mask, log);
733                         if (err)
734                                 return err;
735
736                         tun_flags |= TUNNEL_VXLAN_OPT;
737                         opts_type = type;
738                         break;
739                 case OVS_TUNNEL_KEY_ATTR_PAD:
740                         break;
741                 default:
742                         OVS_NLERR(log, "Unknown IP tunnel attribute %d",
743                                   type);
744                         return -EINVAL;
745                 }
746         }
747
748         SW_FLOW_KEY_PUT(match, tun_key.tun_flags, tun_flags, is_mask);
749         if (is_mask)
750                 SW_FLOW_KEY_MEMSET_FIELD(match, tun_proto, 0xff, true);
751         else
752                 SW_FLOW_KEY_PUT(match, tun_proto, ipv6 ? AF_INET6 : AF_INET,
753                                 false);
754
755         if (rem > 0) {
756                 OVS_NLERR(log, "IP tunnel attribute has %d unknown bytes.",
757                           rem);
758                 return -EINVAL;
759         }
760
761         if (ipv4 && ipv6) {
762                 OVS_NLERR(log, "Mixed IPv4 and IPv6 tunnel attributes");
763                 return -EINVAL;
764         }
765
766         if (!is_mask) {
767                 if (!ipv4 && !ipv6) {
768                         OVS_NLERR(log, "IP tunnel dst address not specified");
769                         return -EINVAL;
770                 }
771                 if (ipv4 && !match->key->tun_key.u.ipv4.dst) {
772                         OVS_NLERR(log, "IPv4 tunnel dst address is zero");
773                         return -EINVAL;
774                 }
775                 if (ipv6 && ipv6_addr_any(&match->key->tun_key.u.ipv6.dst)) {
776                         OVS_NLERR(log, "IPv6 tunnel dst address is zero");
777                         return -EINVAL;
778                 }
779
780                 if (!ttl) {
781                         OVS_NLERR(log, "IP tunnel TTL not specified.");
782                         return -EINVAL;
783                 }
784         }
785
786         return opts_type;
787 }
788
789 static int vxlan_opt_to_nlattr(struct sk_buff *skb,
790                                const void *tun_opts, int swkey_tun_opts_len)
791 {
792         const struct vxlan_metadata *opts = tun_opts;
793         struct nlattr *nla;
794
795         nla = nla_nest_start(skb, OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS);
796         if (!nla)
797                 return -EMSGSIZE;
798
799         if (nla_put_u32(skb, OVS_VXLAN_EXT_GBP, opts->gbp) < 0)
800                 return -EMSGSIZE;
801
802         nla_nest_end(skb, nla);
803         return 0;
804 }
805
806 static int __ip_tun_to_nlattr(struct sk_buff *skb,
807                               const struct ip_tunnel_key *output,
808                               const void *tun_opts, int swkey_tun_opts_len,
809                               unsigned short tun_proto)
810 {
811         if (output->tun_flags & TUNNEL_KEY &&
812             nla_put_be64(skb, OVS_TUNNEL_KEY_ATTR_ID, output->tun_id,
813                          OVS_TUNNEL_KEY_ATTR_PAD))
814                 return -EMSGSIZE;
815         switch (tun_proto) {
816         case AF_INET:
817                 if (output->u.ipv4.src &&
818                     nla_put_in_addr(skb, OVS_TUNNEL_KEY_ATTR_IPV4_SRC,
819                                     output->u.ipv4.src))
820                         return -EMSGSIZE;
821                 if (output->u.ipv4.dst &&
822                     nla_put_in_addr(skb, OVS_TUNNEL_KEY_ATTR_IPV4_DST,
823                                     output->u.ipv4.dst))
824                         return -EMSGSIZE;
825                 break;
826         case AF_INET6:
827                 if (!ipv6_addr_any(&output->u.ipv6.src) &&
828                     nla_put_in6_addr(skb, OVS_TUNNEL_KEY_ATTR_IPV6_SRC,
829                                      &output->u.ipv6.src))
830                         return -EMSGSIZE;
831                 if (!ipv6_addr_any(&output->u.ipv6.dst) &&
832                     nla_put_in6_addr(skb, OVS_TUNNEL_KEY_ATTR_IPV6_DST,
833                                      &output->u.ipv6.dst))
834                         return -EMSGSIZE;
835                 break;
836         }
837         if (output->tos &&
838             nla_put_u8(skb, OVS_TUNNEL_KEY_ATTR_TOS, output->tos))
839                 return -EMSGSIZE;
840         if (nla_put_u8(skb, OVS_TUNNEL_KEY_ATTR_TTL, output->ttl))
841                 return -EMSGSIZE;
842         if ((output->tun_flags & TUNNEL_DONT_FRAGMENT) &&
843             nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT))
844                 return -EMSGSIZE;
845         if ((output->tun_flags & TUNNEL_CSUM) &&
846             nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_CSUM))
847                 return -EMSGSIZE;
848         if (output->tp_src &&
849             nla_put_be16(skb, OVS_TUNNEL_KEY_ATTR_TP_SRC, output->tp_src))
850                 return -EMSGSIZE;
851         if (output->tp_dst &&
852             nla_put_be16(skb, OVS_TUNNEL_KEY_ATTR_TP_DST, output->tp_dst))
853                 return -EMSGSIZE;
854         if ((output->tun_flags & TUNNEL_OAM) &&
855             nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_OAM))
856                 return -EMSGSIZE;
857         if (swkey_tun_opts_len) {
858                 if (output->tun_flags & TUNNEL_GENEVE_OPT &&
859                     nla_put(skb, OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS,
860                             swkey_tun_opts_len, tun_opts))
861                         return -EMSGSIZE;
862                 else if (output->tun_flags & TUNNEL_VXLAN_OPT &&
863                          vxlan_opt_to_nlattr(skb, tun_opts, swkey_tun_opts_len))
864                         return -EMSGSIZE;
865         }
866
867         return 0;
868 }
869
870 static int ip_tun_to_nlattr(struct sk_buff *skb,
871                             const struct ip_tunnel_key *output,
872                             const void *tun_opts, int swkey_tun_opts_len,
873                             unsigned short tun_proto)
874 {
875         struct nlattr *nla;
876         int err;
877
878         nla = nla_nest_start(skb, OVS_KEY_ATTR_TUNNEL);
879         if (!nla)
880                 return -EMSGSIZE;
881
882         err = __ip_tun_to_nlattr(skb, output, tun_opts, swkey_tun_opts_len,
883                                  tun_proto);
884         if (err)
885                 return err;
886
887         nla_nest_end(skb, nla);
888         return 0;
889 }
890
891 int ovs_nla_put_tunnel_info(struct sk_buff *skb,
892                             struct ip_tunnel_info *tun_info)
893 {
894         return __ip_tun_to_nlattr(skb, &tun_info->key,
895                                   ip_tunnel_info_opts(tun_info),
896                                   tun_info->options_len,
897                                   ip_tunnel_info_af(tun_info));
898 }
899
900 static int encode_vlan_from_nlattrs(struct sw_flow_match *match,
901                                     const struct nlattr *a[],
902                                     bool is_mask, bool inner)
903 {
904         __be16 tci = 0;
905         __be16 tpid = 0;
906
907         if (a[OVS_KEY_ATTR_VLAN])
908                 tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]);
909
910         if (a[OVS_KEY_ATTR_ETHERTYPE])
911                 tpid = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]);
912
913         if (likely(!inner)) {
914                 SW_FLOW_KEY_PUT(match, eth.vlan.tpid, tpid, is_mask);
915                 SW_FLOW_KEY_PUT(match, eth.vlan.tci, tci, is_mask);
916         } else {
917                 SW_FLOW_KEY_PUT(match, eth.cvlan.tpid, tpid, is_mask);
918                 SW_FLOW_KEY_PUT(match, eth.cvlan.tci, tci, is_mask);
919         }
920         return 0;
921 }
922
923 static int validate_vlan_from_nlattrs(const struct sw_flow_match *match,
924                                       u64 key_attrs, bool inner,
925                                       const struct nlattr **a, bool log)
926 {
927         __be16 tci = 0;
928
929         if (!((key_attrs & (1 << OVS_KEY_ATTR_ETHERNET)) &&
930               (key_attrs & (1 << OVS_KEY_ATTR_ETHERTYPE)) &&
931                eth_type_vlan(nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE])))) {
932                 /* Not a VLAN. */
933                 return 0;
934         }
935
936         if (!((key_attrs & (1 << OVS_KEY_ATTR_VLAN)) &&
937               (key_attrs & (1 << OVS_KEY_ATTR_ENCAP)))) {
938                 OVS_NLERR(log, "Invalid %s frame", (inner) ? "C-VLAN" : "VLAN");
939                 return -EINVAL;
940         }
941
942         if (a[OVS_KEY_ATTR_VLAN])
943                 tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]);
944
945         if (!(tci & htons(VLAN_TAG_PRESENT))) {
946                 if (tci) {
947                         OVS_NLERR(log, "%s TCI does not have VLAN_TAG_PRESENT bit set.",
948                                   (inner) ? "C-VLAN" : "VLAN");
949                         return -EINVAL;
950                 } else if (nla_len(a[OVS_KEY_ATTR_ENCAP])) {
951                         /* Corner case for truncated VLAN header. */
952                         OVS_NLERR(log, "Truncated %s header has non-zero encap attribute.",
953                                   (inner) ? "C-VLAN" : "VLAN");
954                         return -EINVAL;
955                 }
956         }
957
958         return 1;
959 }
960
961 static int validate_vlan_mask_from_nlattrs(const struct sw_flow_match *match,
962                                            u64 key_attrs, bool inner,
963                                            const struct nlattr **a, bool log)
964 {
965         __be16 tci = 0;
966         __be16 tpid = 0;
967         bool encap_valid = !!(match->key->eth.vlan.tci &
968                               htons(VLAN_TAG_PRESENT));
969         bool i_encap_valid = !!(match->key->eth.cvlan.tci &
970                                 htons(VLAN_TAG_PRESENT));
971
972         if (!(key_attrs & (1 << OVS_KEY_ATTR_ENCAP))) {
973                 /* Not a VLAN. */
974                 return 0;
975         }
976
977         if ((!inner && !encap_valid) || (inner && !i_encap_valid)) {
978                 OVS_NLERR(log, "Encap mask attribute is set for non-%s frame.",
979                           (inner) ? "C-VLAN" : "VLAN");
980                 return -EINVAL;
981         }
982
983         if (a[OVS_KEY_ATTR_VLAN])
984                 tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]);
985
986         if (a[OVS_KEY_ATTR_ETHERTYPE])
987                 tpid = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]);
988
989         if (tpid != htons(0xffff)) {
990                 OVS_NLERR(log, "Must have an exact match on %s TPID (mask=%x).",
991                           (inner) ? "C-VLAN" : "VLAN", ntohs(tpid));
992                 return -EINVAL;
993         }
994         if (!(tci & htons(VLAN_TAG_PRESENT))) {
995                 OVS_NLERR(log, "%s TCI mask does not have exact match for VLAN_TAG_PRESENT bit.",
996                           (inner) ? "C-VLAN" : "VLAN");
997                 return -EINVAL;
998         }
999
1000         return 1;
1001 }
1002
1003 static int __parse_vlan_from_nlattrs(struct sw_flow_match *match,
1004                                      u64 *key_attrs, bool inner,
1005                                      const struct nlattr **a, bool is_mask,
1006                                      bool log)
1007 {
1008         int err;
1009         const struct nlattr *encap;
1010
1011         if (!is_mask)
1012                 err = validate_vlan_from_nlattrs(match, *key_attrs, inner,
1013                                                  a, log);
1014         else
1015                 err = validate_vlan_mask_from_nlattrs(match, *key_attrs, inner,
1016                                                       a, log);
1017         if (err <= 0)
1018                 return err;
1019
1020         err = encode_vlan_from_nlattrs(match, a, is_mask, inner);
1021         if (err)
1022                 return err;
1023
1024         *key_attrs &= ~(1 << OVS_KEY_ATTR_ENCAP);
1025         *key_attrs &= ~(1 << OVS_KEY_ATTR_VLAN);
1026         *key_attrs &= ~(1 << OVS_KEY_ATTR_ETHERTYPE);
1027
1028         encap = a[OVS_KEY_ATTR_ENCAP];
1029
1030         if (!is_mask)
1031                 err = parse_flow_nlattrs(encap, a, key_attrs, log);
1032         else
1033                 err = parse_flow_mask_nlattrs(encap, a, key_attrs, log);
1034
1035         return err;
1036 }
1037
1038 static int parse_vlan_from_nlattrs(struct sw_flow_match *match,
1039                                    u64 *key_attrs, const struct nlattr **a,
1040                                    bool is_mask, bool log)
1041 {
1042         int err;
1043         bool encap_valid = false;
1044
1045         err = __parse_vlan_from_nlattrs(match, key_attrs, false, a,
1046                                         is_mask, log);
1047         if (err)
1048                 return err;
1049
1050         encap_valid = !!(match->key->eth.vlan.tci & htons(VLAN_TAG_PRESENT));
1051         if (encap_valid) {
1052                 err = __parse_vlan_from_nlattrs(match, key_attrs, true, a,
1053                                                 is_mask, log);
1054                 if (err)
1055                         return err;
1056         }
1057
1058         return 0;
1059 }
1060
1061 static int parse_eth_type_from_nlattrs(struct sw_flow_match *match,
1062                                        u64 *attrs, const struct nlattr **a,
1063                                        bool is_mask, bool log)
1064 {
1065         __be16 eth_type;
1066
1067         eth_type = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]);
1068         if (is_mask) {
1069                 /* Always exact match EtherType. */
1070                 eth_type = htons(0xffff);
1071         } else if (!eth_proto_is_802_3(eth_type)) {
1072                 OVS_NLERR(log, "EtherType %x is less than min %x",
1073                                 ntohs(eth_type), ETH_P_802_3_MIN);
1074                 return -EINVAL;
1075         }
1076
1077         SW_FLOW_KEY_PUT(match, eth.type, eth_type, is_mask);
1078         *attrs &= ~(1 << OVS_KEY_ATTR_ETHERTYPE);
1079         return 0;
1080 }
1081
1082 static int metadata_from_nlattrs(struct net *net, struct sw_flow_match *match,
1083                                  u64 *attrs, const struct nlattr **a,
1084                                  bool is_mask, bool log)
1085 {
1086         u8 mac_proto = MAC_PROTO_ETHERNET;
1087
1088         if (*attrs & (1 << OVS_KEY_ATTR_DP_HASH)) {
1089                 u32 hash_val = nla_get_u32(a[OVS_KEY_ATTR_DP_HASH]);
1090
1091                 SW_FLOW_KEY_PUT(match, ovs_flow_hash, hash_val, is_mask);
1092                 *attrs &= ~(1 << OVS_KEY_ATTR_DP_HASH);
1093         }
1094
1095         if (*attrs & (1 << OVS_KEY_ATTR_RECIRC_ID)) {
1096                 u32 recirc_id = nla_get_u32(a[OVS_KEY_ATTR_RECIRC_ID]);
1097
1098                 SW_FLOW_KEY_PUT(match, recirc_id, recirc_id, is_mask);
1099                 *attrs &= ~(1 << OVS_KEY_ATTR_RECIRC_ID);
1100         }
1101
1102         if (*attrs & (1 << OVS_KEY_ATTR_PRIORITY)) {
1103                 SW_FLOW_KEY_PUT(match, phy.priority,
1104                           nla_get_u32(a[OVS_KEY_ATTR_PRIORITY]), is_mask);
1105                 *attrs &= ~(1 << OVS_KEY_ATTR_PRIORITY);
1106         }
1107
1108         if (*attrs & (1 << OVS_KEY_ATTR_IN_PORT)) {
1109                 u32 in_port = nla_get_u32(a[OVS_KEY_ATTR_IN_PORT]);
1110
1111                 if (is_mask) {
1112                         in_port = 0xffffffff; /* Always exact match in_port. */
1113                 } else if (in_port >= DP_MAX_PORTS) {
1114                         OVS_NLERR(log, "Port %d exceeds max allowable %d",
1115                                   in_port, DP_MAX_PORTS);
1116                         return -EINVAL;
1117                 }
1118
1119                 SW_FLOW_KEY_PUT(match, phy.in_port, in_port, is_mask);
1120                 *attrs &= ~(1 << OVS_KEY_ATTR_IN_PORT);
1121         } else if (!is_mask) {
1122                 SW_FLOW_KEY_PUT(match, phy.in_port, DP_MAX_PORTS, is_mask);
1123         }
1124
1125         if (*attrs & (1 << OVS_KEY_ATTR_SKB_MARK)) {
1126                 uint32_t mark = nla_get_u32(a[OVS_KEY_ATTR_SKB_MARK]);
1127
1128                 SW_FLOW_KEY_PUT(match, phy.skb_mark, mark, is_mask);
1129                 *attrs &= ~(1 << OVS_KEY_ATTR_SKB_MARK);
1130         }
1131         if (*attrs & (1 << OVS_KEY_ATTR_TUNNEL)) {
1132                 if (ip_tun_from_nlattr(a[OVS_KEY_ATTR_TUNNEL], match,
1133                                        is_mask, log) < 0)
1134                         return -EINVAL;
1135                 *attrs &= ~(1 << OVS_KEY_ATTR_TUNNEL);
1136         }
1137
1138         if (*attrs & (1 << OVS_KEY_ATTR_CT_STATE) &&
1139             ovs_ct_verify(net, OVS_KEY_ATTR_CT_STATE)) {
1140                 u32 ct_state = nla_get_u32(a[OVS_KEY_ATTR_CT_STATE]);
1141
1142                 if (ct_state & ~CT_SUPPORTED_MASK) {
1143                         OVS_NLERR(log, "ct_state flags %08x unsupported",
1144                                   ct_state);
1145                         return -EINVAL;
1146                 }
1147
1148                 SW_FLOW_KEY_PUT(match, ct_state, ct_state, is_mask);
1149                 *attrs &= ~(1ULL << OVS_KEY_ATTR_CT_STATE);
1150         }
1151         if (*attrs & (1 << OVS_KEY_ATTR_CT_ZONE) &&
1152             ovs_ct_verify(net, OVS_KEY_ATTR_CT_ZONE)) {
1153                 u16 ct_zone = nla_get_u16(a[OVS_KEY_ATTR_CT_ZONE]);
1154
1155                 SW_FLOW_KEY_PUT(match, ct_zone, ct_zone, is_mask);
1156                 *attrs &= ~(1ULL << OVS_KEY_ATTR_CT_ZONE);
1157         }
1158         if (*attrs & (1 << OVS_KEY_ATTR_CT_MARK) &&
1159             ovs_ct_verify(net, OVS_KEY_ATTR_CT_MARK)) {
1160                 u32 mark = nla_get_u32(a[OVS_KEY_ATTR_CT_MARK]);
1161
1162                 SW_FLOW_KEY_PUT(match, ct.mark, mark, is_mask);
1163                 *attrs &= ~(1ULL << OVS_KEY_ATTR_CT_MARK);
1164         }
1165         if (*attrs & (1 << OVS_KEY_ATTR_CT_LABELS) &&
1166             ovs_ct_verify(net, OVS_KEY_ATTR_CT_LABELS)) {
1167                 const struct ovs_key_ct_labels *cl;
1168
1169                 cl = nla_data(a[OVS_KEY_ATTR_CT_LABELS]);
1170                 SW_FLOW_KEY_MEMCPY(match, ct.labels, cl->ct_labels,
1171                                    sizeof(*cl), is_mask);
1172                 *attrs &= ~(1ULL << OVS_KEY_ATTR_CT_LABELS);
1173         }
1174         if (*attrs & (1ULL << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4)) {
1175                 const struct ovs_key_ct_tuple_ipv4 *ct;
1176
1177                 ct = nla_data(a[OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4]);
1178
1179                 SW_FLOW_KEY_PUT(match, ipv4.ct_orig.src, ct->ipv4_src, is_mask);
1180                 SW_FLOW_KEY_PUT(match, ipv4.ct_orig.dst, ct->ipv4_dst, is_mask);
1181                 SW_FLOW_KEY_PUT(match, ct.orig_tp.src, ct->src_port, is_mask);
1182                 SW_FLOW_KEY_PUT(match, ct.orig_tp.dst, ct->dst_port, is_mask);
1183                 SW_FLOW_KEY_PUT(match, ct_orig_proto, ct->ipv4_proto, is_mask);
1184                 *attrs &= ~(1ULL << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4);
1185         }
1186         if (*attrs & (1ULL << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6)) {
1187                 const struct ovs_key_ct_tuple_ipv6 *ct;
1188
1189                 ct = nla_data(a[OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6]);
1190
1191                 SW_FLOW_KEY_MEMCPY(match, ipv6.ct_orig.src, &ct->ipv6_src,
1192                                    sizeof(match->key->ipv6.ct_orig.src),
1193                                    is_mask);
1194                 SW_FLOW_KEY_MEMCPY(match, ipv6.ct_orig.dst, &ct->ipv6_dst,
1195                                    sizeof(match->key->ipv6.ct_orig.dst),
1196                                    is_mask);
1197                 SW_FLOW_KEY_PUT(match, ct.orig_tp.src, ct->src_port, is_mask);
1198                 SW_FLOW_KEY_PUT(match, ct.orig_tp.dst, ct->dst_port, is_mask);
1199                 SW_FLOW_KEY_PUT(match, ct_orig_proto, ct->ipv6_proto, is_mask);
1200                 *attrs &= ~(1ULL << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6);
1201         }
1202
1203         /* For layer 3 packets the Ethernet type is provided
1204          * and treated as metadata but no MAC addresses are provided.
1205          */
1206         if (!(*attrs & (1ULL << OVS_KEY_ATTR_ETHERNET)) &&
1207             (*attrs & (1ULL << OVS_KEY_ATTR_ETHERTYPE)))
1208                 mac_proto = MAC_PROTO_NONE;
1209
1210         /* Always exact match mac_proto */
1211         SW_FLOW_KEY_PUT(match, mac_proto, is_mask ? 0xff : mac_proto, is_mask);
1212
1213         if (mac_proto == MAC_PROTO_NONE)
1214                 return parse_eth_type_from_nlattrs(match, attrs, a, is_mask,
1215                                                    log);
1216
1217         return 0;
1218 }
1219
1220 int nsh_hdr_from_nlattr(const struct nlattr *attr,
1221                         struct nshhdr *nh, size_t size)
1222 {
1223         struct nlattr *a;
1224         int rem;
1225         u8 flags = 0;
1226         u8 ttl = 0;
1227         int mdlen = 0;
1228
1229         /* validate_nsh has check this, so we needn't do duplicate check here
1230          */
1231         if (size < NSH_BASE_HDR_LEN)
1232                 return -ENOBUFS;
1233
1234         nla_for_each_nested(a, attr, rem) {
1235                 int type = nla_type(a);
1236
1237                 switch (type) {
1238                 case OVS_NSH_KEY_ATTR_BASE: {
1239                         const struct ovs_nsh_key_base *base = nla_data(a);
1240
1241                         flags = base->flags;
1242                         ttl = base->ttl;
1243                         nh->np = base->np;
1244                         nh->mdtype = base->mdtype;
1245                         nh->path_hdr = base->path_hdr;
1246                         break;
1247                 }
1248                 case OVS_NSH_KEY_ATTR_MD1:
1249                         mdlen = nla_len(a);
1250                         if (mdlen > size - NSH_BASE_HDR_LEN)
1251                                 return -ENOBUFS;
1252                         memcpy(&nh->md1, nla_data(a), mdlen);
1253                         break;
1254
1255                 case OVS_NSH_KEY_ATTR_MD2:
1256                         mdlen = nla_len(a);
1257                         if (mdlen > size - NSH_BASE_HDR_LEN)
1258                                 return -ENOBUFS;
1259                         memcpy(&nh->md2, nla_data(a), mdlen);
1260                         break;
1261
1262                 default:
1263                         return -EINVAL;
1264                 }
1265         }
1266
1267         /* nsh header length  = NSH_BASE_HDR_LEN + mdlen */
1268         nh->ver_flags_ttl_len = 0;
1269         nsh_set_flags_ttl_len(nh, flags, ttl, NSH_BASE_HDR_LEN + mdlen);
1270
1271         return 0;
1272 }
1273
1274 int nsh_key_from_nlattr(const struct nlattr *attr,
1275                         struct ovs_key_nsh *nsh, struct ovs_key_nsh *nsh_mask)
1276 {
1277         struct nlattr *a;
1278         int rem;
1279
1280         /* validate_nsh has check this, so we needn't do duplicate check here
1281          */
1282         nla_for_each_nested(a, attr, rem) {
1283                 int type = nla_type(a);
1284
1285                 switch (type) {
1286                 case OVS_NSH_KEY_ATTR_BASE: {
1287                         const struct ovs_nsh_key_base *base = nla_data(a);
1288                         const struct ovs_nsh_key_base *base_mask = base + 1;
1289
1290                         nsh->base = *base;
1291                         nsh_mask->base = *base_mask;
1292                         break;
1293                 }
1294                 case OVS_NSH_KEY_ATTR_MD1: {
1295                         const struct ovs_nsh_key_md1 *md1 = nla_data(a);
1296                         const struct ovs_nsh_key_md1 *md1_mask = md1 + 1;
1297
1298                         memcpy(nsh->context, md1->context, sizeof(*md1));
1299                         memcpy(nsh_mask->context, md1_mask->context,
1300                                sizeof(*md1_mask));
1301                         break;
1302                 }
1303                 case OVS_NSH_KEY_ATTR_MD2:
1304                         /* Not supported yet */
1305                         return -ENOTSUPP;
1306                 default:
1307                         return -EINVAL;
1308                 }
1309         }
1310
1311         return 0;
1312 }
1313
1314 static int nsh_key_put_from_nlattr(const struct nlattr *attr,
1315                                    struct sw_flow_match *match, bool is_mask,
1316                                    bool is_push_nsh, bool log)
1317 {
1318         struct nlattr *a;
1319         int rem;
1320         bool has_base = false;
1321         bool has_md1 = false;
1322         bool has_md2 = false;
1323         u8 mdtype = 0;
1324         int mdlen = 0;
1325
1326         if (WARN_ON(is_push_nsh && is_mask))
1327                 return -EINVAL;
1328
1329         nla_for_each_nested(a, attr, rem) {
1330                 int type = nla_type(a);
1331                 int i;
1332
1333                 if (type > OVS_NSH_KEY_ATTR_MAX) {
1334                         OVS_NLERR(log, "nsh attr %d is out of range max %d",
1335                                   type, OVS_NSH_KEY_ATTR_MAX);
1336                         return -EINVAL;
1337                 }
1338
1339                 if (!check_attr_len(nla_len(a),
1340                                     ovs_nsh_key_attr_lens[type].len)) {
1341                         OVS_NLERR(
1342                             log,
1343                             "nsh attr %d has unexpected len %d expected %d",
1344                             type,
1345                             nla_len(a),
1346                             ovs_nsh_key_attr_lens[type].len
1347                         );
1348                         return -EINVAL;
1349                 }
1350
1351                 switch (type) {
1352                 case OVS_NSH_KEY_ATTR_BASE: {
1353                         const struct ovs_nsh_key_base *base = nla_data(a);
1354
1355                         has_base = true;
1356                         mdtype = base->mdtype;
1357                         SW_FLOW_KEY_PUT(match, nsh.base.flags,
1358                                         base->flags, is_mask);
1359                         SW_FLOW_KEY_PUT(match, nsh.base.ttl,
1360                                         base->ttl, is_mask);
1361                         SW_FLOW_KEY_PUT(match, nsh.base.mdtype,
1362                                         base->mdtype, is_mask);
1363                         SW_FLOW_KEY_PUT(match, nsh.base.np,
1364                                         base->np, is_mask);
1365                         SW_FLOW_KEY_PUT(match, nsh.base.path_hdr,
1366                                         base->path_hdr, is_mask);
1367                         break;
1368                 }
1369                 case OVS_NSH_KEY_ATTR_MD1: {
1370                         const struct ovs_nsh_key_md1 *md1 = nla_data(a);
1371
1372                         has_md1 = true;
1373                         for (i = 0; i < NSH_MD1_CONTEXT_SIZE; i++)
1374                                 SW_FLOW_KEY_PUT(match, nsh.context[i],
1375                                                 md1->context[i], is_mask);
1376                         break;
1377                 }
1378                 case OVS_NSH_KEY_ATTR_MD2:
1379                         if (!is_push_nsh) /* Not supported MD type 2 yet */
1380                                 return -ENOTSUPP;
1381
1382                         has_md2 = true;
1383                         mdlen = nla_len(a);
1384                         if (mdlen > NSH_CTX_HDRS_MAX_LEN || mdlen <= 0) {
1385                                 OVS_NLERR(
1386                                     log,
1387                                     "Invalid MD length %d for MD type %d",
1388                                     mdlen,
1389                                     mdtype
1390                                 );
1391                                 return -EINVAL;
1392                         }
1393                         break;
1394                 default:
1395                         OVS_NLERR(log, "Unknown nsh attribute %d",
1396                                   type);
1397                         return -EINVAL;
1398                 }
1399         }
1400
1401         if (rem > 0) {
1402                 OVS_NLERR(log, "nsh attribute has %d unknown bytes.", rem);
1403                 return -EINVAL;
1404         }
1405
1406         if (has_md1 && has_md2) {
1407                 OVS_NLERR(
1408                     1,
1409                     "invalid nsh attribute: md1 and md2 are exclusive."
1410                 );
1411                 return -EINVAL;
1412         }
1413
1414         if (!is_mask) {
1415                 if ((has_md1 && mdtype != NSH_M_TYPE1) ||
1416                     (has_md2 && mdtype != NSH_M_TYPE2)) {
1417                         OVS_NLERR(1, "nsh attribute has unmatched MD type %d.",
1418                                   mdtype);
1419                         return -EINVAL;
1420                 }
1421
1422                 if (is_push_nsh &&
1423                     (!has_base || (!has_md1 && !has_md2))) {
1424                         OVS_NLERR(
1425                             1,
1426                             "push_nsh: missing base or metadata attributes"
1427                         );
1428                         return -EINVAL;
1429                 }
1430         }
1431
1432         return 0;
1433 }
1434
1435 static int ovs_key_from_nlattrs(struct net *net, struct sw_flow_match *match,
1436                                 u64 attrs, const struct nlattr **a,
1437                                 bool is_mask, bool log)
1438 {
1439         int err;
1440
1441         err = metadata_from_nlattrs(net, match, &attrs, a, is_mask, log);
1442         if (err)
1443                 return err;
1444
1445         if (attrs & (1 << OVS_KEY_ATTR_ETHERNET)) {
1446                 const struct ovs_key_ethernet *eth_key;
1447
1448                 eth_key = nla_data(a[OVS_KEY_ATTR_ETHERNET]);
1449                 SW_FLOW_KEY_MEMCPY(match, eth.src,
1450                                 eth_key->eth_src, ETH_ALEN, is_mask);
1451                 SW_FLOW_KEY_MEMCPY(match, eth.dst,
1452                                 eth_key->eth_dst, ETH_ALEN, is_mask);
1453                 attrs &= ~(1 << OVS_KEY_ATTR_ETHERNET);
1454
1455                 if (attrs & (1 << OVS_KEY_ATTR_VLAN)) {
1456                         /* VLAN attribute is always parsed before getting here since it
1457                          * may occur multiple times.
1458                          */
1459                         OVS_NLERR(log, "VLAN attribute unexpected.");
1460                         return -EINVAL;
1461                 }
1462
1463                 if (attrs & (1 << OVS_KEY_ATTR_ETHERTYPE)) {
1464                         err = parse_eth_type_from_nlattrs(match, &attrs, a, is_mask,
1465                                                           log);
1466                         if (err)
1467                                 return err;
1468                 } else if (!is_mask) {
1469                         SW_FLOW_KEY_PUT(match, eth.type, htons(ETH_P_802_2), is_mask);
1470                 }
1471         } else if (!match->key->eth.type) {
1472                 OVS_NLERR(log, "Either Ethernet header or EtherType is required.");
1473                 return -EINVAL;
1474         }
1475
1476         if (attrs & (1 << OVS_KEY_ATTR_IPV4)) {
1477                 const struct ovs_key_ipv4 *ipv4_key;
1478
1479                 ipv4_key = nla_data(a[OVS_KEY_ATTR_IPV4]);
1480                 if (!is_mask && ipv4_key->ipv4_frag > OVS_FRAG_TYPE_MAX) {
1481                         OVS_NLERR(log, "IPv4 frag type %d is out of range max %d",
1482                                   ipv4_key->ipv4_frag, OVS_FRAG_TYPE_MAX);
1483                         return -EINVAL;
1484                 }
1485                 SW_FLOW_KEY_PUT(match, ip.proto,
1486                                 ipv4_key->ipv4_proto, is_mask);
1487                 SW_FLOW_KEY_PUT(match, ip.tos,
1488                                 ipv4_key->ipv4_tos, is_mask);
1489                 SW_FLOW_KEY_PUT(match, ip.ttl,
1490                                 ipv4_key->ipv4_ttl, is_mask);
1491                 SW_FLOW_KEY_PUT(match, ip.frag,
1492                                 ipv4_key->ipv4_frag, is_mask);
1493                 SW_FLOW_KEY_PUT(match, ipv4.addr.src,
1494                                 ipv4_key->ipv4_src, is_mask);
1495                 SW_FLOW_KEY_PUT(match, ipv4.addr.dst,
1496                                 ipv4_key->ipv4_dst, is_mask);
1497                 attrs &= ~(1 << OVS_KEY_ATTR_IPV4);
1498         }
1499
1500         if (attrs & (1 << OVS_KEY_ATTR_IPV6)) {
1501                 const struct ovs_key_ipv6 *ipv6_key;
1502
1503                 ipv6_key = nla_data(a[OVS_KEY_ATTR_IPV6]);
1504                 if (!is_mask && ipv6_key->ipv6_frag > OVS_FRAG_TYPE_MAX) {
1505                         OVS_NLERR(log, "IPv6 frag type %d is out of range max %d",
1506                                   ipv6_key->ipv6_frag, OVS_FRAG_TYPE_MAX);
1507                         return -EINVAL;
1508                 }
1509
1510                 if (!is_mask && ipv6_key->ipv6_label & htonl(0xFFF00000)) {
1511                         OVS_NLERR(log, "IPv6 flow label %x is out of range (max=%x)",
1512                                   ntohl(ipv6_key->ipv6_label), (1 << 20) - 1);
1513                         return -EINVAL;
1514                 }
1515
1516                 SW_FLOW_KEY_PUT(match, ipv6.label,
1517                                 ipv6_key->ipv6_label, is_mask);
1518                 SW_FLOW_KEY_PUT(match, ip.proto,
1519                                 ipv6_key->ipv6_proto, is_mask);
1520                 SW_FLOW_KEY_PUT(match, ip.tos,
1521                                 ipv6_key->ipv6_tclass, is_mask);
1522                 SW_FLOW_KEY_PUT(match, ip.ttl,
1523                                 ipv6_key->ipv6_hlimit, is_mask);
1524                 SW_FLOW_KEY_PUT(match, ip.frag,
1525                                 ipv6_key->ipv6_frag, is_mask);
1526                 SW_FLOW_KEY_MEMCPY(match, ipv6.addr.src,
1527                                 ipv6_key->ipv6_src,
1528                                 sizeof(match->key->ipv6.addr.src),
1529                                 is_mask);
1530                 SW_FLOW_KEY_MEMCPY(match, ipv6.addr.dst,
1531                                 ipv6_key->ipv6_dst,
1532                                 sizeof(match->key->ipv6.addr.dst),
1533                                 is_mask);
1534
1535                 attrs &= ~(1 << OVS_KEY_ATTR_IPV6);
1536         }
1537
1538         if (attrs & (1 << OVS_KEY_ATTR_ARP)) {
1539                 const struct ovs_key_arp *arp_key;
1540
1541                 arp_key = nla_data(a[OVS_KEY_ATTR_ARP]);
1542                 if (!is_mask && (arp_key->arp_op & htons(0xff00))) {
1543                         OVS_NLERR(log, "Unknown ARP opcode (opcode=%d).",
1544                                   arp_key->arp_op);
1545                         return -EINVAL;
1546                 }
1547
1548                 SW_FLOW_KEY_PUT(match, ipv4.addr.src,
1549                                 arp_key->arp_sip, is_mask);
1550                 SW_FLOW_KEY_PUT(match, ipv4.addr.dst,
1551                         arp_key->arp_tip, is_mask);
1552                 SW_FLOW_KEY_PUT(match, ip.proto,
1553                                 ntohs(arp_key->arp_op), is_mask);
1554                 SW_FLOW_KEY_MEMCPY(match, ipv4.arp.sha,
1555                                 arp_key->arp_sha, ETH_ALEN, is_mask);
1556                 SW_FLOW_KEY_MEMCPY(match, ipv4.arp.tha,
1557                                 arp_key->arp_tha, ETH_ALEN, is_mask);
1558
1559                 attrs &= ~(1 << OVS_KEY_ATTR_ARP);
1560         }
1561
1562         if (attrs & (1 << OVS_KEY_ATTR_NSH)) {
1563                 if (nsh_key_put_from_nlattr(a[OVS_KEY_ATTR_NSH], match,
1564                                             is_mask, false, log) < 0)
1565                         return -EINVAL;
1566                 attrs &= ~(1 << OVS_KEY_ATTR_NSH);
1567         }
1568
1569         if (attrs & (1 << OVS_KEY_ATTR_MPLS)) {
1570                 const struct ovs_key_mpls *mpls_key;
1571
1572                 mpls_key = nla_data(a[OVS_KEY_ATTR_MPLS]);
1573                 SW_FLOW_KEY_PUT(match, mpls.top_lse,
1574                                 mpls_key->mpls_lse, is_mask);
1575
1576                 attrs &= ~(1 << OVS_KEY_ATTR_MPLS);
1577          }
1578
1579         if (attrs & (1 << OVS_KEY_ATTR_TCP)) {
1580                 const struct ovs_key_tcp *tcp_key;
1581
1582                 tcp_key = nla_data(a[OVS_KEY_ATTR_TCP]);
1583                 SW_FLOW_KEY_PUT(match, tp.src, tcp_key->tcp_src, is_mask);
1584                 SW_FLOW_KEY_PUT(match, tp.dst, tcp_key->tcp_dst, is_mask);
1585                 attrs &= ~(1 << OVS_KEY_ATTR_TCP);
1586         }
1587
1588         if (attrs & (1 << OVS_KEY_ATTR_TCP_FLAGS)) {
1589                 SW_FLOW_KEY_PUT(match, tp.flags,
1590                                 nla_get_be16(a[OVS_KEY_ATTR_TCP_FLAGS]),
1591                                 is_mask);
1592                 attrs &= ~(1 << OVS_KEY_ATTR_TCP_FLAGS);
1593         }
1594
1595         if (attrs & (1 << OVS_KEY_ATTR_UDP)) {
1596                 const struct ovs_key_udp *udp_key;
1597
1598                 udp_key = nla_data(a[OVS_KEY_ATTR_UDP]);
1599                 SW_FLOW_KEY_PUT(match, tp.src, udp_key->udp_src, is_mask);
1600                 SW_FLOW_KEY_PUT(match, tp.dst, udp_key->udp_dst, is_mask);
1601                 attrs &= ~(1 << OVS_KEY_ATTR_UDP);
1602         }
1603
1604         if (attrs & (1 << OVS_KEY_ATTR_SCTP)) {
1605                 const struct ovs_key_sctp *sctp_key;
1606
1607                 sctp_key = nla_data(a[OVS_KEY_ATTR_SCTP]);
1608                 SW_FLOW_KEY_PUT(match, tp.src, sctp_key->sctp_src, is_mask);
1609                 SW_FLOW_KEY_PUT(match, tp.dst, sctp_key->sctp_dst, is_mask);
1610                 attrs &= ~(1 << OVS_KEY_ATTR_SCTP);
1611         }
1612
1613         if (attrs & (1 << OVS_KEY_ATTR_ICMP)) {
1614                 const struct ovs_key_icmp *icmp_key;
1615
1616                 icmp_key = nla_data(a[OVS_KEY_ATTR_ICMP]);
1617                 SW_FLOW_KEY_PUT(match, tp.src,
1618                                 htons(icmp_key->icmp_type), is_mask);
1619                 SW_FLOW_KEY_PUT(match, tp.dst,
1620                                 htons(icmp_key->icmp_code), is_mask);
1621                 attrs &= ~(1 << OVS_KEY_ATTR_ICMP);
1622         }
1623
1624         if (attrs & (1 << OVS_KEY_ATTR_ICMPV6)) {
1625                 const struct ovs_key_icmpv6 *icmpv6_key;
1626
1627                 icmpv6_key = nla_data(a[OVS_KEY_ATTR_ICMPV6]);
1628                 SW_FLOW_KEY_PUT(match, tp.src,
1629                                 htons(icmpv6_key->icmpv6_type), is_mask);
1630                 SW_FLOW_KEY_PUT(match, tp.dst,
1631                                 htons(icmpv6_key->icmpv6_code), is_mask);
1632                 attrs &= ~(1 << OVS_KEY_ATTR_ICMPV6);
1633         }
1634
1635         if (attrs & (1 << OVS_KEY_ATTR_ND)) {
1636                 const struct ovs_key_nd *nd_key;
1637
1638                 nd_key = nla_data(a[OVS_KEY_ATTR_ND]);
1639                 SW_FLOW_KEY_MEMCPY(match, ipv6.nd.target,
1640                         nd_key->nd_target,
1641                         sizeof(match->key->ipv6.nd.target),
1642                         is_mask);
1643                 SW_FLOW_KEY_MEMCPY(match, ipv6.nd.sll,
1644                         nd_key->nd_sll, ETH_ALEN, is_mask);
1645                 SW_FLOW_KEY_MEMCPY(match, ipv6.nd.tll,
1646                                 nd_key->nd_tll, ETH_ALEN, is_mask);
1647                 attrs &= ~(1 << OVS_KEY_ATTR_ND);
1648         }
1649
1650         if (attrs != 0) {
1651                 OVS_NLERR(log, "Unknown key attributes %llx",
1652                           (unsigned long long)attrs);
1653                 return -EINVAL;
1654         }
1655
1656         return 0;
1657 }
1658
1659 static void nlattr_set(struct nlattr *attr, u8 val,
1660                        const struct ovs_len_tbl *tbl)
1661 {
1662         struct nlattr *nla;
1663         int rem;
1664
1665         /* The nlattr stream should already have been validated */
1666         nla_for_each_nested(nla, attr, rem) {
1667                 if (tbl[nla_type(nla)].len == OVS_ATTR_NESTED) {
1668                         if (tbl[nla_type(nla)].next)
1669                                 tbl = tbl[nla_type(nla)].next;
1670                         nlattr_set(nla, val, tbl);
1671                 } else {
1672                         memset(nla_data(nla), val, nla_len(nla));
1673                 }
1674
1675                 if (nla_type(nla) == OVS_KEY_ATTR_CT_STATE)
1676                         *(u32 *)nla_data(nla) &= CT_SUPPORTED_MASK;
1677         }
1678 }
1679
1680 static void mask_set_nlattr(struct nlattr *attr, u8 val)
1681 {
1682         nlattr_set(attr, val, ovs_key_lens);
1683 }
1684
1685 /**
1686  * ovs_nla_get_match - parses Netlink attributes into a flow key and
1687  * mask. In case the 'mask' is NULL, the flow is treated as exact match
1688  * flow. Otherwise, it is treated as a wildcarded flow, except the mask
1689  * does not include any don't care bit.
1690  * @net: Used to determine per-namespace field support.
1691  * @match: receives the extracted flow match information.
1692  * @key: Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink attribute
1693  * sequence. The fields should of the packet that triggered the creation
1694  * of this flow.
1695  * @mask: Optional. Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink
1696  * attribute specifies the mask field of the wildcarded flow.
1697  * @log: Boolean to allow kernel error logging.  Normally true, but when
1698  * probing for feature compatibility this should be passed in as false to
1699  * suppress unnecessary error logging.
1700  */
1701 int ovs_nla_get_match(struct net *net, struct sw_flow_match *match,
1702                       const struct nlattr *nla_key,
1703                       const struct nlattr *nla_mask,
1704                       bool log)
1705 {
1706         const struct nlattr *a[OVS_KEY_ATTR_MAX + 1];
1707         struct nlattr *newmask = NULL;
1708         u64 key_attrs = 0;
1709         u64 mask_attrs = 0;
1710         int err;
1711
1712         err = parse_flow_nlattrs(nla_key, a, &key_attrs, log);
1713         if (err)
1714                 return err;
1715
1716         err = parse_vlan_from_nlattrs(match, &key_attrs, a, false, log);
1717         if (err)
1718                 return err;
1719
1720         err = ovs_key_from_nlattrs(net, match, key_attrs, a, false, log);
1721         if (err)
1722                 return err;
1723
1724         if (match->mask) {
1725                 if (!nla_mask) {
1726                         /* Create an exact match mask. We need to set to 0xff
1727                          * all the 'match->mask' fields that have been touched
1728                          * in 'match->key'. We cannot simply memset
1729                          * 'match->mask', because padding bytes and fields not
1730                          * specified in 'match->key' should be left to 0.
1731                          * Instead, we use a stream of netlink attributes,
1732                          * copied from 'key' and set to 0xff.
1733                          * ovs_key_from_nlattrs() will take care of filling
1734                          * 'match->mask' appropriately.
1735                          */
1736                         newmask = kmemdup(nla_key,
1737                                           nla_total_size(nla_len(nla_key)),
1738                                           GFP_KERNEL);
1739                         if (!newmask)
1740                                 return -ENOMEM;
1741
1742                         mask_set_nlattr(newmask, 0xff);
1743
1744                         /* The userspace does not send tunnel attributes that
1745                          * are 0, but we should not wildcard them nonetheless.
1746                          */
1747                         if (match->key->tun_proto)
1748                                 SW_FLOW_KEY_MEMSET_FIELD(match, tun_key,
1749                                                          0xff, true);
1750
1751                         nla_mask = newmask;
1752                 }
1753
1754                 err = parse_flow_mask_nlattrs(nla_mask, a, &mask_attrs, log);
1755                 if (err)
1756                         goto free_newmask;
1757
1758                 /* Always match on tci. */
1759                 SW_FLOW_KEY_PUT(match, eth.vlan.tci, htons(0xffff), true);
1760                 SW_FLOW_KEY_PUT(match, eth.cvlan.tci, htons(0xffff), true);
1761
1762                 err = parse_vlan_from_nlattrs(match, &mask_attrs, a, true, log);
1763                 if (err)
1764                         goto free_newmask;
1765
1766                 err = ovs_key_from_nlattrs(net, match, mask_attrs, a, true,
1767                                            log);
1768                 if (err)
1769                         goto free_newmask;
1770         }
1771
1772         if (!match_validate(match, key_attrs, mask_attrs, log))
1773                 err = -EINVAL;
1774
1775 free_newmask:
1776         kfree(newmask);
1777         return err;
1778 }
1779
1780 static size_t get_ufid_len(const struct nlattr *attr, bool log)
1781 {
1782         size_t len;
1783
1784         if (!attr)
1785                 return 0;
1786
1787         len = nla_len(attr);
1788         if (len < 1 || len > MAX_UFID_LENGTH) {
1789                 OVS_NLERR(log, "ufid size %u bytes exceeds the range (1, %d)",
1790                           nla_len(attr), MAX_UFID_LENGTH);
1791                 return 0;
1792         }
1793
1794         return len;
1795 }
1796
1797 /* Initializes 'flow->ufid', returning true if 'attr' contains a valid UFID,
1798  * or false otherwise.
1799  */
1800 bool ovs_nla_get_ufid(struct sw_flow_id *sfid, const struct nlattr *attr,
1801                       bool log)
1802 {
1803         sfid->ufid_len = get_ufid_len(attr, log);
1804         if (sfid->ufid_len)
1805                 memcpy(sfid->ufid, nla_data(attr), sfid->ufid_len);
1806
1807         return sfid->ufid_len;
1808 }
1809
1810 int ovs_nla_get_identifier(struct sw_flow_id *sfid, const struct nlattr *ufid,
1811                            const struct sw_flow_key *key, bool log)
1812 {
1813         struct sw_flow_key *new_key;
1814
1815         if (ovs_nla_get_ufid(sfid, ufid, log))
1816                 return 0;
1817
1818         /* If UFID was not provided, use unmasked key. */
1819         new_key = kmalloc(sizeof(*new_key), GFP_KERNEL);
1820         if (!new_key)
1821                 return -ENOMEM;
1822         memcpy(new_key, key, sizeof(*key));
1823         sfid->unmasked_key = new_key;
1824
1825         return 0;
1826 }
1827
1828 u32 ovs_nla_get_ufid_flags(const struct nlattr *attr)
1829 {
1830         return attr ? nla_get_u32(attr) : 0;
1831 }
1832
1833 /**
1834  * ovs_nla_get_flow_metadata - parses Netlink attributes into a flow key.
1835  * @net: Network namespace.
1836  * @key: Receives extracted in_port, priority, tun_key, skb_mark and conntrack
1837  * metadata.
1838  * @a: Array of netlink attributes holding parsed %OVS_KEY_ATTR_* Netlink
1839  * attributes.
1840  * @attrs: Bit mask for the netlink attributes included in @a.
1841  * @log: Boolean to allow kernel error logging.  Normally true, but when
1842  * probing for feature compatibility this should be passed in as false to
1843  * suppress unnecessary error logging.
1844  *
1845  * This parses a series of Netlink attributes that form a flow key, which must
1846  * take the same form accepted by flow_from_nlattrs(), but only enough of it to
1847  * get the metadata, that is, the parts of the flow key that cannot be
1848  * extracted from the packet itself.
1849  *
1850  * This must be called before the packet key fields are filled in 'key'.
1851  */
1852
1853 int ovs_nla_get_flow_metadata(struct net *net,
1854                               const struct nlattr *a[OVS_KEY_ATTR_MAX + 1],
1855                               u64 attrs, struct sw_flow_key *key, bool log)
1856 {
1857         struct sw_flow_match match;
1858
1859         memset(&match, 0, sizeof(match));
1860         match.key = key;
1861
1862         key->ct_state = 0;
1863         key->ct_zone = 0;
1864         key->ct_orig_proto = 0;
1865         memset(&key->ct, 0, sizeof(key->ct));
1866         memset(&key->ipv4.ct_orig, 0, sizeof(key->ipv4.ct_orig));
1867         memset(&key->ipv6.ct_orig, 0, sizeof(key->ipv6.ct_orig));
1868
1869         key->phy.in_port = DP_MAX_PORTS;
1870
1871         return metadata_from_nlattrs(net, &match, &attrs, a, false, log);
1872 }
1873
1874 static int ovs_nla_put_vlan(struct sk_buff *skb, const struct vlan_head *vh,
1875                             bool is_mask)
1876 {
1877         __be16 eth_type = !is_mask ? vh->tpid : htons(0xffff);
1878
1879         if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE, eth_type) ||
1880             nla_put_be16(skb, OVS_KEY_ATTR_VLAN, vh->tci))
1881                 return -EMSGSIZE;
1882         return 0;
1883 }
1884
1885 static int nsh_key_to_nlattr(const struct ovs_key_nsh *nsh, bool is_mask,
1886                              struct sk_buff *skb)
1887 {
1888         struct nlattr *start;
1889
1890         start = nla_nest_start(skb, OVS_KEY_ATTR_NSH);
1891         if (!start)
1892                 return -EMSGSIZE;
1893
1894         if (nla_put(skb, OVS_NSH_KEY_ATTR_BASE, sizeof(nsh->base), &nsh->base))
1895                 goto nla_put_failure;
1896
1897         if (is_mask || nsh->base.mdtype == NSH_M_TYPE1) {
1898                 if (nla_put(skb, OVS_NSH_KEY_ATTR_MD1,
1899                             sizeof(nsh->context), nsh->context))
1900                         goto nla_put_failure;
1901         }
1902
1903         /* Don't support MD type 2 yet */
1904
1905         nla_nest_end(skb, start);
1906
1907         return 0;
1908
1909 nla_put_failure:
1910         return -EMSGSIZE;
1911 }
1912
1913 static int __ovs_nla_put_key(const struct sw_flow_key *swkey,
1914                              const struct sw_flow_key *output, bool is_mask,
1915                              struct sk_buff *skb)
1916 {
1917         struct ovs_key_ethernet *eth_key;
1918         struct nlattr *nla;
1919         struct nlattr *encap = NULL;
1920         struct nlattr *in_encap = NULL;
1921
1922         if (nla_put_u32(skb, OVS_KEY_ATTR_RECIRC_ID, output->recirc_id))
1923                 goto nla_put_failure;
1924
1925         if (nla_put_u32(skb, OVS_KEY_ATTR_DP_HASH, output->ovs_flow_hash))
1926                 goto nla_put_failure;
1927
1928         if (nla_put_u32(skb, OVS_KEY_ATTR_PRIORITY, output->phy.priority))
1929                 goto nla_put_failure;
1930
1931         if ((swkey->tun_proto || is_mask)) {
1932                 const void *opts = NULL;
1933
1934                 if (output->tun_key.tun_flags & TUNNEL_OPTIONS_PRESENT)
1935                         opts = TUN_METADATA_OPTS(output, swkey->tun_opts_len);
1936
1937                 if (ip_tun_to_nlattr(skb, &output->tun_key, opts,
1938                                      swkey->tun_opts_len, swkey->tun_proto))
1939                         goto nla_put_failure;
1940         }
1941
1942         if (swkey->phy.in_port == DP_MAX_PORTS) {
1943                 if (is_mask && (output->phy.in_port == 0xffff))
1944                         if (nla_put_u32(skb, OVS_KEY_ATTR_IN_PORT, 0xffffffff))
1945                                 goto nla_put_failure;
1946         } else {
1947                 u16 upper_u16;
1948                 upper_u16 = !is_mask ? 0 : 0xffff;
1949
1950                 if (nla_put_u32(skb, OVS_KEY_ATTR_IN_PORT,
1951                                 (upper_u16 << 16) | output->phy.in_port))
1952                         goto nla_put_failure;
1953         }
1954
1955         if (nla_put_u32(skb, OVS_KEY_ATTR_SKB_MARK, output->phy.skb_mark))
1956                 goto nla_put_failure;
1957
1958         if (ovs_ct_put_key(swkey, output, skb))
1959                 goto nla_put_failure;
1960
1961         if (ovs_key_mac_proto(swkey) == MAC_PROTO_ETHERNET) {
1962                 nla = nla_reserve(skb, OVS_KEY_ATTR_ETHERNET, sizeof(*eth_key));
1963                 if (!nla)
1964                         goto nla_put_failure;
1965
1966                 eth_key = nla_data(nla);
1967                 ether_addr_copy(eth_key->eth_src, output->eth.src);
1968                 ether_addr_copy(eth_key->eth_dst, output->eth.dst);
1969
1970                 if (swkey->eth.vlan.tci || eth_type_vlan(swkey->eth.type)) {
1971                         if (ovs_nla_put_vlan(skb, &output->eth.vlan, is_mask))
1972                                 goto nla_put_failure;
1973                         encap = nla_nest_start(skb, OVS_KEY_ATTR_ENCAP);
1974                         if (!swkey->eth.vlan.tci)
1975                                 goto unencap;
1976
1977                         if (swkey->eth.cvlan.tci || eth_type_vlan(swkey->eth.type)) {
1978                                 if (ovs_nla_put_vlan(skb, &output->eth.cvlan, is_mask))
1979                                         goto nla_put_failure;
1980                                 in_encap = nla_nest_start(skb, OVS_KEY_ATTR_ENCAP);
1981                                 if (!swkey->eth.cvlan.tci)
1982                                         goto unencap;
1983                         }
1984                 }
1985
1986                 if (swkey->eth.type == htons(ETH_P_802_2)) {
1987                         /*
1988                         * Ethertype 802.2 is represented in the netlink with omitted
1989                         * OVS_KEY_ATTR_ETHERTYPE in the flow key attribute, and
1990                         * 0xffff in the mask attribute.  Ethertype can also
1991                         * be wildcarded.
1992                         */
1993                         if (is_mask && output->eth.type)
1994                                 if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE,
1995                                                         output->eth.type))
1996                                         goto nla_put_failure;
1997                         goto unencap;
1998                 }
1999         }
2000
2001         if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE, output->eth.type))
2002                 goto nla_put_failure;
2003
2004         if (eth_type_vlan(swkey->eth.type)) {
2005                 /* There are 3 VLAN tags, we don't know anything about the rest
2006                  * of the packet, so truncate here.
2007                  */
2008                 WARN_ON_ONCE(!(encap && in_encap));
2009                 goto unencap;
2010         }
2011
2012         if (swkey->eth.type == htons(ETH_P_IP)) {
2013                 struct ovs_key_ipv4 *ipv4_key;
2014
2015                 nla = nla_reserve(skb, OVS_KEY_ATTR_IPV4, sizeof(*ipv4_key));
2016                 if (!nla)
2017                         goto nla_put_failure;
2018                 ipv4_key = nla_data(nla);
2019                 ipv4_key->ipv4_src = output->ipv4.addr.src;
2020                 ipv4_key->ipv4_dst = output->ipv4.addr.dst;
2021                 ipv4_key->ipv4_proto = output->ip.proto;
2022                 ipv4_key->ipv4_tos = output->ip.tos;
2023                 ipv4_key->ipv4_ttl = output->ip.ttl;
2024                 ipv4_key->ipv4_frag = output->ip.frag;
2025         } else if (swkey->eth.type == htons(ETH_P_IPV6)) {
2026                 struct ovs_key_ipv6 *ipv6_key;
2027
2028                 nla = nla_reserve(skb, OVS_KEY_ATTR_IPV6, sizeof(*ipv6_key));
2029                 if (!nla)
2030                         goto nla_put_failure;
2031                 ipv6_key = nla_data(nla);
2032                 memcpy(ipv6_key->ipv6_src, &output->ipv6.addr.src,
2033                                 sizeof(ipv6_key->ipv6_src));
2034                 memcpy(ipv6_key->ipv6_dst, &output->ipv6.addr.dst,
2035                                 sizeof(ipv6_key->ipv6_dst));
2036                 ipv6_key->ipv6_label = output->ipv6.label;
2037                 ipv6_key->ipv6_proto = output->ip.proto;
2038                 ipv6_key->ipv6_tclass = output->ip.tos;
2039                 ipv6_key->ipv6_hlimit = output->ip.ttl;
2040                 ipv6_key->ipv6_frag = output->ip.frag;
2041         } else if (swkey->eth.type == htons(ETH_P_NSH)) {
2042                 if (nsh_key_to_nlattr(&output->nsh, is_mask, skb))
2043                         goto nla_put_failure;
2044         } else if (swkey->eth.type == htons(ETH_P_ARP) ||
2045                    swkey->eth.type == htons(ETH_P_RARP)) {
2046                 struct ovs_key_arp *arp_key;
2047
2048                 nla = nla_reserve(skb, OVS_KEY_ATTR_ARP, sizeof(*arp_key));
2049                 if (!nla)
2050                         goto nla_put_failure;
2051                 arp_key = nla_data(nla);
2052                 memset(arp_key, 0, sizeof(struct ovs_key_arp));
2053                 arp_key->arp_sip = output->ipv4.addr.src;
2054                 arp_key->arp_tip = output->ipv4.addr.dst;
2055                 arp_key->arp_op = htons(output->ip.proto);
2056                 ether_addr_copy(arp_key->arp_sha, output->ipv4.arp.sha);
2057                 ether_addr_copy(arp_key->arp_tha, output->ipv4.arp.tha);
2058         } else if (eth_p_mpls(swkey->eth.type)) {
2059                 struct ovs_key_mpls *mpls_key;
2060
2061                 nla = nla_reserve(skb, OVS_KEY_ATTR_MPLS, sizeof(*mpls_key));
2062                 if (!nla)
2063                         goto nla_put_failure;
2064                 mpls_key = nla_data(nla);
2065                 mpls_key->mpls_lse = output->mpls.top_lse;
2066         }
2067
2068         if ((swkey->eth.type == htons(ETH_P_IP) ||
2069              swkey->eth.type == htons(ETH_P_IPV6)) &&
2070              swkey->ip.frag != OVS_FRAG_TYPE_LATER) {
2071
2072                 if (swkey->ip.proto == IPPROTO_TCP) {
2073                         struct ovs_key_tcp *tcp_key;
2074
2075                         nla = nla_reserve(skb, OVS_KEY_ATTR_TCP, sizeof(*tcp_key));
2076                         if (!nla)
2077                                 goto nla_put_failure;
2078                         tcp_key = nla_data(nla);
2079                         tcp_key->tcp_src = output->tp.src;
2080                         tcp_key->tcp_dst = output->tp.dst;
2081                         if (nla_put_be16(skb, OVS_KEY_ATTR_TCP_FLAGS,
2082                                          output->tp.flags))
2083                                 goto nla_put_failure;
2084                 } else if (swkey->ip.proto == IPPROTO_UDP) {
2085                         struct ovs_key_udp *udp_key;
2086
2087                         nla = nla_reserve(skb, OVS_KEY_ATTR_UDP, sizeof(*udp_key));
2088                         if (!nla)
2089                                 goto nla_put_failure;
2090                         udp_key = nla_data(nla);
2091                         udp_key->udp_src = output->tp.src;
2092                         udp_key->udp_dst = output->tp.dst;
2093                 } else if (swkey->ip.proto == IPPROTO_SCTP) {
2094                         struct ovs_key_sctp *sctp_key;
2095
2096                         nla = nla_reserve(skb, OVS_KEY_ATTR_SCTP, sizeof(*sctp_key));
2097                         if (!nla)
2098                                 goto nla_put_failure;
2099                         sctp_key = nla_data(nla);
2100                         sctp_key->sctp_src = output->tp.src;
2101                         sctp_key->sctp_dst = output->tp.dst;
2102                 } else if (swkey->eth.type == htons(ETH_P_IP) &&
2103                            swkey->ip.proto == IPPROTO_ICMP) {
2104                         struct ovs_key_icmp *icmp_key;
2105
2106                         nla = nla_reserve(skb, OVS_KEY_ATTR_ICMP, sizeof(*icmp_key));
2107                         if (!nla)
2108                                 goto nla_put_failure;
2109                         icmp_key = nla_data(nla);
2110                         icmp_key->icmp_type = ntohs(output->tp.src);
2111                         icmp_key->icmp_code = ntohs(output->tp.dst);
2112                 } else if (swkey->eth.type == htons(ETH_P_IPV6) &&
2113                            swkey->ip.proto == IPPROTO_ICMPV6) {
2114                         struct ovs_key_icmpv6 *icmpv6_key;
2115
2116                         nla = nla_reserve(skb, OVS_KEY_ATTR_ICMPV6,
2117                                                 sizeof(*icmpv6_key));
2118                         if (!nla)
2119                                 goto nla_put_failure;
2120                         icmpv6_key = nla_data(nla);
2121                         icmpv6_key->icmpv6_type = ntohs(output->tp.src);
2122                         icmpv6_key->icmpv6_code = ntohs(output->tp.dst);
2123
2124                         if (icmpv6_key->icmpv6_type == NDISC_NEIGHBOUR_SOLICITATION ||
2125                             icmpv6_key->icmpv6_type == NDISC_NEIGHBOUR_ADVERTISEMENT) {
2126                                 struct ovs_key_nd *nd_key;
2127
2128                                 nla = nla_reserve(skb, OVS_KEY_ATTR_ND, sizeof(*nd_key));
2129                                 if (!nla)
2130                                         goto nla_put_failure;
2131                                 nd_key = nla_data(nla);
2132                                 memcpy(nd_key->nd_target, &output->ipv6.nd.target,
2133                                                         sizeof(nd_key->nd_target));
2134                                 ether_addr_copy(nd_key->nd_sll, output->ipv6.nd.sll);
2135                                 ether_addr_copy(nd_key->nd_tll, output->ipv6.nd.tll);
2136                         }
2137                 }
2138         }
2139
2140 unencap:
2141         if (in_encap)
2142                 nla_nest_end(skb, in_encap);
2143         if (encap)
2144                 nla_nest_end(skb, encap);
2145
2146         return 0;
2147
2148 nla_put_failure:
2149         return -EMSGSIZE;
2150 }
2151
2152 int ovs_nla_put_key(const struct sw_flow_key *swkey,
2153                     const struct sw_flow_key *output, int attr, bool is_mask,
2154                     struct sk_buff *skb)
2155 {
2156         int err;
2157         struct nlattr *nla;
2158
2159         nla = nla_nest_start(skb, attr);
2160         if (!nla)
2161                 return -EMSGSIZE;
2162         err = __ovs_nla_put_key(swkey, output, is_mask, skb);
2163         if (err)
2164                 return err;
2165         nla_nest_end(skb, nla);
2166
2167         return 0;
2168 }
2169
2170 /* Called with ovs_mutex or RCU read lock. */
2171 int ovs_nla_put_identifier(const struct sw_flow *flow, struct sk_buff *skb)
2172 {
2173         if (ovs_identifier_is_ufid(&flow->id))
2174                 return nla_put(skb, OVS_FLOW_ATTR_UFID, flow->id.ufid_len,
2175                                flow->id.ufid);
2176
2177         return ovs_nla_put_key(flow->id.unmasked_key, flow->id.unmasked_key,
2178                                OVS_FLOW_ATTR_KEY, false, skb);
2179 }
2180
2181 /* Called with ovs_mutex or RCU read lock. */
2182 int ovs_nla_put_masked_key(const struct sw_flow *flow, struct sk_buff *skb)
2183 {
2184         return ovs_nla_put_key(&flow->key, &flow->key,
2185                                 OVS_FLOW_ATTR_KEY, false, skb);
2186 }
2187
2188 /* Called with ovs_mutex or RCU read lock. */
2189 int ovs_nla_put_mask(const struct sw_flow *flow, struct sk_buff *skb)
2190 {
2191         return ovs_nla_put_key(&flow->key, &flow->mask->key,
2192                                 OVS_FLOW_ATTR_MASK, true, skb);
2193 }
2194
2195 #define MAX_ACTIONS_BUFSIZE     (32 * 1024)
2196
2197 static struct sw_flow_actions *nla_alloc_flow_actions(int size)
2198 {
2199         struct sw_flow_actions *sfa;
2200
2201         WARN_ON_ONCE(size > MAX_ACTIONS_BUFSIZE);
2202
2203         sfa = kmalloc(sizeof(*sfa) + size, GFP_KERNEL);
2204         if (!sfa)
2205                 return ERR_PTR(-ENOMEM);
2206
2207         sfa->actions_len = 0;
2208         return sfa;
2209 }
2210
2211 static void ovs_nla_free_set_action(const struct nlattr *a)
2212 {
2213         const struct nlattr *ovs_key = nla_data(a);
2214         struct ovs_tunnel_info *ovs_tun;
2215
2216         switch (nla_type(ovs_key)) {
2217         case OVS_KEY_ATTR_TUNNEL_INFO:
2218                 ovs_tun = nla_data(ovs_key);
2219                 dst_release((struct dst_entry *)ovs_tun->tun_dst);
2220                 break;
2221         }
2222 }
2223
2224 void ovs_nla_free_flow_actions(struct sw_flow_actions *sf_acts)
2225 {
2226         const struct nlattr *a;
2227         int rem;
2228
2229         if (!sf_acts)
2230                 return;
2231
2232         nla_for_each_attr(a, sf_acts->actions, sf_acts->actions_len, rem) {
2233                 switch (nla_type(a)) {
2234                 case OVS_ACTION_ATTR_SET:
2235                         ovs_nla_free_set_action(a);
2236                         break;
2237                 case OVS_ACTION_ATTR_CT:
2238                         ovs_ct_free_action(a);
2239                         break;
2240                 }
2241         }
2242
2243         kfree(sf_acts);
2244 }
2245
2246 static void __ovs_nla_free_flow_actions(struct rcu_head *head)
2247 {
2248         ovs_nla_free_flow_actions(container_of(head, struct sw_flow_actions, rcu));
2249 }
2250
2251 /* Schedules 'sf_acts' to be freed after the next RCU grace period.
2252  * The caller must hold rcu_read_lock for this to be sensible. */
2253 void ovs_nla_free_flow_actions_rcu(struct sw_flow_actions *sf_acts)
2254 {
2255         call_rcu(&sf_acts->rcu, __ovs_nla_free_flow_actions);
2256 }
2257
2258 static struct nlattr *reserve_sfa_size(struct sw_flow_actions **sfa,
2259                                        int attr_len, bool log)
2260 {
2261
2262         struct sw_flow_actions *acts;
2263         int new_acts_size;
2264         int req_size = NLA_ALIGN(attr_len);
2265         int next_offset = offsetof(struct sw_flow_actions, actions) +
2266                                         (*sfa)->actions_len;
2267
2268         if (req_size <= (ksize(*sfa) - next_offset))
2269                 goto out;
2270
2271         new_acts_size = ksize(*sfa) * 2;
2272
2273         if (new_acts_size > MAX_ACTIONS_BUFSIZE) {
2274                 if ((MAX_ACTIONS_BUFSIZE - next_offset) < req_size) {
2275                         OVS_NLERR(log, "Flow action size exceeds max %u",
2276                                   MAX_ACTIONS_BUFSIZE);
2277                         return ERR_PTR(-EMSGSIZE);
2278                 }
2279                 new_acts_size = MAX_ACTIONS_BUFSIZE;
2280         }
2281
2282         acts = nla_alloc_flow_actions(new_acts_size);
2283         if (IS_ERR(acts))
2284                 return (void *)acts;
2285
2286         memcpy(acts->actions, (*sfa)->actions, (*sfa)->actions_len);
2287         acts->actions_len = (*sfa)->actions_len;
2288         acts->orig_len = (*sfa)->orig_len;
2289         kfree(*sfa);
2290         *sfa = acts;
2291
2292 out:
2293         (*sfa)->actions_len += req_size;
2294         return  (struct nlattr *) ((unsigned char *)(*sfa) + next_offset);
2295 }
2296
2297 static struct nlattr *__add_action(struct sw_flow_actions **sfa,
2298                                    int attrtype, void *data, int len, bool log)
2299 {
2300         struct nlattr *a;
2301
2302         a = reserve_sfa_size(sfa, nla_attr_size(len), log);
2303         if (IS_ERR(a))
2304                 return a;
2305
2306         a->nla_type = attrtype;
2307         a->nla_len = nla_attr_size(len);
2308
2309         if (data)
2310                 memcpy(nla_data(a), data, len);
2311         memset((unsigned char *) a + a->nla_len, 0, nla_padlen(len));
2312
2313         return a;
2314 }
2315
2316 int ovs_nla_add_action(struct sw_flow_actions **sfa, int attrtype, void *data,
2317                        int len, bool log)
2318 {
2319         struct nlattr *a;
2320
2321         a = __add_action(sfa, attrtype, data, len, log);
2322
2323         return PTR_ERR_OR_ZERO(a);
2324 }
2325
2326 static inline int add_nested_action_start(struct sw_flow_actions **sfa,
2327                                           int attrtype, bool log)
2328 {
2329         int used = (*sfa)->actions_len;
2330         int err;
2331
2332         err = ovs_nla_add_action(sfa, attrtype, NULL, 0, log);
2333         if (err)
2334                 return err;
2335
2336         return used;
2337 }
2338
2339 static inline void add_nested_action_end(struct sw_flow_actions *sfa,
2340                                          int st_offset)
2341 {
2342         struct nlattr *a = (struct nlattr *) ((unsigned char *)sfa->actions +
2343                                                                st_offset);
2344
2345         a->nla_len = sfa->actions_len - st_offset;
2346 }
2347
2348 static int __ovs_nla_copy_actions(struct net *net, const struct nlattr *attr,
2349                                   const struct sw_flow_key *key,
2350                                   struct sw_flow_actions **sfa,
2351                                   __be16 eth_type, __be16 vlan_tci, bool log);
2352
2353 static int validate_and_copy_sample(struct net *net, const struct nlattr *attr,
2354                                     const struct sw_flow_key *key,
2355                                     struct sw_flow_actions **sfa,
2356                                     __be16 eth_type, __be16 vlan_tci,
2357                                     bool log, bool last)
2358 {
2359         const struct nlattr *attrs[OVS_SAMPLE_ATTR_MAX + 1];
2360         const struct nlattr *probability, *actions;
2361         const struct nlattr *a;
2362         int rem, start, err;
2363         struct sample_arg arg;
2364
2365         memset(attrs, 0, sizeof(attrs));
2366         nla_for_each_nested(a, attr, rem) {
2367                 int type = nla_type(a);
2368                 if (!type || type > OVS_SAMPLE_ATTR_MAX || attrs[type])
2369                         return -EINVAL;
2370                 attrs[type] = a;
2371         }
2372         if (rem)
2373                 return -EINVAL;
2374
2375         probability = attrs[OVS_SAMPLE_ATTR_PROBABILITY];
2376         if (!probability || nla_len(probability) != sizeof(u32))
2377                 return -EINVAL;
2378
2379         actions = attrs[OVS_SAMPLE_ATTR_ACTIONS];
2380         if (!actions || (nla_len(actions) && nla_len(actions) < NLA_HDRLEN))
2381                 return -EINVAL;
2382
2383         /* validation done, copy sample action. */
2384         start = add_nested_action_start(sfa, OVS_ACTION_ATTR_SAMPLE, log);
2385         if (start < 0)
2386                 return start;
2387
2388         /* When both skb and flow may be changed, put the sample
2389          * into a deferred fifo. On the other hand, if only skb
2390          * may be modified, the actions can be executed in place.
2391          *
2392          * Do this analysis at the flow installation time.
2393          * Set 'clone_action->exec' to true if the actions can be
2394          * executed without being deferred.
2395          *
2396          * If the sample is the last action, it can always be excuted
2397          * rather than deferred.
2398          */
2399         arg.exec = last || !actions_may_change_flow(actions);
2400         arg.probability = nla_get_u32(probability);
2401
2402         err = ovs_nla_add_action(sfa, OVS_SAMPLE_ATTR_ARG, &arg, sizeof(arg),
2403                                  log);
2404         if (err)
2405                 return err;
2406
2407         err = __ovs_nla_copy_actions(net, actions, key, sfa,
2408                                      eth_type, vlan_tci, log);
2409
2410         if (err)
2411                 return err;
2412
2413         add_nested_action_end(*sfa, start);
2414
2415         return 0;
2416 }
2417
2418 void ovs_match_init(struct sw_flow_match *match,
2419                     struct sw_flow_key *key,
2420                     bool reset_key,
2421                     struct sw_flow_mask *mask)
2422 {
2423         memset(match, 0, sizeof(*match));
2424         match->key = key;
2425         match->mask = mask;
2426
2427         if (reset_key)
2428                 memset(key, 0, sizeof(*key));
2429
2430         if (mask) {
2431                 memset(&mask->key, 0, sizeof(mask->key));
2432                 mask->range.start = mask->range.end = 0;
2433         }
2434 }
2435
2436 static int validate_geneve_opts(struct sw_flow_key *key)
2437 {
2438         struct geneve_opt *option;
2439         int opts_len = key->tun_opts_len;
2440         bool crit_opt = false;
2441
2442         option = (struct geneve_opt *)TUN_METADATA_OPTS(key, key->tun_opts_len);
2443         while (opts_len > 0) {
2444                 int len;
2445
2446                 if (opts_len < sizeof(*option))
2447                         return -EINVAL;
2448
2449                 len = sizeof(*option) + option->length * 4;
2450                 if (len > opts_len)
2451                         return -EINVAL;
2452
2453                 crit_opt |= !!(option->type & GENEVE_CRIT_OPT_TYPE);
2454
2455                 option = (struct geneve_opt *)((u8 *)option + len);
2456                 opts_len -= len;
2457         };
2458
2459         key->tun_key.tun_flags |= crit_opt ? TUNNEL_CRIT_OPT : 0;
2460
2461         return 0;
2462 }
2463
2464 static int validate_and_copy_set_tun(const struct nlattr *attr,
2465                                      struct sw_flow_actions **sfa, bool log)
2466 {
2467         struct sw_flow_match match;
2468         struct sw_flow_key key;
2469         struct metadata_dst *tun_dst;
2470         struct ip_tunnel_info *tun_info;
2471         struct ovs_tunnel_info *ovs_tun;
2472         struct nlattr *a;
2473         int err = 0, start, opts_type;
2474
2475         ovs_match_init(&match, &key, true, NULL);
2476         opts_type = ip_tun_from_nlattr(nla_data(attr), &match, false, log);
2477         if (opts_type < 0)
2478                 return opts_type;
2479
2480         if (key.tun_opts_len) {
2481                 switch (opts_type) {
2482                 case OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS:
2483                         err = validate_geneve_opts(&key);
2484                         if (err < 0)
2485                                 return err;
2486                         break;
2487                 case OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS:
2488                         break;
2489                 }
2490         };
2491
2492         start = add_nested_action_start(sfa, OVS_ACTION_ATTR_SET, log);
2493         if (start < 0)
2494                 return start;
2495
2496         tun_dst = metadata_dst_alloc(key.tun_opts_len, METADATA_IP_TUNNEL,
2497                                      GFP_KERNEL);
2498
2499         if (!tun_dst)
2500                 return -ENOMEM;
2501
2502         err = dst_cache_init(&tun_dst->u.tun_info.dst_cache, GFP_KERNEL);
2503         if (err) {
2504                 dst_release((struct dst_entry *)tun_dst);
2505                 return err;
2506         }
2507
2508         a = __add_action(sfa, OVS_KEY_ATTR_TUNNEL_INFO, NULL,
2509                          sizeof(*ovs_tun), log);
2510         if (IS_ERR(a)) {
2511                 dst_release((struct dst_entry *)tun_dst);
2512                 return PTR_ERR(a);
2513         }
2514
2515         ovs_tun = nla_data(a);
2516         ovs_tun->tun_dst = tun_dst;
2517
2518         tun_info = &tun_dst->u.tun_info;
2519         tun_info->mode = IP_TUNNEL_INFO_TX;
2520         if (key.tun_proto == AF_INET6)
2521                 tun_info->mode |= IP_TUNNEL_INFO_IPV6;
2522         tun_info->key = key.tun_key;
2523
2524         /* We need to store the options in the action itself since
2525          * everything else will go away after flow setup. We can append
2526          * it to tun_info and then point there.
2527          */
2528         ip_tunnel_info_opts_set(tun_info,
2529                                 TUN_METADATA_OPTS(&key, key.tun_opts_len),
2530                                 key.tun_opts_len);
2531         add_nested_action_end(*sfa, start);
2532
2533         return err;
2534 }
2535
2536 static bool validate_nsh(const struct nlattr *attr, bool is_mask,
2537                          bool is_push_nsh, bool log)
2538 {
2539         struct sw_flow_match match;
2540         struct sw_flow_key key;
2541         int ret = 0;
2542
2543         ovs_match_init(&match, &key, true, NULL);
2544         ret = nsh_key_put_from_nlattr(attr, &match, is_mask,
2545                                       is_push_nsh, log);
2546         return !ret;
2547 }
2548
2549 /* Return false if there are any non-masked bits set.
2550  * Mask follows data immediately, before any netlink padding.
2551  */
2552 static bool validate_masked(u8 *data, int len)
2553 {
2554         u8 *mask = data + len;
2555
2556         while (len--)
2557                 if (*data++ & ~*mask++)
2558                         return false;
2559
2560         return true;
2561 }
2562
2563 static int validate_set(const struct nlattr *a,
2564                         const struct sw_flow_key *flow_key,
2565                         struct sw_flow_actions **sfa, bool *skip_copy,
2566                         u8 mac_proto, __be16 eth_type, bool masked, bool log)
2567 {
2568         const struct nlattr *ovs_key = nla_data(a);
2569         int key_type = nla_type(ovs_key);
2570         size_t key_len;
2571
2572         /* There can be only one key in a action */
2573         if (nla_total_size(nla_len(ovs_key)) != nla_len(a))
2574                 return -EINVAL;
2575
2576         key_len = nla_len(ovs_key);
2577         if (masked)
2578                 key_len /= 2;
2579
2580         if (key_type > OVS_KEY_ATTR_MAX ||
2581             !check_attr_len(key_len, ovs_key_lens[key_type].len))
2582                 return -EINVAL;
2583
2584         if (masked && !validate_masked(nla_data(ovs_key), key_len))
2585                 return -EINVAL;
2586
2587         switch (key_type) {
2588         const struct ovs_key_ipv4 *ipv4_key;
2589         const struct ovs_key_ipv6 *ipv6_key;
2590         int err;
2591
2592         case OVS_KEY_ATTR_PRIORITY:
2593         case OVS_KEY_ATTR_SKB_MARK:
2594         case OVS_KEY_ATTR_CT_MARK:
2595         case OVS_KEY_ATTR_CT_LABELS:
2596                 break;
2597
2598         case OVS_KEY_ATTR_ETHERNET:
2599                 if (mac_proto != MAC_PROTO_ETHERNET)
2600                         return -EINVAL;
2601                 break;
2602
2603         case OVS_KEY_ATTR_TUNNEL:
2604                 if (masked)
2605                         return -EINVAL; /* Masked tunnel set not supported. */
2606
2607                 *skip_copy = true;
2608                 err = validate_and_copy_set_tun(a, sfa, log);
2609                 if (err)
2610                         return err;
2611                 break;
2612
2613         case OVS_KEY_ATTR_IPV4:
2614                 if (eth_type != htons(ETH_P_IP))
2615                         return -EINVAL;
2616
2617                 ipv4_key = nla_data(ovs_key);
2618
2619                 if (masked) {
2620                         const struct ovs_key_ipv4 *mask = ipv4_key + 1;
2621
2622                         /* Non-writeable fields. */
2623                         if (mask->ipv4_proto || mask->ipv4_frag)
2624                                 return -EINVAL;
2625                 } else {
2626                         if (ipv4_key->ipv4_proto != flow_key->ip.proto)
2627                                 return -EINVAL;
2628
2629                         if (ipv4_key->ipv4_frag != flow_key->ip.frag)
2630                                 return -EINVAL;
2631                 }
2632                 break;
2633
2634         case OVS_KEY_ATTR_IPV6:
2635                 if (eth_type != htons(ETH_P_IPV6))
2636                         return -EINVAL;
2637
2638                 ipv6_key = nla_data(ovs_key);
2639
2640                 if (masked) {
2641                         const struct ovs_key_ipv6 *mask = ipv6_key + 1;
2642
2643                         /* Non-writeable fields. */
2644                         if (mask->ipv6_proto || mask->ipv6_frag)
2645                                 return -EINVAL;
2646
2647                         /* Invalid bits in the flow label mask? */
2648                         if (ntohl(mask->ipv6_label) & 0xFFF00000)
2649                                 return -EINVAL;
2650                 } else {
2651                         if (ipv6_key->ipv6_proto != flow_key->ip.proto)
2652                                 return -EINVAL;
2653
2654                         if (ipv6_key->ipv6_frag != flow_key->ip.frag)
2655                                 return -EINVAL;
2656                 }
2657                 if (ntohl(ipv6_key->ipv6_label) & 0xFFF00000)
2658                         return -EINVAL;
2659
2660                 break;
2661
2662         case OVS_KEY_ATTR_TCP:
2663                 if ((eth_type != htons(ETH_P_IP) &&
2664                      eth_type != htons(ETH_P_IPV6)) ||
2665                     flow_key->ip.proto != IPPROTO_TCP)
2666                         return -EINVAL;
2667
2668                 break;
2669
2670         case OVS_KEY_ATTR_UDP:
2671                 if ((eth_type != htons(ETH_P_IP) &&
2672                      eth_type != htons(ETH_P_IPV6)) ||
2673                     flow_key->ip.proto != IPPROTO_UDP)
2674                         return -EINVAL;
2675
2676                 break;
2677
2678         case OVS_KEY_ATTR_MPLS:
2679                 if (!eth_p_mpls(eth_type))
2680                         return -EINVAL;
2681                 break;
2682
2683         case OVS_KEY_ATTR_SCTP:
2684                 if ((eth_type != htons(ETH_P_IP) &&
2685                      eth_type != htons(ETH_P_IPV6)) ||
2686                     flow_key->ip.proto != IPPROTO_SCTP)
2687                         return -EINVAL;
2688
2689                 break;
2690
2691         case OVS_KEY_ATTR_NSH:
2692                 if (eth_type != htons(ETH_P_NSH))
2693                         return -EINVAL;
2694                 if (!validate_nsh(nla_data(a), masked, false, log))
2695                         return -EINVAL;
2696                 break;
2697
2698         default:
2699                 return -EINVAL;
2700         }
2701
2702         /* Convert non-masked non-tunnel set actions to masked set actions. */
2703         if (!masked && key_type != OVS_KEY_ATTR_TUNNEL) {
2704                 int start, len = key_len * 2;
2705                 struct nlattr *at;
2706
2707                 *skip_copy = true;
2708
2709                 start = add_nested_action_start(sfa,
2710                                                 OVS_ACTION_ATTR_SET_TO_MASKED,
2711                                                 log);
2712                 if (start < 0)
2713                         return start;
2714
2715                 at = __add_action(sfa, key_type, NULL, len, log);
2716                 if (IS_ERR(at))
2717                         return PTR_ERR(at);
2718
2719                 memcpy(nla_data(at), nla_data(ovs_key), key_len); /* Key. */
2720                 memset(nla_data(at) + key_len, 0xff, key_len);    /* Mask. */
2721                 /* Clear non-writeable bits from otherwise writeable fields. */
2722                 if (key_type == OVS_KEY_ATTR_IPV6) {
2723                         struct ovs_key_ipv6 *mask = nla_data(at) + key_len;
2724
2725                         mask->ipv6_label &= htonl(0x000FFFFF);
2726                 }
2727                 add_nested_action_end(*sfa, start);
2728         }
2729
2730         return 0;
2731 }
2732
2733 static int validate_userspace(const struct nlattr *attr)
2734 {
2735         static const struct nla_policy userspace_policy[OVS_USERSPACE_ATTR_MAX + 1] = {
2736                 [OVS_USERSPACE_ATTR_PID] = {.type = NLA_U32 },
2737                 [OVS_USERSPACE_ATTR_USERDATA] = {.type = NLA_UNSPEC },
2738                 [OVS_USERSPACE_ATTR_EGRESS_TUN_PORT] = {.type = NLA_U32 },
2739         };
2740         struct nlattr *a[OVS_USERSPACE_ATTR_MAX + 1];
2741         int error;
2742
2743         error = nla_parse_nested(a, OVS_USERSPACE_ATTR_MAX, attr,
2744                                  userspace_policy, NULL);
2745         if (error)
2746                 return error;
2747
2748         if (!a[OVS_USERSPACE_ATTR_PID] ||
2749             !nla_get_u32(a[OVS_USERSPACE_ATTR_PID]))
2750                 return -EINVAL;
2751
2752         return 0;
2753 }
2754
2755 static int copy_action(const struct nlattr *from,
2756                        struct sw_flow_actions **sfa, bool log)
2757 {
2758         int totlen = NLA_ALIGN(from->nla_len);
2759         struct nlattr *to;
2760
2761         to = reserve_sfa_size(sfa, from->nla_len, log);
2762         if (IS_ERR(to))
2763                 return PTR_ERR(to);
2764
2765         memcpy(to, from, totlen);
2766         return 0;
2767 }
2768
2769 static int __ovs_nla_copy_actions(struct net *net, const struct nlattr *attr,
2770                                   const struct sw_flow_key *key,
2771                                   struct sw_flow_actions **sfa,
2772                                   __be16 eth_type, __be16 vlan_tci, bool log)
2773 {
2774         u8 mac_proto = ovs_key_mac_proto(key);
2775         const struct nlattr *a;
2776         int rem, err;
2777
2778         nla_for_each_nested(a, attr, rem) {
2779                 /* Expected argument lengths, (u32)-1 for variable length. */
2780                 static const u32 action_lens[OVS_ACTION_ATTR_MAX + 1] = {
2781                         [OVS_ACTION_ATTR_OUTPUT] = sizeof(u32),
2782                         [OVS_ACTION_ATTR_RECIRC] = sizeof(u32),
2783                         [OVS_ACTION_ATTR_USERSPACE] = (u32)-1,
2784                         [OVS_ACTION_ATTR_PUSH_MPLS] = sizeof(struct ovs_action_push_mpls),
2785                         [OVS_ACTION_ATTR_POP_MPLS] = sizeof(__be16),
2786                         [OVS_ACTION_ATTR_PUSH_VLAN] = sizeof(struct ovs_action_push_vlan),
2787                         [OVS_ACTION_ATTR_POP_VLAN] = 0,
2788                         [OVS_ACTION_ATTR_SET] = (u32)-1,
2789                         [OVS_ACTION_ATTR_SET_MASKED] = (u32)-1,
2790                         [OVS_ACTION_ATTR_SAMPLE] = (u32)-1,
2791                         [OVS_ACTION_ATTR_HASH] = sizeof(struct ovs_action_hash),
2792                         [OVS_ACTION_ATTR_CT] = (u32)-1,
2793                         [OVS_ACTION_ATTR_CT_CLEAR] = 0,
2794                         [OVS_ACTION_ATTR_TRUNC] = sizeof(struct ovs_action_trunc),
2795                         [OVS_ACTION_ATTR_PUSH_ETH] = sizeof(struct ovs_action_push_eth),
2796                         [OVS_ACTION_ATTR_POP_ETH] = 0,
2797                         [OVS_ACTION_ATTR_PUSH_NSH] = (u32)-1,
2798                         [OVS_ACTION_ATTR_POP_NSH] = 0,
2799                         [OVS_ACTION_ATTR_METER] = sizeof(u32),
2800                 };
2801                 const struct ovs_action_push_vlan *vlan;
2802                 int type = nla_type(a);
2803                 bool skip_copy;
2804
2805                 if (type > OVS_ACTION_ATTR_MAX ||
2806                     (action_lens[type] != nla_len(a) &&
2807                      action_lens[type] != (u32)-1))
2808                         return -EINVAL;
2809
2810                 skip_copy = false;
2811                 switch (type) {
2812                 case OVS_ACTION_ATTR_UNSPEC:
2813                         return -EINVAL;
2814
2815                 case OVS_ACTION_ATTR_USERSPACE:
2816                         err = validate_userspace(a);
2817                         if (err)
2818                                 return err;
2819                         break;
2820
2821                 case OVS_ACTION_ATTR_OUTPUT:
2822                         if (nla_get_u32(a) >= DP_MAX_PORTS)
2823                                 return -EINVAL;
2824                         break;
2825
2826                 case OVS_ACTION_ATTR_TRUNC: {
2827                         const struct ovs_action_trunc *trunc = nla_data(a);
2828
2829                         if (trunc->max_len < ETH_HLEN)
2830                                 return -EINVAL;
2831                         break;
2832                 }
2833
2834                 case OVS_ACTION_ATTR_HASH: {
2835                         const struct ovs_action_hash *act_hash = nla_data(a);
2836
2837                         switch (act_hash->hash_alg) {
2838                         case OVS_HASH_ALG_L4:
2839                                 break;
2840                         default:
2841                                 return  -EINVAL;
2842                         }
2843
2844                         break;
2845                 }
2846
2847                 case OVS_ACTION_ATTR_POP_VLAN:
2848                         if (mac_proto != MAC_PROTO_ETHERNET)
2849                                 return -EINVAL;
2850                         vlan_tci = htons(0);
2851                         break;
2852
2853                 case OVS_ACTION_ATTR_PUSH_VLAN:
2854                         if (mac_proto != MAC_PROTO_ETHERNET)
2855                                 return -EINVAL;
2856                         vlan = nla_data(a);
2857                         if (!eth_type_vlan(vlan->vlan_tpid))
2858                                 return -EINVAL;
2859                         if (!(vlan->vlan_tci & htons(VLAN_TAG_PRESENT)))
2860                                 return -EINVAL;
2861                         vlan_tci = vlan->vlan_tci;
2862                         break;
2863
2864                 case OVS_ACTION_ATTR_RECIRC:
2865                         break;
2866
2867                 case OVS_ACTION_ATTR_PUSH_MPLS: {
2868                         const struct ovs_action_push_mpls *mpls = nla_data(a);
2869
2870                         if (!eth_p_mpls(mpls->mpls_ethertype))
2871                                 return -EINVAL;
2872                         /* Prohibit push MPLS other than to a white list
2873                          * for packets that have a known tag order.
2874                          */
2875                         if (vlan_tci & htons(VLAN_TAG_PRESENT) ||
2876                             (eth_type != htons(ETH_P_IP) &&
2877                              eth_type != htons(ETH_P_IPV6) &&
2878                              eth_type != htons(ETH_P_ARP) &&
2879                              eth_type != htons(ETH_P_RARP) &&
2880                              !eth_p_mpls(eth_type)))
2881                                 return -EINVAL;
2882                         eth_type = mpls->mpls_ethertype;
2883                         break;
2884                 }
2885
2886                 case OVS_ACTION_ATTR_POP_MPLS:
2887                         if (vlan_tci & htons(VLAN_TAG_PRESENT) ||
2888                             !eth_p_mpls(eth_type))
2889                                 return -EINVAL;
2890
2891                         /* Disallow subsequent L2.5+ set and mpls_pop actions
2892                          * as there is no check here to ensure that the new
2893                          * eth_type is valid and thus set actions could
2894                          * write off the end of the packet or otherwise
2895                          * corrupt it.
2896                          *
2897                          * Support for these actions is planned using packet
2898                          * recirculation.
2899                          */
2900                         eth_type = htons(0);
2901                         break;
2902
2903                 case OVS_ACTION_ATTR_SET:
2904                         err = validate_set(a, key, sfa,
2905                                            &skip_copy, mac_proto, eth_type,
2906                                            false, log);
2907                         if (err)
2908                                 return err;
2909                         break;
2910
2911                 case OVS_ACTION_ATTR_SET_MASKED:
2912                         err = validate_set(a, key, sfa,
2913                                            &skip_copy, mac_proto, eth_type,
2914                                            true, log);
2915                         if (err)
2916                                 return err;
2917                         break;
2918
2919                 case OVS_ACTION_ATTR_SAMPLE: {
2920                         bool last = nla_is_last(a, rem);
2921
2922                         err = validate_and_copy_sample(net, a, key, sfa,
2923                                                        eth_type, vlan_tci,
2924                                                        log, last);
2925                         if (err)
2926                                 return err;
2927                         skip_copy = true;
2928                         break;
2929                 }
2930
2931                 case OVS_ACTION_ATTR_CT:
2932                         err = ovs_ct_copy_action(net, a, key, sfa, log);
2933                         if (err)
2934                                 return err;
2935                         skip_copy = true;
2936                         break;
2937
2938                 case OVS_ACTION_ATTR_CT_CLEAR:
2939                         break;
2940
2941                 case OVS_ACTION_ATTR_PUSH_ETH:
2942                         /* Disallow pushing an Ethernet header if one
2943                          * is already present */
2944                         if (mac_proto != MAC_PROTO_NONE)
2945                                 return -EINVAL;
2946                         mac_proto = MAC_PROTO_NONE;
2947                         break;
2948
2949                 case OVS_ACTION_ATTR_POP_ETH:
2950                         if (mac_proto != MAC_PROTO_ETHERNET)
2951                                 return -EINVAL;
2952                         if (vlan_tci & htons(VLAN_TAG_PRESENT))
2953                                 return -EINVAL;
2954                         mac_proto = MAC_PROTO_ETHERNET;
2955                         break;
2956
2957                 case OVS_ACTION_ATTR_PUSH_NSH:
2958                         if (mac_proto != MAC_PROTO_ETHERNET) {
2959                                 u8 next_proto;
2960
2961                                 next_proto = tun_p_from_eth_p(eth_type);
2962                                 if (!next_proto)
2963                                         return -EINVAL;
2964                         }
2965                         mac_proto = MAC_PROTO_NONE;
2966                         if (!validate_nsh(nla_data(a), false, true, true))
2967                                 return -EINVAL;
2968                         break;
2969
2970                 case OVS_ACTION_ATTR_POP_NSH: {
2971                         __be16 inner_proto;
2972
2973                         if (eth_type != htons(ETH_P_NSH))
2974                                 return -EINVAL;
2975                         inner_proto = tun_p_to_eth_p(key->nsh.base.np);
2976                         if (!inner_proto)
2977                                 return -EINVAL;
2978                         if (key->nsh.base.np == TUN_P_ETHERNET)
2979                                 mac_proto = MAC_PROTO_ETHERNET;
2980                         else
2981                                 mac_proto = MAC_PROTO_NONE;
2982                         break;
2983                 }
2984
2985                 case OVS_ACTION_ATTR_METER:
2986                         /* Non-existent meters are simply ignored.  */
2987                         break;
2988
2989                 default:
2990                         OVS_NLERR(log, "Unknown Action type %d", type);
2991                         return -EINVAL;
2992                 }
2993                 if (!skip_copy) {
2994                         err = copy_action(a, sfa, log);
2995                         if (err)
2996                                 return err;
2997                 }
2998         }
2999
3000         if (rem > 0)
3001                 return -EINVAL;
3002
3003         return 0;
3004 }
3005
3006 /* 'key' must be the masked key. */
3007 int ovs_nla_copy_actions(struct net *net, const struct nlattr *attr,
3008                          const struct sw_flow_key *key,
3009                          struct sw_flow_actions **sfa, bool log)
3010 {
3011         int err;
3012
3013         *sfa = nla_alloc_flow_actions(min(nla_len(attr), MAX_ACTIONS_BUFSIZE));
3014         if (IS_ERR(*sfa))
3015                 return PTR_ERR(*sfa);
3016
3017         (*sfa)->orig_len = nla_len(attr);
3018         err = __ovs_nla_copy_actions(net, attr, key, sfa, key->eth.type,
3019                                      key->eth.vlan.tci, log);
3020         if (err)
3021                 ovs_nla_free_flow_actions(*sfa);
3022
3023         return err;
3024 }
3025
3026 static int sample_action_to_attr(const struct nlattr *attr,
3027                                  struct sk_buff *skb)
3028 {
3029         struct nlattr *start, *ac_start = NULL, *sample_arg;
3030         int err = 0, rem = nla_len(attr);
3031         const struct sample_arg *arg;
3032         struct nlattr *actions;
3033
3034         start = nla_nest_start(skb, OVS_ACTION_ATTR_SAMPLE);
3035         if (!start)
3036                 return -EMSGSIZE;
3037
3038         sample_arg = nla_data(attr);
3039         arg = nla_data(sample_arg);
3040         actions = nla_next(sample_arg, &rem);
3041
3042         if (nla_put_u32(skb, OVS_SAMPLE_ATTR_PROBABILITY, arg->probability)) {
3043                 err = -EMSGSIZE;
3044                 goto out;
3045         }
3046
3047         ac_start = nla_nest_start(skb, OVS_SAMPLE_ATTR_ACTIONS);
3048         if (!ac_start) {
3049                 err = -EMSGSIZE;
3050                 goto out;
3051         }
3052
3053         err = ovs_nla_put_actions(actions, rem, skb);
3054
3055 out:
3056         if (err) {
3057                 nla_nest_cancel(skb, ac_start);
3058                 nla_nest_cancel(skb, start);
3059         } else {
3060                 nla_nest_end(skb, ac_start);
3061                 nla_nest_end(skb, start);
3062         }
3063
3064         return err;
3065 }
3066
3067 static int set_action_to_attr(const struct nlattr *a, struct sk_buff *skb)
3068 {
3069         const struct nlattr *ovs_key = nla_data(a);
3070         int key_type = nla_type(ovs_key);
3071         struct nlattr *start;
3072         int err;
3073
3074         switch (key_type) {
3075         case OVS_KEY_ATTR_TUNNEL_INFO: {
3076                 struct ovs_tunnel_info *ovs_tun = nla_data(ovs_key);
3077                 struct ip_tunnel_info *tun_info = &ovs_tun->tun_dst->u.tun_info;
3078
3079                 start = nla_nest_start(skb, OVS_ACTION_ATTR_SET);
3080                 if (!start)
3081                         return -EMSGSIZE;
3082
3083                 err =  ip_tun_to_nlattr(skb, &tun_info->key,
3084                                         ip_tunnel_info_opts(tun_info),
3085                                         tun_info->options_len,
3086                                         ip_tunnel_info_af(tun_info));
3087                 if (err)
3088                         return err;
3089                 nla_nest_end(skb, start);
3090                 break;
3091         }
3092         default:
3093                 if (nla_put(skb, OVS_ACTION_ATTR_SET, nla_len(a), ovs_key))
3094                         return -EMSGSIZE;
3095                 break;
3096         }
3097
3098         return 0;
3099 }
3100
3101 static int masked_set_action_to_set_action_attr(const struct nlattr *a,
3102                                                 struct sk_buff *skb)
3103 {
3104         const struct nlattr *ovs_key = nla_data(a);
3105         struct nlattr *nla;
3106         size_t key_len = nla_len(ovs_key) / 2;
3107
3108         /* Revert the conversion we did from a non-masked set action to
3109          * masked set action.
3110          */
3111         nla = nla_nest_start(skb, OVS_ACTION_ATTR_SET);
3112         if (!nla)
3113                 return -EMSGSIZE;
3114
3115         if (nla_put(skb, nla_type(ovs_key), key_len, nla_data(ovs_key)))
3116                 return -EMSGSIZE;
3117
3118         nla_nest_end(skb, nla);
3119         return 0;
3120 }
3121
3122 int ovs_nla_put_actions(const struct nlattr *attr, int len, struct sk_buff *skb)
3123 {
3124         const struct nlattr *a;
3125         int rem, err;
3126
3127         nla_for_each_attr(a, attr, len, rem) {
3128                 int type = nla_type(a);
3129
3130                 switch (type) {
3131                 case OVS_ACTION_ATTR_SET:
3132                         err = set_action_to_attr(a, skb);
3133                         if (err)
3134                                 return err;
3135                         break;
3136
3137                 case OVS_ACTION_ATTR_SET_TO_MASKED:
3138                         err = masked_set_action_to_set_action_attr(a, skb);
3139                         if (err)
3140                                 return err;
3141                         break;
3142
3143                 case OVS_ACTION_ATTR_SAMPLE:
3144                         err = sample_action_to_attr(a, skb);
3145                         if (err)
3146                                 return err;
3147                         break;
3148
3149                 case OVS_ACTION_ATTR_CT:
3150                         err = ovs_ct_action_to_attr(nla_data(a), skb);
3151                         if (err)
3152                                 return err;
3153                         break;
3154
3155                 default:
3156                         if (nla_put(skb, type, nla_len(a), nla_data(a)))
3157                                 return -EMSGSIZE;
3158                         break;
3159                 }
3160         }
3161
3162         return 0;
3163 }