OSDN Git Service

net: sched: add rcu annotations around qdisc->qdisc_sleeping
[tomoyo/tomoyo-test1.git] / net / sched / sch_taprio.c
1 // SPDX-License-Identifier: GPL-2.0
2
3 /* net/sched/sch_taprio.c        Time Aware Priority Scheduler
4  *
5  * Authors:     Vinicius Costa Gomes <vinicius.gomes@intel.com>
6  *
7  */
8
9 #include <linux/ethtool.h>
10 #include <linux/ethtool_netlink.h>
11 #include <linux/types.h>
12 #include <linux/slab.h>
13 #include <linux/kernel.h>
14 #include <linux/string.h>
15 #include <linux/list.h>
16 #include <linux/errno.h>
17 #include <linux/skbuff.h>
18 #include <linux/math64.h>
19 #include <linux/module.h>
20 #include <linux/spinlock.h>
21 #include <linux/rcupdate.h>
22 #include <linux/time.h>
23 #include <net/netlink.h>
24 #include <net/pkt_sched.h>
25 #include <net/pkt_cls.h>
26 #include <net/sch_generic.h>
27 #include <net/sock.h>
28 #include <net/tcp.h>
29
30 #include "sch_mqprio_lib.h"
31
32 static LIST_HEAD(taprio_list);
33 static struct static_key_false taprio_have_broken_mqprio;
34 static struct static_key_false taprio_have_working_mqprio;
35
36 #define TAPRIO_ALL_GATES_OPEN -1
37
38 #define TXTIME_ASSIST_IS_ENABLED(flags) ((flags) & TCA_TAPRIO_ATTR_FLAG_TXTIME_ASSIST)
39 #define FULL_OFFLOAD_IS_ENABLED(flags) ((flags) & TCA_TAPRIO_ATTR_FLAG_FULL_OFFLOAD)
40 #define TAPRIO_FLAGS_INVALID U32_MAX
41
42 struct sched_entry {
43         /* Durations between this GCL entry and the GCL entry where the
44          * respective traffic class gate closes
45          */
46         u64 gate_duration[TC_MAX_QUEUE];
47         atomic_t budget[TC_MAX_QUEUE];
48         /* The qdisc makes some effort so that no packet leaves
49          * after this time
50          */
51         ktime_t gate_close_time[TC_MAX_QUEUE];
52         struct list_head list;
53         /* Used to calculate when to advance the schedule */
54         ktime_t end_time;
55         ktime_t next_txtime;
56         int index;
57         u32 gate_mask;
58         u32 interval;
59         u8 command;
60 };
61
62 struct sched_gate_list {
63         /* Longest non-zero contiguous gate durations per traffic class,
64          * or 0 if a traffic class gate never opens during the schedule.
65          */
66         u64 max_open_gate_duration[TC_MAX_QUEUE];
67         u32 max_frm_len[TC_MAX_QUEUE]; /* for the fast path */
68         u32 max_sdu[TC_MAX_QUEUE]; /* for dump */
69         struct rcu_head rcu;
70         struct list_head entries;
71         size_t num_entries;
72         ktime_t cycle_end_time;
73         s64 cycle_time;
74         s64 cycle_time_extension;
75         s64 base_time;
76 };
77
78 struct taprio_sched {
79         struct Qdisc **qdiscs;
80         struct Qdisc *root;
81         u32 flags;
82         enum tk_offsets tk_offset;
83         int clockid;
84         bool offloaded;
85         bool detected_mqprio;
86         bool broken_mqprio;
87         atomic64_t picos_per_byte; /* Using picoseconds because for 10Gbps+
88                                     * speeds it's sub-nanoseconds per byte
89                                     */
90
91         /* Protects the update side of the RCU protected current_entry */
92         spinlock_t current_entry_lock;
93         struct sched_entry __rcu *current_entry;
94         struct sched_gate_list __rcu *oper_sched;
95         struct sched_gate_list __rcu *admin_sched;
96         struct hrtimer advance_timer;
97         struct list_head taprio_list;
98         int cur_txq[TC_MAX_QUEUE];
99         u32 max_sdu[TC_MAX_QUEUE]; /* save info from the user */
100         u32 fp[TC_QOPT_MAX_QUEUE]; /* only for dump and offloading */
101         u32 txtime_delay;
102 };
103
104 struct __tc_taprio_qopt_offload {
105         refcount_t users;
106         struct tc_taprio_qopt_offload offload;
107 };
108
109 static void taprio_calculate_gate_durations(struct taprio_sched *q,
110                                             struct sched_gate_list *sched)
111 {
112         struct net_device *dev = qdisc_dev(q->root);
113         int num_tc = netdev_get_num_tc(dev);
114         struct sched_entry *entry, *cur;
115         int tc;
116
117         list_for_each_entry(entry, &sched->entries, list) {
118                 u32 gates_still_open = entry->gate_mask;
119
120                 /* For each traffic class, calculate each open gate duration,
121                  * starting at this schedule entry and ending at the schedule
122                  * entry containing a gate close event for that TC.
123                  */
124                 cur = entry;
125
126                 do {
127                         if (!gates_still_open)
128                                 break;
129
130                         for (tc = 0; tc < num_tc; tc++) {
131                                 if (!(gates_still_open & BIT(tc)))
132                                         continue;
133
134                                 if (cur->gate_mask & BIT(tc))
135                                         entry->gate_duration[tc] += cur->interval;
136                                 else
137                                         gates_still_open &= ~BIT(tc);
138                         }
139
140                         cur = list_next_entry_circular(cur, &sched->entries, list);
141                 } while (cur != entry);
142
143                 /* Keep track of the maximum gate duration for each traffic
144                  * class, taking care to not confuse a traffic class which is
145                  * temporarily closed with one that is always closed.
146                  */
147                 for (tc = 0; tc < num_tc; tc++)
148                         if (entry->gate_duration[tc] &&
149                             sched->max_open_gate_duration[tc] < entry->gate_duration[tc])
150                                 sched->max_open_gate_duration[tc] = entry->gate_duration[tc];
151         }
152 }
153
154 static bool taprio_entry_allows_tx(ktime_t skb_end_time,
155                                    struct sched_entry *entry, int tc)
156 {
157         return ktime_before(skb_end_time, entry->gate_close_time[tc]);
158 }
159
160 static ktime_t sched_base_time(const struct sched_gate_list *sched)
161 {
162         if (!sched)
163                 return KTIME_MAX;
164
165         return ns_to_ktime(sched->base_time);
166 }
167
168 static ktime_t taprio_mono_to_any(const struct taprio_sched *q, ktime_t mono)
169 {
170         /* This pairs with WRITE_ONCE() in taprio_parse_clockid() */
171         enum tk_offsets tk_offset = READ_ONCE(q->tk_offset);
172
173         switch (tk_offset) {
174         case TK_OFFS_MAX:
175                 return mono;
176         default:
177                 return ktime_mono_to_any(mono, tk_offset);
178         }
179 }
180
181 static ktime_t taprio_get_time(const struct taprio_sched *q)
182 {
183         return taprio_mono_to_any(q, ktime_get());
184 }
185
186 static void taprio_free_sched_cb(struct rcu_head *head)
187 {
188         struct sched_gate_list *sched = container_of(head, struct sched_gate_list, rcu);
189         struct sched_entry *entry, *n;
190
191         list_for_each_entry_safe(entry, n, &sched->entries, list) {
192                 list_del(&entry->list);
193                 kfree(entry);
194         }
195
196         kfree(sched);
197 }
198
199 static void switch_schedules(struct taprio_sched *q,
200                              struct sched_gate_list **admin,
201                              struct sched_gate_list **oper)
202 {
203         rcu_assign_pointer(q->oper_sched, *admin);
204         rcu_assign_pointer(q->admin_sched, NULL);
205
206         if (*oper)
207                 call_rcu(&(*oper)->rcu, taprio_free_sched_cb);
208
209         *oper = *admin;
210         *admin = NULL;
211 }
212
213 /* Get how much time has been already elapsed in the current cycle. */
214 static s32 get_cycle_time_elapsed(struct sched_gate_list *sched, ktime_t time)
215 {
216         ktime_t time_since_sched_start;
217         s32 time_elapsed;
218
219         time_since_sched_start = ktime_sub(time, sched->base_time);
220         div_s64_rem(time_since_sched_start, sched->cycle_time, &time_elapsed);
221
222         return time_elapsed;
223 }
224
225 static ktime_t get_interval_end_time(struct sched_gate_list *sched,
226                                      struct sched_gate_list *admin,
227                                      struct sched_entry *entry,
228                                      ktime_t intv_start)
229 {
230         s32 cycle_elapsed = get_cycle_time_elapsed(sched, intv_start);
231         ktime_t intv_end, cycle_ext_end, cycle_end;
232
233         cycle_end = ktime_add_ns(intv_start, sched->cycle_time - cycle_elapsed);
234         intv_end = ktime_add_ns(intv_start, entry->interval);
235         cycle_ext_end = ktime_add(cycle_end, sched->cycle_time_extension);
236
237         if (ktime_before(intv_end, cycle_end))
238                 return intv_end;
239         else if (admin && admin != sched &&
240                  ktime_after(admin->base_time, cycle_end) &&
241                  ktime_before(admin->base_time, cycle_ext_end))
242                 return admin->base_time;
243         else
244                 return cycle_end;
245 }
246
247 static int length_to_duration(struct taprio_sched *q, int len)
248 {
249         return div_u64(len * atomic64_read(&q->picos_per_byte), PSEC_PER_NSEC);
250 }
251
252 static int duration_to_length(struct taprio_sched *q, u64 duration)
253 {
254         return div_u64(duration * PSEC_PER_NSEC, atomic64_read(&q->picos_per_byte));
255 }
256
257 /* Sets sched->max_sdu[] and sched->max_frm_len[] to the minimum between the
258  * q->max_sdu[] requested by the user and the max_sdu dynamically determined by
259  * the maximum open gate durations at the given link speed.
260  */
261 static void taprio_update_queue_max_sdu(struct taprio_sched *q,
262                                         struct sched_gate_list *sched,
263                                         struct qdisc_size_table *stab)
264 {
265         struct net_device *dev = qdisc_dev(q->root);
266         int num_tc = netdev_get_num_tc(dev);
267         u32 max_sdu_from_user;
268         u32 max_sdu_dynamic;
269         u32 max_sdu;
270         int tc;
271
272         for (tc = 0; tc < num_tc; tc++) {
273                 max_sdu_from_user = q->max_sdu[tc] ?: U32_MAX;
274
275                 /* TC gate never closes => keep the queueMaxSDU
276                  * selected by the user
277                  */
278                 if (sched->max_open_gate_duration[tc] == sched->cycle_time) {
279                         max_sdu_dynamic = U32_MAX;
280                 } else {
281                         u32 max_frm_len;
282
283                         max_frm_len = duration_to_length(q, sched->max_open_gate_duration[tc]);
284                         /* Compensate for L1 overhead from size table,
285                          * but don't let the frame size go negative
286                          */
287                         if (stab) {
288                                 max_frm_len -= stab->szopts.overhead;
289                                 max_frm_len = max_t(int, max_frm_len,
290                                                     dev->hard_header_len + 1);
291                         }
292                         max_sdu_dynamic = max_frm_len - dev->hard_header_len;
293                         if (max_sdu_dynamic > dev->max_mtu)
294                                 max_sdu_dynamic = U32_MAX;
295                 }
296
297                 max_sdu = min(max_sdu_dynamic, max_sdu_from_user);
298
299                 if (max_sdu != U32_MAX) {
300                         sched->max_frm_len[tc] = max_sdu + dev->hard_header_len;
301                         sched->max_sdu[tc] = max_sdu;
302                 } else {
303                         sched->max_frm_len[tc] = U32_MAX; /* never oversized */
304                         sched->max_sdu[tc] = 0;
305                 }
306         }
307 }
308
309 /* Returns the entry corresponding to next available interval. If
310  * validate_interval is set, it only validates whether the timestamp occurs
311  * when the gate corresponding to the skb's traffic class is open.
312  */
313 static struct sched_entry *find_entry_to_transmit(struct sk_buff *skb,
314                                                   struct Qdisc *sch,
315                                                   struct sched_gate_list *sched,
316                                                   struct sched_gate_list *admin,
317                                                   ktime_t time,
318                                                   ktime_t *interval_start,
319                                                   ktime_t *interval_end,
320                                                   bool validate_interval)
321 {
322         ktime_t curr_intv_start, curr_intv_end, cycle_end, packet_transmit_time;
323         ktime_t earliest_txtime = KTIME_MAX, txtime, cycle, transmit_end_time;
324         struct sched_entry *entry = NULL, *entry_found = NULL;
325         struct taprio_sched *q = qdisc_priv(sch);
326         struct net_device *dev = qdisc_dev(sch);
327         bool entry_available = false;
328         s32 cycle_elapsed;
329         int tc, n;
330
331         tc = netdev_get_prio_tc_map(dev, skb->priority);
332         packet_transmit_time = length_to_duration(q, qdisc_pkt_len(skb));
333
334         *interval_start = 0;
335         *interval_end = 0;
336
337         if (!sched)
338                 return NULL;
339
340         cycle = sched->cycle_time;
341         cycle_elapsed = get_cycle_time_elapsed(sched, time);
342         curr_intv_end = ktime_sub_ns(time, cycle_elapsed);
343         cycle_end = ktime_add_ns(curr_intv_end, cycle);
344
345         list_for_each_entry(entry, &sched->entries, list) {
346                 curr_intv_start = curr_intv_end;
347                 curr_intv_end = get_interval_end_time(sched, admin, entry,
348                                                       curr_intv_start);
349
350                 if (ktime_after(curr_intv_start, cycle_end))
351                         break;
352
353                 if (!(entry->gate_mask & BIT(tc)) ||
354                     packet_transmit_time > entry->interval)
355                         continue;
356
357                 txtime = entry->next_txtime;
358
359                 if (ktime_before(txtime, time) || validate_interval) {
360                         transmit_end_time = ktime_add_ns(time, packet_transmit_time);
361                         if ((ktime_before(curr_intv_start, time) &&
362                              ktime_before(transmit_end_time, curr_intv_end)) ||
363                             (ktime_after(curr_intv_start, time) && !validate_interval)) {
364                                 entry_found = entry;
365                                 *interval_start = curr_intv_start;
366                                 *interval_end = curr_intv_end;
367                                 break;
368                         } else if (!entry_available && !validate_interval) {
369                                 /* Here, we are just trying to find out the
370                                  * first available interval in the next cycle.
371                                  */
372                                 entry_available = true;
373                                 entry_found = entry;
374                                 *interval_start = ktime_add_ns(curr_intv_start, cycle);
375                                 *interval_end = ktime_add_ns(curr_intv_end, cycle);
376                         }
377                 } else if (ktime_before(txtime, earliest_txtime) &&
378                            !entry_available) {
379                         earliest_txtime = txtime;
380                         entry_found = entry;
381                         n = div_s64(ktime_sub(txtime, curr_intv_start), cycle);
382                         *interval_start = ktime_add(curr_intv_start, n * cycle);
383                         *interval_end = ktime_add(curr_intv_end, n * cycle);
384                 }
385         }
386
387         return entry_found;
388 }
389
390 static bool is_valid_interval(struct sk_buff *skb, struct Qdisc *sch)
391 {
392         struct taprio_sched *q = qdisc_priv(sch);
393         struct sched_gate_list *sched, *admin;
394         ktime_t interval_start, interval_end;
395         struct sched_entry *entry;
396
397         rcu_read_lock();
398         sched = rcu_dereference(q->oper_sched);
399         admin = rcu_dereference(q->admin_sched);
400
401         entry = find_entry_to_transmit(skb, sch, sched, admin, skb->tstamp,
402                                        &interval_start, &interval_end, true);
403         rcu_read_unlock();
404
405         return entry;
406 }
407
408 static bool taprio_flags_valid(u32 flags)
409 {
410         /* Make sure no other flag bits are set. */
411         if (flags & ~(TCA_TAPRIO_ATTR_FLAG_TXTIME_ASSIST |
412                       TCA_TAPRIO_ATTR_FLAG_FULL_OFFLOAD))
413                 return false;
414         /* txtime-assist and full offload are mutually exclusive */
415         if ((flags & TCA_TAPRIO_ATTR_FLAG_TXTIME_ASSIST) &&
416             (flags & TCA_TAPRIO_ATTR_FLAG_FULL_OFFLOAD))
417                 return false;
418         return true;
419 }
420
421 /* This returns the tstamp value set by TCP in terms of the set clock. */
422 static ktime_t get_tcp_tstamp(struct taprio_sched *q, struct sk_buff *skb)
423 {
424         unsigned int offset = skb_network_offset(skb);
425         const struct ipv6hdr *ipv6h;
426         const struct iphdr *iph;
427         struct ipv6hdr _ipv6h;
428
429         ipv6h = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
430         if (!ipv6h)
431                 return 0;
432
433         if (ipv6h->version == 4) {
434                 iph = (struct iphdr *)ipv6h;
435                 offset += iph->ihl * 4;
436
437                 /* special-case 6in4 tunnelling, as that is a common way to get
438                  * v6 connectivity in the home
439                  */
440                 if (iph->protocol == IPPROTO_IPV6) {
441                         ipv6h = skb_header_pointer(skb, offset,
442                                                    sizeof(_ipv6h), &_ipv6h);
443
444                         if (!ipv6h || ipv6h->nexthdr != IPPROTO_TCP)
445                                 return 0;
446                 } else if (iph->protocol != IPPROTO_TCP) {
447                         return 0;
448                 }
449         } else if (ipv6h->version == 6 && ipv6h->nexthdr != IPPROTO_TCP) {
450                 return 0;
451         }
452
453         return taprio_mono_to_any(q, skb->skb_mstamp_ns);
454 }
455
456 /* There are a few scenarios where we will have to modify the txtime from
457  * what is read from next_txtime in sched_entry. They are:
458  * 1. If txtime is in the past,
459  *    a. The gate for the traffic class is currently open and packet can be
460  *       transmitted before it closes, schedule the packet right away.
461  *    b. If the gate corresponding to the traffic class is going to open later
462  *       in the cycle, set the txtime of packet to the interval start.
463  * 2. If txtime is in the future, there are packets corresponding to the
464  *    current traffic class waiting to be transmitted. So, the following
465  *    possibilities exist:
466  *    a. We can transmit the packet before the window containing the txtime
467  *       closes.
468  *    b. The window might close before the transmission can be completed
469  *       successfully. So, schedule the packet in the next open window.
470  */
471 static long get_packet_txtime(struct sk_buff *skb, struct Qdisc *sch)
472 {
473         ktime_t transmit_end_time, interval_end, interval_start, tcp_tstamp;
474         struct taprio_sched *q = qdisc_priv(sch);
475         struct sched_gate_list *sched, *admin;
476         ktime_t minimum_time, now, txtime;
477         int len, packet_transmit_time;
478         struct sched_entry *entry;
479         bool sched_changed;
480
481         now = taprio_get_time(q);
482         minimum_time = ktime_add_ns(now, q->txtime_delay);
483
484         tcp_tstamp = get_tcp_tstamp(q, skb);
485         minimum_time = max_t(ktime_t, minimum_time, tcp_tstamp);
486
487         rcu_read_lock();
488         admin = rcu_dereference(q->admin_sched);
489         sched = rcu_dereference(q->oper_sched);
490         if (admin && ktime_after(minimum_time, admin->base_time))
491                 switch_schedules(q, &admin, &sched);
492
493         /* Until the schedule starts, all the queues are open */
494         if (!sched || ktime_before(minimum_time, sched->base_time)) {
495                 txtime = minimum_time;
496                 goto done;
497         }
498
499         len = qdisc_pkt_len(skb);
500         packet_transmit_time = length_to_duration(q, len);
501
502         do {
503                 sched_changed = false;
504
505                 entry = find_entry_to_transmit(skb, sch, sched, admin,
506                                                minimum_time,
507                                                &interval_start, &interval_end,
508                                                false);
509                 if (!entry) {
510                         txtime = 0;
511                         goto done;
512                 }
513
514                 txtime = entry->next_txtime;
515                 txtime = max_t(ktime_t, txtime, minimum_time);
516                 txtime = max_t(ktime_t, txtime, interval_start);
517
518                 if (admin && admin != sched &&
519                     ktime_after(txtime, admin->base_time)) {
520                         sched = admin;
521                         sched_changed = true;
522                         continue;
523                 }
524
525                 transmit_end_time = ktime_add(txtime, packet_transmit_time);
526                 minimum_time = transmit_end_time;
527
528                 /* Update the txtime of current entry to the next time it's
529                  * interval starts.
530                  */
531                 if (ktime_after(transmit_end_time, interval_end))
532                         entry->next_txtime = ktime_add(interval_start, sched->cycle_time);
533         } while (sched_changed || ktime_after(transmit_end_time, interval_end));
534
535         entry->next_txtime = transmit_end_time;
536
537 done:
538         rcu_read_unlock();
539         return txtime;
540 }
541
542 /* Devices with full offload are expected to honor this in hardware */
543 static bool taprio_skb_exceeds_queue_max_sdu(struct Qdisc *sch,
544                                              struct sk_buff *skb)
545 {
546         struct taprio_sched *q = qdisc_priv(sch);
547         struct net_device *dev = qdisc_dev(sch);
548         struct sched_gate_list *sched;
549         int prio = skb->priority;
550         bool exceeds = false;
551         u8 tc;
552
553         tc = netdev_get_prio_tc_map(dev, prio);
554
555         rcu_read_lock();
556         sched = rcu_dereference(q->oper_sched);
557         if (sched && skb->len > sched->max_frm_len[tc])
558                 exceeds = true;
559         rcu_read_unlock();
560
561         return exceeds;
562 }
563
564 static int taprio_enqueue_one(struct sk_buff *skb, struct Qdisc *sch,
565                               struct Qdisc *child, struct sk_buff **to_free)
566 {
567         struct taprio_sched *q = qdisc_priv(sch);
568
569         /* sk_flags are only safe to use on full sockets. */
570         if (skb->sk && sk_fullsock(skb->sk) && sock_flag(skb->sk, SOCK_TXTIME)) {
571                 if (!is_valid_interval(skb, sch))
572                         return qdisc_drop(skb, sch, to_free);
573         } else if (TXTIME_ASSIST_IS_ENABLED(q->flags)) {
574                 skb->tstamp = get_packet_txtime(skb, sch);
575                 if (!skb->tstamp)
576                         return qdisc_drop(skb, sch, to_free);
577         }
578
579         qdisc_qstats_backlog_inc(sch, skb);
580         sch->q.qlen++;
581
582         return qdisc_enqueue(skb, child, to_free);
583 }
584
585 static int taprio_enqueue_segmented(struct sk_buff *skb, struct Qdisc *sch,
586                                     struct Qdisc *child,
587                                     struct sk_buff **to_free)
588 {
589         unsigned int slen = 0, numsegs = 0, len = qdisc_pkt_len(skb);
590         netdev_features_t features = netif_skb_features(skb);
591         struct sk_buff *segs, *nskb;
592         int ret;
593
594         segs = skb_gso_segment(skb, features & ~NETIF_F_GSO_MASK);
595         if (IS_ERR_OR_NULL(segs))
596                 return qdisc_drop(skb, sch, to_free);
597
598         skb_list_walk_safe(segs, segs, nskb) {
599                 skb_mark_not_on_list(segs);
600                 qdisc_skb_cb(segs)->pkt_len = segs->len;
601                 slen += segs->len;
602
603                 /* FIXME: we should be segmenting to a smaller size
604                  * rather than dropping these
605                  */
606                 if (taprio_skb_exceeds_queue_max_sdu(sch, segs))
607                         ret = qdisc_drop(segs, sch, to_free);
608                 else
609                         ret = taprio_enqueue_one(segs, sch, child, to_free);
610
611                 if (ret != NET_XMIT_SUCCESS) {
612                         if (net_xmit_drop_count(ret))
613                                 qdisc_qstats_drop(sch);
614                 } else {
615                         numsegs++;
616                 }
617         }
618
619         if (numsegs > 1)
620                 qdisc_tree_reduce_backlog(sch, 1 - numsegs, len - slen);
621         consume_skb(skb);
622
623         return numsegs > 0 ? NET_XMIT_SUCCESS : NET_XMIT_DROP;
624 }
625
626 /* Will not be called in the full offload case, since the TX queues are
627  * attached to the Qdisc created using qdisc_create_dflt()
628  */
629 static int taprio_enqueue(struct sk_buff *skb, struct Qdisc *sch,
630                           struct sk_buff **to_free)
631 {
632         struct taprio_sched *q = qdisc_priv(sch);
633         struct Qdisc *child;
634         int queue;
635
636         queue = skb_get_queue_mapping(skb);
637
638         child = q->qdiscs[queue];
639         if (unlikely(!child))
640                 return qdisc_drop(skb, sch, to_free);
641
642         if (taprio_skb_exceeds_queue_max_sdu(sch, skb)) {
643                 /* Large packets might not be transmitted when the transmission
644                  * duration exceeds any configured interval. Therefore, segment
645                  * the skb into smaller chunks. Drivers with full offload are
646                  * expected to handle this in hardware.
647                  */
648                 if (skb_is_gso(skb))
649                         return taprio_enqueue_segmented(skb, sch, child,
650                                                         to_free);
651
652                 return qdisc_drop(skb, sch, to_free);
653         }
654
655         return taprio_enqueue_one(skb, sch, child, to_free);
656 }
657
658 static struct sk_buff *taprio_peek(struct Qdisc *sch)
659 {
660         WARN_ONCE(1, "taprio only supports operating as root qdisc, peek() not implemented");
661         return NULL;
662 }
663
664 static void taprio_set_budgets(struct taprio_sched *q,
665                                struct sched_gate_list *sched,
666                                struct sched_entry *entry)
667 {
668         struct net_device *dev = qdisc_dev(q->root);
669         int num_tc = netdev_get_num_tc(dev);
670         int tc, budget;
671
672         for (tc = 0; tc < num_tc; tc++) {
673                 /* Traffic classes which never close have infinite budget */
674                 if (entry->gate_duration[tc] == sched->cycle_time)
675                         budget = INT_MAX;
676                 else
677                         budget = div64_u64((u64)entry->gate_duration[tc] * PSEC_PER_NSEC,
678                                            atomic64_read(&q->picos_per_byte));
679
680                 atomic_set(&entry->budget[tc], budget);
681         }
682 }
683
684 /* When an skb is sent, it consumes from the budget of all traffic classes */
685 static int taprio_update_budgets(struct sched_entry *entry, size_t len,
686                                  int tc_consumed, int num_tc)
687 {
688         int tc, budget, new_budget = 0;
689
690         for (tc = 0; tc < num_tc; tc++) {
691                 budget = atomic_read(&entry->budget[tc]);
692                 /* Don't consume from infinite budget */
693                 if (budget == INT_MAX) {
694                         if (tc == tc_consumed)
695                                 new_budget = budget;
696                         continue;
697                 }
698
699                 if (tc == tc_consumed)
700                         new_budget = atomic_sub_return(len, &entry->budget[tc]);
701                 else
702                         atomic_sub(len, &entry->budget[tc]);
703         }
704
705         return new_budget;
706 }
707
708 static struct sk_buff *taprio_dequeue_from_txq(struct Qdisc *sch, int txq,
709                                                struct sched_entry *entry,
710                                                u32 gate_mask)
711 {
712         struct taprio_sched *q = qdisc_priv(sch);
713         struct net_device *dev = qdisc_dev(sch);
714         struct Qdisc *child = q->qdiscs[txq];
715         int num_tc = netdev_get_num_tc(dev);
716         struct sk_buff *skb;
717         ktime_t guard;
718         int prio;
719         int len;
720         u8 tc;
721
722         if (unlikely(!child))
723                 return NULL;
724
725         if (TXTIME_ASSIST_IS_ENABLED(q->flags))
726                 goto skip_peek_checks;
727
728         skb = child->ops->peek(child);
729         if (!skb)
730                 return NULL;
731
732         prio = skb->priority;
733         tc = netdev_get_prio_tc_map(dev, prio);
734
735         if (!(gate_mask & BIT(tc)))
736                 return NULL;
737
738         len = qdisc_pkt_len(skb);
739         guard = ktime_add_ns(taprio_get_time(q), length_to_duration(q, len));
740
741         /* In the case that there's no gate entry, there's no
742          * guard band ...
743          */
744         if (gate_mask != TAPRIO_ALL_GATES_OPEN &&
745             !taprio_entry_allows_tx(guard, entry, tc))
746                 return NULL;
747
748         /* ... and no budget. */
749         if (gate_mask != TAPRIO_ALL_GATES_OPEN &&
750             taprio_update_budgets(entry, len, tc, num_tc) < 0)
751                 return NULL;
752
753 skip_peek_checks:
754         skb = child->ops->dequeue(child);
755         if (unlikely(!skb))
756                 return NULL;
757
758         qdisc_bstats_update(sch, skb);
759         qdisc_qstats_backlog_dec(sch, skb);
760         sch->q.qlen--;
761
762         return skb;
763 }
764
765 static void taprio_next_tc_txq(struct net_device *dev, int tc, int *txq)
766 {
767         int offset = dev->tc_to_txq[tc].offset;
768         int count = dev->tc_to_txq[tc].count;
769
770         (*txq)++;
771         if (*txq == offset + count)
772                 *txq = offset;
773 }
774
775 /* Prioritize higher traffic classes, and select among TXQs belonging to the
776  * same TC using round robin
777  */
778 static struct sk_buff *taprio_dequeue_tc_priority(struct Qdisc *sch,
779                                                   struct sched_entry *entry,
780                                                   u32 gate_mask)
781 {
782         struct taprio_sched *q = qdisc_priv(sch);
783         struct net_device *dev = qdisc_dev(sch);
784         int num_tc = netdev_get_num_tc(dev);
785         struct sk_buff *skb;
786         int tc;
787
788         for (tc = num_tc - 1; tc >= 0; tc--) {
789                 int first_txq = q->cur_txq[tc];
790
791                 if (!(gate_mask & BIT(tc)))
792                         continue;
793
794                 do {
795                         skb = taprio_dequeue_from_txq(sch, q->cur_txq[tc],
796                                                       entry, gate_mask);
797
798                         taprio_next_tc_txq(dev, tc, &q->cur_txq[tc]);
799
800                         if (skb)
801                                 return skb;
802                 } while (q->cur_txq[tc] != first_txq);
803         }
804
805         return NULL;
806 }
807
808 /* Broken way of prioritizing smaller TXQ indices and ignoring the traffic
809  * class other than to determine whether the gate is open or not
810  */
811 static struct sk_buff *taprio_dequeue_txq_priority(struct Qdisc *sch,
812                                                    struct sched_entry *entry,
813                                                    u32 gate_mask)
814 {
815         struct net_device *dev = qdisc_dev(sch);
816         struct sk_buff *skb;
817         int i;
818
819         for (i = 0; i < dev->num_tx_queues; i++) {
820                 skb = taprio_dequeue_from_txq(sch, i, entry, gate_mask);
821                 if (skb)
822                         return skb;
823         }
824
825         return NULL;
826 }
827
828 /* Will not be called in the full offload case, since the TX queues are
829  * attached to the Qdisc created using qdisc_create_dflt()
830  */
831 static struct sk_buff *taprio_dequeue(struct Qdisc *sch)
832 {
833         struct taprio_sched *q = qdisc_priv(sch);
834         struct sk_buff *skb = NULL;
835         struct sched_entry *entry;
836         u32 gate_mask;
837
838         rcu_read_lock();
839         entry = rcu_dereference(q->current_entry);
840         /* if there's no entry, it means that the schedule didn't
841          * start yet, so force all gates to be open, this is in
842          * accordance to IEEE 802.1Qbv-2015 Section 8.6.9.4.5
843          * "AdminGateStates"
844          */
845         gate_mask = entry ? entry->gate_mask : TAPRIO_ALL_GATES_OPEN;
846         if (!gate_mask)
847                 goto done;
848
849         if (static_branch_unlikely(&taprio_have_broken_mqprio) &&
850             !static_branch_likely(&taprio_have_working_mqprio)) {
851                 /* Single NIC kind which is broken */
852                 skb = taprio_dequeue_txq_priority(sch, entry, gate_mask);
853         } else if (static_branch_likely(&taprio_have_working_mqprio) &&
854                    !static_branch_unlikely(&taprio_have_broken_mqprio)) {
855                 /* Single NIC kind which prioritizes properly */
856                 skb = taprio_dequeue_tc_priority(sch, entry, gate_mask);
857         } else {
858                 /* Mixed NIC kinds present in system, need dynamic testing */
859                 if (q->broken_mqprio)
860                         skb = taprio_dequeue_txq_priority(sch, entry, gate_mask);
861                 else
862                         skb = taprio_dequeue_tc_priority(sch, entry, gate_mask);
863         }
864
865 done:
866         rcu_read_unlock();
867
868         return skb;
869 }
870
871 static bool should_restart_cycle(const struct sched_gate_list *oper,
872                                  const struct sched_entry *entry)
873 {
874         if (list_is_last(&entry->list, &oper->entries))
875                 return true;
876
877         if (ktime_compare(entry->end_time, oper->cycle_end_time) == 0)
878                 return true;
879
880         return false;
881 }
882
883 static bool should_change_schedules(const struct sched_gate_list *admin,
884                                     const struct sched_gate_list *oper,
885                                     ktime_t end_time)
886 {
887         ktime_t next_base_time, extension_time;
888
889         if (!admin)
890                 return false;
891
892         next_base_time = sched_base_time(admin);
893
894         /* This is the simple case, the end_time would fall after
895          * the next schedule base_time.
896          */
897         if (ktime_compare(next_base_time, end_time) <= 0)
898                 return true;
899
900         /* This is the cycle_time_extension case, if the end_time
901          * plus the amount that can be extended would fall after the
902          * next schedule base_time, we can extend the current schedule
903          * for that amount.
904          */
905         extension_time = ktime_add_ns(end_time, oper->cycle_time_extension);
906
907         /* FIXME: the IEEE 802.1Q-2018 Specification isn't clear about
908          * how precisely the extension should be made. So after
909          * conformance testing, this logic may change.
910          */
911         if (ktime_compare(next_base_time, extension_time) <= 0)
912                 return true;
913
914         return false;
915 }
916
917 static enum hrtimer_restart advance_sched(struct hrtimer *timer)
918 {
919         struct taprio_sched *q = container_of(timer, struct taprio_sched,
920                                               advance_timer);
921         struct net_device *dev = qdisc_dev(q->root);
922         struct sched_gate_list *oper, *admin;
923         int num_tc = netdev_get_num_tc(dev);
924         struct sched_entry *entry, *next;
925         struct Qdisc *sch = q->root;
926         ktime_t end_time;
927         int tc;
928
929         spin_lock(&q->current_entry_lock);
930         entry = rcu_dereference_protected(q->current_entry,
931                                           lockdep_is_held(&q->current_entry_lock));
932         oper = rcu_dereference_protected(q->oper_sched,
933                                          lockdep_is_held(&q->current_entry_lock));
934         admin = rcu_dereference_protected(q->admin_sched,
935                                           lockdep_is_held(&q->current_entry_lock));
936
937         if (!oper)
938                 switch_schedules(q, &admin, &oper);
939
940         /* This can happen in two cases: 1. this is the very first run
941          * of this function (i.e. we weren't running any schedule
942          * previously); 2. The previous schedule just ended. The first
943          * entry of all schedules are pre-calculated during the
944          * schedule initialization.
945          */
946         if (unlikely(!entry || entry->end_time == oper->base_time)) {
947                 next = list_first_entry(&oper->entries, struct sched_entry,
948                                         list);
949                 end_time = next->end_time;
950                 goto first_run;
951         }
952
953         if (should_restart_cycle(oper, entry)) {
954                 next = list_first_entry(&oper->entries, struct sched_entry,
955                                         list);
956                 oper->cycle_end_time = ktime_add_ns(oper->cycle_end_time,
957                                                     oper->cycle_time);
958         } else {
959                 next = list_next_entry(entry, list);
960         }
961
962         end_time = ktime_add_ns(entry->end_time, next->interval);
963         end_time = min_t(ktime_t, end_time, oper->cycle_end_time);
964
965         for (tc = 0; tc < num_tc; tc++) {
966                 if (next->gate_duration[tc] == oper->cycle_time)
967                         next->gate_close_time[tc] = KTIME_MAX;
968                 else
969                         next->gate_close_time[tc] = ktime_add_ns(entry->end_time,
970                                                                  next->gate_duration[tc]);
971         }
972
973         if (should_change_schedules(admin, oper, end_time)) {
974                 /* Set things so the next time this runs, the new
975                  * schedule runs.
976                  */
977                 end_time = sched_base_time(admin);
978                 switch_schedules(q, &admin, &oper);
979         }
980
981         next->end_time = end_time;
982         taprio_set_budgets(q, oper, next);
983
984 first_run:
985         rcu_assign_pointer(q->current_entry, next);
986         spin_unlock(&q->current_entry_lock);
987
988         hrtimer_set_expires(&q->advance_timer, end_time);
989
990         rcu_read_lock();
991         __netif_schedule(sch);
992         rcu_read_unlock();
993
994         return HRTIMER_RESTART;
995 }
996
997 static const struct nla_policy entry_policy[TCA_TAPRIO_SCHED_ENTRY_MAX + 1] = {
998         [TCA_TAPRIO_SCHED_ENTRY_INDEX]     = { .type = NLA_U32 },
999         [TCA_TAPRIO_SCHED_ENTRY_CMD]       = { .type = NLA_U8 },
1000         [TCA_TAPRIO_SCHED_ENTRY_GATE_MASK] = { .type = NLA_U32 },
1001         [TCA_TAPRIO_SCHED_ENTRY_INTERVAL]  = { .type = NLA_U32 },
1002 };
1003
1004 static const struct nla_policy taprio_tc_policy[TCA_TAPRIO_TC_ENTRY_MAX + 1] = {
1005         [TCA_TAPRIO_TC_ENTRY_INDEX]        = { .type = NLA_U32 },
1006         [TCA_TAPRIO_TC_ENTRY_MAX_SDU]      = { .type = NLA_U32 },
1007         [TCA_TAPRIO_TC_ENTRY_FP]           = NLA_POLICY_RANGE(NLA_U32,
1008                                                               TC_FP_EXPRESS,
1009                                                               TC_FP_PREEMPTIBLE),
1010 };
1011
1012 static const struct nla_policy taprio_policy[TCA_TAPRIO_ATTR_MAX + 1] = {
1013         [TCA_TAPRIO_ATTR_PRIOMAP]              = {
1014                 .len = sizeof(struct tc_mqprio_qopt)
1015         },
1016         [TCA_TAPRIO_ATTR_SCHED_ENTRY_LIST]           = { .type = NLA_NESTED },
1017         [TCA_TAPRIO_ATTR_SCHED_BASE_TIME]            = { .type = NLA_S64 },
1018         [TCA_TAPRIO_ATTR_SCHED_SINGLE_ENTRY]         = { .type = NLA_NESTED },
1019         [TCA_TAPRIO_ATTR_SCHED_CLOCKID]              = { .type = NLA_S32 },
1020         [TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME]           = { .type = NLA_S64 },
1021         [TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME_EXTENSION] = { .type = NLA_S64 },
1022         [TCA_TAPRIO_ATTR_FLAGS]                      = { .type = NLA_U32 },
1023         [TCA_TAPRIO_ATTR_TXTIME_DELAY]               = { .type = NLA_U32 },
1024         [TCA_TAPRIO_ATTR_TC_ENTRY]                   = { .type = NLA_NESTED },
1025 };
1026
1027 static int fill_sched_entry(struct taprio_sched *q, struct nlattr **tb,
1028                             struct sched_entry *entry,
1029                             struct netlink_ext_ack *extack)
1030 {
1031         int min_duration = length_to_duration(q, ETH_ZLEN);
1032         u32 interval = 0;
1033
1034         if (tb[TCA_TAPRIO_SCHED_ENTRY_CMD])
1035                 entry->command = nla_get_u8(
1036                         tb[TCA_TAPRIO_SCHED_ENTRY_CMD]);
1037
1038         if (tb[TCA_TAPRIO_SCHED_ENTRY_GATE_MASK])
1039                 entry->gate_mask = nla_get_u32(
1040                         tb[TCA_TAPRIO_SCHED_ENTRY_GATE_MASK]);
1041
1042         if (tb[TCA_TAPRIO_SCHED_ENTRY_INTERVAL])
1043                 interval = nla_get_u32(
1044                         tb[TCA_TAPRIO_SCHED_ENTRY_INTERVAL]);
1045
1046         /* The interval should allow at least the minimum ethernet
1047          * frame to go out.
1048          */
1049         if (interval < min_duration) {
1050                 NL_SET_ERR_MSG(extack, "Invalid interval for schedule entry");
1051                 return -EINVAL;
1052         }
1053
1054         entry->interval = interval;
1055
1056         return 0;
1057 }
1058
1059 static int parse_sched_entry(struct taprio_sched *q, struct nlattr *n,
1060                              struct sched_entry *entry, int index,
1061                              struct netlink_ext_ack *extack)
1062 {
1063         struct nlattr *tb[TCA_TAPRIO_SCHED_ENTRY_MAX + 1] = { };
1064         int err;
1065
1066         err = nla_parse_nested_deprecated(tb, TCA_TAPRIO_SCHED_ENTRY_MAX, n,
1067                                           entry_policy, NULL);
1068         if (err < 0) {
1069                 NL_SET_ERR_MSG(extack, "Could not parse nested entry");
1070                 return -EINVAL;
1071         }
1072
1073         entry->index = index;
1074
1075         return fill_sched_entry(q, tb, entry, extack);
1076 }
1077
1078 static int parse_sched_list(struct taprio_sched *q, struct nlattr *list,
1079                             struct sched_gate_list *sched,
1080                             struct netlink_ext_ack *extack)
1081 {
1082         struct nlattr *n;
1083         int err, rem;
1084         int i = 0;
1085
1086         if (!list)
1087                 return -EINVAL;
1088
1089         nla_for_each_nested(n, list, rem) {
1090                 struct sched_entry *entry;
1091
1092                 if (nla_type(n) != TCA_TAPRIO_SCHED_ENTRY) {
1093                         NL_SET_ERR_MSG(extack, "Attribute is not of type 'entry'");
1094                         continue;
1095                 }
1096
1097                 entry = kzalloc(sizeof(*entry), GFP_KERNEL);
1098                 if (!entry) {
1099                         NL_SET_ERR_MSG(extack, "Not enough memory for entry");
1100                         return -ENOMEM;
1101                 }
1102
1103                 err = parse_sched_entry(q, n, entry, i, extack);
1104                 if (err < 0) {
1105                         kfree(entry);
1106                         return err;
1107                 }
1108
1109                 list_add_tail(&entry->list, &sched->entries);
1110                 i++;
1111         }
1112
1113         sched->num_entries = i;
1114
1115         return i;
1116 }
1117
1118 static int parse_taprio_schedule(struct taprio_sched *q, struct nlattr **tb,
1119                                  struct sched_gate_list *new,
1120                                  struct netlink_ext_ack *extack)
1121 {
1122         int err = 0;
1123
1124         if (tb[TCA_TAPRIO_ATTR_SCHED_SINGLE_ENTRY]) {
1125                 NL_SET_ERR_MSG(extack, "Adding a single entry is not supported");
1126                 return -ENOTSUPP;
1127         }
1128
1129         if (tb[TCA_TAPRIO_ATTR_SCHED_BASE_TIME])
1130                 new->base_time = nla_get_s64(tb[TCA_TAPRIO_ATTR_SCHED_BASE_TIME]);
1131
1132         if (tb[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME_EXTENSION])
1133                 new->cycle_time_extension = nla_get_s64(tb[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME_EXTENSION]);
1134
1135         if (tb[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME])
1136                 new->cycle_time = nla_get_s64(tb[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME]);
1137
1138         if (tb[TCA_TAPRIO_ATTR_SCHED_ENTRY_LIST])
1139                 err = parse_sched_list(q, tb[TCA_TAPRIO_ATTR_SCHED_ENTRY_LIST],
1140                                        new, extack);
1141         if (err < 0)
1142                 return err;
1143
1144         if (!new->cycle_time) {
1145                 struct sched_entry *entry;
1146                 ktime_t cycle = 0;
1147
1148                 list_for_each_entry(entry, &new->entries, list)
1149                         cycle = ktime_add_ns(cycle, entry->interval);
1150
1151                 if (!cycle) {
1152                         NL_SET_ERR_MSG(extack, "'cycle_time' can never be 0");
1153                         return -EINVAL;
1154                 }
1155
1156                 new->cycle_time = cycle;
1157         }
1158
1159         taprio_calculate_gate_durations(q, new);
1160
1161         return 0;
1162 }
1163
1164 static int taprio_parse_mqprio_opt(struct net_device *dev,
1165                                    struct tc_mqprio_qopt *qopt,
1166                                    struct netlink_ext_ack *extack,
1167                                    u32 taprio_flags)
1168 {
1169         bool allow_overlapping_txqs = TXTIME_ASSIST_IS_ENABLED(taprio_flags);
1170
1171         if (!qopt && !dev->num_tc) {
1172                 NL_SET_ERR_MSG(extack, "'mqprio' configuration is necessary");
1173                 return -EINVAL;
1174         }
1175
1176         /* If num_tc is already set, it means that the user already
1177          * configured the mqprio part
1178          */
1179         if (dev->num_tc)
1180                 return 0;
1181
1182         /* taprio imposes that traffic classes map 1:n to tx queues */
1183         if (qopt->num_tc > dev->num_tx_queues) {
1184                 NL_SET_ERR_MSG(extack, "Number of traffic classes is greater than number of HW queues");
1185                 return -EINVAL;
1186         }
1187
1188         /* For some reason, in txtime-assist mode, we allow TXQ ranges for
1189          * different TCs to overlap, and just validate the TXQ ranges.
1190          */
1191         return mqprio_validate_qopt(dev, qopt, true, allow_overlapping_txqs,
1192                                     extack);
1193 }
1194
1195 static int taprio_get_start_time(struct Qdisc *sch,
1196                                  struct sched_gate_list *sched,
1197                                  ktime_t *start)
1198 {
1199         struct taprio_sched *q = qdisc_priv(sch);
1200         ktime_t now, base, cycle;
1201         s64 n;
1202
1203         base = sched_base_time(sched);
1204         now = taprio_get_time(q);
1205
1206         if (ktime_after(base, now)) {
1207                 *start = base;
1208                 return 0;
1209         }
1210
1211         cycle = sched->cycle_time;
1212
1213         /* The qdisc is expected to have at least one sched_entry.  Moreover,
1214          * any entry must have 'interval' > 0. Thus if the cycle time is zero,
1215          * something went really wrong. In that case, we should warn about this
1216          * inconsistent state and return error.
1217          */
1218         if (WARN_ON(!cycle))
1219                 return -EFAULT;
1220
1221         /* Schedule the start time for the beginning of the next
1222          * cycle.
1223          */
1224         n = div64_s64(ktime_sub_ns(now, base), cycle);
1225         *start = ktime_add_ns(base, (n + 1) * cycle);
1226         return 0;
1227 }
1228
1229 static void setup_first_end_time(struct taprio_sched *q,
1230                                  struct sched_gate_list *sched, ktime_t base)
1231 {
1232         struct net_device *dev = qdisc_dev(q->root);
1233         int num_tc = netdev_get_num_tc(dev);
1234         struct sched_entry *first;
1235         ktime_t cycle;
1236         int tc;
1237
1238         first = list_first_entry(&sched->entries,
1239                                  struct sched_entry, list);
1240
1241         cycle = sched->cycle_time;
1242
1243         /* FIXME: find a better place to do this */
1244         sched->cycle_end_time = ktime_add_ns(base, cycle);
1245
1246         first->end_time = ktime_add_ns(base, first->interval);
1247         taprio_set_budgets(q, sched, first);
1248
1249         for (tc = 0; tc < num_tc; tc++) {
1250                 if (first->gate_duration[tc] == sched->cycle_time)
1251                         first->gate_close_time[tc] = KTIME_MAX;
1252                 else
1253                         first->gate_close_time[tc] = ktime_add_ns(base, first->gate_duration[tc]);
1254         }
1255
1256         rcu_assign_pointer(q->current_entry, NULL);
1257 }
1258
1259 static void taprio_start_sched(struct Qdisc *sch,
1260                                ktime_t start, struct sched_gate_list *new)
1261 {
1262         struct taprio_sched *q = qdisc_priv(sch);
1263         ktime_t expires;
1264
1265         if (FULL_OFFLOAD_IS_ENABLED(q->flags))
1266                 return;
1267
1268         expires = hrtimer_get_expires(&q->advance_timer);
1269         if (expires == 0)
1270                 expires = KTIME_MAX;
1271
1272         /* If the new schedule starts before the next expiration, we
1273          * reprogram it to the earliest one, so we change the admin
1274          * schedule to the operational one at the right time.
1275          */
1276         start = min_t(ktime_t, start, expires);
1277
1278         hrtimer_start(&q->advance_timer, start, HRTIMER_MODE_ABS);
1279 }
1280
1281 static void taprio_set_picos_per_byte(struct net_device *dev,
1282                                       struct taprio_sched *q)
1283 {
1284         struct ethtool_link_ksettings ecmd;
1285         int speed = SPEED_10;
1286         int picos_per_byte;
1287         int err;
1288
1289         err = __ethtool_get_link_ksettings(dev, &ecmd);
1290         if (err < 0)
1291                 goto skip;
1292
1293         if (ecmd.base.speed && ecmd.base.speed != SPEED_UNKNOWN)
1294                 speed = ecmd.base.speed;
1295
1296 skip:
1297         picos_per_byte = (USEC_PER_SEC * 8) / speed;
1298
1299         atomic64_set(&q->picos_per_byte, picos_per_byte);
1300         netdev_dbg(dev, "taprio: set %s's picos_per_byte to: %lld, linkspeed: %d\n",
1301                    dev->name, (long long)atomic64_read(&q->picos_per_byte),
1302                    ecmd.base.speed);
1303 }
1304
1305 static int taprio_dev_notifier(struct notifier_block *nb, unsigned long event,
1306                                void *ptr)
1307 {
1308         struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1309         struct sched_gate_list *oper, *admin;
1310         struct qdisc_size_table *stab;
1311         struct taprio_sched *q;
1312
1313         ASSERT_RTNL();
1314
1315         if (event != NETDEV_UP && event != NETDEV_CHANGE)
1316                 return NOTIFY_DONE;
1317
1318         list_for_each_entry(q, &taprio_list, taprio_list) {
1319                 if (dev != qdisc_dev(q->root))
1320                         continue;
1321
1322                 taprio_set_picos_per_byte(dev, q);
1323
1324                 stab = rtnl_dereference(q->root->stab);
1325
1326                 oper = rtnl_dereference(q->oper_sched);
1327                 if (oper)
1328                         taprio_update_queue_max_sdu(q, oper, stab);
1329
1330                 admin = rtnl_dereference(q->admin_sched);
1331                 if (admin)
1332                         taprio_update_queue_max_sdu(q, admin, stab);
1333
1334                 break;
1335         }
1336
1337         return NOTIFY_DONE;
1338 }
1339
1340 static void setup_txtime(struct taprio_sched *q,
1341                          struct sched_gate_list *sched, ktime_t base)
1342 {
1343         struct sched_entry *entry;
1344         u32 interval = 0;
1345
1346         list_for_each_entry(entry, &sched->entries, list) {
1347                 entry->next_txtime = ktime_add_ns(base, interval);
1348                 interval += entry->interval;
1349         }
1350 }
1351
1352 static struct tc_taprio_qopt_offload *taprio_offload_alloc(int num_entries)
1353 {
1354         struct __tc_taprio_qopt_offload *__offload;
1355
1356         __offload = kzalloc(struct_size(__offload, offload.entries, num_entries),
1357                             GFP_KERNEL);
1358         if (!__offload)
1359                 return NULL;
1360
1361         refcount_set(&__offload->users, 1);
1362
1363         return &__offload->offload;
1364 }
1365
1366 struct tc_taprio_qopt_offload *taprio_offload_get(struct tc_taprio_qopt_offload
1367                                                   *offload)
1368 {
1369         struct __tc_taprio_qopt_offload *__offload;
1370
1371         __offload = container_of(offload, struct __tc_taprio_qopt_offload,
1372                                  offload);
1373
1374         refcount_inc(&__offload->users);
1375
1376         return offload;
1377 }
1378 EXPORT_SYMBOL_GPL(taprio_offload_get);
1379
1380 void taprio_offload_free(struct tc_taprio_qopt_offload *offload)
1381 {
1382         struct __tc_taprio_qopt_offload *__offload;
1383
1384         __offload = container_of(offload, struct __tc_taprio_qopt_offload,
1385                                  offload);
1386
1387         if (!refcount_dec_and_test(&__offload->users))
1388                 return;
1389
1390         kfree(__offload);
1391 }
1392 EXPORT_SYMBOL_GPL(taprio_offload_free);
1393
1394 /* The function will only serve to keep the pointers to the "oper" and "admin"
1395  * schedules valid in relation to their base times, so when calling dump() the
1396  * users looks at the right schedules.
1397  * When using full offload, the admin configuration is promoted to oper at the
1398  * base_time in the PHC time domain.  But because the system time is not
1399  * necessarily in sync with that, we can't just trigger a hrtimer to call
1400  * switch_schedules at the right hardware time.
1401  * At the moment we call this by hand right away from taprio, but in the future
1402  * it will be useful to create a mechanism for drivers to notify taprio of the
1403  * offload state (PENDING, ACTIVE, INACTIVE) so it can be visible in dump().
1404  * This is left as TODO.
1405  */
1406 static void taprio_offload_config_changed(struct taprio_sched *q)
1407 {
1408         struct sched_gate_list *oper, *admin;
1409
1410         oper = rtnl_dereference(q->oper_sched);
1411         admin = rtnl_dereference(q->admin_sched);
1412
1413         switch_schedules(q, &admin, &oper);
1414 }
1415
1416 static u32 tc_map_to_queue_mask(struct net_device *dev, u32 tc_mask)
1417 {
1418         u32 i, queue_mask = 0;
1419
1420         for (i = 0; i < dev->num_tc; i++) {
1421                 u32 offset, count;
1422
1423                 if (!(tc_mask & BIT(i)))
1424                         continue;
1425
1426                 offset = dev->tc_to_txq[i].offset;
1427                 count = dev->tc_to_txq[i].count;
1428
1429                 queue_mask |= GENMASK(offset + count - 1, offset);
1430         }
1431
1432         return queue_mask;
1433 }
1434
1435 static void taprio_sched_to_offload(struct net_device *dev,
1436                                     struct sched_gate_list *sched,
1437                                     struct tc_taprio_qopt_offload *offload,
1438                                     const struct tc_taprio_caps *caps)
1439 {
1440         struct sched_entry *entry;
1441         int i = 0;
1442
1443         offload->base_time = sched->base_time;
1444         offload->cycle_time = sched->cycle_time;
1445         offload->cycle_time_extension = sched->cycle_time_extension;
1446
1447         list_for_each_entry(entry, &sched->entries, list) {
1448                 struct tc_taprio_sched_entry *e = &offload->entries[i];
1449
1450                 e->command = entry->command;
1451                 e->interval = entry->interval;
1452                 if (caps->gate_mask_per_txq)
1453                         e->gate_mask = tc_map_to_queue_mask(dev,
1454                                                             entry->gate_mask);
1455                 else
1456                         e->gate_mask = entry->gate_mask;
1457
1458                 i++;
1459         }
1460
1461         offload->num_entries = i;
1462 }
1463
1464 static void taprio_detect_broken_mqprio(struct taprio_sched *q)
1465 {
1466         struct net_device *dev = qdisc_dev(q->root);
1467         struct tc_taprio_caps caps;
1468
1469         qdisc_offload_query_caps(dev, TC_SETUP_QDISC_TAPRIO,
1470                                  &caps, sizeof(caps));
1471
1472         q->broken_mqprio = caps.broken_mqprio;
1473         if (q->broken_mqprio)
1474                 static_branch_inc(&taprio_have_broken_mqprio);
1475         else
1476                 static_branch_inc(&taprio_have_working_mqprio);
1477
1478         q->detected_mqprio = true;
1479 }
1480
1481 static void taprio_cleanup_broken_mqprio(struct taprio_sched *q)
1482 {
1483         if (!q->detected_mqprio)
1484                 return;
1485
1486         if (q->broken_mqprio)
1487                 static_branch_dec(&taprio_have_broken_mqprio);
1488         else
1489                 static_branch_dec(&taprio_have_working_mqprio);
1490 }
1491
1492 static int taprio_enable_offload(struct net_device *dev,
1493                                  struct taprio_sched *q,
1494                                  struct sched_gate_list *sched,
1495                                  struct netlink_ext_ack *extack)
1496 {
1497         const struct net_device_ops *ops = dev->netdev_ops;
1498         struct tc_taprio_qopt_offload *offload;
1499         struct tc_taprio_caps caps;
1500         int tc, err = 0;
1501
1502         if (!ops->ndo_setup_tc) {
1503                 NL_SET_ERR_MSG(extack,
1504                                "Device does not support taprio offload");
1505                 return -EOPNOTSUPP;
1506         }
1507
1508         qdisc_offload_query_caps(dev, TC_SETUP_QDISC_TAPRIO,
1509                                  &caps, sizeof(caps));
1510
1511         if (!caps.supports_queue_max_sdu) {
1512                 for (tc = 0; tc < TC_MAX_QUEUE; tc++) {
1513                         if (q->max_sdu[tc]) {
1514                                 NL_SET_ERR_MSG_MOD(extack,
1515                                                    "Device does not handle queueMaxSDU");
1516                                 return -EOPNOTSUPP;
1517                         }
1518                 }
1519         }
1520
1521         offload = taprio_offload_alloc(sched->num_entries);
1522         if (!offload) {
1523                 NL_SET_ERR_MSG(extack,
1524                                "Not enough memory for enabling offload mode");
1525                 return -ENOMEM;
1526         }
1527         offload->enable = 1;
1528         offload->extack = extack;
1529         mqprio_qopt_reconstruct(dev, &offload->mqprio.qopt);
1530         offload->mqprio.extack = extack;
1531         taprio_sched_to_offload(dev, sched, offload, &caps);
1532         mqprio_fp_to_offload(q->fp, &offload->mqprio);
1533
1534         for (tc = 0; tc < TC_MAX_QUEUE; tc++)
1535                 offload->max_sdu[tc] = q->max_sdu[tc];
1536
1537         err = ops->ndo_setup_tc(dev, TC_SETUP_QDISC_TAPRIO, offload);
1538         if (err < 0) {
1539                 NL_SET_ERR_MSG_WEAK(extack,
1540                                     "Device failed to setup taprio offload");
1541                 goto done;
1542         }
1543
1544         q->offloaded = true;
1545
1546 done:
1547         /* The offload structure may linger around via a reference taken by the
1548          * device driver, so clear up the netlink extack pointer so that the
1549          * driver isn't tempted to dereference data which stopped being valid
1550          */
1551         offload->extack = NULL;
1552         offload->mqprio.extack = NULL;
1553         taprio_offload_free(offload);
1554
1555         return err;
1556 }
1557
1558 static int taprio_disable_offload(struct net_device *dev,
1559                                   struct taprio_sched *q,
1560                                   struct netlink_ext_ack *extack)
1561 {
1562         const struct net_device_ops *ops = dev->netdev_ops;
1563         struct tc_taprio_qopt_offload *offload;
1564         int err;
1565
1566         if (!q->offloaded)
1567                 return 0;
1568
1569         offload = taprio_offload_alloc(0);
1570         if (!offload) {
1571                 NL_SET_ERR_MSG(extack,
1572                                "Not enough memory to disable offload mode");
1573                 return -ENOMEM;
1574         }
1575         offload->enable = 0;
1576
1577         err = ops->ndo_setup_tc(dev, TC_SETUP_QDISC_TAPRIO, offload);
1578         if (err < 0) {
1579                 NL_SET_ERR_MSG(extack,
1580                                "Device failed to disable offload");
1581                 goto out;
1582         }
1583
1584         q->offloaded = false;
1585
1586 out:
1587         taprio_offload_free(offload);
1588
1589         return err;
1590 }
1591
1592 /* If full offload is enabled, the only possible clockid is the net device's
1593  * PHC. For that reason, specifying a clockid through netlink is incorrect.
1594  * For txtime-assist, it is implicitly assumed that the device's PHC is kept
1595  * in sync with the specified clockid via a user space daemon such as phc2sys.
1596  * For both software taprio and txtime-assist, the clockid is used for the
1597  * hrtimer that advances the schedule and hence mandatory.
1598  */
1599 static int taprio_parse_clockid(struct Qdisc *sch, struct nlattr **tb,
1600                                 struct netlink_ext_ack *extack)
1601 {
1602         struct taprio_sched *q = qdisc_priv(sch);
1603         struct net_device *dev = qdisc_dev(sch);
1604         int err = -EINVAL;
1605
1606         if (FULL_OFFLOAD_IS_ENABLED(q->flags)) {
1607                 const struct ethtool_ops *ops = dev->ethtool_ops;
1608                 struct ethtool_ts_info info = {
1609                         .cmd = ETHTOOL_GET_TS_INFO,
1610                         .phc_index = -1,
1611                 };
1612
1613                 if (tb[TCA_TAPRIO_ATTR_SCHED_CLOCKID]) {
1614                         NL_SET_ERR_MSG(extack,
1615                                        "The 'clockid' cannot be specified for full offload");
1616                         goto out;
1617                 }
1618
1619                 if (ops && ops->get_ts_info)
1620                         err = ops->get_ts_info(dev, &info);
1621
1622                 if (err || info.phc_index < 0) {
1623                         NL_SET_ERR_MSG(extack,
1624                                        "Device does not have a PTP clock");
1625                         err = -ENOTSUPP;
1626                         goto out;
1627                 }
1628         } else if (tb[TCA_TAPRIO_ATTR_SCHED_CLOCKID]) {
1629                 int clockid = nla_get_s32(tb[TCA_TAPRIO_ATTR_SCHED_CLOCKID]);
1630                 enum tk_offsets tk_offset;
1631
1632                 /* We only support static clockids and we don't allow
1633                  * for it to be modified after the first init.
1634                  */
1635                 if (clockid < 0 ||
1636                     (q->clockid != -1 && q->clockid != clockid)) {
1637                         NL_SET_ERR_MSG(extack,
1638                                        "Changing the 'clockid' of a running schedule is not supported");
1639                         err = -ENOTSUPP;
1640                         goto out;
1641                 }
1642
1643                 switch (clockid) {
1644                 case CLOCK_REALTIME:
1645                         tk_offset = TK_OFFS_REAL;
1646                         break;
1647                 case CLOCK_MONOTONIC:
1648                         tk_offset = TK_OFFS_MAX;
1649                         break;
1650                 case CLOCK_BOOTTIME:
1651                         tk_offset = TK_OFFS_BOOT;
1652                         break;
1653                 case CLOCK_TAI:
1654                         tk_offset = TK_OFFS_TAI;
1655                         break;
1656                 default:
1657                         NL_SET_ERR_MSG(extack, "Invalid 'clockid'");
1658                         err = -EINVAL;
1659                         goto out;
1660                 }
1661                 /* This pairs with READ_ONCE() in taprio_mono_to_any */
1662                 WRITE_ONCE(q->tk_offset, tk_offset);
1663
1664                 q->clockid = clockid;
1665         } else {
1666                 NL_SET_ERR_MSG(extack, "Specifying a 'clockid' is mandatory");
1667                 goto out;
1668         }
1669
1670         /* Everything went ok, return success. */
1671         err = 0;
1672
1673 out:
1674         return err;
1675 }
1676
1677 static int taprio_parse_tc_entry(struct Qdisc *sch,
1678                                  struct nlattr *opt,
1679                                  u32 max_sdu[TC_QOPT_MAX_QUEUE],
1680                                  u32 fp[TC_QOPT_MAX_QUEUE],
1681                                  unsigned long *seen_tcs,
1682                                  struct netlink_ext_ack *extack)
1683 {
1684         struct nlattr *tb[TCA_TAPRIO_TC_ENTRY_MAX + 1] = { };
1685         struct net_device *dev = qdisc_dev(sch);
1686         int err, tc;
1687         u32 val;
1688
1689         err = nla_parse_nested(tb, TCA_TAPRIO_TC_ENTRY_MAX, opt,
1690                                taprio_tc_policy, extack);
1691         if (err < 0)
1692                 return err;
1693
1694         if (!tb[TCA_TAPRIO_TC_ENTRY_INDEX]) {
1695                 NL_SET_ERR_MSG_MOD(extack, "TC entry index missing");
1696                 return -EINVAL;
1697         }
1698
1699         tc = nla_get_u32(tb[TCA_TAPRIO_TC_ENTRY_INDEX]);
1700         if (tc >= TC_QOPT_MAX_QUEUE) {
1701                 NL_SET_ERR_MSG_MOD(extack, "TC entry index out of range");
1702                 return -ERANGE;
1703         }
1704
1705         if (*seen_tcs & BIT(tc)) {
1706                 NL_SET_ERR_MSG_MOD(extack, "Duplicate TC entry");
1707                 return -EINVAL;
1708         }
1709
1710         *seen_tcs |= BIT(tc);
1711
1712         if (tb[TCA_TAPRIO_TC_ENTRY_MAX_SDU]) {
1713                 val = nla_get_u32(tb[TCA_TAPRIO_TC_ENTRY_MAX_SDU]);
1714                 if (val > dev->max_mtu) {
1715                         NL_SET_ERR_MSG_MOD(extack, "TC max SDU exceeds device max MTU");
1716                         return -ERANGE;
1717                 }
1718
1719                 max_sdu[tc] = val;
1720         }
1721
1722         if (tb[TCA_TAPRIO_TC_ENTRY_FP])
1723                 fp[tc] = nla_get_u32(tb[TCA_TAPRIO_TC_ENTRY_FP]);
1724
1725         return 0;
1726 }
1727
1728 static int taprio_parse_tc_entries(struct Qdisc *sch,
1729                                    struct nlattr *opt,
1730                                    struct netlink_ext_ack *extack)
1731 {
1732         struct taprio_sched *q = qdisc_priv(sch);
1733         struct net_device *dev = qdisc_dev(sch);
1734         u32 max_sdu[TC_QOPT_MAX_QUEUE];
1735         bool have_preemption = false;
1736         unsigned long seen_tcs = 0;
1737         u32 fp[TC_QOPT_MAX_QUEUE];
1738         struct nlattr *n;
1739         int tc, rem;
1740         int err = 0;
1741
1742         for (tc = 0; tc < TC_QOPT_MAX_QUEUE; tc++) {
1743                 max_sdu[tc] = q->max_sdu[tc];
1744                 fp[tc] = q->fp[tc];
1745         }
1746
1747         nla_for_each_nested(n, opt, rem) {
1748                 if (nla_type(n) != TCA_TAPRIO_ATTR_TC_ENTRY)
1749                         continue;
1750
1751                 err = taprio_parse_tc_entry(sch, n, max_sdu, fp, &seen_tcs,
1752                                             extack);
1753                 if (err)
1754                         return err;
1755         }
1756
1757         for (tc = 0; tc < TC_QOPT_MAX_QUEUE; tc++) {
1758                 q->max_sdu[tc] = max_sdu[tc];
1759                 q->fp[tc] = fp[tc];
1760                 if (fp[tc] != TC_FP_EXPRESS)
1761                         have_preemption = true;
1762         }
1763
1764         if (have_preemption) {
1765                 if (!FULL_OFFLOAD_IS_ENABLED(q->flags)) {
1766                         NL_SET_ERR_MSG(extack,
1767                                        "Preemption only supported with full offload");
1768                         return -EOPNOTSUPP;
1769                 }
1770
1771                 if (!ethtool_dev_mm_supported(dev)) {
1772                         NL_SET_ERR_MSG(extack,
1773                                        "Device does not support preemption");
1774                         return -EOPNOTSUPP;
1775                 }
1776         }
1777
1778         return err;
1779 }
1780
1781 static int taprio_mqprio_cmp(const struct net_device *dev,
1782                              const struct tc_mqprio_qopt *mqprio)
1783 {
1784         int i;
1785
1786         if (!mqprio || mqprio->num_tc != dev->num_tc)
1787                 return -1;
1788
1789         for (i = 0; i < mqprio->num_tc; i++)
1790                 if (dev->tc_to_txq[i].count != mqprio->count[i] ||
1791                     dev->tc_to_txq[i].offset != mqprio->offset[i])
1792                         return -1;
1793
1794         for (i = 0; i <= TC_BITMASK; i++)
1795                 if (dev->prio_tc_map[i] != mqprio->prio_tc_map[i])
1796                         return -1;
1797
1798         return 0;
1799 }
1800
1801 /* The semantics of the 'flags' argument in relation to 'change()'
1802  * requests, are interpreted following two rules (which are applied in
1803  * this order): (1) an omitted 'flags' argument is interpreted as
1804  * zero; (2) the 'flags' of a "running" taprio instance cannot be
1805  * changed.
1806  */
1807 static int taprio_new_flags(const struct nlattr *attr, u32 old,
1808                             struct netlink_ext_ack *extack)
1809 {
1810         u32 new = 0;
1811
1812         if (attr)
1813                 new = nla_get_u32(attr);
1814
1815         if (old != TAPRIO_FLAGS_INVALID && old != new) {
1816                 NL_SET_ERR_MSG_MOD(extack, "Changing 'flags' of a running schedule is not supported");
1817                 return -EOPNOTSUPP;
1818         }
1819
1820         if (!taprio_flags_valid(new)) {
1821                 NL_SET_ERR_MSG_MOD(extack, "Specified 'flags' are not valid");
1822                 return -EINVAL;
1823         }
1824
1825         return new;
1826 }
1827
1828 static int taprio_change(struct Qdisc *sch, struct nlattr *opt,
1829                          struct netlink_ext_ack *extack)
1830 {
1831         struct qdisc_size_table *stab = rtnl_dereference(sch->stab);
1832         struct nlattr *tb[TCA_TAPRIO_ATTR_MAX + 1] = { };
1833         struct sched_gate_list *oper, *admin, *new_admin;
1834         struct taprio_sched *q = qdisc_priv(sch);
1835         struct net_device *dev = qdisc_dev(sch);
1836         struct tc_mqprio_qopt *mqprio = NULL;
1837         unsigned long flags;
1838         ktime_t start;
1839         int i, err;
1840
1841         err = nla_parse_nested_deprecated(tb, TCA_TAPRIO_ATTR_MAX, opt,
1842                                           taprio_policy, extack);
1843         if (err < 0)
1844                 return err;
1845
1846         if (tb[TCA_TAPRIO_ATTR_PRIOMAP])
1847                 mqprio = nla_data(tb[TCA_TAPRIO_ATTR_PRIOMAP]);
1848
1849         err = taprio_new_flags(tb[TCA_TAPRIO_ATTR_FLAGS],
1850                                q->flags, extack);
1851         if (err < 0)
1852                 return err;
1853
1854         q->flags = err;
1855
1856         err = taprio_parse_mqprio_opt(dev, mqprio, extack, q->flags);
1857         if (err < 0)
1858                 return err;
1859
1860         err = taprio_parse_tc_entries(sch, opt, extack);
1861         if (err)
1862                 return err;
1863
1864         new_admin = kzalloc(sizeof(*new_admin), GFP_KERNEL);
1865         if (!new_admin) {
1866                 NL_SET_ERR_MSG(extack, "Not enough memory for a new schedule");
1867                 return -ENOMEM;
1868         }
1869         INIT_LIST_HEAD(&new_admin->entries);
1870
1871         oper = rtnl_dereference(q->oper_sched);
1872         admin = rtnl_dereference(q->admin_sched);
1873
1874         /* no changes - no new mqprio settings */
1875         if (!taprio_mqprio_cmp(dev, mqprio))
1876                 mqprio = NULL;
1877
1878         if (mqprio && (oper || admin)) {
1879                 NL_SET_ERR_MSG(extack, "Changing the traffic mapping of a running schedule is not supported");
1880                 err = -ENOTSUPP;
1881                 goto free_sched;
1882         }
1883
1884         if (mqprio) {
1885                 err = netdev_set_num_tc(dev, mqprio->num_tc);
1886                 if (err)
1887                         goto free_sched;
1888                 for (i = 0; i < mqprio->num_tc; i++) {
1889                         netdev_set_tc_queue(dev, i,
1890                                             mqprio->count[i],
1891                                             mqprio->offset[i]);
1892                         q->cur_txq[i] = mqprio->offset[i];
1893                 }
1894
1895                 /* Always use supplied priority mappings */
1896                 for (i = 0; i <= TC_BITMASK; i++)
1897                         netdev_set_prio_tc_map(dev, i,
1898                                                mqprio->prio_tc_map[i]);
1899         }
1900
1901         err = parse_taprio_schedule(q, tb, new_admin, extack);
1902         if (err < 0)
1903                 goto free_sched;
1904
1905         if (new_admin->num_entries == 0) {
1906                 NL_SET_ERR_MSG(extack, "There should be at least one entry in the schedule");
1907                 err = -EINVAL;
1908                 goto free_sched;
1909         }
1910
1911         err = taprio_parse_clockid(sch, tb, extack);
1912         if (err < 0)
1913                 goto free_sched;
1914
1915         taprio_set_picos_per_byte(dev, q);
1916         taprio_update_queue_max_sdu(q, new_admin, stab);
1917
1918         if (FULL_OFFLOAD_IS_ENABLED(q->flags))
1919                 err = taprio_enable_offload(dev, q, new_admin, extack);
1920         else
1921                 err = taprio_disable_offload(dev, q, extack);
1922         if (err)
1923                 goto free_sched;
1924
1925         /* Protects against enqueue()/dequeue() */
1926         spin_lock_bh(qdisc_lock(sch));
1927
1928         if (tb[TCA_TAPRIO_ATTR_TXTIME_DELAY]) {
1929                 if (!TXTIME_ASSIST_IS_ENABLED(q->flags)) {
1930                         NL_SET_ERR_MSG_MOD(extack, "txtime-delay can only be set when txtime-assist mode is enabled");
1931                         err = -EINVAL;
1932                         goto unlock;
1933                 }
1934
1935                 q->txtime_delay = nla_get_u32(tb[TCA_TAPRIO_ATTR_TXTIME_DELAY]);
1936         }
1937
1938         if (!TXTIME_ASSIST_IS_ENABLED(q->flags) &&
1939             !FULL_OFFLOAD_IS_ENABLED(q->flags) &&
1940             !hrtimer_active(&q->advance_timer)) {
1941                 hrtimer_init(&q->advance_timer, q->clockid, HRTIMER_MODE_ABS);
1942                 q->advance_timer.function = advance_sched;
1943         }
1944
1945         err = taprio_get_start_time(sch, new_admin, &start);
1946         if (err < 0) {
1947                 NL_SET_ERR_MSG(extack, "Internal error: failed get start time");
1948                 goto unlock;
1949         }
1950
1951         setup_txtime(q, new_admin, start);
1952
1953         if (TXTIME_ASSIST_IS_ENABLED(q->flags)) {
1954                 if (!oper) {
1955                         rcu_assign_pointer(q->oper_sched, new_admin);
1956                         err = 0;
1957                         new_admin = NULL;
1958                         goto unlock;
1959                 }
1960
1961                 rcu_assign_pointer(q->admin_sched, new_admin);
1962                 if (admin)
1963                         call_rcu(&admin->rcu, taprio_free_sched_cb);
1964         } else {
1965                 setup_first_end_time(q, new_admin, start);
1966
1967                 /* Protects against advance_sched() */
1968                 spin_lock_irqsave(&q->current_entry_lock, flags);
1969
1970                 taprio_start_sched(sch, start, new_admin);
1971
1972                 rcu_assign_pointer(q->admin_sched, new_admin);
1973                 if (admin)
1974                         call_rcu(&admin->rcu, taprio_free_sched_cb);
1975
1976                 spin_unlock_irqrestore(&q->current_entry_lock, flags);
1977
1978                 if (FULL_OFFLOAD_IS_ENABLED(q->flags))
1979                         taprio_offload_config_changed(q);
1980         }
1981
1982         new_admin = NULL;
1983         err = 0;
1984
1985         if (!stab)
1986                 NL_SET_ERR_MSG_MOD(extack,
1987                                    "Size table not specified, frame length estimations may be inaccurate");
1988
1989 unlock:
1990         spin_unlock_bh(qdisc_lock(sch));
1991
1992 free_sched:
1993         if (new_admin)
1994                 call_rcu(&new_admin->rcu, taprio_free_sched_cb);
1995
1996         return err;
1997 }
1998
1999 static void taprio_reset(struct Qdisc *sch)
2000 {
2001         struct taprio_sched *q = qdisc_priv(sch);
2002         struct net_device *dev = qdisc_dev(sch);
2003         int i;
2004
2005         hrtimer_cancel(&q->advance_timer);
2006
2007         if (q->qdiscs) {
2008                 for (i = 0; i < dev->num_tx_queues; i++)
2009                         if (q->qdiscs[i])
2010                                 qdisc_reset(q->qdiscs[i]);
2011         }
2012 }
2013
2014 static void taprio_destroy(struct Qdisc *sch)
2015 {
2016         struct taprio_sched *q = qdisc_priv(sch);
2017         struct net_device *dev = qdisc_dev(sch);
2018         struct sched_gate_list *oper, *admin;
2019         unsigned int i;
2020
2021         list_del(&q->taprio_list);
2022
2023         /* Note that taprio_reset() might not be called if an error
2024          * happens in qdisc_create(), after taprio_init() has been called.
2025          */
2026         hrtimer_cancel(&q->advance_timer);
2027         qdisc_synchronize(sch);
2028
2029         taprio_disable_offload(dev, q, NULL);
2030
2031         if (q->qdiscs) {
2032                 for (i = 0; i < dev->num_tx_queues; i++)
2033                         qdisc_put(q->qdiscs[i]);
2034
2035                 kfree(q->qdiscs);
2036         }
2037         q->qdiscs = NULL;
2038
2039         netdev_reset_tc(dev);
2040
2041         oper = rtnl_dereference(q->oper_sched);
2042         admin = rtnl_dereference(q->admin_sched);
2043
2044         if (oper)
2045                 call_rcu(&oper->rcu, taprio_free_sched_cb);
2046
2047         if (admin)
2048                 call_rcu(&admin->rcu, taprio_free_sched_cb);
2049
2050         taprio_cleanup_broken_mqprio(q);
2051 }
2052
2053 static int taprio_init(struct Qdisc *sch, struct nlattr *opt,
2054                        struct netlink_ext_ack *extack)
2055 {
2056         struct taprio_sched *q = qdisc_priv(sch);
2057         struct net_device *dev = qdisc_dev(sch);
2058         int i, tc;
2059
2060         spin_lock_init(&q->current_entry_lock);
2061
2062         hrtimer_init(&q->advance_timer, CLOCK_TAI, HRTIMER_MODE_ABS);
2063         q->advance_timer.function = advance_sched;
2064
2065         q->root = sch;
2066
2067         /* We only support static clockids. Use an invalid value as default
2068          * and get the valid one on taprio_change().
2069          */
2070         q->clockid = -1;
2071         q->flags = TAPRIO_FLAGS_INVALID;
2072
2073         list_add(&q->taprio_list, &taprio_list);
2074
2075         if (sch->parent != TC_H_ROOT) {
2076                 NL_SET_ERR_MSG_MOD(extack, "Can only be attached as root qdisc");
2077                 return -EOPNOTSUPP;
2078         }
2079
2080         if (!netif_is_multiqueue(dev)) {
2081                 NL_SET_ERR_MSG_MOD(extack, "Multi-queue device is required");
2082                 return -EOPNOTSUPP;
2083         }
2084
2085         /* pre-allocate qdisc, attachment can't fail */
2086         q->qdiscs = kcalloc(dev->num_tx_queues,
2087                             sizeof(q->qdiscs[0]),
2088                             GFP_KERNEL);
2089
2090         if (!q->qdiscs)
2091                 return -ENOMEM;
2092
2093         if (!opt)
2094                 return -EINVAL;
2095
2096         for (i = 0; i < dev->num_tx_queues; i++) {
2097                 struct netdev_queue *dev_queue;
2098                 struct Qdisc *qdisc;
2099
2100                 dev_queue = netdev_get_tx_queue(dev, i);
2101                 qdisc = qdisc_create_dflt(dev_queue,
2102                                           &pfifo_qdisc_ops,
2103                                           TC_H_MAKE(TC_H_MAJ(sch->handle),
2104                                                     TC_H_MIN(i + 1)),
2105                                           extack);
2106                 if (!qdisc)
2107                         return -ENOMEM;
2108
2109                 if (i < dev->real_num_tx_queues)
2110                         qdisc_hash_add(qdisc, false);
2111
2112                 q->qdiscs[i] = qdisc;
2113         }
2114
2115         for (tc = 0; tc < TC_QOPT_MAX_QUEUE; tc++)
2116                 q->fp[tc] = TC_FP_EXPRESS;
2117
2118         taprio_detect_broken_mqprio(q);
2119
2120         return taprio_change(sch, opt, extack);
2121 }
2122
2123 static void taprio_attach(struct Qdisc *sch)
2124 {
2125         struct taprio_sched *q = qdisc_priv(sch);
2126         struct net_device *dev = qdisc_dev(sch);
2127         unsigned int ntx;
2128
2129         /* Attach underlying qdisc */
2130         for (ntx = 0; ntx < dev->num_tx_queues; ntx++) {
2131                 struct Qdisc *qdisc = q->qdiscs[ntx];
2132                 struct Qdisc *old;
2133
2134                 if (FULL_OFFLOAD_IS_ENABLED(q->flags)) {
2135                         qdisc->flags |= TCQ_F_ONETXQUEUE | TCQ_F_NOPARENT;
2136                         old = dev_graft_qdisc(qdisc->dev_queue, qdisc);
2137                 } else {
2138                         old = dev_graft_qdisc(qdisc->dev_queue, sch);
2139                         qdisc_refcount_inc(sch);
2140                 }
2141                 if (old)
2142                         qdisc_put(old);
2143         }
2144
2145         /* access to the child qdiscs is not needed in offload mode */
2146         if (FULL_OFFLOAD_IS_ENABLED(q->flags)) {
2147                 kfree(q->qdiscs);
2148                 q->qdiscs = NULL;
2149         }
2150 }
2151
2152 static struct netdev_queue *taprio_queue_get(struct Qdisc *sch,
2153                                              unsigned long cl)
2154 {
2155         struct net_device *dev = qdisc_dev(sch);
2156         unsigned long ntx = cl - 1;
2157
2158         if (ntx >= dev->num_tx_queues)
2159                 return NULL;
2160
2161         return netdev_get_tx_queue(dev, ntx);
2162 }
2163
2164 static int taprio_graft(struct Qdisc *sch, unsigned long cl,
2165                         struct Qdisc *new, struct Qdisc **old,
2166                         struct netlink_ext_ack *extack)
2167 {
2168         struct taprio_sched *q = qdisc_priv(sch);
2169         struct net_device *dev = qdisc_dev(sch);
2170         struct netdev_queue *dev_queue = taprio_queue_get(sch, cl);
2171
2172         if (!dev_queue)
2173                 return -EINVAL;
2174
2175         if (dev->flags & IFF_UP)
2176                 dev_deactivate(dev);
2177
2178         if (FULL_OFFLOAD_IS_ENABLED(q->flags)) {
2179                 *old = dev_graft_qdisc(dev_queue, new);
2180         } else {
2181                 *old = q->qdiscs[cl - 1];
2182                 q->qdiscs[cl - 1] = new;
2183         }
2184
2185         if (new)
2186                 new->flags |= TCQ_F_ONETXQUEUE | TCQ_F_NOPARENT;
2187
2188         if (dev->flags & IFF_UP)
2189                 dev_activate(dev);
2190
2191         return 0;
2192 }
2193
2194 static int dump_entry(struct sk_buff *msg,
2195                       const struct sched_entry *entry)
2196 {
2197         struct nlattr *item;
2198
2199         item = nla_nest_start_noflag(msg, TCA_TAPRIO_SCHED_ENTRY);
2200         if (!item)
2201                 return -ENOSPC;
2202
2203         if (nla_put_u32(msg, TCA_TAPRIO_SCHED_ENTRY_INDEX, entry->index))
2204                 goto nla_put_failure;
2205
2206         if (nla_put_u8(msg, TCA_TAPRIO_SCHED_ENTRY_CMD, entry->command))
2207                 goto nla_put_failure;
2208
2209         if (nla_put_u32(msg, TCA_TAPRIO_SCHED_ENTRY_GATE_MASK,
2210                         entry->gate_mask))
2211                 goto nla_put_failure;
2212
2213         if (nla_put_u32(msg, TCA_TAPRIO_SCHED_ENTRY_INTERVAL,
2214                         entry->interval))
2215                 goto nla_put_failure;
2216
2217         return nla_nest_end(msg, item);
2218
2219 nla_put_failure:
2220         nla_nest_cancel(msg, item);
2221         return -1;
2222 }
2223
2224 static int dump_schedule(struct sk_buff *msg,
2225                          const struct sched_gate_list *root)
2226 {
2227         struct nlattr *entry_list;
2228         struct sched_entry *entry;
2229
2230         if (nla_put_s64(msg, TCA_TAPRIO_ATTR_SCHED_BASE_TIME,
2231                         root->base_time, TCA_TAPRIO_PAD))
2232                 return -1;
2233
2234         if (nla_put_s64(msg, TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME,
2235                         root->cycle_time, TCA_TAPRIO_PAD))
2236                 return -1;
2237
2238         if (nla_put_s64(msg, TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME_EXTENSION,
2239                         root->cycle_time_extension, TCA_TAPRIO_PAD))
2240                 return -1;
2241
2242         entry_list = nla_nest_start_noflag(msg,
2243                                            TCA_TAPRIO_ATTR_SCHED_ENTRY_LIST);
2244         if (!entry_list)
2245                 goto error_nest;
2246
2247         list_for_each_entry(entry, &root->entries, list) {
2248                 if (dump_entry(msg, entry) < 0)
2249                         goto error_nest;
2250         }
2251
2252         nla_nest_end(msg, entry_list);
2253         return 0;
2254
2255 error_nest:
2256         nla_nest_cancel(msg, entry_list);
2257         return -1;
2258 }
2259
2260 static int taprio_dump_tc_entries(struct sk_buff *skb,
2261                                   struct taprio_sched *q,
2262                                   struct sched_gate_list *sched)
2263 {
2264         struct nlattr *n;
2265         int tc;
2266
2267         for (tc = 0; tc < TC_MAX_QUEUE; tc++) {
2268                 n = nla_nest_start(skb, TCA_TAPRIO_ATTR_TC_ENTRY);
2269                 if (!n)
2270                         return -EMSGSIZE;
2271
2272                 if (nla_put_u32(skb, TCA_TAPRIO_TC_ENTRY_INDEX, tc))
2273                         goto nla_put_failure;
2274
2275                 if (nla_put_u32(skb, TCA_TAPRIO_TC_ENTRY_MAX_SDU,
2276                                 sched->max_sdu[tc]))
2277                         goto nla_put_failure;
2278
2279                 if (nla_put_u32(skb, TCA_TAPRIO_TC_ENTRY_FP, q->fp[tc]))
2280                         goto nla_put_failure;
2281
2282                 nla_nest_end(skb, n);
2283         }
2284
2285         return 0;
2286
2287 nla_put_failure:
2288         nla_nest_cancel(skb, n);
2289         return -EMSGSIZE;
2290 }
2291
2292 static int taprio_dump(struct Qdisc *sch, struct sk_buff *skb)
2293 {
2294         struct taprio_sched *q = qdisc_priv(sch);
2295         struct net_device *dev = qdisc_dev(sch);
2296         struct sched_gate_list *oper, *admin;
2297         struct tc_mqprio_qopt opt = { 0 };
2298         struct nlattr *nest, *sched_nest;
2299
2300         oper = rtnl_dereference(q->oper_sched);
2301         admin = rtnl_dereference(q->admin_sched);
2302
2303         mqprio_qopt_reconstruct(dev, &opt);
2304
2305         nest = nla_nest_start_noflag(skb, TCA_OPTIONS);
2306         if (!nest)
2307                 goto start_error;
2308
2309         if (nla_put(skb, TCA_TAPRIO_ATTR_PRIOMAP, sizeof(opt), &opt))
2310                 goto options_error;
2311
2312         if (!FULL_OFFLOAD_IS_ENABLED(q->flags) &&
2313             nla_put_s32(skb, TCA_TAPRIO_ATTR_SCHED_CLOCKID, q->clockid))
2314                 goto options_error;
2315
2316         if (q->flags && nla_put_u32(skb, TCA_TAPRIO_ATTR_FLAGS, q->flags))
2317                 goto options_error;
2318
2319         if (q->txtime_delay &&
2320             nla_put_u32(skb, TCA_TAPRIO_ATTR_TXTIME_DELAY, q->txtime_delay))
2321                 goto options_error;
2322
2323         if (oper && taprio_dump_tc_entries(skb, q, oper))
2324                 goto options_error;
2325
2326         if (oper && dump_schedule(skb, oper))
2327                 goto options_error;
2328
2329         if (!admin)
2330                 goto done;
2331
2332         sched_nest = nla_nest_start_noflag(skb, TCA_TAPRIO_ATTR_ADMIN_SCHED);
2333         if (!sched_nest)
2334                 goto options_error;
2335
2336         if (dump_schedule(skb, admin))
2337                 goto admin_error;
2338
2339         nla_nest_end(skb, sched_nest);
2340
2341 done:
2342         return nla_nest_end(skb, nest);
2343
2344 admin_error:
2345         nla_nest_cancel(skb, sched_nest);
2346
2347 options_error:
2348         nla_nest_cancel(skb, nest);
2349
2350 start_error:
2351         return -ENOSPC;
2352 }
2353
2354 static struct Qdisc *taprio_leaf(struct Qdisc *sch, unsigned long cl)
2355 {
2356         struct netdev_queue *dev_queue = taprio_queue_get(sch, cl);
2357
2358         if (!dev_queue)
2359                 return NULL;
2360
2361         return rtnl_dereference(dev_queue->qdisc_sleeping);
2362 }
2363
2364 static unsigned long taprio_find(struct Qdisc *sch, u32 classid)
2365 {
2366         unsigned int ntx = TC_H_MIN(classid);
2367
2368         if (!taprio_queue_get(sch, ntx))
2369                 return 0;
2370         return ntx;
2371 }
2372
2373 static int taprio_dump_class(struct Qdisc *sch, unsigned long cl,
2374                              struct sk_buff *skb, struct tcmsg *tcm)
2375 {
2376         struct netdev_queue *dev_queue = taprio_queue_get(sch, cl);
2377
2378         tcm->tcm_parent = TC_H_ROOT;
2379         tcm->tcm_handle |= TC_H_MIN(cl);
2380         tcm->tcm_info = rtnl_dereference(dev_queue->qdisc_sleeping)->handle;
2381
2382         return 0;
2383 }
2384
2385 static int taprio_dump_class_stats(struct Qdisc *sch, unsigned long cl,
2386                                    struct gnet_dump *d)
2387         __releases(d->lock)
2388         __acquires(d->lock)
2389 {
2390         struct netdev_queue *dev_queue = taprio_queue_get(sch, cl);
2391
2392         sch = rtnl_dereference(dev_queue->qdisc_sleeping);
2393         if (gnet_stats_copy_basic(d, NULL, &sch->bstats, true) < 0 ||
2394             qdisc_qstats_copy(d, sch) < 0)
2395                 return -1;
2396         return 0;
2397 }
2398
2399 static void taprio_walk(struct Qdisc *sch, struct qdisc_walker *arg)
2400 {
2401         struct net_device *dev = qdisc_dev(sch);
2402         unsigned long ntx;
2403
2404         if (arg->stop)
2405                 return;
2406
2407         arg->count = arg->skip;
2408         for (ntx = arg->skip; ntx < dev->num_tx_queues; ntx++) {
2409                 if (!tc_qdisc_stats_dump(sch, ntx + 1, arg))
2410                         break;
2411         }
2412 }
2413
2414 static struct netdev_queue *taprio_select_queue(struct Qdisc *sch,
2415                                                 struct tcmsg *tcm)
2416 {
2417         return taprio_queue_get(sch, TC_H_MIN(tcm->tcm_parent));
2418 }
2419
2420 static const struct Qdisc_class_ops taprio_class_ops = {
2421         .graft          = taprio_graft,
2422         .leaf           = taprio_leaf,
2423         .find           = taprio_find,
2424         .walk           = taprio_walk,
2425         .dump           = taprio_dump_class,
2426         .dump_stats     = taprio_dump_class_stats,
2427         .select_queue   = taprio_select_queue,
2428 };
2429
2430 static struct Qdisc_ops taprio_qdisc_ops __read_mostly = {
2431         .cl_ops         = &taprio_class_ops,
2432         .id             = "taprio",
2433         .priv_size      = sizeof(struct taprio_sched),
2434         .init           = taprio_init,
2435         .change         = taprio_change,
2436         .destroy        = taprio_destroy,
2437         .reset          = taprio_reset,
2438         .attach         = taprio_attach,
2439         .peek           = taprio_peek,
2440         .dequeue        = taprio_dequeue,
2441         .enqueue        = taprio_enqueue,
2442         .dump           = taprio_dump,
2443         .owner          = THIS_MODULE,
2444 };
2445
2446 static struct notifier_block taprio_device_notifier = {
2447         .notifier_call = taprio_dev_notifier,
2448 };
2449
2450 static int __init taprio_module_init(void)
2451 {
2452         int err = register_netdevice_notifier(&taprio_device_notifier);
2453
2454         if (err)
2455                 return err;
2456
2457         return register_qdisc(&taprio_qdisc_ops);
2458 }
2459
2460 static void __exit taprio_module_exit(void)
2461 {
2462         unregister_qdisc(&taprio_qdisc_ops);
2463         unregister_netdevice_notifier(&taprio_device_notifier);
2464 }
2465
2466 module_init(taprio_module_init);
2467 module_exit(taprio_module_exit);
2468 MODULE_LICENSE("GPL");