OSDN Git Service

Merge tag 'scsi-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/jejb/scsi
[tomoyo/tomoyo-test1.git] / net / sunrpc / cache.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * net/sunrpc/cache.c
4  *
5  * Generic code for various authentication-related caches
6  * used by sunrpc clients and servers.
7  *
8  * Copyright (C) 2002 Neil Brown <neilb@cse.unsw.edu.au>
9  */
10
11 #include <linux/types.h>
12 #include <linux/fs.h>
13 #include <linux/file.h>
14 #include <linux/slab.h>
15 #include <linux/signal.h>
16 #include <linux/sched.h>
17 #include <linux/kmod.h>
18 #include <linux/list.h>
19 #include <linux/module.h>
20 #include <linux/ctype.h>
21 #include <linux/string_helpers.h>
22 #include <linux/uaccess.h>
23 #include <linux/poll.h>
24 #include <linux/seq_file.h>
25 #include <linux/proc_fs.h>
26 #include <linux/net.h>
27 #include <linux/workqueue.h>
28 #include <linux/mutex.h>
29 #include <linux/pagemap.h>
30 #include <asm/ioctls.h>
31 #include <linux/sunrpc/types.h>
32 #include <linux/sunrpc/cache.h>
33 #include <linux/sunrpc/stats.h>
34 #include <linux/sunrpc/rpc_pipe_fs.h>
35 #include <trace/events/sunrpc.h>
36 #include "netns.h"
37
38 #define  RPCDBG_FACILITY RPCDBG_CACHE
39
40 static bool cache_defer_req(struct cache_req *req, struct cache_head *item);
41 static void cache_revisit_request(struct cache_head *item);
42
43 static void cache_init(struct cache_head *h, struct cache_detail *detail)
44 {
45         time64_t now = seconds_since_boot();
46         INIT_HLIST_NODE(&h->cache_list);
47         h->flags = 0;
48         kref_init(&h->ref);
49         h->expiry_time = now + CACHE_NEW_EXPIRY;
50         if (now <= detail->flush_time)
51                 /* ensure it isn't already expired */
52                 now = detail->flush_time + 1;
53         h->last_refresh = now;
54 }
55
56 static void cache_fresh_unlocked(struct cache_head *head,
57                                 struct cache_detail *detail);
58
59 static struct cache_head *sunrpc_cache_find_rcu(struct cache_detail *detail,
60                                                 struct cache_head *key,
61                                                 int hash)
62 {
63         struct hlist_head *head = &detail->hash_table[hash];
64         struct cache_head *tmp;
65
66         rcu_read_lock();
67         hlist_for_each_entry_rcu(tmp, head, cache_list) {
68                 if (!detail->match(tmp, key))
69                         continue;
70                 if (test_bit(CACHE_VALID, &tmp->flags) &&
71                     cache_is_expired(detail, tmp))
72                         continue;
73                 tmp = cache_get_rcu(tmp);
74                 rcu_read_unlock();
75                 return tmp;
76         }
77         rcu_read_unlock();
78         return NULL;
79 }
80
81 static void sunrpc_begin_cache_remove_entry(struct cache_head *ch,
82                                             struct cache_detail *cd)
83 {
84         /* Must be called under cd->hash_lock */
85         hlist_del_init_rcu(&ch->cache_list);
86         set_bit(CACHE_CLEANED, &ch->flags);
87         cd->entries --;
88 }
89
90 static void sunrpc_end_cache_remove_entry(struct cache_head *ch,
91                                           struct cache_detail *cd)
92 {
93         cache_fresh_unlocked(ch, cd);
94         cache_put(ch, cd);
95 }
96
97 static struct cache_head *sunrpc_cache_add_entry(struct cache_detail *detail,
98                                                  struct cache_head *key,
99                                                  int hash)
100 {
101         struct cache_head *new, *tmp, *freeme = NULL;
102         struct hlist_head *head = &detail->hash_table[hash];
103
104         new = detail->alloc();
105         if (!new)
106                 return NULL;
107         /* must fully initialise 'new', else
108          * we might get lose if we need to
109          * cache_put it soon.
110          */
111         cache_init(new, detail);
112         detail->init(new, key);
113
114         spin_lock(&detail->hash_lock);
115
116         /* check if entry appeared while we slept */
117         hlist_for_each_entry_rcu(tmp, head, cache_list,
118                                  lockdep_is_held(&detail->hash_lock)) {
119                 if (!detail->match(tmp, key))
120                         continue;
121                 if (test_bit(CACHE_VALID, &tmp->flags) &&
122                     cache_is_expired(detail, tmp)) {
123                         sunrpc_begin_cache_remove_entry(tmp, detail);
124                         trace_cache_entry_expired(detail, tmp);
125                         freeme = tmp;
126                         break;
127                 }
128                 cache_get(tmp);
129                 spin_unlock(&detail->hash_lock);
130                 cache_put(new, detail);
131                 return tmp;
132         }
133
134         hlist_add_head_rcu(&new->cache_list, head);
135         detail->entries++;
136         cache_get(new);
137         spin_unlock(&detail->hash_lock);
138
139         if (freeme)
140                 sunrpc_end_cache_remove_entry(freeme, detail);
141         return new;
142 }
143
144 struct cache_head *sunrpc_cache_lookup_rcu(struct cache_detail *detail,
145                                            struct cache_head *key, int hash)
146 {
147         struct cache_head *ret;
148
149         ret = sunrpc_cache_find_rcu(detail, key, hash);
150         if (ret)
151                 return ret;
152         /* Didn't find anything, insert an empty entry */
153         return sunrpc_cache_add_entry(detail, key, hash);
154 }
155 EXPORT_SYMBOL_GPL(sunrpc_cache_lookup_rcu);
156
157 static void cache_dequeue(struct cache_detail *detail, struct cache_head *ch);
158
159 static void cache_fresh_locked(struct cache_head *head, time64_t expiry,
160                                struct cache_detail *detail)
161 {
162         time64_t now = seconds_since_boot();
163         if (now <= detail->flush_time)
164                 /* ensure it isn't immediately treated as expired */
165                 now = detail->flush_time + 1;
166         head->expiry_time = expiry;
167         head->last_refresh = now;
168         smp_wmb(); /* paired with smp_rmb() in cache_is_valid() */
169         set_bit(CACHE_VALID, &head->flags);
170 }
171
172 static void cache_fresh_unlocked(struct cache_head *head,
173                                  struct cache_detail *detail)
174 {
175         if (test_and_clear_bit(CACHE_PENDING, &head->flags)) {
176                 cache_revisit_request(head);
177                 cache_dequeue(detail, head);
178         }
179 }
180
181 static void cache_make_negative(struct cache_detail *detail,
182                                 struct cache_head *h)
183 {
184         set_bit(CACHE_NEGATIVE, &h->flags);
185         trace_cache_entry_make_negative(detail, h);
186 }
187
188 static void cache_entry_update(struct cache_detail *detail,
189                                struct cache_head *h,
190                                struct cache_head *new)
191 {
192         if (!test_bit(CACHE_NEGATIVE, &new->flags)) {
193                 detail->update(h, new);
194                 trace_cache_entry_update(detail, h);
195         } else {
196                 cache_make_negative(detail, h);
197         }
198 }
199
200 struct cache_head *sunrpc_cache_update(struct cache_detail *detail,
201                                        struct cache_head *new, struct cache_head *old, int hash)
202 {
203         /* The 'old' entry is to be replaced by 'new'.
204          * If 'old' is not VALID, we update it directly,
205          * otherwise we need to replace it
206          */
207         struct cache_head *tmp;
208
209         if (!test_bit(CACHE_VALID, &old->flags)) {
210                 spin_lock(&detail->hash_lock);
211                 if (!test_bit(CACHE_VALID, &old->flags)) {
212                         cache_entry_update(detail, old, new);
213                         cache_fresh_locked(old, new->expiry_time, detail);
214                         spin_unlock(&detail->hash_lock);
215                         cache_fresh_unlocked(old, detail);
216                         return old;
217                 }
218                 spin_unlock(&detail->hash_lock);
219         }
220         /* We need to insert a new entry */
221         tmp = detail->alloc();
222         if (!tmp) {
223                 cache_put(old, detail);
224                 return NULL;
225         }
226         cache_init(tmp, detail);
227         detail->init(tmp, old);
228
229         spin_lock(&detail->hash_lock);
230         cache_entry_update(detail, tmp, new);
231         hlist_add_head(&tmp->cache_list, &detail->hash_table[hash]);
232         detail->entries++;
233         cache_get(tmp);
234         cache_fresh_locked(tmp, new->expiry_time, detail);
235         cache_fresh_locked(old, 0, detail);
236         spin_unlock(&detail->hash_lock);
237         cache_fresh_unlocked(tmp, detail);
238         cache_fresh_unlocked(old, detail);
239         cache_put(old, detail);
240         return tmp;
241 }
242 EXPORT_SYMBOL_GPL(sunrpc_cache_update);
243
244 static inline int cache_is_valid(struct cache_head *h)
245 {
246         if (!test_bit(CACHE_VALID, &h->flags))
247                 return -EAGAIN;
248         else {
249                 /* entry is valid */
250                 if (test_bit(CACHE_NEGATIVE, &h->flags))
251                         return -ENOENT;
252                 else {
253                         /*
254                          * In combination with write barrier in
255                          * sunrpc_cache_update, ensures that anyone
256                          * using the cache entry after this sees the
257                          * updated contents:
258                          */
259                         smp_rmb();
260                         return 0;
261                 }
262         }
263 }
264
265 static int try_to_negate_entry(struct cache_detail *detail, struct cache_head *h)
266 {
267         int rv;
268
269         spin_lock(&detail->hash_lock);
270         rv = cache_is_valid(h);
271         if (rv == -EAGAIN) {
272                 cache_make_negative(detail, h);
273                 cache_fresh_locked(h, seconds_since_boot()+CACHE_NEW_EXPIRY,
274                                    detail);
275                 rv = -ENOENT;
276         }
277         spin_unlock(&detail->hash_lock);
278         cache_fresh_unlocked(h, detail);
279         return rv;
280 }
281
282 /*
283  * This is the generic cache management routine for all
284  * the authentication caches.
285  * It checks the currency of a cache item and will (later)
286  * initiate an upcall to fill it if needed.
287  *
288  *
289  * Returns 0 if the cache_head can be used, or cache_puts it and returns
290  * -EAGAIN if upcall is pending and request has been queued
291  * -ETIMEDOUT if upcall failed or request could not be queue or
292  *           upcall completed but item is still invalid (implying that
293  *           the cache item has been replaced with a newer one).
294  * -ENOENT if cache entry was negative
295  */
296 int cache_check(struct cache_detail *detail,
297                     struct cache_head *h, struct cache_req *rqstp)
298 {
299         int rv;
300         time64_t refresh_age, age;
301
302         /* First decide return status as best we can */
303         rv = cache_is_valid(h);
304
305         /* now see if we want to start an upcall */
306         refresh_age = (h->expiry_time - h->last_refresh);
307         age = seconds_since_boot() - h->last_refresh;
308
309         if (rqstp == NULL) {
310                 if (rv == -EAGAIN)
311                         rv = -ENOENT;
312         } else if (rv == -EAGAIN ||
313                    (h->expiry_time != 0 && age > refresh_age/2)) {
314                 dprintk("RPC:       Want update, refage=%lld, age=%lld\n",
315                                 refresh_age, age);
316                 switch (detail->cache_upcall(detail, h)) {
317                 case -EINVAL:
318                         rv = try_to_negate_entry(detail, h);
319                         break;
320                 case -EAGAIN:
321                         cache_fresh_unlocked(h, detail);
322                         break;
323                 }
324         }
325
326         if (rv == -EAGAIN) {
327                 if (!cache_defer_req(rqstp, h)) {
328                         /*
329                          * Request was not deferred; handle it as best
330                          * we can ourselves:
331                          */
332                         rv = cache_is_valid(h);
333                         if (rv == -EAGAIN)
334                                 rv = -ETIMEDOUT;
335                 }
336         }
337         if (rv)
338                 cache_put(h, detail);
339         return rv;
340 }
341 EXPORT_SYMBOL_GPL(cache_check);
342
343 /*
344  * caches need to be periodically cleaned.
345  * For this we maintain a list of cache_detail and
346  * a current pointer into that list and into the table
347  * for that entry.
348  *
349  * Each time cache_clean is called it finds the next non-empty entry
350  * in the current table and walks the list in that entry
351  * looking for entries that can be removed.
352  *
353  * An entry gets removed if:
354  * - The expiry is before current time
355  * - The last_refresh time is before the flush_time for that cache
356  *
357  * later we might drop old entries with non-NEVER expiry if that table
358  * is getting 'full' for some definition of 'full'
359  *
360  * The question of "how often to scan a table" is an interesting one
361  * and is answered in part by the use of the "nextcheck" field in the
362  * cache_detail.
363  * When a scan of a table begins, the nextcheck field is set to a time
364  * that is well into the future.
365  * While scanning, if an expiry time is found that is earlier than the
366  * current nextcheck time, nextcheck is set to that expiry time.
367  * If the flush_time is ever set to a time earlier than the nextcheck
368  * time, the nextcheck time is then set to that flush_time.
369  *
370  * A table is then only scanned if the current time is at least
371  * the nextcheck time.
372  *
373  */
374
375 static LIST_HEAD(cache_list);
376 static DEFINE_SPINLOCK(cache_list_lock);
377 static struct cache_detail *current_detail;
378 static int current_index;
379
380 static void do_cache_clean(struct work_struct *work);
381 static struct delayed_work cache_cleaner;
382
383 void sunrpc_init_cache_detail(struct cache_detail *cd)
384 {
385         spin_lock_init(&cd->hash_lock);
386         INIT_LIST_HEAD(&cd->queue);
387         spin_lock(&cache_list_lock);
388         cd->nextcheck = 0;
389         cd->entries = 0;
390         atomic_set(&cd->writers, 0);
391         cd->last_close = 0;
392         cd->last_warn = -1;
393         list_add(&cd->others, &cache_list);
394         spin_unlock(&cache_list_lock);
395
396         /* start the cleaning process */
397         queue_delayed_work(system_power_efficient_wq, &cache_cleaner, 0);
398 }
399 EXPORT_SYMBOL_GPL(sunrpc_init_cache_detail);
400
401 void sunrpc_destroy_cache_detail(struct cache_detail *cd)
402 {
403         cache_purge(cd);
404         spin_lock(&cache_list_lock);
405         spin_lock(&cd->hash_lock);
406         if (current_detail == cd)
407                 current_detail = NULL;
408         list_del_init(&cd->others);
409         spin_unlock(&cd->hash_lock);
410         spin_unlock(&cache_list_lock);
411         if (list_empty(&cache_list)) {
412                 /* module must be being unloaded so its safe to kill the worker */
413                 cancel_delayed_work_sync(&cache_cleaner);
414         }
415 }
416 EXPORT_SYMBOL_GPL(sunrpc_destroy_cache_detail);
417
418 /* clean cache tries to find something to clean
419  * and cleans it.
420  * It returns 1 if it cleaned something,
421  *            0 if it didn't find anything this time
422  *           -1 if it fell off the end of the list.
423  */
424 static int cache_clean(void)
425 {
426         int rv = 0;
427         struct list_head *next;
428
429         spin_lock(&cache_list_lock);
430
431         /* find a suitable table if we don't already have one */
432         while (current_detail == NULL ||
433             current_index >= current_detail->hash_size) {
434                 if (current_detail)
435                         next = current_detail->others.next;
436                 else
437                         next = cache_list.next;
438                 if (next == &cache_list) {
439                         current_detail = NULL;
440                         spin_unlock(&cache_list_lock);
441                         return -1;
442                 }
443                 current_detail = list_entry(next, struct cache_detail, others);
444                 if (current_detail->nextcheck > seconds_since_boot())
445                         current_index = current_detail->hash_size;
446                 else {
447                         current_index = 0;
448                         current_detail->nextcheck = seconds_since_boot()+30*60;
449                 }
450         }
451
452         /* find a non-empty bucket in the table */
453         while (current_detail &&
454                current_index < current_detail->hash_size &&
455                hlist_empty(&current_detail->hash_table[current_index]))
456                 current_index++;
457
458         /* find a cleanable entry in the bucket and clean it, or set to next bucket */
459
460         if (current_detail && current_index < current_detail->hash_size) {
461                 struct cache_head *ch = NULL;
462                 struct cache_detail *d;
463                 struct hlist_head *head;
464                 struct hlist_node *tmp;
465
466                 spin_lock(&current_detail->hash_lock);
467
468                 /* Ok, now to clean this strand */
469
470                 head = &current_detail->hash_table[current_index];
471                 hlist_for_each_entry_safe(ch, tmp, head, cache_list) {
472                         if (current_detail->nextcheck > ch->expiry_time)
473                                 current_detail->nextcheck = ch->expiry_time+1;
474                         if (!cache_is_expired(current_detail, ch))
475                                 continue;
476
477                         sunrpc_begin_cache_remove_entry(ch, current_detail);
478                         trace_cache_entry_expired(current_detail, ch);
479                         rv = 1;
480                         break;
481                 }
482
483                 spin_unlock(&current_detail->hash_lock);
484                 d = current_detail;
485                 if (!ch)
486                         current_index ++;
487                 spin_unlock(&cache_list_lock);
488                 if (ch)
489                         sunrpc_end_cache_remove_entry(ch, d);
490         } else
491                 spin_unlock(&cache_list_lock);
492
493         return rv;
494 }
495
496 /*
497  * We want to regularly clean the cache, so we need to schedule some work ...
498  */
499 static void do_cache_clean(struct work_struct *work)
500 {
501         int delay = 5;
502         if (cache_clean() == -1)
503                 delay = round_jiffies_relative(30*HZ);
504
505         if (list_empty(&cache_list))
506                 delay = 0;
507
508         if (delay)
509                 queue_delayed_work(system_power_efficient_wq,
510                                    &cache_cleaner, delay);
511 }
512
513
514 /*
515  * Clean all caches promptly.  This just calls cache_clean
516  * repeatedly until we are sure that every cache has had a chance to
517  * be fully cleaned
518  */
519 void cache_flush(void)
520 {
521         while (cache_clean() != -1)
522                 cond_resched();
523         while (cache_clean() != -1)
524                 cond_resched();
525 }
526 EXPORT_SYMBOL_GPL(cache_flush);
527
528 void cache_purge(struct cache_detail *detail)
529 {
530         struct cache_head *ch = NULL;
531         struct hlist_head *head = NULL;
532         int i = 0;
533
534         spin_lock(&detail->hash_lock);
535         if (!detail->entries) {
536                 spin_unlock(&detail->hash_lock);
537                 return;
538         }
539
540         dprintk("RPC: %d entries in %s cache\n", detail->entries, detail->name);
541         for (i = 0; i < detail->hash_size; i++) {
542                 head = &detail->hash_table[i];
543                 while (!hlist_empty(head)) {
544                         ch = hlist_entry(head->first, struct cache_head,
545                                          cache_list);
546                         sunrpc_begin_cache_remove_entry(ch, detail);
547                         spin_unlock(&detail->hash_lock);
548                         sunrpc_end_cache_remove_entry(ch, detail);
549                         spin_lock(&detail->hash_lock);
550                 }
551         }
552         spin_unlock(&detail->hash_lock);
553 }
554 EXPORT_SYMBOL_GPL(cache_purge);
555
556
557 /*
558  * Deferral and Revisiting of Requests.
559  *
560  * If a cache lookup finds a pending entry, we
561  * need to defer the request and revisit it later.
562  * All deferred requests are stored in a hash table,
563  * indexed by "struct cache_head *".
564  * As it may be wasteful to store a whole request
565  * structure, we allow the request to provide a
566  * deferred form, which must contain a
567  * 'struct cache_deferred_req'
568  * This cache_deferred_req contains a method to allow
569  * it to be revisited when cache info is available
570  */
571
572 #define DFR_HASHSIZE    (PAGE_SIZE/sizeof(struct list_head))
573 #define DFR_HASH(item)  ((((long)item)>>4 ^ (((long)item)>>13)) % DFR_HASHSIZE)
574
575 #define DFR_MAX 300     /* ??? */
576
577 static DEFINE_SPINLOCK(cache_defer_lock);
578 static LIST_HEAD(cache_defer_list);
579 static struct hlist_head cache_defer_hash[DFR_HASHSIZE];
580 static int cache_defer_cnt;
581
582 static void __unhash_deferred_req(struct cache_deferred_req *dreq)
583 {
584         hlist_del_init(&dreq->hash);
585         if (!list_empty(&dreq->recent)) {
586                 list_del_init(&dreq->recent);
587                 cache_defer_cnt--;
588         }
589 }
590
591 static void __hash_deferred_req(struct cache_deferred_req *dreq, struct cache_head *item)
592 {
593         int hash = DFR_HASH(item);
594
595         INIT_LIST_HEAD(&dreq->recent);
596         hlist_add_head(&dreq->hash, &cache_defer_hash[hash]);
597 }
598
599 static void setup_deferral(struct cache_deferred_req *dreq,
600                            struct cache_head *item,
601                            int count_me)
602 {
603
604         dreq->item = item;
605
606         spin_lock(&cache_defer_lock);
607
608         __hash_deferred_req(dreq, item);
609
610         if (count_me) {
611                 cache_defer_cnt++;
612                 list_add(&dreq->recent, &cache_defer_list);
613         }
614
615         spin_unlock(&cache_defer_lock);
616
617 }
618
619 struct thread_deferred_req {
620         struct cache_deferred_req handle;
621         struct completion completion;
622 };
623
624 static void cache_restart_thread(struct cache_deferred_req *dreq, int too_many)
625 {
626         struct thread_deferred_req *dr =
627                 container_of(dreq, struct thread_deferred_req, handle);
628         complete(&dr->completion);
629 }
630
631 static void cache_wait_req(struct cache_req *req, struct cache_head *item)
632 {
633         struct thread_deferred_req sleeper;
634         struct cache_deferred_req *dreq = &sleeper.handle;
635
636         sleeper.completion = COMPLETION_INITIALIZER_ONSTACK(sleeper.completion);
637         dreq->revisit = cache_restart_thread;
638
639         setup_deferral(dreq, item, 0);
640
641         if (!test_bit(CACHE_PENDING, &item->flags) ||
642             wait_for_completion_interruptible_timeout(
643                     &sleeper.completion, req->thread_wait) <= 0) {
644                 /* The completion wasn't completed, so we need
645                  * to clean up
646                  */
647                 spin_lock(&cache_defer_lock);
648                 if (!hlist_unhashed(&sleeper.handle.hash)) {
649                         __unhash_deferred_req(&sleeper.handle);
650                         spin_unlock(&cache_defer_lock);
651                 } else {
652                         /* cache_revisit_request already removed
653                          * this from the hash table, but hasn't
654                          * called ->revisit yet.  It will very soon
655                          * and we need to wait for it.
656                          */
657                         spin_unlock(&cache_defer_lock);
658                         wait_for_completion(&sleeper.completion);
659                 }
660         }
661 }
662
663 static void cache_limit_defers(void)
664 {
665         /* Make sure we haven't exceed the limit of allowed deferred
666          * requests.
667          */
668         struct cache_deferred_req *discard = NULL;
669
670         if (cache_defer_cnt <= DFR_MAX)
671                 return;
672
673         spin_lock(&cache_defer_lock);
674
675         /* Consider removing either the first or the last */
676         if (cache_defer_cnt > DFR_MAX) {
677                 if (prandom_u32() & 1)
678                         discard = list_entry(cache_defer_list.next,
679                                              struct cache_deferred_req, recent);
680                 else
681                         discard = list_entry(cache_defer_list.prev,
682                                              struct cache_deferred_req, recent);
683                 __unhash_deferred_req(discard);
684         }
685         spin_unlock(&cache_defer_lock);
686         if (discard)
687                 discard->revisit(discard, 1);
688 }
689
690 /* Return true if and only if a deferred request is queued. */
691 static bool cache_defer_req(struct cache_req *req, struct cache_head *item)
692 {
693         struct cache_deferred_req *dreq;
694
695         if (req->thread_wait) {
696                 cache_wait_req(req, item);
697                 if (!test_bit(CACHE_PENDING, &item->flags))
698                         return false;
699         }
700         dreq = req->defer(req);
701         if (dreq == NULL)
702                 return false;
703         setup_deferral(dreq, item, 1);
704         if (!test_bit(CACHE_PENDING, &item->flags))
705                 /* Bit could have been cleared before we managed to
706                  * set up the deferral, so need to revisit just in case
707                  */
708                 cache_revisit_request(item);
709
710         cache_limit_defers();
711         return true;
712 }
713
714 static void cache_revisit_request(struct cache_head *item)
715 {
716         struct cache_deferred_req *dreq;
717         struct list_head pending;
718         struct hlist_node *tmp;
719         int hash = DFR_HASH(item);
720
721         INIT_LIST_HEAD(&pending);
722         spin_lock(&cache_defer_lock);
723
724         hlist_for_each_entry_safe(dreq, tmp, &cache_defer_hash[hash], hash)
725                 if (dreq->item == item) {
726                         __unhash_deferred_req(dreq);
727                         list_add(&dreq->recent, &pending);
728                 }
729
730         spin_unlock(&cache_defer_lock);
731
732         while (!list_empty(&pending)) {
733                 dreq = list_entry(pending.next, struct cache_deferred_req, recent);
734                 list_del_init(&dreq->recent);
735                 dreq->revisit(dreq, 0);
736         }
737 }
738
739 void cache_clean_deferred(void *owner)
740 {
741         struct cache_deferred_req *dreq, *tmp;
742         struct list_head pending;
743
744
745         INIT_LIST_HEAD(&pending);
746         spin_lock(&cache_defer_lock);
747
748         list_for_each_entry_safe(dreq, tmp, &cache_defer_list, recent) {
749                 if (dreq->owner == owner) {
750                         __unhash_deferred_req(dreq);
751                         list_add(&dreq->recent, &pending);
752                 }
753         }
754         spin_unlock(&cache_defer_lock);
755
756         while (!list_empty(&pending)) {
757                 dreq = list_entry(pending.next, struct cache_deferred_req, recent);
758                 list_del_init(&dreq->recent);
759                 dreq->revisit(dreq, 1);
760         }
761 }
762
763 /*
764  * communicate with user-space
765  *
766  * We have a magic /proc file - /proc/net/rpc/<cachename>/channel.
767  * On read, you get a full request, or block.
768  * On write, an update request is processed.
769  * Poll works if anything to read, and always allows write.
770  *
771  * Implemented by linked list of requests.  Each open file has
772  * a ->private that also exists in this list.  New requests are added
773  * to the end and may wakeup and preceding readers.
774  * New readers are added to the head.  If, on read, an item is found with
775  * CACHE_UPCALLING clear, we free it from the list.
776  *
777  */
778
779 static DEFINE_SPINLOCK(queue_lock);
780 static DEFINE_MUTEX(queue_io_mutex);
781
782 struct cache_queue {
783         struct list_head        list;
784         int                     reader; /* if 0, then request */
785 };
786 struct cache_request {
787         struct cache_queue      q;
788         struct cache_head       *item;
789         char                    * buf;
790         int                     len;
791         int                     readers;
792 };
793 struct cache_reader {
794         struct cache_queue      q;
795         int                     offset; /* if non-0, we have a refcnt on next request */
796 };
797
798 static int cache_request(struct cache_detail *detail,
799                                struct cache_request *crq)
800 {
801         char *bp = crq->buf;
802         int len = PAGE_SIZE;
803
804         detail->cache_request(detail, crq->item, &bp, &len);
805         if (len < 0)
806                 return -EAGAIN;
807         return PAGE_SIZE - len;
808 }
809
810 static ssize_t cache_read(struct file *filp, char __user *buf, size_t count,
811                           loff_t *ppos, struct cache_detail *cd)
812 {
813         struct cache_reader *rp = filp->private_data;
814         struct cache_request *rq;
815         struct inode *inode = file_inode(filp);
816         int err;
817
818         if (count == 0)
819                 return 0;
820
821         inode_lock(inode); /* protect against multiple concurrent
822                               * readers on this file */
823  again:
824         spin_lock(&queue_lock);
825         /* need to find next request */
826         while (rp->q.list.next != &cd->queue &&
827                list_entry(rp->q.list.next, struct cache_queue, list)
828                ->reader) {
829                 struct list_head *next = rp->q.list.next;
830                 list_move(&rp->q.list, next);
831         }
832         if (rp->q.list.next == &cd->queue) {
833                 spin_unlock(&queue_lock);
834                 inode_unlock(inode);
835                 WARN_ON_ONCE(rp->offset);
836                 return 0;
837         }
838         rq = container_of(rp->q.list.next, struct cache_request, q.list);
839         WARN_ON_ONCE(rq->q.reader);
840         if (rp->offset == 0)
841                 rq->readers++;
842         spin_unlock(&queue_lock);
843
844         if (rq->len == 0) {
845                 err = cache_request(cd, rq);
846                 if (err < 0)
847                         goto out;
848                 rq->len = err;
849         }
850
851         if (rp->offset == 0 && !test_bit(CACHE_PENDING, &rq->item->flags)) {
852                 err = -EAGAIN;
853                 spin_lock(&queue_lock);
854                 list_move(&rp->q.list, &rq->q.list);
855                 spin_unlock(&queue_lock);
856         } else {
857                 if (rp->offset + count > rq->len)
858                         count = rq->len - rp->offset;
859                 err = -EFAULT;
860                 if (copy_to_user(buf, rq->buf + rp->offset, count))
861                         goto out;
862                 rp->offset += count;
863                 if (rp->offset >= rq->len) {
864                         rp->offset = 0;
865                         spin_lock(&queue_lock);
866                         list_move(&rp->q.list, &rq->q.list);
867                         spin_unlock(&queue_lock);
868                 }
869                 err = 0;
870         }
871  out:
872         if (rp->offset == 0) {
873                 /* need to release rq */
874                 spin_lock(&queue_lock);
875                 rq->readers--;
876                 if (rq->readers == 0 &&
877                     !test_bit(CACHE_PENDING, &rq->item->flags)) {
878                         list_del(&rq->q.list);
879                         spin_unlock(&queue_lock);
880                         cache_put(rq->item, cd);
881                         kfree(rq->buf);
882                         kfree(rq);
883                 } else
884                         spin_unlock(&queue_lock);
885         }
886         if (err == -EAGAIN)
887                 goto again;
888         inode_unlock(inode);
889         return err ? err :  count;
890 }
891
892 static ssize_t cache_do_downcall(char *kaddr, const char __user *buf,
893                                  size_t count, struct cache_detail *cd)
894 {
895         ssize_t ret;
896
897         if (count == 0)
898                 return -EINVAL;
899         if (copy_from_user(kaddr, buf, count))
900                 return -EFAULT;
901         kaddr[count] = '\0';
902         ret = cd->cache_parse(cd, kaddr, count);
903         if (!ret)
904                 ret = count;
905         return ret;
906 }
907
908 static ssize_t cache_slow_downcall(const char __user *buf,
909                                    size_t count, struct cache_detail *cd)
910 {
911         static char write_buf[8192]; /* protected by queue_io_mutex */
912         ssize_t ret = -EINVAL;
913
914         if (count >= sizeof(write_buf))
915                 goto out;
916         mutex_lock(&queue_io_mutex);
917         ret = cache_do_downcall(write_buf, buf, count, cd);
918         mutex_unlock(&queue_io_mutex);
919 out:
920         return ret;
921 }
922
923 static ssize_t cache_downcall(struct address_space *mapping,
924                               const char __user *buf,
925                               size_t count, struct cache_detail *cd)
926 {
927         struct page *page;
928         char *kaddr;
929         ssize_t ret = -ENOMEM;
930
931         if (count >= PAGE_SIZE)
932                 goto out_slow;
933
934         page = find_or_create_page(mapping, 0, GFP_KERNEL);
935         if (!page)
936                 goto out_slow;
937
938         kaddr = kmap(page);
939         ret = cache_do_downcall(kaddr, buf, count, cd);
940         kunmap(page);
941         unlock_page(page);
942         put_page(page);
943         return ret;
944 out_slow:
945         return cache_slow_downcall(buf, count, cd);
946 }
947
948 static ssize_t cache_write(struct file *filp, const char __user *buf,
949                            size_t count, loff_t *ppos,
950                            struct cache_detail *cd)
951 {
952         struct address_space *mapping = filp->f_mapping;
953         struct inode *inode = file_inode(filp);
954         ssize_t ret = -EINVAL;
955
956         if (!cd->cache_parse)
957                 goto out;
958
959         inode_lock(inode);
960         ret = cache_downcall(mapping, buf, count, cd);
961         inode_unlock(inode);
962 out:
963         return ret;
964 }
965
966 static DECLARE_WAIT_QUEUE_HEAD(queue_wait);
967
968 static __poll_t cache_poll(struct file *filp, poll_table *wait,
969                                struct cache_detail *cd)
970 {
971         __poll_t mask;
972         struct cache_reader *rp = filp->private_data;
973         struct cache_queue *cq;
974
975         poll_wait(filp, &queue_wait, wait);
976
977         /* alway allow write */
978         mask = EPOLLOUT | EPOLLWRNORM;
979
980         if (!rp)
981                 return mask;
982
983         spin_lock(&queue_lock);
984
985         for (cq= &rp->q; &cq->list != &cd->queue;
986              cq = list_entry(cq->list.next, struct cache_queue, list))
987                 if (!cq->reader) {
988                         mask |= EPOLLIN | EPOLLRDNORM;
989                         break;
990                 }
991         spin_unlock(&queue_lock);
992         return mask;
993 }
994
995 static int cache_ioctl(struct inode *ino, struct file *filp,
996                        unsigned int cmd, unsigned long arg,
997                        struct cache_detail *cd)
998 {
999         int len = 0;
1000         struct cache_reader *rp = filp->private_data;
1001         struct cache_queue *cq;
1002
1003         if (cmd != FIONREAD || !rp)
1004                 return -EINVAL;
1005
1006         spin_lock(&queue_lock);
1007
1008         /* only find the length remaining in current request,
1009          * or the length of the next request
1010          */
1011         for (cq= &rp->q; &cq->list != &cd->queue;
1012              cq = list_entry(cq->list.next, struct cache_queue, list))
1013                 if (!cq->reader) {
1014                         struct cache_request *cr =
1015                                 container_of(cq, struct cache_request, q);
1016                         len = cr->len - rp->offset;
1017                         break;
1018                 }
1019         spin_unlock(&queue_lock);
1020
1021         return put_user(len, (int __user *)arg);
1022 }
1023
1024 static int cache_open(struct inode *inode, struct file *filp,
1025                       struct cache_detail *cd)
1026 {
1027         struct cache_reader *rp = NULL;
1028
1029         if (!cd || !try_module_get(cd->owner))
1030                 return -EACCES;
1031         nonseekable_open(inode, filp);
1032         if (filp->f_mode & FMODE_READ) {
1033                 rp = kmalloc(sizeof(*rp), GFP_KERNEL);
1034                 if (!rp) {
1035                         module_put(cd->owner);
1036                         return -ENOMEM;
1037                 }
1038                 rp->offset = 0;
1039                 rp->q.reader = 1;
1040
1041                 spin_lock(&queue_lock);
1042                 list_add(&rp->q.list, &cd->queue);
1043                 spin_unlock(&queue_lock);
1044         }
1045         if (filp->f_mode & FMODE_WRITE)
1046                 atomic_inc(&cd->writers);
1047         filp->private_data = rp;
1048         return 0;
1049 }
1050
1051 static int cache_release(struct inode *inode, struct file *filp,
1052                          struct cache_detail *cd)
1053 {
1054         struct cache_reader *rp = filp->private_data;
1055
1056         if (rp) {
1057                 spin_lock(&queue_lock);
1058                 if (rp->offset) {
1059                         struct cache_queue *cq;
1060                         for (cq= &rp->q; &cq->list != &cd->queue;
1061                              cq = list_entry(cq->list.next, struct cache_queue, list))
1062                                 if (!cq->reader) {
1063                                         container_of(cq, struct cache_request, q)
1064                                                 ->readers--;
1065                                         break;
1066                                 }
1067                         rp->offset = 0;
1068                 }
1069                 list_del(&rp->q.list);
1070                 spin_unlock(&queue_lock);
1071
1072                 filp->private_data = NULL;
1073                 kfree(rp);
1074
1075         }
1076         if (filp->f_mode & FMODE_WRITE) {
1077                 atomic_dec(&cd->writers);
1078                 cd->last_close = seconds_since_boot();
1079         }
1080         module_put(cd->owner);
1081         return 0;
1082 }
1083
1084
1085
1086 static void cache_dequeue(struct cache_detail *detail, struct cache_head *ch)
1087 {
1088         struct cache_queue *cq, *tmp;
1089         struct cache_request *cr;
1090         struct list_head dequeued;
1091
1092         INIT_LIST_HEAD(&dequeued);
1093         spin_lock(&queue_lock);
1094         list_for_each_entry_safe(cq, tmp, &detail->queue, list)
1095                 if (!cq->reader) {
1096                         cr = container_of(cq, struct cache_request, q);
1097                         if (cr->item != ch)
1098                                 continue;
1099                         if (test_bit(CACHE_PENDING, &ch->flags))
1100                                 /* Lost a race and it is pending again */
1101                                 break;
1102                         if (cr->readers != 0)
1103                                 continue;
1104                         list_move(&cr->q.list, &dequeued);
1105                 }
1106         spin_unlock(&queue_lock);
1107         while (!list_empty(&dequeued)) {
1108                 cr = list_entry(dequeued.next, struct cache_request, q.list);
1109                 list_del(&cr->q.list);
1110                 cache_put(cr->item, detail);
1111                 kfree(cr->buf);
1112                 kfree(cr);
1113         }
1114 }
1115
1116 /*
1117  * Support routines for text-based upcalls.
1118  * Fields are separated by spaces.
1119  * Fields are either mangled to quote space tab newline slosh with slosh
1120  * or a hexified with a leading \x
1121  * Record is terminated with newline.
1122  *
1123  */
1124
1125 void qword_add(char **bpp, int *lp, char *str)
1126 {
1127         char *bp = *bpp;
1128         int len = *lp;
1129         int ret;
1130
1131         if (len < 0) return;
1132
1133         ret = string_escape_str(str, bp, len, ESCAPE_OCTAL, "\\ \n\t");
1134         if (ret >= len) {
1135                 bp += len;
1136                 len = -1;
1137         } else {
1138                 bp += ret;
1139                 len -= ret;
1140                 *bp++ = ' ';
1141                 len--;
1142         }
1143         *bpp = bp;
1144         *lp = len;
1145 }
1146 EXPORT_SYMBOL_GPL(qword_add);
1147
1148 void qword_addhex(char **bpp, int *lp, char *buf, int blen)
1149 {
1150         char *bp = *bpp;
1151         int len = *lp;
1152
1153         if (len < 0) return;
1154
1155         if (len > 2) {
1156                 *bp++ = '\\';
1157                 *bp++ = 'x';
1158                 len -= 2;
1159                 while (blen && len >= 2) {
1160                         bp = hex_byte_pack(bp, *buf++);
1161                         len -= 2;
1162                         blen--;
1163                 }
1164         }
1165         if (blen || len<1) len = -1;
1166         else {
1167                 *bp++ = ' ';
1168                 len--;
1169         }
1170         *bpp = bp;
1171         *lp = len;
1172 }
1173 EXPORT_SYMBOL_GPL(qword_addhex);
1174
1175 static void warn_no_listener(struct cache_detail *detail)
1176 {
1177         if (detail->last_warn != detail->last_close) {
1178                 detail->last_warn = detail->last_close;
1179                 if (detail->warn_no_listener)
1180                         detail->warn_no_listener(detail, detail->last_close != 0);
1181         }
1182 }
1183
1184 static bool cache_listeners_exist(struct cache_detail *detail)
1185 {
1186         if (atomic_read(&detail->writers))
1187                 return true;
1188         if (detail->last_close == 0)
1189                 /* This cache was never opened */
1190                 return false;
1191         if (detail->last_close < seconds_since_boot() - 30)
1192                 /*
1193                  * We allow for the possibility that someone might
1194                  * restart a userspace daemon without restarting the
1195                  * server; but after 30 seconds, we give up.
1196                  */
1197                  return false;
1198         return true;
1199 }
1200
1201 /*
1202  * register an upcall request to user-space and queue it up for read() by the
1203  * upcall daemon.
1204  *
1205  * Each request is at most one page long.
1206  */
1207 static int cache_pipe_upcall(struct cache_detail *detail, struct cache_head *h)
1208 {
1209         char *buf;
1210         struct cache_request *crq;
1211         int ret = 0;
1212
1213         if (test_bit(CACHE_CLEANED, &h->flags))
1214                 /* Too late to make an upcall */
1215                 return -EAGAIN;
1216
1217         buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1218         if (!buf)
1219                 return -EAGAIN;
1220
1221         crq = kmalloc(sizeof (*crq), GFP_KERNEL);
1222         if (!crq) {
1223                 kfree(buf);
1224                 return -EAGAIN;
1225         }
1226
1227         crq->q.reader = 0;
1228         crq->buf = buf;
1229         crq->len = 0;
1230         crq->readers = 0;
1231         spin_lock(&queue_lock);
1232         if (test_bit(CACHE_PENDING, &h->flags)) {
1233                 crq->item = cache_get(h);
1234                 list_add_tail(&crq->q.list, &detail->queue);
1235                 trace_cache_entry_upcall(detail, h);
1236         } else
1237                 /* Lost a race, no longer PENDING, so don't enqueue */
1238                 ret = -EAGAIN;
1239         spin_unlock(&queue_lock);
1240         wake_up(&queue_wait);
1241         if (ret == -EAGAIN) {
1242                 kfree(buf);
1243                 kfree(crq);
1244         }
1245         return ret;
1246 }
1247
1248 int sunrpc_cache_pipe_upcall(struct cache_detail *detail, struct cache_head *h)
1249 {
1250         if (test_and_set_bit(CACHE_PENDING, &h->flags))
1251                 return 0;
1252         return cache_pipe_upcall(detail, h);
1253 }
1254 EXPORT_SYMBOL_GPL(sunrpc_cache_pipe_upcall);
1255
1256 int sunrpc_cache_pipe_upcall_timeout(struct cache_detail *detail,
1257                                      struct cache_head *h)
1258 {
1259         if (!cache_listeners_exist(detail)) {
1260                 warn_no_listener(detail);
1261                 trace_cache_entry_no_listener(detail, h);
1262                 return -EINVAL;
1263         }
1264         return sunrpc_cache_pipe_upcall(detail, h);
1265 }
1266 EXPORT_SYMBOL_GPL(sunrpc_cache_pipe_upcall_timeout);
1267
1268 /*
1269  * parse a message from user-space and pass it
1270  * to an appropriate cache
1271  * Messages are, like requests, separated into fields by
1272  * spaces and dequotes as \xHEXSTRING or embedded \nnn octal
1273  *
1274  * Message is
1275  *   reply cachename expiry key ... content....
1276  *
1277  * key and content are both parsed by cache
1278  */
1279
1280 int qword_get(char **bpp, char *dest, int bufsize)
1281 {
1282         /* return bytes copied, or -1 on error */
1283         char *bp = *bpp;
1284         int len = 0;
1285
1286         while (*bp == ' ') bp++;
1287
1288         if (bp[0] == '\\' && bp[1] == 'x') {
1289                 /* HEX STRING */
1290                 bp += 2;
1291                 while (len < bufsize - 1) {
1292                         int h, l;
1293
1294                         h = hex_to_bin(bp[0]);
1295                         if (h < 0)
1296                                 break;
1297
1298                         l = hex_to_bin(bp[1]);
1299                         if (l < 0)
1300                                 break;
1301
1302                         *dest++ = (h << 4) | l;
1303                         bp += 2;
1304                         len++;
1305                 }
1306         } else {
1307                 /* text with \nnn octal quoting */
1308                 while (*bp != ' ' && *bp != '\n' && *bp && len < bufsize-1) {
1309                         if (*bp == '\\' &&
1310                             isodigit(bp[1]) && (bp[1] <= '3') &&
1311                             isodigit(bp[2]) &&
1312                             isodigit(bp[3])) {
1313                                 int byte = (*++bp -'0');
1314                                 bp++;
1315                                 byte = (byte << 3) | (*bp++ - '0');
1316                                 byte = (byte << 3) | (*bp++ - '0');
1317                                 *dest++ = byte;
1318                                 len++;
1319                         } else {
1320                                 *dest++ = *bp++;
1321                                 len++;
1322                         }
1323                 }
1324         }
1325
1326         if (*bp != ' ' && *bp != '\n' && *bp != '\0')
1327                 return -1;
1328         while (*bp == ' ') bp++;
1329         *bpp = bp;
1330         *dest = '\0';
1331         return len;
1332 }
1333 EXPORT_SYMBOL_GPL(qword_get);
1334
1335
1336 /*
1337  * support /proc/net/rpc/$CACHENAME/content
1338  * as a seqfile.
1339  * We call ->cache_show passing NULL for the item to
1340  * get a header, then pass each real item in the cache
1341  */
1342
1343 static void *__cache_seq_start(struct seq_file *m, loff_t *pos)
1344 {
1345         loff_t n = *pos;
1346         unsigned int hash, entry;
1347         struct cache_head *ch;
1348         struct cache_detail *cd = m->private;
1349
1350         if (!n--)
1351                 return SEQ_START_TOKEN;
1352         hash = n >> 32;
1353         entry = n & ((1LL<<32) - 1);
1354
1355         hlist_for_each_entry_rcu(ch, &cd->hash_table[hash], cache_list)
1356                 if (!entry--)
1357                         return ch;
1358         n &= ~((1LL<<32) - 1);
1359         do {
1360                 hash++;
1361                 n += 1LL<<32;
1362         } while(hash < cd->hash_size &&
1363                 hlist_empty(&cd->hash_table[hash]));
1364         if (hash >= cd->hash_size)
1365                 return NULL;
1366         *pos = n+1;
1367         return hlist_entry_safe(rcu_dereference_raw(
1368                                 hlist_first_rcu(&cd->hash_table[hash])),
1369                                 struct cache_head, cache_list);
1370 }
1371
1372 static void *cache_seq_next(struct seq_file *m, void *p, loff_t *pos)
1373 {
1374         struct cache_head *ch = p;
1375         int hash = (*pos >> 32);
1376         struct cache_detail *cd = m->private;
1377
1378         if (p == SEQ_START_TOKEN)
1379                 hash = 0;
1380         else if (ch->cache_list.next == NULL) {
1381                 hash++;
1382                 *pos += 1LL<<32;
1383         } else {
1384                 ++*pos;
1385                 return hlist_entry_safe(rcu_dereference_raw(
1386                                         hlist_next_rcu(&ch->cache_list)),
1387                                         struct cache_head, cache_list);
1388         }
1389         *pos &= ~((1LL<<32) - 1);
1390         while (hash < cd->hash_size &&
1391                hlist_empty(&cd->hash_table[hash])) {
1392                 hash++;
1393                 *pos += 1LL<<32;
1394         }
1395         if (hash >= cd->hash_size)
1396                 return NULL;
1397         ++*pos;
1398         return hlist_entry_safe(rcu_dereference_raw(
1399                                 hlist_first_rcu(&cd->hash_table[hash])),
1400                                 struct cache_head, cache_list);
1401 }
1402
1403 void *cache_seq_start_rcu(struct seq_file *m, loff_t *pos)
1404         __acquires(RCU)
1405 {
1406         rcu_read_lock();
1407         return __cache_seq_start(m, pos);
1408 }
1409 EXPORT_SYMBOL_GPL(cache_seq_start_rcu);
1410
1411 void *cache_seq_next_rcu(struct seq_file *file, void *p, loff_t *pos)
1412 {
1413         return cache_seq_next(file, p, pos);
1414 }
1415 EXPORT_SYMBOL_GPL(cache_seq_next_rcu);
1416
1417 void cache_seq_stop_rcu(struct seq_file *m, void *p)
1418         __releases(RCU)
1419 {
1420         rcu_read_unlock();
1421 }
1422 EXPORT_SYMBOL_GPL(cache_seq_stop_rcu);
1423
1424 static int c_show(struct seq_file *m, void *p)
1425 {
1426         struct cache_head *cp = p;
1427         struct cache_detail *cd = m->private;
1428
1429         if (p == SEQ_START_TOKEN)
1430                 return cd->cache_show(m, cd, NULL);
1431
1432         ifdebug(CACHE)
1433                 seq_printf(m, "# expiry=%lld refcnt=%d flags=%lx\n",
1434                            convert_to_wallclock(cp->expiry_time),
1435                            kref_read(&cp->ref), cp->flags);
1436         cache_get(cp);
1437         if (cache_check(cd, cp, NULL))
1438                 /* cache_check does a cache_put on failure */
1439                 seq_printf(m, "# ");
1440         else {
1441                 if (cache_is_expired(cd, cp))
1442                         seq_printf(m, "# ");
1443                 cache_put(cp, cd);
1444         }
1445
1446         return cd->cache_show(m, cd, cp);
1447 }
1448
1449 static const struct seq_operations cache_content_op = {
1450         .start  = cache_seq_start_rcu,
1451         .next   = cache_seq_next_rcu,
1452         .stop   = cache_seq_stop_rcu,
1453         .show   = c_show,
1454 };
1455
1456 static int content_open(struct inode *inode, struct file *file,
1457                         struct cache_detail *cd)
1458 {
1459         struct seq_file *seq;
1460         int err;
1461
1462         if (!cd || !try_module_get(cd->owner))
1463                 return -EACCES;
1464
1465         err = seq_open(file, &cache_content_op);
1466         if (err) {
1467                 module_put(cd->owner);
1468                 return err;
1469         }
1470
1471         seq = file->private_data;
1472         seq->private = cd;
1473         return 0;
1474 }
1475
1476 static int content_release(struct inode *inode, struct file *file,
1477                 struct cache_detail *cd)
1478 {
1479         int ret = seq_release(inode, file);
1480         module_put(cd->owner);
1481         return ret;
1482 }
1483
1484 static int open_flush(struct inode *inode, struct file *file,
1485                         struct cache_detail *cd)
1486 {
1487         if (!cd || !try_module_get(cd->owner))
1488                 return -EACCES;
1489         return nonseekable_open(inode, file);
1490 }
1491
1492 static int release_flush(struct inode *inode, struct file *file,
1493                         struct cache_detail *cd)
1494 {
1495         module_put(cd->owner);
1496         return 0;
1497 }
1498
1499 static ssize_t read_flush(struct file *file, char __user *buf,
1500                           size_t count, loff_t *ppos,
1501                           struct cache_detail *cd)
1502 {
1503         char tbuf[22];
1504         size_t len;
1505
1506         len = snprintf(tbuf, sizeof(tbuf), "%llu\n",
1507                         convert_to_wallclock(cd->flush_time));
1508         return simple_read_from_buffer(buf, count, ppos, tbuf, len);
1509 }
1510
1511 static ssize_t write_flush(struct file *file, const char __user *buf,
1512                            size_t count, loff_t *ppos,
1513                            struct cache_detail *cd)
1514 {
1515         char tbuf[20];
1516         char *ep;
1517         time64_t now;
1518
1519         if (*ppos || count > sizeof(tbuf)-1)
1520                 return -EINVAL;
1521         if (copy_from_user(tbuf, buf, count))
1522                 return -EFAULT;
1523         tbuf[count] = 0;
1524         simple_strtoul(tbuf, &ep, 0);
1525         if (*ep && *ep != '\n')
1526                 return -EINVAL;
1527         /* Note that while we check that 'buf' holds a valid number,
1528          * we always ignore the value and just flush everything.
1529          * Making use of the number leads to races.
1530          */
1531
1532         now = seconds_since_boot();
1533         /* Always flush everything, so behave like cache_purge()
1534          * Do this by advancing flush_time to the current time,
1535          * or by one second if it has already reached the current time.
1536          * Newly added cache entries will always have ->last_refresh greater
1537          * that ->flush_time, so they don't get flushed prematurely.
1538          */
1539
1540         if (cd->flush_time >= now)
1541                 now = cd->flush_time + 1;
1542
1543         cd->flush_time = now;
1544         cd->nextcheck = now;
1545         cache_flush();
1546
1547         if (cd->flush)
1548                 cd->flush();
1549
1550         *ppos += count;
1551         return count;
1552 }
1553
1554 static ssize_t cache_read_procfs(struct file *filp, char __user *buf,
1555                                  size_t count, loff_t *ppos)
1556 {
1557         struct cache_detail *cd = PDE_DATA(file_inode(filp));
1558
1559         return cache_read(filp, buf, count, ppos, cd);
1560 }
1561
1562 static ssize_t cache_write_procfs(struct file *filp, const char __user *buf,
1563                                   size_t count, loff_t *ppos)
1564 {
1565         struct cache_detail *cd = PDE_DATA(file_inode(filp));
1566
1567         return cache_write(filp, buf, count, ppos, cd);
1568 }
1569
1570 static __poll_t cache_poll_procfs(struct file *filp, poll_table *wait)
1571 {
1572         struct cache_detail *cd = PDE_DATA(file_inode(filp));
1573
1574         return cache_poll(filp, wait, cd);
1575 }
1576
1577 static long cache_ioctl_procfs(struct file *filp,
1578                                unsigned int cmd, unsigned long arg)
1579 {
1580         struct inode *inode = file_inode(filp);
1581         struct cache_detail *cd = PDE_DATA(inode);
1582
1583         return cache_ioctl(inode, filp, cmd, arg, cd);
1584 }
1585
1586 static int cache_open_procfs(struct inode *inode, struct file *filp)
1587 {
1588         struct cache_detail *cd = PDE_DATA(inode);
1589
1590         return cache_open(inode, filp, cd);
1591 }
1592
1593 static int cache_release_procfs(struct inode *inode, struct file *filp)
1594 {
1595         struct cache_detail *cd = PDE_DATA(inode);
1596
1597         return cache_release(inode, filp, cd);
1598 }
1599
1600 static const struct proc_ops cache_channel_proc_ops = {
1601         .proc_lseek     = no_llseek,
1602         .proc_read      = cache_read_procfs,
1603         .proc_write     = cache_write_procfs,
1604         .proc_poll      = cache_poll_procfs,
1605         .proc_ioctl     = cache_ioctl_procfs, /* for FIONREAD */
1606         .proc_open      = cache_open_procfs,
1607         .proc_release   = cache_release_procfs,
1608 };
1609
1610 static int content_open_procfs(struct inode *inode, struct file *filp)
1611 {
1612         struct cache_detail *cd = PDE_DATA(inode);
1613
1614         return content_open(inode, filp, cd);
1615 }
1616
1617 static int content_release_procfs(struct inode *inode, struct file *filp)
1618 {
1619         struct cache_detail *cd = PDE_DATA(inode);
1620
1621         return content_release(inode, filp, cd);
1622 }
1623
1624 static const struct proc_ops content_proc_ops = {
1625         .proc_open      = content_open_procfs,
1626         .proc_read      = seq_read,
1627         .proc_lseek     = seq_lseek,
1628         .proc_release   = content_release_procfs,
1629 };
1630
1631 static int open_flush_procfs(struct inode *inode, struct file *filp)
1632 {
1633         struct cache_detail *cd = PDE_DATA(inode);
1634
1635         return open_flush(inode, filp, cd);
1636 }
1637
1638 static int release_flush_procfs(struct inode *inode, struct file *filp)
1639 {
1640         struct cache_detail *cd = PDE_DATA(inode);
1641
1642         return release_flush(inode, filp, cd);
1643 }
1644
1645 static ssize_t read_flush_procfs(struct file *filp, char __user *buf,
1646                             size_t count, loff_t *ppos)
1647 {
1648         struct cache_detail *cd = PDE_DATA(file_inode(filp));
1649
1650         return read_flush(filp, buf, count, ppos, cd);
1651 }
1652
1653 static ssize_t write_flush_procfs(struct file *filp,
1654                                   const char __user *buf,
1655                                   size_t count, loff_t *ppos)
1656 {
1657         struct cache_detail *cd = PDE_DATA(file_inode(filp));
1658
1659         return write_flush(filp, buf, count, ppos, cd);
1660 }
1661
1662 static const struct proc_ops cache_flush_proc_ops = {
1663         .proc_open      = open_flush_procfs,
1664         .proc_read      = read_flush_procfs,
1665         .proc_write     = write_flush_procfs,
1666         .proc_release   = release_flush_procfs,
1667         .proc_lseek     = no_llseek,
1668 };
1669
1670 static void remove_cache_proc_entries(struct cache_detail *cd)
1671 {
1672         if (cd->procfs) {
1673                 proc_remove(cd->procfs);
1674                 cd->procfs = NULL;
1675         }
1676 }
1677
1678 #ifdef CONFIG_PROC_FS
1679 static int create_cache_proc_entries(struct cache_detail *cd, struct net *net)
1680 {
1681         struct proc_dir_entry *p;
1682         struct sunrpc_net *sn;
1683
1684         sn = net_generic(net, sunrpc_net_id);
1685         cd->procfs = proc_mkdir(cd->name, sn->proc_net_rpc);
1686         if (cd->procfs == NULL)
1687                 goto out_nomem;
1688
1689         p = proc_create_data("flush", S_IFREG | 0600,
1690                              cd->procfs, &cache_flush_proc_ops, cd);
1691         if (p == NULL)
1692                 goto out_nomem;
1693
1694         if (cd->cache_request || cd->cache_parse) {
1695                 p = proc_create_data("channel", S_IFREG | 0600, cd->procfs,
1696                                      &cache_channel_proc_ops, cd);
1697                 if (p == NULL)
1698                         goto out_nomem;
1699         }
1700         if (cd->cache_show) {
1701                 p = proc_create_data("content", S_IFREG | 0400, cd->procfs,
1702                                      &content_proc_ops, cd);
1703                 if (p == NULL)
1704                         goto out_nomem;
1705         }
1706         return 0;
1707 out_nomem:
1708         remove_cache_proc_entries(cd);
1709         return -ENOMEM;
1710 }
1711 #else /* CONFIG_PROC_FS */
1712 static int create_cache_proc_entries(struct cache_detail *cd, struct net *net)
1713 {
1714         return 0;
1715 }
1716 #endif
1717
1718 void __init cache_initialize(void)
1719 {
1720         INIT_DEFERRABLE_WORK(&cache_cleaner, do_cache_clean);
1721 }
1722
1723 int cache_register_net(struct cache_detail *cd, struct net *net)
1724 {
1725         int ret;
1726
1727         sunrpc_init_cache_detail(cd);
1728         ret = create_cache_proc_entries(cd, net);
1729         if (ret)
1730                 sunrpc_destroy_cache_detail(cd);
1731         return ret;
1732 }
1733 EXPORT_SYMBOL_GPL(cache_register_net);
1734
1735 void cache_unregister_net(struct cache_detail *cd, struct net *net)
1736 {
1737         remove_cache_proc_entries(cd);
1738         sunrpc_destroy_cache_detail(cd);
1739 }
1740 EXPORT_SYMBOL_GPL(cache_unregister_net);
1741
1742 struct cache_detail *cache_create_net(const struct cache_detail *tmpl, struct net *net)
1743 {
1744         struct cache_detail *cd;
1745         int i;
1746
1747         cd = kmemdup(tmpl, sizeof(struct cache_detail), GFP_KERNEL);
1748         if (cd == NULL)
1749                 return ERR_PTR(-ENOMEM);
1750
1751         cd->hash_table = kcalloc(cd->hash_size, sizeof(struct hlist_head),
1752                                  GFP_KERNEL);
1753         if (cd->hash_table == NULL) {
1754                 kfree(cd);
1755                 return ERR_PTR(-ENOMEM);
1756         }
1757
1758         for (i = 0; i < cd->hash_size; i++)
1759                 INIT_HLIST_HEAD(&cd->hash_table[i]);
1760         cd->net = net;
1761         return cd;
1762 }
1763 EXPORT_SYMBOL_GPL(cache_create_net);
1764
1765 void cache_destroy_net(struct cache_detail *cd, struct net *net)
1766 {
1767         kfree(cd->hash_table);
1768         kfree(cd);
1769 }
1770 EXPORT_SYMBOL_GPL(cache_destroy_net);
1771
1772 static ssize_t cache_read_pipefs(struct file *filp, char __user *buf,
1773                                  size_t count, loff_t *ppos)
1774 {
1775         struct cache_detail *cd = RPC_I(file_inode(filp))->private;
1776
1777         return cache_read(filp, buf, count, ppos, cd);
1778 }
1779
1780 static ssize_t cache_write_pipefs(struct file *filp, const char __user *buf,
1781                                   size_t count, loff_t *ppos)
1782 {
1783         struct cache_detail *cd = RPC_I(file_inode(filp))->private;
1784
1785         return cache_write(filp, buf, count, ppos, cd);
1786 }
1787
1788 static __poll_t cache_poll_pipefs(struct file *filp, poll_table *wait)
1789 {
1790         struct cache_detail *cd = RPC_I(file_inode(filp))->private;
1791
1792         return cache_poll(filp, wait, cd);
1793 }
1794
1795 static long cache_ioctl_pipefs(struct file *filp,
1796                               unsigned int cmd, unsigned long arg)
1797 {
1798         struct inode *inode = file_inode(filp);
1799         struct cache_detail *cd = RPC_I(inode)->private;
1800
1801         return cache_ioctl(inode, filp, cmd, arg, cd);
1802 }
1803
1804 static int cache_open_pipefs(struct inode *inode, struct file *filp)
1805 {
1806         struct cache_detail *cd = RPC_I(inode)->private;
1807
1808         return cache_open(inode, filp, cd);
1809 }
1810
1811 static int cache_release_pipefs(struct inode *inode, struct file *filp)
1812 {
1813         struct cache_detail *cd = RPC_I(inode)->private;
1814
1815         return cache_release(inode, filp, cd);
1816 }
1817
1818 const struct file_operations cache_file_operations_pipefs = {
1819         .owner          = THIS_MODULE,
1820         .llseek         = no_llseek,
1821         .read           = cache_read_pipefs,
1822         .write          = cache_write_pipefs,
1823         .poll           = cache_poll_pipefs,
1824         .unlocked_ioctl = cache_ioctl_pipefs, /* for FIONREAD */
1825         .open           = cache_open_pipefs,
1826         .release        = cache_release_pipefs,
1827 };
1828
1829 static int content_open_pipefs(struct inode *inode, struct file *filp)
1830 {
1831         struct cache_detail *cd = RPC_I(inode)->private;
1832
1833         return content_open(inode, filp, cd);
1834 }
1835
1836 static int content_release_pipefs(struct inode *inode, struct file *filp)
1837 {
1838         struct cache_detail *cd = RPC_I(inode)->private;
1839
1840         return content_release(inode, filp, cd);
1841 }
1842
1843 const struct file_operations content_file_operations_pipefs = {
1844         .open           = content_open_pipefs,
1845         .read           = seq_read,
1846         .llseek         = seq_lseek,
1847         .release        = content_release_pipefs,
1848 };
1849
1850 static int open_flush_pipefs(struct inode *inode, struct file *filp)
1851 {
1852         struct cache_detail *cd = RPC_I(inode)->private;
1853
1854         return open_flush(inode, filp, cd);
1855 }
1856
1857 static int release_flush_pipefs(struct inode *inode, struct file *filp)
1858 {
1859         struct cache_detail *cd = RPC_I(inode)->private;
1860
1861         return release_flush(inode, filp, cd);
1862 }
1863
1864 static ssize_t read_flush_pipefs(struct file *filp, char __user *buf,
1865                             size_t count, loff_t *ppos)
1866 {
1867         struct cache_detail *cd = RPC_I(file_inode(filp))->private;
1868
1869         return read_flush(filp, buf, count, ppos, cd);
1870 }
1871
1872 static ssize_t write_flush_pipefs(struct file *filp,
1873                                   const char __user *buf,
1874                                   size_t count, loff_t *ppos)
1875 {
1876         struct cache_detail *cd = RPC_I(file_inode(filp))->private;
1877
1878         return write_flush(filp, buf, count, ppos, cd);
1879 }
1880
1881 const struct file_operations cache_flush_operations_pipefs = {
1882         .open           = open_flush_pipefs,
1883         .read           = read_flush_pipefs,
1884         .write          = write_flush_pipefs,
1885         .release        = release_flush_pipefs,
1886         .llseek         = no_llseek,
1887 };
1888
1889 int sunrpc_cache_register_pipefs(struct dentry *parent,
1890                                  const char *name, umode_t umode,
1891                                  struct cache_detail *cd)
1892 {
1893         struct dentry *dir = rpc_create_cache_dir(parent, name, umode, cd);
1894         if (IS_ERR(dir))
1895                 return PTR_ERR(dir);
1896         cd->pipefs = dir;
1897         return 0;
1898 }
1899 EXPORT_SYMBOL_GPL(sunrpc_cache_register_pipefs);
1900
1901 void sunrpc_cache_unregister_pipefs(struct cache_detail *cd)
1902 {
1903         if (cd->pipefs) {
1904                 rpc_remove_cache_dir(cd->pipefs);
1905                 cd->pipefs = NULL;
1906         }
1907 }
1908 EXPORT_SYMBOL_GPL(sunrpc_cache_unregister_pipefs);
1909
1910 void sunrpc_cache_unhash(struct cache_detail *cd, struct cache_head *h)
1911 {
1912         spin_lock(&cd->hash_lock);
1913         if (!hlist_unhashed(&h->cache_list)){
1914                 sunrpc_begin_cache_remove_entry(h, cd);
1915                 spin_unlock(&cd->hash_lock);
1916                 sunrpc_end_cache_remove_entry(h, cd);
1917         } else
1918                 spin_unlock(&cd->hash_lock);
1919 }
1920 EXPORT_SYMBOL_GPL(sunrpc_cache_unhash);