OSDN Git Service

1cb35c753dcda1a885ce5e5467f62edf56963ccc
[sagit-ice-cold/kernel_xiaomi_msm8998.git] / net / sunrpc / sched.c
1 /*
2  * linux/net/sunrpc/sched.c
3  *
4  * Scheduling for synchronous and asynchronous RPC requests.
5  *
6  * Copyright (C) 1996 Olaf Kirch, <okir@monad.swb.de>
7  *
8  * TCP NFS related read + write fixes
9  * (C) 1999 Dave Airlie, University of Limerick, Ireland <airlied@linux.ie>
10  */
11
12 #include <linux/module.h>
13
14 #include <linux/sched.h>
15 #include <linux/interrupt.h>
16 #include <linux/slab.h>
17 #include <linux/mempool.h>
18 #include <linux/smp.h>
19 #include <linux/spinlock.h>
20 #include <linux/mutex.h>
21 #include <linux/freezer.h>
22
23 #include <linux/sunrpc/clnt.h>
24
25 #include "sunrpc.h"
26
27 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
28 #define RPCDBG_FACILITY         RPCDBG_SCHED
29 #endif
30
31 #define CREATE_TRACE_POINTS
32 #include <trace/events/sunrpc.h>
33
34 /*
35  * RPC slabs and memory pools
36  */
37 #define RPC_BUFFER_MAXSIZE      (2048)
38 #define RPC_BUFFER_POOLSIZE     (8)
39 #define RPC_TASK_POOLSIZE       (8)
40 static struct kmem_cache        *rpc_task_slabp __read_mostly;
41 static struct kmem_cache        *rpc_buffer_slabp __read_mostly;
42 static mempool_t        *rpc_task_mempool __read_mostly;
43 static mempool_t        *rpc_buffer_mempool __read_mostly;
44
45 static void                     rpc_async_schedule(struct work_struct *);
46 static void                      rpc_release_task(struct rpc_task *task);
47 static void __rpc_queue_timer_fn(unsigned long ptr);
48
49 /*
50  * RPC tasks sit here while waiting for conditions to improve.
51  */
52 static struct rpc_wait_queue delay_queue;
53
54 /*
55  * rpciod-related stuff
56  */
57 struct workqueue_struct *rpciod_workqueue;
58
59 /*
60  * Disable the timer for a given RPC task. Should be called with
61  * queue->lock and bh_disabled in order to avoid races within
62  * rpc_run_timer().
63  */
64 static void
65 __rpc_disable_timer(struct rpc_wait_queue *queue, struct rpc_task *task)
66 {
67         if (task->tk_timeout == 0)
68                 return;
69         dprintk("RPC: %5u disabling timer\n", task->tk_pid);
70         task->tk_timeout = 0;
71         list_del(&task->u.tk_wait.timer_list);
72         if (list_empty(&queue->timer_list.list))
73                 del_timer(&queue->timer_list.timer);
74 }
75
76 static void
77 rpc_set_queue_timer(struct rpc_wait_queue *queue, unsigned long expires)
78 {
79         queue->timer_list.expires = expires;
80         mod_timer(&queue->timer_list.timer, expires);
81 }
82
83 /*
84  * Set up a timer for the current task.
85  */
86 static void
87 __rpc_add_timer(struct rpc_wait_queue *queue, struct rpc_task *task)
88 {
89         if (!task->tk_timeout)
90                 return;
91
92         dprintk("RPC: %5u setting alarm for %u ms\n",
93                 task->tk_pid, jiffies_to_msecs(task->tk_timeout));
94
95         task->u.tk_wait.expires = jiffies + task->tk_timeout;
96         if (list_empty(&queue->timer_list.list) || time_before(task->u.tk_wait.expires, queue->timer_list.expires))
97                 rpc_set_queue_timer(queue, task->u.tk_wait.expires);
98         list_add(&task->u.tk_wait.timer_list, &queue->timer_list.list);
99 }
100
101 static void rpc_rotate_queue_owner(struct rpc_wait_queue *queue)
102 {
103         struct list_head *q = &queue->tasks[queue->priority];
104         struct rpc_task *task;
105
106         if (!list_empty(q)) {
107                 task = list_first_entry(q, struct rpc_task, u.tk_wait.list);
108                 if (task->tk_owner == queue->owner)
109                         list_move_tail(&task->u.tk_wait.list, q);
110         }
111 }
112
113 static void rpc_set_waitqueue_priority(struct rpc_wait_queue *queue, int priority)
114 {
115         if (queue->priority != priority) {
116                 /* Fairness: rotate the list when changing priority */
117                 rpc_rotate_queue_owner(queue);
118                 queue->priority = priority;
119         }
120 }
121
122 static void rpc_set_waitqueue_owner(struct rpc_wait_queue *queue, pid_t pid)
123 {
124         queue->owner = pid;
125         queue->nr = RPC_BATCH_COUNT;
126 }
127
128 static void rpc_reset_waitqueue_priority(struct rpc_wait_queue *queue)
129 {
130         rpc_set_waitqueue_priority(queue, queue->maxpriority);
131         rpc_set_waitqueue_owner(queue, 0);
132 }
133
134 /*
135  * Add new request to a priority queue.
136  */
137 static void __rpc_add_wait_queue_priority(struct rpc_wait_queue *queue,
138                 struct rpc_task *task,
139                 unsigned char queue_priority)
140 {
141         struct list_head *q;
142         struct rpc_task *t;
143
144         INIT_LIST_HEAD(&task->u.tk_wait.links);
145         if (unlikely(queue_priority > queue->maxpriority))
146                 queue_priority = queue->maxpriority;
147         if (queue_priority > queue->priority)
148                 rpc_set_waitqueue_priority(queue, queue_priority);
149         q = &queue->tasks[queue_priority];
150         list_for_each_entry(t, q, u.tk_wait.list) {
151                 if (t->tk_owner == task->tk_owner) {
152                         list_add_tail(&task->u.tk_wait.list, &t->u.tk_wait.links);
153                         return;
154                 }
155         }
156         list_add_tail(&task->u.tk_wait.list, q);
157 }
158
159 /*
160  * Add new request to wait queue.
161  *
162  * Swapper tasks always get inserted at the head of the queue.
163  * This should avoid many nasty memory deadlocks and hopefully
164  * improve overall performance.
165  * Everyone else gets appended to the queue to ensure proper FIFO behavior.
166  */
167 static void __rpc_add_wait_queue(struct rpc_wait_queue *queue,
168                 struct rpc_task *task,
169                 unsigned char queue_priority)
170 {
171         WARN_ON_ONCE(RPC_IS_QUEUED(task));
172         if (RPC_IS_QUEUED(task))
173                 return;
174
175         if (RPC_IS_PRIORITY(queue))
176                 __rpc_add_wait_queue_priority(queue, task, queue_priority);
177         else if (RPC_IS_SWAPPER(task))
178                 list_add(&task->u.tk_wait.list, &queue->tasks[0]);
179         else
180                 list_add_tail(&task->u.tk_wait.list, &queue->tasks[0]);
181         task->tk_waitqueue = queue;
182         queue->qlen++;
183         /* barrier matches the read in rpc_wake_up_task_queue_locked() */
184         smp_wmb();
185         rpc_set_queued(task);
186
187         dprintk("RPC: %5u added to queue %p \"%s\"\n",
188                         task->tk_pid, queue, rpc_qname(queue));
189 }
190
191 /*
192  * Remove request from a priority queue.
193  */
194 static void __rpc_remove_wait_queue_priority(struct rpc_task *task)
195 {
196         struct rpc_task *t;
197
198         if (!list_empty(&task->u.tk_wait.links)) {
199                 t = list_entry(task->u.tk_wait.links.next, struct rpc_task, u.tk_wait.list);
200                 list_move(&t->u.tk_wait.list, &task->u.tk_wait.list);
201                 list_splice_init(&task->u.tk_wait.links, &t->u.tk_wait.links);
202         }
203 }
204
205 /*
206  * Remove request from queue.
207  * Note: must be called with spin lock held.
208  */
209 static void __rpc_remove_wait_queue(struct rpc_wait_queue *queue, struct rpc_task *task)
210 {
211         __rpc_disable_timer(queue, task);
212         if (RPC_IS_PRIORITY(queue))
213                 __rpc_remove_wait_queue_priority(task);
214         list_del(&task->u.tk_wait.list);
215         queue->qlen--;
216         dprintk("RPC: %5u removed from queue %p \"%s\"\n",
217                         task->tk_pid, queue, rpc_qname(queue));
218 }
219
220 static void __rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname, unsigned char nr_queues)
221 {
222         int i;
223
224         spin_lock_init(&queue->lock);
225         for (i = 0; i < ARRAY_SIZE(queue->tasks); i++)
226                 INIT_LIST_HEAD(&queue->tasks[i]);
227         queue->maxpriority = nr_queues - 1;
228         rpc_reset_waitqueue_priority(queue);
229         queue->qlen = 0;
230         setup_timer(&queue->timer_list.timer, __rpc_queue_timer_fn, (unsigned long)queue);
231         INIT_LIST_HEAD(&queue->timer_list.list);
232         rpc_assign_waitqueue_name(queue, qname);
233 }
234
235 void rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname)
236 {
237         __rpc_init_priority_wait_queue(queue, qname, RPC_NR_PRIORITY);
238 }
239 EXPORT_SYMBOL_GPL(rpc_init_priority_wait_queue);
240
241 void rpc_init_wait_queue(struct rpc_wait_queue *queue, const char *qname)
242 {
243         __rpc_init_priority_wait_queue(queue, qname, 1);
244 }
245 EXPORT_SYMBOL_GPL(rpc_init_wait_queue);
246
247 void rpc_destroy_wait_queue(struct rpc_wait_queue *queue)
248 {
249         del_timer_sync(&queue->timer_list.timer);
250 }
251 EXPORT_SYMBOL_GPL(rpc_destroy_wait_queue);
252
253 static int rpc_wait_bit_killable(struct wait_bit_key *key, int mode)
254 {
255         freezable_schedule_unsafe();
256         if (signal_pending_state(mode, current))
257                 return -ERESTARTSYS;
258         return 0;
259 }
260
261 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG) || IS_ENABLED(CONFIG_TRACEPOINTS)
262 static void rpc_task_set_debuginfo(struct rpc_task *task)
263 {
264         static atomic_t rpc_pid;
265
266         task->tk_pid = atomic_inc_return(&rpc_pid);
267 }
268 #else
269 static inline void rpc_task_set_debuginfo(struct rpc_task *task)
270 {
271 }
272 #endif
273
274 static void rpc_set_active(struct rpc_task *task)
275 {
276         rpc_task_set_debuginfo(task);
277         set_bit(RPC_TASK_ACTIVE, &task->tk_runstate);
278         trace_rpc_task_begin(task->tk_client, task, NULL);
279 }
280
281 /*
282  * Mark an RPC call as having completed by clearing the 'active' bit
283  * and then waking up all tasks that were sleeping.
284  */
285 static int rpc_complete_task(struct rpc_task *task)
286 {
287         void *m = &task->tk_runstate;
288         wait_queue_head_t *wq = bit_waitqueue(m, RPC_TASK_ACTIVE);
289         struct wait_bit_key k = __WAIT_BIT_KEY_INITIALIZER(m, RPC_TASK_ACTIVE);
290         unsigned long flags;
291         int ret;
292
293         trace_rpc_task_complete(task->tk_client, task, NULL);
294
295         spin_lock_irqsave(&wq->lock, flags);
296         clear_bit(RPC_TASK_ACTIVE, &task->tk_runstate);
297         ret = atomic_dec_and_test(&task->tk_count);
298         if (waitqueue_active(wq))
299                 __wake_up_locked_key(wq, TASK_NORMAL, &k);
300         spin_unlock_irqrestore(&wq->lock, flags);
301         return ret;
302 }
303
304 /*
305  * Allow callers to wait for completion of an RPC call
306  *
307  * Note the use of out_of_line_wait_on_bit() rather than wait_on_bit()
308  * to enforce taking of the wq->lock and hence avoid races with
309  * rpc_complete_task().
310  */
311 int __rpc_wait_for_completion_task(struct rpc_task *task, wait_bit_action_f *action)
312 {
313         if (action == NULL)
314                 action = rpc_wait_bit_killable;
315         return out_of_line_wait_on_bit(&task->tk_runstate, RPC_TASK_ACTIVE,
316                         action, TASK_KILLABLE);
317 }
318 EXPORT_SYMBOL_GPL(__rpc_wait_for_completion_task);
319
320 /*
321  * Make an RPC task runnable.
322  *
323  * Note: If the task is ASYNC, and is being made runnable after sitting on an
324  * rpc_wait_queue, this must be called with the queue spinlock held to protect
325  * the wait queue operation.
326  * Note the ordering of rpc_test_and_set_running() and rpc_clear_queued(),
327  * which is needed to ensure that __rpc_execute() doesn't loop (due to the
328  * lockless RPC_IS_QUEUED() test) before we've had a chance to test
329  * the RPC_TASK_RUNNING flag.
330  */
331 static void rpc_make_runnable(struct rpc_task *task)
332 {
333         bool need_wakeup = !rpc_test_and_set_running(task);
334
335         rpc_clear_queued(task);
336         if (!need_wakeup)
337                 return;
338         if (RPC_IS_ASYNC(task)) {
339                 INIT_WORK(&task->u.tk_work, rpc_async_schedule);
340                 queue_work(rpciod_workqueue, &task->u.tk_work);
341         } else
342                 wake_up_bit(&task->tk_runstate, RPC_TASK_QUEUED);
343 }
344
345 /*
346  * Prepare for sleeping on a wait queue.
347  * By always appending tasks to the list we ensure FIFO behavior.
348  * NB: An RPC task will only receive interrupt-driven events as long
349  * as it's on a wait queue.
350  */
351 static void __rpc_sleep_on_priority(struct rpc_wait_queue *q,
352                 struct rpc_task *task,
353                 rpc_action action,
354                 unsigned char queue_priority)
355 {
356         dprintk("RPC: %5u sleep_on(queue \"%s\" time %lu)\n",
357                         task->tk_pid, rpc_qname(q), jiffies);
358
359         trace_rpc_task_sleep(task->tk_client, task, q);
360
361         __rpc_add_wait_queue(q, task, queue_priority);
362
363         WARN_ON_ONCE(task->tk_callback != NULL);
364         task->tk_callback = action;
365         __rpc_add_timer(q, task);
366 }
367
368 void rpc_sleep_on(struct rpc_wait_queue *q, struct rpc_task *task,
369                                 rpc_action action)
370 {
371         /* We shouldn't ever put an inactive task to sleep */
372         WARN_ON_ONCE(!RPC_IS_ACTIVATED(task));
373         if (!RPC_IS_ACTIVATED(task)) {
374                 task->tk_status = -EIO;
375                 rpc_put_task_async(task);
376                 return;
377         }
378
379         /*
380          * Protect the queue operations.
381          */
382         spin_lock_bh(&q->lock);
383         __rpc_sleep_on_priority(q, task, action, task->tk_priority);
384         spin_unlock_bh(&q->lock);
385 }
386 EXPORT_SYMBOL_GPL(rpc_sleep_on);
387
388 void rpc_sleep_on_priority(struct rpc_wait_queue *q, struct rpc_task *task,
389                 rpc_action action, int priority)
390 {
391         /* We shouldn't ever put an inactive task to sleep */
392         WARN_ON_ONCE(!RPC_IS_ACTIVATED(task));
393         if (!RPC_IS_ACTIVATED(task)) {
394                 task->tk_status = -EIO;
395                 rpc_put_task_async(task);
396                 return;
397         }
398
399         /*
400          * Protect the queue operations.
401          */
402         spin_lock_bh(&q->lock);
403         __rpc_sleep_on_priority(q, task, action, priority - RPC_PRIORITY_LOW);
404         spin_unlock_bh(&q->lock);
405 }
406 EXPORT_SYMBOL_GPL(rpc_sleep_on_priority);
407
408 /**
409  * __rpc_do_wake_up_task - wake up a single rpc_task
410  * @queue: wait queue
411  * @task: task to be woken up
412  *
413  * Caller must hold queue->lock, and have cleared the task queued flag.
414  */
415 static void __rpc_do_wake_up_task(struct rpc_wait_queue *queue, struct rpc_task *task)
416 {
417         dprintk("RPC: %5u __rpc_wake_up_task (now %lu)\n",
418                         task->tk_pid, jiffies);
419
420         /* Has the task been executed yet? If not, we cannot wake it up! */
421         if (!RPC_IS_ACTIVATED(task)) {
422                 printk(KERN_ERR "RPC: Inactive task (%p) being woken up!\n", task);
423                 return;
424         }
425
426         trace_rpc_task_wakeup(task->tk_client, task, queue);
427
428         __rpc_remove_wait_queue(queue, task);
429
430         rpc_make_runnable(task);
431
432         dprintk("RPC:       __rpc_wake_up_task done\n");
433 }
434
435 /*
436  * Wake up a queued task while the queue lock is being held
437  */
438 static void rpc_wake_up_task_queue_locked(struct rpc_wait_queue *queue, struct rpc_task *task)
439 {
440         if (RPC_IS_QUEUED(task)) {
441                 smp_rmb();
442                 if (task->tk_waitqueue == queue)
443                         __rpc_do_wake_up_task(queue, task);
444         }
445 }
446
447 /*
448  * Wake up a task on a specific queue
449  */
450 void rpc_wake_up_queued_task(struct rpc_wait_queue *queue, struct rpc_task *task)
451 {
452         spin_lock_bh(&queue->lock);
453         rpc_wake_up_task_queue_locked(queue, task);
454         spin_unlock_bh(&queue->lock);
455 }
456 EXPORT_SYMBOL_GPL(rpc_wake_up_queued_task);
457
458 /*
459  * Wake up the next task on a priority queue.
460  */
461 static struct rpc_task *__rpc_find_next_queued_priority(struct rpc_wait_queue *queue)
462 {
463         struct list_head *q;
464         struct rpc_task *task;
465
466         /*
467          * Service a batch of tasks from a single owner.
468          */
469         q = &queue->tasks[queue->priority];
470         if (!list_empty(q)) {
471                 task = list_entry(q->next, struct rpc_task, u.tk_wait.list);
472                 if (queue->owner == task->tk_owner) {
473                         if (--queue->nr)
474                                 goto out;
475                         list_move_tail(&task->u.tk_wait.list, q);
476                 }
477                 /*
478                  * Check if we need to switch queues.
479                  */
480                 goto new_owner;
481         }
482
483         /*
484          * Service the next queue.
485          */
486         do {
487                 if (q == &queue->tasks[0])
488                         q = &queue->tasks[queue->maxpriority];
489                 else
490                         q = q - 1;
491                 if (!list_empty(q)) {
492                         task = list_entry(q->next, struct rpc_task, u.tk_wait.list);
493                         goto new_queue;
494                 }
495         } while (q != &queue->tasks[queue->priority]);
496
497         rpc_reset_waitqueue_priority(queue);
498         return NULL;
499
500 new_queue:
501         rpc_set_waitqueue_priority(queue, (unsigned int)(q - &queue->tasks[0]));
502 new_owner:
503         rpc_set_waitqueue_owner(queue, task->tk_owner);
504 out:
505         return task;
506 }
507
508 static struct rpc_task *__rpc_find_next_queued(struct rpc_wait_queue *queue)
509 {
510         if (RPC_IS_PRIORITY(queue))
511                 return __rpc_find_next_queued_priority(queue);
512         if (!list_empty(&queue->tasks[0]))
513                 return list_first_entry(&queue->tasks[0], struct rpc_task, u.tk_wait.list);
514         return NULL;
515 }
516
517 /*
518  * Wake up the first task on the wait queue.
519  */
520 struct rpc_task *rpc_wake_up_first(struct rpc_wait_queue *queue,
521                 bool (*func)(struct rpc_task *, void *), void *data)
522 {
523         struct rpc_task *task = NULL;
524
525         dprintk("RPC:       wake_up_first(%p \"%s\")\n",
526                         queue, rpc_qname(queue));
527         spin_lock_bh(&queue->lock);
528         task = __rpc_find_next_queued(queue);
529         if (task != NULL) {
530                 if (func(task, data))
531                         rpc_wake_up_task_queue_locked(queue, task);
532                 else
533                         task = NULL;
534         }
535         spin_unlock_bh(&queue->lock);
536
537         return task;
538 }
539 EXPORT_SYMBOL_GPL(rpc_wake_up_first);
540
541 static bool rpc_wake_up_next_func(struct rpc_task *task, void *data)
542 {
543         return true;
544 }
545
546 /*
547  * Wake up the next task on the wait queue.
548 */
549 struct rpc_task *rpc_wake_up_next(struct rpc_wait_queue *queue)
550 {
551         return rpc_wake_up_first(queue, rpc_wake_up_next_func, NULL);
552 }
553 EXPORT_SYMBOL_GPL(rpc_wake_up_next);
554
555 /**
556  * rpc_wake_up - wake up all rpc_tasks
557  * @queue: rpc_wait_queue on which the tasks are sleeping
558  *
559  * Grabs queue->lock
560  */
561 void rpc_wake_up(struct rpc_wait_queue *queue)
562 {
563         struct list_head *head;
564
565         spin_lock_bh(&queue->lock);
566         head = &queue->tasks[queue->maxpriority];
567         for (;;) {
568                 while (!list_empty(head)) {
569                         struct rpc_task *task;
570                         task = list_first_entry(head,
571                                         struct rpc_task,
572                                         u.tk_wait.list);
573                         rpc_wake_up_task_queue_locked(queue, task);
574                 }
575                 if (head == &queue->tasks[0])
576                         break;
577                 head--;
578         }
579         spin_unlock_bh(&queue->lock);
580 }
581 EXPORT_SYMBOL_GPL(rpc_wake_up);
582
583 /**
584  * rpc_wake_up_status - wake up all rpc_tasks and set their status value.
585  * @queue: rpc_wait_queue on which the tasks are sleeping
586  * @status: status value to set
587  *
588  * Grabs queue->lock
589  */
590 void rpc_wake_up_status(struct rpc_wait_queue *queue, int status)
591 {
592         struct list_head *head;
593
594         spin_lock_bh(&queue->lock);
595         head = &queue->tasks[queue->maxpriority];
596         for (;;) {
597                 while (!list_empty(head)) {
598                         struct rpc_task *task;
599                         task = list_first_entry(head,
600                                         struct rpc_task,
601                                         u.tk_wait.list);
602                         task->tk_status = status;
603                         rpc_wake_up_task_queue_locked(queue, task);
604                 }
605                 if (head == &queue->tasks[0])
606                         break;
607                 head--;
608         }
609         spin_unlock_bh(&queue->lock);
610 }
611 EXPORT_SYMBOL_GPL(rpc_wake_up_status);
612
613 static void __rpc_queue_timer_fn(unsigned long ptr)
614 {
615         struct rpc_wait_queue *queue = (struct rpc_wait_queue *)ptr;
616         struct rpc_task *task, *n;
617         unsigned long expires, now, timeo;
618
619         spin_lock(&queue->lock);
620         expires = now = jiffies;
621         list_for_each_entry_safe(task, n, &queue->timer_list.list, u.tk_wait.timer_list) {
622                 timeo = task->u.tk_wait.expires;
623                 if (time_after_eq(now, timeo)) {
624                         dprintk("RPC: %5u timeout\n", task->tk_pid);
625                         task->tk_status = -ETIMEDOUT;
626                         rpc_wake_up_task_queue_locked(queue, task);
627                         continue;
628                 }
629                 if (expires == now || time_after(expires, timeo))
630                         expires = timeo;
631         }
632         if (!list_empty(&queue->timer_list.list))
633                 rpc_set_queue_timer(queue, expires);
634         spin_unlock(&queue->lock);
635 }
636
637 static void __rpc_atrun(struct rpc_task *task)
638 {
639         if (task->tk_status == -ETIMEDOUT)
640                 task->tk_status = 0;
641 }
642
643 /*
644  * Run a task at a later time
645  */
646 void rpc_delay(struct rpc_task *task, unsigned long delay)
647 {
648         task->tk_timeout = delay;
649         rpc_sleep_on(&delay_queue, task, __rpc_atrun);
650 }
651 EXPORT_SYMBOL_GPL(rpc_delay);
652
653 /*
654  * Helper to call task->tk_ops->rpc_call_prepare
655  */
656 void rpc_prepare_task(struct rpc_task *task)
657 {
658         task->tk_ops->rpc_call_prepare(task, task->tk_calldata);
659 }
660
661 static void
662 rpc_init_task_statistics(struct rpc_task *task)
663 {
664         /* Initialize retry counters */
665         task->tk_garb_retry = 2;
666         task->tk_cred_retry = 2;
667         task->tk_rebind_retry = 2;
668
669         /* starting timestamp */
670         task->tk_start = ktime_get();
671 }
672
673 static void
674 rpc_reset_task_statistics(struct rpc_task *task)
675 {
676         task->tk_timeouts = 0;
677         task->tk_flags &= ~(RPC_CALL_MAJORSEEN|RPC_TASK_KILLED|RPC_TASK_SENT);
678
679         rpc_init_task_statistics(task);
680 }
681
682 /*
683  * Helper that calls task->tk_ops->rpc_call_done if it exists
684  */
685 void rpc_exit_task(struct rpc_task *task)
686 {
687         task->tk_action = NULL;
688         if (task->tk_ops->rpc_call_done != NULL) {
689                 task->tk_ops->rpc_call_done(task, task->tk_calldata);
690                 if (task->tk_action != NULL) {
691                         WARN_ON(RPC_ASSASSINATED(task));
692                         /* Always release the RPC slot and buffer memory */
693                         xprt_release(task);
694                         rpc_reset_task_statistics(task);
695                 }
696         }
697 }
698
699 void rpc_exit(struct rpc_task *task, int status)
700 {
701         task->tk_status = status;
702         task->tk_action = rpc_exit_task;
703         if (RPC_IS_QUEUED(task))
704                 rpc_wake_up_queued_task(task->tk_waitqueue, task);
705 }
706 EXPORT_SYMBOL_GPL(rpc_exit);
707
708 void rpc_release_calldata(const struct rpc_call_ops *ops, void *calldata)
709 {
710         if (ops->rpc_release != NULL)
711                 ops->rpc_release(calldata);
712 }
713
714 /*
715  * This is the RPC `scheduler' (or rather, the finite state machine).
716  */
717 static void __rpc_execute(struct rpc_task *task)
718 {
719         struct rpc_wait_queue *queue;
720         int task_is_async = RPC_IS_ASYNC(task);
721         int status = 0;
722
723         dprintk("RPC: %5u __rpc_execute flags=0x%x\n",
724                         task->tk_pid, task->tk_flags);
725
726         WARN_ON_ONCE(RPC_IS_QUEUED(task));
727         if (RPC_IS_QUEUED(task))
728                 return;
729
730         for (;;) {
731                 void (*do_action)(struct rpc_task *);
732
733                 /*
734                  * Execute any pending callback first.
735                  */
736                 do_action = task->tk_callback;
737                 task->tk_callback = NULL;
738                 if (do_action == NULL) {
739                         /*
740                          * Perform the next FSM step.
741                          * tk_action may be NULL if the task has been killed.
742                          * In particular, note that rpc_killall_tasks may
743                          * do this at any time, so beware when dereferencing.
744                          */
745                         do_action = task->tk_action;
746                         if (do_action == NULL)
747                                 break;
748                 }
749                 trace_rpc_task_run_action(task->tk_client, task, task->tk_action);
750                 do_action(task);
751
752                 /*
753                  * Lockless check for whether task is sleeping or not.
754                  */
755                 if (!RPC_IS_QUEUED(task))
756                         continue;
757                 /*
758                  * The queue->lock protects against races with
759                  * rpc_make_runnable().
760                  *
761                  * Note that once we clear RPC_TASK_RUNNING on an asynchronous
762                  * rpc_task, rpc_make_runnable() can assign it to a
763                  * different workqueue. We therefore cannot assume that the
764                  * rpc_task pointer may still be dereferenced.
765                  */
766                 queue = task->tk_waitqueue;
767                 spin_lock_bh(&queue->lock);
768                 if (!RPC_IS_QUEUED(task)) {
769                         spin_unlock_bh(&queue->lock);
770                         continue;
771                 }
772                 rpc_clear_running(task);
773                 spin_unlock_bh(&queue->lock);
774                 if (task_is_async)
775                         return;
776
777                 /* sync task: sleep here */
778                 dprintk("RPC: %5u sync task going to sleep\n", task->tk_pid);
779                 status = out_of_line_wait_on_bit(&task->tk_runstate,
780                                 RPC_TASK_QUEUED, rpc_wait_bit_killable,
781                                 TASK_KILLABLE);
782                 if (status == -ERESTARTSYS) {
783                         /*
784                          * When a sync task receives a signal, it exits with
785                          * -ERESTARTSYS. In order to catch any callbacks that
786                          * clean up after sleeping on some queue, we don't
787                          * break the loop here, but go around once more.
788                          */
789                         dprintk("RPC: %5u got signal\n", task->tk_pid);
790                         task->tk_flags |= RPC_TASK_KILLED;
791                         rpc_exit(task, -ERESTARTSYS);
792                 }
793                 dprintk("RPC: %5u sync task resuming\n", task->tk_pid);
794         }
795
796         dprintk("RPC: %5u return %d, status %d\n", task->tk_pid, status,
797                         task->tk_status);
798         /* Release all resources associated with the task */
799         rpc_release_task(task);
800 }
801
802 /*
803  * User-visible entry point to the scheduler.
804  *
805  * This may be called recursively if e.g. an async NFS task updates
806  * the attributes and finds that dirty pages must be flushed.
807  * NOTE: Upon exit of this function the task is guaranteed to be
808  *       released. In particular note that tk_release() will have
809  *       been called, so your task memory may have been freed.
810  */
811 void rpc_execute(struct rpc_task *task)
812 {
813         bool is_async = RPC_IS_ASYNC(task);
814
815         rpc_set_active(task);
816         rpc_make_runnable(task);
817         if (!is_async)
818                 __rpc_execute(task);
819 }
820
821 static void rpc_async_schedule(struct work_struct *work)
822 {
823         __rpc_execute(container_of(work, struct rpc_task, u.tk_work));
824 }
825
826 /**
827  * rpc_malloc - allocate an RPC buffer
828  * @task: RPC task that will use this buffer
829  * @size: requested byte size
830  *
831  * To prevent rpciod from hanging, this allocator never sleeps,
832  * returning NULL and suppressing warning if the request cannot be serviced
833  * immediately.
834  * The caller can arrange to sleep in a way that is safe for rpciod.
835  *
836  * Most requests are 'small' (under 2KiB) and can be serviced from a
837  * mempool, ensuring that NFS reads and writes can always proceed,
838  * and that there is good locality of reference for these buffers.
839  *
840  * In order to avoid memory starvation triggering more writebacks of
841  * NFS requests, we avoid using GFP_KERNEL.
842  */
843 void *rpc_malloc(struct rpc_task *task, size_t size)
844 {
845         struct rpc_buffer *buf;
846         gfp_t gfp = GFP_NOIO | __GFP_NOWARN;
847
848         if (RPC_IS_SWAPPER(task))
849                 gfp = __GFP_MEMALLOC | GFP_NOWAIT | __GFP_NOWARN;
850
851         size += sizeof(struct rpc_buffer);
852         if (size <= RPC_BUFFER_MAXSIZE)
853                 buf = mempool_alloc(rpc_buffer_mempool, gfp);
854         else
855                 buf = kmalloc(size, gfp);
856
857         if (!buf)
858                 return NULL;
859
860         buf->len = size;
861         dprintk("RPC: %5u allocated buffer of size %zu at %p\n",
862                         task->tk_pid, size, buf);
863         return &buf->data;
864 }
865 EXPORT_SYMBOL_GPL(rpc_malloc);
866
867 /**
868  * rpc_free - free buffer allocated via rpc_malloc
869  * @buffer: buffer to free
870  *
871  */
872 void rpc_free(void *buffer)
873 {
874         size_t size;
875         struct rpc_buffer *buf;
876
877         if (!buffer)
878                 return;
879
880         buf = container_of(buffer, struct rpc_buffer, data);
881         size = buf->len;
882
883         dprintk("RPC:       freeing buffer of size %zu at %p\n",
884                         size, buf);
885
886         if (size <= RPC_BUFFER_MAXSIZE)
887                 mempool_free(buf, rpc_buffer_mempool);
888         else
889                 kfree(buf);
890 }
891 EXPORT_SYMBOL_GPL(rpc_free);
892
893 /*
894  * Creation and deletion of RPC task structures
895  */
896 static void rpc_init_task(struct rpc_task *task, const struct rpc_task_setup *task_setup_data)
897 {
898         memset(task, 0, sizeof(*task));
899         atomic_set(&task->tk_count, 1);
900         task->tk_flags  = task_setup_data->flags;
901         task->tk_ops = task_setup_data->callback_ops;
902         task->tk_calldata = task_setup_data->callback_data;
903         INIT_LIST_HEAD(&task->tk_task);
904
905         task->tk_priority = task_setup_data->priority - RPC_PRIORITY_LOW;
906         task->tk_owner = current->tgid;
907
908         /* Initialize workqueue for async tasks */
909         task->tk_workqueue = task_setup_data->workqueue;
910
911         if (task->tk_ops->rpc_call_prepare != NULL)
912                 task->tk_action = rpc_prepare_task;
913
914         rpc_init_task_statistics(task);
915
916         dprintk("RPC:       new task initialized, procpid %u\n",
917                                 task_pid_nr(current));
918 }
919
920 static struct rpc_task *
921 rpc_alloc_task(void)
922 {
923         return (struct rpc_task *)mempool_alloc(rpc_task_mempool, GFP_NOIO);
924 }
925
926 /*
927  * Create a new task for the specified client.
928  */
929 struct rpc_task *rpc_new_task(const struct rpc_task_setup *setup_data)
930 {
931         struct rpc_task *task = setup_data->task;
932         unsigned short flags = 0;
933
934         if (task == NULL) {
935                 task = rpc_alloc_task();
936                 if (task == NULL) {
937                         rpc_release_calldata(setup_data->callback_ops,
938                                         setup_data->callback_data);
939                         return ERR_PTR(-ENOMEM);
940                 }
941                 flags = RPC_TASK_DYNAMIC;
942         }
943
944         rpc_init_task(task, setup_data);
945         task->tk_flags |= flags;
946         dprintk("RPC:       allocated task %p\n", task);
947         return task;
948 }
949
950 /*
951  * rpc_free_task - release rpc task and perform cleanups
952  *
953  * Note that we free up the rpc_task _after_ rpc_release_calldata()
954  * in order to work around a workqueue dependency issue.
955  *
956  * Tejun Heo states:
957  * "Workqueue currently considers two work items to be the same if they're
958  * on the same address and won't execute them concurrently - ie. it
959  * makes a work item which is queued again while being executed wait
960  * for the previous execution to complete.
961  *
962  * If a work function frees the work item, and then waits for an event
963  * which should be performed by another work item and *that* work item
964  * recycles the freed work item, it can create a false dependency loop.
965  * There really is no reliable way to detect this short of verifying
966  * every memory free."
967  *
968  */
969 static void rpc_free_task(struct rpc_task *task)
970 {
971         unsigned short tk_flags = task->tk_flags;
972
973         rpc_release_calldata(task->tk_ops, task->tk_calldata);
974
975         if (tk_flags & RPC_TASK_DYNAMIC) {
976                 dprintk("RPC: %5u freeing task\n", task->tk_pid);
977                 mempool_free(task, rpc_task_mempool);
978         }
979 }
980
981 static void rpc_async_release(struct work_struct *work)
982 {
983         rpc_free_task(container_of(work, struct rpc_task, u.tk_work));
984 }
985
986 static void rpc_release_resources_task(struct rpc_task *task)
987 {
988         xprt_release(task);
989         if (task->tk_msg.rpc_cred) {
990                 put_rpccred(task->tk_msg.rpc_cred);
991                 task->tk_msg.rpc_cred = NULL;
992         }
993         rpc_task_release_client(task);
994 }
995
996 static void rpc_final_put_task(struct rpc_task *task,
997                 struct workqueue_struct *q)
998 {
999         if (q != NULL) {
1000                 INIT_WORK(&task->u.tk_work, rpc_async_release);
1001                 queue_work(q, &task->u.tk_work);
1002         } else
1003                 rpc_free_task(task);
1004 }
1005
1006 static void rpc_do_put_task(struct rpc_task *task, struct workqueue_struct *q)
1007 {
1008         if (atomic_dec_and_test(&task->tk_count)) {
1009                 rpc_release_resources_task(task);
1010                 rpc_final_put_task(task, q);
1011         }
1012 }
1013
1014 void rpc_put_task(struct rpc_task *task)
1015 {
1016         rpc_do_put_task(task, NULL);
1017 }
1018 EXPORT_SYMBOL_GPL(rpc_put_task);
1019
1020 void rpc_put_task_async(struct rpc_task *task)
1021 {
1022         rpc_do_put_task(task, task->tk_workqueue);
1023 }
1024 EXPORT_SYMBOL_GPL(rpc_put_task_async);
1025
1026 static void rpc_release_task(struct rpc_task *task)
1027 {
1028         dprintk("RPC: %5u release task\n", task->tk_pid);
1029
1030         WARN_ON_ONCE(RPC_IS_QUEUED(task));
1031
1032         rpc_release_resources_task(task);
1033
1034         /*
1035          * Note: at this point we have been removed from rpc_clnt->cl_tasks,
1036          * so it should be safe to use task->tk_count as a test for whether
1037          * or not any other processes still hold references to our rpc_task.
1038          */
1039         if (atomic_read(&task->tk_count) != 1 + !RPC_IS_ASYNC(task)) {
1040                 /* Wake up anyone who may be waiting for task completion */
1041                 if (!rpc_complete_task(task))
1042                         return;
1043         } else {
1044                 if (!atomic_dec_and_test(&task->tk_count))
1045                         return;
1046         }
1047         rpc_final_put_task(task, task->tk_workqueue);
1048 }
1049
1050 int rpciod_up(void)
1051 {
1052         return try_module_get(THIS_MODULE) ? 0 : -EINVAL;
1053 }
1054
1055 void rpciod_down(void)
1056 {
1057         module_put(THIS_MODULE);
1058 }
1059
1060 /*
1061  * Start up the rpciod workqueue.
1062  */
1063 static int rpciod_start(void)
1064 {
1065         struct workqueue_struct *wq;
1066
1067         /*
1068          * Create the rpciod thread and wait for it to start.
1069          */
1070         dprintk("RPC:       creating workqueue rpciod\n");
1071         /* Note: highpri because network receive is latency sensitive */
1072         wq = alloc_workqueue("rpciod", WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
1073         rpciod_workqueue = wq;
1074         return rpciod_workqueue != NULL;
1075 }
1076
1077 static void rpciod_stop(void)
1078 {
1079         struct workqueue_struct *wq = NULL;
1080
1081         if (rpciod_workqueue == NULL)
1082                 return;
1083         dprintk("RPC:       destroying workqueue rpciod\n");
1084
1085         wq = rpciod_workqueue;
1086         rpciod_workqueue = NULL;
1087         destroy_workqueue(wq);
1088 }
1089
1090 void
1091 rpc_destroy_mempool(void)
1092 {
1093         rpciod_stop();
1094         mempool_destroy(rpc_buffer_mempool);
1095         mempool_destroy(rpc_task_mempool);
1096         kmem_cache_destroy(rpc_task_slabp);
1097         kmem_cache_destroy(rpc_buffer_slabp);
1098         rpc_destroy_wait_queue(&delay_queue);
1099 }
1100
1101 int
1102 rpc_init_mempool(void)
1103 {
1104         /*
1105          * The following is not strictly a mempool initialisation,
1106          * but there is no harm in doing it here
1107          */
1108         rpc_init_wait_queue(&delay_queue, "delayq");
1109         if (!rpciod_start())
1110                 goto err_nomem;
1111
1112         rpc_task_slabp = kmem_cache_create("rpc_tasks",
1113                                              sizeof(struct rpc_task),
1114                                              0, SLAB_HWCACHE_ALIGN,
1115                                              NULL);
1116         if (!rpc_task_slabp)
1117                 goto err_nomem;
1118         rpc_buffer_slabp = kmem_cache_create("rpc_buffers",
1119                                              RPC_BUFFER_MAXSIZE,
1120                                              0, SLAB_HWCACHE_ALIGN,
1121                                              NULL);
1122         if (!rpc_buffer_slabp)
1123                 goto err_nomem;
1124         rpc_task_mempool = mempool_create_slab_pool(RPC_TASK_POOLSIZE,
1125                                                     rpc_task_slabp);
1126         if (!rpc_task_mempool)
1127                 goto err_nomem;
1128         rpc_buffer_mempool = mempool_create_slab_pool(RPC_BUFFER_POOLSIZE,
1129                                                       rpc_buffer_slabp);
1130         if (!rpc_buffer_mempool)
1131                 goto err_nomem;
1132         return 0;
1133 err_nomem:
1134         rpc_destroy_mempool();
1135         return -ENOMEM;
1136 }