OSDN Git Service

MIPS: VDSO: Prevent use of smp_processor_id()
[android-x86/kernel.git] / net / sunrpc / sched.c
1 /*
2  * linux/net/sunrpc/sched.c
3  *
4  * Scheduling for synchronous and asynchronous RPC requests.
5  *
6  * Copyright (C) 1996 Olaf Kirch, <okir@monad.swb.de>
7  *
8  * TCP NFS related read + write fixes
9  * (C) 1999 Dave Airlie, University of Limerick, Ireland <airlied@linux.ie>
10  */
11
12 #include <linux/module.h>
13
14 #include <linux/sched.h>
15 #include <linux/interrupt.h>
16 #include <linux/slab.h>
17 #include <linux/mempool.h>
18 #include <linux/smp.h>
19 #include <linux/spinlock.h>
20 #include <linux/mutex.h>
21 #include <linux/freezer.h>
22
23 #include <linux/sunrpc/clnt.h>
24
25 #include "sunrpc.h"
26
27 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
28 #define RPCDBG_FACILITY         RPCDBG_SCHED
29 #endif
30
31 #define CREATE_TRACE_POINTS
32 #include <trace/events/sunrpc.h>
33
34 /*
35  * RPC slabs and memory pools
36  */
37 #define RPC_BUFFER_MAXSIZE      (2048)
38 #define RPC_BUFFER_POOLSIZE     (8)
39 #define RPC_TASK_POOLSIZE       (8)
40 static struct kmem_cache        *rpc_task_slabp __read_mostly;
41 static struct kmem_cache        *rpc_buffer_slabp __read_mostly;
42 static mempool_t        *rpc_task_mempool __read_mostly;
43 static mempool_t        *rpc_buffer_mempool __read_mostly;
44
45 static void                     rpc_async_schedule(struct work_struct *);
46 static void                      rpc_release_task(struct rpc_task *task);
47 static void __rpc_queue_timer_fn(unsigned long ptr);
48
49 /*
50  * RPC tasks sit here while waiting for conditions to improve.
51  */
52 static struct rpc_wait_queue delay_queue;
53
54 /*
55  * rpciod-related stuff
56  */
57 struct workqueue_struct *rpciod_workqueue __read_mostly;
58 struct workqueue_struct *xprtiod_workqueue __read_mostly;
59
60 /*
61  * Disable the timer for a given RPC task. Should be called with
62  * queue->lock and bh_disabled in order to avoid races within
63  * rpc_run_timer().
64  */
65 static void
66 __rpc_disable_timer(struct rpc_wait_queue *queue, struct rpc_task *task)
67 {
68         if (task->tk_timeout == 0)
69                 return;
70         dprintk("RPC: %5u disabling timer\n", task->tk_pid);
71         task->tk_timeout = 0;
72         list_del(&task->u.tk_wait.timer_list);
73         if (list_empty(&queue->timer_list.list))
74                 del_timer(&queue->timer_list.timer);
75 }
76
77 static void
78 rpc_set_queue_timer(struct rpc_wait_queue *queue, unsigned long expires)
79 {
80         queue->timer_list.expires = expires;
81         mod_timer(&queue->timer_list.timer, expires);
82 }
83
84 /*
85  * Set up a timer for the current task.
86  */
87 static void
88 __rpc_add_timer(struct rpc_wait_queue *queue, struct rpc_task *task)
89 {
90         if (!task->tk_timeout)
91                 return;
92
93         dprintk("RPC: %5u setting alarm for %u ms\n",
94                 task->tk_pid, jiffies_to_msecs(task->tk_timeout));
95
96         task->u.tk_wait.expires = jiffies + task->tk_timeout;
97         if (list_empty(&queue->timer_list.list) || time_before(task->u.tk_wait.expires, queue->timer_list.expires))
98                 rpc_set_queue_timer(queue, task->u.tk_wait.expires);
99         list_add(&task->u.tk_wait.timer_list, &queue->timer_list.list);
100 }
101
102 static void rpc_rotate_queue_owner(struct rpc_wait_queue *queue)
103 {
104         struct list_head *q = &queue->tasks[queue->priority];
105         struct rpc_task *task;
106
107         if (!list_empty(q)) {
108                 task = list_first_entry(q, struct rpc_task, u.tk_wait.list);
109                 if (task->tk_owner == queue->owner)
110                         list_move_tail(&task->u.tk_wait.list, q);
111         }
112 }
113
114 static void rpc_set_waitqueue_priority(struct rpc_wait_queue *queue, int priority)
115 {
116         if (queue->priority != priority) {
117                 /* Fairness: rotate the list when changing priority */
118                 rpc_rotate_queue_owner(queue);
119                 queue->priority = priority;
120         }
121 }
122
123 static void rpc_set_waitqueue_owner(struct rpc_wait_queue *queue, pid_t pid)
124 {
125         queue->owner = pid;
126         queue->nr = RPC_BATCH_COUNT;
127 }
128
129 static void rpc_reset_waitqueue_priority(struct rpc_wait_queue *queue)
130 {
131         rpc_set_waitqueue_priority(queue, queue->maxpriority);
132         rpc_set_waitqueue_owner(queue, 0);
133 }
134
135 /*
136  * Add new request to a priority queue.
137  */
138 static void __rpc_add_wait_queue_priority(struct rpc_wait_queue *queue,
139                 struct rpc_task *task,
140                 unsigned char queue_priority)
141 {
142         struct list_head *q;
143         struct rpc_task *t;
144
145         INIT_LIST_HEAD(&task->u.tk_wait.links);
146         if (unlikely(queue_priority > queue->maxpriority))
147                 queue_priority = queue->maxpriority;
148         if (queue_priority > queue->priority)
149                 rpc_set_waitqueue_priority(queue, queue_priority);
150         q = &queue->tasks[queue_priority];
151         list_for_each_entry(t, q, u.tk_wait.list) {
152                 if (t->tk_owner == task->tk_owner) {
153                         list_add_tail(&task->u.tk_wait.list, &t->u.tk_wait.links);
154                         return;
155                 }
156         }
157         list_add_tail(&task->u.tk_wait.list, q);
158 }
159
160 /*
161  * Add new request to wait queue.
162  *
163  * Swapper tasks always get inserted at the head of the queue.
164  * This should avoid many nasty memory deadlocks and hopefully
165  * improve overall performance.
166  * Everyone else gets appended to the queue to ensure proper FIFO behavior.
167  */
168 static void __rpc_add_wait_queue(struct rpc_wait_queue *queue,
169                 struct rpc_task *task,
170                 unsigned char queue_priority)
171 {
172         WARN_ON_ONCE(RPC_IS_QUEUED(task));
173         if (RPC_IS_QUEUED(task))
174                 return;
175
176         if (RPC_IS_PRIORITY(queue))
177                 __rpc_add_wait_queue_priority(queue, task, queue_priority);
178         else if (RPC_IS_SWAPPER(task))
179                 list_add(&task->u.tk_wait.list, &queue->tasks[0]);
180         else
181                 list_add_tail(&task->u.tk_wait.list, &queue->tasks[0]);
182         task->tk_waitqueue = queue;
183         queue->qlen++;
184         /* barrier matches the read in rpc_wake_up_task_queue_locked() */
185         smp_wmb();
186         rpc_set_queued(task);
187
188         dprintk("RPC: %5u added to queue %p \"%s\"\n",
189                         task->tk_pid, queue, rpc_qname(queue));
190 }
191
192 /*
193  * Remove request from a priority queue.
194  */
195 static void __rpc_remove_wait_queue_priority(struct rpc_task *task)
196 {
197         struct rpc_task *t;
198
199         if (!list_empty(&task->u.tk_wait.links)) {
200                 t = list_entry(task->u.tk_wait.links.next, struct rpc_task, u.tk_wait.list);
201                 list_move(&t->u.tk_wait.list, &task->u.tk_wait.list);
202                 list_splice_init(&task->u.tk_wait.links, &t->u.tk_wait.links);
203         }
204 }
205
206 /*
207  * Remove request from queue.
208  * Note: must be called with spin lock held.
209  */
210 static void __rpc_remove_wait_queue(struct rpc_wait_queue *queue, struct rpc_task *task)
211 {
212         __rpc_disable_timer(queue, task);
213         if (RPC_IS_PRIORITY(queue))
214                 __rpc_remove_wait_queue_priority(task);
215         list_del(&task->u.tk_wait.list);
216         queue->qlen--;
217         dprintk("RPC: %5u removed from queue %p \"%s\"\n",
218                         task->tk_pid, queue, rpc_qname(queue));
219 }
220
221 static void __rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname, unsigned char nr_queues)
222 {
223         int i;
224
225         spin_lock_init(&queue->lock);
226         for (i = 0; i < ARRAY_SIZE(queue->tasks); i++)
227                 INIT_LIST_HEAD(&queue->tasks[i]);
228         queue->maxpriority = nr_queues - 1;
229         rpc_reset_waitqueue_priority(queue);
230         queue->qlen = 0;
231         setup_timer(&queue->timer_list.timer, __rpc_queue_timer_fn, (unsigned long)queue);
232         INIT_LIST_HEAD(&queue->timer_list.list);
233         rpc_assign_waitqueue_name(queue, qname);
234 }
235
236 void rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname)
237 {
238         __rpc_init_priority_wait_queue(queue, qname, RPC_NR_PRIORITY);
239 }
240 EXPORT_SYMBOL_GPL(rpc_init_priority_wait_queue);
241
242 void rpc_init_wait_queue(struct rpc_wait_queue *queue, const char *qname)
243 {
244         __rpc_init_priority_wait_queue(queue, qname, 1);
245 }
246 EXPORT_SYMBOL_GPL(rpc_init_wait_queue);
247
248 void rpc_destroy_wait_queue(struct rpc_wait_queue *queue)
249 {
250         del_timer_sync(&queue->timer_list.timer);
251 }
252 EXPORT_SYMBOL_GPL(rpc_destroy_wait_queue);
253
254 static int rpc_wait_bit_killable(struct wait_bit_key *key, int mode)
255 {
256         freezable_schedule_unsafe();
257         if (signal_pending_state(mode, current))
258                 return -ERESTARTSYS;
259         return 0;
260 }
261
262 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG) || IS_ENABLED(CONFIG_TRACEPOINTS)
263 static void rpc_task_set_debuginfo(struct rpc_task *task)
264 {
265         static atomic_t rpc_pid;
266
267         task->tk_pid = atomic_inc_return(&rpc_pid);
268 }
269 #else
270 static inline void rpc_task_set_debuginfo(struct rpc_task *task)
271 {
272 }
273 #endif
274
275 static void rpc_set_active(struct rpc_task *task)
276 {
277         rpc_task_set_debuginfo(task);
278         set_bit(RPC_TASK_ACTIVE, &task->tk_runstate);
279         trace_rpc_task_begin(task->tk_client, task, NULL);
280 }
281
282 /*
283  * Mark an RPC call as having completed by clearing the 'active' bit
284  * and then waking up all tasks that were sleeping.
285  */
286 static int rpc_complete_task(struct rpc_task *task)
287 {
288         void *m = &task->tk_runstate;
289         wait_queue_head_t *wq = bit_waitqueue(m, RPC_TASK_ACTIVE);
290         struct wait_bit_key k = __WAIT_BIT_KEY_INITIALIZER(m, RPC_TASK_ACTIVE);
291         unsigned long flags;
292         int ret;
293
294         trace_rpc_task_complete(task->tk_client, task, NULL);
295
296         spin_lock_irqsave(&wq->lock, flags);
297         clear_bit(RPC_TASK_ACTIVE, &task->tk_runstate);
298         ret = atomic_dec_and_test(&task->tk_count);
299         if (waitqueue_active(wq))
300                 __wake_up_locked_key(wq, TASK_NORMAL, &k);
301         spin_unlock_irqrestore(&wq->lock, flags);
302         return ret;
303 }
304
305 /*
306  * Allow callers to wait for completion of an RPC call
307  *
308  * Note the use of out_of_line_wait_on_bit() rather than wait_on_bit()
309  * to enforce taking of the wq->lock and hence avoid races with
310  * rpc_complete_task().
311  */
312 int __rpc_wait_for_completion_task(struct rpc_task *task, wait_bit_action_f *action)
313 {
314         if (action == NULL)
315                 action = rpc_wait_bit_killable;
316         return out_of_line_wait_on_bit(&task->tk_runstate, RPC_TASK_ACTIVE,
317                         action, TASK_KILLABLE);
318 }
319 EXPORT_SYMBOL_GPL(__rpc_wait_for_completion_task);
320
321 /*
322  * Make an RPC task runnable.
323  *
324  * Note: If the task is ASYNC, and is being made runnable after sitting on an
325  * rpc_wait_queue, this must be called with the queue spinlock held to protect
326  * the wait queue operation.
327  * Note the ordering of rpc_test_and_set_running() and rpc_clear_queued(),
328  * which is needed to ensure that __rpc_execute() doesn't loop (due to the
329  * lockless RPC_IS_QUEUED() test) before we've had a chance to test
330  * the RPC_TASK_RUNNING flag.
331  */
332 static void rpc_make_runnable(struct workqueue_struct *wq,
333                 struct rpc_task *task)
334 {
335         bool need_wakeup = !rpc_test_and_set_running(task);
336
337         rpc_clear_queued(task);
338         if (!need_wakeup)
339                 return;
340         if (RPC_IS_ASYNC(task)) {
341                 INIT_WORK(&task->u.tk_work, rpc_async_schedule);
342                 queue_work(wq, &task->u.tk_work);
343         } else
344                 wake_up_bit(&task->tk_runstate, RPC_TASK_QUEUED);
345 }
346
347 /*
348  * Prepare for sleeping on a wait queue.
349  * By always appending tasks to the list we ensure FIFO behavior.
350  * NB: An RPC task will only receive interrupt-driven events as long
351  * as it's on a wait queue.
352  */
353 static void __rpc_sleep_on_priority(struct rpc_wait_queue *q,
354                 struct rpc_task *task,
355                 rpc_action action,
356                 unsigned char queue_priority)
357 {
358         dprintk("RPC: %5u sleep_on(queue \"%s\" time %lu)\n",
359                         task->tk_pid, rpc_qname(q), jiffies);
360
361         trace_rpc_task_sleep(task->tk_client, task, q);
362
363         __rpc_add_wait_queue(q, task, queue_priority);
364
365         WARN_ON_ONCE(task->tk_callback != NULL);
366         task->tk_callback = action;
367         __rpc_add_timer(q, task);
368 }
369
370 void rpc_sleep_on(struct rpc_wait_queue *q, struct rpc_task *task,
371                                 rpc_action action)
372 {
373         /* We shouldn't ever put an inactive task to sleep */
374         WARN_ON_ONCE(!RPC_IS_ACTIVATED(task));
375         if (!RPC_IS_ACTIVATED(task)) {
376                 task->tk_status = -EIO;
377                 rpc_put_task_async(task);
378                 return;
379         }
380
381         /*
382          * Protect the queue operations.
383          */
384         spin_lock_bh(&q->lock);
385         __rpc_sleep_on_priority(q, task, action, task->tk_priority);
386         spin_unlock_bh(&q->lock);
387 }
388 EXPORT_SYMBOL_GPL(rpc_sleep_on);
389
390 void rpc_sleep_on_priority(struct rpc_wait_queue *q, struct rpc_task *task,
391                 rpc_action action, int priority)
392 {
393         /* We shouldn't ever put an inactive task to sleep */
394         WARN_ON_ONCE(!RPC_IS_ACTIVATED(task));
395         if (!RPC_IS_ACTIVATED(task)) {
396                 task->tk_status = -EIO;
397                 rpc_put_task_async(task);
398                 return;
399         }
400
401         /*
402          * Protect the queue operations.
403          */
404         spin_lock_bh(&q->lock);
405         __rpc_sleep_on_priority(q, task, action, priority - RPC_PRIORITY_LOW);
406         spin_unlock_bh(&q->lock);
407 }
408 EXPORT_SYMBOL_GPL(rpc_sleep_on_priority);
409
410 /**
411  * __rpc_do_wake_up_task_on_wq - wake up a single rpc_task
412  * @wq: workqueue on which to run task
413  * @queue: wait queue
414  * @task: task to be woken up
415  *
416  * Caller must hold queue->lock, and have cleared the task queued flag.
417  */
418 static void __rpc_do_wake_up_task_on_wq(struct workqueue_struct *wq,
419                 struct rpc_wait_queue *queue,
420                 struct rpc_task *task)
421 {
422         dprintk("RPC: %5u __rpc_wake_up_task (now %lu)\n",
423                         task->tk_pid, jiffies);
424
425         /* Has the task been executed yet? If not, we cannot wake it up! */
426         if (!RPC_IS_ACTIVATED(task)) {
427                 printk(KERN_ERR "RPC: Inactive task (%p) being woken up!\n", task);
428                 return;
429         }
430
431         trace_rpc_task_wakeup(task->tk_client, task, queue);
432
433         __rpc_remove_wait_queue(queue, task);
434
435         rpc_make_runnable(wq, task);
436
437         dprintk("RPC:       __rpc_wake_up_task done\n");
438 }
439
440 /*
441  * Wake up a queued task while the queue lock is being held
442  */
443 static void rpc_wake_up_task_on_wq_queue_locked(struct workqueue_struct *wq,
444                 struct rpc_wait_queue *queue, struct rpc_task *task)
445 {
446         if (RPC_IS_QUEUED(task)) {
447                 smp_rmb();
448                 if (task->tk_waitqueue == queue)
449                         __rpc_do_wake_up_task_on_wq(wq, queue, task);
450         }
451 }
452
453 /*
454  * Wake up a queued task while the queue lock is being held
455  */
456 static void rpc_wake_up_task_queue_locked(struct rpc_wait_queue *queue, struct rpc_task *task)
457 {
458         rpc_wake_up_task_on_wq_queue_locked(rpciod_workqueue, queue, task);
459 }
460
461 /*
462  * Wake up a task on a specific queue
463  */
464 void rpc_wake_up_queued_task(struct rpc_wait_queue *queue, struct rpc_task *task)
465 {
466         spin_lock_bh(&queue->lock);
467         rpc_wake_up_task_queue_locked(queue, task);
468         spin_unlock_bh(&queue->lock);
469 }
470 EXPORT_SYMBOL_GPL(rpc_wake_up_queued_task);
471
472 /*
473  * Wake up the next task on a priority queue.
474  */
475 static struct rpc_task *__rpc_find_next_queued_priority(struct rpc_wait_queue *queue)
476 {
477         struct list_head *q;
478         struct rpc_task *task;
479
480         /*
481          * Service a batch of tasks from a single owner.
482          */
483         q = &queue->tasks[queue->priority];
484         if (!list_empty(q)) {
485                 task = list_entry(q->next, struct rpc_task, u.tk_wait.list);
486                 if (queue->owner == task->tk_owner) {
487                         if (--queue->nr)
488                                 goto out;
489                         list_move_tail(&task->u.tk_wait.list, q);
490                 }
491                 /*
492                  * Check if we need to switch queues.
493                  */
494                 goto new_owner;
495         }
496
497         /*
498          * Service the next queue.
499          */
500         do {
501                 if (q == &queue->tasks[0])
502                         q = &queue->tasks[queue->maxpriority];
503                 else
504                         q = q - 1;
505                 if (!list_empty(q)) {
506                         task = list_entry(q->next, struct rpc_task, u.tk_wait.list);
507                         goto new_queue;
508                 }
509         } while (q != &queue->tasks[queue->priority]);
510
511         rpc_reset_waitqueue_priority(queue);
512         return NULL;
513
514 new_queue:
515         rpc_set_waitqueue_priority(queue, (unsigned int)(q - &queue->tasks[0]));
516 new_owner:
517         rpc_set_waitqueue_owner(queue, task->tk_owner);
518 out:
519         return task;
520 }
521
522 static struct rpc_task *__rpc_find_next_queued(struct rpc_wait_queue *queue)
523 {
524         if (RPC_IS_PRIORITY(queue))
525                 return __rpc_find_next_queued_priority(queue);
526         if (!list_empty(&queue->tasks[0]))
527                 return list_first_entry(&queue->tasks[0], struct rpc_task, u.tk_wait.list);
528         return NULL;
529 }
530
531 /*
532  * Wake up the first task on the wait queue.
533  */
534 struct rpc_task *rpc_wake_up_first_on_wq(struct workqueue_struct *wq,
535                 struct rpc_wait_queue *queue,
536                 bool (*func)(struct rpc_task *, void *), void *data)
537 {
538         struct rpc_task *task = NULL;
539
540         dprintk("RPC:       wake_up_first(%p \"%s\")\n",
541                         queue, rpc_qname(queue));
542         spin_lock_bh(&queue->lock);
543         task = __rpc_find_next_queued(queue);
544         if (task != NULL) {
545                 if (func(task, data))
546                         rpc_wake_up_task_on_wq_queue_locked(wq, queue, task);
547                 else
548                         task = NULL;
549         }
550         spin_unlock_bh(&queue->lock);
551
552         return task;
553 }
554
555 /*
556  * Wake up the first task on the wait queue.
557  */
558 struct rpc_task *rpc_wake_up_first(struct rpc_wait_queue *queue,
559                 bool (*func)(struct rpc_task *, void *), void *data)
560 {
561         return rpc_wake_up_first_on_wq(rpciod_workqueue, queue, func, data);
562 }
563 EXPORT_SYMBOL_GPL(rpc_wake_up_first);
564
565 static bool rpc_wake_up_next_func(struct rpc_task *task, void *data)
566 {
567         return true;
568 }
569
570 /*
571  * Wake up the next task on the wait queue.
572 */
573 struct rpc_task *rpc_wake_up_next(struct rpc_wait_queue *queue)
574 {
575         return rpc_wake_up_first(queue, rpc_wake_up_next_func, NULL);
576 }
577 EXPORT_SYMBOL_GPL(rpc_wake_up_next);
578
579 /**
580  * rpc_wake_up - wake up all rpc_tasks
581  * @queue: rpc_wait_queue on which the tasks are sleeping
582  *
583  * Grabs queue->lock
584  */
585 void rpc_wake_up(struct rpc_wait_queue *queue)
586 {
587         struct list_head *head;
588
589         spin_lock_bh(&queue->lock);
590         head = &queue->tasks[queue->maxpriority];
591         for (;;) {
592                 while (!list_empty(head)) {
593                         struct rpc_task *task;
594                         task = list_first_entry(head,
595                                         struct rpc_task,
596                                         u.tk_wait.list);
597                         rpc_wake_up_task_queue_locked(queue, task);
598                 }
599                 if (head == &queue->tasks[0])
600                         break;
601                 head--;
602         }
603         spin_unlock_bh(&queue->lock);
604 }
605 EXPORT_SYMBOL_GPL(rpc_wake_up);
606
607 /**
608  * rpc_wake_up_status - wake up all rpc_tasks and set their status value.
609  * @queue: rpc_wait_queue on which the tasks are sleeping
610  * @status: status value to set
611  *
612  * Grabs queue->lock
613  */
614 void rpc_wake_up_status(struct rpc_wait_queue *queue, int status)
615 {
616         struct list_head *head;
617
618         spin_lock_bh(&queue->lock);
619         head = &queue->tasks[queue->maxpriority];
620         for (;;) {
621                 while (!list_empty(head)) {
622                         struct rpc_task *task;
623                         task = list_first_entry(head,
624                                         struct rpc_task,
625                                         u.tk_wait.list);
626                         task->tk_status = status;
627                         rpc_wake_up_task_queue_locked(queue, task);
628                 }
629                 if (head == &queue->tasks[0])
630                         break;
631                 head--;
632         }
633         spin_unlock_bh(&queue->lock);
634 }
635 EXPORT_SYMBOL_GPL(rpc_wake_up_status);
636
637 static void __rpc_queue_timer_fn(unsigned long ptr)
638 {
639         struct rpc_wait_queue *queue = (struct rpc_wait_queue *)ptr;
640         struct rpc_task *task, *n;
641         unsigned long expires, now, timeo;
642
643         spin_lock(&queue->lock);
644         expires = now = jiffies;
645         list_for_each_entry_safe(task, n, &queue->timer_list.list, u.tk_wait.timer_list) {
646                 timeo = task->u.tk_wait.expires;
647                 if (time_after_eq(now, timeo)) {
648                         dprintk("RPC: %5u timeout\n", task->tk_pid);
649                         task->tk_status = -ETIMEDOUT;
650                         rpc_wake_up_task_queue_locked(queue, task);
651                         continue;
652                 }
653                 if (expires == now || time_after(expires, timeo))
654                         expires = timeo;
655         }
656         if (!list_empty(&queue->timer_list.list))
657                 rpc_set_queue_timer(queue, expires);
658         spin_unlock(&queue->lock);
659 }
660
661 static void __rpc_atrun(struct rpc_task *task)
662 {
663         if (task->tk_status == -ETIMEDOUT)
664                 task->tk_status = 0;
665 }
666
667 /*
668  * Run a task at a later time
669  */
670 void rpc_delay(struct rpc_task *task, unsigned long delay)
671 {
672         task->tk_timeout = delay;
673         rpc_sleep_on(&delay_queue, task, __rpc_atrun);
674 }
675 EXPORT_SYMBOL_GPL(rpc_delay);
676
677 /*
678  * Helper to call task->tk_ops->rpc_call_prepare
679  */
680 void rpc_prepare_task(struct rpc_task *task)
681 {
682         task->tk_ops->rpc_call_prepare(task, task->tk_calldata);
683 }
684
685 static void
686 rpc_init_task_statistics(struct rpc_task *task)
687 {
688         /* Initialize retry counters */
689         task->tk_garb_retry = 2;
690         task->tk_cred_retry = 2;
691         task->tk_rebind_retry = 2;
692
693         /* starting timestamp */
694         task->tk_start = ktime_get();
695 }
696
697 static void
698 rpc_reset_task_statistics(struct rpc_task *task)
699 {
700         task->tk_timeouts = 0;
701         task->tk_flags &= ~(RPC_CALL_MAJORSEEN|RPC_TASK_KILLED|RPC_TASK_SENT);
702
703         rpc_init_task_statistics(task);
704 }
705
706 /*
707  * Helper that calls task->tk_ops->rpc_call_done if it exists
708  */
709 void rpc_exit_task(struct rpc_task *task)
710 {
711         task->tk_action = NULL;
712         if (task->tk_ops->rpc_call_done != NULL) {
713                 task->tk_ops->rpc_call_done(task, task->tk_calldata);
714                 if (task->tk_action != NULL) {
715                         WARN_ON(RPC_ASSASSINATED(task));
716                         /* Always release the RPC slot and buffer memory */
717                         xprt_release(task);
718                         rpc_reset_task_statistics(task);
719                 }
720         }
721 }
722
723 void rpc_exit(struct rpc_task *task, int status)
724 {
725         task->tk_status = status;
726         task->tk_action = rpc_exit_task;
727         if (RPC_IS_QUEUED(task))
728                 rpc_wake_up_queued_task(task->tk_waitqueue, task);
729 }
730 EXPORT_SYMBOL_GPL(rpc_exit);
731
732 void rpc_release_calldata(const struct rpc_call_ops *ops, void *calldata)
733 {
734         if (ops->rpc_release != NULL)
735                 ops->rpc_release(calldata);
736 }
737
738 /*
739  * This is the RPC `scheduler' (or rather, the finite state machine).
740  */
741 static void __rpc_execute(struct rpc_task *task)
742 {
743         struct rpc_wait_queue *queue;
744         int task_is_async = RPC_IS_ASYNC(task);
745         int status = 0;
746
747         dprintk("RPC: %5u __rpc_execute flags=0x%x\n",
748                         task->tk_pid, task->tk_flags);
749
750         WARN_ON_ONCE(RPC_IS_QUEUED(task));
751         if (RPC_IS_QUEUED(task))
752                 return;
753
754         for (;;) {
755                 void (*do_action)(struct rpc_task *);
756
757                 /*
758                  * Execute any pending callback first.
759                  */
760                 do_action = task->tk_callback;
761                 task->tk_callback = NULL;
762                 if (do_action == NULL) {
763                         /*
764                          * Perform the next FSM step.
765                          * tk_action may be NULL if the task has been killed.
766                          * In particular, note that rpc_killall_tasks may
767                          * do this at any time, so beware when dereferencing.
768                          */
769                         do_action = task->tk_action;
770                         if (do_action == NULL)
771                                 break;
772                 }
773                 trace_rpc_task_run_action(task->tk_client, task, task->tk_action);
774                 do_action(task);
775
776                 /*
777                  * Lockless check for whether task is sleeping or not.
778                  */
779                 if (!RPC_IS_QUEUED(task))
780                         continue;
781                 /*
782                  * The queue->lock protects against races with
783                  * rpc_make_runnable().
784                  *
785                  * Note that once we clear RPC_TASK_RUNNING on an asynchronous
786                  * rpc_task, rpc_make_runnable() can assign it to a
787                  * different workqueue. We therefore cannot assume that the
788                  * rpc_task pointer may still be dereferenced.
789                  */
790                 queue = task->tk_waitqueue;
791                 spin_lock_bh(&queue->lock);
792                 if (!RPC_IS_QUEUED(task)) {
793                         spin_unlock_bh(&queue->lock);
794                         continue;
795                 }
796                 rpc_clear_running(task);
797                 spin_unlock_bh(&queue->lock);
798                 if (task_is_async)
799                         return;
800
801                 /* sync task: sleep here */
802                 dprintk("RPC: %5u sync task going to sleep\n", task->tk_pid);
803                 status = out_of_line_wait_on_bit(&task->tk_runstate,
804                                 RPC_TASK_QUEUED, rpc_wait_bit_killable,
805                                 TASK_KILLABLE);
806                 if (status == -ERESTARTSYS) {
807                         /*
808                          * When a sync task receives a signal, it exits with
809                          * -ERESTARTSYS. In order to catch any callbacks that
810                          * clean up after sleeping on some queue, we don't
811                          * break the loop here, but go around once more.
812                          */
813                         dprintk("RPC: %5u got signal\n", task->tk_pid);
814                         task->tk_flags |= RPC_TASK_KILLED;
815                         rpc_exit(task, -ERESTARTSYS);
816                 }
817                 dprintk("RPC: %5u sync task resuming\n", task->tk_pid);
818         }
819
820         dprintk("RPC: %5u return %d, status %d\n", task->tk_pid, status,
821                         task->tk_status);
822         /* Release all resources associated with the task */
823         rpc_release_task(task);
824 }
825
826 /*
827  * User-visible entry point to the scheduler.
828  *
829  * This may be called recursively if e.g. an async NFS task updates
830  * the attributes and finds that dirty pages must be flushed.
831  * NOTE: Upon exit of this function the task is guaranteed to be
832  *       released. In particular note that tk_release() will have
833  *       been called, so your task memory may have been freed.
834  */
835 void rpc_execute(struct rpc_task *task)
836 {
837         bool is_async = RPC_IS_ASYNC(task);
838
839         rpc_set_active(task);
840         rpc_make_runnable(rpciod_workqueue, task);
841         if (!is_async)
842                 __rpc_execute(task);
843 }
844
845 static void rpc_async_schedule(struct work_struct *work)
846 {
847         __rpc_execute(container_of(work, struct rpc_task, u.tk_work));
848 }
849
850 /**
851  * rpc_malloc - allocate RPC buffer resources
852  * @task: RPC task
853  *
854  * A single memory region is allocated, which is split between the
855  * RPC call and RPC reply that this task is being used for. When
856  * this RPC is retired, the memory is released by calling rpc_free.
857  *
858  * To prevent rpciod from hanging, this allocator never sleeps,
859  * returning -ENOMEM and suppressing warning if the request cannot
860  * be serviced immediately. The caller can arrange to sleep in a
861  * way that is safe for rpciod.
862  *
863  * Most requests are 'small' (under 2KiB) and can be serviced from a
864  * mempool, ensuring that NFS reads and writes can always proceed,
865  * and that there is good locality of reference for these buffers.
866  *
867  * In order to avoid memory starvation triggering more writebacks of
868  * NFS requests, we avoid using GFP_KERNEL.
869  */
870 int rpc_malloc(struct rpc_task *task)
871 {
872         struct rpc_rqst *rqst = task->tk_rqstp;
873         size_t size = rqst->rq_callsize + rqst->rq_rcvsize;
874         struct rpc_buffer *buf;
875         gfp_t gfp = GFP_NOIO | __GFP_NOWARN;
876
877         if (RPC_IS_SWAPPER(task))
878                 gfp = __GFP_MEMALLOC | GFP_NOWAIT | __GFP_NOWARN;
879
880         size += sizeof(struct rpc_buffer);
881         if (size <= RPC_BUFFER_MAXSIZE)
882                 buf = mempool_alloc(rpc_buffer_mempool, gfp);
883         else
884                 buf = kmalloc(size, gfp);
885
886         if (!buf)
887                 return -ENOMEM;
888
889         buf->len = size;
890         dprintk("RPC: %5u allocated buffer of size %zu at %p\n",
891                         task->tk_pid, size, buf);
892         rqst->rq_buffer = buf->data;
893         rqst->rq_rbuffer = (char *)rqst->rq_buffer + rqst->rq_callsize;
894         return 0;
895 }
896 EXPORT_SYMBOL_GPL(rpc_malloc);
897
898 /**
899  * rpc_free - free RPC buffer resources allocated via rpc_malloc
900  * @task: RPC task
901  *
902  */
903 void rpc_free(struct rpc_task *task)
904 {
905         void *buffer = task->tk_rqstp->rq_buffer;
906         size_t size;
907         struct rpc_buffer *buf;
908
909         buf = container_of(buffer, struct rpc_buffer, data);
910         size = buf->len;
911
912         dprintk("RPC:       freeing buffer of size %zu at %p\n",
913                         size, buf);
914
915         if (size <= RPC_BUFFER_MAXSIZE)
916                 mempool_free(buf, rpc_buffer_mempool);
917         else
918                 kfree(buf);
919 }
920 EXPORT_SYMBOL_GPL(rpc_free);
921
922 /*
923  * Creation and deletion of RPC task structures
924  */
925 static void rpc_init_task(struct rpc_task *task, const struct rpc_task_setup *task_setup_data)
926 {
927         memset(task, 0, sizeof(*task));
928         atomic_set(&task->tk_count, 1);
929         task->tk_flags  = task_setup_data->flags;
930         task->tk_ops = task_setup_data->callback_ops;
931         task->tk_calldata = task_setup_data->callback_data;
932         INIT_LIST_HEAD(&task->tk_task);
933
934         task->tk_priority = task_setup_data->priority - RPC_PRIORITY_LOW;
935         task->tk_owner = current->tgid;
936
937         /* Initialize workqueue for async tasks */
938         task->tk_workqueue = task_setup_data->workqueue;
939
940         task->tk_xprt = xprt_get(task_setup_data->rpc_xprt);
941
942         if (task->tk_ops->rpc_call_prepare != NULL)
943                 task->tk_action = rpc_prepare_task;
944
945         rpc_init_task_statistics(task);
946
947         dprintk("RPC:       new task initialized, procpid %u\n",
948                                 task_pid_nr(current));
949 }
950
951 static struct rpc_task *
952 rpc_alloc_task(void)
953 {
954         return (struct rpc_task *)mempool_alloc(rpc_task_mempool, GFP_NOIO);
955 }
956
957 /*
958  * Create a new task for the specified client.
959  */
960 struct rpc_task *rpc_new_task(const struct rpc_task_setup *setup_data)
961 {
962         struct rpc_task *task = setup_data->task;
963         unsigned short flags = 0;
964
965         if (task == NULL) {
966                 task = rpc_alloc_task();
967                 if (task == NULL) {
968                         rpc_release_calldata(setup_data->callback_ops,
969                                         setup_data->callback_data);
970                         return ERR_PTR(-ENOMEM);
971                 }
972                 flags = RPC_TASK_DYNAMIC;
973         }
974
975         rpc_init_task(task, setup_data);
976         task->tk_flags |= flags;
977         dprintk("RPC:       allocated task %p\n", task);
978         return task;
979 }
980
981 /*
982  * rpc_free_task - release rpc task and perform cleanups
983  *
984  * Note that we free up the rpc_task _after_ rpc_release_calldata()
985  * in order to work around a workqueue dependency issue.
986  *
987  * Tejun Heo states:
988  * "Workqueue currently considers two work items to be the same if they're
989  * on the same address and won't execute them concurrently - ie. it
990  * makes a work item which is queued again while being executed wait
991  * for the previous execution to complete.
992  *
993  * If a work function frees the work item, and then waits for an event
994  * which should be performed by another work item and *that* work item
995  * recycles the freed work item, it can create a false dependency loop.
996  * There really is no reliable way to detect this short of verifying
997  * every memory free."
998  *
999  */
1000 static void rpc_free_task(struct rpc_task *task)
1001 {
1002         unsigned short tk_flags = task->tk_flags;
1003
1004         rpc_release_calldata(task->tk_ops, task->tk_calldata);
1005
1006         if (tk_flags & RPC_TASK_DYNAMIC) {
1007                 dprintk("RPC: %5u freeing task\n", task->tk_pid);
1008                 mempool_free(task, rpc_task_mempool);
1009         }
1010 }
1011
1012 static void rpc_async_release(struct work_struct *work)
1013 {
1014         rpc_free_task(container_of(work, struct rpc_task, u.tk_work));
1015 }
1016
1017 static void rpc_release_resources_task(struct rpc_task *task)
1018 {
1019         xprt_release(task);
1020         if (task->tk_msg.rpc_cred) {
1021                 put_rpccred(task->tk_msg.rpc_cred);
1022                 task->tk_msg.rpc_cred = NULL;
1023         }
1024         rpc_task_release_client(task);
1025 }
1026
1027 static void rpc_final_put_task(struct rpc_task *task,
1028                 struct workqueue_struct *q)
1029 {
1030         if (q != NULL) {
1031                 INIT_WORK(&task->u.tk_work, rpc_async_release);
1032                 queue_work(q, &task->u.tk_work);
1033         } else
1034                 rpc_free_task(task);
1035 }
1036
1037 static void rpc_do_put_task(struct rpc_task *task, struct workqueue_struct *q)
1038 {
1039         if (atomic_dec_and_test(&task->tk_count)) {
1040                 rpc_release_resources_task(task);
1041                 rpc_final_put_task(task, q);
1042         }
1043 }
1044
1045 void rpc_put_task(struct rpc_task *task)
1046 {
1047         rpc_do_put_task(task, NULL);
1048 }
1049 EXPORT_SYMBOL_GPL(rpc_put_task);
1050
1051 void rpc_put_task_async(struct rpc_task *task)
1052 {
1053         rpc_do_put_task(task, task->tk_workqueue);
1054 }
1055 EXPORT_SYMBOL_GPL(rpc_put_task_async);
1056
1057 static void rpc_release_task(struct rpc_task *task)
1058 {
1059         dprintk("RPC: %5u release task\n", task->tk_pid);
1060
1061         WARN_ON_ONCE(RPC_IS_QUEUED(task));
1062
1063         rpc_release_resources_task(task);
1064
1065         /*
1066          * Note: at this point we have been removed from rpc_clnt->cl_tasks,
1067          * so it should be safe to use task->tk_count as a test for whether
1068          * or not any other processes still hold references to our rpc_task.
1069          */
1070         if (atomic_read(&task->tk_count) != 1 + !RPC_IS_ASYNC(task)) {
1071                 /* Wake up anyone who may be waiting for task completion */
1072                 if (!rpc_complete_task(task))
1073                         return;
1074         } else {
1075                 if (!atomic_dec_and_test(&task->tk_count))
1076                         return;
1077         }
1078         rpc_final_put_task(task, task->tk_workqueue);
1079 }
1080
1081 int rpciod_up(void)
1082 {
1083         return try_module_get(THIS_MODULE) ? 0 : -EINVAL;
1084 }
1085
1086 void rpciod_down(void)
1087 {
1088         module_put(THIS_MODULE);
1089 }
1090
1091 /*
1092  * Start up the rpciod workqueue.
1093  */
1094 static int rpciod_start(void)
1095 {
1096         struct workqueue_struct *wq;
1097
1098         /*
1099          * Create the rpciod thread and wait for it to start.
1100          */
1101         dprintk("RPC:       creating workqueue rpciod\n");
1102         wq = alloc_workqueue("rpciod", WQ_MEM_RECLAIM, 0);
1103         if (!wq)
1104                 goto out_failed;
1105         rpciod_workqueue = wq;
1106         /* Note: highpri because network receive is latency sensitive */
1107         wq = alloc_workqueue("xprtiod", WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
1108         if (!wq)
1109                 goto free_rpciod;
1110         xprtiod_workqueue = wq;
1111         return 1;
1112 free_rpciod:
1113         wq = rpciod_workqueue;
1114         rpciod_workqueue = NULL;
1115         destroy_workqueue(wq);
1116 out_failed:
1117         return 0;
1118 }
1119
1120 static void rpciod_stop(void)
1121 {
1122         struct workqueue_struct *wq = NULL;
1123
1124         if (rpciod_workqueue == NULL)
1125                 return;
1126         dprintk("RPC:       destroying workqueue rpciod\n");
1127
1128         wq = rpciod_workqueue;
1129         rpciod_workqueue = NULL;
1130         destroy_workqueue(wq);
1131         wq = xprtiod_workqueue;
1132         xprtiod_workqueue = NULL;
1133         destroy_workqueue(wq);
1134 }
1135
1136 void
1137 rpc_destroy_mempool(void)
1138 {
1139         rpciod_stop();
1140         mempool_destroy(rpc_buffer_mempool);
1141         mempool_destroy(rpc_task_mempool);
1142         kmem_cache_destroy(rpc_task_slabp);
1143         kmem_cache_destroy(rpc_buffer_slabp);
1144         rpc_destroy_wait_queue(&delay_queue);
1145 }
1146
1147 int
1148 rpc_init_mempool(void)
1149 {
1150         /*
1151          * The following is not strictly a mempool initialisation,
1152          * but there is no harm in doing it here
1153          */
1154         rpc_init_wait_queue(&delay_queue, "delayq");
1155         if (!rpciod_start())
1156                 goto err_nomem;
1157
1158         rpc_task_slabp = kmem_cache_create("rpc_tasks",
1159                                              sizeof(struct rpc_task),
1160                                              0, SLAB_HWCACHE_ALIGN,
1161                                              NULL);
1162         if (!rpc_task_slabp)
1163                 goto err_nomem;
1164         rpc_buffer_slabp = kmem_cache_create("rpc_buffers",
1165                                              RPC_BUFFER_MAXSIZE,
1166                                              0, SLAB_HWCACHE_ALIGN,
1167                                              NULL);
1168         if (!rpc_buffer_slabp)
1169                 goto err_nomem;
1170         rpc_task_mempool = mempool_create_slab_pool(RPC_TASK_POOLSIZE,
1171                                                     rpc_task_slabp);
1172         if (!rpc_task_mempool)
1173                 goto err_nomem;
1174         rpc_buffer_mempool = mempool_create_slab_pool(RPC_BUFFER_POOLSIZE,
1175                                                       rpc_buffer_slabp);
1176         if (!rpc_buffer_mempool)
1177                 goto err_nomem;
1178         return 0;
1179 err_nomem:
1180         rpc_destroy_mempool();
1181         return -ENOMEM;
1182 }