OSDN Git Service

Merge tag 'drm-next-2022-03-24' of git://anongit.freedesktop.org/drm/drm
[uclinux-h8/linux.git] / net / sunrpc / sched.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * linux/net/sunrpc/sched.c
4  *
5  * Scheduling for synchronous and asynchronous RPC requests.
6  *
7  * Copyright (C) 1996 Olaf Kirch, <okir@monad.swb.de>
8  *
9  * TCP NFS related read + write fixes
10  * (C) 1999 Dave Airlie, University of Limerick, Ireland <airlied@linux.ie>
11  */
12
13 #include <linux/module.h>
14
15 #include <linux/sched.h>
16 #include <linux/interrupt.h>
17 #include <linux/slab.h>
18 #include <linux/mempool.h>
19 #include <linux/smp.h>
20 #include <linux/spinlock.h>
21 #include <linux/mutex.h>
22 #include <linux/freezer.h>
23 #include <linux/sched/mm.h>
24
25 #include <linux/sunrpc/clnt.h>
26 #include <linux/sunrpc/metrics.h>
27
28 #include "sunrpc.h"
29
30 #define CREATE_TRACE_POINTS
31 #include <trace/events/sunrpc.h>
32
33 /*
34  * RPC slabs and memory pools
35  */
36 #define RPC_BUFFER_MAXSIZE      (2048)
37 #define RPC_BUFFER_POOLSIZE     (8)
38 #define RPC_TASK_POOLSIZE       (8)
39 static struct kmem_cache        *rpc_task_slabp __read_mostly;
40 static struct kmem_cache        *rpc_buffer_slabp __read_mostly;
41 static mempool_t        *rpc_task_mempool __read_mostly;
42 static mempool_t        *rpc_buffer_mempool __read_mostly;
43
44 static void                     rpc_async_schedule(struct work_struct *);
45 static void                      rpc_release_task(struct rpc_task *task);
46 static void __rpc_queue_timer_fn(struct work_struct *);
47
48 /*
49  * RPC tasks sit here while waiting for conditions to improve.
50  */
51 static struct rpc_wait_queue delay_queue;
52
53 /*
54  * rpciod-related stuff
55  */
56 struct workqueue_struct *rpciod_workqueue __read_mostly;
57 struct workqueue_struct *xprtiod_workqueue __read_mostly;
58 EXPORT_SYMBOL_GPL(xprtiod_workqueue);
59
60 unsigned long
61 rpc_task_timeout(const struct rpc_task *task)
62 {
63         unsigned long timeout = READ_ONCE(task->tk_timeout);
64
65         if (timeout != 0) {
66                 unsigned long now = jiffies;
67                 if (time_before(now, timeout))
68                         return timeout - now;
69         }
70         return 0;
71 }
72 EXPORT_SYMBOL_GPL(rpc_task_timeout);
73
74 /*
75  * Disable the timer for a given RPC task. Should be called with
76  * queue->lock and bh_disabled in order to avoid races within
77  * rpc_run_timer().
78  */
79 static void
80 __rpc_disable_timer(struct rpc_wait_queue *queue, struct rpc_task *task)
81 {
82         if (list_empty(&task->u.tk_wait.timer_list))
83                 return;
84         task->tk_timeout = 0;
85         list_del(&task->u.tk_wait.timer_list);
86         if (list_empty(&queue->timer_list.list))
87                 cancel_delayed_work(&queue->timer_list.dwork);
88 }
89
90 static void
91 rpc_set_queue_timer(struct rpc_wait_queue *queue, unsigned long expires)
92 {
93         unsigned long now = jiffies;
94         queue->timer_list.expires = expires;
95         if (time_before_eq(expires, now))
96                 expires = 0;
97         else
98                 expires -= now;
99         mod_delayed_work(rpciod_workqueue, &queue->timer_list.dwork, expires);
100 }
101
102 /*
103  * Set up a timer for the current task.
104  */
105 static void
106 __rpc_add_timer(struct rpc_wait_queue *queue, struct rpc_task *task,
107                 unsigned long timeout)
108 {
109         task->tk_timeout = timeout;
110         if (list_empty(&queue->timer_list.list) || time_before(timeout, queue->timer_list.expires))
111                 rpc_set_queue_timer(queue, timeout);
112         list_add(&task->u.tk_wait.timer_list, &queue->timer_list.list);
113 }
114
115 static void rpc_set_waitqueue_priority(struct rpc_wait_queue *queue, int priority)
116 {
117         if (queue->priority != priority) {
118                 queue->priority = priority;
119                 queue->nr = 1U << priority;
120         }
121 }
122
123 static void rpc_reset_waitqueue_priority(struct rpc_wait_queue *queue)
124 {
125         rpc_set_waitqueue_priority(queue, queue->maxpriority);
126 }
127
128 /*
129  * Add a request to a queue list
130  */
131 static void
132 __rpc_list_enqueue_task(struct list_head *q, struct rpc_task *task)
133 {
134         struct rpc_task *t;
135
136         list_for_each_entry(t, q, u.tk_wait.list) {
137                 if (t->tk_owner == task->tk_owner) {
138                         list_add_tail(&task->u.tk_wait.links,
139                                         &t->u.tk_wait.links);
140                         /* Cache the queue head in task->u.tk_wait.list */
141                         task->u.tk_wait.list.next = q;
142                         task->u.tk_wait.list.prev = NULL;
143                         return;
144                 }
145         }
146         INIT_LIST_HEAD(&task->u.tk_wait.links);
147         list_add_tail(&task->u.tk_wait.list, q);
148 }
149
150 /*
151  * Remove request from a queue list
152  */
153 static void
154 __rpc_list_dequeue_task(struct rpc_task *task)
155 {
156         struct list_head *q;
157         struct rpc_task *t;
158
159         if (task->u.tk_wait.list.prev == NULL) {
160                 list_del(&task->u.tk_wait.links);
161                 return;
162         }
163         if (!list_empty(&task->u.tk_wait.links)) {
164                 t = list_first_entry(&task->u.tk_wait.links,
165                                 struct rpc_task,
166                                 u.tk_wait.links);
167                 /* Assume __rpc_list_enqueue_task() cached the queue head */
168                 q = t->u.tk_wait.list.next;
169                 list_add_tail(&t->u.tk_wait.list, q);
170                 list_del(&task->u.tk_wait.links);
171         }
172         list_del(&task->u.tk_wait.list);
173 }
174
175 /*
176  * Add new request to a priority queue.
177  */
178 static void __rpc_add_wait_queue_priority(struct rpc_wait_queue *queue,
179                 struct rpc_task *task,
180                 unsigned char queue_priority)
181 {
182         if (unlikely(queue_priority > queue->maxpriority))
183                 queue_priority = queue->maxpriority;
184         __rpc_list_enqueue_task(&queue->tasks[queue_priority], task);
185 }
186
187 /*
188  * Add new request to wait queue.
189  *
190  * Swapper tasks always get inserted at the head of the queue.
191  * This should avoid many nasty memory deadlocks and hopefully
192  * improve overall performance.
193  * Everyone else gets appended to the queue to ensure proper FIFO behavior.
194  */
195 static void __rpc_add_wait_queue(struct rpc_wait_queue *queue,
196                 struct rpc_task *task,
197                 unsigned char queue_priority)
198 {
199         INIT_LIST_HEAD(&task->u.tk_wait.timer_list);
200         if (RPC_IS_PRIORITY(queue))
201                 __rpc_add_wait_queue_priority(queue, task, queue_priority);
202         else if (RPC_IS_SWAPPER(task))
203                 list_add(&task->u.tk_wait.list, &queue->tasks[0]);
204         else
205                 list_add_tail(&task->u.tk_wait.list, &queue->tasks[0]);
206         task->tk_waitqueue = queue;
207         queue->qlen++;
208         /* barrier matches the read in rpc_wake_up_task_queue_locked() */
209         smp_wmb();
210         rpc_set_queued(task);
211 }
212
213 /*
214  * Remove request from a priority queue.
215  */
216 static void __rpc_remove_wait_queue_priority(struct rpc_task *task)
217 {
218         __rpc_list_dequeue_task(task);
219 }
220
221 /*
222  * Remove request from queue.
223  * Note: must be called with spin lock held.
224  */
225 static void __rpc_remove_wait_queue(struct rpc_wait_queue *queue, struct rpc_task *task)
226 {
227         __rpc_disable_timer(queue, task);
228         if (RPC_IS_PRIORITY(queue))
229                 __rpc_remove_wait_queue_priority(task);
230         else
231                 list_del(&task->u.tk_wait.list);
232         queue->qlen--;
233 }
234
235 static void __rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname, unsigned char nr_queues)
236 {
237         int i;
238
239         spin_lock_init(&queue->lock);
240         for (i = 0; i < ARRAY_SIZE(queue->tasks); i++)
241                 INIT_LIST_HEAD(&queue->tasks[i]);
242         queue->maxpriority = nr_queues - 1;
243         rpc_reset_waitqueue_priority(queue);
244         queue->qlen = 0;
245         queue->timer_list.expires = 0;
246         INIT_DELAYED_WORK(&queue->timer_list.dwork, __rpc_queue_timer_fn);
247         INIT_LIST_HEAD(&queue->timer_list.list);
248         rpc_assign_waitqueue_name(queue, qname);
249 }
250
251 void rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname)
252 {
253         __rpc_init_priority_wait_queue(queue, qname, RPC_NR_PRIORITY);
254 }
255 EXPORT_SYMBOL_GPL(rpc_init_priority_wait_queue);
256
257 void rpc_init_wait_queue(struct rpc_wait_queue *queue, const char *qname)
258 {
259         __rpc_init_priority_wait_queue(queue, qname, 1);
260 }
261 EXPORT_SYMBOL_GPL(rpc_init_wait_queue);
262
263 void rpc_destroy_wait_queue(struct rpc_wait_queue *queue)
264 {
265         cancel_delayed_work_sync(&queue->timer_list.dwork);
266 }
267 EXPORT_SYMBOL_GPL(rpc_destroy_wait_queue);
268
269 static int rpc_wait_bit_killable(struct wait_bit_key *key, int mode)
270 {
271         freezable_schedule_unsafe();
272         if (signal_pending_state(mode, current))
273                 return -ERESTARTSYS;
274         return 0;
275 }
276
277 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG) || IS_ENABLED(CONFIG_TRACEPOINTS)
278 static void rpc_task_set_debuginfo(struct rpc_task *task)
279 {
280         struct rpc_clnt *clnt = task->tk_client;
281
282         /* Might be a task carrying a reverse-direction operation */
283         if (!clnt) {
284                 static atomic_t rpc_pid;
285
286                 task->tk_pid = atomic_inc_return(&rpc_pid);
287                 return;
288         }
289
290         task->tk_pid = atomic_inc_return(&clnt->cl_pid);
291 }
292 #else
293 static inline void rpc_task_set_debuginfo(struct rpc_task *task)
294 {
295 }
296 #endif
297
298 static void rpc_set_active(struct rpc_task *task)
299 {
300         rpc_task_set_debuginfo(task);
301         set_bit(RPC_TASK_ACTIVE, &task->tk_runstate);
302         trace_rpc_task_begin(task, NULL);
303 }
304
305 /*
306  * Mark an RPC call as having completed by clearing the 'active' bit
307  * and then waking up all tasks that were sleeping.
308  */
309 static int rpc_complete_task(struct rpc_task *task)
310 {
311         void *m = &task->tk_runstate;
312         wait_queue_head_t *wq = bit_waitqueue(m, RPC_TASK_ACTIVE);
313         struct wait_bit_key k = __WAIT_BIT_KEY_INITIALIZER(m, RPC_TASK_ACTIVE);
314         unsigned long flags;
315         int ret;
316
317         trace_rpc_task_complete(task, NULL);
318
319         spin_lock_irqsave(&wq->lock, flags);
320         clear_bit(RPC_TASK_ACTIVE, &task->tk_runstate);
321         ret = atomic_dec_and_test(&task->tk_count);
322         if (waitqueue_active(wq))
323                 __wake_up_locked_key(wq, TASK_NORMAL, &k);
324         spin_unlock_irqrestore(&wq->lock, flags);
325         return ret;
326 }
327
328 /*
329  * Allow callers to wait for completion of an RPC call
330  *
331  * Note the use of out_of_line_wait_on_bit() rather than wait_on_bit()
332  * to enforce taking of the wq->lock and hence avoid races with
333  * rpc_complete_task().
334  */
335 int __rpc_wait_for_completion_task(struct rpc_task *task, wait_bit_action_f *action)
336 {
337         if (action == NULL)
338                 action = rpc_wait_bit_killable;
339         return out_of_line_wait_on_bit(&task->tk_runstate, RPC_TASK_ACTIVE,
340                         action, TASK_KILLABLE);
341 }
342 EXPORT_SYMBOL_GPL(__rpc_wait_for_completion_task);
343
344 /*
345  * Make an RPC task runnable.
346  *
347  * Note: If the task is ASYNC, and is being made runnable after sitting on an
348  * rpc_wait_queue, this must be called with the queue spinlock held to protect
349  * the wait queue operation.
350  * Note the ordering of rpc_test_and_set_running() and rpc_clear_queued(),
351  * which is needed to ensure that __rpc_execute() doesn't loop (due to the
352  * lockless RPC_IS_QUEUED() test) before we've had a chance to test
353  * the RPC_TASK_RUNNING flag.
354  */
355 static void rpc_make_runnable(struct workqueue_struct *wq,
356                 struct rpc_task *task)
357 {
358         bool need_wakeup = !rpc_test_and_set_running(task);
359
360         rpc_clear_queued(task);
361         if (!need_wakeup)
362                 return;
363         if (RPC_IS_ASYNC(task)) {
364                 INIT_WORK(&task->u.tk_work, rpc_async_schedule);
365                 queue_work(wq, &task->u.tk_work);
366         } else
367                 wake_up_bit(&task->tk_runstate, RPC_TASK_QUEUED);
368 }
369
370 /*
371  * Prepare for sleeping on a wait queue.
372  * By always appending tasks to the list we ensure FIFO behavior.
373  * NB: An RPC task will only receive interrupt-driven events as long
374  * as it's on a wait queue.
375  */
376 static void __rpc_do_sleep_on_priority(struct rpc_wait_queue *q,
377                 struct rpc_task *task,
378                 unsigned char queue_priority)
379 {
380         trace_rpc_task_sleep(task, q);
381
382         __rpc_add_wait_queue(q, task, queue_priority);
383 }
384
385 static void __rpc_sleep_on_priority(struct rpc_wait_queue *q,
386                 struct rpc_task *task,
387                 unsigned char queue_priority)
388 {
389         if (WARN_ON_ONCE(RPC_IS_QUEUED(task)))
390                 return;
391         __rpc_do_sleep_on_priority(q, task, queue_priority);
392 }
393
394 static void __rpc_sleep_on_priority_timeout(struct rpc_wait_queue *q,
395                 struct rpc_task *task, unsigned long timeout,
396                 unsigned char queue_priority)
397 {
398         if (WARN_ON_ONCE(RPC_IS_QUEUED(task)))
399                 return;
400         if (time_is_after_jiffies(timeout)) {
401                 __rpc_do_sleep_on_priority(q, task, queue_priority);
402                 __rpc_add_timer(q, task, timeout);
403         } else
404                 task->tk_status = -ETIMEDOUT;
405 }
406
407 static void rpc_set_tk_callback(struct rpc_task *task, rpc_action action)
408 {
409         if (action && !WARN_ON_ONCE(task->tk_callback != NULL))
410                 task->tk_callback = action;
411 }
412
413 static bool rpc_sleep_check_activated(struct rpc_task *task)
414 {
415         /* We shouldn't ever put an inactive task to sleep */
416         if (WARN_ON_ONCE(!RPC_IS_ACTIVATED(task))) {
417                 task->tk_status = -EIO;
418                 rpc_put_task_async(task);
419                 return false;
420         }
421         return true;
422 }
423
424 void rpc_sleep_on_timeout(struct rpc_wait_queue *q, struct rpc_task *task,
425                                 rpc_action action, unsigned long timeout)
426 {
427         if (!rpc_sleep_check_activated(task))
428                 return;
429
430         rpc_set_tk_callback(task, action);
431
432         /*
433          * Protect the queue operations.
434          */
435         spin_lock(&q->lock);
436         __rpc_sleep_on_priority_timeout(q, task, timeout, task->tk_priority);
437         spin_unlock(&q->lock);
438 }
439 EXPORT_SYMBOL_GPL(rpc_sleep_on_timeout);
440
441 void rpc_sleep_on(struct rpc_wait_queue *q, struct rpc_task *task,
442                                 rpc_action action)
443 {
444         if (!rpc_sleep_check_activated(task))
445                 return;
446
447         rpc_set_tk_callback(task, action);
448
449         WARN_ON_ONCE(task->tk_timeout != 0);
450         /*
451          * Protect the queue operations.
452          */
453         spin_lock(&q->lock);
454         __rpc_sleep_on_priority(q, task, task->tk_priority);
455         spin_unlock(&q->lock);
456 }
457 EXPORT_SYMBOL_GPL(rpc_sleep_on);
458
459 void rpc_sleep_on_priority_timeout(struct rpc_wait_queue *q,
460                 struct rpc_task *task, unsigned long timeout, int priority)
461 {
462         if (!rpc_sleep_check_activated(task))
463                 return;
464
465         priority -= RPC_PRIORITY_LOW;
466         /*
467          * Protect the queue operations.
468          */
469         spin_lock(&q->lock);
470         __rpc_sleep_on_priority_timeout(q, task, timeout, priority);
471         spin_unlock(&q->lock);
472 }
473 EXPORT_SYMBOL_GPL(rpc_sleep_on_priority_timeout);
474
475 void rpc_sleep_on_priority(struct rpc_wait_queue *q, struct rpc_task *task,
476                 int priority)
477 {
478         if (!rpc_sleep_check_activated(task))
479                 return;
480
481         WARN_ON_ONCE(task->tk_timeout != 0);
482         priority -= RPC_PRIORITY_LOW;
483         /*
484          * Protect the queue operations.
485          */
486         spin_lock(&q->lock);
487         __rpc_sleep_on_priority(q, task, priority);
488         spin_unlock(&q->lock);
489 }
490 EXPORT_SYMBOL_GPL(rpc_sleep_on_priority);
491
492 /**
493  * __rpc_do_wake_up_task_on_wq - wake up a single rpc_task
494  * @wq: workqueue on which to run task
495  * @queue: wait queue
496  * @task: task to be woken up
497  *
498  * Caller must hold queue->lock, and have cleared the task queued flag.
499  */
500 static void __rpc_do_wake_up_task_on_wq(struct workqueue_struct *wq,
501                 struct rpc_wait_queue *queue,
502                 struct rpc_task *task)
503 {
504         /* Has the task been executed yet? If not, we cannot wake it up! */
505         if (!RPC_IS_ACTIVATED(task)) {
506                 printk(KERN_ERR "RPC: Inactive task (%p) being woken up!\n", task);
507                 return;
508         }
509
510         trace_rpc_task_wakeup(task, queue);
511
512         __rpc_remove_wait_queue(queue, task);
513
514         rpc_make_runnable(wq, task);
515 }
516
517 /*
518  * Wake up a queued task while the queue lock is being held
519  */
520 static struct rpc_task *
521 rpc_wake_up_task_on_wq_queue_action_locked(struct workqueue_struct *wq,
522                 struct rpc_wait_queue *queue, struct rpc_task *task,
523                 bool (*action)(struct rpc_task *, void *), void *data)
524 {
525         if (RPC_IS_QUEUED(task)) {
526                 smp_rmb();
527                 if (task->tk_waitqueue == queue) {
528                         if (action == NULL || action(task, data)) {
529                                 __rpc_do_wake_up_task_on_wq(wq, queue, task);
530                                 return task;
531                         }
532                 }
533         }
534         return NULL;
535 }
536
537 /*
538  * Wake up a queued task while the queue lock is being held
539  */
540 static void rpc_wake_up_task_queue_locked(struct rpc_wait_queue *queue,
541                                           struct rpc_task *task)
542 {
543         rpc_wake_up_task_on_wq_queue_action_locked(rpciod_workqueue, queue,
544                                                    task, NULL, NULL);
545 }
546
547 /*
548  * Wake up a task on a specific queue
549  */
550 void rpc_wake_up_queued_task(struct rpc_wait_queue *queue, struct rpc_task *task)
551 {
552         if (!RPC_IS_QUEUED(task))
553                 return;
554         spin_lock(&queue->lock);
555         rpc_wake_up_task_queue_locked(queue, task);
556         spin_unlock(&queue->lock);
557 }
558 EXPORT_SYMBOL_GPL(rpc_wake_up_queued_task);
559
560 static bool rpc_task_action_set_status(struct rpc_task *task, void *status)
561 {
562         task->tk_status = *(int *)status;
563         return true;
564 }
565
566 static void
567 rpc_wake_up_task_queue_set_status_locked(struct rpc_wait_queue *queue,
568                 struct rpc_task *task, int status)
569 {
570         rpc_wake_up_task_on_wq_queue_action_locked(rpciod_workqueue, queue,
571                         task, rpc_task_action_set_status, &status);
572 }
573
574 /**
575  * rpc_wake_up_queued_task_set_status - wake up a task and set task->tk_status
576  * @queue: pointer to rpc_wait_queue
577  * @task: pointer to rpc_task
578  * @status: integer error value
579  *
580  * If @task is queued on @queue, then it is woken up, and @task->tk_status is
581  * set to the value of @status.
582  */
583 void
584 rpc_wake_up_queued_task_set_status(struct rpc_wait_queue *queue,
585                 struct rpc_task *task, int status)
586 {
587         if (!RPC_IS_QUEUED(task))
588                 return;
589         spin_lock(&queue->lock);
590         rpc_wake_up_task_queue_set_status_locked(queue, task, status);
591         spin_unlock(&queue->lock);
592 }
593
594 /*
595  * Wake up the next task on a priority queue.
596  */
597 static struct rpc_task *__rpc_find_next_queued_priority(struct rpc_wait_queue *queue)
598 {
599         struct list_head *q;
600         struct rpc_task *task;
601
602         /*
603          * Service the privileged queue.
604          */
605         q = &queue->tasks[RPC_NR_PRIORITY - 1];
606         if (queue->maxpriority > RPC_PRIORITY_PRIVILEGED && !list_empty(q)) {
607                 task = list_first_entry(q, struct rpc_task, u.tk_wait.list);
608                 goto out;
609         }
610
611         /*
612          * Service a batch of tasks from a single owner.
613          */
614         q = &queue->tasks[queue->priority];
615         if (!list_empty(q) && queue->nr) {
616                 queue->nr--;
617                 task = list_first_entry(q, struct rpc_task, u.tk_wait.list);
618                 goto out;
619         }
620
621         /*
622          * Service the next queue.
623          */
624         do {
625                 if (q == &queue->tasks[0])
626                         q = &queue->tasks[queue->maxpriority];
627                 else
628                         q = q - 1;
629                 if (!list_empty(q)) {
630                         task = list_first_entry(q, struct rpc_task, u.tk_wait.list);
631                         goto new_queue;
632                 }
633         } while (q != &queue->tasks[queue->priority]);
634
635         rpc_reset_waitqueue_priority(queue);
636         return NULL;
637
638 new_queue:
639         rpc_set_waitqueue_priority(queue, (unsigned int)(q - &queue->tasks[0]));
640 out:
641         return task;
642 }
643
644 static struct rpc_task *__rpc_find_next_queued(struct rpc_wait_queue *queue)
645 {
646         if (RPC_IS_PRIORITY(queue))
647                 return __rpc_find_next_queued_priority(queue);
648         if (!list_empty(&queue->tasks[0]))
649                 return list_first_entry(&queue->tasks[0], struct rpc_task, u.tk_wait.list);
650         return NULL;
651 }
652
653 /*
654  * Wake up the first task on the wait queue.
655  */
656 struct rpc_task *rpc_wake_up_first_on_wq(struct workqueue_struct *wq,
657                 struct rpc_wait_queue *queue,
658                 bool (*func)(struct rpc_task *, void *), void *data)
659 {
660         struct rpc_task *task = NULL;
661
662         spin_lock(&queue->lock);
663         task = __rpc_find_next_queued(queue);
664         if (task != NULL)
665                 task = rpc_wake_up_task_on_wq_queue_action_locked(wq, queue,
666                                 task, func, data);
667         spin_unlock(&queue->lock);
668
669         return task;
670 }
671
672 /*
673  * Wake up the first task on the wait queue.
674  */
675 struct rpc_task *rpc_wake_up_first(struct rpc_wait_queue *queue,
676                 bool (*func)(struct rpc_task *, void *), void *data)
677 {
678         return rpc_wake_up_first_on_wq(rpciod_workqueue, queue, func, data);
679 }
680 EXPORT_SYMBOL_GPL(rpc_wake_up_first);
681
682 static bool rpc_wake_up_next_func(struct rpc_task *task, void *data)
683 {
684         return true;
685 }
686
687 /*
688  * Wake up the next task on the wait queue.
689 */
690 struct rpc_task *rpc_wake_up_next(struct rpc_wait_queue *queue)
691 {
692         return rpc_wake_up_first(queue, rpc_wake_up_next_func, NULL);
693 }
694 EXPORT_SYMBOL_GPL(rpc_wake_up_next);
695
696 /**
697  * rpc_wake_up_locked - wake up all rpc_tasks
698  * @queue: rpc_wait_queue on which the tasks are sleeping
699  *
700  */
701 static void rpc_wake_up_locked(struct rpc_wait_queue *queue)
702 {
703         struct rpc_task *task;
704
705         for (;;) {
706                 task = __rpc_find_next_queued(queue);
707                 if (task == NULL)
708                         break;
709                 rpc_wake_up_task_queue_locked(queue, task);
710         }
711 }
712
713 /**
714  * rpc_wake_up - wake up all rpc_tasks
715  * @queue: rpc_wait_queue on which the tasks are sleeping
716  *
717  * Grabs queue->lock
718  */
719 void rpc_wake_up(struct rpc_wait_queue *queue)
720 {
721         spin_lock(&queue->lock);
722         rpc_wake_up_locked(queue);
723         spin_unlock(&queue->lock);
724 }
725 EXPORT_SYMBOL_GPL(rpc_wake_up);
726
727 /**
728  * rpc_wake_up_status_locked - wake up all rpc_tasks and set their status value.
729  * @queue: rpc_wait_queue on which the tasks are sleeping
730  * @status: status value to set
731  */
732 static void rpc_wake_up_status_locked(struct rpc_wait_queue *queue, int status)
733 {
734         struct rpc_task *task;
735
736         for (;;) {
737                 task = __rpc_find_next_queued(queue);
738                 if (task == NULL)
739                         break;
740                 rpc_wake_up_task_queue_set_status_locked(queue, task, status);
741         }
742 }
743
744 /**
745  * rpc_wake_up_status - wake up all rpc_tasks and set their status value.
746  * @queue: rpc_wait_queue on which the tasks are sleeping
747  * @status: status value to set
748  *
749  * Grabs queue->lock
750  */
751 void rpc_wake_up_status(struct rpc_wait_queue *queue, int status)
752 {
753         spin_lock(&queue->lock);
754         rpc_wake_up_status_locked(queue, status);
755         spin_unlock(&queue->lock);
756 }
757 EXPORT_SYMBOL_GPL(rpc_wake_up_status);
758
759 static void __rpc_queue_timer_fn(struct work_struct *work)
760 {
761         struct rpc_wait_queue *queue = container_of(work,
762                         struct rpc_wait_queue,
763                         timer_list.dwork.work);
764         struct rpc_task *task, *n;
765         unsigned long expires, now, timeo;
766
767         spin_lock(&queue->lock);
768         expires = now = jiffies;
769         list_for_each_entry_safe(task, n, &queue->timer_list.list, u.tk_wait.timer_list) {
770                 timeo = task->tk_timeout;
771                 if (time_after_eq(now, timeo)) {
772                         trace_rpc_task_timeout(task, task->tk_action);
773                         task->tk_status = -ETIMEDOUT;
774                         rpc_wake_up_task_queue_locked(queue, task);
775                         continue;
776                 }
777                 if (expires == now || time_after(expires, timeo))
778                         expires = timeo;
779         }
780         if (!list_empty(&queue->timer_list.list))
781                 rpc_set_queue_timer(queue, expires);
782         spin_unlock(&queue->lock);
783 }
784
785 static void __rpc_atrun(struct rpc_task *task)
786 {
787         if (task->tk_status == -ETIMEDOUT)
788                 task->tk_status = 0;
789 }
790
791 /*
792  * Run a task at a later time
793  */
794 void rpc_delay(struct rpc_task *task, unsigned long delay)
795 {
796         rpc_sleep_on_timeout(&delay_queue, task, __rpc_atrun, jiffies + delay);
797 }
798 EXPORT_SYMBOL_GPL(rpc_delay);
799
800 /*
801  * Helper to call task->tk_ops->rpc_call_prepare
802  */
803 void rpc_prepare_task(struct rpc_task *task)
804 {
805         task->tk_ops->rpc_call_prepare(task, task->tk_calldata);
806 }
807
808 static void
809 rpc_init_task_statistics(struct rpc_task *task)
810 {
811         /* Initialize retry counters */
812         task->tk_garb_retry = 2;
813         task->tk_cred_retry = 2;
814         task->tk_rebind_retry = 2;
815
816         /* starting timestamp */
817         task->tk_start = ktime_get();
818 }
819
820 static void
821 rpc_reset_task_statistics(struct rpc_task *task)
822 {
823         task->tk_timeouts = 0;
824         task->tk_flags &= ~(RPC_CALL_MAJORSEEN|RPC_TASK_SENT);
825         rpc_init_task_statistics(task);
826 }
827
828 /*
829  * Helper that calls task->tk_ops->rpc_call_done if it exists
830  */
831 void rpc_exit_task(struct rpc_task *task)
832 {
833         trace_rpc_task_end(task, task->tk_action);
834         task->tk_action = NULL;
835         if (task->tk_ops->rpc_count_stats)
836                 task->tk_ops->rpc_count_stats(task, task->tk_calldata);
837         else if (task->tk_client)
838                 rpc_count_iostats(task, task->tk_client->cl_metrics);
839         if (task->tk_ops->rpc_call_done != NULL) {
840                 trace_rpc_task_call_done(task, task->tk_ops->rpc_call_done);
841                 task->tk_ops->rpc_call_done(task, task->tk_calldata);
842                 if (task->tk_action != NULL) {
843                         /* Always release the RPC slot and buffer memory */
844                         xprt_release(task);
845                         rpc_reset_task_statistics(task);
846                 }
847         }
848 }
849
850 void rpc_signal_task(struct rpc_task *task)
851 {
852         struct rpc_wait_queue *queue;
853
854         if (!RPC_IS_ACTIVATED(task))
855                 return;
856
857         trace_rpc_task_signalled(task, task->tk_action);
858         set_bit(RPC_TASK_SIGNALLED, &task->tk_runstate);
859         smp_mb__after_atomic();
860         queue = READ_ONCE(task->tk_waitqueue);
861         if (queue)
862                 rpc_wake_up_queued_task_set_status(queue, task, -ERESTARTSYS);
863 }
864
865 void rpc_exit(struct rpc_task *task, int status)
866 {
867         task->tk_status = status;
868         task->tk_action = rpc_exit_task;
869         rpc_wake_up_queued_task(task->tk_waitqueue, task);
870 }
871 EXPORT_SYMBOL_GPL(rpc_exit);
872
873 void rpc_release_calldata(const struct rpc_call_ops *ops, void *calldata)
874 {
875         if (ops->rpc_release != NULL)
876                 ops->rpc_release(calldata);
877 }
878
879 /*
880  * This is the RPC `scheduler' (or rather, the finite state machine).
881  */
882 static void __rpc_execute(struct rpc_task *task)
883 {
884         struct rpc_wait_queue *queue;
885         int task_is_async = RPC_IS_ASYNC(task);
886         int status = 0;
887
888         WARN_ON_ONCE(RPC_IS_QUEUED(task));
889         if (RPC_IS_QUEUED(task))
890                 return;
891
892         for (;;) {
893                 void (*do_action)(struct rpc_task *);
894
895                 /*
896                  * Perform the next FSM step or a pending callback.
897                  *
898                  * tk_action may be NULL if the task has been killed.
899                  * In particular, note that rpc_killall_tasks may
900                  * do this at any time, so beware when dereferencing.
901                  */
902                 do_action = task->tk_action;
903                 if (task->tk_callback) {
904                         do_action = task->tk_callback;
905                         task->tk_callback = NULL;
906                 }
907                 if (!do_action)
908                         break;
909                 trace_rpc_task_run_action(task, do_action);
910                 do_action(task);
911
912                 /*
913                  * Lockless check for whether task is sleeping or not.
914                  */
915                 if (!RPC_IS_QUEUED(task)) {
916                         cond_resched();
917                         continue;
918                 }
919
920                 /*
921                  * Signalled tasks should exit rather than sleep.
922                  */
923                 if (RPC_SIGNALLED(task)) {
924                         task->tk_rpc_status = -ERESTARTSYS;
925                         rpc_exit(task, -ERESTARTSYS);
926                 }
927
928                 /*
929                  * The queue->lock protects against races with
930                  * rpc_make_runnable().
931                  *
932                  * Note that once we clear RPC_TASK_RUNNING on an asynchronous
933                  * rpc_task, rpc_make_runnable() can assign it to a
934                  * different workqueue. We therefore cannot assume that the
935                  * rpc_task pointer may still be dereferenced.
936                  */
937                 queue = task->tk_waitqueue;
938                 spin_lock(&queue->lock);
939                 if (!RPC_IS_QUEUED(task)) {
940                         spin_unlock(&queue->lock);
941                         continue;
942                 }
943                 rpc_clear_running(task);
944                 spin_unlock(&queue->lock);
945                 if (task_is_async)
946                         return;
947
948                 /* sync task: sleep here */
949                 trace_rpc_task_sync_sleep(task, task->tk_action);
950                 status = out_of_line_wait_on_bit(&task->tk_runstate,
951                                 RPC_TASK_QUEUED, rpc_wait_bit_killable,
952                                 TASK_KILLABLE);
953                 if (status < 0) {
954                         /*
955                          * When a sync task receives a signal, it exits with
956                          * -ERESTARTSYS. In order to catch any callbacks that
957                          * clean up after sleeping on some queue, we don't
958                          * break the loop here, but go around once more.
959                          */
960                         trace_rpc_task_signalled(task, task->tk_action);
961                         set_bit(RPC_TASK_SIGNALLED, &task->tk_runstate);
962                         task->tk_rpc_status = -ERESTARTSYS;
963                         rpc_exit(task, -ERESTARTSYS);
964                 }
965                 trace_rpc_task_sync_wake(task, task->tk_action);
966         }
967
968         /* Release all resources associated with the task */
969         rpc_release_task(task);
970 }
971
972 /*
973  * User-visible entry point to the scheduler.
974  *
975  * This may be called recursively if e.g. an async NFS task updates
976  * the attributes and finds that dirty pages must be flushed.
977  * NOTE: Upon exit of this function the task is guaranteed to be
978  *       released. In particular note that tk_release() will have
979  *       been called, so your task memory may have been freed.
980  */
981 void rpc_execute(struct rpc_task *task)
982 {
983         bool is_async = RPC_IS_ASYNC(task);
984
985         rpc_set_active(task);
986         rpc_make_runnable(rpciod_workqueue, task);
987         if (!is_async) {
988                 unsigned int pflags = memalloc_nofs_save();
989                 __rpc_execute(task);
990                 memalloc_nofs_restore(pflags);
991         }
992 }
993
994 static void rpc_async_schedule(struct work_struct *work)
995 {
996         unsigned int pflags = memalloc_nofs_save();
997
998         __rpc_execute(container_of(work, struct rpc_task, u.tk_work));
999         memalloc_nofs_restore(pflags);
1000 }
1001
1002 /**
1003  * rpc_malloc - allocate RPC buffer resources
1004  * @task: RPC task
1005  *
1006  * A single memory region is allocated, which is split between the
1007  * RPC call and RPC reply that this task is being used for. When
1008  * this RPC is retired, the memory is released by calling rpc_free.
1009  *
1010  * To prevent rpciod from hanging, this allocator never sleeps,
1011  * returning -ENOMEM and suppressing warning if the request cannot
1012  * be serviced immediately. The caller can arrange to sleep in a
1013  * way that is safe for rpciod.
1014  *
1015  * Most requests are 'small' (under 2KiB) and can be serviced from a
1016  * mempool, ensuring that NFS reads and writes can always proceed,
1017  * and that there is good locality of reference for these buffers.
1018  */
1019 int rpc_malloc(struct rpc_task *task)
1020 {
1021         struct rpc_rqst *rqst = task->tk_rqstp;
1022         size_t size = rqst->rq_callsize + rqst->rq_rcvsize;
1023         struct rpc_buffer *buf;
1024         gfp_t gfp = GFP_NOFS;
1025
1026         if (RPC_IS_SWAPPER(task))
1027                 gfp = __GFP_MEMALLOC | GFP_NOWAIT | __GFP_NOWARN;
1028
1029         size += sizeof(struct rpc_buffer);
1030         if (size <= RPC_BUFFER_MAXSIZE)
1031                 buf = mempool_alloc(rpc_buffer_mempool, gfp);
1032         else
1033                 buf = kmalloc(size, gfp);
1034
1035         if (!buf)
1036                 return -ENOMEM;
1037
1038         buf->len = size;
1039         rqst->rq_buffer = buf->data;
1040         rqst->rq_rbuffer = (char *)rqst->rq_buffer + rqst->rq_callsize;
1041         return 0;
1042 }
1043 EXPORT_SYMBOL_GPL(rpc_malloc);
1044
1045 /**
1046  * rpc_free - free RPC buffer resources allocated via rpc_malloc
1047  * @task: RPC task
1048  *
1049  */
1050 void rpc_free(struct rpc_task *task)
1051 {
1052         void *buffer = task->tk_rqstp->rq_buffer;
1053         size_t size;
1054         struct rpc_buffer *buf;
1055
1056         buf = container_of(buffer, struct rpc_buffer, data);
1057         size = buf->len;
1058
1059         if (size <= RPC_BUFFER_MAXSIZE)
1060                 mempool_free(buf, rpc_buffer_mempool);
1061         else
1062                 kfree(buf);
1063 }
1064 EXPORT_SYMBOL_GPL(rpc_free);
1065
1066 /*
1067  * Creation and deletion of RPC task structures
1068  */
1069 static void rpc_init_task(struct rpc_task *task, const struct rpc_task_setup *task_setup_data)
1070 {
1071         memset(task, 0, sizeof(*task));
1072         atomic_set(&task->tk_count, 1);
1073         task->tk_flags  = task_setup_data->flags;
1074         task->tk_ops = task_setup_data->callback_ops;
1075         task->tk_calldata = task_setup_data->callback_data;
1076         INIT_LIST_HEAD(&task->tk_task);
1077
1078         task->tk_priority = task_setup_data->priority - RPC_PRIORITY_LOW;
1079         task->tk_owner = current->tgid;
1080
1081         /* Initialize workqueue for async tasks */
1082         task->tk_workqueue = task_setup_data->workqueue;
1083
1084         task->tk_xprt = rpc_task_get_xprt(task_setup_data->rpc_client,
1085                         xprt_get(task_setup_data->rpc_xprt));
1086
1087         task->tk_op_cred = get_rpccred(task_setup_data->rpc_op_cred);
1088
1089         if (task->tk_ops->rpc_call_prepare != NULL)
1090                 task->tk_action = rpc_prepare_task;
1091
1092         rpc_init_task_statistics(task);
1093 }
1094
1095 static struct rpc_task *
1096 rpc_alloc_task(void)
1097 {
1098         return (struct rpc_task *)mempool_alloc(rpc_task_mempool, GFP_NOFS);
1099 }
1100
1101 /*
1102  * Create a new task for the specified client.
1103  */
1104 struct rpc_task *rpc_new_task(const struct rpc_task_setup *setup_data)
1105 {
1106         struct rpc_task *task = setup_data->task;
1107         unsigned short flags = 0;
1108
1109         if (task == NULL) {
1110                 task = rpc_alloc_task();
1111                 flags = RPC_TASK_DYNAMIC;
1112         }
1113
1114         rpc_init_task(task, setup_data);
1115         task->tk_flags |= flags;
1116         return task;
1117 }
1118
1119 /*
1120  * rpc_free_task - release rpc task and perform cleanups
1121  *
1122  * Note that we free up the rpc_task _after_ rpc_release_calldata()
1123  * in order to work around a workqueue dependency issue.
1124  *
1125  * Tejun Heo states:
1126  * "Workqueue currently considers two work items to be the same if they're
1127  * on the same address and won't execute them concurrently - ie. it
1128  * makes a work item which is queued again while being executed wait
1129  * for the previous execution to complete.
1130  *
1131  * If a work function frees the work item, and then waits for an event
1132  * which should be performed by another work item and *that* work item
1133  * recycles the freed work item, it can create a false dependency loop.
1134  * There really is no reliable way to detect this short of verifying
1135  * every memory free."
1136  *
1137  */
1138 static void rpc_free_task(struct rpc_task *task)
1139 {
1140         unsigned short tk_flags = task->tk_flags;
1141
1142         put_rpccred(task->tk_op_cred);
1143         rpc_release_calldata(task->tk_ops, task->tk_calldata);
1144
1145         if (tk_flags & RPC_TASK_DYNAMIC)
1146                 mempool_free(task, rpc_task_mempool);
1147 }
1148
1149 static void rpc_async_release(struct work_struct *work)
1150 {
1151         unsigned int pflags = memalloc_nofs_save();
1152
1153         rpc_free_task(container_of(work, struct rpc_task, u.tk_work));
1154         memalloc_nofs_restore(pflags);
1155 }
1156
1157 static void rpc_release_resources_task(struct rpc_task *task)
1158 {
1159         xprt_release(task);
1160         if (task->tk_msg.rpc_cred) {
1161                 if (!(task->tk_flags & RPC_TASK_CRED_NOREF))
1162                         put_cred(task->tk_msg.rpc_cred);
1163                 task->tk_msg.rpc_cred = NULL;
1164         }
1165         rpc_task_release_client(task);
1166 }
1167
1168 static void rpc_final_put_task(struct rpc_task *task,
1169                 struct workqueue_struct *q)
1170 {
1171         if (q != NULL) {
1172                 INIT_WORK(&task->u.tk_work, rpc_async_release);
1173                 queue_work(q, &task->u.tk_work);
1174         } else
1175                 rpc_free_task(task);
1176 }
1177
1178 static void rpc_do_put_task(struct rpc_task *task, struct workqueue_struct *q)
1179 {
1180         if (atomic_dec_and_test(&task->tk_count)) {
1181                 rpc_release_resources_task(task);
1182                 rpc_final_put_task(task, q);
1183         }
1184 }
1185
1186 void rpc_put_task(struct rpc_task *task)
1187 {
1188         rpc_do_put_task(task, NULL);
1189 }
1190 EXPORT_SYMBOL_GPL(rpc_put_task);
1191
1192 void rpc_put_task_async(struct rpc_task *task)
1193 {
1194         rpc_do_put_task(task, task->tk_workqueue);
1195 }
1196 EXPORT_SYMBOL_GPL(rpc_put_task_async);
1197
1198 static void rpc_release_task(struct rpc_task *task)
1199 {
1200         WARN_ON_ONCE(RPC_IS_QUEUED(task));
1201
1202         rpc_release_resources_task(task);
1203
1204         /*
1205          * Note: at this point we have been removed from rpc_clnt->cl_tasks,
1206          * so it should be safe to use task->tk_count as a test for whether
1207          * or not any other processes still hold references to our rpc_task.
1208          */
1209         if (atomic_read(&task->tk_count) != 1 + !RPC_IS_ASYNC(task)) {
1210                 /* Wake up anyone who may be waiting for task completion */
1211                 if (!rpc_complete_task(task))
1212                         return;
1213         } else {
1214                 if (!atomic_dec_and_test(&task->tk_count))
1215                         return;
1216         }
1217         rpc_final_put_task(task, task->tk_workqueue);
1218 }
1219
1220 int rpciod_up(void)
1221 {
1222         return try_module_get(THIS_MODULE) ? 0 : -EINVAL;
1223 }
1224
1225 void rpciod_down(void)
1226 {
1227         module_put(THIS_MODULE);
1228 }
1229
1230 /*
1231  * Start up the rpciod workqueue.
1232  */
1233 static int rpciod_start(void)
1234 {
1235         struct workqueue_struct *wq;
1236
1237         /*
1238          * Create the rpciod thread and wait for it to start.
1239          */
1240         wq = alloc_workqueue("rpciod", WQ_MEM_RECLAIM | WQ_UNBOUND, 0);
1241         if (!wq)
1242                 goto out_failed;
1243         rpciod_workqueue = wq;
1244         wq = alloc_workqueue("xprtiod", WQ_UNBOUND | WQ_MEM_RECLAIM, 0);
1245         if (!wq)
1246                 goto free_rpciod;
1247         xprtiod_workqueue = wq;
1248         return 1;
1249 free_rpciod:
1250         wq = rpciod_workqueue;
1251         rpciod_workqueue = NULL;
1252         destroy_workqueue(wq);
1253 out_failed:
1254         return 0;
1255 }
1256
1257 static void rpciod_stop(void)
1258 {
1259         struct workqueue_struct *wq = NULL;
1260
1261         if (rpciod_workqueue == NULL)
1262                 return;
1263
1264         wq = rpciod_workqueue;
1265         rpciod_workqueue = NULL;
1266         destroy_workqueue(wq);
1267         wq = xprtiod_workqueue;
1268         xprtiod_workqueue = NULL;
1269         destroy_workqueue(wq);
1270 }
1271
1272 void
1273 rpc_destroy_mempool(void)
1274 {
1275         rpciod_stop();
1276         mempool_destroy(rpc_buffer_mempool);
1277         mempool_destroy(rpc_task_mempool);
1278         kmem_cache_destroy(rpc_task_slabp);
1279         kmem_cache_destroy(rpc_buffer_slabp);
1280         rpc_destroy_wait_queue(&delay_queue);
1281 }
1282
1283 int
1284 rpc_init_mempool(void)
1285 {
1286         /*
1287          * The following is not strictly a mempool initialisation,
1288          * but there is no harm in doing it here
1289          */
1290         rpc_init_wait_queue(&delay_queue, "delayq");
1291         if (!rpciod_start())
1292                 goto err_nomem;
1293
1294         rpc_task_slabp = kmem_cache_create("rpc_tasks",
1295                                              sizeof(struct rpc_task),
1296                                              0, SLAB_HWCACHE_ALIGN,
1297                                              NULL);
1298         if (!rpc_task_slabp)
1299                 goto err_nomem;
1300         rpc_buffer_slabp = kmem_cache_create("rpc_buffers",
1301                                              RPC_BUFFER_MAXSIZE,
1302                                              0, SLAB_HWCACHE_ALIGN,
1303                                              NULL);
1304         if (!rpc_buffer_slabp)
1305                 goto err_nomem;
1306         rpc_task_mempool = mempool_create_slab_pool(RPC_TASK_POOLSIZE,
1307                                                     rpc_task_slabp);
1308         if (!rpc_task_mempool)
1309                 goto err_nomem;
1310         rpc_buffer_mempool = mempool_create_slab_pool(RPC_BUFFER_POOLSIZE,
1311                                                       rpc_buffer_slabp);
1312         if (!rpc_buffer_mempool)
1313                 goto err_nomem;
1314         return 0;
1315 err_nomem:
1316         rpc_destroy_mempool();
1317         return -ENOMEM;
1318 }