OSDN Git Service

Merge tag 'drm-misc-fixes-2020-05-07' of git://anongit.freedesktop.org/drm/drm-misc...
[tomoyo/tomoyo-test1.git] / net / tls / tls_main.c
1 /*
2  * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
3  * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
4  *
5  * This software is available to you under a choice of one of two
6  * licenses.  You may choose to be licensed under the terms of the GNU
7  * General Public License (GPL) Version 2, available from the file
8  * COPYING in the main directory of this source tree, or the
9  * OpenIB.org BSD license below:
10  *
11  *     Redistribution and use in source and binary forms, with or
12  *     without modification, are permitted provided that the following
13  *     conditions are met:
14  *
15  *      - Redistributions of source code must retain the above
16  *        copyright notice, this list of conditions and the following
17  *        disclaimer.
18  *
19  *      - Redistributions in binary form must reproduce the above
20  *        copyright notice, this list of conditions and the following
21  *        disclaimer in the documentation and/or other materials
22  *        provided with the distribution.
23  *
24  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31  * SOFTWARE.
32  */
33
34 #include <linux/module.h>
35
36 #include <net/tcp.h>
37 #include <net/inet_common.h>
38 #include <linux/highmem.h>
39 #include <linux/netdevice.h>
40 #include <linux/sched/signal.h>
41 #include <linux/inetdevice.h>
42 #include <linux/inet_diag.h>
43
44 #include <net/snmp.h>
45 #include <net/tls.h>
46 #include <net/tls_toe.h>
47
48 MODULE_AUTHOR("Mellanox Technologies");
49 MODULE_DESCRIPTION("Transport Layer Security Support");
50 MODULE_LICENSE("Dual BSD/GPL");
51 MODULE_ALIAS_TCP_ULP("tls");
52
53 enum {
54         TLSV4,
55         TLSV6,
56         TLS_NUM_PROTS,
57 };
58
59 static const struct proto *saved_tcpv6_prot;
60 static DEFINE_MUTEX(tcpv6_prot_mutex);
61 static const struct proto *saved_tcpv4_prot;
62 static DEFINE_MUTEX(tcpv4_prot_mutex);
63 static struct proto tls_prots[TLS_NUM_PROTS][TLS_NUM_CONFIG][TLS_NUM_CONFIG];
64 static struct proto_ops tls_sw_proto_ops;
65 static void build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG],
66                          const struct proto *base);
67
68 void update_sk_prot(struct sock *sk, struct tls_context *ctx)
69 {
70         int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4;
71
72         WRITE_ONCE(sk->sk_prot,
73                    &tls_prots[ip_ver][ctx->tx_conf][ctx->rx_conf]);
74 }
75
76 int wait_on_pending_writer(struct sock *sk, long *timeo)
77 {
78         int rc = 0;
79         DEFINE_WAIT_FUNC(wait, woken_wake_function);
80
81         add_wait_queue(sk_sleep(sk), &wait);
82         while (1) {
83                 if (!*timeo) {
84                         rc = -EAGAIN;
85                         break;
86                 }
87
88                 if (signal_pending(current)) {
89                         rc = sock_intr_errno(*timeo);
90                         break;
91                 }
92
93                 if (sk_wait_event(sk, timeo, !sk->sk_write_pending, &wait))
94                         break;
95         }
96         remove_wait_queue(sk_sleep(sk), &wait);
97         return rc;
98 }
99
100 int tls_push_sg(struct sock *sk,
101                 struct tls_context *ctx,
102                 struct scatterlist *sg,
103                 u16 first_offset,
104                 int flags)
105 {
106         int sendpage_flags = flags | MSG_SENDPAGE_NOTLAST;
107         int ret = 0;
108         struct page *p;
109         size_t size;
110         int offset = first_offset;
111
112         size = sg->length - offset;
113         offset += sg->offset;
114
115         ctx->in_tcp_sendpages = true;
116         while (1) {
117                 if (sg_is_last(sg))
118                         sendpage_flags = flags;
119
120                 /* is sending application-limited? */
121                 tcp_rate_check_app_limited(sk);
122                 p = sg_page(sg);
123 retry:
124                 ret = do_tcp_sendpages(sk, p, offset, size, sendpage_flags);
125
126                 if (ret != size) {
127                         if (ret > 0) {
128                                 offset += ret;
129                                 size -= ret;
130                                 goto retry;
131                         }
132
133                         offset -= sg->offset;
134                         ctx->partially_sent_offset = offset;
135                         ctx->partially_sent_record = (void *)sg;
136                         ctx->in_tcp_sendpages = false;
137                         return ret;
138                 }
139
140                 put_page(p);
141                 sk_mem_uncharge(sk, sg->length);
142                 sg = sg_next(sg);
143                 if (!sg)
144                         break;
145
146                 offset = sg->offset;
147                 size = sg->length;
148         }
149
150         ctx->in_tcp_sendpages = false;
151
152         return 0;
153 }
154
155 static int tls_handle_open_record(struct sock *sk, int flags)
156 {
157         struct tls_context *ctx = tls_get_ctx(sk);
158
159         if (tls_is_pending_open_record(ctx))
160                 return ctx->push_pending_record(sk, flags);
161
162         return 0;
163 }
164
165 int tls_proccess_cmsg(struct sock *sk, struct msghdr *msg,
166                       unsigned char *record_type)
167 {
168         struct cmsghdr *cmsg;
169         int rc = -EINVAL;
170
171         for_each_cmsghdr(cmsg, msg) {
172                 if (!CMSG_OK(msg, cmsg))
173                         return -EINVAL;
174                 if (cmsg->cmsg_level != SOL_TLS)
175                         continue;
176
177                 switch (cmsg->cmsg_type) {
178                 case TLS_SET_RECORD_TYPE:
179                         if (cmsg->cmsg_len < CMSG_LEN(sizeof(*record_type)))
180                                 return -EINVAL;
181
182                         if (msg->msg_flags & MSG_MORE)
183                                 return -EINVAL;
184
185                         rc = tls_handle_open_record(sk, msg->msg_flags);
186                         if (rc)
187                                 return rc;
188
189                         *record_type = *(unsigned char *)CMSG_DATA(cmsg);
190                         rc = 0;
191                         break;
192                 default:
193                         return -EINVAL;
194                 }
195         }
196
197         return rc;
198 }
199
200 int tls_push_partial_record(struct sock *sk, struct tls_context *ctx,
201                             int flags)
202 {
203         struct scatterlist *sg;
204         u16 offset;
205
206         sg = ctx->partially_sent_record;
207         offset = ctx->partially_sent_offset;
208
209         ctx->partially_sent_record = NULL;
210         return tls_push_sg(sk, ctx, sg, offset, flags);
211 }
212
213 void tls_free_partial_record(struct sock *sk, struct tls_context *ctx)
214 {
215         struct scatterlist *sg;
216
217         for (sg = ctx->partially_sent_record; sg; sg = sg_next(sg)) {
218                 put_page(sg_page(sg));
219                 sk_mem_uncharge(sk, sg->length);
220         }
221         ctx->partially_sent_record = NULL;
222 }
223
224 static void tls_write_space(struct sock *sk)
225 {
226         struct tls_context *ctx = tls_get_ctx(sk);
227
228         /* If in_tcp_sendpages call lower protocol write space handler
229          * to ensure we wake up any waiting operations there. For example
230          * if do_tcp_sendpages where to call sk_wait_event.
231          */
232         if (ctx->in_tcp_sendpages) {
233                 ctx->sk_write_space(sk);
234                 return;
235         }
236
237 #ifdef CONFIG_TLS_DEVICE
238         if (ctx->tx_conf == TLS_HW)
239                 tls_device_write_space(sk, ctx);
240         else
241 #endif
242                 tls_sw_write_space(sk, ctx);
243
244         ctx->sk_write_space(sk);
245 }
246
247 /**
248  * tls_ctx_free() - free TLS ULP context
249  * @sk:  socket to with @ctx is attached
250  * @ctx: TLS context structure
251  *
252  * Free TLS context. If @sk is %NULL caller guarantees that the socket
253  * to which @ctx was attached has no outstanding references.
254  */
255 void tls_ctx_free(struct sock *sk, struct tls_context *ctx)
256 {
257         if (!ctx)
258                 return;
259
260         memzero_explicit(&ctx->crypto_send, sizeof(ctx->crypto_send));
261         memzero_explicit(&ctx->crypto_recv, sizeof(ctx->crypto_recv));
262         mutex_destroy(&ctx->tx_lock);
263
264         if (sk)
265                 kfree_rcu(ctx, rcu);
266         else
267                 kfree(ctx);
268 }
269
270 static void tls_sk_proto_cleanup(struct sock *sk,
271                                  struct tls_context *ctx, long timeo)
272 {
273         if (unlikely(sk->sk_write_pending) &&
274             !wait_on_pending_writer(sk, &timeo))
275                 tls_handle_open_record(sk, 0);
276
277         /* We need these for tls_sw_fallback handling of other packets */
278         if (ctx->tx_conf == TLS_SW) {
279                 kfree(ctx->tx.rec_seq);
280                 kfree(ctx->tx.iv);
281                 tls_sw_release_resources_tx(sk);
282                 TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXSW);
283         } else if (ctx->tx_conf == TLS_HW) {
284                 tls_device_free_resources_tx(sk);
285                 TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXDEVICE);
286         }
287
288         if (ctx->rx_conf == TLS_SW) {
289                 tls_sw_release_resources_rx(sk);
290                 TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXSW);
291         } else if (ctx->rx_conf == TLS_HW) {
292                 tls_device_offload_cleanup_rx(sk);
293                 TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXDEVICE);
294         }
295 }
296
297 static void tls_sk_proto_close(struct sock *sk, long timeout)
298 {
299         struct inet_connection_sock *icsk = inet_csk(sk);
300         struct tls_context *ctx = tls_get_ctx(sk);
301         long timeo = sock_sndtimeo(sk, 0);
302         bool free_ctx;
303
304         if (ctx->tx_conf == TLS_SW)
305                 tls_sw_cancel_work_tx(ctx);
306
307         lock_sock(sk);
308         free_ctx = ctx->tx_conf != TLS_HW && ctx->rx_conf != TLS_HW;
309
310         if (ctx->tx_conf != TLS_BASE || ctx->rx_conf != TLS_BASE)
311                 tls_sk_proto_cleanup(sk, ctx, timeo);
312
313         write_lock_bh(&sk->sk_callback_lock);
314         if (free_ctx)
315                 rcu_assign_pointer(icsk->icsk_ulp_data, NULL);
316         WRITE_ONCE(sk->sk_prot, ctx->sk_proto);
317         if (sk->sk_write_space == tls_write_space)
318                 sk->sk_write_space = ctx->sk_write_space;
319         write_unlock_bh(&sk->sk_callback_lock);
320         release_sock(sk);
321         if (ctx->tx_conf == TLS_SW)
322                 tls_sw_free_ctx_tx(ctx);
323         if (ctx->rx_conf == TLS_SW || ctx->rx_conf == TLS_HW)
324                 tls_sw_strparser_done(ctx);
325         if (ctx->rx_conf == TLS_SW)
326                 tls_sw_free_ctx_rx(ctx);
327         ctx->sk_proto->close(sk, timeout);
328
329         if (free_ctx)
330                 tls_ctx_free(sk, ctx);
331 }
332
333 static int do_tls_getsockopt_tx(struct sock *sk, char __user *optval,
334                                 int __user *optlen)
335 {
336         int rc = 0;
337         struct tls_context *ctx = tls_get_ctx(sk);
338         struct tls_crypto_info *crypto_info;
339         int len;
340
341         if (get_user(len, optlen))
342                 return -EFAULT;
343
344         if (!optval || (len < sizeof(*crypto_info))) {
345                 rc = -EINVAL;
346                 goto out;
347         }
348
349         if (!ctx) {
350                 rc = -EBUSY;
351                 goto out;
352         }
353
354         /* get user crypto info */
355         crypto_info = &ctx->crypto_send.info;
356
357         if (!TLS_CRYPTO_INFO_READY(crypto_info)) {
358                 rc = -EBUSY;
359                 goto out;
360         }
361
362         if (len == sizeof(*crypto_info)) {
363                 if (copy_to_user(optval, crypto_info, sizeof(*crypto_info)))
364                         rc = -EFAULT;
365                 goto out;
366         }
367
368         switch (crypto_info->cipher_type) {
369         case TLS_CIPHER_AES_GCM_128: {
370                 struct tls12_crypto_info_aes_gcm_128 *
371                   crypto_info_aes_gcm_128 =
372                   container_of(crypto_info,
373                                struct tls12_crypto_info_aes_gcm_128,
374                                info);
375
376                 if (len != sizeof(*crypto_info_aes_gcm_128)) {
377                         rc = -EINVAL;
378                         goto out;
379                 }
380                 lock_sock(sk);
381                 memcpy(crypto_info_aes_gcm_128->iv,
382                        ctx->tx.iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE,
383                        TLS_CIPHER_AES_GCM_128_IV_SIZE);
384                 memcpy(crypto_info_aes_gcm_128->rec_seq, ctx->tx.rec_seq,
385                        TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE);
386                 release_sock(sk);
387                 if (copy_to_user(optval,
388                                  crypto_info_aes_gcm_128,
389                                  sizeof(*crypto_info_aes_gcm_128)))
390                         rc = -EFAULT;
391                 break;
392         }
393         case TLS_CIPHER_AES_GCM_256: {
394                 struct tls12_crypto_info_aes_gcm_256 *
395                   crypto_info_aes_gcm_256 =
396                   container_of(crypto_info,
397                                struct tls12_crypto_info_aes_gcm_256,
398                                info);
399
400                 if (len != sizeof(*crypto_info_aes_gcm_256)) {
401                         rc = -EINVAL;
402                         goto out;
403                 }
404                 lock_sock(sk);
405                 memcpy(crypto_info_aes_gcm_256->iv,
406                        ctx->tx.iv + TLS_CIPHER_AES_GCM_256_SALT_SIZE,
407                        TLS_CIPHER_AES_GCM_256_IV_SIZE);
408                 memcpy(crypto_info_aes_gcm_256->rec_seq, ctx->tx.rec_seq,
409                        TLS_CIPHER_AES_GCM_256_REC_SEQ_SIZE);
410                 release_sock(sk);
411                 if (copy_to_user(optval,
412                                  crypto_info_aes_gcm_256,
413                                  sizeof(*crypto_info_aes_gcm_256)))
414                         rc = -EFAULT;
415                 break;
416         }
417         default:
418                 rc = -EINVAL;
419         }
420
421 out:
422         return rc;
423 }
424
425 static int do_tls_getsockopt(struct sock *sk, int optname,
426                              char __user *optval, int __user *optlen)
427 {
428         int rc = 0;
429
430         switch (optname) {
431         case TLS_TX:
432                 rc = do_tls_getsockopt_tx(sk, optval, optlen);
433                 break;
434         default:
435                 rc = -ENOPROTOOPT;
436                 break;
437         }
438         return rc;
439 }
440
441 static int tls_getsockopt(struct sock *sk, int level, int optname,
442                           char __user *optval, int __user *optlen)
443 {
444         struct tls_context *ctx = tls_get_ctx(sk);
445
446         if (level != SOL_TLS)
447                 return ctx->sk_proto->getsockopt(sk, level,
448                                                  optname, optval, optlen);
449
450         return do_tls_getsockopt(sk, optname, optval, optlen);
451 }
452
453 static int do_tls_setsockopt_conf(struct sock *sk, char __user *optval,
454                                   unsigned int optlen, int tx)
455 {
456         struct tls_crypto_info *crypto_info;
457         struct tls_crypto_info *alt_crypto_info;
458         struct tls_context *ctx = tls_get_ctx(sk);
459         size_t optsize;
460         int rc = 0;
461         int conf;
462
463         if (!optval || (optlen < sizeof(*crypto_info))) {
464                 rc = -EINVAL;
465                 goto out;
466         }
467
468         if (tx) {
469                 crypto_info = &ctx->crypto_send.info;
470                 alt_crypto_info = &ctx->crypto_recv.info;
471         } else {
472                 crypto_info = &ctx->crypto_recv.info;
473                 alt_crypto_info = &ctx->crypto_send.info;
474         }
475
476         /* Currently we don't support set crypto info more than one time */
477         if (TLS_CRYPTO_INFO_READY(crypto_info)) {
478                 rc = -EBUSY;
479                 goto out;
480         }
481
482         rc = copy_from_user(crypto_info, optval, sizeof(*crypto_info));
483         if (rc) {
484                 rc = -EFAULT;
485                 goto err_crypto_info;
486         }
487
488         /* check version */
489         if (crypto_info->version != TLS_1_2_VERSION &&
490             crypto_info->version != TLS_1_3_VERSION) {
491                 rc = -EINVAL;
492                 goto err_crypto_info;
493         }
494
495         /* Ensure that TLS version and ciphers are same in both directions */
496         if (TLS_CRYPTO_INFO_READY(alt_crypto_info)) {
497                 if (alt_crypto_info->version != crypto_info->version ||
498                     alt_crypto_info->cipher_type != crypto_info->cipher_type) {
499                         rc = -EINVAL;
500                         goto err_crypto_info;
501                 }
502         }
503
504         switch (crypto_info->cipher_type) {
505         case TLS_CIPHER_AES_GCM_128:
506                 optsize = sizeof(struct tls12_crypto_info_aes_gcm_128);
507                 break;
508         case TLS_CIPHER_AES_GCM_256: {
509                 optsize = sizeof(struct tls12_crypto_info_aes_gcm_256);
510                 break;
511         }
512         case TLS_CIPHER_AES_CCM_128:
513                 optsize = sizeof(struct tls12_crypto_info_aes_ccm_128);
514                 break;
515         default:
516                 rc = -EINVAL;
517                 goto err_crypto_info;
518         }
519
520         if (optlen != optsize) {
521                 rc = -EINVAL;
522                 goto err_crypto_info;
523         }
524
525         rc = copy_from_user(crypto_info + 1, optval + sizeof(*crypto_info),
526                             optlen - sizeof(*crypto_info));
527         if (rc) {
528                 rc = -EFAULT;
529                 goto err_crypto_info;
530         }
531
532         if (tx) {
533                 rc = tls_set_device_offload(sk, ctx);
534                 conf = TLS_HW;
535                 if (!rc) {
536                         TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSTXDEVICE);
537                         TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXDEVICE);
538                 } else {
539                         rc = tls_set_sw_offload(sk, ctx, 1);
540                         if (rc)
541                                 goto err_crypto_info;
542                         TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSTXSW);
543                         TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXSW);
544                         conf = TLS_SW;
545                 }
546         } else {
547                 rc = tls_set_device_offload_rx(sk, ctx);
548                 conf = TLS_HW;
549                 if (!rc) {
550                         TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXDEVICE);
551                         TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXDEVICE);
552                 } else {
553                         rc = tls_set_sw_offload(sk, ctx, 0);
554                         if (rc)
555                                 goto err_crypto_info;
556                         TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXSW);
557                         TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXSW);
558                         conf = TLS_SW;
559                 }
560                 tls_sw_strparser_arm(sk, ctx);
561         }
562
563         if (tx)
564                 ctx->tx_conf = conf;
565         else
566                 ctx->rx_conf = conf;
567         update_sk_prot(sk, ctx);
568         if (tx) {
569                 ctx->sk_write_space = sk->sk_write_space;
570                 sk->sk_write_space = tls_write_space;
571         } else {
572                 sk->sk_socket->ops = &tls_sw_proto_ops;
573         }
574         goto out;
575
576 err_crypto_info:
577         memzero_explicit(crypto_info, sizeof(union tls_crypto_context));
578 out:
579         return rc;
580 }
581
582 static int do_tls_setsockopt(struct sock *sk, int optname,
583                              char __user *optval, unsigned int optlen)
584 {
585         int rc = 0;
586
587         switch (optname) {
588         case TLS_TX:
589         case TLS_RX:
590                 lock_sock(sk);
591                 rc = do_tls_setsockopt_conf(sk, optval, optlen,
592                                             optname == TLS_TX);
593                 release_sock(sk);
594                 break;
595         default:
596                 rc = -ENOPROTOOPT;
597                 break;
598         }
599         return rc;
600 }
601
602 static int tls_setsockopt(struct sock *sk, int level, int optname,
603                           char __user *optval, unsigned int optlen)
604 {
605         struct tls_context *ctx = tls_get_ctx(sk);
606
607         if (level != SOL_TLS)
608                 return ctx->sk_proto->setsockopt(sk, level, optname, optval,
609                                                  optlen);
610
611         return do_tls_setsockopt(sk, optname, optval, optlen);
612 }
613
614 struct tls_context *tls_ctx_create(struct sock *sk)
615 {
616         struct inet_connection_sock *icsk = inet_csk(sk);
617         struct tls_context *ctx;
618
619         ctx = kzalloc(sizeof(*ctx), GFP_ATOMIC);
620         if (!ctx)
621                 return NULL;
622
623         mutex_init(&ctx->tx_lock);
624         rcu_assign_pointer(icsk->icsk_ulp_data, ctx);
625         ctx->sk_proto = READ_ONCE(sk->sk_prot);
626         return ctx;
627 }
628
629 static void tls_build_proto(struct sock *sk)
630 {
631         int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4;
632         const struct proto *prot = READ_ONCE(sk->sk_prot);
633
634         /* Build IPv6 TLS whenever the address of tcpv6 _prot changes */
635         if (ip_ver == TLSV6 &&
636             unlikely(prot != smp_load_acquire(&saved_tcpv6_prot))) {
637                 mutex_lock(&tcpv6_prot_mutex);
638                 if (likely(prot != saved_tcpv6_prot)) {
639                         build_protos(tls_prots[TLSV6], prot);
640                         smp_store_release(&saved_tcpv6_prot, prot);
641                 }
642                 mutex_unlock(&tcpv6_prot_mutex);
643         }
644
645         if (ip_ver == TLSV4 &&
646             unlikely(prot != smp_load_acquire(&saved_tcpv4_prot))) {
647                 mutex_lock(&tcpv4_prot_mutex);
648                 if (likely(prot != saved_tcpv4_prot)) {
649                         build_protos(tls_prots[TLSV4], prot);
650                         smp_store_release(&saved_tcpv4_prot, prot);
651                 }
652                 mutex_unlock(&tcpv4_prot_mutex);
653         }
654 }
655
656 static void build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG],
657                          const struct proto *base)
658 {
659         prot[TLS_BASE][TLS_BASE] = *base;
660         prot[TLS_BASE][TLS_BASE].setsockopt     = tls_setsockopt;
661         prot[TLS_BASE][TLS_BASE].getsockopt     = tls_getsockopt;
662         prot[TLS_BASE][TLS_BASE].close          = tls_sk_proto_close;
663
664         prot[TLS_SW][TLS_BASE] = prot[TLS_BASE][TLS_BASE];
665         prot[TLS_SW][TLS_BASE].sendmsg          = tls_sw_sendmsg;
666         prot[TLS_SW][TLS_BASE].sendpage         = tls_sw_sendpage;
667
668         prot[TLS_BASE][TLS_SW] = prot[TLS_BASE][TLS_BASE];
669         prot[TLS_BASE][TLS_SW].recvmsg            = tls_sw_recvmsg;
670         prot[TLS_BASE][TLS_SW].stream_memory_read = tls_sw_stream_read;
671         prot[TLS_BASE][TLS_SW].close              = tls_sk_proto_close;
672
673         prot[TLS_SW][TLS_SW] = prot[TLS_SW][TLS_BASE];
674         prot[TLS_SW][TLS_SW].recvmsg            = tls_sw_recvmsg;
675         prot[TLS_SW][TLS_SW].stream_memory_read = tls_sw_stream_read;
676         prot[TLS_SW][TLS_SW].close              = tls_sk_proto_close;
677
678 #ifdef CONFIG_TLS_DEVICE
679         prot[TLS_HW][TLS_BASE] = prot[TLS_BASE][TLS_BASE];
680         prot[TLS_HW][TLS_BASE].sendmsg          = tls_device_sendmsg;
681         prot[TLS_HW][TLS_BASE].sendpage         = tls_device_sendpage;
682
683         prot[TLS_HW][TLS_SW] = prot[TLS_BASE][TLS_SW];
684         prot[TLS_HW][TLS_SW].sendmsg            = tls_device_sendmsg;
685         prot[TLS_HW][TLS_SW].sendpage           = tls_device_sendpage;
686
687         prot[TLS_BASE][TLS_HW] = prot[TLS_BASE][TLS_SW];
688
689         prot[TLS_SW][TLS_HW] = prot[TLS_SW][TLS_SW];
690
691         prot[TLS_HW][TLS_HW] = prot[TLS_HW][TLS_SW];
692 #endif
693 #ifdef CONFIG_TLS_TOE
694         prot[TLS_HW_RECORD][TLS_HW_RECORD] = *base;
695         prot[TLS_HW_RECORD][TLS_HW_RECORD].hash         = tls_toe_hash;
696         prot[TLS_HW_RECORD][TLS_HW_RECORD].unhash       = tls_toe_unhash;
697 #endif
698 }
699
700 static int tls_init(struct sock *sk)
701 {
702         struct tls_context *ctx;
703         int rc = 0;
704
705         tls_build_proto(sk);
706
707 #ifdef CONFIG_TLS_TOE
708         if (tls_toe_bypass(sk))
709                 return 0;
710 #endif
711
712         /* The TLS ulp is currently supported only for TCP sockets
713          * in ESTABLISHED state.
714          * Supporting sockets in LISTEN state will require us
715          * to modify the accept implementation to clone rather then
716          * share the ulp context.
717          */
718         if (sk->sk_state != TCP_ESTABLISHED)
719                 return -ENOTCONN;
720
721         /* allocate tls context */
722         write_lock_bh(&sk->sk_callback_lock);
723         ctx = tls_ctx_create(sk);
724         if (!ctx) {
725                 rc = -ENOMEM;
726                 goto out;
727         }
728
729         ctx->tx_conf = TLS_BASE;
730         ctx->rx_conf = TLS_BASE;
731         update_sk_prot(sk, ctx);
732 out:
733         write_unlock_bh(&sk->sk_callback_lock);
734         return rc;
735 }
736
737 static void tls_update(struct sock *sk, struct proto *p,
738                        void (*write_space)(struct sock *sk))
739 {
740         struct tls_context *ctx;
741
742         ctx = tls_get_ctx(sk);
743         if (likely(ctx)) {
744                 ctx->sk_write_space = write_space;
745                 ctx->sk_proto = p;
746         } else {
747                 /* Pairs with lockless read in sk_clone_lock(). */
748                 WRITE_ONCE(sk->sk_prot, p);
749                 sk->sk_write_space = write_space;
750         }
751 }
752
753 static int tls_get_info(const struct sock *sk, struct sk_buff *skb)
754 {
755         u16 version, cipher_type;
756         struct tls_context *ctx;
757         struct nlattr *start;
758         int err;
759
760         start = nla_nest_start_noflag(skb, INET_ULP_INFO_TLS);
761         if (!start)
762                 return -EMSGSIZE;
763
764         rcu_read_lock();
765         ctx = rcu_dereference(inet_csk(sk)->icsk_ulp_data);
766         if (!ctx) {
767                 err = 0;
768                 goto nla_failure;
769         }
770         version = ctx->prot_info.version;
771         if (version) {
772                 err = nla_put_u16(skb, TLS_INFO_VERSION, version);
773                 if (err)
774                         goto nla_failure;
775         }
776         cipher_type = ctx->prot_info.cipher_type;
777         if (cipher_type) {
778                 err = nla_put_u16(skb, TLS_INFO_CIPHER, cipher_type);
779                 if (err)
780                         goto nla_failure;
781         }
782         err = nla_put_u16(skb, TLS_INFO_TXCONF, tls_user_config(ctx, true));
783         if (err)
784                 goto nla_failure;
785
786         err = nla_put_u16(skb, TLS_INFO_RXCONF, tls_user_config(ctx, false));
787         if (err)
788                 goto nla_failure;
789
790         rcu_read_unlock();
791         nla_nest_end(skb, start);
792         return 0;
793
794 nla_failure:
795         rcu_read_unlock();
796         nla_nest_cancel(skb, start);
797         return err;
798 }
799
800 static size_t tls_get_info_size(const struct sock *sk)
801 {
802         size_t size = 0;
803
804         size += nla_total_size(0) +             /* INET_ULP_INFO_TLS */
805                 nla_total_size(sizeof(u16)) +   /* TLS_INFO_VERSION */
806                 nla_total_size(sizeof(u16)) +   /* TLS_INFO_CIPHER */
807                 nla_total_size(sizeof(u16)) +   /* TLS_INFO_RXCONF */
808                 nla_total_size(sizeof(u16)) +   /* TLS_INFO_TXCONF */
809                 0;
810
811         return size;
812 }
813
814 static int __net_init tls_init_net(struct net *net)
815 {
816         int err;
817
818         net->mib.tls_statistics = alloc_percpu(struct linux_tls_mib);
819         if (!net->mib.tls_statistics)
820                 return -ENOMEM;
821
822         err = tls_proc_init(net);
823         if (err)
824                 goto err_free_stats;
825
826         return 0;
827 err_free_stats:
828         free_percpu(net->mib.tls_statistics);
829         return err;
830 }
831
832 static void __net_exit tls_exit_net(struct net *net)
833 {
834         tls_proc_fini(net);
835         free_percpu(net->mib.tls_statistics);
836 }
837
838 static struct pernet_operations tls_proc_ops = {
839         .init = tls_init_net,
840         .exit = tls_exit_net,
841 };
842
843 static struct tcp_ulp_ops tcp_tls_ulp_ops __read_mostly = {
844         .name                   = "tls",
845         .owner                  = THIS_MODULE,
846         .init                   = tls_init,
847         .update                 = tls_update,
848         .get_info               = tls_get_info,
849         .get_info_size          = tls_get_info_size,
850 };
851
852 static int __init tls_register(void)
853 {
854         int err;
855
856         err = register_pernet_subsys(&tls_proc_ops);
857         if (err)
858                 return err;
859
860         tls_sw_proto_ops = inet_stream_ops;
861         tls_sw_proto_ops.splice_read = tls_sw_splice_read;
862         tls_sw_proto_ops.sendpage_locked   = tls_sw_sendpage_locked,
863
864         tls_device_init();
865         tcp_register_ulp(&tcp_tls_ulp_ops);
866
867         return 0;
868 }
869
870 static void __exit tls_unregister(void)
871 {
872         tcp_unregister_ulp(&tcp_tls_ulp_ops);
873         tls_device_cleanup();
874         unregister_pernet_subsys(&tls_proc_ops);
875 }
876
877 module_init(tls_register);
878 module_exit(tls_unregister);