OSDN Git Service

Merge tag 'for-4.19-rc2-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave...
[uclinux-h8/linux.git] / net / tls / tls_main.c
1 /*
2  * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
3  * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
4  *
5  * This software is available to you under a choice of one of two
6  * licenses.  You may choose to be licensed under the terms of the GNU
7  * General Public License (GPL) Version 2, available from the file
8  * COPYING in the main directory of this source tree, or the
9  * OpenIB.org BSD license below:
10  *
11  *     Redistribution and use in source and binary forms, with or
12  *     without modification, are permitted provided that the following
13  *     conditions are met:
14  *
15  *      - Redistributions of source code must retain the above
16  *        copyright notice, this list of conditions and the following
17  *        disclaimer.
18  *
19  *      - Redistributions in binary form must reproduce the above
20  *        copyright notice, this list of conditions and the following
21  *        disclaimer in the documentation and/or other materials
22  *        provided with the distribution.
23  *
24  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31  * SOFTWARE.
32  */
33
34 #include <linux/module.h>
35
36 #include <net/tcp.h>
37 #include <net/inet_common.h>
38 #include <linux/highmem.h>
39 #include <linux/netdevice.h>
40 #include <linux/sched/signal.h>
41 #include <linux/inetdevice.h>
42
43 #include <net/tls.h>
44
45 MODULE_AUTHOR("Mellanox Technologies");
46 MODULE_DESCRIPTION("Transport Layer Security Support");
47 MODULE_LICENSE("Dual BSD/GPL");
48 MODULE_ALIAS_TCP_ULP("tls");
49
50 enum {
51         TLSV4,
52         TLSV6,
53         TLS_NUM_PROTS,
54 };
55
56 static struct proto *saved_tcpv6_prot;
57 static DEFINE_MUTEX(tcpv6_prot_mutex);
58 static LIST_HEAD(device_list);
59 static DEFINE_MUTEX(device_mutex);
60 static struct proto tls_prots[TLS_NUM_PROTS][TLS_NUM_CONFIG][TLS_NUM_CONFIG];
61 static struct proto_ops tls_sw_proto_ops;
62
63 static void update_sk_prot(struct sock *sk, struct tls_context *ctx)
64 {
65         int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4;
66
67         sk->sk_prot = &tls_prots[ip_ver][ctx->tx_conf][ctx->rx_conf];
68 }
69
70 int wait_on_pending_writer(struct sock *sk, long *timeo)
71 {
72         int rc = 0;
73         DEFINE_WAIT_FUNC(wait, woken_wake_function);
74
75         add_wait_queue(sk_sleep(sk), &wait);
76         while (1) {
77                 if (!*timeo) {
78                         rc = -EAGAIN;
79                         break;
80                 }
81
82                 if (signal_pending(current)) {
83                         rc = sock_intr_errno(*timeo);
84                         break;
85                 }
86
87                 if (sk_wait_event(sk, timeo, !sk->sk_write_pending, &wait))
88                         break;
89         }
90         remove_wait_queue(sk_sleep(sk), &wait);
91         return rc;
92 }
93
94 int tls_push_sg(struct sock *sk,
95                 struct tls_context *ctx,
96                 struct scatterlist *sg,
97                 u16 first_offset,
98                 int flags)
99 {
100         int sendpage_flags = flags | MSG_SENDPAGE_NOTLAST;
101         int ret = 0;
102         struct page *p;
103         size_t size;
104         int offset = first_offset;
105
106         size = sg->length - offset;
107         offset += sg->offset;
108
109         ctx->in_tcp_sendpages = true;
110         while (1) {
111                 if (sg_is_last(sg))
112                         sendpage_flags = flags;
113
114                 /* is sending application-limited? */
115                 tcp_rate_check_app_limited(sk);
116                 p = sg_page(sg);
117 retry:
118                 ret = do_tcp_sendpages(sk, p, offset, size, sendpage_flags);
119
120                 if (ret != size) {
121                         if (ret > 0) {
122                                 offset += ret;
123                                 size -= ret;
124                                 goto retry;
125                         }
126
127                         offset -= sg->offset;
128                         ctx->partially_sent_offset = offset;
129                         ctx->partially_sent_record = (void *)sg;
130                         ctx->in_tcp_sendpages = false;
131                         return ret;
132                 }
133
134                 put_page(p);
135                 sk_mem_uncharge(sk, sg->length);
136                 sg = sg_next(sg);
137                 if (!sg)
138                         break;
139
140                 offset = sg->offset;
141                 size = sg->length;
142         }
143
144         clear_bit(TLS_PENDING_CLOSED_RECORD, &ctx->flags);
145         ctx->in_tcp_sendpages = false;
146         ctx->sk_write_space(sk);
147
148         return 0;
149 }
150
151 static int tls_handle_open_record(struct sock *sk, int flags)
152 {
153         struct tls_context *ctx = tls_get_ctx(sk);
154
155         if (tls_is_pending_open_record(ctx))
156                 return ctx->push_pending_record(sk, flags);
157
158         return 0;
159 }
160
161 int tls_proccess_cmsg(struct sock *sk, struct msghdr *msg,
162                       unsigned char *record_type)
163 {
164         struct cmsghdr *cmsg;
165         int rc = -EINVAL;
166
167         for_each_cmsghdr(cmsg, msg) {
168                 if (!CMSG_OK(msg, cmsg))
169                         return -EINVAL;
170                 if (cmsg->cmsg_level != SOL_TLS)
171                         continue;
172
173                 switch (cmsg->cmsg_type) {
174                 case TLS_SET_RECORD_TYPE:
175                         if (cmsg->cmsg_len < CMSG_LEN(sizeof(*record_type)))
176                                 return -EINVAL;
177
178                         if (msg->msg_flags & MSG_MORE)
179                                 return -EINVAL;
180
181                         rc = tls_handle_open_record(sk, msg->msg_flags);
182                         if (rc)
183                                 return rc;
184
185                         *record_type = *(unsigned char *)CMSG_DATA(cmsg);
186                         rc = 0;
187                         break;
188                 default:
189                         return -EINVAL;
190                 }
191         }
192
193         return rc;
194 }
195
196 int tls_push_pending_closed_record(struct sock *sk, struct tls_context *ctx,
197                                    int flags, long *timeo)
198 {
199         struct scatterlist *sg;
200         u16 offset;
201
202         if (!tls_is_partially_sent_record(ctx))
203                 return ctx->push_pending_record(sk, flags);
204
205         sg = ctx->partially_sent_record;
206         offset = ctx->partially_sent_offset;
207
208         ctx->partially_sent_record = NULL;
209         return tls_push_sg(sk, ctx, sg, offset, flags);
210 }
211
212 static void tls_write_space(struct sock *sk)
213 {
214         struct tls_context *ctx = tls_get_ctx(sk);
215
216         /* If in_tcp_sendpages call lower protocol write space handler
217          * to ensure we wake up any waiting operations there. For example
218          * if do_tcp_sendpages where to call sk_wait_event.
219          */
220         if (ctx->in_tcp_sendpages) {
221                 ctx->sk_write_space(sk);
222                 return;
223         }
224
225         if (!sk->sk_write_pending && tls_is_pending_closed_record(ctx)) {
226                 gfp_t sk_allocation = sk->sk_allocation;
227                 int rc;
228                 long timeo = 0;
229
230                 sk->sk_allocation = GFP_ATOMIC;
231                 rc = tls_push_pending_closed_record(sk, ctx,
232                                                     MSG_DONTWAIT |
233                                                     MSG_NOSIGNAL,
234                                                     &timeo);
235                 sk->sk_allocation = sk_allocation;
236
237                 if (rc < 0)
238                         return;
239         }
240
241         ctx->sk_write_space(sk);
242 }
243
244 static void tls_sk_proto_close(struct sock *sk, long timeout)
245 {
246         struct tls_context *ctx = tls_get_ctx(sk);
247         long timeo = sock_sndtimeo(sk, 0);
248         void (*sk_proto_close)(struct sock *sk, long timeout);
249         bool free_ctx = false;
250
251         lock_sock(sk);
252         sk_proto_close = ctx->sk_proto_close;
253
254         if ((ctx->tx_conf == TLS_HW_RECORD && ctx->rx_conf == TLS_HW_RECORD) ||
255             (ctx->tx_conf == TLS_BASE && ctx->rx_conf == TLS_BASE)) {
256                 free_ctx = true;
257                 goto skip_tx_cleanup;
258         }
259
260         if (!tls_complete_pending_work(sk, ctx, 0, &timeo))
261                 tls_handle_open_record(sk, 0);
262
263         if (ctx->partially_sent_record) {
264                 struct scatterlist *sg = ctx->partially_sent_record;
265
266                 while (1) {
267                         put_page(sg_page(sg));
268                         sk_mem_uncharge(sk, sg->length);
269
270                         if (sg_is_last(sg))
271                                 break;
272                         sg++;
273                 }
274         }
275
276         /* We need these for tls_sw_fallback handling of other packets */
277         if (ctx->tx_conf == TLS_SW) {
278                 kfree(ctx->tx.rec_seq);
279                 kfree(ctx->tx.iv);
280                 tls_sw_free_resources_tx(sk);
281         }
282
283         if (ctx->rx_conf == TLS_SW) {
284                 kfree(ctx->rx.rec_seq);
285                 kfree(ctx->rx.iv);
286                 tls_sw_free_resources_rx(sk);
287         }
288
289 #ifdef CONFIG_TLS_DEVICE
290         if (ctx->rx_conf == TLS_HW)
291                 tls_device_offload_cleanup_rx(sk);
292
293         if (ctx->tx_conf != TLS_HW && ctx->rx_conf != TLS_HW) {
294 #else
295         {
296 #endif
297                 kfree(ctx);
298                 ctx = NULL;
299         }
300
301 skip_tx_cleanup:
302         release_sock(sk);
303         sk_proto_close(sk, timeout);
304         /* free ctx for TLS_HW_RECORD, used by tcp_set_state
305          * for sk->sk_prot->unhash [tls_hw_unhash]
306          */
307         if (free_ctx)
308                 kfree(ctx);
309 }
310
311 static int do_tls_getsockopt_tx(struct sock *sk, char __user *optval,
312                                 int __user *optlen)
313 {
314         int rc = 0;
315         struct tls_context *ctx = tls_get_ctx(sk);
316         struct tls_crypto_info *crypto_info;
317         int len;
318
319         if (get_user(len, optlen))
320                 return -EFAULT;
321
322         if (!optval || (len < sizeof(*crypto_info))) {
323                 rc = -EINVAL;
324                 goto out;
325         }
326
327         if (!ctx) {
328                 rc = -EBUSY;
329                 goto out;
330         }
331
332         /* get user crypto info */
333         crypto_info = &ctx->crypto_send;
334
335         if (!TLS_CRYPTO_INFO_READY(crypto_info)) {
336                 rc = -EBUSY;
337                 goto out;
338         }
339
340         if (len == sizeof(*crypto_info)) {
341                 if (copy_to_user(optval, crypto_info, sizeof(*crypto_info)))
342                         rc = -EFAULT;
343                 goto out;
344         }
345
346         switch (crypto_info->cipher_type) {
347         case TLS_CIPHER_AES_GCM_128: {
348                 struct tls12_crypto_info_aes_gcm_128 *
349                   crypto_info_aes_gcm_128 =
350                   container_of(crypto_info,
351                                struct tls12_crypto_info_aes_gcm_128,
352                                info);
353
354                 if (len != sizeof(*crypto_info_aes_gcm_128)) {
355                         rc = -EINVAL;
356                         goto out;
357                 }
358                 lock_sock(sk);
359                 memcpy(crypto_info_aes_gcm_128->iv,
360                        ctx->tx.iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE,
361                        TLS_CIPHER_AES_GCM_128_IV_SIZE);
362                 memcpy(crypto_info_aes_gcm_128->rec_seq, ctx->tx.rec_seq,
363                        TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE);
364                 release_sock(sk);
365                 if (copy_to_user(optval,
366                                  crypto_info_aes_gcm_128,
367                                  sizeof(*crypto_info_aes_gcm_128)))
368                         rc = -EFAULT;
369                 break;
370         }
371         default:
372                 rc = -EINVAL;
373         }
374
375 out:
376         return rc;
377 }
378
379 static int do_tls_getsockopt(struct sock *sk, int optname,
380                              char __user *optval, int __user *optlen)
381 {
382         int rc = 0;
383
384         switch (optname) {
385         case TLS_TX:
386                 rc = do_tls_getsockopt_tx(sk, optval, optlen);
387                 break;
388         default:
389                 rc = -ENOPROTOOPT;
390                 break;
391         }
392         return rc;
393 }
394
395 static int tls_getsockopt(struct sock *sk, int level, int optname,
396                           char __user *optval, int __user *optlen)
397 {
398         struct tls_context *ctx = tls_get_ctx(sk);
399
400         if (level != SOL_TLS)
401                 return ctx->getsockopt(sk, level, optname, optval, optlen);
402
403         return do_tls_getsockopt(sk, optname, optval, optlen);
404 }
405
406 static int do_tls_setsockopt_conf(struct sock *sk, char __user *optval,
407                                   unsigned int optlen, int tx)
408 {
409         struct tls_crypto_info *crypto_info;
410         struct tls_context *ctx = tls_get_ctx(sk);
411         int rc = 0;
412         int conf;
413
414         if (!optval || (optlen < sizeof(*crypto_info))) {
415                 rc = -EINVAL;
416                 goto out;
417         }
418
419         if (tx)
420                 crypto_info = &ctx->crypto_send;
421         else
422                 crypto_info = &ctx->crypto_recv;
423
424         /* Currently we don't support set crypto info more than one time */
425         if (TLS_CRYPTO_INFO_READY(crypto_info)) {
426                 rc = -EBUSY;
427                 goto out;
428         }
429
430         rc = copy_from_user(crypto_info, optval, sizeof(*crypto_info));
431         if (rc) {
432                 rc = -EFAULT;
433                 goto err_crypto_info;
434         }
435
436         /* check version */
437         if (crypto_info->version != TLS_1_2_VERSION) {
438                 rc = -ENOTSUPP;
439                 goto err_crypto_info;
440         }
441
442         switch (crypto_info->cipher_type) {
443         case TLS_CIPHER_AES_GCM_128: {
444                 if (optlen != sizeof(struct tls12_crypto_info_aes_gcm_128)) {
445                         rc = -EINVAL;
446                         goto err_crypto_info;
447                 }
448                 rc = copy_from_user(crypto_info + 1, optval + sizeof(*crypto_info),
449                                     optlen - sizeof(*crypto_info));
450                 if (rc) {
451                         rc = -EFAULT;
452                         goto err_crypto_info;
453                 }
454                 break;
455         }
456         default:
457                 rc = -EINVAL;
458                 goto err_crypto_info;
459         }
460
461         if (tx) {
462 #ifdef CONFIG_TLS_DEVICE
463                 rc = tls_set_device_offload(sk, ctx);
464                 conf = TLS_HW;
465                 if (rc) {
466 #else
467                 {
468 #endif
469                         rc = tls_set_sw_offload(sk, ctx, 1);
470                         conf = TLS_SW;
471                 }
472         } else {
473 #ifdef CONFIG_TLS_DEVICE
474                 rc = tls_set_device_offload_rx(sk, ctx);
475                 conf = TLS_HW;
476                 if (rc) {
477 #else
478                 {
479 #endif
480                         rc = tls_set_sw_offload(sk, ctx, 0);
481                         conf = TLS_SW;
482                 }
483         }
484
485         if (rc)
486                 goto err_crypto_info;
487
488         if (tx)
489                 ctx->tx_conf = conf;
490         else
491                 ctx->rx_conf = conf;
492         update_sk_prot(sk, ctx);
493         if (tx) {
494                 ctx->sk_write_space = sk->sk_write_space;
495                 sk->sk_write_space = tls_write_space;
496         } else {
497                 sk->sk_socket->ops = &tls_sw_proto_ops;
498         }
499         goto out;
500
501 err_crypto_info:
502         memset(crypto_info, 0, sizeof(*crypto_info));
503 out:
504         return rc;
505 }
506
507 static int do_tls_setsockopt(struct sock *sk, int optname,
508                              char __user *optval, unsigned int optlen)
509 {
510         int rc = 0;
511
512         switch (optname) {
513         case TLS_TX:
514         case TLS_RX:
515                 lock_sock(sk);
516                 rc = do_tls_setsockopt_conf(sk, optval, optlen,
517                                             optname == TLS_TX);
518                 release_sock(sk);
519                 break;
520         default:
521                 rc = -ENOPROTOOPT;
522                 break;
523         }
524         return rc;
525 }
526
527 static int tls_setsockopt(struct sock *sk, int level, int optname,
528                           char __user *optval, unsigned int optlen)
529 {
530         struct tls_context *ctx = tls_get_ctx(sk);
531
532         if (level != SOL_TLS)
533                 return ctx->setsockopt(sk, level, optname, optval, optlen);
534
535         return do_tls_setsockopt(sk, optname, optval, optlen);
536 }
537
538 static struct tls_context *create_ctx(struct sock *sk)
539 {
540         struct inet_connection_sock *icsk = inet_csk(sk);
541         struct tls_context *ctx;
542
543         ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
544         if (!ctx)
545                 return NULL;
546
547         icsk->icsk_ulp_data = ctx;
548         return ctx;
549 }
550
551 static int tls_hw_prot(struct sock *sk)
552 {
553         struct tls_context *ctx;
554         struct tls_device *dev;
555         int rc = 0;
556
557         mutex_lock(&device_mutex);
558         list_for_each_entry(dev, &device_list, dev_list) {
559                 if (dev->feature && dev->feature(dev)) {
560                         ctx = create_ctx(sk);
561                         if (!ctx)
562                                 goto out;
563
564                         ctx->hash = sk->sk_prot->hash;
565                         ctx->unhash = sk->sk_prot->unhash;
566                         ctx->sk_proto_close = sk->sk_prot->close;
567                         ctx->rx_conf = TLS_HW_RECORD;
568                         ctx->tx_conf = TLS_HW_RECORD;
569                         update_sk_prot(sk, ctx);
570                         rc = 1;
571                         break;
572                 }
573         }
574 out:
575         mutex_unlock(&device_mutex);
576         return rc;
577 }
578
579 static void tls_hw_unhash(struct sock *sk)
580 {
581         struct tls_context *ctx = tls_get_ctx(sk);
582         struct tls_device *dev;
583
584         mutex_lock(&device_mutex);
585         list_for_each_entry(dev, &device_list, dev_list) {
586                 if (dev->unhash)
587                         dev->unhash(dev, sk);
588         }
589         mutex_unlock(&device_mutex);
590         ctx->unhash(sk);
591 }
592
593 static int tls_hw_hash(struct sock *sk)
594 {
595         struct tls_context *ctx = tls_get_ctx(sk);
596         struct tls_device *dev;
597         int err;
598
599         err = ctx->hash(sk);
600         mutex_lock(&device_mutex);
601         list_for_each_entry(dev, &device_list, dev_list) {
602                 if (dev->hash)
603                         err |= dev->hash(dev, sk);
604         }
605         mutex_unlock(&device_mutex);
606
607         if (err)
608                 tls_hw_unhash(sk);
609         return err;
610 }
611
612 static void build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG],
613                          struct proto *base)
614 {
615         prot[TLS_BASE][TLS_BASE] = *base;
616         prot[TLS_BASE][TLS_BASE].setsockopt     = tls_setsockopt;
617         prot[TLS_BASE][TLS_BASE].getsockopt     = tls_getsockopt;
618         prot[TLS_BASE][TLS_BASE].close          = tls_sk_proto_close;
619
620         prot[TLS_SW][TLS_BASE] = prot[TLS_BASE][TLS_BASE];
621         prot[TLS_SW][TLS_BASE].sendmsg          = tls_sw_sendmsg;
622         prot[TLS_SW][TLS_BASE].sendpage         = tls_sw_sendpage;
623
624         prot[TLS_BASE][TLS_SW] = prot[TLS_BASE][TLS_BASE];
625         prot[TLS_BASE][TLS_SW].recvmsg          = tls_sw_recvmsg;
626         prot[TLS_BASE][TLS_SW].close            = tls_sk_proto_close;
627
628         prot[TLS_SW][TLS_SW] = prot[TLS_SW][TLS_BASE];
629         prot[TLS_SW][TLS_SW].recvmsg    = tls_sw_recvmsg;
630         prot[TLS_SW][TLS_SW].close      = tls_sk_proto_close;
631
632 #ifdef CONFIG_TLS_DEVICE
633         prot[TLS_HW][TLS_BASE] = prot[TLS_BASE][TLS_BASE];
634         prot[TLS_HW][TLS_BASE].sendmsg          = tls_device_sendmsg;
635         prot[TLS_HW][TLS_BASE].sendpage         = tls_device_sendpage;
636
637         prot[TLS_HW][TLS_SW] = prot[TLS_BASE][TLS_SW];
638         prot[TLS_HW][TLS_SW].sendmsg            = tls_device_sendmsg;
639         prot[TLS_HW][TLS_SW].sendpage           = tls_device_sendpage;
640
641         prot[TLS_BASE][TLS_HW] = prot[TLS_BASE][TLS_SW];
642
643         prot[TLS_SW][TLS_HW] = prot[TLS_SW][TLS_SW];
644
645         prot[TLS_HW][TLS_HW] = prot[TLS_HW][TLS_SW];
646 #endif
647
648         prot[TLS_HW_RECORD][TLS_HW_RECORD] = *base;
649         prot[TLS_HW_RECORD][TLS_HW_RECORD].hash         = tls_hw_hash;
650         prot[TLS_HW_RECORD][TLS_HW_RECORD].unhash       = tls_hw_unhash;
651         prot[TLS_HW_RECORD][TLS_HW_RECORD].close        = tls_sk_proto_close;
652 }
653
654 static int tls_init(struct sock *sk)
655 {
656         int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4;
657         struct tls_context *ctx;
658         int rc = 0;
659
660         if (tls_hw_prot(sk))
661                 goto out;
662
663         /* The TLS ulp is currently supported only for TCP sockets
664          * in ESTABLISHED state.
665          * Supporting sockets in LISTEN state will require us
666          * to modify the accept implementation to clone rather then
667          * share the ulp context.
668          */
669         if (sk->sk_state != TCP_ESTABLISHED)
670                 return -ENOTSUPP;
671
672         /* allocate tls context */
673         ctx = create_ctx(sk);
674         if (!ctx) {
675                 rc = -ENOMEM;
676                 goto out;
677         }
678         ctx->setsockopt = sk->sk_prot->setsockopt;
679         ctx->getsockopt = sk->sk_prot->getsockopt;
680         ctx->sk_proto_close = sk->sk_prot->close;
681
682         /* Build IPv6 TLS whenever the address of tcpv6 _prot changes */
683         if (ip_ver == TLSV6 &&
684             unlikely(sk->sk_prot != smp_load_acquire(&saved_tcpv6_prot))) {
685                 mutex_lock(&tcpv6_prot_mutex);
686                 if (likely(sk->sk_prot != saved_tcpv6_prot)) {
687                         build_protos(tls_prots[TLSV6], sk->sk_prot);
688                         smp_store_release(&saved_tcpv6_prot, sk->sk_prot);
689                 }
690                 mutex_unlock(&tcpv6_prot_mutex);
691         }
692
693         ctx->tx_conf = TLS_BASE;
694         ctx->rx_conf = TLS_BASE;
695         update_sk_prot(sk, ctx);
696 out:
697         return rc;
698 }
699
700 void tls_register_device(struct tls_device *device)
701 {
702         mutex_lock(&device_mutex);
703         list_add_tail(&device->dev_list, &device_list);
704         mutex_unlock(&device_mutex);
705 }
706 EXPORT_SYMBOL(tls_register_device);
707
708 void tls_unregister_device(struct tls_device *device)
709 {
710         mutex_lock(&device_mutex);
711         list_del(&device->dev_list);
712         mutex_unlock(&device_mutex);
713 }
714 EXPORT_SYMBOL(tls_unregister_device);
715
716 static struct tcp_ulp_ops tcp_tls_ulp_ops __read_mostly = {
717         .name                   = "tls",
718         .uid                    = TCP_ULP_TLS,
719         .user_visible           = true,
720         .owner                  = THIS_MODULE,
721         .init                   = tls_init,
722 };
723
724 static int __init tls_register(void)
725 {
726         build_protos(tls_prots[TLSV4], &tcp_prot);
727
728         tls_sw_proto_ops = inet_stream_ops;
729         tls_sw_proto_ops.poll = tls_sw_poll;
730         tls_sw_proto_ops.splice_read = tls_sw_splice_read;
731
732 #ifdef CONFIG_TLS_DEVICE
733         tls_device_init();
734 #endif
735         tcp_register_ulp(&tcp_tls_ulp_ops);
736
737         return 0;
738 }
739
740 static void __exit tls_unregister(void)
741 {
742         tcp_unregister_ulp(&tcp_tls_ulp_ops);
743 #ifdef CONFIG_TLS_DEVICE
744         tls_device_cleanup();
745 #endif
746 }
747
748 module_init(tls_register);
749 module_exit(tls_unregister);