OSDN Git Service

Merge tag 'for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mst/vhost
[uclinux-h8/linux.git] / net / tls / tls_main.c
1 /*
2  * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
3  * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
4  *
5  * This software is available to you under a choice of one of two
6  * licenses.  You may choose to be licensed under the terms of the GNU
7  * General Public License (GPL) Version 2, available from the file
8  * COPYING in the main directory of this source tree, or the
9  * OpenIB.org BSD license below:
10  *
11  *     Redistribution and use in source and binary forms, with or
12  *     without modification, are permitted provided that the following
13  *     conditions are met:
14  *
15  *      - Redistributions of source code must retain the above
16  *        copyright notice, this list of conditions and the following
17  *        disclaimer.
18  *
19  *      - Redistributions in binary form must reproduce the above
20  *        copyright notice, this list of conditions and the following
21  *        disclaimer in the documentation and/or other materials
22  *        provided with the distribution.
23  *
24  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31  * SOFTWARE.
32  */
33
34 #include <linux/module.h>
35
36 #include <net/tcp.h>
37 #include <net/inet_common.h>
38 #include <linux/highmem.h>
39 #include <linux/netdevice.h>
40 #include <linux/sched/signal.h>
41 #include <linux/inetdevice.h>
42
43 #include <net/tls.h>
44
45 MODULE_AUTHOR("Mellanox Technologies");
46 MODULE_DESCRIPTION("Transport Layer Security Support");
47 MODULE_LICENSE("Dual BSD/GPL");
48 MODULE_ALIAS_TCP_ULP("tls");
49
50 enum {
51         TLSV4,
52         TLSV6,
53         TLS_NUM_PROTS,
54 };
55
56 static struct proto *saved_tcpv6_prot;
57 static DEFINE_MUTEX(tcpv6_prot_mutex);
58 static struct proto *saved_tcpv4_prot;
59 static DEFINE_MUTEX(tcpv4_prot_mutex);
60 static LIST_HEAD(device_list);
61 static DEFINE_SPINLOCK(device_spinlock);
62 static struct proto tls_prots[TLS_NUM_PROTS][TLS_NUM_CONFIG][TLS_NUM_CONFIG];
63 static struct proto_ops tls_sw_proto_ops;
64
65 static void update_sk_prot(struct sock *sk, struct tls_context *ctx)
66 {
67         int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4;
68
69         sk->sk_prot = &tls_prots[ip_ver][ctx->tx_conf][ctx->rx_conf];
70 }
71
72 int wait_on_pending_writer(struct sock *sk, long *timeo)
73 {
74         int rc = 0;
75         DEFINE_WAIT_FUNC(wait, woken_wake_function);
76
77         add_wait_queue(sk_sleep(sk), &wait);
78         while (1) {
79                 if (!*timeo) {
80                         rc = -EAGAIN;
81                         break;
82                 }
83
84                 if (signal_pending(current)) {
85                         rc = sock_intr_errno(*timeo);
86                         break;
87                 }
88
89                 if (sk_wait_event(sk, timeo, !sk->sk_write_pending, &wait))
90                         break;
91         }
92         remove_wait_queue(sk_sleep(sk), &wait);
93         return rc;
94 }
95
96 int tls_push_sg(struct sock *sk,
97                 struct tls_context *ctx,
98                 struct scatterlist *sg,
99                 u16 first_offset,
100                 int flags)
101 {
102         int sendpage_flags = flags | MSG_SENDPAGE_NOTLAST;
103         int ret = 0;
104         struct page *p;
105         size_t size;
106         int offset = first_offset;
107
108         size = sg->length - offset;
109         offset += sg->offset;
110
111         ctx->in_tcp_sendpages = true;
112         while (1) {
113                 if (sg_is_last(sg))
114                         sendpage_flags = flags;
115
116                 /* is sending application-limited? */
117                 tcp_rate_check_app_limited(sk);
118                 p = sg_page(sg);
119 retry:
120                 ret = do_tcp_sendpages(sk, p, offset, size, sendpage_flags);
121
122                 if (ret != size) {
123                         if (ret > 0) {
124                                 offset += ret;
125                                 size -= ret;
126                                 goto retry;
127                         }
128
129                         offset -= sg->offset;
130                         ctx->partially_sent_offset = offset;
131                         ctx->partially_sent_record = (void *)sg;
132                         ctx->in_tcp_sendpages = false;
133                         return ret;
134                 }
135
136                 put_page(p);
137                 sk_mem_uncharge(sk, sg->length);
138                 sg = sg_next(sg);
139                 if (!sg)
140                         break;
141
142                 offset = sg->offset;
143                 size = sg->length;
144         }
145
146         ctx->in_tcp_sendpages = false;
147         ctx->sk_write_space(sk);
148
149         return 0;
150 }
151
152 static int tls_handle_open_record(struct sock *sk, int flags)
153 {
154         struct tls_context *ctx = tls_get_ctx(sk);
155
156         if (tls_is_pending_open_record(ctx))
157                 return ctx->push_pending_record(sk, flags);
158
159         return 0;
160 }
161
162 int tls_proccess_cmsg(struct sock *sk, struct msghdr *msg,
163                       unsigned char *record_type)
164 {
165         struct cmsghdr *cmsg;
166         int rc = -EINVAL;
167
168         for_each_cmsghdr(cmsg, msg) {
169                 if (!CMSG_OK(msg, cmsg))
170                         return -EINVAL;
171                 if (cmsg->cmsg_level != SOL_TLS)
172                         continue;
173
174                 switch (cmsg->cmsg_type) {
175                 case TLS_SET_RECORD_TYPE:
176                         if (cmsg->cmsg_len < CMSG_LEN(sizeof(*record_type)))
177                                 return -EINVAL;
178
179                         if (msg->msg_flags & MSG_MORE)
180                                 return -EINVAL;
181
182                         rc = tls_handle_open_record(sk, msg->msg_flags);
183                         if (rc)
184                                 return rc;
185
186                         *record_type = *(unsigned char *)CMSG_DATA(cmsg);
187                         rc = 0;
188                         break;
189                 default:
190                         return -EINVAL;
191                 }
192         }
193
194         return rc;
195 }
196
197 int tls_push_partial_record(struct sock *sk, struct tls_context *ctx,
198                             int flags)
199 {
200         struct scatterlist *sg;
201         u16 offset;
202
203         sg = ctx->partially_sent_record;
204         offset = ctx->partially_sent_offset;
205
206         ctx->partially_sent_record = NULL;
207         return tls_push_sg(sk, ctx, sg, offset, flags);
208 }
209
210 int tls_push_pending_closed_record(struct sock *sk,
211                                    struct tls_context *tls_ctx,
212                                    int flags, long *timeo)
213 {
214         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
215
216         if (tls_is_partially_sent_record(tls_ctx) ||
217             !list_empty(&ctx->tx_list))
218                 return tls_tx_records(sk, flags);
219         else
220                 return tls_ctx->push_pending_record(sk, flags);
221 }
222
223 static void tls_write_space(struct sock *sk)
224 {
225         struct tls_context *ctx = tls_get_ctx(sk);
226         struct tls_sw_context_tx *tx_ctx = tls_sw_ctx_tx(ctx);
227
228         /* If in_tcp_sendpages call lower protocol write space handler
229          * to ensure we wake up any waiting operations there. For example
230          * if do_tcp_sendpages where to call sk_wait_event.
231          */
232         if (ctx->in_tcp_sendpages) {
233                 ctx->sk_write_space(sk);
234                 return;
235         }
236
237         /* Schedule the transmission if tx list is ready */
238         if (is_tx_ready(tx_ctx) && !sk->sk_write_pending) {
239                 /* Schedule the transmission */
240                 if (!test_and_set_bit(BIT_TX_SCHEDULED, &tx_ctx->tx_bitmask))
241                         schedule_delayed_work(&tx_ctx->tx_work.work, 0);
242         }
243
244         ctx->sk_write_space(sk);
245 }
246
247 static void tls_ctx_free(struct tls_context *ctx)
248 {
249         if (!ctx)
250                 return;
251
252         memzero_explicit(&ctx->crypto_send, sizeof(ctx->crypto_send));
253         memzero_explicit(&ctx->crypto_recv, sizeof(ctx->crypto_recv));
254         kfree(ctx);
255 }
256
257 static void tls_sk_proto_close(struct sock *sk, long timeout)
258 {
259         struct tls_context *ctx = tls_get_ctx(sk);
260         long timeo = sock_sndtimeo(sk, 0);
261         void (*sk_proto_close)(struct sock *sk, long timeout);
262         bool free_ctx = false;
263
264         lock_sock(sk);
265         sk_proto_close = ctx->sk_proto_close;
266
267         if ((ctx->tx_conf == TLS_HW_RECORD && ctx->rx_conf == TLS_HW_RECORD) ||
268             (ctx->tx_conf == TLS_BASE && ctx->rx_conf == TLS_BASE)) {
269                 free_ctx = true;
270                 goto skip_tx_cleanup;
271         }
272
273         if (!tls_complete_pending_work(sk, ctx, 0, &timeo))
274                 tls_handle_open_record(sk, 0);
275
276         /* We need these for tls_sw_fallback handling of other packets */
277         if (ctx->tx_conf == TLS_SW) {
278                 kfree(ctx->tx.rec_seq);
279                 kfree(ctx->tx.iv);
280                 tls_sw_free_resources_tx(sk);
281         }
282
283         if (ctx->rx_conf == TLS_SW) {
284                 kfree(ctx->rx.rec_seq);
285                 kfree(ctx->rx.iv);
286                 tls_sw_free_resources_rx(sk);
287         }
288
289 #ifdef CONFIG_TLS_DEVICE
290         if (ctx->rx_conf == TLS_HW)
291                 tls_device_offload_cleanup_rx(sk);
292
293         if (ctx->tx_conf != TLS_HW && ctx->rx_conf != TLS_HW) {
294 #else
295         {
296 #endif
297                 tls_ctx_free(ctx);
298                 ctx = NULL;
299         }
300
301 skip_tx_cleanup:
302         release_sock(sk);
303         sk_proto_close(sk, timeout);
304         /* free ctx for TLS_HW_RECORD, used by tcp_set_state
305          * for sk->sk_prot->unhash [tls_hw_unhash]
306          */
307         if (free_ctx)
308                 tls_ctx_free(ctx);
309 }
310
311 static int do_tls_getsockopt_tx(struct sock *sk, char __user *optval,
312                                 int __user *optlen)
313 {
314         int rc = 0;
315         struct tls_context *ctx = tls_get_ctx(sk);
316         struct tls_crypto_info *crypto_info;
317         int len;
318
319         if (get_user(len, optlen))
320                 return -EFAULT;
321
322         if (!optval || (len < sizeof(*crypto_info))) {
323                 rc = -EINVAL;
324                 goto out;
325         }
326
327         if (!ctx) {
328                 rc = -EBUSY;
329                 goto out;
330         }
331
332         /* get user crypto info */
333         crypto_info = &ctx->crypto_send.info;
334
335         if (!TLS_CRYPTO_INFO_READY(crypto_info)) {
336                 rc = -EBUSY;
337                 goto out;
338         }
339
340         if (len == sizeof(*crypto_info)) {
341                 if (copy_to_user(optval, crypto_info, sizeof(*crypto_info)))
342                         rc = -EFAULT;
343                 goto out;
344         }
345
346         switch (crypto_info->cipher_type) {
347         case TLS_CIPHER_AES_GCM_128: {
348                 struct tls12_crypto_info_aes_gcm_128 *
349                   crypto_info_aes_gcm_128 =
350                   container_of(crypto_info,
351                                struct tls12_crypto_info_aes_gcm_128,
352                                info);
353
354                 if (len != sizeof(*crypto_info_aes_gcm_128)) {
355                         rc = -EINVAL;
356                         goto out;
357                 }
358                 lock_sock(sk);
359                 memcpy(crypto_info_aes_gcm_128->iv,
360                        ctx->tx.iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE,
361                        TLS_CIPHER_AES_GCM_128_IV_SIZE);
362                 memcpy(crypto_info_aes_gcm_128->rec_seq, ctx->tx.rec_seq,
363                        TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE);
364                 release_sock(sk);
365                 if (copy_to_user(optval,
366                                  crypto_info_aes_gcm_128,
367                                  sizeof(*crypto_info_aes_gcm_128)))
368                         rc = -EFAULT;
369                 break;
370         }
371         default:
372                 rc = -EINVAL;
373         }
374
375 out:
376         return rc;
377 }
378
379 static int do_tls_getsockopt(struct sock *sk, int optname,
380                              char __user *optval, int __user *optlen)
381 {
382         int rc = 0;
383
384         switch (optname) {
385         case TLS_TX:
386                 rc = do_tls_getsockopt_tx(sk, optval, optlen);
387                 break;
388         default:
389                 rc = -ENOPROTOOPT;
390                 break;
391         }
392         return rc;
393 }
394
395 static int tls_getsockopt(struct sock *sk, int level, int optname,
396                           char __user *optval, int __user *optlen)
397 {
398         struct tls_context *ctx = tls_get_ctx(sk);
399
400         if (level != SOL_TLS)
401                 return ctx->getsockopt(sk, level, optname, optval, optlen);
402
403         return do_tls_getsockopt(sk, optname, optval, optlen);
404 }
405
406 static int do_tls_setsockopt_conf(struct sock *sk, char __user *optval,
407                                   unsigned int optlen, int tx)
408 {
409         struct tls_crypto_info *crypto_info;
410         struct tls_context *ctx = tls_get_ctx(sk);
411         int rc = 0;
412         int conf;
413
414         if (!optval || (optlen < sizeof(*crypto_info))) {
415                 rc = -EINVAL;
416                 goto out;
417         }
418
419         if (tx)
420                 crypto_info = &ctx->crypto_send.info;
421         else
422                 crypto_info = &ctx->crypto_recv.info;
423
424         /* Currently we don't support set crypto info more than one time */
425         if (TLS_CRYPTO_INFO_READY(crypto_info)) {
426                 rc = -EBUSY;
427                 goto out;
428         }
429
430         rc = copy_from_user(crypto_info, optval, sizeof(*crypto_info));
431         if (rc) {
432                 rc = -EFAULT;
433                 goto err_crypto_info;
434         }
435
436         /* check version */
437         if (crypto_info->version != TLS_1_2_VERSION) {
438                 rc = -ENOTSUPP;
439                 goto err_crypto_info;
440         }
441
442         switch (crypto_info->cipher_type) {
443         case TLS_CIPHER_AES_GCM_128: {
444                 if (optlen != sizeof(struct tls12_crypto_info_aes_gcm_128)) {
445                         rc = -EINVAL;
446                         goto err_crypto_info;
447                 }
448                 rc = copy_from_user(crypto_info + 1, optval + sizeof(*crypto_info),
449                                     optlen - sizeof(*crypto_info));
450                 if (rc) {
451                         rc = -EFAULT;
452                         goto err_crypto_info;
453                 }
454                 break;
455         }
456         default:
457                 rc = -EINVAL;
458                 goto err_crypto_info;
459         }
460
461         if (tx) {
462 #ifdef CONFIG_TLS_DEVICE
463                 rc = tls_set_device_offload(sk, ctx);
464                 conf = TLS_HW;
465                 if (rc) {
466 #else
467                 {
468 #endif
469                         rc = tls_set_sw_offload(sk, ctx, 1);
470                         conf = TLS_SW;
471                 }
472         } else {
473 #ifdef CONFIG_TLS_DEVICE
474                 rc = tls_set_device_offload_rx(sk, ctx);
475                 conf = TLS_HW;
476                 if (rc) {
477 #else
478                 {
479 #endif
480                         rc = tls_set_sw_offload(sk, ctx, 0);
481                         conf = TLS_SW;
482                 }
483         }
484
485         if (rc)
486                 goto err_crypto_info;
487
488         if (tx)
489                 ctx->tx_conf = conf;
490         else
491                 ctx->rx_conf = conf;
492         update_sk_prot(sk, ctx);
493         if (tx) {
494                 ctx->sk_write_space = sk->sk_write_space;
495                 sk->sk_write_space = tls_write_space;
496         } else {
497                 sk->sk_socket->ops = &tls_sw_proto_ops;
498         }
499         goto out;
500
501 err_crypto_info:
502         memzero_explicit(crypto_info, sizeof(union tls_crypto_context));
503 out:
504         return rc;
505 }
506
507 static int do_tls_setsockopt(struct sock *sk, int optname,
508                              char __user *optval, unsigned int optlen)
509 {
510         int rc = 0;
511
512         switch (optname) {
513         case TLS_TX:
514         case TLS_RX:
515                 lock_sock(sk);
516                 rc = do_tls_setsockopt_conf(sk, optval, optlen,
517                                             optname == TLS_TX);
518                 release_sock(sk);
519                 break;
520         default:
521                 rc = -ENOPROTOOPT;
522                 break;
523         }
524         return rc;
525 }
526
527 static int tls_setsockopt(struct sock *sk, int level, int optname,
528                           char __user *optval, unsigned int optlen)
529 {
530         struct tls_context *ctx = tls_get_ctx(sk);
531
532         if (level != SOL_TLS)
533                 return ctx->setsockopt(sk, level, optname, optval, optlen);
534
535         return do_tls_setsockopt(sk, optname, optval, optlen);
536 }
537
538 static struct tls_context *create_ctx(struct sock *sk)
539 {
540         struct inet_connection_sock *icsk = inet_csk(sk);
541         struct tls_context *ctx;
542
543         ctx = kzalloc(sizeof(*ctx), GFP_ATOMIC);
544         if (!ctx)
545                 return NULL;
546
547         icsk->icsk_ulp_data = ctx;
548         ctx->setsockopt = sk->sk_prot->setsockopt;
549         ctx->getsockopt = sk->sk_prot->getsockopt;
550         ctx->sk_proto_close = sk->sk_prot->close;
551         return ctx;
552 }
553
554 static int tls_hw_prot(struct sock *sk)
555 {
556         struct tls_context *ctx;
557         struct tls_device *dev;
558         int rc = 0;
559
560         spin_lock_bh(&device_spinlock);
561         list_for_each_entry(dev, &device_list, dev_list) {
562                 if (dev->feature && dev->feature(dev)) {
563                         ctx = create_ctx(sk);
564                         if (!ctx)
565                                 goto out;
566
567                         ctx->hash = sk->sk_prot->hash;
568                         ctx->unhash = sk->sk_prot->unhash;
569                         ctx->sk_proto_close = sk->sk_prot->close;
570                         ctx->rx_conf = TLS_HW_RECORD;
571                         ctx->tx_conf = TLS_HW_RECORD;
572                         update_sk_prot(sk, ctx);
573                         rc = 1;
574                         break;
575                 }
576         }
577 out:
578         spin_unlock_bh(&device_spinlock);
579         return rc;
580 }
581
582 static void tls_hw_unhash(struct sock *sk)
583 {
584         struct tls_context *ctx = tls_get_ctx(sk);
585         struct tls_device *dev;
586
587         spin_lock_bh(&device_spinlock);
588         list_for_each_entry(dev, &device_list, dev_list) {
589                 if (dev->unhash) {
590                         kref_get(&dev->kref);
591                         spin_unlock_bh(&device_spinlock);
592                         dev->unhash(dev, sk);
593                         kref_put(&dev->kref, dev->release);
594                         spin_lock_bh(&device_spinlock);
595                 }
596         }
597         spin_unlock_bh(&device_spinlock);
598         ctx->unhash(sk);
599 }
600
601 static int tls_hw_hash(struct sock *sk)
602 {
603         struct tls_context *ctx = tls_get_ctx(sk);
604         struct tls_device *dev;
605         int err;
606
607         err = ctx->hash(sk);
608         spin_lock_bh(&device_spinlock);
609         list_for_each_entry(dev, &device_list, dev_list) {
610                 if (dev->hash) {
611                         kref_get(&dev->kref);
612                         spin_unlock_bh(&device_spinlock);
613                         err |= dev->hash(dev, sk);
614                         kref_put(&dev->kref, dev->release);
615                         spin_lock_bh(&device_spinlock);
616                 }
617         }
618         spin_unlock_bh(&device_spinlock);
619
620         if (err)
621                 tls_hw_unhash(sk);
622         return err;
623 }
624
625 static void build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG],
626                          struct proto *base)
627 {
628         prot[TLS_BASE][TLS_BASE] = *base;
629         prot[TLS_BASE][TLS_BASE].setsockopt     = tls_setsockopt;
630         prot[TLS_BASE][TLS_BASE].getsockopt     = tls_getsockopt;
631         prot[TLS_BASE][TLS_BASE].close          = tls_sk_proto_close;
632
633         prot[TLS_SW][TLS_BASE] = prot[TLS_BASE][TLS_BASE];
634         prot[TLS_SW][TLS_BASE].sendmsg          = tls_sw_sendmsg;
635         prot[TLS_SW][TLS_BASE].sendpage         = tls_sw_sendpage;
636
637         prot[TLS_BASE][TLS_SW] = prot[TLS_BASE][TLS_BASE];
638         prot[TLS_BASE][TLS_SW].recvmsg            = tls_sw_recvmsg;
639         prot[TLS_BASE][TLS_SW].stream_memory_read = tls_sw_stream_read;
640         prot[TLS_BASE][TLS_SW].close              = tls_sk_proto_close;
641
642         prot[TLS_SW][TLS_SW] = prot[TLS_SW][TLS_BASE];
643         prot[TLS_SW][TLS_SW].recvmsg            = tls_sw_recvmsg;
644         prot[TLS_SW][TLS_SW].stream_memory_read = tls_sw_stream_read;
645         prot[TLS_SW][TLS_SW].close              = tls_sk_proto_close;
646
647 #ifdef CONFIG_TLS_DEVICE
648         prot[TLS_HW][TLS_BASE] = prot[TLS_BASE][TLS_BASE];
649         prot[TLS_HW][TLS_BASE].sendmsg          = tls_device_sendmsg;
650         prot[TLS_HW][TLS_BASE].sendpage         = tls_device_sendpage;
651
652         prot[TLS_HW][TLS_SW] = prot[TLS_BASE][TLS_SW];
653         prot[TLS_HW][TLS_SW].sendmsg            = tls_device_sendmsg;
654         prot[TLS_HW][TLS_SW].sendpage           = tls_device_sendpage;
655
656         prot[TLS_BASE][TLS_HW] = prot[TLS_BASE][TLS_SW];
657
658         prot[TLS_SW][TLS_HW] = prot[TLS_SW][TLS_SW];
659
660         prot[TLS_HW][TLS_HW] = prot[TLS_HW][TLS_SW];
661 #endif
662
663         prot[TLS_HW_RECORD][TLS_HW_RECORD] = *base;
664         prot[TLS_HW_RECORD][TLS_HW_RECORD].hash         = tls_hw_hash;
665         prot[TLS_HW_RECORD][TLS_HW_RECORD].unhash       = tls_hw_unhash;
666         prot[TLS_HW_RECORD][TLS_HW_RECORD].close        = tls_sk_proto_close;
667 }
668
669 static int tls_init(struct sock *sk)
670 {
671         int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4;
672         struct tls_context *ctx;
673         int rc = 0;
674
675         if (tls_hw_prot(sk))
676                 goto out;
677
678         /* The TLS ulp is currently supported only for TCP sockets
679          * in ESTABLISHED state.
680          * Supporting sockets in LISTEN state will require us
681          * to modify the accept implementation to clone rather then
682          * share the ulp context.
683          */
684         if (sk->sk_state != TCP_ESTABLISHED)
685                 return -ENOTSUPP;
686
687         /* allocate tls context */
688         ctx = create_ctx(sk);
689         if (!ctx) {
690                 rc = -ENOMEM;
691                 goto out;
692         }
693
694         /* Build IPv6 TLS whenever the address of tcpv6 _prot changes */
695         if (ip_ver == TLSV6 &&
696             unlikely(sk->sk_prot != smp_load_acquire(&saved_tcpv6_prot))) {
697                 mutex_lock(&tcpv6_prot_mutex);
698                 if (likely(sk->sk_prot != saved_tcpv6_prot)) {
699                         build_protos(tls_prots[TLSV6], sk->sk_prot);
700                         smp_store_release(&saved_tcpv6_prot, sk->sk_prot);
701                 }
702                 mutex_unlock(&tcpv6_prot_mutex);
703         }
704
705         if (ip_ver == TLSV4 &&
706             unlikely(sk->sk_prot != smp_load_acquire(&saved_tcpv4_prot))) {
707                 mutex_lock(&tcpv4_prot_mutex);
708                 if (likely(sk->sk_prot != saved_tcpv4_prot)) {
709                         build_protos(tls_prots[TLSV4], sk->sk_prot);
710                         smp_store_release(&saved_tcpv4_prot, sk->sk_prot);
711                 }
712                 mutex_unlock(&tcpv4_prot_mutex);
713         }
714
715         ctx->tx_conf = TLS_BASE;
716         ctx->rx_conf = TLS_BASE;
717         update_sk_prot(sk, ctx);
718 out:
719         return rc;
720 }
721
722 void tls_register_device(struct tls_device *device)
723 {
724         spin_lock_bh(&device_spinlock);
725         list_add_tail(&device->dev_list, &device_list);
726         spin_unlock_bh(&device_spinlock);
727 }
728 EXPORT_SYMBOL(tls_register_device);
729
730 void tls_unregister_device(struct tls_device *device)
731 {
732         spin_lock_bh(&device_spinlock);
733         list_del(&device->dev_list);
734         spin_unlock_bh(&device_spinlock);
735 }
736 EXPORT_SYMBOL(tls_unregister_device);
737
738 static struct tcp_ulp_ops tcp_tls_ulp_ops __read_mostly = {
739         .name                   = "tls",
740         .owner                  = THIS_MODULE,
741         .init                   = tls_init,
742 };
743
744 static int __init tls_register(void)
745 {
746         tls_sw_proto_ops = inet_stream_ops;
747         tls_sw_proto_ops.splice_read = tls_sw_splice_read;
748
749 #ifdef CONFIG_TLS_DEVICE
750         tls_device_init();
751 #endif
752         tcp_register_ulp(&tcp_tls_ulp_ops);
753
754         return 0;
755 }
756
757 static void __exit tls_unregister(void)
758 {
759         tcp_unregister_ulp(&tcp_tls_ulp_ops);
760 #ifdef CONFIG_TLS_DEVICE
761         tls_device_cleanup();
762 #endif
763 }
764
765 module_init(tls_register);
766 module_exit(tls_unregister);