OSDN Git Service

Merge tag 'sound-4.21-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tiwai...
[uclinux-h8/linux.git] / net / tls / tls_sw.c
1 /*
2  * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
3  * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
4  * Copyright (c) 2016-2017, Lance Chao <lancerchao@fb.com>. All rights reserved.
5  * Copyright (c) 2016, Fridolin Pokorny <fridolin.pokorny@gmail.com>. All rights reserved.
6  * Copyright (c) 2016, Nikos Mavrogiannopoulos <nmav@gnutls.org>. All rights reserved.
7  * Copyright (c) 2018, Covalent IO, Inc. http://covalent.io
8  *
9  * This software is available to you under a choice of one of two
10  * licenses.  You may choose to be licensed under the terms of the GNU
11  * General Public License (GPL) Version 2, available from the file
12  * COPYING in the main directory of this source tree, or the
13  * OpenIB.org BSD license below:
14  *
15  *     Redistribution and use in source and binary forms, with or
16  *     without modification, are permitted provided that the following
17  *     conditions are met:
18  *
19  *      - Redistributions of source code must retain the above
20  *        copyright notice, this list of conditions and the following
21  *        disclaimer.
22  *
23  *      - Redistributions in binary form must reproduce the above
24  *        copyright notice, this list of conditions and the following
25  *        disclaimer in the documentation and/or other materials
26  *        provided with the distribution.
27  *
28  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
29  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
30  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
31  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
32  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
33  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
34  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
35  * SOFTWARE.
36  */
37
38 #include <linux/sched/signal.h>
39 #include <linux/module.h>
40 #include <crypto/aead.h>
41
42 #include <net/strparser.h>
43 #include <net/tls.h>
44
45 #define MAX_IV_SIZE     TLS_CIPHER_AES_GCM_128_IV_SIZE
46
47 static int __skb_nsg(struct sk_buff *skb, int offset, int len,
48                      unsigned int recursion_level)
49 {
50         int start = skb_headlen(skb);
51         int i, chunk = start - offset;
52         struct sk_buff *frag_iter;
53         int elt = 0;
54
55         if (unlikely(recursion_level >= 24))
56                 return -EMSGSIZE;
57
58         if (chunk > 0) {
59                 if (chunk > len)
60                         chunk = len;
61                 elt++;
62                 len -= chunk;
63                 if (len == 0)
64                         return elt;
65                 offset += chunk;
66         }
67
68         for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
69                 int end;
70
71                 WARN_ON(start > offset + len);
72
73                 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
74                 chunk = end - offset;
75                 if (chunk > 0) {
76                         if (chunk > len)
77                                 chunk = len;
78                         elt++;
79                         len -= chunk;
80                         if (len == 0)
81                                 return elt;
82                         offset += chunk;
83                 }
84                 start = end;
85         }
86
87         if (unlikely(skb_has_frag_list(skb))) {
88                 skb_walk_frags(skb, frag_iter) {
89                         int end, ret;
90
91                         WARN_ON(start > offset + len);
92
93                         end = start + frag_iter->len;
94                         chunk = end - offset;
95                         if (chunk > 0) {
96                                 if (chunk > len)
97                                         chunk = len;
98                                 ret = __skb_nsg(frag_iter, offset - start, chunk,
99                                                 recursion_level + 1);
100                                 if (unlikely(ret < 0))
101                                         return ret;
102                                 elt += ret;
103                                 len -= chunk;
104                                 if (len == 0)
105                                         return elt;
106                                 offset += chunk;
107                         }
108                         start = end;
109                 }
110         }
111         BUG_ON(len);
112         return elt;
113 }
114
115 /* Return the number of scatterlist elements required to completely map the
116  * skb, or -EMSGSIZE if the recursion depth is exceeded.
117  */
118 static int skb_nsg(struct sk_buff *skb, int offset, int len)
119 {
120         return __skb_nsg(skb, offset, len, 0);
121 }
122
123 static void tls_decrypt_done(struct crypto_async_request *req, int err)
124 {
125         struct aead_request *aead_req = (struct aead_request *)req;
126         struct scatterlist *sgout = aead_req->dst;
127         struct tls_sw_context_rx *ctx;
128         struct tls_context *tls_ctx;
129         struct scatterlist *sg;
130         struct sk_buff *skb;
131         unsigned int pages;
132         int pending;
133
134         skb = (struct sk_buff *)req->data;
135         tls_ctx = tls_get_ctx(skb->sk);
136         ctx = tls_sw_ctx_rx(tls_ctx);
137         pending = atomic_dec_return(&ctx->decrypt_pending);
138
139         /* Propagate if there was an err */
140         if (err) {
141                 ctx->async_wait.err = err;
142                 tls_err_abort(skb->sk, err);
143         }
144
145         /* After using skb->sk to propagate sk through crypto async callback
146          * we need to NULL it again.
147          */
148         skb->sk = NULL;
149
150         /* Release the skb, pages and memory allocated for crypto req */
151         kfree_skb(skb);
152
153         /* Skip the first S/G entry as it points to AAD */
154         for_each_sg(sg_next(sgout), sg, UINT_MAX, pages) {
155                 if (!sg)
156                         break;
157                 put_page(sg_page(sg));
158         }
159
160         kfree(aead_req);
161
162         if (!pending && READ_ONCE(ctx->async_notify))
163                 complete(&ctx->async_wait.completion);
164 }
165
166 static int tls_do_decryption(struct sock *sk,
167                              struct sk_buff *skb,
168                              struct scatterlist *sgin,
169                              struct scatterlist *sgout,
170                              char *iv_recv,
171                              size_t data_len,
172                              struct aead_request *aead_req,
173                              bool async)
174 {
175         struct tls_context *tls_ctx = tls_get_ctx(sk);
176         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
177         int ret;
178
179         aead_request_set_tfm(aead_req, ctx->aead_recv);
180         aead_request_set_ad(aead_req, TLS_AAD_SPACE_SIZE);
181         aead_request_set_crypt(aead_req, sgin, sgout,
182                                data_len + tls_ctx->rx.tag_size,
183                                (u8 *)iv_recv);
184
185         if (async) {
186                 /* Using skb->sk to push sk through to crypto async callback
187                  * handler. This allows propagating errors up to the socket
188                  * if needed. It _must_ be cleared in the async handler
189                  * before kfree_skb is called. We _know_ skb->sk is NULL
190                  * because it is a clone from strparser.
191                  */
192                 skb->sk = sk;
193                 aead_request_set_callback(aead_req,
194                                           CRYPTO_TFM_REQ_MAY_BACKLOG,
195                                           tls_decrypt_done, skb);
196                 atomic_inc(&ctx->decrypt_pending);
197         } else {
198                 aead_request_set_callback(aead_req,
199                                           CRYPTO_TFM_REQ_MAY_BACKLOG,
200                                           crypto_req_done, &ctx->async_wait);
201         }
202
203         ret = crypto_aead_decrypt(aead_req);
204         if (ret == -EINPROGRESS) {
205                 if (async)
206                         return ret;
207
208                 ret = crypto_wait_req(ret, &ctx->async_wait);
209         }
210
211         if (async)
212                 atomic_dec(&ctx->decrypt_pending);
213
214         return ret;
215 }
216
217 static void tls_trim_both_msgs(struct sock *sk, int target_size)
218 {
219         struct tls_context *tls_ctx = tls_get_ctx(sk);
220         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
221         struct tls_rec *rec = ctx->open_rec;
222
223         sk_msg_trim(sk, &rec->msg_plaintext, target_size);
224         if (target_size > 0)
225                 target_size += tls_ctx->tx.overhead_size;
226         sk_msg_trim(sk, &rec->msg_encrypted, target_size);
227 }
228
229 static int tls_alloc_encrypted_msg(struct sock *sk, int len)
230 {
231         struct tls_context *tls_ctx = tls_get_ctx(sk);
232         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
233         struct tls_rec *rec = ctx->open_rec;
234         struct sk_msg *msg_en = &rec->msg_encrypted;
235
236         return sk_msg_alloc(sk, msg_en, len, 0);
237 }
238
239 static int tls_clone_plaintext_msg(struct sock *sk, int required)
240 {
241         struct tls_context *tls_ctx = tls_get_ctx(sk);
242         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
243         struct tls_rec *rec = ctx->open_rec;
244         struct sk_msg *msg_pl = &rec->msg_plaintext;
245         struct sk_msg *msg_en = &rec->msg_encrypted;
246         int skip, len;
247
248         /* We add page references worth len bytes from encrypted sg
249          * at the end of plaintext sg. It is guaranteed that msg_en
250          * has enough required room (ensured by caller).
251          */
252         len = required - msg_pl->sg.size;
253
254         /* Skip initial bytes in msg_en's data to be able to use
255          * same offset of both plain and encrypted data.
256          */
257         skip = tls_ctx->tx.prepend_size + msg_pl->sg.size;
258
259         return sk_msg_clone(sk, msg_pl, msg_en, skip, len);
260 }
261
262 static struct tls_rec *tls_get_rec(struct sock *sk)
263 {
264         struct tls_context *tls_ctx = tls_get_ctx(sk);
265         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
266         struct sk_msg *msg_pl, *msg_en;
267         struct tls_rec *rec;
268         int mem_size;
269
270         mem_size = sizeof(struct tls_rec) + crypto_aead_reqsize(ctx->aead_send);
271
272         rec = kzalloc(mem_size, sk->sk_allocation);
273         if (!rec)
274                 return NULL;
275
276         msg_pl = &rec->msg_plaintext;
277         msg_en = &rec->msg_encrypted;
278
279         sk_msg_init(msg_pl);
280         sk_msg_init(msg_en);
281
282         sg_init_table(rec->sg_aead_in, 2);
283         sg_set_buf(&rec->sg_aead_in[0], rec->aad_space,
284                    sizeof(rec->aad_space));
285         sg_unmark_end(&rec->sg_aead_in[1]);
286
287         sg_init_table(rec->sg_aead_out, 2);
288         sg_set_buf(&rec->sg_aead_out[0], rec->aad_space,
289                    sizeof(rec->aad_space));
290         sg_unmark_end(&rec->sg_aead_out[1]);
291
292         return rec;
293 }
294
295 static void tls_free_rec(struct sock *sk, struct tls_rec *rec)
296 {
297         sk_msg_free(sk, &rec->msg_encrypted);
298         sk_msg_free(sk, &rec->msg_plaintext);
299         kfree(rec);
300 }
301
302 static void tls_free_open_rec(struct sock *sk)
303 {
304         struct tls_context *tls_ctx = tls_get_ctx(sk);
305         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
306         struct tls_rec *rec = ctx->open_rec;
307
308         if (rec) {
309                 tls_free_rec(sk, rec);
310                 ctx->open_rec = NULL;
311         }
312 }
313
314 int tls_tx_records(struct sock *sk, int flags)
315 {
316         struct tls_context *tls_ctx = tls_get_ctx(sk);
317         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
318         struct tls_rec *rec, *tmp;
319         struct sk_msg *msg_en;
320         int tx_flags, rc = 0;
321
322         if (tls_is_partially_sent_record(tls_ctx)) {
323                 rec = list_first_entry(&ctx->tx_list,
324                                        struct tls_rec, list);
325
326                 if (flags == -1)
327                         tx_flags = rec->tx_flags;
328                 else
329                         tx_flags = flags;
330
331                 rc = tls_push_partial_record(sk, tls_ctx, tx_flags);
332                 if (rc)
333                         goto tx_err;
334
335                 /* Full record has been transmitted.
336                  * Remove the head of tx_list
337                  */
338                 list_del(&rec->list);
339                 sk_msg_free(sk, &rec->msg_plaintext);
340                 kfree(rec);
341         }
342
343         /* Tx all ready records */
344         list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) {
345                 if (READ_ONCE(rec->tx_ready)) {
346                         if (flags == -1)
347                                 tx_flags = rec->tx_flags;
348                         else
349                                 tx_flags = flags;
350
351                         msg_en = &rec->msg_encrypted;
352                         rc = tls_push_sg(sk, tls_ctx,
353                                          &msg_en->sg.data[msg_en->sg.curr],
354                                          0, tx_flags);
355                         if (rc)
356                                 goto tx_err;
357
358                         list_del(&rec->list);
359                         sk_msg_free(sk, &rec->msg_plaintext);
360                         kfree(rec);
361                 } else {
362                         break;
363                 }
364         }
365
366 tx_err:
367         if (rc < 0 && rc != -EAGAIN)
368                 tls_err_abort(sk, EBADMSG);
369
370         return rc;
371 }
372
373 static void tls_encrypt_done(struct crypto_async_request *req, int err)
374 {
375         struct aead_request *aead_req = (struct aead_request *)req;
376         struct sock *sk = req->data;
377         struct tls_context *tls_ctx = tls_get_ctx(sk);
378         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
379         struct scatterlist *sge;
380         struct sk_msg *msg_en;
381         struct tls_rec *rec;
382         bool ready = false;
383         int pending;
384
385         rec = container_of(aead_req, struct tls_rec, aead_req);
386         msg_en = &rec->msg_encrypted;
387
388         sge = sk_msg_elem(msg_en, msg_en->sg.curr);
389         sge->offset -= tls_ctx->tx.prepend_size;
390         sge->length += tls_ctx->tx.prepend_size;
391
392         /* Check if error is previously set on socket */
393         if (err || sk->sk_err) {
394                 rec = NULL;
395
396                 /* If err is already set on socket, return the same code */
397                 if (sk->sk_err) {
398                         ctx->async_wait.err = sk->sk_err;
399                 } else {
400                         ctx->async_wait.err = err;
401                         tls_err_abort(sk, err);
402                 }
403         }
404
405         if (rec) {
406                 struct tls_rec *first_rec;
407
408                 /* Mark the record as ready for transmission */
409                 smp_store_mb(rec->tx_ready, true);
410
411                 /* If received record is at head of tx_list, schedule tx */
412                 first_rec = list_first_entry(&ctx->tx_list,
413                                              struct tls_rec, list);
414                 if (rec == first_rec)
415                         ready = true;
416         }
417
418         pending = atomic_dec_return(&ctx->encrypt_pending);
419
420         if (!pending && READ_ONCE(ctx->async_notify))
421                 complete(&ctx->async_wait.completion);
422
423         if (!ready)
424                 return;
425
426         /* Schedule the transmission */
427         if (!test_and_set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask))
428                 schedule_delayed_work(&ctx->tx_work.work, 1);
429 }
430
431 static int tls_do_encryption(struct sock *sk,
432                              struct tls_context *tls_ctx,
433                              struct tls_sw_context_tx *ctx,
434                              struct aead_request *aead_req,
435                              size_t data_len, u32 start)
436 {
437         struct tls_rec *rec = ctx->open_rec;
438         struct sk_msg *msg_en = &rec->msg_encrypted;
439         struct scatterlist *sge = sk_msg_elem(msg_en, start);
440         int rc;
441
442         sge->offset += tls_ctx->tx.prepend_size;
443         sge->length -= tls_ctx->tx.prepend_size;
444
445         msg_en->sg.curr = start;
446
447         aead_request_set_tfm(aead_req, ctx->aead_send);
448         aead_request_set_ad(aead_req, TLS_AAD_SPACE_SIZE);
449         aead_request_set_crypt(aead_req, rec->sg_aead_in,
450                                rec->sg_aead_out,
451                                data_len, tls_ctx->tx.iv);
452
453         aead_request_set_callback(aead_req, CRYPTO_TFM_REQ_MAY_BACKLOG,
454                                   tls_encrypt_done, sk);
455
456         /* Add the record in tx_list */
457         list_add_tail((struct list_head *)&rec->list, &ctx->tx_list);
458         atomic_inc(&ctx->encrypt_pending);
459
460         rc = crypto_aead_encrypt(aead_req);
461         if (!rc || rc != -EINPROGRESS) {
462                 atomic_dec(&ctx->encrypt_pending);
463                 sge->offset -= tls_ctx->tx.prepend_size;
464                 sge->length += tls_ctx->tx.prepend_size;
465         }
466
467         if (!rc) {
468                 WRITE_ONCE(rec->tx_ready, true);
469         } else if (rc != -EINPROGRESS) {
470                 list_del(&rec->list);
471                 return rc;
472         }
473
474         /* Unhook the record from context if encryption is not failure */
475         ctx->open_rec = NULL;
476         tls_advance_record_sn(sk, &tls_ctx->tx);
477         return rc;
478 }
479
480 static int tls_split_open_record(struct sock *sk, struct tls_rec *from,
481                                  struct tls_rec **to, struct sk_msg *msg_opl,
482                                  struct sk_msg *msg_oen, u32 split_point,
483                                  u32 tx_overhead_size, u32 *orig_end)
484 {
485         u32 i, j, bytes = 0, apply = msg_opl->apply_bytes;
486         struct scatterlist *sge, *osge, *nsge;
487         u32 orig_size = msg_opl->sg.size;
488         struct scatterlist tmp = { };
489         struct sk_msg *msg_npl;
490         struct tls_rec *new;
491         int ret;
492
493         new = tls_get_rec(sk);
494         if (!new)
495                 return -ENOMEM;
496         ret = sk_msg_alloc(sk, &new->msg_encrypted, msg_opl->sg.size +
497                            tx_overhead_size, 0);
498         if (ret < 0) {
499                 tls_free_rec(sk, new);
500                 return ret;
501         }
502
503         *orig_end = msg_opl->sg.end;
504         i = msg_opl->sg.start;
505         sge = sk_msg_elem(msg_opl, i);
506         while (apply && sge->length) {
507                 if (sge->length > apply) {
508                         u32 len = sge->length - apply;
509
510                         get_page(sg_page(sge));
511                         sg_set_page(&tmp, sg_page(sge), len,
512                                     sge->offset + apply);
513                         sge->length = apply;
514                         bytes += apply;
515                         apply = 0;
516                 } else {
517                         apply -= sge->length;
518                         bytes += sge->length;
519                 }
520
521                 sk_msg_iter_var_next(i);
522                 if (i == msg_opl->sg.end)
523                         break;
524                 sge = sk_msg_elem(msg_opl, i);
525         }
526
527         msg_opl->sg.end = i;
528         msg_opl->sg.curr = i;
529         msg_opl->sg.copybreak = 0;
530         msg_opl->apply_bytes = 0;
531         msg_opl->sg.size = bytes;
532
533         msg_npl = &new->msg_plaintext;
534         msg_npl->apply_bytes = apply;
535         msg_npl->sg.size = orig_size - bytes;
536
537         j = msg_npl->sg.start;
538         nsge = sk_msg_elem(msg_npl, j);
539         if (tmp.length) {
540                 memcpy(nsge, &tmp, sizeof(*nsge));
541                 sk_msg_iter_var_next(j);
542                 nsge = sk_msg_elem(msg_npl, j);
543         }
544
545         osge = sk_msg_elem(msg_opl, i);
546         while (osge->length) {
547                 memcpy(nsge, osge, sizeof(*nsge));
548                 sg_unmark_end(nsge);
549                 sk_msg_iter_var_next(i);
550                 sk_msg_iter_var_next(j);
551                 if (i == *orig_end)
552                         break;
553                 osge = sk_msg_elem(msg_opl, i);
554                 nsge = sk_msg_elem(msg_npl, j);
555         }
556
557         msg_npl->sg.end = j;
558         msg_npl->sg.curr = j;
559         msg_npl->sg.copybreak = 0;
560
561         *to = new;
562         return 0;
563 }
564
565 static void tls_merge_open_record(struct sock *sk, struct tls_rec *to,
566                                   struct tls_rec *from, u32 orig_end)
567 {
568         struct sk_msg *msg_npl = &from->msg_plaintext;
569         struct sk_msg *msg_opl = &to->msg_plaintext;
570         struct scatterlist *osge, *nsge;
571         u32 i, j;
572
573         i = msg_opl->sg.end;
574         sk_msg_iter_var_prev(i);
575         j = msg_npl->sg.start;
576
577         osge = sk_msg_elem(msg_opl, i);
578         nsge = sk_msg_elem(msg_npl, j);
579
580         if (sg_page(osge) == sg_page(nsge) &&
581             osge->offset + osge->length == nsge->offset) {
582                 osge->length += nsge->length;
583                 put_page(sg_page(nsge));
584         }
585
586         msg_opl->sg.end = orig_end;
587         msg_opl->sg.curr = orig_end;
588         msg_opl->sg.copybreak = 0;
589         msg_opl->apply_bytes = msg_opl->sg.size + msg_npl->sg.size;
590         msg_opl->sg.size += msg_npl->sg.size;
591
592         sk_msg_free(sk, &to->msg_encrypted);
593         sk_msg_xfer_full(&to->msg_encrypted, &from->msg_encrypted);
594
595         kfree(from);
596 }
597
598 static int tls_push_record(struct sock *sk, int flags,
599                            unsigned char record_type)
600 {
601         struct tls_context *tls_ctx = tls_get_ctx(sk);
602         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
603         struct tls_rec *rec = ctx->open_rec, *tmp = NULL;
604         u32 i, split_point, uninitialized_var(orig_end);
605         struct sk_msg *msg_pl, *msg_en;
606         struct aead_request *req;
607         bool split;
608         int rc;
609
610         if (!rec)
611                 return 0;
612
613         msg_pl = &rec->msg_plaintext;
614         msg_en = &rec->msg_encrypted;
615
616         split_point = msg_pl->apply_bytes;
617         split = split_point && split_point < msg_pl->sg.size;
618         if (split) {
619                 rc = tls_split_open_record(sk, rec, &tmp, msg_pl, msg_en,
620                                            split_point, tls_ctx->tx.overhead_size,
621                                            &orig_end);
622                 if (rc < 0)
623                         return rc;
624                 sk_msg_trim(sk, msg_en, msg_pl->sg.size +
625                             tls_ctx->tx.overhead_size);
626         }
627
628         rec->tx_flags = flags;
629         req = &rec->aead_req;
630
631         i = msg_pl->sg.end;
632         sk_msg_iter_var_prev(i);
633         sg_mark_end(sk_msg_elem(msg_pl, i));
634
635         i = msg_pl->sg.start;
636         sg_chain(rec->sg_aead_in, 2, rec->inplace_crypto ?
637                  &msg_en->sg.data[i] : &msg_pl->sg.data[i]);
638
639         i = msg_en->sg.end;
640         sk_msg_iter_var_prev(i);
641         sg_mark_end(sk_msg_elem(msg_en, i));
642
643         i = msg_en->sg.start;
644         sg_chain(rec->sg_aead_out, 2, &msg_en->sg.data[i]);
645
646         tls_make_aad(rec->aad_space, msg_pl->sg.size,
647                      tls_ctx->tx.rec_seq, tls_ctx->tx.rec_seq_size,
648                      record_type);
649
650         tls_fill_prepend(tls_ctx,
651                          page_address(sg_page(&msg_en->sg.data[i])) +
652                          msg_en->sg.data[i].offset, msg_pl->sg.size,
653                          record_type);
654
655         tls_ctx->pending_open_record_frags = false;
656
657         rc = tls_do_encryption(sk, tls_ctx, ctx, req, msg_pl->sg.size, i);
658         if (rc < 0) {
659                 if (rc != -EINPROGRESS) {
660                         tls_err_abort(sk, EBADMSG);
661                         if (split) {
662                                 tls_ctx->pending_open_record_frags = true;
663                                 tls_merge_open_record(sk, rec, tmp, orig_end);
664                         }
665                 }
666                 return rc;
667         } else if (split) {
668                 msg_pl = &tmp->msg_plaintext;
669                 msg_en = &tmp->msg_encrypted;
670                 sk_msg_trim(sk, msg_en, msg_pl->sg.size +
671                             tls_ctx->tx.overhead_size);
672                 tls_ctx->pending_open_record_frags = true;
673                 ctx->open_rec = tmp;
674         }
675
676         return tls_tx_records(sk, flags);
677 }
678
679 static int bpf_exec_tx_verdict(struct sk_msg *msg, struct sock *sk,
680                                bool full_record, u8 record_type,
681                                size_t *copied, int flags)
682 {
683         struct tls_context *tls_ctx = tls_get_ctx(sk);
684         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
685         struct sk_msg msg_redir = { };
686         struct sk_psock *psock;
687         struct sock *sk_redir;
688         struct tls_rec *rec;
689         int err = 0, send;
690         bool enospc;
691
692         psock = sk_psock_get(sk);
693         if (!psock)
694                 return tls_push_record(sk, flags, record_type);
695 more_data:
696         enospc = sk_msg_full(msg);
697         if (psock->eval == __SK_NONE)
698                 psock->eval = sk_psock_msg_verdict(sk, psock, msg);
699         if (msg->cork_bytes && msg->cork_bytes > msg->sg.size &&
700             !enospc && !full_record) {
701                 err = -ENOSPC;
702                 goto out_err;
703         }
704         msg->cork_bytes = 0;
705         send = msg->sg.size;
706         if (msg->apply_bytes && msg->apply_bytes < send)
707                 send = msg->apply_bytes;
708
709         switch (psock->eval) {
710         case __SK_PASS:
711                 err = tls_push_record(sk, flags, record_type);
712                 if (err < 0) {
713                         *copied -= sk_msg_free(sk, msg);
714                         tls_free_open_rec(sk);
715                         goto out_err;
716                 }
717                 break;
718         case __SK_REDIRECT:
719                 sk_redir = psock->sk_redir;
720                 memcpy(&msg_redir, msg, sizeof(*msg));
721                 if (msg->apply_bytes < send)
722                         msg->apply_bytes = 0;
723                 else
724                         msg->apply_bytes -= send;
725                 sk_msg_return_zero(sk, msg, send);
726                 msg->sg.size -= send;
727                 release_sock(sk);
728                 err = tcp_bpf_sendmsg_redir(sk_redir, &msg_redir, send, flags);
729                 lock_sock(sk);
730                 if (err < 0) {
731                         *copied -= sk_msg_free_nocharge(sk, &msg_redir);
732                         msg->sg.size = 0;
733                 }
734                 if (msg->sg.size == 0)
735                         tls_free_open_rec(sk);
736                 break;
737         case __SK_DROP:
738         default:
739                 sk_msg_free_partial(sk, msg, send);
740                 if (msg->apply_bytes < send)
741                         msg->apply_bytes = 0;
742                 else
743                         msg->apply_bytes -= send;
744                 if (msg->sg.size == 0)
745                         tls_free_open_rec(sk);
746                 *copied -= send;
747                 err = -EACCES;
748         }
749
750         if (likely(!err)) {
751                 bool reset_eval = !ctx->open_rec;
752
753                 rec = ctx->open_rec;
754                 if (rec) {
755                         msg = &rec->msg_plaintext;
756                         if (!msg->apply_bytes)
757                                 reset_eval = true;
758                 }
759                 if (reset_eval) {
760                         psock->eval = __SK_NONE;
761                         if (psock->sk_redir) {
762                                 sock_put(psock->sk_redir);
763                                 psock->sk_redir = NULL;
764                         }
765                 }
766                 if (rec)
767                         goto more_data;
768         }
769  out_err:
770         sk_psock_put(sk, psock);
771         return err;
772 }
773
774 static int tls_sw_push_pending_record(struct sock *sk, int flags)
775 {
776         struct tls_context *tls_ctx = tls_get_ctx(sk);
777         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
778         struct tls_rec *rec = ctx->open_rec;
779         struct sk_msg *msg_pl;
780         size_t copied;
781
782         if (!rec)
783                 return 0;
784
785         msg_pl = &rec->msg_plaintext;
786         copied = msg_pl->sg.size;
787         if (!copied)
788                 return 0;
789
790         return bpf_exec_tx_verdict(msg_pl, sk, true, TLS_RECORD_TYPE_DATA,
791                                    &copied, flags);
792 }
793
794 int tls_sw_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
795 {
796         long timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
797         struct tls_context *tls_ctx = tls_get_ctx(sk);
798         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
799         struct crypto_tfm *tfm = crypto_aead_tfm(ctx->aead_send);
800         bool async_capable = tfm->__crt_alg->cra_flags & CRYPTO_ALG_ASYNC;
801         unsigned char record_type = TLS_RECORD_TYPE_DATA;
802         bool is_kvec = iov_iter_is_kvec(&msg->msg_iter);
803         bool eor = !(msg->msg_flags & MSG_MORE);
804         size_t try_to_copy, copied = 0;
805         struct sk_msg *msg_pl, *msg_en;
806         struct tls_rec *rec;
807         int required_size;
808         int num_async = 0;
809         bool full_record;
810         int record_room;
811         int num_zc = 0;
812         int orig_size;
813         int ret = 0;
814
815         if (msg->msg_flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL))
816                 return -ENOTSUPP;
817
818         lock_sock(sk);
819
820         /* Wait till there is any pending write on socket */
821         if (unlikely(sk->sk_write_pending)) {
822                 ret = wait_on_pending_writer(sk, &timeo);
823                 if (unlikely(ret))
824                         goto send_end;
825         }
826
827         if (unlikely(msg->msg_controllen)) {
828                 ret = tls_proccess_cmsg(sk, msg, &record_type);
829                 if (ret) {
830                         if (ret == -EINPROGRESS)
831                                 num_async++;
832                         else if (ret != -EAGAIN)
833                                 goto send_end;
834                 }
835         }
836
837         while (msg_data_left(msg)) {
838                 if (sk->sk_err) {
839                         ret = -sk->sk_err;
840                         goto send_end;
841                 }
842
843                 if (ctx->open_rec)
844                         rec = ctx->open_rec;
845                 else
846                         rec = ctx->open_rec = tls_get_rec(sk);
847                 if (!rec) {
848                         ret = -ENOMEM;
849                         goto send_end;
850                 }
851
852                 msg_pl = &rec->msg_plaintext;
853                 msg_en = &rec->msg_encrypted;
854
855                 orig_size = msg_pl->sg.size;
856                 full_record = false;
857                 try_to_copy = msg_data_left(msg);
858                 record_room = TLS_MAX_PAYLOAD_SIZE - msg_pl->sg.size;
859                 if (try_to_copy >= record_room) {
860                         try_to_copy = record_room;
861                         full_record = true;
862                 }
863
864                 required_size = msg_pl->sg.size + try_to_copy +
865                                 tls_ctx->tx.overhead_size;
866
867                 if (!sk_stream_memory_free(sk))
868                         goto wait_for_sndbuf;
869
870 alloc_encrypted:
871                 ret = tls_alloc_encrypted_msg(sk, required_size);
872                 if (ret) {
873                         if (ret != -ENOSPC)
874                                 goto wait_for_memory;
875
876                         /* Adjust try_to_copy according to the amount that was
877                          * actually allocated. The difference is due
878                          * to max sg elements limit
879                          */
880                         try_to_copy -= required_size - msg_en->sg.size;
881                         full_record = true;
882                 }
883
884                 if (!is_kvec && (full_record || eor) && !async_capable) {
885                         u32 first = msg_pl->sg.end;
886
887                         ret = sk_msg_zerocopy_from_iter(sk, &msg->msg_iter,
888                                                         msg_pl, try_to_copy);
889                         if (ret)
890                                 goto fallback_to_reg_send;
891
892                         rec->inplace_crypto = 0;
893
894                         num_zc++;
895                         copied += try_to_copy;
896
897                         sk_msg_sg_copy_set(msg_pl, first);
898                         ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
899                                                   record_type, &copied,
900                                                   msg->msg_flags);
901                         if (ret) {
902                                 if (ret == -EINPROGRESS)
903                                         num_async++;
904                                 else if (ret == -ENOMEM)
905                                         goto wait_for_memory;
906                                 else if (ret == -ENOSPC)
907                                         goto rollback_iter;
908                                 else if (ret != -EAGAIN)
909                                         goto send_end;
910                         }
911                         continue;
912 rollback_iter:
913                         copied -= try_to_copy;
914                         sk_msg_sg_copy_clear(msg_pl, first);
915                         iov_iter_revert(&msg->msg_iter,
916                                         msg_pl->sg.size - orig_size);
917 fallback_to_reg_send:
918                         sk_msg_trim(sk, msg_pl, orig_size);
919                 }
920
921                 required_size = msg_pl->sg.size + try_to_copy;
922
923                 ret = tls_clone_plaintext_msg(sk, required_size);
924                 if (ret) {
925                         if (ret != -ENOSPC)
926                                 goto send_end;
927
928                         /* Adjust try_to_copy according to the amount that was
929                          * actually allocated. The difference is due
930                          * to max sg elements limit
931                          */
932                         try_to_copy -= required_size - msg_pl->sg.size;
933                         full_record = true;
934                         sk_msg_trim(sk, msg_en, msg_pl->sg.size +
935                                     tls_ctx->tx.overhead_size);
936                 }
937
938                 if (try_to_copy) {
939                         ret = sk_msg_memcopy_from_iter(sk, &msg->msg_iter,
940                                                        msg_pl, try_to_copy);
941                         if (ret < 0)
942                                 goto trim_sgl;
943                 }
944
945                 /* Open records defined only if successfully copied, otherwise
946                  * we would trim the sg but not reset the open record frags.
947                  */
948                 tls_ctx->pending_open_record_frags = true;
949                 copied += try_to_copy;
950                 if (full_record || eor) {
951                         ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
952                                                   record_type, &copied,
953                                                   msg->msg_flags);
954                         if (ret) {
955                                 if (ret == -EINPROGRESS)
956                                         num_async++;
957                                 else if (ret == -ENOMEM)
958                                         goto wait_for_memory;
959                                 else if (ret != -EAGAIN) {
960                                         if (ret == -ENOSPC)
961                                                 ret = 0;
962                                         goto send_end;
963                                 }
964                         }
965                 }
966
967                 continue;
968
969 wait_for_sndbuf:
970                 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
971 wait_for_memory:
972                 ret = sk_stream_wait_memory(sk, &timeo);
973                 if (ret) {
974 trim_sgl:
975                         tls_trim_both_msgs(sk, orig_size);
976                         goto send_end;
977                 }
978
979                 if (msg_en->sg.size < required_size)
980                         goto alloc_encrypted;
981         }
982
983         if (!num_async) {
984                 goto send_end;
985         } else if (num_zc) {
986                 /* Wait for pending encryptions to get completed */
987                 smp_store_mb(ctx->async_notify, true);
988
989                 if (atomic_read(&ctx->encrypt_pending))
990                         crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
991                 else
992                         reinit_completion(&ctx->async_wait.completion);
993
994                 WRITE_ONCE(ctx->async_notify, false);
995
996                 if (ctx->async_wait.err) {
997                         ret = ctx->async_wait.err;
998                         copied = 0;
999                 }
1000         }
1001
1002         /* Transmit if any encryptions have completed */
1003         if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) {
1004                 cancel_delayed_work(&ctx->tx_work.work);
1005                 tls_tx_records(sk, msg->msg_flags);
1006         }
1007
1008 send_end:
1009         ret = sk_stream_error(sk, msg->msg_flags, ret);
1010
1011         release_sock(sk);
1012         return copied ? copied : ret;
1013 }
1014
1015 int tls_sw_sendpage(struct sock *sk, struct page *page,
1016                     int offset, size_t size, int flags)
1017 {
1018         long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1019         struct tls_context *tls_ctx = tls_get_ctx(sk);
1020         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
1021         unsigned char record_type = TLS_RECORD_TYPE_DATA;
1022         struct sk_msg *msg_pl;
1023         struct tls_rec *rec;
1024         int num_async = 0;
1025         size_t copied = 0;
1026         bool full_record;
1027         int record_room;
1028         int ret = 0;
1029         bool eor;
1030
1031         if (flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL |
1032                       MSG_SENDPAGE_NOTLAST))
1033                 return -ENOTSUPP;
1034
1035         /* No MSG_EOR from splice, only look at MSG_MORE */
1036         eor = !(flags & (MSG_MORE | MSG_SENDPAGE_NOTLAST));
1037
1038         lock_sock(sk);
1039
1040         sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1041
1042         /* Wait till there is any pending write on socket */
1043         if (unlikely(sk->sk_write_pending)) {
1044                 ret = wait_on_pending_writer(sk, &timeo);
1045                 if (unlikely(ret))
1046                         goto sendpage_end;
1047         }
1048
1049         /* Call the sk_stream functions to manage the sndbuf mem. */
1050         while (size > 0) {
1051                 size_t copy, required_size;
1052
1053                 if (sk->sk_err) {
1054                         ret = -sk->sk_err;
1055                         goto sendpage_end;
1056                 }
1057
1058                 if (ctx->open_rec)
1059                         rec = ctx->open_rec;
1060                 else
1061                         rec = ctx->open_rec = tls_get_rec(sk);
1062                 if (!rec) {
1063                         ret = -ENOMEM;
1064                         goto sendpage_end;
1065                 }
1066
1067                 msg_pl = &rec->msg_plaintext;
1068
1069                 full_record = false;
1070                 record_room = TLS_MAX_PAYLOAD_SIZE - msg_pl->sg.size;
1071                 copied = 0;
1072                 copy = size;
1073                 if (copy >= record_room) {
1074                         copy = record_room;
1075                         full_record = true;
1076                 }
1077
1078                 required_size = msg_pl->sg.size + copy +
1079                                 tls_ctx->tx.overhead_size;
1080
1081                 if (!sk_stream_memory_free(sk))
1082                         goto wait_for_sndbuf;
1083 alloc_payload:
1084                 ret = tls_alloc_encrypted_msg(sk, required_size);
1085                 if (ret) {
1086                         if (ret != -ENOSPC)
1087                                 goto wait_for_memory;
1088
1089                         /* Adjust copy according to the amount that was
1090                          * actually allocated. The difference is due
1091                          * to max sg elements limit
1092                          */
1093                         copy -= required_size - msg_pl->sg.size;
1094                         full_record = true;
1095                 }
1096
1097                 sk_msg_page_add(msg_pl, page, copy, offset);
1098                 sk_mem_charge(sk, copy);
1099
1100                 offset += copy;
1101                 size -= copy;
1102                 copied += copy;
1103
1104                 tls_ctx->pending_open_record_frags = true;
1105                 if (full_record || eor || sk_msg_full(msg_pl)) {
1106                         rec->inplace_crypto = 0;
1107                         ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
1108                                                   record_type, &copied, flags);
1109                         if (ret) {
1110                                 if (ret == -EINPROGRESS)
1111                                         num_async++;
1112                                 else if (ret == -ENOMEM)
1113                                         goto wait_for_memory;
1114                                 else if (ret != -EAGAIN) {
1115                                         if (ret == -ENOSPC)
1116                                                 ret = 0;
1117                                         goto sendpage_end;
1118                                 }
1119                         }
1120                 }
1121                 continue;
1122 wait_for_sndbuf:
1123                 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1124 wait_for_memory:
1125                 ret = sk_stream_wait_memory(sk, &timeo);
1126                 if (ret) {
1127                         tls_trim_both_msgs(sk, msg_pl->sg.size);
1128                         goto sendpage_end;
1129                 }
1130
1131                 goto alloc_payload;
1132         }
1133
1134         if (num_async) {
1135                 /* Transmit if any encryptions have completed */
1136                 if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) {
1137                         cancel_delayed_work(&ctx->tx_work.work);
1138                         tls_tx_records(sk, flags);
1139                 }
1140         }
1141 sendpage_end:
1142         ret = sk_stream_error(sk, flags, ret);
1143         release_sock(sk);
1144         return copied ? copied : ret;
1145 }
1146
1147 static struct sk_buff *tls_wait_data(struct sock *sk, struct sk_psock *psock,
1148                                      int flags, long timeo, int *err)
1149 {
1150         struct tls_context *tls_ctx = tls_get_ctx(sk);
1151         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1152         struct sk_buff *skb;
1153         DEFINE_WAIT_FUNC(wait, woken_wake_function);
1154
1155         while (!(skb = ctx->recv_pkt) && sk_psock_queue_empty(psock)) {
1156                 if (sk->sk_err) {
1157                         *err = sock_error(sk);
1158                         return NULL;
1159                 }
1160
1161                 if (sk->sk_shutdown & RCV_SHUTDOWN)
1162                         return NULL;
1163
1164                 if (sock_flag(sk, SOCK_DONE))
1165                         return NULL;
1166
1167                 if ((flags & MSG_DONTWAIT) || !timeo) {
1168                         *err = -EAGAIN;
1169                         return NULL;
1170                 }
1171
1172                 add_wait_queue(sk_sleep(sk), &wait);
1173                 sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk);
1174                 sk_wait_event(sk, &timeo,
1175                               ctx->recv_pkt != skb ||
1176                               !sk_psock_queue_empty(psock),
1177                               &wait);
1178                 sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk);
1179                 remove_wait_queue(sk_sleep(sk), &wait);
1180
1181                 /* Handle signals */
1182                 if (signal_pending(current)) {
1183                         *err = sock_intr_errno(timeo);
1184                         return NULL;
1185                 }
1186         }
1187
1188         return skb;
1189 }
1190
1191 static int tls_setup_from_iter(struct sock *sk, struct iov_iter *from,
1192                                int length, int *pages_used,
1193                                unsigned int *size_used,
1194                                struct scatterlist *to,
1195                                int to_max_pages)
1196 {
1197         int rc = 0, i = 0, num_elem = *pages_used, maxpages;
1198         struct page *pages[MAX_SKB_FRAGS];
1199         unsigned int size = *size_used;
1200         ssize_t copied, use;
1201         size_t offset;
1202
1203         while (length > 0) {
1204                 i = 0;
1205                 maxpages = to_max_pages - num_elem;
1206                 if (maxpages == 0) {
1207                         rc = -EFAULT;
1208                         goto out;
1209                 }
1210                 copied = iov_iter_get_pages(from, pages,
1211                                             length,
1212                                             maxpages, &offset);
1213                 if (copied <= 0) {
1214                         rc = -EFAULT;
1215                         goto out;
1216                 }
1217
1218                 iov_iter_advance(from, copied);
1219
1220                 length -= copied;
1221                 size += copied;
1222                 while (copied) {
1223                         use = min_t(int, copied, PAGE_SIZE - offset);
1224
1225                         sg_set_page(&to[num_elem],
1226                                     pages[i], use, offset);
1227                         sg_unmark_end(&to[num_elem]);
1228                         /* We do not uncharge memory from this API */
1229
1230                         offset = 0;
1231                         copied -= use;
1232
1233                         i++;
1234                         num_elem++;
1235                 }
1236         }
1237         /* Mark the end in the last sg entry if newly added */
1238         if (num_elem > *pages_used)
1239                 sg_mark_end(&to[num_elem - 1]);
1240 out:
1241         if (rc)
1242                 iov_iter_revert(from, size - *size_used);
1243         *size_used = size;
1244         *pages_used = num_elem;
1245
1246         return rc;
1247 }
1248
1249 /* This function decrypts the input skb into either out_iov or in out_sg
1250  * or in skb buffers itself. The input parameter 'zc' indicates if
1251  * zero-copy mode needs to be tried or not. With zero-copy mode, either
1252  * out_iov or out_sg must be non-NULL. In case both out_iov and out_sg are
1253  * NULL, then the decryption happens inside skb buffers itself, i.e.
1254  * zero-copy gets disabled and 'zc' is updated.
1255  */
1256
1257 static int decrypt_internal(struct sock *sk, struct sk_buff *skb,
1258                             struct iov_iter *out_iov,
1259                             struct scatterlist *out_sg,
1260                             int *chunk, bool *zc)
1261 {
1262         struct tls_context *tls_ctx = tls_get_ctx(sk);
1263         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1264         struct strp_msg *rxm = strp_msg(skb);
1265         int n_sgin, n_sgout, nsg, mem_size, aead_size, err, pages = 0;
1266         struct aead_request *aead_req;
1267         struct sk_buff *unused;
1268         u8 *aad, *iv, *mem = NULL;
1269         struct scatterlist *sgin = NULL;
1270         struct scatterlist *sgout = NULL;
1271         const int data_len = rxm->full_len - tls_ctx->rx.overhead_size;
1272
1273         if (*zc && (out_iov || out_sg)) {
1274                 if (out_iov)
1275                         n_sgout = iov_iter_npages(out_iov, INT_MAX) + 1;
1276                 else
1277                         n_sgout = sg_nents(out_sg);
1278                 n_sgin = skb_nsg(skb, rxm->offset + tls_ctx->rx.prepend_size,
1279                                  rxm->full_len - tls_ctx->rx.prepend_size);
1280         } else {
1281                 n_sgout = 0;
1282                 *zc = false;
1283                 n_sgin = skb_cow_data(skb, 0, &unused);
1284         }
1285
1286         if (n_sgin < 1)
1287                 return -EBADMSG;
1288
1289         /* Increment to accommodate AAD */
1290         n_sgin = n_sgin + 1;
1291
1292         nsg = n_sgin + n_sgout;
1293
1294         aead_size = sizeof(*aead_req) + crypto_aead_reqsize(ctx->aead_recv);
1295         mem_size = aead_size + (nsg * sizeof(struct scatterlist));
1296         mem_size = mem_size + TLS_AAD_SPACE_SIZE;
1297         mem_size = mem_size + crypto_aead_ivsize(ctx->aead_recv);
1298
1299         /* Allocate a single block of memory which contains
1300          * aead_req || sgin[] || sgout[] || aad || iv.
1301          * This order achieves correct alignment for aead_req, sgin, sgout.
1302          */
1303         mem = kmalloc(mem_size, sk->sk_allocation);
1304         if (!mem)
1305                 return -ENOMEM;
1306
1307         /* Segment the allocated memory */
1308         aead_req = (struct aead_request *)mem;
1309         sgin = (struct scatterlist *)(mem + aead_size);
1310         sgout = sgin + n_sgin;
1311         aad = (u8 *)(sgout + n_sgout);
1312         iv = aad + TLS_AAD_SPACE_SIZE;
1313
1314         /* Prepare IV */
1315         err = skb_copy_bits(skb, rxm->offset + TLS_HEADER_SIZE,
1316                             iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE,
1317                             tls_ctx->rx.iv_size);
1318         if (err < 0) {
1319                 kfree(mem);
1320                 return err;
1321         }
1322         memcpy(iv, tls_ctx->rx.iv, TLS_CIPHER_AES_GCM_128_SALT_SIZE);
1323
1324         /* Prepare AAD */
1325         tls_make_aad(aad, rxm->full_len - tls_ctx->rx.overhead_size,
1326                      tls_ctx->rx.rec_seq, tls_ctx->rx.rec_seq_size,
1327                      ctx->control);
1328
1329         /* Prepare sgin */
1330         sg_init_table(sgin, n_sgin);
1331         sg_set_buf(&sgin[0], aad, TLS_AAD_SPACE_SIZE);
1332         err = skb_to_sgvec(skb, &sgin[1],
1333                            rxm->offset + tls_ctx->rx.prepend_size,
1334                            rxm->full_len - tls_ctx->rx.prepend_size);
1335         if (err < 0) {
1336                 kfree(mem);
1337                 return err;
1338         }
1339
1340         if (n_sgout) {
1341                 if (out_iov) {
1342                         sg_init_table(sgout, n_sgout);
1343                         sg_set_buf(&sgout[0], aad, TLS_AAD_SPACE_SIZE);
1344
1345                         *chunk = 0;
1346                         err = tls_setup_from_iter(sk, out_iov, data_len,
1347                                                   &pages, chunk, &sgout[1],
1348                                                   (n_sgout - 1));
1349                         if (err < 0)
1350                                 goto fallback_to_reg_recv;
1351                 } else if (out_sg) {
1352                         memcpy(sgout, out_sg, n_sgout * sizeof(*sgout));
1353                 } else {
1354                         goto fallback_to_reg_recv;
1355                 }
1356         } else {
1357 fallback_to_reg_recv:
1358                 sgout = sgin;
1359                 pages = 0;
1360                 *chunk = 0;
1361                 *zc = false;
1362         }
1363
1364         /* Prepare and submit AEAD request */
1365         err = tls_do_decryption(sk, skb, sgin, sgout, iv,
1366                                 data_len, aead_req, *zc);
1367         if (err == -EINPROGRESS)
1368                 return err;
1369
1370         /* Release the pages in case iov was mapped to pages */
1371         for (; pages > 0; pages--)
1372                 put_page(sg_page(&sgout[pages]));
1373
1374         kfree(mem);
1375         return err;
1376 }
1377
1378 static int decrypt_skb_update(struct sock *sk, struct sk_buff *skb,
1379                               struct iov_iter *dest, int *chunk, bool *zc)
1380 {
1381         struct tls_context *tls_ctx = tls_get_ctx(sk);
1382         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1383         struct strp_msg *rxm = strp_msg(skb);
1384         int err = 0;
1385
1386 #ifdef CONFIG_TLS_DEVICE
1387         err = tls_device_decrypted(sk, skb);
1388         if (err < 0)
1389                 return err;
1390 #endif
1391         if (!ctx->decrypted) {
1392                 err = decrypt_internal(sk, skb, dest, NULL, chunk, zc);
1393                 if (err < 0) {
1394                         if (err == -EINPROGRESS)
1395                                 tls_advance_record_sn(sk, &tls_ctx->rx);
1396
1397                         return err;
1398                 }
1399         } else {
1400                 *zc = false;
1401         }
1402
1403         rxm->offset += tls_ctx->rx.prepend_size;
1404         rxm->full_len -= tls_ctx->rx.overhead_size;
1405         tls_advance_record_sn(sk, &tls_ctx->rx);
1406         ctx->decrypted = true;
1407         ctx->saved_data_ready(sk);
1408
1409         return err;
1410 }
1411
1412 int decrypt_skb(struct sock *sk, struct sk_buff *skb,
1413                 struct scatterlist *sgout)
1414 {
1415         bool zc = true;
1416         int chunk;
1417
1418         return decrypt_internal(sk, skb, NULL, sgout, &chunk, &zc);
1419 }
1420
1421 static bool tls_sw_advance_skb(struct sock *sk, struct sk_buff *skb,
1422                                unsigned int len)
1423 {
1424         struct tls_context *tls_ctx = tls_get_ctx(sk);
1425         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1426
1427         if (skb) {
1428                 struct strp_msg *rxm = strp_msg(skb);
1429
1430                 if (len < rxm->full_len) {
1431                         rxm->offset += len;
1432                         rxm->full_len -= len;
1433                         return false;
1434                 }
1435                 kfree_skb(skb);
1436         }
1437
1438         /* Finished with message */
1439         ctx->recv_pkt = NULL;
1440         __strp_unpause(&ctx->strp);
1441
1442         return true;
1443 }
1444
1445 int tls_sw_recvmsg(struct sock *sk,
1446                    struct msghdr *msg,
1447                    size_t len,
1448                    int nonblock,
1449                    int flags,
1450                    int *addr_len)
1451 {
1452         struct tls_context *tls_ctx = tls_get_ctx(sk);
1453         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1454         struct sk_psock *psock;
1455         unsigned char control;
1456         struct strp_msg *rxm;
1457         struct sk_buff *skb;
1458         ssize_t copied = 0;
1459         bool cmsg = false;
1460         int target, err = 0;
1461         long timeo;
1462         bool is_kvec = iov_iter_is_kvec(&msg->msg_iter);
1463         int num_async = 0;
1464
1465         flags |= nonblock;
1466
1467         if (unlikely(flags & MSG_ERRQUEUE))
1468                 return sock_recv_errqueue(sk, msg, len, SOL_IP, IP_RECVERR);
1469
1470         psock = sk_psock_get(sk);
1471         lock_sock(sk);
1472
1473         target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1474         timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1475         do {
1476                 bool zc = false;
1477                 bool async = false;
1478                 int chunk = 0;
1479
1480                 skb = tls_wait_data(sk, psock, flags, timeo, &err);
1481                 if (!skb) {
1482                         if (psock) {
1483                                 int ret = __tcp_bpf_recvmsg(sk, psock,
1484                                                             msg, len, flags);
1485
1486                                 if (ret > 0) {
1487                                         copied += ret;
1488                                         len -= ret;
1489                                         continue;
1490                                 }
1491                         }
1492                         goto recv_end;
1493                 }
1494
1495                 rxm = strp_msg(skb);
1496
1497                 if (!cmsg) {
1498                         int cerr;
1499
1500                         cerr = put_cmsg(msg, SOL_TLS, TLS_GET_RECORD_TYPE,
1501                                         sizeof(ctx->control), &ctx->control);
1502                         cmsg = true;
1503                         control = ctx->control;
1504                         if (ctx->control != TLS_RECORD_TYPE_DATA) {
1505                                 if (cerr || msg->msg_flags & MSG_CTRUNC) {
1506                                         err = -EIO;
1507                                         goto recv_end;
1508                                 }
1509                         }
1510                 } else if (control != ctx->control) {
1511                         goto recv_end;
1512                 }
1513
1514                 if (!ctx->decrypted) {
1515                         int to_copy = rxm->full_len - tls_ctx->rx.overhead_size;
1516
1517                         if (!is_kvec && to_copy <= len &&
1518                             likely(!(flags & MSG_PEEK)))
1519                                 zc = true;
1520
1521                         err = decrypt_skb_update(sk, skb, &msg->msg_iter,
1522                                                  &chunk, &zc);
1523                         if (err < 0 && err != -EINPROGRESS) {
1524                                 tls_err_abort(sk, EBADMSG);
1525                                 goto recv_end;
1526                         }
1527
1528                         if (err == -EINPROGRESS) {
1529                                 async = true;
1530                                 num_async++;
1531                                 goto pick_next_record;
1532                         }
1533
1534                         ctx->decrypted = true;
1535                 }
1536
1537                 if (!zc) {
1538                         chunk = min_t(unsigned int, rxm->full_len, len);
1539
1540                         err = skb_copy_datagram_msg(skb, rxm->offset, msg,
1541                                                     chunk);
1542                         if (err < 0)
1543                                 goto recv_end;
1544                 }
1545
1546 pick_next_record:
1547                 copied += chunk;
1548                 len -= chunk;
1549                 if (likely(!(flags & MSG_PEEK))) {
1550                         u8 control = ctx->control;
1551
1552                         /* For async, drop current skb reference */
1553                         if (async)
1554                                 skb = NULL;
1555
1556                         if (tls_sw_advance_skb(sk, skb, chunk)) {
1557                                 /* Return full control message to
1558                                  * userspace before trying to parse
1559                                  * another message type
1560                                  */
1561                                 msg->msg_flags |= MSG_EOR;
1562                                 if (control != TLS_RECORD_TYPE_DATA)
1563                                         goto recv_end;
1564                         } else {
1565                                 break;
1566                         }
1567                 } else {
1568                         /* MSG_PEEK right now cannot look beyond current skb
1569                          * from strparser, meaning we cannot advance skb here
1570                          * and thus unpause strparser since we'd loose original
1571                          * one.
1572                          */
1573                         break;
1574                 }
1575
1576                 /* If we have a new message from strparser, continue now. */
1577                 if (copied >= target && !ctx->recv_pkt)
1578                         break;
1579         } while (len);
1580
1581 recv_end:
1582         if (num_async) {
1583                 /* Wait for all previously submitted records to be decrypted */
1584                 smp_store_mb(ctx->async_notify, true);
1585                 if (atomic_read(&ctx->decrypt_pending)) {
1586                         err = crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
1587                         if (err) {
1588                                 /* one of async decrypt failed */
1589                                 tls_err_abort(sk, err);
1590                                 copied = 0;
1591                         }
1592                 } else {
1593                         reinit_completion(&ctx->async_wait.completion);
1594                 }
1595                 WRITE_ONCE(ctx->async_notify, false);
1596         }
1597
1598         release_sock(sk);
1599         if (psock)
1600                 sk_psock_put(sk, psock);
1601         return copied ? : err;
1602 }
1603
1604 ssize_t tls_sw_splice_read(struct socket *sock,  loff_t *ppos,
1605                            struct pipe_inode_info *pipe,
1606                            size_t len, unsigned int flags)
1607 {
1608         struct tls_context *tls_ctx = tls_get_ctx(sock->sk);
1609         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1610         struct strp_msg *rxm = NULL;
1611         struct sock *sk = sock->sk;
1612         struct sk_buff *skb;
1613         ssize_t copied = 0;
1614         int err = 0;
1615         long timeo;
1616         int chunk;
1617         bool zc = false;
1618
1619         lock_sock(sk);
1620
1621         timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1622
1623         skb = tls_wait_data(sk, NULL, flags, timeo, &err);
1624         if (!skb)
1625                 goto splice_read_end;
1626
1627         /* splice does not support reading control messages */
1628         if (ctx->control != TLS_RECORD_TYPE_DATA) {
1629                 err = -ENOTSUPP;
1630                 goto splice_read_end;
1631         }
1632
1633         if (!ctx->decrypted) {
1634                 err = decrypt_skb_update(sk, skb, NULL, &chunk, &zc);
1635
1636                 if (err < 0) {
1637                         tls_err_abort(sk, EBADMSG);
1638                         goto splice_read_end;
1639                 }
1640                 ctx->decrypted = true;
1641         }
1642         rxm = strp_msg(skb);
1643
1644         chunk = min_t(unsigned int, rxm->full_len, len);
1645         copied = skb_splice_bits(skb, sk, rxm->offset, pipe, chunk, flags);
1646         if (copied < 0)
1647                 goto splice_read_end;
1648
1649         if (likely(!(flags & MSG_PEEK)))
1650                 tls_sw_advance_skb(sk, skb, copied);
1651
1652 splice_read_end:
1653         release_sock(sk);
1654         return copied ? : err;
1655 }
1656
1657 bool tls_sw_stream_read(const struct sock *sk)
1658 {
1659         struct tls_context *tls_ctx = tls_get_ctx(sk);
1660         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1661         bool ingress_empty = true;
1662         struct sk_psock *psock;
1663
1664         rcu_read_lock();
1665         psock = sk_psock(sk);
1666         if (psock)
1667                 ingress_empty = list_empty(&psock->ingress_msg);
1668         rcu_read_unlock();
1669
1670         return !ingress_empty || ctx->recv_pkt;
1671 }
1672
1673 static int tls_read_size(struct strparser *strp, struct sk_buff *skb)
1674 {
1675         struct tls_context *tls_ctx = tls_get_ctx(strp->sk);
1676         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1677         char header[TLS_HEADER_SIZE + MAX_IV_SIZE];
1678         struct strp_msg *rxm = strp_msg(skb);
1679         size_t cipher_overhead;
1680         size_t data_len = 0;
1681         int ret;
1682
1683         /* Verify that we have a full TLS header, or wait for more data */
1684         if (rxm->offset + tls_ctx->rx.prepend_size > skb->len)
1685                 return 0;
1686
1687         /* Sanity-check size of on-stack buffer. */
1688         if (WARN_ON(tls_ctx->rx.prepend_size > sizeof(header))) {
1689                 ret = -EINVAL;
1690                 goto read_failure;
1691         }
1692
1693         /* Linearize header to local buffer */
1694         ret = skb_copy_bits(skb, rxm->offset, header, tls_ctx->rx.prepend_size);
1695
1696         if (ret < 0)
1697                 goto read_failure;
1698
1699         ctx->control = header[0];
1700
1701         data_len = ((header[4] & 0xFF) | (header[3] << 8));
1702
1703         cipher_overhead = tls_ctx->rx.tag_size + tls_ctx->rx.iv_size;
1704
1705         if (data_len > TLS_MAX_PAYLOAD_SIZE + cipher_overhead) {
1706                 ret = -EMSGSIZE;
1707                 goto read_failure;
1708         }
1709         if (data_len < cipher_overhead) {
1710                 ret = -EBADMSG;
1711                 goto read_failure;
1712         }
1713
1714         if (header[1] != TLS_VERSION_MINOR(tls_ctx->crypto_recv.info.version) ||
1715             header[2] != TLS_VERSION_MAJOR(tls_ctx->crypto_recv.info.version)) {
1716                 ret = -EINVAL;
1717                 goto read_failure;
1718         }
1719
1720 #ifdef CONFIG_TLS_DEVICE
1721         handle_device_resync(strp->sk, TCP_SKB_CB(skb)->seq + rxm->offset,
1722                              *(u64*)tls_ctx->rx.rec_seq);
1723 #endif
1724         return data_len + TLS_HEADER_SIZE;
1725
1726 read_failure:
1727         tls_err_abort(strp->sk, ret);
1728
1729         return ret;
1730 }
1731
1732 static void tls_queue(struct strparser *strp, struct sk_buff *skb)
1733 {
1734         struct tls_context *tls_ctx = tls_get_ctx(strp->sk);
1735         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1736
1737         ctx->decrypted = false;
1738
1739         ctx->recv_pkt = skb;
1740         strp_pause(strp);
1741
1742         ctx->saved_data_ready(strp->sk);
1743 }
1744
1745 static void tls_data_ready(struct sock *sk)
1746 {
1747         struct tls_context *tls_ctx = tls_get_ctx(sk);
1748         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1749         struct sk_psock *psock;
1750
1751         strp_data_ready(&ctx->strp);
1752
1753         psock = sk_psock_get(sk);
1754         if (psock && !list_empty(&psock->ingress_msg)) {
1755                 ctx->saved_data_ready(sk);
1756                 sk_psock_put(sk, psock);
1757         }
1758 }
1759
1760 void tls_sw_free_resources_tx(struct sock *sk)
1761 {
1762         struct tls_context *tls_ctx = tls_get_ctx(sk);
1763         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
1764         struct tls_rec *rec, *tmp;
1765
1766         /* Wait for any pending async encryptions to complete */
1767         smp_store_mb(ctx->async_notify, true);
1768         if (atomic_read(&ctx->encrypt_pending))
1769                 crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
1770
1771         cancel_delayed_work_sync(&ctx->tx_work.work);
1772
1773         /* Tx whatever records we can transmit and abandon the rest */
1774         tls_tx_records(sk, -1);
1775
1776         /* Free up un-sent records in tx_list. First, free
1777          * the partially sent record if any at head of tx_list.
1778          */
1779         if (tls_ctx->partially_sent_record) {
1780                 struct scatterlist *sg = tls_ctx->partially_sent_record;
1781
1782                 while (1) {
1783                         put_page(sg_page(sg));
1784                         sk_mem_uncharge(sk, sg->length);
1785
1786                         if (sg_is_last(sg))
1787                                 break;
1788                         sg++;
1789                 }
1790
1791                 tls_ctx->partially_sent_record = NULL;
1792
1793                 rec = list_first_entry(&ctx->tx_list,
1794                                        struct tls_rec, list);
1795                 list_del(&rec->list);
1796                 sk_msg_free(sk, &rec->msg_plaintext);
1797                 kfree(rec);
1798         }
1799
1800         list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) {
1801                 list_del(&rec->list);
1802                 sk_msg_free(sk, &rec->msg_encrypted);
1803                 sk_msg_free(sk, &rec->msg_plaintext);
1804                 kfree(rec);
1805         }
1806
1807         crypto_free_aead(ctx->aead_send);
1808         tls_free_open_rec(sk);
1809
1810         kfree(ctx);
1811 }
1812
1813 void tls_sw_release_resources_rx(struct sock *sk)
1814 {
1815         struct tls_context *tls_ctx = tls_get_ctx(sk);
1816         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1817
1818         if (ctx->aead_recv) {
1819                 kfree_skb(ctx->recv_pkt);
1820                 ctx->recv_pkt = NULL;
1821                 crypto_free_aead(ctx->aead_recv);
1822                 strp_stop(&ctx->strp);
1823                 write_lock_bh(&sk->sk_callback_lock);
1824                 sk->sk_data_ready = ctx->saved_data_ready;
1825                 write_unlock_bh(&sk->sk_callback_lock);
1826                 release_sock(sk);
1827                 strp_done(&ctx->strp);
1828                 lock_sock(sk);
1829         }
1830 }
1831
1832 void tls_sw_free_resources_rx(struct sock *sk)
1833 {
1834         struct tls_context *tls_ctx = tls_get_ctx(sk);
1835         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1836
1837         tls_sw_release_resources_rx(sk);
1838
1839         kfree(ctx);
1840 }
1841
1842 /* The work handler to transmitt the encrypted records in tx_list */
1843 static void tx_work_handler(struct work_struct *work)
1844 {
1845         struct delayed_work *delayed_work = to_delayed_work(work);
1846         struct tx_work *tx_work = container_of(delayed_work,
1847                                                struct tx_work, work);
1848         struct sock *sk = tx_work->sk;
1849         struct tls_context *tls_ctx = tls_get_ctx(sk);
1850         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
1851
1852         if (!test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask))
1853                 return;
1854
1855         lock_sock(sk);
1856         tls_tx_records(sk, -1);
1857         release_sock(sk);
1858 }
1859
1860 int tls_set_sw_offload(struct sock *sk, struct tls_context *ctx, int tx)
1861 {
1862         struct tls_crypto_info *crypto_info;
1863         struct tls12_crypto_info_aes_gcm_128 *gcm_128_info;
1864         struct tls_sw_context_tx *sw_ctx_tx = NULL;
1865         struct tls_sw_context_rx *sw_ctx_rx = NULL;
1866         struct cipher_context *cctx;
1867         struct crypto_aead **aead;
1868         struct strp_callbacks cb;
1869         u16 nonce_size, tag_size, iv_size, rec_seq_size;
1870         char *iv, *rec_seq;
1871         int rc = 0;
1872
1873         if (!ctx) {
1874                 rc = -EINVAL;
1875                 goto out;
1876         }
1877
1878         if (tx) {
1879                 if (!ctx->priv_ctx_tx) {
1880                         sw_ctx_tx = kzalloc(sizeof(*sw_ctx_tx), GFP_KERNEL);
1881                         if (!sw_ctx_tx) {
1882                                 rc = -ENOMEM;
1883                                 goto out;
1884                         }
1885                         ctx->priv_ctx_tx = sw_ctx_tx;
1886                 } else {
1887                         sw_ctx_tx =
1888                                 (struct tls_sw_context_tx *)ctx->priv_ctx_tx;
1889                 }
1890         } else {
1891                 if (!ctx->priv_ctx_rx) {
1892                         sw_ctx_rx = kzalloc(sizeof(*sw_ctx_rx), GFP_KERNEL);
1893                         if (!sw_ctx_rx) {
1894                                 rc = -ENOMEM;
1895                                 goto out;
1896                         }
1897                         ctx->priv_ctx_rx = sw_ctx_rx;
1898                 } else {
1899                         sw_ctx_rx =
1900                                 (struct tls_sw_context_rx *)ctx->priv_ctx_rx;
1901                 }
1902         }
1903
1904         if (tx) {
1905                 crypto_init_wait(&sw_ctx_tx->async_wait);
1906                 crypto_info = &ctx->crypto_send.info;
1907                 cctx = &ctx->tx;
1908                 aead = &sw_ctx_tx->aead_send;
1909                 INIT_LIST_HEAD(&sw_ctx_tx->tx_list);
1910                 INIT_DELAYED_WORK(&sw_ctx_tx->tx_work.work, tx_work_handler);
1911                 sw_ctx_tx->tx_work.sk = sk;
1912         } else {
1913                 crypto_init_wait(&sw_ctx_rx->async_wait);
1914                 crypto_info = &ctx->crypto_recv.info;
1915                 cctx = &ctx->rx;
1916                 aead = &sw_ctx_rx->aead_recv;
1917         }
1918
1919         switch (crypto_info->cipher_type) {
1920         case TLS_CIPHER_AES_GCM_128: {
1921                 nonce_size = TLS_CIPHER_AES_GCM_128_IV_SIZE;
1922                 tag_size = TLS_CIPHER_AES_GCM_128_TAG_SIZE;
1923                 iv_size = TLS_CIPHER_AES_GCM_128_IV_SIZE;
1924                 iv = ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->iv;
1925                 rec_seq_size = TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE;
1926                 rec_seq =
1927                  ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->rec_seq;
1928                 gcm_128_info =
1929                         (struct tls12_crypto_info_aes_gcm_128 *)crypto_info;
1930                 break;
1931         }
1932         default:
1933                 rc = -EINVAL;
1934                 goto free_priv;
1935         }
1936
1937         /* Sanity-check the IV size for stack allocations. */
1938         if (iv_size > MAX_IV_SIZE || nonce_size > MAX_IV_SIZE) {
1939                 rc = -EINVAL;
1940                 goto free_priv;
1941         }
1942
1943         cctx->prepend_size = TLS_HEADER_SIZE + nonce_size;
1944         cctx->tag_size = tag_size;
1945         cctx->overhead_size = cctx->prepend_size + cctx->tag_size;
1946         cctx->iv_size = iv_size;
1947         cctx->iv = kmalloc(iv_size + TLS_CIPHER_AES_GCM_128_SALT_SIZE,
1948                            GFP_KERNEL);
1949         if (!cctx->iv) {
1950                 rc = -ENOMEM;
1951                 goto free_priv;
1952         }
1953         memcpy(cctx->iv, gcm_128_info->salt, TLS_CIPHER_AES_GCM_128_SALT_SIZE);
1954         memcpy(cctx->iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE, iv, iv_size);
1955         cctx->rec_seq_size = rec_seq_size;
1956         cctx->rec_seq = kmemdup(rec_seq, rec_seq_size, GFP_KERNEL);
1957         if (!cctx->rec_seq) {
1958                 rc = -ENOMEM;
1959                 goto free_iv;
1960         }
1961
1962         if (!*aead) {
1963                 *aead = crypto_alloc_aead("gcm(aes)", 0, 0);
1964                 if (IS_ERR(*aead)) {
1965                         rc = PTR_ERR(*aead);
1966                         *aead = NULL;
1967                         goto free_rec_seq;
1968                 }
1969         }
1970
1971         ctx->push_pending_record = tls_sw_push_pending_record;
1972
1973         rc = crypto_aead_setkey(*aead, gcm_128_info->key,
1974                                 TLS_CIPHER_AES_GCM_128_KEY_SIZE);
1975         if (rc)
1976                 goto free_aead;
1977
1978         rc = crypto_aead_setauthsize(*aead, cctx->tag_size);
1979         if (rc)
1980                 goto free_aead;
1981
1982         if (sw_ctx_rx) {
1983                 /* Set up strparser */
1984                 memset(&cb, 0, sizeof(cb));
1985                 cb.rcv_msg = tls_queue;
1986                 cb.parse_msg = tls_read_size;
1987
1988                 strp_init(&sw_ctx_rx->strp, sk, &cb);
1989
1990                 write_lock_bh(&sk->sk_callback_lock);
1991                 sw_ctx_rx->saved_data_ready = sk->sk_data_ready;
1992                 sk->sk_data_ready = tls_data_ready;
1993                 write_unlock_bh(&sk->sk_callback_lock);
1994
1995                 strp_check_rcv(&sw_ctx_rx->strp);
1996         }
1997
1998         goto out;
1999
2000 free_aead:
2001         crypto_free_aead(*aead);
2002         *aead = NULL;
2003 free_rec_seq:
2004         kfree(cctx->rec_seq);
2005         cctx->rec_seq = NULL;
2006 free_iv:
2007         kfree(cctx->iv);
2008         cctx->iv = NULL;
2009 free_priv:
2010         if (tx) {
2011                 kfree(ctx->priv_ctx_tx);
2012                 ctx->priv_ctx_tx = NULL;
2013         } else {
2014                 kfree(ctx->priv_ctx_rx);
2015                 ctx->priv_ctx_rx = NULL;
2016         }
2017 out:
2018         return rc;
2019 }