OSDN Git Service

Merge 4.4.176 into android-4.4-p
[sagit-ice-cold/kernel_xiaomi_msm8998.git] / net / vmw_vsock / vmci_transport.c
1 /*
2  * VMware vSockets Driver
3  *
4  * Copyright (C) 2007-2013 VMware, Inc. All rights reserved.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License as published by the Free
8  * Software Foundation version 2 and no later version.
9  *
10  * This program is distributed in the hope that it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  */
15
16 #include <linux/types.h>
17 #include <linux/bitops.h>
18 #include <linux/cred.h>
19 #include <linux/init.h>
20 #include <linux/io.h>
21 #include <linux/kernel.h>
22 #include <linux/kmod.h>
23 #include <linux/list.h>
24 #include <linux/miscdevice.h>
25 #include <linux/module.h>
26 #include <linux/mutex.h>
27 #include <linux/net.h>
28 #include <linux/poll.h>
29 #include <linux/skbuff.h>
30 #include <linux/smp.h>
31 #include <linux/socket.h>
32 #include <linux/stddef.h>
33 #include <linux/unistd.h>
34 #include <linux/wait.h>
35 #include <linux/workqueue.h>
36 #include <net/sock.h>
37 #include <net/af_vsock.h>
38
39 #include "vmci_transport_notify.h"
40
41 static int vmci_transport_recv_dgram_cb(void *data, struct vmci_datagram *dg);
42 static int vmci_transport_recv_stream_cb(void *data, struct vmci_datagram *dg);
43 static void vmci_transport_peer_detach_cb(u32 sub_id,
44                                           const struct vmci_event_data *ed,
45                                           void *client_data);
46 static void vmci_transport_recv_pkt_work(struct work_struct *work);
47 static void vmci_transport_cleanup(struct work_struct *work);
48 static int vmci_transport_recv_listen(struct sock *sk,
49                                       struct vmci_transport_packet *pkt);
50 static int vmci_transport_recv_connecting_server(
51                                         struct sock *sk,
52                                         struct sock *pending,
53                                         struct vmci_transport_packet *pkt);
54 static int vmci_transport_recv_connecting_client(
55                                         struct sock *sk,
56                                         struct vmci_transport_packet *pkt);
57 static int vmci_transport_recv_connecting_client_negotiate(
58                                         struct sock *sk,
59                                         struct vmci_transport_packet *pkt);
60 static int vmci_transport_recv_connecting_client_invalid(
61                                         struct sock *sk,
62                                         struct vmci_transport_packet *pkt);
63 static int vmci_transport_recv_connected(struct sock *sk,
64                                          struct vmci_transport_packet *pkt);
65 static bool vmci_transport_old_proto_override(bool *old_pkt_proto);
66 static u16 vmci_transport_new_proto_supported_versions(void);
67 static bool vmci_transport_proto_to_notify_struct(struct sock *sk, u16 *proto,
68                                                   bool old_pkt_proto);
69
70 struct vmci_transport_recv_pkt_info {
71         struct work_struct work;
72         struct sock *sk;
73         struct vmci_transport_packet pkt;
74 };
75
76 static LIST_HEAD(vmci_transport_cleanup_list);
77 static DEFINE_SPINLOCK(vmci_transport_cleanup_lock);
78 static DECLARE_WORK(vmci_transport_cleanup_work, vmci_transport_cleanup);
79
80 static struct vmci_handle vmci_transport_stream_handle = { VMCI_INVALID_ID,
81                                                            VMCI_INVALID_ID };
82 static u32 vmci_transport_qp_resumed_sub_id = VMCI_INVALID_ID;
83
84 static int PROTOCOL_OVERRIDE = -1;
85
86 #define VMCI_TRANSPORT_DEFAULT_QP_SIZE_MIN   128
87 #define VMCI_TRANSPORT_DEFAULT_QP_SIZE       262144
88 #define VMCI_TRANSPORT_DEFAULT_QP_SIZE_MAX   262144
89
90 /* The default peer timeout indicates how long we will wait for a peer response
91  * to a control message.
92  */
93 #define VSOCK_DEFAULT_CONNECT_TIMEOUT (2 * HZ)
94
95 /* Helper function to convert from a VMCI error code to a VSock error code. */
96
97 static s32 vmci_transport_error_to_vsock_error(s32 vmci_error)
98 {
99         int err;
100
101         switch (vmci_error) {
102         case VMCI_ERROR_NO_MEM:
103                 err = ENOMEM;
104                 break;
105         case VMCI_ERROR_DUPLICATE_ENTRY:
106         case VMCI_ERROR_ALREADY_EXISTS:
107                 err = EADDRINUSE;
108                 break;
109         case VMCI_ERROR_NO_ACCESS:
110                 err = EPERM;
111                 break;
112         case VMCI_ERROR_NO_RESOURCES:
113                 err = ENOBUFS;
114                 break;
115         case VMCI_ERROR_INVALID_RESOURCE:
116                 err = EHOSTUNREACH;
117                 break;
118         case VMCI_ERROR_INVALID_ARGS:
119         default:
120                 err = EINVAL;
121         }
122
123         return err > 0 ? -err : err;
124 }
125
126 static u32 vmci_transport_peer_rid(u32 peer_cid)
127 {
128         if (VMADDR_CID_HYPERVISOR == peer_cid)
129                 return VMCI_TRANSPORT_HYPERVISOR_PACKET_RID;
130
131         return VMCI_TRANSPORT_PACKET_RID;
132 }
133
134 static inline void
135 vmci_transport_packet_init(struct vmci_transport_packet *pkt,
136                            struct sockaddr_vm *src,
137                            struct sockaddr_vm *dst,
138                            u8 type,
139                            u64 size,
140                            u64 mode,
141                            struct vmci_transport_waiting_info *wait,
142                            u16 proto,
143                            struct vmci_handle handle)
144 {
145         /* We register the stream control handler as an any cid handle so we
146          * must always send from a source address of VMADDR_CID_ANY
147          */
148         pkt->dg.src = vmci_make_handle(VMADDR_CID_ANY,
149                                        VMCI_TRANSPORT_PACKET_RID);
150         pkt->dg.dst = vmci_make_handle(dst->svm_cid,
151                                        vmci_transport_peer_rid(dst->svm_cid));
152         pkt->dg.payload_size = sizeof(*pkt) - sizeof(pkt->dg);
153         pkt->version = VMCI_TRANSPORT_PACKET_VERSION;
154         pkt->type = type;
155         pkt->src_port = src->svm_port;
156         pkt->dst_port = dst->svm_port;
157         memset(&pkt->proto, 0, sizeof(pkt->proto));
158         memset(&pkt->_reserved2, 0, sizeof(pkt->_reserved2));
159
160         switch (pkt->type) {
161         case VMCI_TRANSPORT_PACKET_TYPE_INVALID:
162                 pkt->u.size = 0;
163                 break;
164
165         case VMCI_TRANSPORT_PACKET_TYPE_REQUEST:
166         case VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE:
167                 pkt->u.size = size;
168                 break;
169
170         case VMCI_TRANSPORT_PACKET_TYPE_OFFER:
171         case VMCI_TRANSPORT_PACKET_TYPE_ATTACH:
172                 pkt->u.handle = handle;
173                 break;
174
175         case VMCI_TRANSPORT_PACKET_TYPE_WROTE:
176         case VMCI_TRANSPORT_PACKET_TYPE_READ:
177         case VMCI_TRANSPORT_PACKET_TYPE_RST:
178                 pkt->u.size = 0;
179                 break;
180
181         case VMCI_TRANSPORT_PACKET_TYPE_SHUTDOWN:
182                 pkt->u.mode = mode;
183                 break;
184
185         case VMCI_TRANSPORT_PACKET_TYPE_WAITING_READ:
186         case VMCI_TRANSPORT_PACKET_TYPE_WAITING_WRITE:
187                 memcpy(&pkt->u.wait, wait, sizeof(pkt->u.wait));
188                 break;
189
190         case VMCI_TRANSPORT_PACKET_TYPE_REQUEST2:
191         case VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE2:
192                 pkt->u.size = size;
193                 pkt->proto = proto;
194                 break;
195         }
196 }
197
198 static inline void
199 vmci_transport_packet_get_addresses(struct vmci_transport_packet *pkt,
200                                     struct sockaddr_vm *local,
201                                     struct sockaddr_vm *remote)
202 {
203         vsock_addr_init(local, pkt->dg.dst.context, pkt->dst_port);
204         vsock_addr_init(remote, pkt->dg.src.context, pkt->src_port);
205 }
206
207 static int
208 __vmci_transport_send_control_pkt(struct vmci_transport_packet *pkt,
209                                   struct sockaddr_vm *src,
210                                   struct sockaddr_vm *dst,
211                                   enum vmci_transport_packet_type type,
212                                   u64 size,
213                                   u64 mode,
214                                   struct vmci_transport_waiting_info *wait,
215                                   u16 proto,
216                                   struct vmci_handle handle,
217                                   bool convert_error)
218 {
219         int err;
220
221         vmci_transport_packet_init(pkt, src, dst, type, size, mode, wait,
222                                    proto, handle);
223         err = vmci_datagram_send(&pkt->dg);
224         if (convert_error && (err < 0))
225                 return vmci_transport_error_to_vsock_error(err);
226
227         return err;
228 }
229
230 static int
231 vmci_transport_reply_control_pkt_fast(struct vmci_transport_packet *pkt,
232                                       enum vmci_transport_packet_type type,
233                                       u64 size,
234                                       u64 mode,
235                                       struct vmci_transport_waiting_info *wait,
236                                       struct vmci_handle handle)
237 {
238         struct vmci_transport_packet reply;
239         struct sockaddr_vm src, dst;
240
241         if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_RST) {
242                 return 0;
243         } else {
244                 vmci_transport_packet_get_addresses(pkt, &src, &dst);
245                 return __vmci_transport_send_control_pkt(&reply, &src, &dst,
246                                                          type,
247                                                          size, mode, wait,
248                                                          VSOCK_PROTO_INVALID,
249                                                          handle, true);
250         }
251 }
252
253 static int
254 vmci_transport_send_control_pkt_bh(struct sockaddr_vm *src,
255                                    struct sockaddr_vm *dst,
256                                    enum vmci_transport_packet_type type,
257                                    u64 size,
258                                    u64 mode,
259                                    struct vmci_transport_waiting_info *wait,
260                                    struct vmci_handle handle)
261 {
262         /* Note that it is safe to use a single packet across all CPUs since
263          * two tasklets of the same type are guaranteed to not ever run
264          * simultaneously. If that ever changes, or VMCI stops using tasklets,
265          * we can use per-cpu packets.
266          */
267         static struct vmci_transport_packet pkt;
268
269         return __vmci_transport_send_control_pkt(&pkt, src, dst, type,
270                                                  size, mode, wait,
271                                                  VSOCK_PROTO_INVALID, handle,
272                                                  false);
273 }
274
275 static int
276 vmci_transport_alloc_send_control_pkt(struct sockaddr_vm *src,
277                                       struct sockaddr_vm *dst,
278                                       enum vmci_transport_packet_type type,
279                                       u64 size,
280                                       u64 mode,
281                                       struct vmci_transport_waiting_info *wait,
282                                       u16 proto,
283                                       struct vmci_handle handle)
284 {
285         struct vmci_transport_packet *pkt;
286         int err;
287
288         pkt = kmalloc(sizeof(*pkt), GFP_KERNEL);
289         if (!pkt)
290                 return -ENOMEM;
291
292         err = __vmci_transport_send_control_pkt(pkt, src, dst, type, size,
293                                                 mode, wait, proto, handle,
294                                                 true);
295         kfree(pkt);
296
297         return err;
298 }
299
300 static int
301 vmci_transport_send_control_pkt(struct sock *sk,
302                                 enum vmci_transport_packet_type type,
303                                 u64 size,
304                                 u64 mode,
305                                 struct vmci_transport_waiting_info *wait,
306                                 u16 proto,
307                                 struct vmci_handle handle)
308 {
309         struct vsock_sock *vsk;
310
311         vsk = vsock_sk(sk);
312
313         if (!vsock_addr_bound(&vsk->local_addr))
314                 return -EINVAL;
315
316         if (!vsock_addr_bound(&vsk->remote_addr))
317                 return -EINVAL;
318
319         return vmci_transport_alloc_send_control_pkt(&vsk->local_addr,
320                                                      &vsk->remote_addr,
321                                                      type, size, mode,
322                                                      wait, proto, handle);
323 }
324
325 static int vmci_transport_send_reset_bh(struct sockaddr_vm *dst,
326                                         struct sockaddr_vm *src,
327                                         struct vmci_transport_packet *pkt)
328 {
329         if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_RST)
330                 return 0;
331         return vmci_transport_send_control_pkt_bh(
332                                         dst, src,
333                                         VMCI_TRANSPORT_PACKET_TYPE_RST, 0,
334                                         0, NULL, VMCI_INVALID_HANDLE);
335 }
336
337 static int vmci_transport_send_reset(struct sock *sk,
338                                      struct vmci_transport_packet *pkt)
339 {
340         struct sockaddr_vm *dst_ptr;
341         struct sockaddr_vm dst;
342         struct vsock_sock *vsk;
343
344         if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_RST)
345                 return 0;
346
347         vsk = vsock_sk(sk);
348
349         if (!vsock_addr_bound(&vsk->local_addr))
350                 return -EINVAL;
351
352         if (vsock_addr_bound(&vsk->remote_addr)) {
353                 dst_ptr = &vsk->remote_addr;
354         } else {
355                 vsock_addr_init(&dst, pkt->dg.src.context,
356                                 pkt->src_port);
357                 dst_ptr = &dst;
358         }
359         return vmci_transport_alloc_send_control_pkt(&vsk->local_addr, dst_ptr,
360                                              VMCI_TRANSPORT_PACKET_TYPE_RST,
361                                              0, 0, NULL, VSOCK_PROTO_INVALID,
362                                              VMCI_INVALID_HANDLE);
363 }
364
365 static int vmci_transport_send_negotiate(struct sock *sk, size_t size)
366 {
367         return vmci_transport_send_control_pkt(
368                                         sk,
369                                         VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE,
370                                         size, 0, NULL,
371                                         VSOCK_PROTO_INVALID,
372                                         VMCI_INVALID_HANDLE);
373 }
374
375 static int vmci_transport_send_negotiate2(struct sock *sk, size_t size,
376                                           u16 version)
377 {
378         return vmci_transport_send_control_pkt(
379                                         sk,
380                                         VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE2,
381                                         size, 0, NULL, version,
382                                         VMCI_INVALID_HANDLE);
383 }
384
385 static int vmci_transport_send_qp_offer(struct sock *sk,
386                                         struct vmci_handle handle)
387 {
388         return vmci_transport_send_control_pkt(
389                                         sk, VMCI_TRANSPORT_PACKET_TYPE_OFFER, 0,
390                                         0, NULL,
391                                         VSOCK_PROTO_INVALID, handle);
392 }
393
394 static int vmci_transport_send_attach(struct sock *sk,
395                                       struct vmci_handle handle)
396 {
397         return vmci_transport_send_control_pkt(
398                                         sk, VMCI_TRANSPORT_PACKET_TYPE_ATTACH,
399                                         0, 0, NULL, VSOCK_PROTO_INVALID,
400                                         handle);
401 }
402
403 static int vmci_transport_reply_reset(struct vmci_transport_packet *pkt)
404 {
405         return vmci_transport_reply_control_pkt_fast(
406                                                 pkt,
407                                                 VMCI_TRANSPORT_PACKET_TYPE_RST,
408                                                 0, 0, NULL,
409                                                 VMCI_INVALID_HANDLE);
410 }
411
412 static int vmci_transport_send_invalid_bh(struct sockaddr_vm *dst,
413                                           struct sockaddr_vm *src)
414 {
415         return vmci_transport_send_control_pkt_bh(
416                                         dst, src,
417                                         VMCI_TRANSPORT_PACKET_TYPE_INVALID,
418                                         0, 0, NULL, VMCI_INVALID_HANDLE);
419 }
420
421 int vmci_transport_send_wrote_bh(struct sockaddr_vm *dst,
422                                  struct sockaddr_vm *src)
423 {
424         return vmci_transport_send_control_pkt_bh(
425                                         dst, src,
426                                         VMCI_TRANSPORT_PACKET_TYPE_WROTE, 0,
427                                         0, NULL, VMCI_INVALID_HANDLE);
428 }
429
430 int vmci_transport_send_read_bh(struct sockaddr_vm *dst,
431                                 struct sockaddr_vm *src)
432 {
433         return vmci_transport_send_control_pkt_bh(
434                                         dst, src,
435                                         VMCI_TRANSPORT_PACKET_TYPE_READ, 0,
436                                         0, NULL, VMCI_INVALID_HANDLE);
437 }
438
439 int vmci_transport_send_wrote(struct sock *sk)
440 {
441         return vmci_transport_send_control_pkt(
442                                         sk, VMCI_TRANSPORT_PACKET_TYPE_WROTE, 0,
443                                         0, NULL, VSOCK_PROTO_INVALID,
444                                         VMCI_INVALID_HANDLE);
445 }
446
447 int vmci_transport_send_read(struct sock *sk)
448 {
449         return vmci_transport_send_control_pkt(
450                                         sk, VMCI_TRANSPORT_PACKET_TYPE_READ, 0,
451                                         0, NULL, VSOCK_PROTO_INVALID,
452                                         VMCI_INVALID_HANDLE);
453 }
454
455 int vmci_transport_send_waiting_write(struct sock *sk,
456                                       struct vmci_transport_waiting_info *wait)
457 {
458         return vmci_transport_send_control_pkt(
459                                 sk, VMCI_TRANSPORT_PACKET_TYPE_WAITING_WRITE,
460                                 0, 0, wait, VSOCK_PROTO_INVALID,
461                                 VMCI_INVALID_HANDLE);
462 }
463
464 int vmci_transport_send_waiting_read(struct sock *sk,
465                                      struct vmci_transport_waiting_info *wait)
466 {
467         return vmci_transport_send_control_pkt(
468                                 sk, VMCI_TRANSPORT_PACKET_TYPE_WAITING_READ,
469                                 0, 0, wait, VSOCK_PROTO_INVALID,
470                                 VMCI_INVALID_HANDLE);
471 }
472
473 static int vmci_transport_shutdown(struct vsock_sock *vsk, int mode)
474 {
475         return vmci_transport_send_control_pkt(
476                                         &vsk->sk,
477                                         VMCI_TRANSPORT_PACKET_TYPE_SHUTDOWN,
478                                         0, mode, NULL,
479                                         VSOCK_PROTO_INVALID,
480                                         VMCI_INVALID_HANDLE);
481 }
482
483 static int vmci_transport_send_conn_request(struct sock *sk, size_t size)
484 {
485         return vmci_transport_send_control_pkt(sk,
486                                         VMCI_TRANSPORT_PACKET_TYPE_REQUEST,
487                                         size, 0, NULL,
488                                         VSOCK_PROTO_INVALID,
489                                         VMCI_INVALID_HANDLE);
490 }
491
492 static int vmci_transport_send_conn_request2(struct sock *sk, size_t size,
493                                              u16 version)
494 {
495         return vmci_transport_send_control_pkt(
496                                         sk, VMCI_TRANSPORT_PACKET_TYPE_REQUEST2,
497                                         size, 0, NULL, version,
498                                         VMCI_INVALID_HANDLE);
499 }
500
501 static struct sock *vmci_transport_get_pending(
502                                         struct sock *listener,
503                                         struct vmci_transport_packet *pkt)
504 {
505         struct vsock_sock *vlistener;
506         struct vsock_sock *vpending;
507         struct sock *pending;
508         struct sockaddr_vm src;
509
510         vsock_addr_init(&src, pkt->dg.src.context, pkt->src_port);
511
512         vlistener = vsock_sk(listener);
513
514         list_for_each_entry(vpending, &vlistener->pending_links,
515                             pending_links) {
516                 if (vsock_addr_equals_addr(&src, &vpending->remote_addr) &&
517                     pkt->dst_port == vpending->local_addr.svm_port) {
518                         pending = sk_vsock(vpending);
519                         sock_hold(pending);
520                         goto found;
521                 }
522         }
523
524         pending = NULL;
525 found:
526         return pending;
527
528 }
529
530 static void vmci_transport_release_pending(struct sock *pending)
531 {
532         sock_put(pending);
533 }
534
535 /* We allow two kinds of sockets to communicate with a restricted VM: 1)
536  * trusted sockets 2) sockets from applications running as the same user as the
537  * VM (this is only true for the host side and only when using hosted products)
538  */
539
540 static bool vmci_transport_is_trusted(struct vsock_sock *vsock, u32 peer_cid)
541 {
542         return vsock->trusted ||
543                vmci_is_context_owner(peer_cid, vsock->owner->uid);
544 }
545
546 /* We allow sending datagrams to and receiving datagrams from a restricted VM
547  * only if it is trusted as described in vmci_transport_is_trusted.
548  */
549
550 static bool vmci_transport_allow_dgram(struct vsock_sock *vsock, u32 peer_cid)
551 {
552         if (VMADDR_CID_HYPERVISOR == peer_cid)
553                 return true;
554
555         if (vsock->cached_peer != peer_cid) {
556                 vsock->cached_peer = peer_cid;
557                 if (!vmci_transport_is_trusted(vsock, peer_cid) &&
558                     (vmci_context_get_priv_flags(peer_cid) &
559                      VMCI_PRIVILEGE_FLAG_RESTRICTED)) {
560                         vsock->cached_peer_allow_dgram = false;
561                 } else {
562                         vsock->cached_peer_allow_dgram = true;
563                 }
564         }
565
566         return vsock->cached_peer_allow_dgram;
567 }
568
569 static int
570 vmci_transport_queue_pair_alloc(struct vmci_qp **qpair,
571                                 struct vmci_handle *handle,
572                                 u64 produce_size,
573                                 u64 consume_size,
574                                 u32 peer, u32 flags, bool trusted)
575 {
576         int err = 0;
577
578         if (trusted) {
579                 /* Try to allocate our queue pair as trusted. This will only
580                  * work if vsock is running in the host.
581                  */
582
583                 err = vmci_qpair_alloc(qpair, handle, produce_size,
584                                        consume_size,
585                                        peer, flags,
586                                        VMCI_PRIVILEGE_FLAG_TRUSTED);
587                 if (err != VMCI_ERROR_NO_ACCESS)
588                         goto out;
589
590         }
591
592         err = vmci_qpair_alloc(qpair, handle, produce_size, consume_size,
593                                peer, flags, VMCI_NO_PRIVILEGE_FLAGS);
594 out:
595         if (err < 0) {
596                 pr_err("Could not attach to queue pair with %d\n",
597                        err);
598                 err = vmci_transport_error_to_vsock_error(err);
599         }
600
601         return err;
602 }
603
604 static int
605 vmci_transport_datagram_create_hnd(u32 resource_id,
606                                    u32 flags,
607                                    vmci_datagram_recv_cb recv_cb,
608                                    void *client_data,
609                                    struct vmci_handle *out_handle)
610 {
611         int err = 0;
612
613         /* Try to allocate our datagram handler as trusted. This will only work
614          * if vsock is running in the host.
615          */
616
617         err = vmci_datagram_create_handle_priv(resource_id, flags,
618                                                VMCI_PRIVILEGE_FLAG_TRUSTED,
619                                                recv_cb,
620                                                client_data, out_handle);
621
622         if (err == VMCI_ERROR_NO_ACCESS)
623                 err = vmci_datagram_create_handle(resource_id, flags,
624                                                   recv_cb, client_data,
625                                                   out_handle);
626
627         return err;
628 }
629
630 /* This is invoked as part of a tasklet that's scheduled when the VMCI
631  * interrupt fires.  This is run in bottom-half context and if it ever needs to
632  * sleep it should defer that work to a work queue.
633  */
634
635 static int vmci_transport_recv_dgram_cb(void *data, struct vmci_datagram *dg)
636 {
637         struct sock *sk;
638         size_t size;
639         struct sk_buff *skb;
640         struct vsock_sock *vsk;
641
642         sk = (struct sock *)data;
643
644         /* This handler is privileged when this module is running on the host.
645          * We will get datagrams from all endpoints (even VMs that are in a
646          * restricted context). If we get one from a restricted context then
647          * the destination socket must be trusted.
648          *
649          * NOTE: We access the socket struct without holding the lock here.
650          * This is ok because the field we are interested is never modified
651          * outside of the create and destruct socket functions.
652          */
653         vsk = vsock_sk(sk);
654         if (!vmci_transport_allow_dgram(vsk, dg->src.context))
655                 return VMCI_ERROR_NO_ACCESS;
656
657         size = VMCI_DG_SIZE(dg);
658
659         /* Attach the packet to the socket's receive queue as an sk_buff. */
660         skb = alloc_skb(size, GFP_ATOMIC);
661         if (!skb)
662                 return VMCI_ERROR_NO_MEM;
663
664         /* sk_receive_skb() will do a sock_put(), so hold here. */
665         sock_hold(sk);
666         skb_put(skb, size);
667         memcpy(skb->data, dg, size);
668         sk_receive_skb(sk, skb, 0);
669
670         return VMCI_SUCCESS;
671 }
672
673 static bool vmci_transport_stream_allow(u32 cid, u32 port)
674 {
675         static const u32 non_socket_contexts[] = {
676                 VMADDR_CID_RESERVED,
677         };
678         int i;
679
680         BUILD_BUG_ON(sizeof(cid) != sizeof(*non_socket_contexts));
681
682         for (i = 0; i < ARRAY_SIZE(non_socket_contexts); i++) {
683                 if (cid == non_socket_contexts[i])
684                         return false;
685         }
686
687         return true;
688 }
689
690 /* This is invoked as part of a tasklet that's scheduled when the VMCI
691  * interrupt fires.  This is run in bottom-half context but it defers most of
692  * its work to the packet handling work queue.
693  */
694
695 static int vmci_transport_recv_stream_cb(void *data, struct vmci_datagram *dg)
696 {
697         struct sock *sk;
698         struct sockaddr_vm dst;
699         struct sockaddr_vm src;
700         struct vmci_transport_packet *pkt;
701         struct vsock_sock *vsk;
702         bool bh_process_pkt;
703         int err;
704
705         sk = NULL;
706         err = VMCI_SUCCESS;
707         bh_process_pkt = false;
708
709         /* Ignore incoming packets from contexts without sockets, or resources
710          * that aren't vsock implementations.
711          */
712
713         if (!vmci_transport_stream_allow(dg->src.context, -1)
714             || vmci_transport_peer_rid(dg->src.context) != dg->src.resource)
715                 return VMCI_ERROR_NO_ACCESS;
716
717         if (VMCI_DG_SIZE(dg) < sizeof(*pkt))
718                 /* Drop datagrams that do not contain full VSock packets. */
719                 return VMCI_ERROR_INVALID_ARGS;
720
721         pkt = (struct vmci_transport_packet *)dg;
722
723         /* Find the socket that should handle this packet.  First we look for a
724          * connected socket and if there is none we look for a socket bound to
725          * the destintation address.
726          */
727         vsock_addr_init(&src, pkt->dg.src.context, pkt->src_port);
728         vsock_addr_init(&dst, pkt->dg.dst.context, pkt->dst_port);
729
730         sk = vsock_find_connected_socket(&src, &dst);
731         if (!sk) {
732                 sk = vsock_find_bound_socket(&dst);
733                 if (!sk) {
734                         /* We could not find a socket for this specified
735                          * address.  If this packet is a RST, we just drop it.
736                          * If it is another packet, we send a RST.  Note that
737                          * we do not send a RST reply to RSTs so that we do not
738                          * continually send RSTs between two endpoints.
739                          *
740                          * Note that since this is a reply, dst is src and src
741                          * is dst.
742                          */
743                         if (vmci_transport_send_reset_bh(&dst, &src, pkt) < 0)
744                                 pr_err("unable to send reset\n");
745
746                         err = VMCI_ERROR_NOT_FOUND;
747                         goto out;
748                 }
749         }
750
751         /* If the received packet type is beyond all types known to this
752          * implementation, reply with an invalid message.  Hopefully this will
753          * help when implementing backwards compatibility in the future.
754          */
755         if (pkt->type >= VMCI_TRANSPORT_PACKET_TYPE_MAX) {
756                 vmci_transport_send_invalid_bh(&dst, &src);
757                 err = VMCI_ERROR_INVALID_ARGS;
758                 goto out;
759         }
760
761         /* This handler is privileged when this module is running on the host.
762          * We will get datagram connect requests from all endpoints (even VMs
763          * that are in a restricted context). If we get one from a restricted
764          * context then the destination socket must be trusted.
765          *
766          * NOTE: We access the socket struct without holding the lock here.
767          * This is ok because the field we are interested is never modified
768          * outside of the create and destruct socket functions.
769          */
770         vsk = vsock_sk(sk);
771         if (!vmci_transport_allow_dgram(vsk, pkt->dg.src.context)) {
772                 err = VMCI_ERROR_NO_ACCESS;
773                 goto out;
774         }
775
776         /* We do most everything in a work queue, but let's fast path the
777          * notification of reads and writes to help data transfer performance.
778          * We can only do this if there is no process context code executing
779          * for this socket since that may change the state.
780          */
781         bh_lock_sock(sk);
782
783         if (!sock_owned_by_user(sk)) {
784                 /* The local context ID may be out of date, update it. */
785                 vsk->local_addr.svm_cid = dst.svm_cid;
786
787                 if (sk->sk_state == SS_CONNECTED)
788                         vmci_trans(vsk)->notify_ops->handle_notify_pkt(
789                                         sk, pkt, true, &dst, &src,
790                                         &bh_process_pkt);
791         }
792
793         bh_unlock_sock(sk);
794
795         if (!bh_process_pkt) {
796                 struct vmci_transport_recv_pkt_info *recv_pkt_info;
797
798                 recv_pkt_info = kmalloc(sizeof(*recv_pkt_info), GFP_ATOMIC);
799                 if (!recv_pkt_info) {
800                         if (vmci_transport_send_reset_bh(&dst, &src, pkt) < 0)
801                                 pr_err("unable to send reset\n");
802
803                         err = VMCI_ERROR_NO_MEM;
804                         goto out;
805                 }
806
807                 recv_pkt_info->sk = sk;
808                 memcpy(&recv_pkt_info->pkt, pkt, sizeof(recv_pkt_info->pkt));
809                 INIT_WORK(&recv_pkt_info->work, vmci_transport_recv_pkt_work);
810
811                 schedule_work(&recv_pkt_info->work);
812                 /* Clear sk so that the reference count incremented by one of
813                  * the Find functions above is not decremented below.  We need
814                  * that reference count for the packet handler we've scheduled
815                  * to run.
816                  */
817                 sk = NULL;
818         }
819
820 out:
821         if (sk)
822                 sock_put(sk);
823
824         return err;
825 }
826
827 static void vmci_transport_handle_detach(struct sock *sk)
828 {
829         struct vsock_sock *vsk;
830
831         vsk = vsock_sk(sk);
832         if (!vmci_handle_is_invalid(vmci_trans(vsk)->qp_handle)) {
833                 sock_set_flag(sk, SOCK_DONE);
834
835                 /* On a detach the peer will not be sending or receiving
836                  * anymore.
837                  */
838                 vsk->peer_shutdown = SHUTDOWN_MASK;
839
840                 /* We should not be sending anymore since the peer won't be
841                  * there to receive, but we can still receive if there is data
842                  * left in our consume queue.
843                  */
844                 if (vsock_stream_has_data(vsk) <= 0) {
845                         if (sk->sk_state == SS_CONNECTING) {
846                                 /* The peer may detach from a queue pair while
847                                  * we are still in the connecting state, i.e.,
848                                  * if the peer VM is killed after attaching to
849                                  * a queue pair, but before we complete the
850                                  * handshake. In that case, we treat the detach
851                                  * event like a reset.
852                                  */
853
854                                 sk->sk_state = SS_UNCONNECTED;
855                                 sk->sk_err = ECONNRESET;
856                                 sk->sk_error_report(sk);
857                                 return;
858                         }
859                         sk->sk_state = SS_UNCONNECTED;
860                 }
861                 sk->sk_state_change(sk);
862         }
863 }
864
865 static void vmci_transport_peer_detach_cb(u32 sub_id,
866                                           const struct vmci_event_data *e_data,
867                                           void *client_data)
868 {
869         struct vmci_transport *trans = client_data;
870         const struct vmci_event_payload_qp *e_payload;
871
872         e_payload = vmci_event_data_const_payload(e_data);
873
874         /* XXX This is lame, we should provide a way to lookup sockets by
875          * qp_handle.
876          */
877         if (vmci_handle_is_invalid(e_payload->handle) ||
878             !vmci_handle_is_equal(trans->qp_handle, e_payload->handle))
879                 return;
880
881         /* We don't ask for delayed CBs when we subscribe to this event (we
882          * pass 0 as flags to vmci_event_subscribe()).  VMCI makes no
883          * guarantees in that case about what context we might be running in,
884          * so it could be BH or process, blockable or non-blockable.  So we
885          * need to account for all possible contexts here.
886          */
887         spin_lock_bh(&trans->lock);
888         if (!trans->sk)
889                 goto out;
890
891         /* Apart from here, trans->lock is only grabbed as part of sk destruct,
892          * where trans->sk isn't locked.
893          */
894         bh_lock_sock(trans->sk);
895
896         vmci_transport_handle_detach(trans->sk);
897
898         bh_unlock_sock(trans->sk);
899  out:
900         spin_unlock_bh(&trans->lock);
901 }
902
903 static void vmci_transport_qp_resumed_cb(u32 sub_id,
904                                          const struct vmci_event_data *e_data,
905                                          void *client_data)
906 {
907         vsock_for_each_connected_socket(vmci_transport_handle_detach);
908 }
909
910 static void vmci_transport_recv_pkt_work(struct work_struct *work)
911 {
912         struct vmci_transport_recv_pkt_info *recv_pkt_info;
913         struct vmci_transport_packet *pkt;
914         struct sock *sk;
915
916         recv_pkt_info =
917                 container_of(work, struct vmci_transport_recv_pkt_info, work);
918         sk = recv_pkt_info->sk;
919         pkt = &recv_pkt_info->pkt;
920
921         lock_sock(sk);
922
923         /* The local context ID may be out of date. */
924         vsock_sk(sk)->local_addr.svm_cid = pkt->dg.dst.context;
925
926         switch (sk->sk_state) {
927         case VSOCK_SS_LISTEN:
928                 vmci_transport_recv_listen(sk, pkt);
929                 break;
930         case SS_CONNECTING:
931                 /* Processing of pending connections for servers goes through
932                  * the listening socket, so see vmci_transport_recv_listen()
933                  * for that path.
934                  */
935                 vmci_transport_recv_connecting_client(sk, pkt);
936                 break;
937         case SS_CONNECTED:
938                 vmci_transport_recv_connected(sk, pkt);
939                 break;
940         default:
941                 /* Because this function does not run in the same context as
942                  * vmci_transport_recv_stream_cb it is possible that the
943                  * socket has closed. We need to let the other side know or it
944                  * could be sitting in a connect and hang forever. Send a
945                  * reset to prevent that.
946                  */
947                 vmci_transport_send_reset(sk, pkt);
948                 break;
949         }
950
951         release_sock(sk);
952         kfree(recv_pkt_info);
953         /* Release reference obtained in the stream callback when we fetched
954          * this socket out of the bound or connected list.
955          */
956         sock_put(sk);
957 }
958
959 static int vmci_transport_recv_listen(struct sock *sk,
960                                       struct vmci_transport_packet *pkt)
961 {
962         struct sock *pending;
963         struct vsock_sock *vpending;
964         int err;
965         u64 qp_size;
966         bool old_request = false;
967         bool old_pkt_proto = false;
968
969         err = 0;
970
971         /* Because we are in the listen state, we could be receiving a packet
972          * for ourself or any previous connection requests that we received.
973          * If it's the latter, we try to find a socket in our list of pending
974          * connections and, if we do, call the appropriate handler for the
975          * state that that socket is in.  Otherwise we try to service the
976          * connection request.
977          */
978         pending = vmci_transport_get_pending(sk, pkt);
979         if (pending) {
980                 lock_sock(pending);
981
982                 /* The local context ID may be out of date. */
983                 vsock_sk(pending)->local_addr.svm_cid = pkt->dg.dst.context;
984
985                 switch (pending->sk_state) {
986                 case SS_CONNECTING:
987                         err = vmci_transport_recv_connecting_server(sk,
988                                                                     pending,
989                                                                     pkt);
990                         break;
991                 default:
992                         vmci_transport_send_reset(pending, pkt);
993                         err = -EINVAL;
994                 }
995
996                 if (err < 0)
997                         vsock_remove_pending(sk, pending);
998
999                 release_sock(pending);
1000                 vmci_transport_release_pending(pending);
1001
1002                 return err;
1003         }
1004
1005         /* The listen state only accepts connection requests.  Reply with a
1006          * reset unless we received a reset.
1007          */
1008
1009         if (!(pkt->type == VMCI_TRANSPORT_PACKET_TYPE_REQUEST ||
1010               pkt->type == VMCI_TRANSPORT_PACKET_TYPE_REQUEST2)) {
1011                 vmci_transport_reply_reset(pkt);
1012                 return -EINVAL;
1013         }
1014
1015         if (pkt->u.size == 0) {
1016                 vmci_transport_reply_reset(pkt);
1017                 return -EINVAL;
1018         }
1019
1020         /* If this socket can't accommodate this connection request, we send a
1021          * reset.  Otherwise we create and initialize a child socket and reply
1022          * with a connection negotiation.
1023          */
1024         if (sk->sk_ack_backlog >= sk->sk_max_ack_backlog) {
1025                 vmci_transport_reply_reset(pkt);
1026                 return -ECONNREFUSED;
1027         }
1028
1029         pending = __vsock_create(sock_net(sk), NULL, sk, GFP_KERNEL,
1030                                  sk->sk_type, 0);
1031         if (!pending) {
1032                 vmci_transport_send_reset(sk, pkt);
1033                 return -ENOMEM;
1034         }
1035
1036         vpending = vsock_sk(pending);
1037
1038         vsock_addr_init(&vpending->local_addr, pkt->dg.dst.context,
1039                         pkt->dst_port);
1040         vsock_addr_init(&vpending->remote_addr, pkt->dg.src.context,
1041                         pkt->src_port);
1042
1043         /* If the proposed size fits within our min/max, accept it. Otherwise
1044          * propose our own size.
1045          */
1046         if (pkt->u.size >= vmci_trans(vpending)->queue_pair_min_size &&
1047             pkt->u.size <= vmci_trans(vpending)->queue_pair_max_size) {
1048                 qp_size = pkt->u.size;
1049         } else {
1050                 qp_size = vmci_trans(vpending)->queue_pair_size;
1051         }
1052
1053         /* Figure out if we are using old or new requests based on the
1054          * overrides pkt types sent by our peer.
1055          */
1056         if (vmci_transport_old_proto_override(&old_pkt_proto)) {
1057                 old_request = old_pkt_proto;
1058         } else {
1059                 if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_REQUEST)
1060                         old_request = true;
1061                 else if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_REQUEST2)
1062                         old_request = false;
1063
1064         }
1065
1066         if (old_request) {
1067                 /* Handle a REQUEST (or override) */
1068                 u16 version = VSOCK_PROTO_INVALID;
1069                 if (vmci_transport_proto_to_notify_struct(
1070                         pending, &version, true))
1071                         err = vmci_transport_send_negotiate(pending, qp_size);
1072                 else
1073                         err = -EINVAL;
1074
1075         } else {
1076                 /* Handle a REQUEST2 (or override) */
1077                 int proto_int = pkt->proto;
1078                 int pos;
1079                 u16 active_proto_version = 0;
1080
1081                 /* The list of possible protocols is the intersection of all
1082                  * protocols the client supports ... plus all the protocols we
1083                  * support.
1084                  */
1085                 proto_int &= vmci_transport_new_proto_supported_versions();
1086
1087                 /* We choose the highest possible protocol version and use that
1088                  * one.
1089                  */
1090                 pos = fls(proto_int);
1091                 if (pos) {
1092                         active_proto_version = (1 << (pos - 1));
1093                         if (vmci_transport_proto_to_notify_struct(
1094                                 pending, &active_proto_version, false))
1095                                 err = vmci_transport_send_negotiate2(pending,
1096                                                         qp_size,
1097                                                         active_proto_version);
1098                         else
1099                                 err = -EINVAL;
1100
1101                 } else {
1102                         err = -EINVAL;
1103                 }
1104         }
1105
1106         if (err < 0) {
1107                 vmci_transport_send_reset(sk, pkt);
1108                 sock_put(pending);
1109                 err = vmci_transport_error_to_vsock_error(err);
1110                 goto out;
1111         }
1112
1113         vsock_add_pending(sk, pending);
1114         sk->sk_ack_backlog++;
1115
1116         pending->sk_state = SS_CONNECTING;
1117         vmci_trans(vpending)->produce_size =
1118                 vmci_trans(vpending)->consume_size = qp_size;
1119         vmci_trans(vpending)->queue_pair_size = qp_size;
1120
1121         vmci_trans(vpending)->notify_ops->process_request(pending);
1122
1123         /* We might never receive another message for this socket and it's not
1124          * connected to any process, so we have to ensure it gets cleaned up
1125          * ourself.  Our delayed work function will take care of that.  Note
1126          * that we do not ever cancel this function since we have few
1127          * guarantees about its state when calling cancel_delayed_work().
1128          * Instead we hold a reference on the socket for that function and make
1129          * it capable of handling cases where it needs to do nothing but
1130          * release that reference.
1131          */
1132         vpending->listener = sk;
1133         sock_hold(sk);
1134         sock_hold(pending);
1135         schedule_delayed_work(&vpending->pending_work, HZ);
1136
1137 out:
1138         return err;
1139 }
1140
1141 static int
1142 vmci_transport_recv_connecting_server(struct sock *listener,
1143                                       struct sock *pending,
1144                                       struct vmci_transport_packet *pkt)
1145 {
1146         struct vsock_sock *vpending;
1147         struct vmci_handle handle;
1148         struct vmci_qp *qpair;
1149         bool is_local;
1150         u32 flags;
1151         u32 detach_sub_id;
1152         int err;
1153         int skerr;
1154
1155         vpending = vsock_sk(pending);
1156         detach_sub_id = VMCI_INVALID_ID;
1157
1158         switch (pkt->type) {
1159         case VMCI_TRANSPORT_PACKET_TYPE_OFFER:
1160                 if (vmci_handle_is_invalid(pkt->u.handle)) {
1161                         vmci_transport_send_reset(pending, pkt);
1162                         skerr = EPROTO;
1163                         err = -EINVAL;
1164                         goto destroy;
1165                 }
1166                 break;
1167         default:
1168                 /* Close and cleanup the connection. */
1169                 vmci_transport_send_reset(pending, pkt);
1170                 skerr = EPROTO;
1171                 err = pkt->type == VMCI_TRANSPORT_PACKET_TYPE_RST ? 0 : -EINVAL;
1172                 goto destroy;
1173         }
1174
1175         /* In order to complete the connection we need to attach to the offered
1176          * queue pair and send an attach notification.  We also subscribe to the
1177          * detach event so we know when our peer goes away, and we do that
1178          * before attaching so we don't miss an event.  If all this succeeds,
1179          * we update our state and wakeup anything waiting in accept() for a
1180          * connection.
1181          */
1182
1183         /* We don't care about attach since we ensure the other side has
1184          * attached by specifying the ATTACH_ONLY flag below.
1185          */
1186         err = vmci_event_subscribe(VMCI_EVENT_QP_PEER_DETACH,
1187                                    vmci_transport_peer_detach_cb,
1188                                    vmci_trans(vpending), &detach_sub_id);
1189         if (err < VMCI_SUCCESS) {
1190                 vmci_transport_send_reset(pending, pkt);
1191                 err = vmci_transport_error_to_vsock_error(err);
1192                 skerr = -err;
1193                 goto destroy;
1194         }
1195
1196         vmci_trans(vpending)->detach_sub_id = detach_sub_id;
1197
1198         /* Now attach to the queue pair the client created. */
1199         handle = pkt->u.handle;
1200
1201         /* vpending->local_addr always has a context id so we do not need to
1202          * worry about VMADDR_CID_ANY in this case.
1203          */
1204         is_local =
1205             vpending->remote_addr.svm_cid == vpending->local_addr.svm_cid;
1206         flags = VMCI_QPFLAG_ATTACH_ONLY;
1207         flags |= is_local ? VMCI_QPFLAG_LOCAL : 0;
1208
1209         err = vmci_transport_queue_pair_alloc(
1210                                         &qpair,
1211                                         &handle,
1212                                         vmci_trans(vpending)->produce_size,
1213                                         vmci_trans(vpending)->consume_size,
1214                                         pkt->dg.src.context,
1215                                         flags,
1216                                         vmci_transport_is_trusted(
1217                                                 vpending,
1218                                                 vpending->remote_addr.svm_cid));
1219         if (err < 0) {
1220                 vmci_transport_send_reset(pending, pkt);
1221                 skerr = -err;
1222                 goto destroy;
1223         }
1224
1225         vmci_trans(vpending)->qp_handle = handle;
1226         vmci_trans(vpending)->qpair = qpair;
1227
1228         /* When we send the attach message, we must be ready to handle incoming
1229          * control messages on the newly connected socket. So we move the
1230          * pending socket to the connected state before sending the attach
1231          * message. Otherwise, an incoming packet triggered by the attach being
1232          * received by the peer may be processed concurrently with what happens
1233          * below after sending the attach message, and that incoming packet
1234          * will find the listening socket instead of the (currently) pending
1235          * socket. Note that enqueueing the socket increments the reference
1236          * count, so even if a reset comes before the connection is accepted,
1237          * the socket will be valid until it is removed from the queue.
1238          *
1239          * If we fail sending the attach below, we remove the socket from the
1240          * connected list and move the socket to SS_UNCONNECTED before
1241          * releasing the lock, so a pending slow path processing of an incoming
1242          * packet will not see the socket in the connected state in that case.
1243          */
1244         pending->sk_state = SS_CONNECTED;
1245
1246         vsock_insert_connected(vpending);
1247
1248         /* Notify our peer of our attach. */
1249         err = vmci_transport_send_attach(pending, handle);
1250         if (err < 0) {
1251                 vsock_remove_connected(vpending);
1252                 pr_err("Could not send attach\n");
1253                 vmci_transport_send_reset(pending, pkt);
1254                 err = vmci_transport_error_to_vsock_error(err);
1255                 skerr = -err;
1256                 goto destroy;
1257         }
1258
1259         /* We have a connection. Move the now connected socket from the
1260          * listener's pending list to the accept queue so callers of accept()
1261          * can find it.
1262          */
1263         vsock_remove_pending(listener, pending);
1264         vsock_enqueue_accept(listener, pending);
1265
1266         /* Callers of accept() will be be waiting on the listening socket, not
1267          * the pending socket.
1268          */
1269         listener->sk_data_ready(listener);
1270
1271         return 0;
1272
1273 destroy:
1274         pending->sk_err = skerr;
1275         pending->sk_state = SS_UNCONNECTED;
1276         /* As long as we drop our reference, all necessary cleanup will handle
1277          * when the cleanup function drops its reference and our destruct
1278          * implementation is called.  Note that since the listen handler will
1279          * remove pending from the pending list upon our failure, the cleanup
1280          * function won't drop the additional reference, which is why we do it
1281          * here.
1282          */
1283         sock_put(pending);
1284
1285         return err;
1286 }
1287
1288 static int
1289 vmci_transport_recv_connecting_client(struct sock *sk,
1290                                       struct vmci_transport_packet *pkt)
1291 {
1292         struct vsock_sock *vsk;
1293         int err;
1294         int skerr;
1295
1296         vsk = vsock_sk(sk);
1297
1298         switch (pkt->type) {
1299         case VMCI_TRANSPORT_PACKET_TYPE_ATTACH:
1300                 if (vmci_handle_is_invalid(pkt->u.handle) ||
1301                     !vmci_handle_is_equal(pkt->u.handle,
1302                                           vmci_trans(vsk)->qp_handle)) {
1303                         skerr = EPROTO;
1304                         err = -EINVAL;
1305                         goto destroy;
1306                 }
1307
1308                 /* Signify the socket is connected and wakeup the waiter in
1309                  * connect(). Also place the socket in the connected table for
1310                  * accounting (it can already be found since it's in the bound
1311                  * table).
1312                  */
1313                 sk->sk_state = SS_CONNECTED;
1314                 sk->sk_socket->state = SS_CONNECTED;
1315                 vsock_insert_connected(vsk);
1316                 sk->sk_state_change(sk);
1317
1318                 break;
1319         case VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE:
1320         case VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE2:
1321                 if (pkt->u.size == 0
1322                     || pkt->dg.src.context != vsk->remote_addr.svm_cid
1323                     || pkt->src_port != vsk->remote_addr.svm_port
1324                     || !vmci_handle_is_invalid(vmci_trans(vsk)->qp_handle)
1325                     || vmci_trans(vsk)->qpair
1326                     || vmci_trans(vsk)->produce_size != 0
1327                     || vmci_trans(vsk)->consume_size != 0
1328                     || vmci_trans(vsk)->detach_sub_id != VMCI_INVALID_ID) {
1329                         skerr = EPROTO;
1330                         err = -EINVAL;
1331
1332                         goto destroy;
1333                 }
1334
1335                 err = vmci_transport_recv_connecting_client_negotiate(sk, pkt);
1336                 if (err) {
1337                         skerr = -err;
1338                         goto destroy;
1339                 }
1340
1341                 break;
1342         case VMCI_TRANSPORT_PACKET_TYPE_INVALID:
1343                 err = vmci_transport_recv_connecting_client_invalid(sk, pkt);
1344                 if (err) {
1345                         skerr = -err;
1346                         goto destroy;
1347                 }
1348
1349                 break;
1350         case VMCI_TRANSPORT_PACKET_TYPE_RST:
1351                 /* Older versions of the linux code (WS 6.5 / ESX 4.0) used to
1352                  * continue processing here after they sent an INVALID packet.
1353                  * This meant that we got a RST after the INVALID. We ignore a
1354                  * RST after an INVALID. The common code doesn't send the RST
1355                  * ... so we can hang if an old version of the common code
1356                  * fails between getting a REQUEST and sending an OFFER back.
1357                  * Not much we can do about it... except hope that it doesn't
1358                  * happen.
1359                  */
1360                 if (vsk->ignore_connecting_rst) {
1361                         vsk->ignore_connecting_rst = false;
1362                 } else {
1363                         skerr = ECONNRESET;
1364                         err = 0;
1365                         goto destroy;
1366                 }
1367
1368                 break;
1369         default:
1370                 /* Close and cleanup the connection. */
1371                 skerr = EPROTO;
1372                 err = -EINVAL;
1373                 goto destroy;
1374         }
1375
1376         return 0;
1377
1378 destroy:
1379         vmci_transport_send_reset(sk, pkt);
1380
1381         sk->sk_state = SS_UNCONNECTED;
1382         sk->sk_err = skerr;
1383         sk->sk_error_report(sk);
1384         return err;
1385 }
1386
1387 static int vmci_transport_recv_connecting_client_negotiate(
1388                                         struct sock *sk,
1389                                         struct vmci_transport_packet *pkt)
1390 {
1391         int err;
1392         struct vsock_sock *vsk;
1393         struct vmci_handle handle;
1394         struct vmci_qp *qpair;
1395         u32 detach_sub_id;
1396         bool is_local;
1397         u32 flags;
1398         bool old_proto = true;
1399         bool old_pkt_proto;
1400         u16 version;
1401
1402         vsk = vsock_sk(sk);
1403         handle = VMCI_INVALID_HANDLE;
1404         detach_sub_id = VMCI_INVALID_ID;
1405
1406         /* If we have gotten here then we should be past the point where old
1407          * linux vsock could have sent the bogus rst.
1408          */
1409         vsk->sent_request = false;
1410         vsk->ignore_connecting_rst = false;
1411
1412         /* Verify that we're OK with the proposed queue pair size */
1413         if (pkt->u.size < vmci_trans(vsk)->queue_pair_min_size ||
1414             pkt->u.size > vmci_trans(vsk)->queue_pair_max_size) {
1415                 err = -EINVAL;
1416                 goto destroy;
1417         }
1418
1419         /* At this point we know the CID the peer is using to talk to us. */
1420
1421         if (vsk->local_addr.svm_cid == VMADDR_CID_ANY)
1422                 vsk->local_addr.svm_cid = pkt->dg.dst.context;
1423
1424         /* Setup the notify ops to be the highest supported version that both
1425          * the server and the client support.
1426          */
1427
1428         if (vmci_transport_old_proto_override(&old_pkt_proto)) {
1429                 old_proto = old_pkt_proto;
1430         } else {
1431                 if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE)
1432                         old_proto = true;
1433                 else if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE2)
1434                         old_proto = false;
1435
1436         }
1437
1438         if (old_proto)
1439                 version = VSOCK_PROTO_INVALID;
1440         else
1441                 version = pkt->proto;
1442
1443         if (!vmci_transport_proto_to_notify_struct(sk, &version, old_proto)) {
1444                 err = -EINVAL;
1445                 goto destroy;
1446         }
1447
1448         /* Subscribe to detach events first.
1449          *
1450          * XXX We attach once for each queue pair created for now so it is easy
1451          * to find the socket (it's provided), but later we should only
1452          * subscribe once and add a way to lookup sockets by queue pair handle.
1453          */
1454         err = vmci_event_subscribe(VMCI_EVENT_QP_PEER_DETACH,
1455                                    vmci_transport_peer_detach_cb,
1456                                    vmci_trans(vsk), &detach_sub_id);
1457         if (err < VMCI_SUCCESS) {
1458                 err = vmci_transport_error_to_vsock_error(err);
1459                 goto destroy;
1460         }
1461
1462         /* Make VMCI select the handle for us. */
1463         handle = VMCI_INVALID_HANDLE;
1464         is_local = vsk->remote_addr.svm_cid == vsk->local_addr.svm_cid;
1465         flags = is_local ? VMCI_QPFLAG_LOCAL : 0;
1466
1467         err = vmci_transport_queue_pair_alloc(&qpair,
1468                                               &handle,
1469                                               pkt->u.size,
1470                                               pkt->u.size,
1471                                               vsk->remote_addr.svm_cid,
1472                                               flags,
1473                                               vmci_transport_is_trusted(
1474                                                   vsk,
1475                                                   vsk->
1476                                                   remote_addr.svm_cid));
1477         if (err < 0)
1478                 goto destroy;
1479
1480         err = vmci_transport_send_qp_offer(sk, handle);
1481         if (err < 0) {
1482                 err = vmci_transport_error_to_vsock_error(err);
1483                 goto destroy;
1484         }
1485
1486         vmci_trans(vsk)->qp_handle = handle;
1487         vmci_trans(vsk)->qpair = qpair;
1488
1489         vmci_trans(vsk)->produce_size = vmci_trans(vsk)->consume_size =
1490                 pkt->u.size;
1491
1492         vmci_trans(vsk)->detach_sub_id = detach_sub_id;
1493
1494         vmci_trans(vsk)->notify_ops->process_negotiate(sk);
1495
1496         return 0;
1497
1498 destroy:
1499         if (detach_sub_id != VMCI_INVALID_ID)
1500                 vmci_event_unsubscribe(detach_sub_id);
1501
1502         if (!vmci_handle_is_invalid(handle))
1503                 vmci_qpair_detach(&qpair);
1504
1505         return err;
1506 }
1507
1508 static int
1509 vmci_transport_recv_connecting_client_invalid(struct sock *sk,
1510                                               struct vmci_transport_packet *pkt)
1511 {
1512         int err = 0;
1513         struct vsock_sock *vsk = vsock_sk(sk);
1514
1515         if (vsk->sent_request) {
1516                 vsk->sent_request = false;
1517                 vsk->ignore_connecting_rst = true;
1518
1519                 err = vmci_transport_send_conn_request(
1520                         sk, vmci_trans(vsk)->queue_pair_size);
1521                 if (err < 0)
1522                         err = vmci_transport_error_to_vsock_error(err);
1523                 else
1524                         err = 0;
1525
1526         }
1527
1528         return err;
1529 }
1530
1531 static int vmci_transport_recv_connected(struct sock *sk,
1532                                          struct vmci_transport_packet *pkt)
1533 {
1534         struct vsock_sock *vsk;
1535         bool pkt_processed = false;
1536
1537         /* In cases where we are closing the connection, it's sufficient to
1538          * mark the state change (and maybe error) and wake up any waiting
1539          * threads. Since this is a connected socket, it's owned by a user
1540          * process and will be cleaned up when the failure is passed back on
1541          * the current or next system call.  Our system call implementations
1542          * must therefore check for error and state changes on entry and when
1543          * being awoken.
1544          */
1545         switch (pkt->type) {
1546         case VMCI_TRANSPORT_PACKET_TYPE_SHUTDOWN:
1547                 if (pkt->u.mode) {
1548                         vsk = vsock_sk(sk);
1549
1550                         vsk->peer_shutdown |= pkt->u.mode;
1551                         sk->sk_state_change(sk);
1552                 }
1553                 break;
1554
1555         case VMCI_TRANSPORT_PACKET_TYPE_RST:
1556                 vsk = vsock_sk(sk);
1557                 /* It is possible that we sent our peer a message (e.g a
1558                  * WAITING_READ) right before we got notified that the peer had
1559                  * detached. If that happens then we can get a RST pkt back
1560                  * from our peer even though there is data available for us to
1561                  * read. In that case, don't shutdown the socket completely but
1562                  * instead allow the local client to finish reading data off
1563                  * the queuepair. Always treat a RST pkt in connected mode like
1564                  * a clean shutdown.
1565                  */
1566                 sock_set_flag(sk, SOCK_DONE);
1567                 vsk->peer_shutdown = SHUTDOWN_MASK;
1568                 if (vsock_stream_has_data(vsk) <= 0)
1569                         sk->sk_state = SS_DISCONNECTING;
1570
1571                 sk->sk_state_change(sk);
1572                 break;
1573
1574         default:
1575                 vsk = vsock_sk(sk);
1576                 vmci_trans(vsk)->notify_ops->handle_notify_pkt(
1577                                 sk, pkt, false, NULL, NULL,
1578                                 &pkt_processed);
1579                 if (!pkt_processed)
1580                         return -EINVAL;
1581
1582                 break;
1583         }
1584
1585         return 0;
1586 }
1587
1588 static int vmci_transport_socket_init(struct vsock_sock *vsk,
1589                                       struct vsock_sock *psk)
1590 {
1591         vsk->trans = kmalloc(sizeof(struct vmci_transport), GFP_KERNEL);
1592         if (!vsk->trans)
1593                 return -ENOMEM;
1594
1595         vmci_trans(vsk)->dg_handle = VMCI_INVALID_HANDLE;
1596         vmci_trans(vsk)->qp_handle = VMCI_INVALID_HANDLE;
1597         vmci_trans(vsk)->qpair = NULL;
1598         vmci_trans(vsk)->produce_size = vmci_trans(vsk)->consume_size = 0;
1599         vmci_trans(vsk)->detach_sub_id = VMCI_INVALID_ID;
1600         vmci_trans(vsk)->notify_ops = NULL;
1601         INIT_LIST_HEAD(&vmci_trans(vsk)->elem);
1602         vmci_trans(vsk)->sk = &vsk->sk;
1603         spin_lock_init(&vmci_trans(vsk)->lock);
1604         if (psk) {
1605                 vmci_trans(vsk)->queue_pair_size =
1606                         vmci_trans(psk)->queue_pair_size;
1607                 vmci_trans(vsk)->queue_pair_min_size =
1608                         vmci_trans(psk)->queue_pair_min_size;
1609                 vmci_trans(vsk)->queue_pair_max_size =
1610                         vmci_trans(psk)->queue_pair_max_size;
1611         } else {
1612                 vmci_trans(vsk)->queue_pair_size =
1613                         VMCI_TRANSPORT_DEFAULT_QP_SIZE;
1614                 vmci_trans(vsk)->queue_pair_min_size =
1615                          VMCI_TRANSPORT_DEFAULT_QP_SIZE_MIN;
1616                 vmci_trans(vsk)->queue_pair_max_size =
1617                         VMCI_TRANSPORT_DEFAULT_QP_SIZE_MAX;
1618         }
1619
1620         return 0;
1621 }
1622
1623 static void vmci_transport_free_resources(struct list_head *transport_list)
1624 {
1625         while (!list_empty(transport_list)) {
1626                 struct vmci_transport *transport =
1627                     list_first_entry(transport_list, struct vmci_transport,
1628                                      elem);
1629                 list_del(&transport->elem);
1630
1631                 if (transport->detach_sub_id != VMCI_INVALID_ID) {
1632                         vmci_event_unsubscribe(transport->detach_sub_id);
1633                         transport->detach_sub_id = VMCI_INVALID_ID;
1634                 }
1635
1636                 if (!vmci_handle_is_invalid(transport->qp_handle)) {
1637                         vmci_qpair_detach(&transport->qpair);
1638                         transport->qp_handle = VMCI_INVALID_HANDLE;
1639                         transport->produce_size = 0;
1640                         transport->consume_size = 0;
1641                 }
1642
1643                 kfree(transport);
1644         }
1645 }
1646
1647 static void vmci_transport_cleanup(struct work_struct *work)
1648 {
1649         LIST_HEAD(pending);
1650
1651         spin_lock_bh(&vmci_transport_cleanup_lock);
1652         list_replace_init(&vmci_transport_cleanup_list, &pending);
1653         spin_unlock_bh(&vmci_transport_cleanup_lock);
1654         vmci_transport_free_resources(&pending);
1655 }
1656
1657 static void vmci_transport_destruct(struct vsock_sock *vsk)
1658 {
1659         /* transport can be NULL if we hit a failure at init() time */
1660         if (!vmci_trans(vsk))
1661                 return;
1662
1663         /* Ensure that the detach callback doesn't use the sk/vsk
1664          * we are about to destruct.
1665          */
1666         spin_lock_bh(&vmci_trans(vsk)->lock);
1667         vmci_trans(vsk)->sk = NULL;
1668         spin_unlock_bh(&vmci_trans(vsk)->lock);
1669
1670         if (vmci_trans(vsk)->notify_ops)
1671                 vmci_trans(vsk)->notify_ops->socket_destruct(vsk);
1672
1673         spin_lock_bh(&vmci_transport_cleanup_lock);
1674         list_add(&vmci_trans(vsk)->elem, &vmci_transport_cleanup_list);
1675         spin_unlock_bh(&vmci_transport_cleanup_lock);
1676         schedule_work(&vmci_transport_cleanup_work);
1677
1678         vsk->trans = NULL;
1679 }
1680
1681 static void vmci_transport_release(struct vsock_sock *vsk)
1682 {
1683         if (!vmci_handle_is_invalid(vmci_trans(vsk)->dg_handle)) {
1684                 vmci_datagram_destroy_handle(vmci_trans(vsk)->dg_handle);
1685                 vmci_trans(vsk)->dg_handle = VMCI_INVALID_HANDLE;
1686         }
1687 }
1688
1689 static int vmci_transport_dgram_bind(struct vsock_sock *vsk,
1690                                      struct sockaddr_vm *addr)
1691 {
1692         u32 port;
1693         u32 flags;
1694         int err;
1695
1696         /* VMCI will select a resource ID for us if we provide
1697          * VMCI_INVALID_ID.
1698          */
1699         port = addr->svm_port == VMADDR_PORT_ANY ?
1700                         VMCI_INVALID_ID : addr->svm_port;
1701
1702         if (port <= LAST_RESERVED_PORT && !capable(CAP_NET_BIND_SERVICE))
1703                 return -EACCES;
1704
1705         flags = addr->svm_cid == VMADDR_CID_ANY ?
1706                                 VMCI_FLAG_ANYCID_DG_HND : 0;
1707
1708         err = vmci_transport_datagram_create_hnd(port, flags,
1709                                                  vmci_transport_recv_dgram_cb,
1710                                                  &vsk->sk,
1711                                                  &vmci_trans(vsk)->dg_handle);
1712         if (err < VMCI_SUCCESS)
1713                 return vmci_transport_error_to_vsock_error(err);
1714         vsock_addr_init(&vsk->local_addr, addr->svm_cid,
1715                         vmci_trans(vsk)->dg_handle.resource);
1716
1717         return 0;
1718 }
1719
1720 static int vmci_transport_dgram_enqueue(
1721         struct vsock_sock *vsk,
1722         struct sockaddr_vm *remote_addr,
1723         struct msghdr *msg,
1724         size_t len)
1725 {
1726         int err;
1727         struct vmci_datagram *dg;
1728
1729         if (len > VMCI_MAX_DG_PAYLOAD_SIZE)
1730                 return -EMSGSIZE;
1731
1732         if (!vmci_transport_allow_dgram(vsk, remote_addr->svm_cid))
1733                 return -EPERM;
1734
1735         /* Allocate a buffer for the user's message and our packet header. */
1736         dg = kmalloc(len + sizeof(*dg), GFP_KERNEL);
1737         if (!dg)
1738                 return -ENOMEM;
1739
1740         memcpy_from_msg(VMCI_DG_PAYLOAD(dg), msg, len);
1741
1742         dg->dst = vmci_make_handle(remote_addr->svm_cid,
1743                                    remote_addr->svm_port);
1744         dg->src = vmci_make_handle(vsk->local_addr.svm_cid,
1745                                    vsk->local_addr.svm_port);
1746         dg->payload_size = len;
1747
1748         err = vmci_datagram_send(dg);
1749         kfree(dg);
1750         if (err < 0)
1751                 return vmci_transport_error_to_vsock_error(err);
1752
1753         return err - sizeof(*dg);
1754 }
1755
1756 static int vmci_transport_dgram_dequeue(struct vsock_sock *vsk,
1757                                         struct msghdr *msg, size_t len,
1758                                         int flags)
1759 {
1760         int err;
1761         int noblock;
1762         struct vmci_datagram *dg;
1763         size_t payload_len;
1764         struct sk_buff *skb;
1765
1766         noblock = flags & MSG_DONTWAIT;
1767
1768         if (flags & MSG_OOB || flags & MSG_ERRQUEUE)
1769                 return -EOPNOTSUPP;
1770
1771         /* Retrieve the head sk_buff from the socket's receive queue. */
1772         err = 0;
1773         skb = skb_recv_datagram(&vsk->sk, flags, noblock, &err);
1774         if (err)
1775                 return err;
1776
1777         if (!skb)
1778                 return -EAGAIN;
1779
1780         dg = (struct vmci_datagram *)skb->data;
1781         if (!dg)
1782                 /* err is 0, meaning we read zero bytes. */
1783                 goto out;
1784
1785         payload_len = dg->payload_size;
1786         /* Ensure the sk_buff matches the payload size claimed in the packet. */
1787         if (payload_len != skb->len - sizeof(*dg)) {
1788                 err = -EINVAL;
1789                 goto out;
1790         }
1791
1792         if (payload_len > len) {
1793                 payload_len = len;
1794                 msg->msg_flags |= MSG_TRUNC;
1795         }
1796
1797         /* Place the datagram payload in the user's iovec. */
1798         err = skb_copy_datagram_msg(skb, sizeof(*dg), msg, payload_len);
1799         if (err)
1800                 goto out;
1801
1802         if (msg->msg_name) {
1803                 /* Provide the address of the sender. */
1804                 DECLARE_SOCKADDR(struct sockaddr_vm *, vm_addr, msg->msg_name);
1805                 vsock_addr_init(vm_addr, dg->src.context, dg->src.resource);
1806                 msg->msg_namelen = sizeof(*vm_addr);
1807         }
1808         err = payload_len;
1809
1810 out:
1811         skb_free_datagram(&vsk->sk, skb);
1812         return err;
1813 }
1814
1815 static bool vmci_transport_dgram_allow(u32 cid, u32 port)
1816 {
1817         if (cid == VMADDR_CID_HYPERVISOR) {
1818                 /* Registrations of PBRPC Servers do not modify VMX/Hypervisor
1819                  * state and are allowed.
1820                  */
1821                 return port == VMCI_UNITY_PBRPC_REGISTER;
1822         }
1823
1824         return true;
1825 }
1826
1827 static int vmci_transport_connect(struct vsock_sock *vsk)
1828 {
1829         int err;
1830         bool old_pkt_proto = false;
1831         struct sock *sk = &vsk->sk;
1832
1833         if (vmci_transport_old_proto_override(&old_pkt_proto) &&
1834                 old_pkt_proto) {
1835                 err = vmci_transport_send_conn_request(
1836                         sk, vmci_trans(vsk)->queue_pair_size);
1837                 if (err < 0) {
1838                         sk->sk_state = SS_UNCONNECTED;
1839                         return err;
1840                 }
1841         } else {
1842                 int supported_proto_versions =
1843                         vmci_transport_new_proto_supported_versions();
1844                 err = vmci_transport_send_conn_request2(
1845                                 sk, vmci_trans(vsk)->queue_pair_size,
1846                                 supported_proto_versions);
1847                 if (err < 0) {
1848                         sk->sk_state = SS_UNCONNECTED;
1849                         return err;
1850                 }
1851
1852                 vsk->sent_request = true;
1853         }
1854
1855         return err;
1856 }
1857
1858 static ssize_t vmci_transport_stream_dequeue(
1859         struct vsock_sock *vsk,
1860         struct msghdr *msg,
1861         size_t len,
1862         int flags)
1863 {
1864         if (flags & MSG_PEEK)
1865                 return vmci_qpair_peekv(vmci_trans(vsk)->qpair, msg, len, 0);
1866         else
1867                 return vmci_qpair_dequev(vmci_trans(vsk)->qpair, msg, len, 0);
1868 }
1869
1870 static ssize_t vmci_transport_stream_enqueue(
1871         struct vsock_sock *vsk,
1872         struct msghdr *msg,
1873         size_t len)
1874 {
1875         return vmci_qpair_enquev(vmci_trans(vsk)->qpair, msg, len, 0);
1876 }
1877
1878 static s64 vmci_transport_stream_has_data(struct vsock_sock *vsk)
1879 {
1880         return vmci_qpair_consume_buf_ready(vmci_trans(vsk)->qpair);
1881 }
1882
1883 static s64 vmci_transport_stream_has_space(struct vsock_sock *vsk)
1884 {
1885         return vmci_qpair_produce_free_space(vmci_trans(vsk)->qpair);
1886 }
1887
1888 static u64 vmci_transport_stream_rcvhiwat(struct vsock_sock *vsk)
1889 {
1890         return vmci_trans(vsk)->consume_size;
1891 }
1892
1893 static bool vmci_transport_stream_is_active(struct vsock_sock *vsk)
1894 {
1895         return !vmci_handle_is_invalid(vmci_trans(vsk)->qp_handle);
1896 }
1897
1898 static u64 vmci_transport_get_buffer_size(struct vsock_sock *vsk)
1899 {
1900         return vmci_trans(vsk)->queue_pair_size;
1901 }
1902
1903 static u64 vmci_transport_get_min_buffer_size(struct vsock_sock *vsk)
1904 {
1905         return vmci_trans(vsk)->queue_pair_min_size;
1906 }
1907
1908 static u64 vmci_transport_get_max_buffer_size(struct vsock_sock *vsk)
1909 {
1910         return vmci_trans(vsk)->queue_pair_max_size;
1911 }
1912
1913 static void vmci_transport_set_buffer_size(struct vsock_sock *vsk, u64 val)
1914 {
1915         if (val < vmci_trans(vsk)->queue_pair_min_size)
1916                 vmci_trans(vsk)->queue_pair_min_size = val;
1917         if (val > vmci_trans(vsk)->queue_pair_max_size)
1918                 vmci_trans(vsk)->queue_pair_max_size = val;
1919         vmci_trans(vsk)->queue_pair_size = val;
1920 }
1921
1922 static void vmci_transport_set_min_buffer_size(struct vsock_sock *vsk,
1923                                                u64 val)
1924 {
1925         if (val > vmci_trans(vsk)->queue_pair_size)
1926                 vmci_trans(vsk)->queue_pair_size = val;
1927         vmci_trans(vsk)->queue_pair_min_size = val;
1928 }
1929
1930 static void vmci_transport_set_max_buffer_size(struct vsock_sock *vsk,
1931                                                u64 val)
1932 {
1933         if (val < vmci_trans(vsk)->queue_pair_size)
1934                 vmci_trans(vsk)->queue_pair_size = val;
1935         vmci_trans(vsk)->queue_pair_max_size = val;
1936 }
1937
1938 static int vmci_transport_notify_poll_in(
1939         struct vsock_sock *vsk,
1940         size_t target,
1941         bool *data_ready_now)
1942 {
1943         return vmci_trans(vsk)->notify_ops->poll_in(
1944                         &vsk->sk, target, data_ready_now);
1945 }
1946
1947 static int vmci_transport_notify_poll_out(
1948         struct vsock_sock *vsk,
1949         size_t target,
1950         bool *space_available_now)
1951 {
1952         return vmci_trans(vsk)->notify_ops->poll_out(
1953                         &vsk->sk, target, space_available_now);
1954 }
1955
1956 static int vmci_transport_notify_recv_init(
1957         struct vsock_sock *vsk,
1958         size_t target,
1959         struct vsock_transport_recv_notify_data *data)
1960 {
1961         return vmci_trans(vsk)->notify_ops->recv_init(
1962                         &vsk->sk, target,
1963                         (struct vmci_transport_recv_notify_data *)data);
1964 }
1965
1966 static int vmci_transport_notify_recv_pre_block(
1967         struct vsock_sock *vsk,
1968         size_t target,
1969         struct vsock_transport_recv_notify_data *data)
1970 {
1971         return vmci_trans(vsk)->notify_ops->recv_pre_block(
1972                         &vsk->sk, target,
1973                         (struct vmci_transport_recv_notify_data *)data);
1974 }
1975
1976 static int vmci_transport_notify_recv_pre_dequeue(
1977         struct vsock_sock *vsk,
1978         size_t target,
1979         struct vsock_transport_recv_notify_data *data)
1980 {
1981         return vmci_trans(vsk)->notify_ops->recv_pre_dequeue(
1982                         &vsk->sk, target,
1983                         (struct vmci_transport_recv_notify_data *)data);
1984 }
1985
1986 static int vmci_transport_notify_recv_post_dequeue(
1987         struct vsock_sock *vsk,
1988         size_t target,
1989         ssize_t copied,
1990         bool data_read,
1991         struct vsock_transport_recv_notify_data *data)
1992 {
1993         return vmci_trans(vsk)->notify_ops->recv_post_dequeue(
1994                         &vsk->sk, target, copied, data_read,
1995                         (struct vmci_transport_recv_notify_data *)data);
1996 }
1997
1998 static int vmci_transport_notify_send_init(
1999         struct vsock_sock *vsk,
2000         struct vsock_transport_send_notify_data *data)
2001 {
2002         return vmci_trans(vsk)->notify_ops->send_init(
2003                         &vsk->sk,
2004                         (struct vmci_transport_send_notify_data *)data);
2005 }
2006
2007 static int vmci_transport_notify_send_pre_block(
2008         struct vsock_sock *vsk,
2009         struct vsock_transport_send_notify_data *data)
2010 {
2011         return vmci_trans(vsk)->notify_ops->send_pre_block(
2012                         &vsk->sk,
2013                         (struct vmci_transport_send_notify_data *)data);
2014 }
2015
2016 static int vmci_transport_notify_send_pre_enqueue(
2017         struct vsock_sock *vsk,
2018         struct vsock_transport_send_notify_data *data)
2019 {
2020         return vmci_trans(vsk)->notify_ops->send_pre_enqueue(
2021                         &vsk->sk,
2022                         (struct vmci_transport_send_notify_data *)data);
2023 }
2024
2025 static int vmci_transport_notify_send_post_enqueue(
2026         struct vsock_sock *vsk,
2027         ssize_t written,
2028         struct vsock_transport_send_notify_data *data)
2029 {
2030         return vmci_trans(vsk)->notify_ops->send_post_enqueue(
2031                         &vsk->sk, written,
2032                         (struct vmci_transport_send_notify_data *)data);
2033 }
2034
2035 static bool vmci_transport_old_proto_override(bool *old_pkt_proto)
2036 {
2037         if (PROTOCOL_OVERRIDE != -1) {
2038                 if (PROTOCOL_OVERRIDE == 0)
2039                         *old_pkt_proto = true;
2040                 else
2041                         *old_pkt_proto = false;
2042
2043                 pr_info("Proto override in use\n");
2044                 return true;
2045         }
2046
2047         return false;
2048 }
2049
2050 static bool vmci_transport_proto_to_notify_struct(struct sock *sk,
2051                                                   u16 *proto,
2052                                                   bool old_pkt_proto)
2053 {
2054         struct vsock_sock *vsk = vsock_sk(sk);
2055
2056         if (old_pkt_proto) {
2057                 if (*proto != VSOCK_PROTO_INVALID) {
2058                         pr_err("Can't set both an old and new protocol\n");
2059                         return false;
2060                 }
2061                 vmci_trans(vsk)->notify_ops = &vmci_transport_notify_pkt_ops;
2062                 goto exit;
2063         }
2064
2065         switch (*proto) {
2066         case VSOCK_PROTO_PKT_ON_NOTIFY:
2067                 vmci_trans(vsk)->notify_ops =
2068                         &vmci_transport_notify_pkt_q_state_ops;
2069                 break;
2070         default:
2071                 pr_err("Unknown notify protocol version\n");
2072                 return false;
2073         }
2074
2075 exit:
2076         vmci_trans(vsk)->notify_ops->socket_init(sk);
2077         return true;
2078 }
2079
2080 static u16 vmci_transport_new_proto_supported_versions(void)
2081 {
2082         if (PROTOCOL_OVERRIDE != -1)
2083                 return PROTOCOL_OVERRIDE;
2084
2085         return VSOCK_PROTO_ALL_SUPPORTED;
2086 }
2087
2088 static u32 vmci_transport_get_local_cid(void)
2089 {
2090         return vmci_get_context_id();
2091 }
2092
2093 static struct vsock_transport vmci_transport = {
2094         .init = vmci_transport_socket_init,
2095         .destruct = vmci_transport_destruct,
2096         .release = vmci_transport_release,
2097         .connect = vmci_transport_connect,
2098         .dgram_bind = vmci_transport_dgram_bind,
2099         .dgram_dequeue = vmci_transport_dgram_dequeue,
2100         .dgram_enqueue = vmci_transport_dgram_enqueue,
2101         .dgram_allow = vmci_transport_dgram_allow,
2102         .stream_dequeue = vmci_transport_stream_dequeue,
2103         .stream_enqueue = vmci_transport_stream_enqueue,
2104         .stream_has_data = vmci_transport_stream_has_data,
2105         .stream_has_space = vmci_transport_stream_has_space,
2106         .stream_rcvhiwat = vmci_transport_stream_rcvhiwat,
2107         .stream_is_active = vmci_transport_stream_is_active,
2108         .stream_allow = vmci_transport_stream_allow,
2109         .notify_poll_in = vmci_transport_notify_poll_in,
2110         .notify_poll_out = vmci_transport_notify_poll_out,
2111         .notify_recv_init = vmci_transport_notify_recv_init,
2112         .notify_recv_pre_block = vmci_transport_notify_recv_pre_block,
2113         .notify_recv_pre_dequeue = vmci_transport_notify_recv_pre_dequeue,
2114         .notify_recv_post_dequeue = vmci_transport_notify_recv_post_dequeue,
2115         .notify_send_init = vmci_transport_notify_send_init,
2116         .notify_send_pre_block = vmci_transport_notify_send_pre_block,
2117         .notify_send_pre_enqueue = vmci_transport_notify_send_pre_enqueue,
2118         .notify_send_post_enqueue = vmci_transport_notify_send_post_enqueue,
2119         .shutdown = vmci_transport_shutdown,
2120         .set_buffer_size = vmci_transport_set_buffer_size,
2121         .set_min_buffer_size = vmci_transport_set_min_buffer_size,
2122         .set_max_buffer_size = vmci_transport_set_max_buffer_size,
2123         .get_buffer_size = vmci_transport_get_buffer_size,
2124         .get_min_buffer_size = vmci_transport_get_min_buffer_size,
2125         .get_max_buffer_size = vmci_transport_get_max_buffer_size,
2126         .get_local_cid = vmci_transport_get_local_cid,
2127 };
2128
2129 static int __init vmci_transport_init(void)
2130 {
2131         int err;
2132
2133         /* Create the datagram handle that we will use to send and receive all
2134          * VSocket control messages for this context.
2135          */
2136         err = vmci_transport_datagram_create_hnd(VMCI_TRANSPORT_PACKET_RID,
2137                                                  VMCI_FLAG_ANYCID_DG_HND,
2138                                                  vmci_transport_recv_stream_cb,
2139                                                  NULL,
2140                                                  &vmci_transport_stream_handle);
2141         if (err < VMCI_SUCCESS) {
2142                 pr_err("Unable to create datagram handle. (%d)\n", err);
2143                 return vmci_transport_error_to_vsock_error(err);
2144         }
2145
2146         err = vmci_event_subscribe(VMCI_EVENT_QP_RESUMED,
2147                                    vmci_transport_qp_resumed_cb,
2148                                    NULL, &vmci_transport_qp_resumed_sub_id);
2149         if (err < VMCI_SUCCESS) {
2150                 pr_err("Unable to subscribe to resumed event. (%d)\n", err);
2151                 err = vmci_transport_error_to_vsock_error(err);
2152                 vmci_transport_qp_resumed_sub_id = VMCI_INVALID_ID;
2153                 goto err_destroy_stream_handle;
2154         }
2155
2156         err = vsock_core_init(&vmci_transport);
2157         if (err < 0)
2158                 goto err_unsubscribe;
2159
2160         return 0;
2161
2162 err_unsubscribe:
2163         vmci_event_unsubscribe(vmci_transport_qp_resumed_sub_id);
2164 err_destroy_stream_handle:
2165         vmci_datagram_destroy_handle(vmci_transport_stream_handle);
2166         return err;
2167 }
2168 module_init(vmci_transport_init);
2169
2170 static void __exit vmci_transport_exit(void)
2171 {
2172         cancel_work_sync(&vmci_transport_cleanup_work);
2173         vmci_transport_free_resources(&vmci_transport_cleanup_list);
2174
2175         if (!vmci_handle_is_invalid(vmci_transport_stream_handle)) {
2176                 if (vmci_datagram_destroy_handle(
2177                         vmci_transport_stream_handle) != VMCI_SUCCESS)
2178                         pr_err("Couldn't destroy datagram handle\n");
2179                 vmci_transport_stream_handle = VMCI_INVALID_HANDLE;
2180         }
2181
2182         if (vmci_transport_qp_resumed_sub_id != VMCI_INVALID_ID) {
2183                 vmci_event_unsubscribe(vmci_transport_qp_resumed_sub_id);
2184                 vmci_transport_qp_resumed_sub_id = VMCI_INVALID_ID;
2185         }
2186
2187         vsock_core_exit();
2188 }
2189 module_exit(vmci_transport_exit);
2190
2191 MODULE_AUTHOR("VMware, Inc.");
2192 MODULE_DESCRIPTION("VMCI transport for Virtual Sockets");
2193 MODULE_VERSION("1.0.3.0-k");
2194 MODULE_LICENSE("GPL v2");
2195 MODULE_ALIAS("vmware_vsock");
2196 MODULE_ALIAS_NETPROTO(PF_VSOCK);