OSDN Git Service

cfg80211: fix NULL pointer derference when querying regdb
[uclinux-h8/linux.git] / net / wireless / reg.c
1 /*
2  * Copyright 2002-2005, Instant802 Networks, Inc.
3  * Copyright 2005-2006, Devicescape Software, Inc.
4  * Copyright 2007       Johannes Berg <johannes@sipsolutions.net>
5  * Copyright 2008-2011  Luis R. Rodriguez <mcgrof@qca.qualcomm.com>
6  * Copyright 2013-2014  Intel Mobile Communications GmbH
7  * Copyright      2017  Intel Deutschland GmbH
8  * Copyright (C) 2018 Intel Corporation
9  *
10  * Permission to use, copy, modify, and/or distribute this software for any
11  * purpose with or without fee is hereby granted, provided that the above
12  * copyright notice and this permission notice appear in all copies.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
15  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
16  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
17  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
18  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
19  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
20  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
21  */
22
23
24 /**
25  * DOC: Wireless regulatory infrastructure
26  *
27  * The usual implementation is for a driver to read a device EEPROM to
28  * determine which regulatory domain it should be operating under, then
29  * looking up the allowable channels in a driver-local table and finally
30  * registering those channels in the wiphy structure.
31  *
32  * Another set of compliance enforcement is for drivers to use their
33  * own compliance limits which can be stored on the EEPROM. The host
34  * driver or firmware may ensure these are used.
35  *
36  * In addition to all this we provide an extra layer of regulatory
37  * conformance. For drivers which do not have any regulatory
38  * information CRDA provides the complete regulatory solution.
39  * For others it provides a community effort on further restrictions
40  * to enhance compliance.
41  *
42  * Note: When number of rules --> infinity we will not be able to
43  * index on alpha2 any more, instead we'll probably have to
44  * rely on some SHA1 checksum of the regdomain for example.
45  *
46  */
47
48 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
49
50 #include <linux/kernel.h>
51 #include <linux/export.h>
52 #include <linux/slab.h>
53 #include <linux/list.h>
54 #include <linux/ctype.h>
55 #include <linux/nl80211.h>
56 #include <linux/platform_device.h>
57 #include <linux/verification.h>
58 #include <linux/moduleparam.h>
59 #include <linux/firmware.h>
60 #include <net/cfg80211.h>
61 #include "core.h"
62 #include "reg.h"
63 #include "rdev-ops.h"
64 #include "nl80211.h"
65
66 /*
67  * Grace period we give before making sure all current interfaces reside on
68  * channels allowed by the current regulatory domain.
69  */
70 #define REG_ENFORCE_GRACE_MS 60000
71
72 /**
73  * enum reg_request_treatment - regulatory request treatment
74  *
75  * @REG_REQ_OK: continue processing the regulatory request
76  * @REG_REQ_IGNORE: ignore the regulatory request
77  * @REG_REQ_INTERSECT: the regulatory domain resulting from this request should
78  *      be intersected with the current one.
79  * @REG_REQ_ALREADY_SET: the regulatory request will not change the current
80  *      regulatory settings, and no further processing is required.
81  */
82 enum reg_request_treatment {
83         REG_REQ_OK,
84         REG_REQ_IGNORE,
85         REG_REQ_INTERSECT,
86         REG_REQ_ALREADY_SET,
87 };
88
89 static struct regulatory_request core_request_world = {
90         .initiator = NL80211_REGDOM_SET_BY_CORE,
91         .alpha2[0] = '0',
92         .alpha2[1] = '0',
93         .intersect = false,
94         .processed = true,
95         .country_ie_env = ENVIRON_ANY,
96 };
97
98 /*
99  * Receipt of information from last regulatory request,
100  * protected by RTNL (and can be accessed with RCU protection)
101  */
102 static struct regulatory_request __rcu *last_request =
103         (void __force __rcu *)&core_request_world;
104
105 /* To trigger userspace events and load firmware */
106 static struct platform_device *reg_pdev;
107
108 /*
109  * Central wireless core regulatory domains, we only need two,
110  * the current one and a world regulatory domain in case we have no
111  * information to give us an alpha2.
112  * (protected by RTNL, can be read under RCU)
113  */
114 const struct ieee80211_regdomain __rcu *cfg80211_regdomain;
115
116 /*
117  * Number of devices that registered to the core
118  * that support cellular base station regulatory hints
119  * (protected by RTNL)
120  */
121 static int reg_num_devs_support_basehint;
122
123 /*
124  * State variable indicating if the platform on which the devices
125  * are attached is operating in an indoor environment. The state variable
126  * is relevant for all registered devices.
127  */
128 static bool reg_is_indoor;
129 static spinlock_t reg_indoor_lock;
130
131 /* Used to track the userspace process controlling the indoor setting */
132 static u32 reg_is_indoor_portid;
133
134 static void restore_regulatory_settings(bool reset_user);
135
136 static const struct ieee80211_regdomain *get_cfg80211_regdom(void)
137 {
138         return rcu_dereference_rtnl(cfg80211_regdomain);
139 }
140
141 const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy)
142 {
143         return rcu_dereference_rtnl(wiphy->regd);
144 }
145
146 static const char *reg_dfs_region_str(enum nl80211_dfs_regions dfs_region)
147 {
148         switch (dfs_region) {
149         case NL80211_DFS_UNSET:
150                 return "unset";
151         case NL80211_DFS_FCC:
152                 return "FCC";
153         case NL80211_DFS_ETSI:
154                 return "ETSI";
155         case NL80211_DFS_JP:
156                 return "JP";
157         }
158         return "Unknown";
159 }
160
161 enum nl80211_dfs_regions reg_get_dfs_region(struct wiphy *wiphy)
162 {
163         const struct ieee80211_regdomain *regd = NULL;
164         const struct ieee80211_regdomain *wiphy_regd = NULL;
165
166         regd = get_cfg80211_regdom();
167         if (!wiphy)
168                 goto out;
169
170         wiphy_regd = get_wiphy_regdom(wiphy);
171         if (!wiphy_regd)
172                 goto out;
173
174         if (wiphy_regd->dfs_region == regd->dfs_region)
175                 goto out;
176
177         pr_debug("%s: device specific dfs_region (%s) disagrees with cfg80211's central dfs_region (%s)\n",
178                  dev_name(&wiphy->dev),
179                  reg_dfs_region_str(wiphy_regd->dfs_region),
180                  reg_dfs_region_str(regd->dfs_region));
181
182 out:
183         return regd->dfs_region;
184 }
185
186 static void rcu_free_regdom(const struct ieee80211_regdomain *r)
187 {
188         if (!r)
189                 return;
190         kfree_rcu((struct ieee80211_regdomain *)r, rcu_head);
191 }
192
193 static struct regulatory_request *get_last_request(void)
194 {
195         return rcu_dereference_rtnl(last_request);
196 }
197
198 /* Used to queue up regulatory hints */
199 static LIST_HEAD(reg_requests_list);
200 static spinlock_t reg_requests_lock;
201
202 /* Used to queue up beacon hints for review */
203 static LIST_HEAD(reg_pending_beacons);
204 static spinlock_t reg_pending_beacons_lock;
205
206 /* Used to keep track of processed beacon hints */
207 static LIST_HEAD(reg_beacon_list);
208
209 struct reg_beacon {
210         struct list_head list;
211         struct ieee80211_channel chan;
212 };
213
214 static void reg_check_chans_work(struct work_struct *work);
215 static DECLARE_DELAYED_WORK(reg_check_chans, reg_check_chans_work);
216
217 static void reg_todo(struct work_struct *work);
218 static DECLARE_WORK(reg_work, reg_todo);
219
220 /* We keep a static world regulatory domain in case of the absence of CRDA */
221 static const struct ieee80211_regdomain world_regdom = {
222         .n_reg_rules = 8,
223         .alpha2 =  "00",
224         .reg_rules = {
225                 /* IEEE 802.11b/g, channels 1..11 */
226                 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
227                 /* IEEE 802.11b/g, channels 12..13. */
228                 REG_RULE(2467-10, 2472+10, 20, 6, 20,
229                         NL80211_RRF_NO_IR | NL80211_RRF_AUTO_BW),
230                 /* IEEE 802.11 channel 14 - Only JP enables
231                  * this and for 802.11b only */
232                 REG_RULE(2484-10, 2484+10, 20, 6, 20,
233                         NL80211_RRF_NO_IR |
234                         NL80211_RRF_NO_OFDM),
235                 /* IEEE 802.11a, channel 36..48 */
236                 REG_RULE(5180-10, 5240+10, 80, 6, 20,
237                         NL80211_RRF_NO_IR |
238                         NL80211_RRF_AUTO_BW),
239
240                 /* IEEE 802.11a, channel 52..64 - DFS required */
241                 REG_RULE(5260-10, 5320+10, 80, 6, 20,
242                         NL80211_RRF_NO_IR |
243                         NL80211_RRF_AUTO_BW |
244                         NL80211_RRF_DFS),
245
246                 /* IEEE 802.11a, channel 100..144 - DFS required */
247                 REG_RULE(5500-10, 5720+10, 160, 6, 20,
248                         NL80211_RRF_NO_IR |
249                         NL80211_RRF_DFS),
250
251                 /* IEEE 802.11a, channel 149..165 */
252                 REG_RULE(5745-10, 5825+10, 80, 6, 20,
253                         NL80211_RRF_NO_IR),
254
255                 /* IEEE 802.11ad (60GHz), channels 1..3 */
256                 REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0),
257         }
258 };
259
260 /* protected by RTNL */
261 static const struct ieee80211_regdomain *cfg80211_world_regdom =
262         &world_regdom;
263
264 static char *ieee80211_regdom = "00";
265 static char user_alpha2[2];
266
267 module_param(ieee80211_regdom, charp, 0444);
268 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
269
270 static void reg_free_request(struct regulatory_request *request)
271 {
272         if (request == &core_request_world)
273                 return;
274
275         if (request != get_last_request())
276                 kfree(request);
277 }
278
279 static void reg_free_last_request(void)
280 {
281         struct regulatory_request *lr = get_last_request();
282
283         if (lr != &core_request_world && lr)
284                 kfree_rcu(lr, rcu_head);
285 }
286
287 static void reg_update_last_request(struct regulatory_request *request)
288 {
289         struct regulatory_request *lr;
290
291         lr = get_last_request();
292         if (lr == request)
293                 return;
294
295         reg_free_last_request();
296         rcu_assign_pointer(last_request, request);
297 }
298
299 static void reset_regdomains(bool full_reset,
300                              const struct ieee80211_regdomain *new_regdom)
301 {
302         const struct ieee80211_regdomain *r;
303
304         ASSERT_RTNL();
305
306         r = get_cfg80211_regdom();
307
308         /* avoid freeing static information or freeing something twice */
309         if (r == cfg80211_world_regdom)
310                 r = NULL;
311         if (cfg80211_world_regdom == &world_regdom)
312                 cfg80211_world_regdom = NULL;
313         if (r == &world_regdom)
314                 r = NULL;
315
316         rcu_free_regdom(r);
317         rcu_free_regdom(cfg80211_world_regdom);
318
319         cfg80211_world_regdom = &world_regdom;
320         rcu_assign_pointer(cfg80211_regdomain, new_regdom);
321
322         if (!full_reset)
323                 return;
324
325         reg_update_last_request(&core_request_world);
326 }
327
328 /*
329  * Dynamic world regulatory domain requested by the wireless
330  * core upon initialization
331  */
332 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
333 {
334         struct regulatory_request *lr;
335
336         lr = get_last_request();
337
338         WARN_ON(!lr);
339
340         reset_regdomains(false, rd);
341
342         cfg80211_world_regdom = rd;
343 }
344
345 bool is_world_regdom(const char *alpha2)
346 {
347         if (!alpha2)
348                 return false;
349         return alpha2[0] == '0' && alpha2[1] == '0';
350 }
351
352 static bool is_alpha2_set(const char *alpha2)
353 {
354         if (!alpha2)
355                 return false;
356         return alpha2[0] && alpha2[1];
357 }
358
359 static bool is_unknown_alpha2(const char *alpha2)
360 {
361         if (!alpha2)
362                 return false;
363         /*
364          * Special case where regulatory domain was built by driver
365          * but a specific alpha2 cannot be determined
366          */
367         return alpha2[0] == '9' && alpha2[1] == '9';
368 }
369
370 static bool is_intersected_alpha2(const char *alpha2)
371 {
372         if (!alpha2)
373                 return false;
374         /*
375          * Special case where regulatory domain is the
376          * result of an intersection between two regulatory domain
377          * structures
378          */
379         return alpha2[0] == '9' && alpha2[1] == '8';
380 }
381
382 static bool is_an_alpha2(const char *alpha2)
383 {
384         if (!alpha2)
385                 return false;
386         return isalpha(alpha2[0]) && isalpha(alpha2[1]);
387 }
388
389 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
390 {
391         if (!alpha2_x || !alpha2_y)
392                 return false;
393         return alpha2_x[0] == alpha2_y[0] && alpha2_x[1] == alpha2_y[1];
394 }
395
396 static bool regdom_changes(const char *alpha2)
397 {
398         const struct ieee80211_regdomain *r = get_cfg80211_regdom();
399
400         if (!r)
401                 return true;
402         return !alpha2_equal(r->alpha2, alpha2);
403 }
404
405 /*
406  * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
407  * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
408  * has ever been issued.
409  */
410 static bool is_user_regdom_saved(void)
411 {
412         if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
413                 return false;
414
415         /* This would indicate a mistake on the design */
416         if (WARN(!is_world_regdom(user_alpha2) && !is_an_alpha2(user_alpha2),
417                  "Unexpected user alpha2: %c%c\n",
418                  user_alpha2[0], user_alpha2[1]))
419                 return false;
420
421         return true;
422 }
423
424 static const struct ieee80211_regdomain *
425 reg_copy_regd(const struct ieee80211_regdomain *src_regd)
426 {
427         struct ieee80211_regdomain *regd;
428         int size_of_regd, size_of_wmms;
429         unsigned int i;
430         struct ieee80211_wmm_rule *d_wmm, *s_wmm;
431
432         size_of_regd =
433                 sizeof(struct ieee80211_regdomain) +
434                 src_regd->n_reg_rules * sizeof(struct ieee80211_reg_rule);
435         size_of_wmms = src_regd->n_wmm_rules *
436                 sizeof(struct ieee80211_wmm_rule);
437
438         regd = kzalloc(size_of_regd + size_of_wmms, GFP_KERNEL);
439         if (!regd)
440                 return ERR_PTR(-ENOMEM);
441
442         memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
443
444         d_wmm = (struct ieee80211_wmm_rule *)((u8 *)regd + size_of_regd);
445         s_wmm = (struct ieee80211_wmm_rule *)((u8 *)src_regd + size_of_regd);
446         memcpy(d_wmm, s_wmm, size_of_wmms);
447
448         for (i = 0; i < src_regd->n_reg_rules; i++) {
449                 memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
450                        sizeof(struct ieee80211_reg_rule));
451                 if (!src_regd->reg_rules[i].wmm_rule)
452                         continue;
453
454                 regd->reg_rules[i].wmm_rule = d_wmm +
455                         (src_regd->reg_rules[i].wmm_rule - s_wmm) /
456                         sizeof(struct ieee80211_wmm_rule);
457         }
458         return regd;
459 }
460
461 struct reg_regdb_apply_request {
462         struct list_head list;
463         const struct ieee80211_regdomain *regdom;
464 };
465
466 static LIST_HEAD(reg_regdb_apply_list);
467 static DEFINE_MUTEX(reg_regdb_apply_mutex);
468
469 static void reg_regdb_apply(struct work_struct *work)
470 {
471         struct reg_regdb_apply_request *request;
472
473         rtnl_lock();
474
475         mutex_lock(&reg_regdb_apply_mutex);
476         while (!list_empty(&reg_regdb_apply_list)) {
477                 request = list_first_entry(&reg_regdb_apply_list,
478                                            struct reg_regdb_apply_request,
479                                            list);
480                 list_del(&request->list);
481
482                 set_regdom(request->regdom, REGD_SOURCE_INTERNAL_DB);
483                 kfree(request);
484         }
485         mutex_unlock(&reg_regdb_apply_mutex);
486
487         rtnl_unlock();
488 }
489
490 static DECLARE_WORK(reg_regdb_work, reg_regdb_apply);
491
492 static int reg_schedule_apply(const struct ieee80211_regdomain *regdom)
493 {
494         struct reg_regdb_apply_request *request;
495
496         request = kzalloc(sizeof(struct reg_regdb_apply_request), GFP_KERNEL);
497         if (!request) {
498                 kfree(regdom);
499                 return -ENOMEM;
500         }
501
502         request->regdom = regdom;
503
504         mutex_lock(&reg_regdb_apply_mutex);
505         list_add_tail(&request->list, &reg_regdb_apply_list);
506         mutex_unlock(&reg_regdb_apply_mutex);
507
508         schedule_work(&reg_regdb_work);
509         return 0;
510 }
511
512 #ifdef CONFIG_CFG80211_CRDA_SUPPORT
513 /* Max number of consecutive attempts to communicate with CRDA  */
514 #define REG_MAX_CRDA_TIMEOUTS 10
515
516 static u32 reg_crda_timeouts;
517
518 static void crda_timeout_work(struct work_struct *work);
519 static DECLARE_DELAYED_WORK(crda_timeout, crda_timeout_work);
520
521 static void crda_timeout_work(struct work_struct *work)
522 {
523         pr_debug("Timeout while waiting for CRDA to reply, restoring regulatory settings\n");
524         rtnl_lock();
525         reg_crda_timeouts++;
526         restore_regulatory_settings(true);
527         rtnl_unlock();
528 }
529
530 static void cancel_crda_timeout(void)
531 {
532         cancel_delayed_work(&crda_timeout);
533 }
534
535 static void cancel_crda_timeout_sync(void)
536 {
537         cancel_delayed_work_sync(&crda_timeout);
538 }
539
540 static void reset_crda_timeouts(void)
541 {
542         reg_crda_timeouts = 0;
543 }
544
545 /*
546  * This lets us keep regulatory code which is updated on a regulatory
547  * basis in userspace.
548  */
549 static int call_crda(const char *alpha2)
550 {
551         char country[12];
552         char *env[] = { country, NULL };
553         int ret;
554
555         snprintf(country, sizeof(country), "COUNTRY=%c%c",
556                  alpha2[0], alpha2[1]);
557
558         if (reg_crda_timeouts > REG_MAX_CRDA_TIMEOUTS) {
559                 pr_debug("Exceeded CRDA call max attempts. Not calling CRDA\n");
560                 return -EINVAL;
561         }
562
563         if (!is_world_regdom((char *) alpha2))
564                 pr_debug("Calling CRDA for country: %c%c\n",
565                          alpha2[0], alpha2[1]);
566         else
567                 pr_debug("Calling CRDA to update world regulatory domain\n");
568
569         ret = kobject_uevent_env(&reg_pdev->dev.kobj, KOBJ_CHANGE, env);
570         if (ret)
571                 return ret;
572
573         queue_delayed_work(system_power_efficient_wq,
574                            &crda_timeout, msecs_to_jiffies(3142));
575         return 0;
576 }
577 #else
578 static inline void cancel_crda_timeout(void) {}
579 static inline void cancel_crda_timeout_sync(void) {}
580 static inline void reset_crda_timeouts(void) {}
581 static inline int call_crda(const char *alpha2)
582 {
583         return -ENODATA;
584 }
585 #endif /* CONFIG_CFG80211_CRDA_SUPPORT */
586
587 /* code to directly load a firmware database through request_firmware */
588 static const struct fwdb_header *regdb;
589
590 struct fwdb_country {
591         u8 alpha2[2];
592         __be16 coll_ptr;
593         /* this struct cannot be extended */
594 } __packed __aligned(4);
595
596 struct fwdb_collection {
597         u8 len;
598         u8 n_rules;
599         u8 dfs_region;
600         /* no optional data yet */
601         /* aligned to 2, then followed by __be16 array of rule pointers */
602 } __packed __aligned(4);
603
604 enum fwdb_flags {
605         FWDB_FLAG_NO_OFDM       = BIT(0),
606         FWDB_FLAG_NO_OUTDOOR    = BIT(1),
607         FWDB_FLAG_DFS           = BIT(2),
608         FWDB_FLAG_NO_IR         = BIT(3),
609         FWDB_FLAG_AUTO_BW       = BIT(4),
610 };
611
612 struct fwdb_wmm_ac {
613         u8 ecw;
614         u8 aifsn;
615         __be16 cot;
616 } __packed;
617
618 struct fwdb_wmm_rule {
619         struct fwdb_wmm_ac client[IEEE80211_NUM_ACS];
620         struct fwdb_wmm_ac ap[IEEE80211_NUM_ACS];
621 } __packed;
622
623 struct fwdb_rule {
624         u8 len;
625         u8 flags;
626         __be16 max_eirp;
627         __be32 start, end, max_bw;
628         /* start of optional data */
629         __be16 cac_timeout;
630         __be16 wmm_ptr;
631 } __packed __aligned(4);
632
633 #define FWDB_MAGIC 0x52474442
634 #define FWDB_VERSION 20
635
636 struct fwdb_header {
637         __be32 magic;
638         __be32 version;
639         struct fwdb_country country[];
640 } __packed __aligned(4);
641
642 static int ecw2cw(int ecw)
643 {
644         return (1 << ecw) - 1;
645 }
646
647 static bool valid_wmm(struct fwdb_wmm_rule *rule)
648 {
649         struct fwdb_wmm_ac *ac = (struct fwdb_wmm_ac *)rule;
650         int i;
651
652         for (i = 0; i < IEEE80211_NUM_ACS * 2; i++) {
653                 u16 cw_min = ecw2cw((ac[i].ecw & 0xf0) >> 4);
654                 u16 cw_max = ecw2cw(ac[i].ecw & 0x0f);
655                 u8 aifsn = ac[i].aifsn;
656
657                 if (cw_min >= cw_max)
658                         return false;
659
660                 if (aifsn < 1)
661                         return false;
662         }
663
664         return true;
665 }
666
667 static bool valid_rule(const u8 *data, unsigned int size, u16 rule_ptr)
668 {
669         struct fwdb_rule *rule = (void *)(data + (rule_ptr << 2));
670
671         if ((u8 *)rule + sizeof(rule->len) > data + size)
672                 return false;
673
674         /* mandatory fields */
675         if (rule->len < offsetofend(struct fwdb_rule, max_bw))
676                 return false;
677         if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr)) {
678                 u32 wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2;
679                 struct fwdb_wmm_rule *wmm;
680
681                 if (wmm_ptr + sizeof(struct fwdb_wmm_rule) > size)
682                         return false;
683
684                 wmm = (void *)(data + wmm_ptr);
685
686                 if (!valid_wmm(wmm))
687                         return false;
688         }
689         return true;
690 }
691
692 static bool valid_country(const u8 *data, unsigned int size,
693                           const struct fwdb_country *country)
694 {
695         unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
696         struct fwdb_collection *coll = (void *)(data + ptr);
697         __be16 *rules_ptr;
698         unsigned int i;
699
700         /* make sure we can read len/n_rules */
701         if ((u8 *)coll + offsetofend(typeof(*coll), n_rules) > data + size)
702                 return false;
703
704         /* make sure base struct and all rules fit */
705         if ((u8 *)coll + ALIGN(coll->len, 2) +
706             (coll->n_rules * 2) > data + size)
707                 return false;
708
709         /* mandatory fields must exist */
710         if (coll->len < offsetofend(struct fwdb_collection, dfs_region))
711                 return false;
712
713         rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
714
715         for (i = 0; i < coll->n_rules; i++) {
716                 u16 rule_ptr = be16_to_cpu(rules_ptr[i]);
717
718                 if (!valid_rule(data, size, rule_ptr))
719                         return false;
720         }
721
722         return true;
723 }
724
725 #ifdef CONFIG_CFG80211_REQUIRE_SIGNED_REGDB
726 static struct key *builtin_regdb_keys;
727
728 static void __init load_keys_from_buffer(const u8 *p, unsigned int buflen)
729 {
730         const u8 *end = p + buflen;
731         size_t plen;
732         key_ref_t key;
733
734         while (p < end) {
735                 /* Each cert begins with an ASN.1 SEQUENCE tag and must be more
736                  * than 256 bytes in size.
737                  */
738                 if (end - p < 4)
739                         goto dodgy_cert;
740                 if (p[0] != 0x30 &&
741                     p[1] != 0x82)
742                         goto dodgy_cert;
743                 plen = (p[2] << 8) | p[3];
744                 plen += 4;
745                 if (plen > end - p)
746                         goto dodgy_cert;
747
748                 key = key_create_or_update(make_key_ref(builtin_regdb_keys, 1),
749                                            "asymmetric", NULL, p, plen,
750                                            ((KEY_POS_ALL & ~KEY_POS_SETATTR) |
751                                             KEY_USR_VIEW | KEY_USR_READ),
752                                            KEY_ALLOC_NOT_IN_QUOTA |
753                                            KEY_ALLOC_BUILT_IN |
754                                            KEY_ALLOC_BYPASS_RESTRICTION);
755                 if (IS_ERR(key)) {
756                         pr_err("Problem loading in-kernel X.509 certificate (%ld)\n",
757                                PTR_ERR(key));
758                 } else {
759                         pr_notice("Loaded X.509 cert '%s'\n",
760                                   key_ref_to_ptr(key)->description);
761                         key_ref_put(key);
762                 }
763                 p += plen;
764         }
765
766         return;
767
768 dodgy_cert:
769         pr_err("Problem parsing in-kernel X.509 certificate list\n");
770 }
771
772 static int __init load_builtin_regdb_keys(void)
773 {
774         builtin_regdb_keys =
775                 keyring_alloc(".builtin_regdb_keys",
776                               KUIDT_INIT(0), KGIDT_INIT(0), current_cred(),
777                               ((KEY_POS_ALL & ~KEY_POS_SETATTR) |
778                               KEY_USR_VIEW | KEY_USR_READ | KEY_USR_SEARCH),
779                               KEY_ALLOC_NOT_IN_QUOTA, NULL, NULL);
780         if (IS_ERR(builtin_regdb_keys))
781                 return PTR_ERR(builtin_regdb_keys);
782
783         pr_notice("Loading compiled-in X.509 certificates for regulatory database\n");
784
785 #ifdef CONFIG_CFG80211_USE_KERNEL_REGDB_KEYS
786         load_keys_from_buffer(shipped_regdb_certs, shipped_regdb_certs_len);
787 #endif
788 #ifdef CONFIG_CFG80211_EXTRA_REGDB_KEYDIR
789         if (CONFIG_CFG80211_EXTRA_REGDB_KEYDIR[0] != '\0')
790                 load_keys_from_buffer(extra_regdb_certs, extra_regdb_certs_len);
791 #endif
792
793         return 0;
794 }
795
796 static bool regdb_has_valid_signature(const u8 *data, unsigned int size)
797 {
798         const struct firmware *sig;
799         bool result;
800
801         if (request_firmware(&sig, "regulatory.db.p7s", &reg_pdev->dev))
802                 return false;
803
804         result = verify_pkcs7_signature(data, size, sig->data, sig->size,
805                                         builtin_regdb_keys,
806                                         VERIFYING_UNSPECIFIED_SIGNATURE,
807                                         NULL, NULL) == 0;
808
809         release_firmware(sig);
810
811         return result;
812 }
813
814 static void free_regdb_keyring(void)
815 {
816         key_put(builtin_regdb_keys);
817 }
818 #else
819 static int load_builtin_regdb_keys(void)
820 {
821         return 0;
822 }
823
824 static bool regdb_has_valid_signature(const u8 *data, unsigned int size)
825 {
826         return true;
827 }
828
829 static void free_regdb_keyring(void)
830 {
831 }
832 #endif /* CONFIG_CFG80211_REQUIRE_SIGNED_REGDB */
833
834 static bool valid_regdb(const u8 *data, unsigned int size)
835 {
836         const struct fwdb_header *hdr = (void *)data;
837         const struct fwdb_country *country;
838
839         if (size < sizeof(*hdr))
840                 return false;
841
842         if (hdr->magic != cpu_to_be32(FWDB_MAGIC))
843                 return false;
844
845         if (hdr->version != cpu_to_be32(FWDB_VERSION))
846                 return false;
847
848         if (!regdb_has_valid_signature(data, size))
849                 return false;
850
851         country = &hdr->country[0];
852         while ((u8 *)(country + 1) <= data + size) {
853                 if (!country->coll_ptr)
854                         break;
855                 if (!valid_country(data, size, country))
856                         return false;
857                 country++;
858         }
859
860         return true;
861 }
862
863 static void set_wmm_rule(struct ieee80211_wmm_rule *rule,
864                          struct fwdb_wmm_rule *wmm)
865 {
866         unsigned int i;
867
868         for (i = 0; i < IEEE80211_NUM_ACS; i++) {
869                 rule->client[i].cw_min =
870                         ecw2cw((wmm->client[i].ecw & 0xf0) >> 4);
871                 rule->client[i].cw_max = ecw2cw(wmm->client[i].ecw & 0x0f);
872                 rule->client[i].aifsn =  wmm->client[i].aifsn;
873                 rule->client[i].cot = 1000 * be16_to_cpu(wmm->client[i].cot);
874                 rule->ap[i].cw_min = ecw2cw((wmm->ap[i].ecw & 0xf0) >> 4);
875                 rule->ap[i].cw_max = ecw2cw(wmm->ap[i].ecw & 0x0f);
876                 rule->ap[i].aifsn = wmm->ap[i].aifsn;
877                 rule->ap[i].cot = 1000 * be16_to_cpu(wmm->ap[i].cot);
878         }
879 }
880
881 static int __regdb_query_wmm(const struct fwdb_header *db,
882                              const struct fwdb_country *country, int freq,
883                              u32 *dbptr, struct ieee80211_wmm_rule *rule)
884 {
885         unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
886         struct fwdb_collection *coll = (void *)((u8 *)db + ptr);
887         int i;
888
889         for (i = 0; i < coll->n_rules; i++) {
890                 __be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
891                 unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2;
892                 struct fwdb_rule *rrule = (void *)((u8 *)db + rule_ptr);
893                 struct fwdb_wmm_rule *wmm;
894                 unsigned int wmm_ptr;
895
896                 if (rrule->len < offsetofend(struct fwdb_rule, wmm_ptr))
897                         continue;
898
899                 if (freq >= KHZ_TO_MHZ(be32_to_cpu(rrule->start)) &&
900                     freq <= KHZ_TO_MHZ(be32_to_cpu(rrule->end))) {
901                         wmm_ptr = be16_to_cpu(rrule->wmm_ptr) << 2;
902                         wmm = (void *)((u8 *)db + wmm_ptr);
903                         set_wmm_rule(rule, wmm);
904                         if (dbptr)
905                                 *dbptr = wmm_ptr;
906                         return 0;
907                 }
908         }
909
910         return -ENODATA;
911 }
912
913 int reg_query_regdb_wmm(char *alpha2, int freq, u32 *dbptr,
914                         struct ieee80211_wmm_rule *rule)
915 {
916         const struct fwdb_header *hdr = regdb;
917         const struct fwdb_country *country;
918
919         if (!regdb)
920                 return -ENODATA;
921
922         if (IS_ERR(regdb))
923                 return PTR_ERR(regdb);
924
925         country = &hdr->country[0];
926         while (country->coll_ptr) {
927                 if (alpha2_equal(alpha2, country->alpha2))
928                         return __regdb_query_wmm(regdb, country, freq, dbptr,
929                                                  rule);
930
931                 country++;
932         }
933
934         return -ENODATA;
935 }
936 EXPORT_SYMBOL(reg_query_regdb_wmm);
937
938 struct wmm_ptrs {
939         struct ieee80211_wmm_rule *rule;
940         u32 ptr;
941 };
942
943 static struct ieee80211_wmm_rule *find_wmm_ptr(struct wmm_ptrs *wmm_ptrs,
944                                                u32 wmm_ptr, int n_wmms)
945 {
946         int i;
947
948         for (i = 0; i < n_wmms; i++) {
949                 if (wmm_ptrs[i].ptr == wmm_ptr)
950                         return wmm_ptrs[i].rule;
951         }
952         return NULL;
953 }
954
955 static int regdb_query_country(const struct fwdb_header *db,
956                                const struct fwdb_country *country)
957 {
958         unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
959         struct fwdb_collection *coll = (void *)((u8 *)db + ptr);
960         struct ieee80211_regdomain *regdom;
961         struct ieee80211_regdomain *tmp_rd;
962         unsigned int size_of_regd, i, n_wmms = 0;
963         struct wmm_ptrs *wmm_ptrs;
964
965         size_of_regd = sizeof(struct ieee80211_regdomain) +
966                 coll->n_rules * sizeof(struct ieee80211_reg_rule);
967
968         regdom = kzalloc(size_of_regd, GFP_KERNEL);
969         if (!regdom)
970                 return -ENOMEM;
971
972         wmm_ptrs = kcalloc(coll->n_rules, sizeof(*wmm_ptrs), GFP_KERNEL);
973         if (!wmm_ptrs) {
974                 kfree(regdom);
975                 return -ENOMEM;
976         }
977
978         regdom->n_reg_rules = coll->n_rules;
979         regdom->alpha2[0] = country->alpha2[0];
980         regdom->alpha2[1] = country->alpha2[1];
981         regdom->dfs_region = coll->dfs_region;
982
983         for (i = 0; i < regdom->n_reg_rules; i++) {
984                 __be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
985                 unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2;
986                 struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr);
987                 struct ieee80211_reg_rule *rrule = &regdom->reg_rules[i];
988
989                 rrule->freq_range.start_freq_khz = be32_to_cpu(rule->start);
990                 rrule->freq_range.end_freq_khz = be32_to_cpu(rule->end);
991                 rrule->freq_range.max_bandwidth_khz = be32_to_cpu(rule->max_bw);
992
993                 rrule->power_rule.max_antenna_gain = 0;
994                 rrule->power_rule.max_eirp = be16_to_cpu(rule->max_eirp);
995
996                 rrule->flags = 0;
997                 if (rule->flags & FWDB_FLAG_NO_OFDM)
998                         rrule->flags |= NL80211_RRF_NO_OFDM;
999                 if (rule->flags & FWDB_FLAG_NO_OUTDOOR)
1000                         rrule->flags |= NL80211_RRF_NO_OUTDOOR;
1001                 if (rule->flags & FWDB_FLAG_DFS)
1002                         rrule->flags |= NL80211_RRF_DFS;
1003                 if (rule->flags & FWDB_FLAG_NO_IR)
1004                         rrule->flags |= NL80211_RRF_NO_IR;
1005                 if (rule->flags & FWDB_FLAG_AUTO_BW)
1006                         rrule->flags |= NL80211_RRF_AUTO_BW;
1007
1008                 rrule->dfs_cac_ms = 0;
1009
1010                 /* handle optional data */
1011                 if (rule->len >= offsetofend(struct fwdb_rule, cac_timeout))
1012                         rrule->dfs_cac_ms =
1013                                 1000 * be16_to_cpu(rule->cac_timeout);
1014                 if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr)) {
1015                         u32 wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2;
1016                         struct ieee80211_wmm_rule *wmm_pos =
1017                                 find_wmm_ptr(wmm_ptrs, wmm_ptr, n_wmms);
1018                         struct fwdb_wmm_rule *wmm;
1019                         struct ieee80211_wmm_rule *wmm_rule;
1020
1021                         if (wmm_pos) {
1022                                 rrule->wmm_rule = wmm_pos;
1023                                 continue;
1024                         }
1025                         wmm = (void *)((u8 *)db + wmm_ptr);
1026                         tmp_rd = krealloc(regdom, size_of_regd + (n_wmms + 1) *
1027                                           sizeof(struct ieee80211_wmm_rule),
1028                                           GFP_KERNEL);
1029
1030                         if (!tmp_rd) {
1031                                 kfree(regdom);
1032                                 kfree(wmm_ptrs);
1033                                 return -ENOMEM;
1034                         }
1035                         regdom = tmp_rd;
1036
1037                         wmm_rule = (struct ieee80211_wmm_rule *)
1038                                 ((u8 *)regdom + size_of_regd + n_wmms *
1039                                 sizeof(struct ieee80211_wmm_rule));
1040
1041                         set_wmm_rule(wmm_rule, wmm);
1042                         wmm_ptrs[n_wmms].ptr = wmm_ptr;
1043                         wmm_ptrs[n_wmms++].rule = wmm_rule;
1044                 }
1045         }
1046         kfree(wmm_ptrs);
1047
1048         return reg_schedule_apply(regdom);
1049 }
1050
1051 static int query_regdb(const char *alpha2)
1052 {
1053         const struct fwdb_header *hdr = regdb;
1054         const struct fwdb_country *country;
1055
1056         ASSERT_RTNL();
1057
1058         if (IS_ERR(regdb))
1059                 return PTR_ERR(regdb);
1060
1061         country = &hdr->country[0];
1062         while (country->coll_ptr) {
1063                 if (alpha2_equal(alpha2, country->alpha2))
1064                         return regdb_query_country(regdb, country);
1065                 country++;
1066         }
1067
1068         return -ENODATA;
1069 }
1070
1071 static void regdb_fw_cb(const struct firmware *fw, void *context)
1072 {
1073         int set_error = 0;
1074         bool restore = true;
1075         void *db;
1076
1077         if (!fw) {
1078                 pr_info("failed to load regulatory.db\n");
1079                 set_error = -ENODATA;
1080         } else if (!valid_regdb(fw->data, fw->size)) {
1081                 pr_info("loaded regulatory.db is malformed or signature is missing/invalid\n");
1082                 set_error = -EINVAL;
1083         }
1084
1085         rtnl_lock();
1086         if (WARN_ON(regdb && !IS_ERR(regdb))) {
1087                 /* just restore and free new db */
1088         } else if (set_error) {
1089                 regdb = ERR_PTR(set_error);
1090         } else if (fw) {
1091                 db = kmemdup(fw->data, fw->size, GFP_KERNEL);
1092                 if (db) {
1093                         regdb = db;
1094                         restore = context && query_regdb(context);
1095                 } else {
1096                         restore = true;
1097                 }
1098         }
1099
1100         if (restore)
1101                 restore_regulatory_settings(true);
1102
1103         rtnl_unlock();
1104
1105         kfree(context);
1106
1107         release_firmware(fw);
1108 }
1109
1110 static int query_regdb_file(const char *alpha2)
1111 {
1112         ASSERT_RTNL();
1113
1114         if (regdb)
1115                 return query_regdb(alpha2);
1116
1117         alpha2 = kmemdup(alpha2, 2, GFP_KERNEL);
1118         if (!alpha2)
1119                 return -ENOMEM;
1120
1121         return request_firmware_nowait(THIS_MODULE, true, "regulatory.db",
1122                                        &reg_pdev->dev, GFP_KERNEL,
1123                                        (void *)alpha2, regdb_fw_cb);
1124 }
1125
1126 int reg_reload_regdb(void)
1127 {
1128         const struct firmware *fw;
1129         void *db;
1130         int err;
1131
1132         err = request_firmware(&fw, "regulatory.db", &reg_pdev->dev);
1133         if (err)
1134                 return err;
1135
1136         if (!valid_regdb(fw->data, fw->size)) {
1137                 err = -ENODATA;
1138                 goto out;
1139         }
1140
1141         db = kmemdup(fw->data, fw->size, GFP_KERNEL);
1142         if (!db) {
1143                 err = -ENOMEM;
1144                 goto out;
1145         }
1146
1147         rtnl_lock();
1148         if (!IS_ERR_OR_NULL(regdb))
1149                 kfree(regdb);
1150         regdb = db;
1151         rtnl_unlock();
1152
1153  out:
1154         release_firmware(fw);
1155         return err;
1156 }
1157
1158 static bool reg_query_database(struct regulatory_request *request)
1159 {
1160         if (query_regdb_file(request->alpha2) == 0)
1161                 return true;
1162
1163         if (call_crda(request->alpha2) == 0)
1164                 return true;
1165
1166         return false;
1167 }
1168
1169 bool reg_is_valid_request(const char *alpha2)
1170 {
1171         struct regulatory_request *lr = get_last_request();
1172
1173         if (!lr || lr->processed)
1174                 return false;
1175
1176         return alpha2_equal(lr->alpha2, alpha2);
1177 }
1178
1179 static const struct ieee80211_regdomain *reg_get_regdomain(struct wiphy *wiphy)
1180 {
1181         struct regulatory_request *lr = get_last_request();
1182
1183         /*
1184          * Follow the driver's regulatory domain, if present, unless a country
1185          * IE has been processed or a user wants to help complaince further
1186          */
1187         if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1188             lr->initiator != NL80211_REGDOM_SET_BY_USER &&
1189             wiphy->regd)
1190                 return get_wiphy_regdom(wiphy);
1191
1192         return get_cfg80211_regdom();
1193 }
1194
1195 static unsigned int
1196 reg_get_max_bandwidth_from_range(const struct ieee80211_regdomain *rd,
1197                                  const struct ieee80211_reg_rule *rule)
1198 {
1199         const struct ieee80211_freq_range *freq_range = &rule->freq_range;
1200         const struct ieee80211_freq_range *freq_range_tmp;
1201         const struct ieee80211_reg_rule *tmp;
1202         u32 start_freq, end_freq, idx, no;
1203
1204         for (idx = 0; idx < rd->n_reg_rules; idx++)
1205                 if (rule == &rd->reg_rules[idx])
1206                         break;
1207
1208         if (idx == rd->n_reg_rules)
1209                 return 0;
1210
1211         /* get start_freq */
1212         no = idx;
1213
1214         while (no) {
1215                 tmp = &rd->reg_rules[--no];
1216                 freq_range_tmp = &tmp->freq_range;
1217
1218                 if (freq_range_tmp->end_freq_khz < freq_range->start_freq_khz)
1219                         break;
1220
1221                 freq_range = freq_range_tmp;
1222         }
1223
1224         start_freq = freq_range->start_freq_khz;
1225
1226         /* get end_freq */
1227         freq_range = &rule->freq_range;
1228         no = idx;
1229
1230         while (no < rd->n_reg_rules - 1) {
1231                 tmp = &rd->reg_rules[++no];
1232                 freq_range_tmp = &tmp->freq_range;
1233
1234                 if (freq_range_tmp->start_freq_khz > freq_range->end_freq_khz)
1235                         break;
1236
1237                 freq_range = freq_range_tmp;
1238         }
1239
1240         end_freq = freq_range->end_freq_khz;
1241
1242         return end_freq - start_freq;
1243 }
1244
1245 unsigned int reg_get_max_bandwidth(const struct ieee80211_regdomain *rd,
1246                                    const struct ieee80211_reg_rule *rule)
1247 {
1248         unsigned int bw = reg_get_max_bandwidth_from_range(rd, rule);
1249
1250         if (rule->flags & NL80211_RRF_NO_160MHZ)
1251                 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(80));
1252         if (rule->flags & NL80211_RRF_NO_80MHZ)
1253                 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(40));
1254
1255         /*
1256          * HT40+/HT40- limits are handled per-channel. Only limit BW if both
1257          * are not allowed.
1258          */
1259         if (rule->flags & NL80211_RRF_NO_HT40MINUS &&
1260             rule->flags & NL80211_RRF_NO_HT40PLUS)
1261                 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(20));
1262
1263         return bw;
1264 }
1265
1266 /* Sanity check on a regulatory rule */
1267 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
1268 {
1269         const struct ieee80211_freq_range *freq_range = &rule->freq_range;
1270         u32 freq_diff;
1271
1272         if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
1273                 return false;
1274
1275         if (freq_range->start_freq_khz > freq_range->end_freq_khz)
1276                 return false;
1277
1278         freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
1279
1280         if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
1281             freq_range->max_bandwidth_khz > freq_diff)
1282                 return false;
1283
1284         return true;
1285 }
1286
1287 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
1288 {
1289         const struct ieee80211_reg_rule *reg_rule = NULL;
1290         unsigned int i;
1291
1292         if (!rd->n_reg_rules)
1293                 return false;
1294
1295         if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
1296                 return false;
1297
1298         for (i = 0; i < rd->n_reg_rules; i++) {
1299                 reg_rule = &rd->reg_rules[i];
1300                 if (!is_valid_reg_rule(reg_rule))
1301                         return false;
1302         }
1303
1304         return true;
1305 }
1306
1307 /**
1308  * freq_in_rule_band - tells us if a frequency is in a frequency band
1309  * @freq_range: frequency rule we want to query
1310  * @freq_khz: frequency we are inquiring about
1311  *
1312  * This lets us know if a specific frequency rule is or is not relevant to
1313  * a specific frequency's band. Bands are device specific and artificial
1314  * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"),
1315  * however it is safe for now to assume that a frequency rule should not be
1316  * part of a frequency's band if the start freq or end freq are off by more
1317  * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 10 GHz for the
1318  * 60 GHz band.
1319  * This resolution can be lowered and should be considered as we add
1320  * regulatory rule support for other "bands".
1321  **/
1322 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
1323                               u32 freq_khz)
1324 {
1325 #define ONE_GHZ_IN_KHZ  1000000
1326         /*
1327          * From 802.11ad: directional multi-gigabit (DMG):
1328          * Pertaining to operation in a frequency band containing a channel
1329          * with the Channel starting frequency above 45 GHz.
1330          */
1331         u32 limit = freq_khz > 45 * ONE_GHZ_IN_KHZ ?
1332                         10 * ONE_GHZ_IN_KHZ : 2 * ONE_GHZ_IN_KHZ;
1333         if (abs(freq_khz - freq_range->start_freq_khz) <= limit)
1334                 return true;
1335         if (abs(freq_khz - freq_range->end_freq_khz) <= limit)
1336                 return true;
1337         return false;
1338 #undef ONE_GHZ_IN_KHZ
1339 }
1340
1341 /*
1342  * Later on we can perhaps use the more restrictive DFS
1343  * region but we don't have information for that yet so
1344  * for now simply disallow conflicts.
1345  */
1346 static enum nl80211_dfs_regions
1347 reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1,
1348                          const enum nl80211_dfs_regions dfs_region2)
1349 {
1350         if (dfs_region1 != dfs_region2)
1351                 return NL80211_DFS_UNSET;
1352         return dfs_region1;
1353 }
1354
1355 /*
1356  * Helper for regdom_intersect(), this does the real
1357  * mathematical intersection fun
1358  */
1359 static int reg_rules_intersect(const struct ieee80211_regdomain *rd1,
1360                                const struct ieee80211_regdomain *rd2,
1361                                const struct ieee80211_reg_rule *rule1,
1362                                const struct ieee80211_reg_rule *rule2,
1363                                struct ieee80211_reg_rule *intersected_rule)
1364 {
1365         const struct ieee80211_freq_range *freq_range1, *freq_range2;
1366         struct ieee80211_freq_range *freq_range;
1367         const struct ieee80211_power_rule *power_rule1, *power_rule2;
1368         struct ieee80211_power_rule *power_rule;
1369         u32 freq_diff, max_bandwidth1, max_bandwidth2;
1370
1371         freq_range1 = &rule1->freq_range;
1372         freq_range2 = &rule2->freq_range;
1373         freq_range = &intersected_rule->freq_range;
1374
1375         power_rule1 = &rule1->power_rule;
1376         power_rule2 = &rule2->power_rule;
1377         power_rule = &intersected_rule->power_rule;
1378
1379         freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
1380                                          freq_range2->start_freq_khz);
1381         freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
1382                                        freq_range2->end_freq_khz);
1383
1384         max_bandwidth1 = freq_range1->max_bandwidth_khz;
1385         max_bandwidth2 = freq_range2->max_bandwidth_khz;
1386
1387         if (rule1->flags & NL80211_RRF_AUTO_BW)
1388                 max_bandwidth1 = reg_get_max_bandwidth(rd1, rule1);
1389         if (rule2->flags & NL80211_RRF_AUTO_BW)
1390                 max_bandwidth2 = reg_get_max_bandwidth(rd2, rule2);
1391
1392         freq_range->max_bandwidth_khz = min(max_bandwidth1, max_bandwidth2);
1393
1394         intersected_rule->flags = rule1->flags | rule2->flags;
1395
1396         /*
1397          * In case NL80211_RRF_AUTO_BW requested for both rules
1398          * set AUTO_BW in intersected rule also. Next we will
1399          * calculate BW correctly in handle_channel function.
1400          * In other case remove AUTO_BW flag while we calculate
1401          * maximum bandwidth correctly and auto calculation is
1402          * not required.
1403          */
1404         if ((rule1->flags & NL80211_RRF_AUTO_BW) &&
1405             (rule2->flags & NL80211_RRF_AUTO_BW))
1406                 intersected_rule->flags |= NL80211_RRF_AUTO_BW;
1407         else
1408                 intersected_rule->flags &= ~NL80211_RRF_AUTO_BW;
1409
1410         freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
1411         if (freq_range->max_bandwidth_khz > freq_diff)
1412                 freq_range->max_bandwidth_khz = freq_diff;
1413
1414         power_rule->max_eirp = min(power_rule1->max_eirp,
1415                 power_rule2->max_eirp);
1416         power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
1417                 power_rule2->max_antenna_gain);
1418
1419         intersected_rule->dfs_cac_ms = max(rule1->dfs_cac_ms,
1420                                            rule2->dfs_cac_ms);
1421
1422         if (!is_valid_reg_rule(intersected_rule))
1423                 return -EINVAL;
1424
1425         return 0;
1426 }
1427
1428 /* check whether old rule contains new rule */
1429 static bool rule_contains(struct ieee80211_reg_rule *r1,
1430                           struct ieee80211_reg_rule *r2)
1431 {
1432         /* for simplicity, currently consider only same flags */
1433         if (r1->flags != r2->flags)
1434                 return false;
1435
1436         /* verify r1 is more restrictive */
1437         if ((r1->power_rule.max_antenna_gain >
1438              r2->power_rule.max_antenna_gain) ||
1439             r1->power_rule.max_eirp > r2->power_rule.max_eirp)
1440                 return false;
1441
1442         /* make sure r2's range is contained within r1 */
1443         if (r1->freq_range.start_freq_khz > r2->freq_range.start_freq_khz ||
1444             r1->freq_range.end_freq_khz < r2->freq_range.end_freq_khz)
1445                 return false;
1446
1447         /* and finally verify that r1.max_bw >= r2.max_bw */
1448         if (r1->freq_range.max_bandwidth_khz <
1449             r2->freq_range.max_bandwidth_khz)
1450                 return false;
1451
1452         return true;
1453 }
1454
1455 /* add or extend current rules. do nothing if rule is already contained */
1456 static void add_rule(struct ieee80211_reg_rule *rule,
1457                      struct ieee80211_reg_rule *reg_rules, u32 *n_rules)
1458 {
1459         struct ieee80211_reg_rule *tmp_rule;
1460         int i;
1461
1462         for (i = 0; i < *n_rules; i++) {
1463                 tmp_rule = &reg_rules[i];
1464                 /* rule is already contained - do nothing */
1465                 if (rule_contains(tmp_rule, rule))
1466                         return;
1467
1468                 /* extend rule if possible */
1469                 if (rule_contains(rule, tmp_rule)) {
1470                         memcpy(tmp_rule, rule, sizeof(*rule));
1471                         return;
1472                 }
1473         }
1474
1475         memcpy(&reg_rules[*n_rules], rule, sizeof(*rule));
1476         (*n_rules)++;
1477 }
1478
1479 /**
1480  * regdom_intersect - do the intersection between two regulatory domains
1481  * @rd1: first regulatory domain
1482  * @rd2: second regulatory domain
1483  *
1484  * Use this function to get the intersection between two regulatory domains.
1485  * Once completed we will mark the alpha2 for the rd as intersected, "98",
1486  * as no one single alpha2 can represent this regulatory domain.
1487  *
1488  * Returns a pointer to the regulatory domain structure which will hold the
1489  * resulting intersection of rules between rd1 and rd2. We will
1490  * kzalloc() this structure for you.
1491  */
1492 static struct ieee80211_regdomain *
1493 regdom_intersect(const struct ieee80211_regdomain *rd1,
1494                  const struct ieee80211_regdomain *rd2)
1495 {
1496         int r, size_of_regd;
1497         unsigned int x, y;
1498         unsigned int num_rules = 0;
1499         const struct ieee80211_reg_rule *rule1, *rule2;
1500         struct ieee80211_reg_rule intersected_rule;
1501         struct ieee80211_regdomain *rd;
1502
1503         if (!rd1 || !rd2)
1504                 return NULL;
1505
1506         /*
1507          * First we get a count of the rules we'll need, then we actually
1508          * build them. This is to so we can malloc() and free() a
1509          * regdomain once. The reason we use reg_rules_intersect() here
1510          * is it will return -EINVAL if the rule computed makes no sense.
1511          * All rules that do check out OK are valid.
1512          */
1513
1514         for (x = 0; x < rd1->n_reg_rules; x++) {
1515                 rule1 = &rd1->reg_rules[x];
1516                 for (y = 0; y < rd2->n_reg_rules; y++) {
1517                         rule2 = &rd2->reg_rules[y];
1518                         if (!reg_rules_intersect(rd1, rd2, rule1, rule2,
1519                                                  &intersected_rule))
1520                                 num_rules++;
1521                 }
1522         }
1523
1524         if (!num_rules)
1525                 return NULL;
1526
1527         size_of_regd = sizeof(struct ieee80211_regdomain) +
1528                        num_rules * sizeof(struct ieee80211_reg_rule);
1529
1530         rd = kzalloc(size_of_regd, GFP_KERNEL);
1531         if (!rd)
1532                 return NULL;
1533
1534         for (x = 0; x < rd1->n_reg_rules; x++) {
1535                 rule1 = &rd1->reg_rules[x];
1536                 for (y = 0; y < rd2->n_reg_rules; y++) {
1537                         rule2 = &rd2->reg_rules[y];
1538                         r = reg_rules_intersect(rd1, rd2, rule1, rule2,
1539                                                 &intersected_rule);
1540                         /*
1541                          * No need to memset here the intersected rule here as
1542                          * we're not using the stack anymore
1543                          */
1544                         if (r)
1545                                 continue;
1546
1547                         add_rule(&intersected_rule, rd->reg_rules,
1548                                  &rd->n_reg_rules);
1549                 }
1550         }
1551
1552         rd->alpha2[0] = '9';
1553         rd->alpha2[1] = '8';
1554         rd->dfs_region = reg_intersect_dfs_region(rd1->dfs_region,
1555                                                   rd2->dfs_region);
1556
1557         return rd;
1558 }
1559
1560 /*
1561  * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
1562  * want to just have the channel structure use these
1563  */
1564 static u32 map_regdom_flags(u32 rd_flags)
1565 {
1566         u32 channel_flags = 0;
1567         if (rd_flags & NL80211_RRF_NO_IR_ALL)
1568                 channel_flags |= IEEE80211_CHAN_NO_IR;
1569         if (rd_flags & NL80211_RRF_DFS)
1570                 channel_flags |= IEEE80211_CHAN_RADAR;
1571         if (rd_flags & NL80211_RRF_NO_OFDM)
1572                 channel_flags |= IEEE80211_CHAN_NO_OFDM;
1573         if (rd_flags & NL80211_RRF_NO_OUTDOOR)
1574                 channel_flags |= IEEE80211_CHAN_INDOOR_ONLY;
1575         if (rd_flags & NL80211_RRF_IR_CONCURRENT)
1576                 channel_flags |= IEEE80211_CHAN_IR_CONCURRENT;
1577         if (rd_flags & NL80211_RRF_NO_HT40MINUS)
1578                 channel_flags |= IEEE80211_CHAN_NO_HT40MINUS;
1579         if (rd_flags & NL80211_RRF_NO_HT40PLUS)
1580                 channel_flags |= IEEE80211_CHAN_NO_HT40PLUS;
1581         if (rd_flags & NL80211_RRF_NO_80MHZ)
1582                 channel_flags |= IEEE80211_CHAN_NO_80MHZ;
1583         if (rd_flags & NL80211_RRF_NO_160MHZ)
1584                 channel_flags |= IEEE80211_CHAN_NO_160MHZ;
1585         return channel_flags;
1586 }
1587
1588 static const struct ieee80211_reg_rule *
1589 freq_reg_info_regd(u32 center_freq,
1590                    const struct ieee80211_regdomain *regd, u32 bw)
1591 {
1592         int i;
1593         bool band_rule_found = false;
1594         bool bw_fits = false;
1595
1596         if (!regd)
1597                 return ERR_PTR(-EINVAL);
1598
1599         for (i = 0; i < regd->n_reg_rules; i++) {
1600                 const struct ieee80211_reg_rule *rr;
1601                 const struct ieee80211_freq_range *fr = NULL;
1602
1603                 rr = &regd->reg_rules[i];
1604                 fr = &rr->freq_range;
1605
1606                 /*
1607                  * We only need to know if one frequency rule was
1608                  * was in center_freq's band, that's enough, so lets
1609                  * not overwrite it once found
1610                  */
1611                 if (!band_rule_found)
1612                         band_rule_found = freq_in_rule_band(fr, center_freq);
1613
1614                 bw_fits = cfg80211_does_bw_fit_range(fr, center_freq, bw);
1615
1616                 if (band_rule_found && bw_fits)
1617                         return rr;
1618         }
1619
1620         if (!band_rule_found)
1621                 return ERR_PTR(-ERANGE);
1622
1623         return ERR_PTR(-EINVAL);
1624 }
1625
1626 static const struct ieee80211_reg_rule *
1627 __freq_reg_info(struct wiphy *wiphy, u32 center_freq, u32 min_bw)
1628 {
1629         const struct ieee80211_regdomain *regd = reg_get_regdomain(wiphy);
1630         const struct ieee80211_reg_rule *reg_rule = NULL;
1631         u32 bw;
1632
1633         for (bw = MHZ_TO_KHZ(20); bw >= min_bw; bw = bw / 2) {
1634                 reg_rule = freq_reg_info_regd(center_freq, regd, bw);
1635                 if (!IS_ERR(reg_rule))
1636                         return reg_rule;
1637         }
1638
1639         return reg_rule;
1640 }
1641
1642 const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy,
1643                                                u32 center_freq)
1644 {
1645         return __freq_reg_info(wiphy, center_freq, MHZ_TO_KHZ(20));
1646 }
1647 EXPORT_SYMBOL(freq_reg_info);
1648
1649 const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
1650 {
1651         switch (initiator) {
1652         case NL80211_REGDOM_SET_BY_CORE:
1653                 return "core";
1654         case NL80211_REGDOM_SET_BY_USER:
1655                 return "user";
1656         case NL80211_REGDOM_SET_BY_DRIVER:
1657                 return "driver";
1658         case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1659                 return "country IE";
1660         default:
1661                 WARN_ON(1);
1662                 return "bug";
1663         }
1664 }
1665 EXPORT_SYMBOL(reg_initiator_name);
1666
1667 static uint32_t reg_rule_to_chan_bw_flags(const struct ieee80211_regdomain *regd,
1668                                           const struct ieee80211_reg_rule *reg_rule,
1669                                           const struct ieee80211_channel *chan)
1670 {
1671         const struct ieee80211_freq_range *freq_range = NULL;
1672         u32 max_bandwidth_khz, bw_flags = 0;
1673
1674         freq_range = &reg_rule->freq_range;
1675
1676         max_bandwidth_khz = freq_range->max_bandwidth_khz;
1677         /* Check if auto calculation requested */
1678         if (reg_rule->flags & NL80211_RRF_AUTO_BW)
1679                 max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule);
1680
1681         /* If we get a reg_rule we can assume that at least 5Mhz fit */
1682         if (!cfg80211_does_bw_fit_range(freq_range,
1683                                         MHZ_TO_KHZ(chan->center_freq),
1684                                         MHZ_TO_KHZ(10)))
1685                 bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1686         if (!cfg80211_does_bw_fit_range(freq_range,
1687                                         MHZ_TO_KHZ(chan->center_freq),
1688                                         MHZ_TO_KHZ(20)))
1689                 bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1690
1691         if (max_bandwidth_khz < MHZ_TO_KHZ(10))
1692                 bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1693         if (max_bandwidth_khz < MHZ_TO_KHZ(20))
1694                 bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1695         if (max_bandwidth_khz < MHZ_TO_KHZ(40))
1696                 bw_flags |= IEEE80211_CHAN_NO_HT40;
1697         if (max_bandwidth_khz < MHZ_TO_KHZ(80))
1698                 bw_flags |= IEEE80211_CHAN_NO_80MHZ;
1699         if (max_bandwidth_khz < MHZ_TO_KHZ(160))
1700                 bw_flags |= IEEE80211_CHAN_NO_160MHZ;
1701         return bw_flags;
1702 }
1703
1704 /*
1705  * Note that right now we assume the desired channel bandwidth
1706  * is always 20 MHz for each individual channel (HT40 uses 20 MHz
1707  * per channel, the primary and the extension channel).
1708  */
1709 static void handle_channel(struct wiphy *wiphy,
1710                            enum nl80211_reg_initiator initiator,
1711                            struct ieee80211_channel *chan)
1712 {
1713         u32 flags, bw_flags = 0;
1714         const struct ieee80211_reg_rule *reg_rule = NULL;
1715         const struct ieee80211_power_rule *power_rule = NULL;
1716         struct wiphy *request_wiphy = NULL;
1717         struct regulatory_request *lr = get_last_request();
1718         const struct ieee80211_regdomain *regd;
1719
1720         request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
1721
1722         flags = chan->orig_flags;
1723
1724         reg_rule = freq_reg_info(wiphy, MHZ_TO_KHZ(chan->center_freq));
1725         if (IS_ERR(reg_rule)) {
1726                 /*
1727                  * We will disable all channels that do not match our
1728                  * received regulatory rule unless the hint is coming
1729                  * from a Country IE and the Country IE had no information
1730                  * about a band. The IEEE 802.11 spec allows for an AP
1731                  * to send only a subset of the regulatory rules allowed,
1732                  * so an AP in the US that only supports 2.4 GHz may only send
1733                  * a country IE with information for the 2.4 GHz band
1734                  * while 5 GHz is still supported.
1735                  */
1736                 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1737                     PTR_ERR(reg_rule) == -ERANGE)
1738                         return;
1739
1740                 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1741                     request_wiphy && request_wiphy == wiphy &&
1742                     request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1743                         pr_debug("Disabling freq %d MHz for good\n",
1744                                  chan->center_freq);
1745                         chan->orig_flags |= IEEE80211_CHAN_DISABLED;
1746                         chan->flags = chan->orig_flags;
1747                 } else {
1748                         pr_debug("Disabling freq %d MHz\n",
1749                                  chan->center_freq);
1750                         chan->flags |= IEEE80211_CHAN_DISABLED;
1751                 }
1752                 return;
1753         }
1754
1755         regd = reg_get_regdomain(wiphy);
1756
1757         power_rule = &reg_rule->power_rule;
1758         bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
1759
1760         if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1761             request_wiphy && request_wiphy == wiphy &&
1762             request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1763                 /*
1764                  * This guarantees the driver's requested regulatory domain
1765                  * will always be used as a base for further regulatory
1766                  * settings
1767                  */
1768                 chan->flags = chan->orig_flags =
1769                         map_regdom_flags(reg_rule->flags) | bw_flags;
1770                 chan->max_antenna_gain = chan->orig_mag =
1771                         (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1772                 chan->max_reg_power = chan->max_power = chan->orig_mpwr =
1773                         (int) MBM_TO_DBM(power_rule->max_eirp);
1774
1775                 if (chan->flags & IEEE80211_CHAN_RADAR) {
1776                         chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1777                         if (reg_rule->dfs_cac_ms)
1778                                 chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1779                 }
1780
1781                 return;
1782         }
1783
1784         chan->dfs_state = NL80211_DFS_USABLE;
1785         chan->dfs_state_entered = jiffies;
1786
1787         chan->beacon_found = false;
1788         chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
1789         chan->max_antenna_gain =
1790                 min_t(int, chan->orig_mag,
1791                       MBI_TO_DBI(power_rule->max_antenna_gain));
1792         chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1793
1794         if (chan->flags & IEEE80211_CHAN_RADAR) {
1795                 if (reg_rule->dfs_cac_ms)
1796                         chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1797                 else
1798                         chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1799         }
1800
1801         if (chan->orig_mpwr) {
1802                 /*
1803                  * Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1804                  * will always follow the passed country IE power settings.
1805                  */
1806                 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1807                     wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER)
1808                         chan->max_power = chan->max_reg_power;
1809                 else
1810                         chan->max_power = min(chan->orig_mpwr,
1811                                               chan->max_reg_power);
1812         } else
1813                 chan->max_power = chan->max_reg_power;
1814 }
1815
1816 static void handle_band(struct wiphy *wiphy,
1817                         enum nl80211_reg_initiator initiator,
1818                         struct ieee80211_supported_band *sband)
1819 {
1820         unsigned int i;
1821
1822         if (!sband)
1823                 return;
1824
1825         for (i = 0; i < sband->n_channels; i++)
1826                 handle_channel(wiphy, initiator, &sband->channels[i]);
1827 }
1828
1829 static bool reg_request_cell_base(struct regulatory_request *request)
1830 {
1831         if (request->initiator != NL80211_REGDOM_SET_BY_USER)
1832                 return false;
1833         return request->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE;
1834 }
1835
1836 bool reg_last_request_cell_base(void)
1837 {
1838         return reg_request_cell_base(get_last_request());
1839 }
1840
1841 #ifdef CONFIG_CFG80211_REG_CELLULAR_HINTS
1842 /* Core specific check */
1843 static enum reg_request_treatment
1844 reg_ignore_cell_hint(struct regulatory_request *pending_request)
1845 {
1846         struct regulatory_request *lr = get_last_request();
1847
1848         if (!reg_num_devs_support_basehint)
1849                 return REG_REQ_IGNORE;
1850
1851         if (reg_request_cell_base(lr) &&
1852             !regdom_changes(pending_request->alpha2))
1853                 return REG_REQ_ALREADY_SET;
1854
1855         return REG_REQ_OK;
1856 }
1857
1858 /* Device specific check */
1859 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
1860 {
1861         return !(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS);
1862 }
1863 #else
1864 static enum reg_request_treatment
1865 reg_ignore_cell_hint(struct regulatory_request *pending_request)
1866 {
1867         return REG_REQ_IGNORE;
1868 }
1869
1870 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
1871 {
1872         return true;
1873 }
1874 #endif
1875
1876 static bool wiphy_strict_alpha2_regd(struct wiphy *wiphy)
1877 {
1878         if (wiphy->regulatory_flags & REGULATORY_STRICT_REG &&
1879             !(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG))
1880                 return true;
1881         return false;
1882 }
1883
1884 static bool ignore_reg_update(struct wiphy *wiphy,
1885                               enum nl80211_reg_initiator initiator)
1886 {
1887         struct regulatory_request *lr = get_last_request();
1888
1889         if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
1890                 return true;
1891
1892         if (!lr) {
1893                 pr_debug("Ignoring regulatory request set by %s since last_request is not set\n",
1894                          reg_initiator_name(initiator));
1895                 return true;
1896         }
1897
1898         if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1899             wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) {
1900                 pr_debug("Ignoring regulatory request set by %s since the driver uses its own custom regulatory domain\n",
1901                          reg_initiator_name(initiator));
1902                 return true;
1903         }
1904
1905         /*
1906          * wiphy->regd will be set once the device has its own
1907          * desired regulatory domain set
1908          */
1909         if (wiphy_strict_alpha2_regd(wiphy) && !wiphy->regd &&
1910             initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1911             !is_world_regdom(lr->alpha2)) {
1912                 pr_debug("Ignoring regulatory request set by %s since the driver requires its own regulatory domain to be set first\n",
1913                          reg_initiator_name(initiator));
1914                 return true;
1915         }
1916
1917         if (reg_request_cell_base(lr))
1918                 return reg_dev_ignore_cell_hint(wiphy);
1919
1920         return false;
1921 }
1922
1923 static bool reg_is_world_roaming(struct wiphy *wiphy)
1924 {
1925         const struct ieee80211_regdomain *cr = get_cfg80211_regdom();
1926         const struct ieee80211_regdomain *wr = get_wiphy_regdom(wiphy);
1927         struct regulatory_request *lr = get_last_request();
1928
1929         if (is_world_regdom(cr->alpha2) || (wr && is_world_regdom(wr->alpha2)))
1930                 return true;
1931
1932         if (lr && lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1933             wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
1934                 return true;
1935
1936         return false;
1937 }
1938
1939 static void handle_reg_beacon(struct wiphy *wiphy, unsigned int chan_idx,
1940                               struct reg_beacon *reg_beacon)
1941 {
1942         struct ieee80211_supported_band *sband;
1943         struct ieee80211_channel *chan;
1944         bool channel_changed = false;
1945         struct ieee80211_channel chan_before;
1946
1947         sband = wiphy->bands[reg_beacon->chan.band];
1948         chan = &sband->channels[chan_idx];
1949
1950         if (likely(chan->center_freq != reg_beacon->chan.center_freq))
1951                 return;
1952
1953         if (chan->beacon_found)
1954                 return;
1955
1956         chan->beacon_found = true;
1957
1958         if (!reg_is_world_roaming(wiphy))
1959                 return;
1960
1961         if (wiphy->regulatory_flags & REGULATORY_DISABLE_BEACON_HINTS)
1962                 return;
1963
1964         chan_before = *chan;
1965
1966         if (chan->flags & IEEE80211_CHAN_NO_IR) {
1967                 chan->flags &= ~IEEE80211_CHAN_NO_IR;
1968                 channel_changed = true;
1969         }
1970
1971         if (channel_changed)
1972                 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
1973 }
1974
1975 /*
1976  * Called when a scan on a wiphy finds a beacon on
1977  * new channel
1978  */
1979 static void wiphy_update_new_beacon(struct wiphy *wiphy,
1980                                     struct reg_beacon *reg_beacon)
1981 {
1982         unsigned int i;
1983         struct ieee80211_supported_band *sband;
1984
1985         if (!wiphy->bands[reg_beacon->chan.band])
1986                 return;
1987
1988         sband = wiphy->bands[reg_beacon->chan.band];
1989
1990         for (i = 0; i < sband->n_channels; i++)
1991                 handle_reg_beacon(wiphy, i, reg_beacon);
1992 }
1993
1994 /*
1995  * Called upon reg changes or a new wiphy is added
1996  */
1997 static void wiphy_update_beacon_reg(struct wiphy *wiphy)
1998 {
1999         unsigned int i;
2000         struct ieee80211_supported_band *sband;
2001         struct reg_beacon *reg_beacon;
2002
2003         list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
2004                 if (!wiphy->bands[reg_beacon->chan.band])
2005                         continue;
2006                 sband = wiphy->bands[reg_beacon->chan.band];
2007                 for (i = 0; i < sband->n_channels; i++)
2008                         handle_reg_beacon(wiphy, i, reg_beacon);
2009         }
2010 }
2011
2012 /* Reap the advantages of previously found beacons */
2013 static void reg_process_beacons(struct wiphy *wiphy)
2014 {
2015         /*
2016          * Means we are just firing up cfg80211, so no beacons would
2017          * have been processed yet.
2018          */
2019         if (!last_request)
2020                 return;
2021         wiphy_update_beacon_reg(wiphy);
2022 }
2023
2024 static bool is_ht40_allowed(struct ieee80211_channel *chan)
2025 {
2026         if (!chan)
2027                 return false;
2028         if (chan->flags & IEEE80211_CHAN_DISABLED)
2029                 return false;
2030         /* This would happen when regulatory rules disallow HT40 completely */
2031         if ((chan->flags & IEEE80211_CHAN_NO_HT40) == IEEE80211_CHAN_NO_HT40)
2032                 return false;
2033         return true;
2034 }
2035
2036 static void reg_process_ht_flags_channel(struct wiphy *wiphy,
2037                                          struct ieee80211_channel *channel)
2038 {
2039         struct ieee80211_supported_band *sband = wiphy->bands[channel->band];
2040         struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
2041         const struct ieee80211_regdomain *regd;
2042         unsigned int i;
2043         u32 flags;
2044
2045         if (!is_ht40_allowed(channel)) {
2046                 channel->flags |= IEEE80211_CHAN_NO_HT40;
2047                 return;
2048         }
2049
2050         /*
2051          * We need to ensure the extension channels exist to
2052          * be able to use HT40- or HT40+, this finds them (or not)
2053          */
2054         for (i = 0; i < sband->n_channels; i++) {
2055                 struct ieee80211_channel *c = &sband->channels[i];
2056
2057                 if (c->center_freq == (channel->center_freq - 20))
2058                         channel_before = c;
2059                 if (c->center_freq == (channel->center_freq + 20))
2060                         channel_after = c;
2061         }
2062
2063         flags = 0;
2064         regd = get_wiphy_regdom(wiphy);
2065         if (regd) {
2066                 const struct ieee80211_reg_rule *reg_rule =
2067                         freq_reg_info_regd(MHZ_TO_KHZ(channel->center_freq),
2068                                            regd, MHZ_TO_KHZ(20));
2069
2070                 if (!IS_ERR(reg_rule))
2071                         flags = reg_rule->flags;
2072         }
2073
2074         /*
2075          * Please note that this assumes target bandwidth is 20 MHz,
2076          * if that ever changes we also need to change the below logic
2077          * to include that as well.
2078          */
2079         if (!is_ht40_allowed(channel_before) ||
2080             flags & NL80211_RRF_NO_HT40MINUS)
2081                 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
2082         else
2083                 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
2084
2085         if (!is_ht40_allowed(channel_after) ||
2086             flags & NL80211_RRF_NO_HT40PLUS)
2087                 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
2088         else
2089                 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
2090 }
2091
2092 static void reg_process_ht_flags_band(struct wiphy *wiphy,
2093                                       struct ieee80211_supported_band *sband)
2094 {
2095         unsigned int i;
2096
2097         if (!sband)
2098                 return;
2099
2100         for (i = 0; i < sband->n_channels; i++)
2101                 reg_process_ht_flags_channel(wiphy, &sband->channels[i]);
2102 }
2103
2104 static void reg_process_ht_flags(struct wiphy *wiphy)
2105 {
2106         enum nl80211_band band;
2107
2108         if (!wiphy)
2109                 return;
2110
2111         for (band = 0; band < NUM_NL80211_BANDS; band++)
2112                 reg_process_ht_flags_band(wiphy, wiphy->bands[band]);
2113 }
2114
2115 static void reg_call_notifier(struct wiphy *wiphy,
2116                               struct regulatory_request *request)
2117 {
2118         if (wiphy->reg_notifier)
2119                 wiphy->reg_notifier(wiphy, request);
2120 }
2121
2122 static bool reg_wdev_chan_valid(struct wiphy *wiphy, struct wireless_dev *wdev)
2123 {
2124         struct cfg80211_chan_def chandef;
2125         struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2126         enum nl80211_iftype iftype;
2127
2128         wdev_lock(wdev);
2129         iftype = wdev->iftype;
2130
2131         /* make sure the interface is active */
2132         if (!wdev->netdev || !netif_running(wdev->netdev))
2133                 goto wdev_inactive_unlock;
2134
2135         switch (iftype) {
2136         case NL80211_IFTYPE_AP:
2137         case NL80211_IFTYPE_P2P_GO:
2138                 if (!wdev->beacon_interval)
2139                         goto wdev_inactive_unlock;
2140                 chandef = wdev->chandef;
2141                 break;
2142         case NL80211_IFTYPE_ADHOC:
2143                 if (!wdev->ssid_len)
2144                         goto wdev_inactive_unlock;
2145                 chandef = wdev->chandef;
2146                 break;
2147         case NL80211_IFTYPE_STATION:
2148         case NL80211_IFTYPE_P2P_CLIENT:
2149                 if (!wdev->current_bss ||
2150                     !wdev->current_bss->pub.channel)
2151                         goto wdev_inactive_unlock;
2152
2153                 if (!rdev->ops->get_channel ||
2154                     rdev_get_channel(rdev, wdev, &chandef))
2155                         cfg80211_chandef_create(&chandef,
2156                                                 wdev->current_bss->pub.channel,
2157                                                 NL80211_CHAN_NO_HT);
2158                 break;
2159         case NL80211_IFTYPE_MONITOR:
2160         case NL80211_IFTYPE_AP_VLAN:
2161         case NL80211_IFTYPE_P2P_DEVICE:
2162                 /* no enforcement required */
2163                 break;
2164         default:
2165                 /* others not implemented for now */
2166                 WARN_ON(1);
2167                 break;
2168         }
2169
2170         wdev_unlock(wdev);
2171
2172         switch (iftype) {
2173         case NL80211_IFTYPE_AP:
2174         case NL80211_IFTYPE_P2P_GO:
2175         case NL80211_IFTYPE_ADHOC:
2176                 return cfg80211_reg_can_beacon_relax(wiphy, &chandef, iftype);
2177         case NL80211_IFTYPE_STATION:
2178         case NL80211_IFTYPE_P2P_CLIENT:
2179                 return cfg80211_chandef_usable(wiphy, &chandef,
2180                                                IEEE80211_CHAN_DISABLED);
2181         default:
2182                 break;
2183         }
2184
2185         return true;
2186
2187 wdev_inactive_unlock:
2188         wdev_unlock(wdev);
2189         return true;
2190 }
2191
2192 static void reg_leave_invalid_chans(struct wiphy *wiphy)
2193 {
2194         struct wireless_dev *wdev;
2195         struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2196
2197         ASSERT_RTNL();
2198
2199         list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list)
2200                 if (!reg_wdev_chan_valid(wiphy, wdev))
2201                         cfg80211_leave(rdev, wdev);
2202 }
2203
2204 static void reg_check_chans_work(struct work_struct *work)
2205 {
2206         struct cfg80211_registered_device *rdev;
2207
2208         pr_debug("Verifying active interfaces after reg change\n");
2209         rtnl_lock();
2210
2211         list_for_each_entry(rdev, &cfg80211_rdev_list, list)
2212                 if (!(rdev->wiphy.regulatory_flags &
2213                       REGULATORY_IGNORE_STALE_KICKOFF))
2214                         reg_leave_invalid_chans(&rdev->wiphy);
2215
2216         rtnl_unlock();
2217 }
2218
2219 static void reg_check_channels(void)
2220 {
2221         /*
2222          * Give usermode a chance to do something nicer (move to another
2223          * channel, orderly disconnection), before forcing a disconnection.
2224          */
2225         mod_delayed_work(system_power_efficient_wq,
2226                          &reg_check_chans,
2227                          msecs_to_jiffies(REG_ENFORCE_GRACE_MS));
2228 }
2229
2230 static void wiphy_update_regulatory(struct wiphy *wiphy,
2231                                     enum nl80211_reg_initiator initiator)
2232 {
2233         enum nl80211_band band;
2234         struct regulatory_request *lr = get_last_request();
2235
2236         if (ignore_reg_update(wiphy, initiator)) {
2237                 /*
2238                  * Regulatory updates set by CORE are ignored for custom
2239                  * regulatory cards. Let us notify the changes to the driver,
2240                  * as some drivers used this to restore its orig_* reg domain.
2241                  */
2242                 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
2243                     wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
2244                         reg_call_notifier(wiphy, lr);
2245                 return;
2246         }
2247
2248         lr->dfs_region = get_cfg80211_regdom()->dfs_region;
2249
2250         for (band = 0; band < NUM_NL80211_BANDS; band++)
2251                 handle_band(wiphy, initiator, wiphy->bands[band]);
2252
2253         reg_process_beacons(wiphy);
2254         reg_process_ht_flags(wiphy);
2255         reg_call_notifier(wiphy, lr);
2256 }
2257
2258 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
2259 {
2260         struct cfg80211_registered_device *rdev;
2261         struct wiphy *wiphy;
2262
2263         ASSERT_RTNL();
2264
2265         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2266                 wiphy = &rdev->wiphy;
2267                 wiphy_update_regulatory(wiphy, initiator);
2268         }
2269
2270         reg_check_channels();
2271 }
2272
2273 static void handle_channel_custom(struct wiphy *wiphy,
2274                                   struct ieee80211_channel *chan,
2275                                   const struct ieee80211_regdomain *regd)
2276 {
2277         u32 bw_flags = 0;
2278         const struct ieee80211_reg_rule *reg_rule = NULL;
2279         const struct ieee80211_power_rule *power_rule = NULL;
2280         u32 bw;
2281
2282         for (bw = MHZ_TO_KHZ(20); bw >= MHZ_TO_KHZ(5); bw = bw / 2) {
2283                 reg_rule = freq_reg_info_regd(MHZ_TO_KHZ(chan->center_freq),
2284                                               regd, bw);
2285                 if (!IS_ERR(reg_rule))
2286                         break;
2287         }
2288
2289         if (IS_ERR(reg_rule)) {
2290                 pr_debug("Disabling freq %d MHz as custom regd has no rule that fits it\n",
2291                          chan->center_freq);
2292                 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
2293                         chan->flags |= IEEE80211_CHAN_DISABLED;
2294                 } else {
2295                         chan->orig_flags |= IEEE80211_CHAN_DISABLED;
2296                         chan->flags = chan->orig_flags;
2297                 }
2298                 return;
2299         }
2300
2301         power_rule = &reg_rule->power_rule;
2302         bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
2303
2304         chan->dfs_state_entered = jiffies;
2305         chan->dfs_state = NL80211_DFS_USABLE;
2306
2307         chan->beacon_found = false;
2308
2309         if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2310                 chan->flags = chan->orig_flags | bw_flags |
2311                               map_regdom_flags(reg_rule->flags);
2312         else
2313                 chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
2314
2315         chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
2316         chan->max_reg_power = chan->max_power =
2317                 (int) MBM_TO_DBM(power_rule->max_eirp);
2318
2319         if (chan->flags & IEEE80211_CHAN_RADAR) {
2320                 if (reg_rule->dfs_cac_ms)
2321                         chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
2322                 else
2323                         chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
2324         }
2325
2326         chan->max_power = chan->max_reg_power;
2327 }
2328
2329 static void handle_band_custom(struct wiphy *wiphy,
2330                                struct ieee80211_supported_band *sband,
2331                                const struct ieee80211_regdomain *regd)
2332 {
2333         unsigned int i;
2334
2335         if (!sband)
2336                 return;
2337
2338         for (i = 0; i < sband->n_channels; i++)
2339                 handle_channel_custom(wiphy, &sband->channels[i], regd);
2340 }
2341
2342 /* Used by drivers prior to wiphy registration */
2343 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
2344                                    const struct ieee80211_regdomain *regd)
2345 {
2346         enum nl80211_band band;
2347         unsigned int bands_set = 0;
2348
2349         WARN(!(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG),
2350              "wiphy should have REGULATORY_CUSTOM_REG\n");
2351         wiphy->regulatory_flags |= REGULATORY_CUSTOM_REG;
2352
2353         for (band = 0; band < NUM_NL80211_BANDS; band++) {
2354                 if (!wiphy->bands[band])
2355                         continue;
2356                 handle_band_custom(wiphy, wiphy->bands[band], regd);
2357                 bands_set++;
2358         }
2359
2360         /*
2361          * no point in calling this if it won't have any effect
2362          * on your device's supported bands.
2363          */
2364         WARN_ON(!bands_set);
2365 }
2366 EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
2367
2368 static void reg_set_request_processed(void)
2369 {
2370         bool need_more_processing = false;
2371         struct regulatory_request *lr = get_last_request();
2372
2373         lr->processed = true;
2374
2375         spin_lock(&reg_requests_lock);
2376         if (!list_empty(&reg_requests_list))
2377                 need_more_processing = true;
2378         spin_unlock(&reg_requests_lock);
2379
2380         cancel_crda_timeout();
2381
2382         if (need_more_processing)
2383                 schedule_work(&reg_work);
2384 }
2385
2386 /**
2387  * reg_process_hint_core - process core regulatory requests
2388  * @pending_request: a pending core regulatory request
2389  *
2390  * The wireless subsystem can use this function to process
2391  * a regulatory request issued by the regulatory core.
2392  */
2393 static enum reg_request_treatment
2394 reg_process_hint_core(struct regulatory_request *core_request)
2395 {
2396         if (reg_query_database(core_request)) {
2397                 core_request->intersect = false;
2398                 core_request->processed = false;
2399                 reg_update_last_request(core_request);
2400                 return REG_REQ_OK;
2401         }
2402
2403         return REG_REQ_IGNORE;
2404 }
2405
2406 static enum reg_request_treatment
2407 __reg_process_hint_user(struct regulatory_request *user_request)
2408 {
2409         struct regulatory_request *lr = get_last_request();
2410
2411         if (reg_request_cell_base(user_request))
2412                 return reg_ignore_cell_hint(user_request);
2413
2414         if (reg_request_cell_base(lr))
2415                 return REG_REQ_IGNORE;
2416
2417         if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
2418                 return REG_REQ_INTERSECT;
2419         /*
2420          * If the user knows better the user should set the regdom
2421          * to their country before the IE is picked up
2422          */
2423         if (lr->initiator == NL80211_REGDOM_SET_BY_USER &&
2424             lr->intersect)
2425                 return REG_REQ_IGNORE;
2426         /*
2427          * Process user requests only after previous user/driver/core
2428          * requests have been processed
2429          */
2430         if ((lr->initiator == NL80211_REGDOM_SET_BY_CORE ||
2431              lr->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
2432              lr->initiator == NL80211_REGDOM_SET_BY_USER) &&
2433             regdom_changes(lr->alpha2))
2434                 return REG_REQ_IGNORE;
2435
2436         if (!regdom_changes(user_request->alpha2))
2437                 return REG_REQ_ALREADY_SET;
2438
2439         return REG_REQ_OK;
2440 }
2441
2442 /**
2443  * reg_process_hint_user - process user regulatory requests
2444  * @user_request: a pending user regulatory request
2445  *
2446  * The wireless subsystem can use this function to process
2447  * a regulatory request initiated by userspace.
2448  */
2449 static enum reg_request_treatment
2450 reg_process_hint_user(struct regulatory_request *user_request)
2451 {
2452         enum reg_request_treatment treatment;
2453
2454         treatment = __reg_process_hint_user(user_request);
2455         if (treatment == REG_REQ_IGNORE ||
2456             treatment == REG_REQ_ALREADY_SET)
2457                 return REG_REQ_IGNORE;
2458
2459         user_request->intersect = treatment == REG_REQ_INTERSECT;
2460         user_request->processed = false;
2461
2462         if (reg_query_database(user_request)) {
2463                 reg_update_last_request(user_request);
2464                 user_alpha2[0] = user_request->alpha2[0];
2465                 user_alpha2[1] = user_request->alpha2[1];
2466                 return REG_REQ_OK;
2467         }
2468
2469         return REG_REQ_IGNORE;
2470 }
2471
2472 static enum reg_request_treatment
2473 __reg_process_hint_driver(struct regulatory_request *driver_request)
2474 {
2475         struct regulatory_request *lr = get_last_request();
2476
2477         if (lr->initiator == NL80211_REGDOM_SET_BY_CORE) {
2478                 if (regdom_changes(driver_request->alpha2))
2479                         return REG_REQ_OK;
2480                 return REG_REQ_ALREADY_SET;
2481         }
2482
2483         /*
2484          * This would happen if you unplug and plug your card
2485          * back in or if you add a new device for which the previously
2486          * loaded card also agrees on the regulatory domain.
2487          */
2488         if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
2489             !regdom_changes(driver_request->alpha2))
2490                 return REG_REQ_ALREADY_SET;
2491
2492         return REG_REQ_INTERSECT;
2493 }
2494
2495 /**
2496  * reg_process_hint_driver - process driver regulatory requests
2497  * @driver_request: a pending driver regulatory request
2498  *
2499  * The wireless subsystem can use this function to process
2500  * a regulatory request issued by an 802.11 driver.
2501  *
2502  * Returns one of the different reg request treatment values.
2503  */
2504 static enum reg_request_treatment
2505 reg_process_hint_driver(struct wiphy *wiphy,
2506                         struct regulatory_request *driver_request)
2507 {
2508         const struct ieee80211_regdomain *regd, *tmp;
2509         enum reg_request_treatment treatment;
2510
2511         treatment = __reg_process_hint_driver(driver_request);
2512
2513         switch (treatment) {
2514         case REG_REQ_OK:
2515                 break;
2516         case REG_REQ_IGNORE:
2517                 return REG_REQ_IGNORE;
2518         case REG_REQ_INTERSECT:
2519         case REG_REQ_ALREADY_SET:
2520                 regd = reg_copy_regd(get_cfg80211_regdom());
2521                 if (IS_ERR(regd))
2522                         return REG_REQ_IGNORE;
2523
2524                 tmp = get_wiphy_regdom(wiphy);
2525                 rcu_assign_pointer(wiphy->regd, regd);
2526                 rcu_free_regdom(tmp);
2527         }
2528
2529
2530         driver_request->intersect = treatment == REG_REQ_INTERSECT;
2531         driver_request->processed = false;
2532
2533         /*
2534          * Since CRDA will not be called in this case as we already
2535          * have applied the requested regulatory domain before we just
2536          * inform userspace we have processed the request
2537          */
2538         if (treatment == REG_REQ_ALREADY_SET) {
2539                 nl80211_send_reg_change_event(driver_request);
2540                 reg_update_last_request(driver_request);
2541                 reg_set_request_processed();
2542                 return REG_REQ_ALREADY_SET;
2543         }
2544
2545         if (reg_query_database(driver_request)) {
2546                 reg_update_last_request(driver_request);
2547                 return REG_REQ_OK;
2548         }
2549
2550         return REG_REQ_IGNORE;
2551 }
2552
2553 static enum reg_request_treatment
2554 __reg_process_hint_country_ie(struct wiphy *wiphy,
2555                               struct regulatory_request *country_ie_request)
2556 {
2557         struct wiphy *last_wiphy = NULL;
2558         struct regulatory_request *lr = get_last_request();
2559
2560         if (reg_request_cell_base(lr)) {
2561                 /* Trust a Cell base station over the AP's country IE */
2562                 if (regdom_changes(country_ie_request->alpha2))
2563                         return REG_REQ_IGNORE;
2564                 return REG_REQ_ALREADY_SET;
2565         } else {
2566                 if (wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_IGNORE)
2567                         return REG_REQ_IGNORE;
2568         }
2569
2570         if (unlikely(!is_an_alpha2(country_ie_request->alpha2)))
2571                 return -EINVAL;
2572
2573         if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE)
2574                 return REG_REQ_OK;
2575
2576         last_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
2577
2578         if (last_wiphy != wiphy) {
2579                 /*
2580                  * Two cards with two APs claiming different
2581                  * Country IE alpha2s. We could
2582                  * intersect them, but that seems unlikely
2583                  * to be correct. Reject second one for now.
2584                  */
2585                 if (regdom_changes(country_ie_request->alpha2))
2586                         return REG_REQ_IGNORE;
2587                 return REG_REQ_ALREADY_SET;
2588         }
2589
2590         if (regdom_changes(country_ie_request->alpha2))
2591                 return REG_REQ_OK;
2592         return REG_REQ_ALREADY_SET;
2593 }
2594
2595 /**
2596  * reg_process_hint_country_ie - process regulatory requests from country IEs
2597  * @country_ie_request: a regulatory request from a country IE
2598  *
2599  * The wireless subsystem can use this function to process
2600  * a regulatory request issued by a country Information Element.
2601  *
2602  * Returns one of the different reg request treatment values.
2603  */
2604 static enum reg_request_treatment
2605 reg_process_hint_country_ie(struct wiphy *wiphy,
2606                             struct regulatory_request *country_ie_request)
2607 {
2608         enum reg_request_treatment treatment;
2609
2610         treatment = __reg_process_hint_country_ie(wiphy, country_ie_request);
2611
2612         switch (treatment) {
2613         case REG_REQ_OK:
2614                 break;
2615         case REG_REQ_IGNORE:
2616                 return REG_REQ_IGNORE;
2617         case REG_REQ_ALREADY_SET:
2618                 reg_free_request(country_ie_request);
2619                 return REG_REQ_ALREADY_SET;
2620         case REG_REQ_INTERSECT:
2621                 /*
2622                  * This doesn't happen yet, not sure we
2623                  * ever want to support it for this case.
2624                  */
2625                 WARN_ONCE(1, "Unexpected intersection for country IEs");
2626                 return REG_REQ_IGNORE;
2627         }
2628
2629         country_ie_request->intersect = false;
2630         country_ie_request->processed = false;
2631
2632         if (reg_query_database(country_ie_request)) {
2633                 reg_update_last_request(country_ie_request);
2634                 return REG_REQ_OK;
2635         }
2636
2637         return REG_REQ_IGNORE;
2638 }
2639
2640 bool reg_dfs_domain_same(struct wiphy *wiphy1, struct wiphy *wiphy2)
2641 {
2642         const struct ieee80211_regdomain *wiphy1_regd = NULL;
2643         const struct ieee80211_regdomain *wiphy2_regd = NULL;
2644         const struct ieee80211_regdomain *cfg80211_regd = NULL;
2645         bool dfs_domain_same;
2646
2647         rcu_read_lock();
2648
2649         cfg80211_regd = rcu_dereference(cfg80211_regdomain);
2650         wiphy1_regd = rcu_dereference(wiphy1->regd);
2651         if (!wiphy1_regd)
2652                 wiphy1_regd = cfg80211_regd;
2653
2654         wiphy2_regd = rcu_dereference(wiphy2->regd);
2655         if (!wiphy2_regd)
2656                 wiphy2_regd = cfg80211_regd;
2657
2658         dfs_domain_same = wiphy1_regd->dfs_region == wiphy2_regd->dfs_region;
2659
2660         rcu_read_unlock();
2661
2662         return dfs_domain_same;
2663 }
2664
2665 static void reg_copy_dfs_chan_state(struct ieee80211_channel *dst_chan,
2666                                     struct ieee80211_channel *src_chan)
2667 {
2668         if (!(dst_chan->flags & IEEE80211_CHAN_RADAR) ||
2669             !(src_chan->flags & IEEE80211_CHAN_RADAR))
2670                 return;
2671
2672         if (dst_chan->flags & IEEE80211_CHAN_DISABLED ||
2673             src_chan->flags & IEEE80211_CHAN_DISABLED)
2674                 return;
2675
2676         if (src_chan->center_freq == dst_chan->center_freq &&
2677             dst_chan->dfs_state == NL80211_DFS_USABLE) {
2678                 dst_chan->dfs_state = src_chan->dfs_state;
2679                 dst_chan->dfs_state_entered = src_chan->dfs_state_entered;
2680         }
2681 }
2682
2683 static void wiphy_share_dfs_chan_state(struct wiphy *dst_wiphy,
2684                                        struct wiphy *src_wiphy)
2685 {
2686         struct ieee80211_supported_band *src_sband, *dst_sband;
2687         struct ieee80211_channel *src_chan, *dst_chan;
2688         int i, j, band;
2689
2690         if (!reg_dfs_domain_same(dst_wiphy, src_wiphy))
2691                 return;
2692
2693         for (band = 0; band < NUM_NL80211_BANDS; band++) {
2694                 dst_sband = dst_wiphy->bands[band];
2695                 src_sband = src_wiphy->bands[band];
2696                 if (!dst_sband || !src_sband)
2697                         continue;
2698
2699                 for (i = 0; i < dst_sband->n_channels; i++) {
2700                         dst_chan = &dst_sband->channels[i];
2701                         for (j = 0; j < src_sband->n_channels; j++) {
2702                                 src_chan = &src_sband->channels[j];
2703                                 reg_copy_dfs_chan_state(dst_chan, src_chan);
2704                         }
2705                 }
2706         }
2707 }
2708
2709 static void wiphy_all_share_dfs_chan_state(struct wiphy *wiphy)
2710 {
2711         struct cfg80211_registered_device *rdev;
2712
2713         ASSERT_RTNL();
2714
2715         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2716                 if (wiphy == &rdev->wiphy)
2717                         continue;
2718                 wiphy_share_dfs_chan_state(wiphy, &rdev->wiphy);
2719         }
2720 }
2721
2722 /* This processes *all* regulatory hints */
2723 static void reg_process_hint(struct regulatory_request *reg_request)
2724 {
2725         struct wiphy *wiphy = NULL;
2726         enum reg_request_treatment treatment;
2727
2728         if (reg_request->wiphy_idx != WIPHY_IDX_INVALID)
2729                 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
2730
2731         switch (reg_request->initiator) {
2732         case NL80211_REGDOM_SET_BY_CORE:
2733                 treatment = reg_process_hint_core(reg_request);
2734                 break;
2735         case NL80211_REGDOM_SET_BY_USER:
2736                 treatment = reg_process_hint_user(reg_request);
2737                 break;
2738         case NL80211_REGDOM_SET_BY_DRIVER:
2739                 if (!wiphy)
2740                         goto out_free;
2741                 treatment = reg_process_hint_driver(wiphy, reg_request);
2742                 break;
2743         case NL80211_REGDOM_SET_BY_COUNTRY_IE:
2744                 if (!wiphy)
2745                         goto out_free;
2746                 treatment = reg_process_hint_country_ie(wiphy, reg_request);
2747                 break;
2748         default:
2749                 WARN(1, "invalid initiator %d\n", reg_request->initiator);
2750                 goto out_free;
2751         }
2752
2753         if (treatment == REG_REQ_IGNORE)
2754                 goto out_free;
2755
2756         WARN(treatment != REG_REQ_OK && treatment != REG_REQ_ALREADY_SET,
2757              "unexpected treatment value %d\n", treatment);
2758
2759         /* This is required so that the orig_* parameters are saved.
2760          * NOTE: treatment must be set for any case that reaches here!
2761          */
2762         if (treatment == REG_REQ_ALREADY_SET && wiphy &&
2763             wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
2764                 wiphy_update_regulatory(wiphy, reg_request->initiator);
2765                 wiphy_all_share_dfs_chan_state(wiphy);
2766                 reg_check_channels();
2767         }
2768
2769         return;
2770
2771 out_free:
2772         reg_free_request(reg_request);
2773 }
2774
2775 static bool reg_only_self_managed_wiphys(void)
2776 {
2777         struct cfg80211_registered_device *rdev;
2778         struct wiphy *wiphy;
2779         bool self_managed_found = false;
2780
2781         ASSERT_RTNL();
2782
2783         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2784                 wiphy = &rdev->wiphy;
2785                 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2786                         self_managed_found = true;
2787                 else
2788                         return false;
2789         }
2790
2791         /* make sure at least one self-managed wiphy exists */
2792         return self_managed_found;
2793 }
2794
2795 /*
2796  * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
2797  * Regulatory hints come on a first come first serve basis and we
2798  * must process each one atomically.
2799  */
2800 static void reg_process_pending_hints(void)
2801 {
2802         struct regulatory_request *reg_request, *lr;
2803
2804         lr = get_last_request();
2805
2806         /* When last_request->processed becomes true this will be rescheduled */
2807         if (lr && !lr->processed) {
2808                 reg_process_hint(lr);
2809                 return;
2810         }
2811
2812         spin_lock(&reg_requests_lock);
2813
2814         if (list_empty(&reg_requests_list)) {
2815                 spin_unlock(&reg_requests_lock);
2816                 return;
2817         }
2818
2819         reg_request = list_first_entry(&reg_requests_list,
2820                                        struct regulatory_request,
2821                                        list);
2822         list_del_init(&reg_request->list);
2823
2824         spin_unlock(&reg_requests_lock);
2825
2826         if (reg_only_self_managed_wiphys()) {
2827                 reg_free_request(reg_request);
2828                 return;
2829         }
2830
2831         reg_process_hint(reg_request);
2832
2833         lr = get_last_request();
2834
2835         spin_lock(&reg_requests_lock);
2836         if (!list_empty(&reg_requests_list) && lr && lr->processed)
2837                 schedule_work(&reg_work);
2838         spin_unlock(&reg_requests_lock);
2839 }
2840
2841 /* Processes beacon hints -- this has nothing to do with country IEs */
2842 static void reg_process_pending_beacon_hints(void)
2843 {
2844         struct cfg80211_registered_device *rdev;
2845         struct reg_beacon *pending_beacon, *tmp;
2846
2847         /* This goes through the _pending_ beacon list */
2848         spin_lock_bh(&reg_pending_beacons_lock);
2849
2850         list_for_each_entry_safe(pending_beacon, tmp,
2851                                  &reg_pending_beacons, list) {
2852                 list_del_init(&pending_beacon->list);
2853
2854                 /* Applies the beacon hint to current wiphys */
2855                 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
2856                         wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
2857
2858                 /* Remembers the beacon hint for new wiphys or reg changes */
2859                 list_add_tail(&pending_beacon->list, &reg_beacon_list);
2860         }
2861
2862         spin_unlock_bh(&reg_pending_beacons_lock);
2863 }
2864
2865 static void reg_process_self_managed_hints(void)
2866 {
2867         struct cfg80211_registered_device *rdev;
2868         struct wiphy *wiphy;
2869         const struct ieee80211_regdomain *tmp;
2870         const struct ieee80211_regdomain *regd;
2871         enum nl80211_band band;
2872         struct regulatory_request request = {};
2873
2874         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2875                 wiphy = &rdev->wiphy;
2876
2877                 spin_lock(&reg_requests_lock);
2878                 regd = rdev->requested_regd;
2879                 rdev->requested_regd = NULL;
2880                 spin_unlock(&reg_requests_lock);
2881
2882                 if (regd == NULL)
2883                         continue;
2884
2885                 tmp = get_wiphy_regdom(wiphy);
2886                 rcu_assign_pointer(wiphy->regd, regd);
2887                 rcu_free_regdom(tmp);
2888
2889                 for (band = 0; band < NUM_NL80211_BANDS; band++)
2890                         handle_band_custom(wiphy, wiphy->bands[band], regd);
2891
2892                 reg_process_ht_flags(wiphy);
2893
2894                 request.wiphy_idx = get_wiphy_idx(wiphy);
2895                 request.alpha2[0] = regd->alpha2[0];
2896                 request.alpha2[1] = regd->alpha2[1];
2897                 request.initiator = NL80211_REGDOM_SET_BY_DRIVER;
2898
2899                 nl80211_send_wiphy_reg_change_event(&request);
2900         }
2901
2902         reg_check_channels();
2903 }
2904
2905 static void reg_todo(struct work_struct *work)
2906 {
2907         rtnl_lock();
2908         reg_process_pending_hints();
2909         reg_process_pending_beacon_hints();
2910         reg_process_self_managed_hints();
2911         rtnl_unlock();
2912 }
2913
2914 static void queue_regulatory_request(struct regulatory_request *request)
2915 {
2916         request->alpha2[0] = toupper(request->alpha2[0]);
2917         request->alpha2[1] = toupper(request->alpha2[1]);
2918
2919         spin_lock(&reg_requests_lock);
2920         list_add_tail(&request->list, &reg_requests_list);
2921         spin_unlock(&reg_requests_lock);
2922
2923         schedule_work(&reg_work);
2924 }
2925
2926 /*
2927  * Core regulatory hint -- happens during cfg80211_init()
2928  * and when we restore regulatory settings.
2929  */
2930 static int regulatory_hint_core(const char *alpha2)
2931 {
2932         struct regulatory_request *request;
2933
2934         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2935         if (!request)
2936                 return -ENOMEM;
2937
2938         request->alpha2[0] = alpha2[0];
2939         request->alpha2[1] = alpha2[1];
2940         request->initiator = NL80211_REGDOM_SET_BY_CORE;
2941
2942         queue_regulatory_request(request);
2943
2944         return 0;
2945 }
2946
2947 /* User hints */
2948 int regulatory_hint_user(const char *alpha2,
2949                          enum nl80211_user_reg_hint_type user_reg_hint_type)
2950 {
2951         struct regulatory_request *request;
2952
2953         if (WARN_ON(!alpha2))
2954                 return -EINVAL;
2955
2956         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2957         if (!request)
2958                 return -ENOMEM;
2959
2960         request->wiphy_idx = WIPHY_IDX_INVALID;
2961         request->alpha2[0] = alpha2[0];
2962         request->alpha2[1] = alpha2[1];
2963         request->initiator = NL80211_REGDOM_SET_BY_USER;
2964         request->user_reg_hint_type = user_reg_hint_type;
2965
2966         /* Allow calling CRDA again */
2967         reset_crda_timeouts();
2968
2969         queue_regulatory_request(request);
2970
2971         return 0;
2972 }
2973
2974 int regulatory_hint_indoor(bool is_indoor, u32 portid)
2975 {
2976         spin_lock(&reg_indoor_lock);
2977
2978         /* It is possible that more than one user space process is trying to
2979          * configure the indoor setting. To handle such cases, clear the indoor
2980          * setting in case that some process does not think that the device
2981          * is operating in an indoor environment. In addition, if a user space
2982          * process indicates that it is controlling the indoor setting, save its
2983          * portid, i.e., make it the owner.
2984          */
2985         reg_is_indoor = is_indoor;
2986         if (reg_is_indoor) {
2987                 if (!reg_is_indoor_portid)
2988                         reg_is_indoor_portid = portid;
2989         } else {
2990                 reg_is_indoor_portid = 0;
2991         }
2992
2993         spin_unlock(&reg_indoor_lock);
2994
2995         if (!is_indoor)
2996                 reg_check_channels();
2997
2998         return 0;
2999 }
3000
3001 void regulatory_netlink_notify(u32 portid)
3002 {
3003         spin_lock(&reg_indoor_lock);
3004
3005         if (reg_is_indoor_portid != portid) {
3006                 spin_unlock(&reg_indoor_lock);
3007                 return;
3008         }
3009
3010         reg_is_indoor = false;
3011         reg_is_indoor_portid = 0;
3012
3013         spin_unlock(&reg_indoor_lock);
3014
3015         reg_check_channels();
3016 }
3017
3018 /* Driver hints */
3019 int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
3020 {
3021         struct regulatory_request *request;
3022
3023         if (WARN_ON(!alpha2 || !wiphy))
3024                 return -EINVAL;
3025
3026         wiphy->regulatory_flags &= ~REGULATORY_CUSTOM_REG;
3027
3028         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
3029         if (!request)
3030                 return -ENOMEM;
3031
3032         request->wiphy_idx = get_wiphy_idx(wiphy);
3033
3034         request->alpha2[0] = alpha2[0];
3035         request->alpha2[1] = alpha2[1];
3036         request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
3037
3038         /* Allow calling CRDA again */
3039         reset_crda_timeouts();
3040
3041         queue_regulatory_request(request);
3042
3043         return 0;
3044 }
3045 EXPORT_SYMBOL(regulatory_hint);
3046
3047 void regulatory_hint_country_ie(struct wiphy *wiphy, enum nl80211_band band,
3048                                 const u8 *country_ie, u8 country_ie_len)
3049 {
3050         char alpha2[2];
3051         enum environment_cap env = ENVIRON_ANY;
3052         struct regulatory_request *request = NULL, *lr;
3053
3054         /* IE len must be evenly divisible by 2 */
3055         if (country_ie_len & 0x01)
3056                 return;
3057
3058         if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
3059                 return;
3060
3061         request = kzalloc(sizeof(*request), GFP_KERNEL);
3062         if (!request)
3063                 return;
3064
3065         alpha2[0] = country_ie[0];
3066         alpha2[1] = country_ie[1];
3067
3068         if (country_ie[2] == 'I')
3069                 env = ENVIRON_INDOOR;
3070         else if (country_ie[2] == 'O')
3071                 env = ENVIRON_OUTDOOR;
3072
3073         rcu_read_lock();
3074         lr = get_last_request();
3075
3076         if (unlikely(!lr))
3077                 goto out;
3078
3079         /*
3080          * We will run this only upon a successful connection on cfg80211.
3081          * We leave conflict resolution to the workqueue, where can hold
3082          * the RTNL.
3083          */
3084         if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
3085             lr->wiphy_idx != WIPHY_IDX_INVALID)
3086                 goto out;
3087
3088         request->wiphy_idx = get_wiphy_idx(wiphy);
3089         request->alpha2[0] = alpha2[0];
3090         request->alpha2[1] = alpha2[1];
3091         request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
3092         request->country_ie_env = env;
3093
3094         /* Allow calling CRDA again */
3095         reset_crda_timeouts();
3096
3097         queue_regulatory_request(request);
3098         request = NULL;
3099 out:
3100         kfree(request);
3101         rcu_read_unlock();
3102 }
3103
3104 static void restore_alpha2(char *alpha2, bool reset_user)
3105 {
3106         /* indicates there is no alpha2 to consider for restoration */
3107         alpha2[0] = '9';
3108         alpha2[1] = '7';
3109
3110         /* The user setting has precedence over the module parameter */
3111         if (is_user_regdom_saved()) {
3112                 /* Unless we're asked to ignore it and reset it */
3113                 if (reset_user) {
3114                         pr_debug("Restoring regulatory settings including user preference\n");
3115                         user_alpha2[0] = '9';
3116                         user_alpha2[1] = '7';
3117
3118                         /*
3119                          * If we're ignoring user settings, we still need to
3120                          * check the module parameter to ensure we put things
3121                          * back as they were for a full restore.
3122                          */
3123                         if (!is_world_regdom(ieee80211_regdom)) {
3124                                 pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
3125                                          ieee80211_regdom[0], ieee80211_regdom[1]);
3126                                 alpha2[0] = ieee80211_regdom[0];
3127                                 alpha2[1] = ieee80211_regdom[1];
3128                         }
3129                 } else {
3130                         pr_debug("Restoring regulatory settings while preserving user preference for: %c%c\n",
3131                                  user_alpha2[0], user_alpha2[1]);
3132                         alpha2[0] = user_alpha2[0];
3133                         alpha2[1] = user_alpha2[1];
3134                 }
3135         } else if (!is_world_regdom(ieee80211_regdom)) {
3136                 pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
3137                          ieee80211_regdom[0], ieee80211_regdom[1]);
3138                 alpha2[0] = ieee80211_regdom[0];
3139                 alpha2[1] = ieee80211_regdom[1];
3140         } else
3141                 pr_debug("Restoring regulatory settings\n");
3142 }
3143
3144 static void restore_custom_reg_settings(struct wiphy *wiphy)
3145 {
3146         struct ieee80211_supported_band *sband;
3147         enum nl80211_band band;
3148         struct ieee80211_channel *chan;
3149         int i;
3150
3151         for (band = 0; band < NUM_NL80211_BANDS; band++) {
3152                 sband = wiphy->bands[band];
3153                 if (!sband)
3154                         continue;
3155                 for (i = 0; i < sband->n_channels; i++) {
3156                         chan = &sband->channels[i];
3157                         chan->flags = chan->orig_flags;
3158                         chan->max_antenna_gain = chan->orig_mag;
3159                         chan->max_power = chan->orig_mpwr;
3160                         chan->beacon_found = false;
3161                 }
3162         }
3163 }
3164
3165 /*
3166  * Restoring regulatory settings involves ingoring any
3167  * possibly stale country IE information and user regulatory
3168  * settings if so desired, this includes any beacon hints
3169  * learned as we could have traveled outside to another country
3170  * after disconnection. To restore regulatory settings we do
3171  * exactly what we did at bootup:
3172  *
3173  *   - send a core regulatory hint
3174  *   - send a user regulatory hint if applicable
3175  *
3176  * Device drivers that send a regulatory hint for a specific country
3177  * keep their own regulatory domain on wiphy->regd so that does does
3178  * not need to be remembered.
3179  */
3180 static void restore_regulatory_settings(bool reset_user)
3181 {
3182         char alpha2[2];
3183         char world_alpha2[2];
3184         struct reg_beacon *reg_beacon, *btmp;
3185         LIST_HEAD(tmp_reg_req_list);
3186         struct cfg80211_registered_device *rdev;
3187
3188         ASSERT_RTNL();
3189
3190         /*
3191          * Clear the indoor setting in case that it is not controlled by user
3192          * space, as otherwise there is no guarantee that the device is still
3193          * operating in an indoor environment.
3194          */
3195         spin_lock(&reg_indoor_lock);
3196         if (reg_is_indoor && !reg_is_indoor_portid) {
3197                 reg_is_indoor = false;
3198                 reg_check_channels();
3199         }
3200         spin_unlock(&reg_indoor_lock);
3201
3202         reset_regdomains(true, &world_regdom);
3203         restore_alpha2(alpha2, reset_user);
3204
3205         /*
3206          * If there's any pending requests we simply
3207          * stash them to a temporary pending queue and
3208          * add then after we've restored regulatory
3209          * settings.
3210          */
3211         spin_lock(&reg_requests_lock);
3212         list_splice_tail_init(&reg_requests_list, &tmp_reg_req_list);
3213         spin_unlock(&reg_requests_lock);
3214
3215         /* Clear beacon hints */
3216         spin_lock_bh(&reg_pending_beacons_lock);
3217         list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
3218                 list_del(&reg_beacon->list);
3219                 kfree(reg_beacon);
3220         }
3221         spin_unlock_bh(&reg_pending_beacons_lock);
3222
3223         list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
3224                 list_del(&reg_beacon->list);
3225                 kfree(reg_beacon);
3226         }
3227
3228         /* First restore to the basic regulatory settings */
3229         world_alpha2[0] = cfg80211_world_regdom->alpha2[0];
3230         world_alpha2[1] = cfg80211_world_regdom->alpha2[1];
3231
3232         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3233                 if (rdev->wiphy.regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
3234                         continue;
3235                 if (rdev->wiphy.regulatory_flags & REGULATORY_CUSTOM_REG)
3236                         restore_custom_reg_settings(&rdev->wiphy);
3237         }
3238
3239         regulatory_hint_core(world_alpha2);
3240
3241         /*
3242          * This restores the ieee80211_regdom module parameter
3243          * preference or the last user requested regulatory
3244          * settings, user regulatory settings takes precedence.
3245          */
3246         if (is_an_alpha2(alpha2))
3247                 regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER);
3248
3249         spin_lock(&reg_requests_lock);
3250         list_splice_tail_init(&tmp_reg_req_list, &reg_requests_list);
3251         spin_unlock(&reg_requests_lock);
3252
3253         pr_debug("Kicking the queue\n");
3254
3255         schedule_work(&reg_work);
3256 }
3257
3258 void regulatory_hint_disconnect(void)
3259 {
3260         pr_debug("All devices are disconnected, going to restore regulatory settings\n");
3261         restore_regulatory_settings(false);
3262 }
3263
3264 static bool freq_is_chan_12_13_14(u16 freq)
3265 {
3266         if (freq == ieee80211_channel_to_frequency(12, NL80211_BAND_2GHZ) ||
3267             freq == ieee80211_channel_to_frequency(13, NL80211_BAND_2GHZ) ||
3268             freq == ieee80211_channel_to_frequency(14, NL80211_BAND_2GHZ))
3269                 return true;
3270         return false;
3271 }
3272
3273 static bool pending_reg_beacon(struct ieee80211_channel *beacon_chan)
3274 {
3275         struct reg_beacon *pending_beacon;
3276
3277         list_for_each_entry(pending_beacon, &reg_pending_beacons, list)
3278                 if (beacon_chan->center_freq ==
3279                     pending_beacon->chan.center_freq)
3280                         return true;
3281         return false;
3282 }
3283
3284 int regulatory_hint_found_beacon(struct wiphy *wiphy,
3285                                  struct ieee80211_channel *beacon_chan,
3286                                  gfp_t gfp)
3287 {
3288         struct reg_beacon *reg_beacon;
3289         bool processing;
3290
3291         if (beacon_chan->beacon_found ||
3292             beacon_chan->flags & IEEE80211_CHAN_RADAR ||
3293             (beacon_chan->band == NL80211_BAND_2GHZ &&
3294              !freq_is_chan_12_13_14(beacon_chan->center_freq)))
3295                 return 0;
3296
3297         spin_lock_bh(&reg_pending_beacons_lock);
3298         processing = pending_reg_beacon(beacon_chan);
3299         spin_unlock_bh(&reg_pending_beacons_lock);
3300
3301         if (processing)
3302                 return 0;
3303
3304         reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
3305         if (!reg_beacon)
3306                 return -ENOMEM;
3307
3308         pr_debug("Found new beacon on frequency: %d MHz (Ch %d) on %s\n",
3309                  beacon_chan->center_freq,
3310                  ieee80211_frequency_to_channel(beacon_chan->center_freq),
3311                  wiphy_name(wiphy));
3312
3313         memcpy(&reg_beacon->chan, beacon_chan,
3314                sizeof(struct ieee80211_channel));
3315
3316         /*
3317          * Since we can be called from BH or and non-BH context
3318          * we must use spin_lock_bh()
3319          */
3320         spin_lock_bh(&reg_pending_beacons_lock);
3321         list_add_tail(&reg_beacon->list, &reg_pending_beacons);
3322         spin_unlock_bh(&reg_pending_beacons_lock);
3323
3324         schedule_work(&reg_work);
3325
3326         return 0;
3327 }
3328
3329 static void print_rd_rules(const struct ieee80211_regdomain *rd)
3330 {
3331         unsigned int i;
3332         const struct ieee80211_reg_rule *reg_rule = NULL;
3333         const struct ieee80211_freq_range *freq_range = NULL;
3334         const struct ieee80211_power_rule *power_rule = NULL;
3335         char bw[32], cac_time[32];
3336
3337         pr_debug("  (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp), (dfs_cac_time)\n");
3338
3339         for (i = 0; i < rd->n_reg_rules; i++) {
3340                 reg_rule = &rd->reg_rules[i];
3341                 freq_range = &reg_rule->freq_range;
3342                 power_rule = &reg_rule->power_rule;
3343
3344                 if (reg_rule->flags & NL80211_RRF_AUTO_BW)
3345                         snprintf(bw, sizeof(bw), "%d KHz, %d KHz AUTO",
3346                                  freq_range->max_bandwidth_khz,
3347                                  reg_get_max_bandwidth(rd, reg_rule));
3348                 else
3349                         snprintf(bw, sizeof(bw), "%d KHz",
3350                                  freq_range->max_bandwidth_khz);
3351
3352                 if (reg_rule->flags & NL80211_RRF_DFS)
3353                         scnprintf(cac_time, sizeof(cac_time), "%u s",
3354                                   reg_rule->dfs_cac_ms/1000);
3355                 else
3356                         scnprintf(cac_time, sizeof(cac_time), "N/A");
3357
3358
3359                 /*
3360                  * There may not be documentation for max antenna gain
3361                  * in certain regions
3362                  */
3363                 if (power_rule->max_antenna_gain)
3364                         pr_debug("  (%d KHz - %d KHz @ %s), (%d mBi, %d mBm), (%s)\n",
3365                                 freq_range->start_freq_khz,
3366                                 freq_range->end_freq_khz,
3367                                 bw,
3368                                 power_rule->max_antenna_gain,
3369                                 power_rule->max_eirp,
3370                                 cac_time);
3371                 else
3372                         pr_debug("  (%d KHz - %d KHz @ %s), (N/A, %d mBm), (%s)\n",
3373                                 freq_range->start_freq_khz,
3374                                 freq_range->end_freq_khz,
3375                                 bw,
3376                                 power_rule->max_eirp,
3377                                 cac_time);
3378         }
3379 }
3380
3381 bool reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region)
3382 {
3383         switch (dfs_region) {
3384         case NL80211_DFS_UNSET:
3385         case NL80211_DFS_FCC:
3386         case NL80211_DFS_ETSI:
3387         case NL80211_DFS_JP:
3388                 return true;
3389         default:
3390                 pr_debug("Ignoring uknown DFS master region: %d\n", dfs_region);
3391                 return false;
3392         }
3393 }
3394
3395 static void print_regdomain(const struct ieee80211_regdomain *rd)
3396 {
3397         struct regulatory_request *lr = get_last_request();
3398
3399         if (is_intersected_alpha2(rd->alpha2)) {
3400                 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) {
3401                         struct cfg80211_registered_device *rdev;
3402                         rdev = cfg80211_rdev_by_wiphy_idx(lr->wiphy_idx);
3403                         if (rdev) {
3404                                 pr_debug("Current regulatory domain updated by AP to: %c%c\n",
3405                                         rdev->country_ie_alpha2[0],
3406                                         rdev->country_ie_alpha2[1]);
3407                         } else
3408                                 pr_debug("Current regulatory domain intersected:\n");
3409                 } else
3410                         pr_debug("Current regulatory domain intersected:\n");
3411         } else if (is_world_regdom(rd->alpha2)) {
3412                 pr_debug("World regulatory domain updated:\n");
3413         } else {
3414                 if (is_unknown_alpha2(rd->alpha2))
3415                         pr_debug("Regulatory domain changed to driver built-in settings (unknown country)\n");
3416                 else {
3417                         if (reg_request_cell_base(lr))
3418                                 pr_debug("Regulatory domain changed to country: %c%c by Cell Station\n",
3419                                         rd->alpha2[0], rd->alpha2[1]);
3420                         else
3421                                 pr_debug("Regulatory domain changed to country: %c%c\n",
3422                                         rd->alpha2[0], rd->alpha2[1]);
3423                 }
3424         }
3425
3426         pr_debug(" DFS Master region: %s", reg_dfs_region_str(rd->dfs_region));
3427         print_rd_rules(rd);
3428 }
3429
3430 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
3431 {
3432         pr_debug("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
3433         print_rd_rules(rd);
3434 }
3435
3436 static int reg_set_rd_core(const struct ieee80211_regdomain *rd)
3437 {
3438         if (!is_world_regdom(rd->alpha2))
3439                 return -EINVAL;
3440         update_world_regdomain(rd);
3441         return 0;
3442 }
3443
3444 static int reg_set_rd_user(const struct ieee80211_regdomain *rd,
3445                            struct regulatory_request *user_request)
3446 {
3447         const struct ieee80211_regdomain *intersected_rd = NULL;
3448
3449         if (!regdom_changes(rd->alpha2))
3450                 return -EALREADY;
3451
3452         if (!is_valid_rd(rd)) {
3453                 pr_err("Invalid regulatory domain detected: %c%c\n",
3454                        rd->alpha2[0], rd->alpha2[1]);
3455                 print_regdomain_info(rd);
3456                 return -EINVAL;
3457         }
3458
3459         if (!user_request->intersect) {
3460                 reset_regdomains(false, rd);
3461                 return 0;
3462         }
3463
3464         intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
3465         if (!intersected_rd)
3466                 return -EINVAL;
3467
3468         kfree(rd);
3469         rd = NULL;
3470         reset_regdomains(false, intersected_rd);
3471
3472         return 0;
3473 }
3474
3475 static int reg_set_rd_driver(const struct ieee80211_regdomain *rd,
3476                              struct regulatory_request *driver_request)
3477 {
3478         const struct ieee80211_regdomain *regd;
3479         const struct ieee80211_regdomain *intersected_rd = NULL;
3480         const struct ieee80211_regdomain *tmp;
3481         struct wiphy *request_wiphy;
3482
3483         if (is_world_regdom(rd->alpha2))
3484                 return -EINVAL;
3485
3486         if (!regdom_changes(rd->alpha2))
3487                 return -EALREADY;
3488
3489         if (!is_valid_rd(rd)) {
3490                 pr_err("Invalid regulatory domain detected: %c%c\n",
3491                        rd->alpha2[0], rd->alpha2[1]);
3492                 print_regdomain_info(rd);
3493                 return -EINVAL;
3494         }
3495
3496         request_wiphy = wiphy_idx_to_wiphy(driver_request->wiphy_idx);
3497         if (!request_wiphy)
3498                 return -ENODEV;
3499
3500         if (!driver_request->intersect) {
3501                 if (request_wiphy->regd)
3502                         return -EALREADY;
3503
3504                 regd = reg_copy_regd(rd);
3505                 if (IS_ERR(regd))
3506                         return PTR_ERR(regd);
3507
3508                 rcu_assign_pointer(request_wiphy->regd, regd);
3509                 reset_regdomains(false, rd);
3510                 return 0;
3511         }
3512
3513         intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
3514         if (!intersected_rd)
3515                 return -EINVAL;
3516
3517         /*
3518          * We can trash what CRDA provided now.
3519          * However if a driver requested this specific regulatory
3520          * domain we keep it for its private use
3521          */
3522         tmp = get_wiphy_regdom(request_wiphy);
3523         rcu_assign_pointer(request_wiphy->regd, rd);
3524         rcu_free_regdom(tmp);
3525
3526         rd = NULL;
3527
3528         reset_regdomains(false, intersected_rd);
3529
3530         return 0;
3531 }
3532
3533 static int reg_set_rd_country_ie(const struct ieee80211_regdomain *rd,
3534                                  struct regulatory_request *country_ie_request)
3535 {
3536         struct wiphy *request_wiphy;
3537
3538         if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
3539             !is_unknown_alpha2(rd->alpha2))
3540                 return -EINVAL;
3541
3542         /*
3543          * Lets only bother proceeding on the same alpha2 if the current
3544          * rd is non static (it means CRDA was present and was used last)
3545          * and the pending request came in from a country IE
3546          */
3547
3548         if (!is_valid_rd(rd)) {
3549                 pr_err("Invalid regulatory domain detected: %c%c\n",
3550                        rd->alpha2[0], rd->alpha2[1]);
3551                 print_regdomain_info(rd);
3552                 return -EINVAL;
3553         }
3554
3555         request_wiphy = wiphy_idx_to_wiphy(country_ie_request->wiphy_idx);
3556         if (!request_wiphy)
3557                 return -ENODEV;
3558
3559         if (country_ie_request->intersect)
3560                 return -EINVAL;
3561
3562         reset_regdomains(false, rd);
3563         return 0;
3564 }
3565
3566 /*
3567  * Use this call to set the current regulatory domain. Conflicts with
3568  * multiple drivers can be ironed out later. Caller must've already
3569  * kmalloc'd the rd structure.
3570  */
3571 int set_regdom(const struct ieee80211_regdomain *rd,
3572                enum ieee80211_regd_source regd_src)
3573 {
3574         struct regulatory_request *lr;
3575         bool user_reset = false;
3576         int r;
3577
3578         if (!reg_is_valid_request(rd->alpha2)) {
3579                 kfree(rd);
3580                 return -EINVAL;
3581         }
3582
3583         if (regd_src == REGD_SOURCE_CRDA)
3584                 reset_crda_timeouts();
3585
3586         lr = get_last_request();
3587
3588         /* Note that this doesn't update the wiphys, this is done below */
3589         switch (lr->initiator) {
3590         case NL80211_REGDOM_SET_BY_CORE:
3591                 r = reg_set_rd_core(rd);
3592                 break;
3593         case NL80211_REGDOM_SET_BY_USER:
3594                 r = reg_set_rd_user(rd, lr);
3595                 user_reset = true;
3596                 break;
3597         case NL80211_REGDOM_SET_BY_DRIVER:
3598                 r = reg_set_rd_driver(rd, lr);
3599                 break;
3600         case NL80211_REGDOM_SET_BY_COUNTRY_IE:
3601                 r = reg_set_rd_country_ie(rd, lr);
3602                 break;
3603         default:
3604                 WARN(1, "invalid initiator %d\n", lr->initiator);
3605                 kfree(rd);
3606                 return -EINVAL;
3607         }
3608
3609         if (r) {
3610                 switch (r) {
3611                 case -EALREADY:
3612                         reg_set_request_processed();
3613                         break;
3614                 default:
3615                         /* Back to world regulatory in case of errors */
3616                         restore_regulatory_settings(user_reset);
3617                 }
3618
3619                 kfree(rd);
3620                 return r;
3621         }
3622
3623         /* This would make this whole thing pointless */
3624         if (WARN_ON(!lr->intersect && rd != get_cfg80211_regdom()))
3625                 return -EINVAL;
3626
3627         /* update all wiphys now with the new established regulatory domain */
3628         update_all_wiphy_regulatory(lr->initiator);
3629
3630         print_regdomain(get_cfg80211_regdom());
3631
3632         nl80211_send_reg_change_event(lr);
3633
3634         reg_set_request_processed();
3635
3636         return 0;
3637 }
3638
3639 static int __regulatory_set_wiphy_regd(struct wiphy *wiphy,
3640                                        struct ieee80211_regdomain *rd)
3641 {
3642         const struct ieee80211_regdomain *regd;
3643         const struct ieee80211_regdomain *prev_regd;
3644         struct cfg80211_registered_device *rdev;
3645
3646         if (WARN_ON(!wiphy || !rd))
3647                 return -EINVAL;
3648
3649         if (WARN(!(wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED),
3650                  "wiphy should have REGULATORY_WIPHY_SELF_MANAGED\n"))
3651                 return -EPERM;
3652
3653         if (WARN(!is_valid_rd(rd), "Invalid regulatory domain detected\n")) {
3654                 print_regdomain_info(rd);
3655                 return -EINVAL;
3656         }
3657
3658         regd = reg_copy_regd(rd);
3659         if (IS_ERR(regd))
3660                 return PTR_ERR(regd);
3661
3662         rdev = wiphy_to_rdev(wiphy);
3663
3664         spin_lock(&reg_requests_lock);
3665         prev_regd = rdev->requested_regd;
3666         rdev->requested_regd = regd;
3667         spin_unlock(&reg_requests_lock);
3668
3669         kfree(prev_regd);
3670         return 0;
3671 }
3672
3673 int regulatory_set_wiphy_regd(struct wiphy *wiphy,
3674                               struct ieee80211_regdomain *rd)
3675 {
3676         int ret = __regulatory_set_wiphy_regd(wiphy, rd);
3677
3678         if (ret)
3679                 return ret;
3680
3681         schedule_work(&reg_work);
3682         return 0;
3683 }
3684 EXPORT_SYMBOL(regulatory_set_wiphy_regd);
3685
3686 int regulatory_set_wiphy_regd_sync_rtnl(struct wiphy *wiphy,
3687                                         struct ieee80211_regdomain *rd)
3688 {
3689         int ret;
3690
3691         ASSERT_RTNL();
3692
3693         ret = __regulatory_set_wiphy_regd(wiphy, rd);
3694         if (ret)
3695                 return ret;
3696
3697         /* process the request immediately */
3698         reg_process_self_managed_hints();
3699         return 0;
3700 }
3701 EXPORT_SYMBOL(regulatory_set_wiphy_regd_sync_rtnl);
3702
3703 void wiphy_regulatory_register(struct wiphy *wiphy)
3704 {
3705         struct regulatory_request *lr;
3706
3707         /* self-managed devices ignore external hints */
3708         if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
3709                 wiphy->regulatory_flags |= REGULATORY_DISABLE_BEACON_HINTS |
3710                                            REGULATORY_COUNTRY_IE_IGNORE;
3711
3712         if (!reg_dev_ignore_cell_hint(wiphy))
3713                 reg_num_devs_support_basehint++;
3714
3715         lr = get_last_request();
3716         wiphy_update_regulatory(wiphy, lr->initiator);
3717         wiphy_all_share_dfs_chan_state(wiphy);
3718 }
3719
3720 void wiphy_regulatory_deregister(struct wiphy *wiphy)
3721 {
3722         struct wiphy *request_wiphy = NULL;
3723         struct regulatory_request *lr;
3724
3725         lr = get_last_request();
3726
3727         if (!reg_dev_ignore_cell_hint(wiphy))
3728                 reg_num_devs_support_basehint--;
3729
3730         rcu_free_regdom(get_wiphy_regdom(wiphy));
3731         RCU_INIT_POINTER(wiphy->regd, NULL);
3732
3733         if (lr)
3734                 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
3735
3736         if (!request_wiphy || request_wiphy != wiphy)
3737                 return;
3738
3739         lr->wiphy_idx = WIPHY_IDX_INVALID;
3740         lr->country_ie_env = ENVIRON_ANY;
3741 }
3742
3743 /*
3744  * See http://www.fcc.gov/document/5-ghz-unlicensed-spectrum-unii, for
3745  * UNII band definitions
3746  */
3747 int cfg80211_get_unii(int freq)
3748 {
3749         /* UNII-1 */
3750         if (freq >= 5150 && freq <= 5250)
3751                 return 0;
3752
3753         /* UNII-2A */
3754         if (freq > 5250 && freq <= 5350)
3755                 return 1;
3756
3757         /* UNII-2B */
3758         if (freq > 5350 && freq <= 5470)
3759                 return 2;
3760
3761         /* UNII-2C */
3762         if (freq > 5470 && freq <= 5725)
3763                 return 3;
3764
3765         /* UNII-3 */
3766         if (freq > 5725 && freq <= 5825)
3767                 return 4;
3768
3769         return -EINVAL;
3770 }
3771
3772 bool regulatory_indoor_allowed(void)
3773 {
3774         return reg_is_indoor;
3775 }
3776
3777 bool regulatory_pre_cac_allowed(struct wiphy *wiphy)
3778 {
3779         const struct ieee80211_regdomain *regd = NULL;
3780         const struct ieee80211_regdomain *wiphy_regd = NULL;
3781         bool pre_cac_allowed = false;
3782
3783         rcu_read_lock();
3784
3785         regd = rcu_dereference(cfg80211_regdomain);
3786         wiphy_regd = rcu_dereference(wiphy->regd);
3787         if (!wiphy_regd) {
3788                 if (regd->dfs_region == NL80211_DFS_ETSI)
3789                         pre_cac_allowed = true;
3790
3791                 rcu_read_unlock();
3792
3793                 return pre_cac_allowed;
3794         }
3795
3796         if (regd->dfs_region == wiphy_regd->dfs_region &&
3797             wiphy_regd->dfs_region == NL80211_DFS_ETSI)
3798                 pre_cac_allowed = true;
3799
3800         rcu_read_unlock();
3801
3802         return pre_cac_allowed;
3803 }
3804
3805 void regulatory_propagate_dfs_state(struct wiphy *wiphy,
3806                                     struct cfg80211_chan_def *chandef,
3807                                     enum nl80211_dfs_state dfs_state,
3808                                     enum nl80211_radar_event event)
3809 {
3810         struct cfg80211_registered_device *rdev;
3811
3812         ASSERT_RTNL();
3813
3814         if (WARN_ON(!cfg80211_chandef_valid(chandef)))
3815                 return;
3816
3817         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3818                 if (wiphy == &rdev->wiphy)
3819                         continue;
3820
3821                 if (!reg_dfs_domain_same(wiphy, &rdev->wiphy))
3822                         continue;
3823
3824                 if (!ieee80211_get_channel(&rdev->wiphy,
3825                                            chandef->chan->center_freq))
3826                         continue;
3827
3828                 cfg80211_set_dfs_state(&rdev->wiphy, chandef, dfs_state);
3829
3830                 if (event == NL80211_RADAR_DETECTED ||
3831                     event == NL80211_RADAR_CAC_FINISHED)
3832                         cfg80211_sched_dfs_chan_update(rdev);
3833
3834                 nl80211_radar_notify(rdev, chandef, event, NULL, GFP_KERNEL);
3835         }
3836 }
3837
3838 static int __init regulatory_init_db(void)
3839 {
3840         int err;
3841
3842         err = load_builtin_regdb_keys();
3843         if (err)
3844                 return err;
3845
3846         /* We always try to get an update for the static regdomain */
3847         err = regulatory_hint_core(cfg80211_world_regdom->alpha2);
3848         if (err) {
3849                 if (err == -ENOMEM) {
3850                         platform_device_unregister(reg_pdev);
3851                         return err;
3852                 }
3853                 /*
3854                  * N.B. kobject_uevent_env() can fail mainly for when we're out
3855                  * memory which is handled and propagated appropriately above
3856                  * but it can also fail during a netlink_broadcast() or during
3857                  * early boot for call_usermodehelper(). For now treat these
3858                  * errors as non-fatal.
3859                  */
3860                 pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
3861         }
3862
3863         /*
3864          * Finally, if the user set the module parameter treat it
3865          * as a user hint.
3866          */
3867         if (!is_world_regdom(ieee80211_regdom))
3868                 regulatory_hint_user(ieee80211_regdom,
3869                                      NL80211_USER_REG_HINT_USER);
3870
3871         return 0;
3872 }
3873 #ifndef MODULE
3874 late_initcall(regulatory_init_db);
3875 #endif
3876
3877 int __init regulatory_init(void)
3878 {
3879         reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
3880         if (IS_ERR(reg_pdev))
3881                 return PTR_ERR(reg_pdev);
3882
3883         spin_lock_init(&reg_requests_lock);
3884         spin_lock_init(&reg_pending_beacons_lock);
3885         spin_lock_init(&reg_indoor_lock);
3886
3887         rcu_assign_pointer(cfg80211_regdomain, cfg80211_world_regdom);
3888
3889         user_alpha2[0] = '9';
3890         user_alpha2[1] = '7';
3891
3892 #ifdef MODULE
3893         return regulatory_init_db();
3894 #else
3895         return 0;
3896 #endif
3897 }
3898
3899 void regulatory_exit(void)
3900 {
3901         struct regulatory_request *reg_request, *tmp;
3902         struct reg_beacon *reg_beacon, *btmp;
3903
3904         cancel_work_sync(&reg_work);
3905         cancel_crda_timeout_sync();
3906         cancel_delayed_work_sync(&reg_check_chans);
3907
3908         /* Lock to suppress warnings */
3909         rtnl_lock();
3910         reset_regdomains(true, NULL);
3911         rtnl_unlock();
3912
3913         dev_set_uevent_suppress(&reg_pdev->dev, true);
3914
3915         platform_device_unregister(reg_pdev);
3916
3917         list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
3918                 list_del(&reg_beacon->list);
3919                 kfree(reg_beacon);
3920         }
3921
3922         list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
3923                 list_del(&reg_beacon->list);
3924                 kfree(reg_beacon);
3925         }
3926
3927         list_for_each_entry_safe(reg_request, tmp, &reg_requests_list, list) {
3928                 list_del(&reg_request->list);
3929                 kfree(reg_request);
3930         }
3931
3932         if (!IS_ERR_OR_NULL(regdb))
3933                 kfree(regdb);
3934
3935         free_regdb_keyring();
3936 }