OSDN Git Service

ac3e12c32aa30053a110d6a46f5bb813d660c8b6
[uclinux-h8/linux.git] / net / wireless / reg.c
1 /*
2  * Copyright 2002-2005, Instant802 Networks, Inc.
3  * Copyright 2005-2006, Devicescape Software, Inc.
4  * Copyright 2007       Johannes Berg <johannes@sipsolutions.net>
5  * Copyright 2008-2011  Luis R. Rodriguez <mcgrof@qca.qualcomm.com>
6  * Copyright 2013-2014  Intel Mobile Communications GmbH
7  * Copyright      2017  Intel Deutschland GmbH
8  * Copyright (C) 2018 Intel Corporation
9  *
10  * Permission to use, copy, modify, and/or distribute this software for any
11  * purpose with or without fee is hereby granted, provided that the above
12  * copyright notice and this permission notice appear in all copies.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
15  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
16  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
17  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
18  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
19  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
20  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
21  */
22
23
24 /**
25  * DOC: Wireless regulatory infrastructure
26  *
27  * The usual implementation is for a driver to read a device EEPROM to
28  * determine which regulatory domain it should be operating under, then
29  * looking up the allowable channels in a driver-local table and finally
30  * registering those channels in the wiphy structure.
31  *
32  * Another set of compliance enforcement is for drivers to use their
33  * own compliance limits which can be stored on the EEPROM. The host
34  * driver or firmware may ensure these are used.
35  *
36  * In addition to all this we provide an extra layer of regulatory
37  * conformance. For drivers which do not have any regulatory
38  * information CRDA provides the complete regulatory solution.
39  * For others it provides a community effort on further restrictions
40  * to enhance compliance.
41  *
42  * Note: When number of rules --> infinity we will not be able to
43  * index on alpha2 any more, instead we'll probably have to
44  * rely on some SHA1 checksum of the regdomain for example.
45  *
46  */
47
48 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
49
50 #include <linux/kernel.h>
51 #include <linux/export.h>
52 #include <linux/slab.h>
53 #include <linux/list.h>
54 #include <linux/ctype.h>
55 #include <linux/nl80211.h>
56 #include <linux/platform_device.h>
57 #include <linux/verification.h>
58 #include <linux/moduleparam.h>
59 #include <linux/firmware.h>
60 #include <net/cfg80211.h>
61 #include "core.h"
62 #include "reg.h"
63 #include "rdev-ops.h"
64 #include "nl80211.h"
65
66 /*
67  * Grace period we give before making sure all current interfaces reside on
68  * channels allowed by the current regulatory domain.
69  */
70 #define REG_ENFORCE_GRACE_MS 60000
71
72 /**
73  * enum reg_request_treatment - regulatory request treatment
74  *
75  * @REG_REQ_OK: continue processing the regulatory request
76  * @REG_REQ_IGNORE: ignore the regulatory request
77  * @REG_REQ_INTERSECT: the regulatory domain resulting from this request should
78  *      be intersected with the current one.
79  * @REG_REQ_ALREADY_SET: the regulatory request will not change the current
80  *      regulatory settings, and no further processing is required.
81  */
82 enum reg_request_treatment {
83         REG_REQ_OK,
84         REG_REQ_IGNORE,
85         REG_REQ_INTERSECT,
86         REG_REQ_ALREADY_SET,
87 };
88
89 static struct regulatory_request core_request_world = {
90         .initiator = NL80211_REGDOM_SET_BY_CORE,
91         .alpha2[0] = '0',
92         .alpha2[1] = '0',
93         .intersect = false,
94         .processed = true,
95         .country_ie_env = ENVIRON_ANY,
96 };
97
98 /*
99  * Receipt of information from last regulatory request,
100  * protected by RTNL (and can be accessed with RCU protection)
101  */
102 static struct regulatory_request __rcu *last_request =
103         (void __force __rcu *)&core_request_world;
104
105 /* To trigger userspace events and load firmware */
106 static struct platform_device *reg_pdev;
107
108 /*
109  * Central wireless core regulatory domains, we only need two,
110  * the current one and a world regulatory domain in case we have no
111  * information to give us an alpha2.
112  * (protected by RTNL, can be read under RCU)
113  */
114 const struct ieee80211_regdomain __rcu *cfg80211_regdomain;
115
116 /*
117  * Number of devices that registered to the core
118  * that support cellular base station regulatory hints
119  * (protected by RTNL)
120  */
121 static int reg_num_devs_support_basehint;
122
123 /*
124  * State variable indicating if the platform on which the devices
125  * are attached is operating in an indoor environment. The state variable
126  * is relevant for all registered devices.
127  */
128 static bool reg_is_indoor;
129 static spinlock_t reg_indoor_lock;
130
131 /* Used to track the userspace process controlling the indoor setting */
132 static u32 reg_is_indoor_portid;
133
134 static void restore_regulatory_settings(bool reset_user);
135
136 static const struct ieee80211_regdomain *get_cfg80211_regdom(void)
137 {
138         return rcu_dereference_rtnl(cfg80211_regdomain);
139 }
140
141 const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy)
142 {
143         return rcu_dereference_rtnl(wiphy->regd);
144 }
145
146 static const char *reg_dfs_region_str(enum nl80211_dfs_regions dfs_region)
147 {
148         switch (dfs_region) {
149         case NL80211_DFS_UNSET:
150                 return "unset";
151         case NL80211_DFS_FCC:
152                 return "FCC";
153         case NL80211_DFS_ETSI:
154                 return "ETSI";
155         case NL80211_DFS_JP:
156                 return "JP";
157         }
158         return "Unknown";
159 }
160
161 enum nl80211_dfs_regions reg_get_dfs_region(struct wiphy *wiphy)
162 {
163         const struct ieee80211_regdomain *regd = NULL;
164         const struct ieee80211_regdomain *wiphy_regd = NULL;
165
166         regd = get_cfg80211_regdom();
167         if (!wiphy)
168                 goto out;
169
170         wiphy_regd = get_wiphy_regdom(wiphy);
171         if (!wiphy_regd)
172                 goto out;
173
174         if (wiphy_regd->dfs_region == regd->dfs_region)
175                 goto out;
176
177         pr_debug("%s: device specific dfs_region (%s) disagrees with cfg80211's central dfs_region (%s)\n",
178                  dev_name(&wiphy->dev),
179                  reg_dfs_region_str(wiphy_regd->dfs_region),
180                  reg_dfs_region_str(regd->dfs_region));
181
182 out:
183         return regd->dfs_region;
184 }
185
186 static void rcu_free_regdom(const struct ieee80211_regdomain *r)
187 {
188         if (!r)
189                 return;
190         kfree_rcu((struct ieee80211_regdomain *)r, rcu_head);
191 }
192
193 static struct regulatory_request *get_last_request(void)
194 {
195         return rcu_dereference_rtnl(last_request);
196 }
197
198 /* Used to queue up regulatory hints */
199 static LIST_HEAD(reg_requests_list);
200 static spinlock_t reg_requests_lock;
201
202 /* Used to queue up beacon hints for review */
203 static LIST_HEAD(reg_pending_beacons);
204 static spinlock_t reg_pending_beacons_lock;
205
206 /* Used to keep track of processed beacon hints */
207 static LIST_HEAD(reg_beacon_list);
208
209 struct reg_beacon {
210         struct list_head list;
211         struct ieee80211_channel chan;
212 };
213
214 static void reg_check_chans_work(struct work_struct *work);
215 static DECLARE_DELAYED_WORK(reg_check_chans, reg_check_chans_work);
216
217 static void reg_todo(struct work_struct *work);
218 static DECLARE_WORK(reg_work, reg_todo);
219
220 /* We keep a static world regulatory domain in case of the absence of CRDA */
221 static const struct ieee80211_regdomain world_regdom = {
222         .n_reg_rules = 8,
223         .alpha2 =  "00",
224         .reg_rules = {
225                 /* IEEE 802.11b/g, channels 1..11 */
226                 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
227                 /* IEEE 802.11b/g, channels 12..13. */
228                 REG_RULE(2467-10, 2472+10, 20, 6, 20,
229                         NL80211_RRF_NO_IR | NL80211_RRF_AUTO_BW),
230                 /* IEEE 802.11 channel 14 - Only JP enables
231                  * this and for 802.11b only */
232                 REG_RULE(2484-10, 2484+10, 20, 6, 20,
233                         NL80211_RRF_NO_IR |
234                         NL80211_RRF_NO_OFDM),
235                 /* IEEE 802.11a, channel 36..48 */
236                 REG_RULE(5180-10, 5240+10, 80, 6, 20,
237                         NL80211_RRF_NO_IR |
238                         NL80211_RRF_AUTO_BW),
239
240                 /* IEEE 802.11a, channel 52..64 - DFS required */
241                 REG_RULE(5260-10, 5320+10, 80, 6, 20,
242                         NL80211_RRF_NO_IR |
243                         NL80211_RRF_AUTO_BW |
244                         NL80211_RRF_DFS),
245
246                 /* IEEE 802.11a, channel 100..144 - DFS required */
247                 REG_RULE(5500-10, 5720+10, 160, 6, 20,
248                         NL80211_RRF_NO_IR |
249                         NL80211_RRF_DFS),
250
251                 /* IEEE 802.11a, channel 149..165 */
252                 REG_RULE(5745-10, 5825+10, 80, 6, 20,
253                         NL80211_RRF_NO_IR),
254
255                 /* IEEE 802.11ad (60GHz), channels 1..3 */
256                 REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0),
257         }
258 };
259
260 /* protected by RTNL */
261 static const struct ieee80211_regdomain *cfg80211_world_regdom =
262         &world_regdom;
263
264 static char *ieee80211_regdom = "00";
265 static char user_alpha2[2];
266
267 module_param(ieee80211_regdom, charp, 0444);
268 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
269
270 static void reg_free_request(struct regulatory_request *request)
271 {
272         if (request == &core_request_world)
273                 return;
274
275         if (request != get_last_request())
276                 kfree(request);
277 }
278
279 static void reg_free_last_request(void)
280 {
281         struct regulatory_request *lr = get_last_request();
282
283         if (lr != &core_request_world && lr)
284                 kfree_rcu(lr, rcu_head);
285 }
286
287 static void reg_update_last_request(struct regulatory_request *request)
288 {
289         struct regulatory_request *lr;
290
291         lr = get_last_request();
292         if (lr == request)
293                 return;
294
295         reg_free_last_request();
296         rcu_assign_pointer(last_request, request);
297 }
298
299 static void reset_regdomains(bool full_reset,
300                              const struct ieee80211_regdomain *new_regdom)
301 {
302         const struct ieee80211_regdomain *r;
303
304         ASSERT_RTNL();
305
306         r = get_cfg80211_regdom();
307
308         /* avoid freeing static information or freeing something twice */
309         if (r == cfg80211_world_regdom)
310                 r = NULL;
311         if (cfg80211_world_regdom == &world_regdom)
312                 cfg80211_world_regdom = NULL;
313         if (r == &world_regdom)
314                 r = NULL;
315
316         rcu_free_regdom(r);
317         rcu_free_regdom(cfg80211_world_regdom);
318
319         cfg80211_world_regdom = &world_regdom;
320         rcu_assign_pointer(cfg80211_regdomain, new_regdom);
321
322         if (!full_reset)
323                 return;
324
325         reg_update_last_request(&core_request_world);
326 }
327
328 /*
329  * Dynamic world regulatory domain requested by the wireless
330  * core upon initialization
331  */
332 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
333 {
334         struct regulatory_request *lr;
335
336         lr = get_last_request();
337
338         WARN_ON(!lr);
339
340         reset_regdomains(false, rd);
341
342         cfg80211_world_regdom = rd;
343 }
344
345 bool is_world_regdom(const char *alpha2)
346 {
347         if (!alpha2)
348                 return false;
349         return alpha2[0] == '0' && alpha2[1] == '0';
350 }
351
352 static bool is_alpha2_set(const char *alpha2)
353 {
354         if (!alpha2)
355                 return false;
356         return alpha2[0] && alpha2[1];
357 }
358
359 static bool is_unknown_alpha2(const char *alpha2)
360 {
361         if (!alpha2)
362                 return false;
363         /*
364          * Special case where regulatory domain was built by driver
365          * but a specific alpha2 cannot be determined
366          */
367         return alpha2[0] == '9' && alpha2[1] == '9';
368 }
369
370 static bool is_intersected_alpha2(const char *alpha2)
371 {
372         if (!alpha2)
373                 return false;
374         /*
375          * Special case where regulatory domain is the
376          * result of an intersection between two regulatory domain
377          * structures
378          */
379         return alpha2[0] == '9' && alpha2[1] == '8';
380 }
381
382 static bool is_an_alpha2(const char *alpha2)
383 {
384         if (!alpha2)
385                 return false;
386         return isalpha(alpha2[0]) && isalpha(alpha2[1]);
387 }
388
389 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
390 {
391         if (!alpha2_x || !alpha2_y)
392                 return false;
393         return alpha2_x[0] == alpha2_y[0] && alpha2_x[1] == alpha2_y[1];
394 }
395
396 static bool regdom_changes(const char *alpha2)
397 {
398         const struct ieee80211_regdomain *r = get_cfg80211_regdom();
399
400         if (!r)
401                 return true;
402         return !alpha2_equal(r->alpha2, alpha2);
403 }
404
405 /*
406  * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
407  * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
408  * has ever been issued.
409  */
410 static bool is_user_regdom_saved(void)
411 {
412         if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
413                 return false;
414
415         /* This would indicate a mistake on the design */
416         if (WARN(!is_world_regdom(user_alpha2) && !is_an_alpha2(user_alpha2),
417                  "Unexpected user alpha2: %c%c\n",
418                  user_alpha2[0], user_alpha2[1]))
419                 return false;
420
421         return true;
422 }
423
424 static const struct ieee80211_regdomain *
425 reg_copy_regd(const struct ieee80211_regdomain *src_regd)
426 {
427         struct ieee80211_regdomain *regd;
428         int size_of_regd, size_of_wmms;
429         unsigned int i;
430         struct ieee80211_wmm_rule *d_wmm, *s_wmm;
431
432         size_of_regd =
433                 sizeof(struct ieee80211_regdomain) +
434                 src_regd->n_reg_rules * sizeof(struct ieee80211_reg_rule);
435         size_of_wmms = src_regd->n_wmm_rules *
436                 sizeof(struct ieee80211_wmm_rule);
437
438         regd = kzalloc(size_of_regd + size_of_wmms, GFP_KERNEL);
439         if (!regd)
440                 return ERR_PTR(-ENOMEM);
441
442         memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
443
444         d_wmm = (struct ieee80211_wmm_rule *)((u8 *)regd + size_of_regd);
445         s_wmm = (struct ieee80211_wmm_rule *)((u8 *)src_regd + size_of_regd);
446         memcpy(d_wmm, s_wmm, size_of_wmms);
447
448         for (i = 0; i < src_regd->n_reg_rules; i++) {
449                 memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
450                        sizeof(struct ieee80211_reg_rule));
451                 if (!src_regd->reg_rules[i].wmm_rule)
452                         continue;
453
454                 regd->reg_rules[i].wmm_rule = d_wmm +
455                         (src_regd->reg_rules[i].wmm_rule - s_wmm) /
456                         sizeof(struct ieee80211_wmm_rule);
457         }
458         return regd;
459 }
460
461 struct reg_regdb_apply_request {
462         struct list_head list;
463         const struct ieee80211_regdomain *regdom;
464 };
465
466 static LIST_HEAD(reg_regdb_apply_list);
467 static DEFINE_MUTEX(reg_regdb_apply_mutex);
468
469 static void reg_regdb_apply(struct work_struct *work)
470 {
471         struct reg_regdb_apply_request *request;
472
473         rtnl_lock();
474
475         mutex_lock(&reg_regdb_apply_mutex);
476         while (!list_empty(&reg_regdb_apply_list)) {
477                 request = list_first_entry(&reg_regdb_apply_list,
478                                            struct reg_regdb_apply_request,
479                                            list);
480                 list_del(&request->list);
481
482                 set_regdom(request->regdom, REGD_SOURCE_INTERNAL_DB);
483                 kfree(request);
484         }
485         mutex_unlock(&reg_regdb_apply_mutex);
486
487         rtnl_unlock();
488 }
489
490 static DECLARE_WORK(reg_regdb_work, reg_regdb_apply);
491
492 static int reg_schedule_apply(const struct ieee80211_regdomain *regdom)
493 {
494         struct reg_regdb_apply_request *request;
495
496         request = kzalloc(sizeof(struct reg_regdb_apply_request), GFP_KERNEL);
497         if (!request) {
498                 kfree(regdom);
499                 return -ENOMEM;
500         }
501
502         request->regdom = regdom;
503
504         mutex_lock(&reg_regdb_apply_mutex);
505         list_add_tail(&request->list, &reg_regdb_apply_list);
506         mutex_unlock(&reg_regdb_apply_mutex);
507
508         schedule_work(&reg_regdb_work);
509         return 0;
510 }
511
512 #ifdef CONFIG_CFG80211_CRDA_SUPPORT
513 /* Max number of consecutive attempts to communicate with CRDA  */
514 #define REG_MAX_CRDA_TIMEOUTS 10
515
516 static u32 reg_crda_timeouts;
517
518 static void crda_timeout_work(struct work_struct *work);
519 static DECLARE_DELAYED_WORK(crda_timeout, crda_timeout_work);
520
521 static void crda_timeout_work(struct work_struct *work)
522 {
523         pr_debug("Timeout while waiting for CRDA to reply, restoring regulatory settings\n");
524         rtnl_lock();
525         reg_crda_timeouts++;
526         restore_regulatory_settings(true);
527         rtnl_unlock();
528 }
529
530 static void cancel_crda_timeout(void)
531 {
532         cancel_delayed_work(&crda_timeout);
533 }
534
535 static void cancel_crda_timeout_sync(void)
536 {
537         cancel_delayed_work_sync(&crda_timeout);
538 }
539
540 static void reset_crda_timeouts(void)
541 {
542         reg_crda_timeouts = 0;
543 }
544
545 /*
546  * This lets us keep regulatory code which is updated on a regulatory
547  * basis in userspace.
548  */
549 static int call_crda(const char *alpha2)
550 {
551         char country[12];
552         char *env[] = { country, NULL };
553         int ret;
554
555         snprintf(country, sizeof(country), "COUNTRY=%c%c",
556                  alpha2[0], alpha2[1]);
557
558         if (reg_crda_timeouts > REG_MAX_CRDA_TIMEOUTS) {
559                 pr_debug("Exceeded CRDA call max attempts. Not calling CRDA\n");
560                 return -EINVAL;
561         }
562
563         if (!is_world_regdom((char *) alpha2))
564                 pr_debug("Calling CRDA for country: %c%c\n",
565                          alpha2[0], alpha2[1]);
566         else
567                 pr_debug("Calling CRDA to update world regulatory domain\n");
568
569         ret = kobject_uevent_env(&reg_pdev->dev.kobj, KOBJ_CHANGE, env);
570         if (ret)
571                 return ret;
572
573         queue_delayed_work(system_power_efficient_wq,
574                            &crda_timeout, msecs_to_jiffies(3142));
575         return 0;
576 }
577 #else
578 static inline void cancel_crda_timeout(void) {}
579 static inline void cancel_crda_timeout_sync(void) {}
580 static inline void reset_crda_timeouts(void) {}
581 static inline int call_crda(const char *alpha2)
582 {
583         return -ENODATA;
584 }
585 #endif /* CONFIG_CFG80211_CRDA_SUPPORT */
586
587 /* code to directly load a firmware database through request_firmware */
588 static const struct fwdb_header *regdb;
589
590 struct fwdb_country {
591         u8 alpha2[2];
592         __be16 coll_ptr;
593         /* this struct cannot be extended */
594 } __packed __aligned(4);
595
596 struct fwdb_collection {
597         u8 len;
598         u8 n_rules;
599         u8 dfs_region;
600         /* no optional data yet */
601         /* aligned to 2, then followed by __be16 array of rule pointers */
602 } __packed __aligned(4);
603
604 enum fwdb_flags {
605         FWDB_FLAG_NO_OFDM       = BIT(0),
606         FWDB_FLAG_NO_OUTDOOR    = BIT(1),
607         FWDB_FLAG_DFS           = BIT(2),
608         FWDB_FLAG_NO_IR         = BIT(3),
609         FWDB_FLAG_AUTO_BW       = BIT(4),
610 };
611
612 struct fwdb_wmm_ac {
613         u8 ecw;
614         u8 aifsn;
615         __be16 cot;
616 } __packed;
617
618 struct fwdb_wmm_rule {
619         struct fwdb_wmm_ac client[IEEE80211_NUM_ACS];
620         struct fwdb_wmm_ac ap[IEEE80211_NUM_ACS];
621 } __packed;
622
623 struct fwdb_rule {
624         u8 len;
625         u8 flags;
626         __be16 max_eirp;
627         __be32 start, end, max_bw;
628         /* start of optional data */
629         __be16 cac_timeout;
630         __be16 wmm_ptr;
631 } __packed __aligned(4);
632
633 #define FWDB_MAGIC 0x52474442
634 #define FWDB_VERSION 20
635
636 struct fwdb_header {
637         __be32 magic;
638         __be32 version;
639         struct fwdb_country country[];
640 } __packed __aligned(4);
641
642 static int ecw2cw(int ecw)
643 {
644         return (1 << ecw) - 1;
645 }
646
647 static bool valid_wmm(struct fwdb_wmm_rule *rule)
648 {
649         struct fwdb_wmm_ac *ac = (struct fwdb_wmm_ac *)rule;
650         int i;
651
652         for (i = 0; i < IEEE80211_NUM_ACS * 2; i++) {
653                 u16 cw_min = ecw2cw((ac[i].ecw & 0xf0) >> 4);
654                 u16 cw_max = ecw2cw(ac[i].ecw & 0x0f);
655                 u8 aifsn = ac[i].aifsn;
656
657                 if (cw_min >= cw_max)
658                         return false;
659
660                 if (aifsn < 1)
661                         return false;
662         }
663
664         return true;
665 }
666
667 static bool valid_rule(const u8 *data, unsigned int size, u16 rule_ptr)
668 {
669         struct fwdb_rule *rule = (void *)(data + (rule_ptr << 2));
670
671         if ((u8 *)rule + sizeof(rule->len) > data + size)
672                 return false;
673
674         /* mandatory fields */
675         if (rule->len < offsetofend(struct fwdb_rule, max_bw))
676                 return false;
677         if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr)) {
678                 u32 wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2;
679                 struct fwdb_wmm_rule *wmm;
680
681                 if (wmm_ptr + sizeof(struct fwdb_wmm_rule) > size)
682                         return false;
683
684                 wmm = (void *)(data + wmm_ptr);
685
686                 if (!valid_wmm(wmm))
687                         return false;
688         }
689         return true;
690 }
691
692 static bool valid_country(const u8 *data, unsigned int size,
693                           const struct fwdb_country *country)
694 {
695         unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
696         struct fwdb_collection *coll = (void *)(data + ptr);
697         __be16 *rules_ptr;
698         unsigned int i;
699
700         /* make sure we can read len/n_rules */
701         if ((u8 *)coll + offsetofend(typeof(*coll), n_rules) > data + size)
702                 return false;
703
704         /* make sure base struct and all rules fit */
705         if ((u8 *)coll + ALIGN(coll->len, 2) +
706             (coll->n_rules * 2) > data + size)
707                 return false;
708
709         /* mandatory fields must exist */
710         if (coll->len < offsetofend(struct fwdb_collection, dfs_region))
711                 return false;
712
713         rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
714
715         for (i = 0; i < coll->n_rules; i++) {
716                 u16 rule_ptr = be16_to_cpu(rules_ptr[i]);
717
718                 if (!valid_rule(data, size, rule_ptr))
719                         return false;
720         }
721
722         return true;
723 }
724
725 #ifdef CONFIG_CFG80211_REQUIRE_SIGNED_REGDB
726 static struct key *builtin_regdb_keys;
727
728 static void __init load_keys_from_buffer(const u8 *p, unsigned int buflen)
729 {
730         const u8 *end = p + buflen;
731         size_t plen;
732         key_ref_t key;
733
734         while (p < end) {
735                 /* Each cert begins with an ASN.1 SEQUENCE tag and must be more
736                  * than 256 bytes in size.
737                  */
738                 if (end - p < 4)
739                         goto dodgy_cert;
740                 if (p[0] != 0x30 &&
741                     p[1] != 0x82)
742                         goto dodgy_cert;
743                 plen = (p[2] << 8) | p[3];
744                 plen += 4;
745                 if (plen > end - p)
746                         goto dodgy_cert;
747
748                 key = key_create_or_update(make_key_ref(builtin_regdb_keys, 1),
749                                            "asymmetric", NULL, p, plen,
750                                            ((KEY_POS_ALL & ~KEY_POS_SETATTR) |
751                                             KEY_USR_VIEW | KEY_USR_READ),
752                                            KEY_ALLOC_NOT_IN_QUOTA |
753                                            KEY_ALLOC_BUILT_IN |
754                                            KEY_ALLOC_BYPASS_RESTRICTION);
755                 if (IS_ERR(key)) {
756                         pr_err("Problem loading in-kernel X.509 certificate (%ld)\n",
757                                PTR_ERR(key));
758                 } else {
759                         pr_notice("Loaded X.509 cert '%s'\n",
760                                   key_ref_to_ptr(key)->description);
761                         key_ref_put(key);
762                 }
763                 p += plen;
764         }
765
766         return;
767
768 dodgy_cert:
769         pr_err("Problem parsing in-kernel X.509 certificate list\n");
770 }
771
772 static int __init load_builtin_regdb_keys(void)
773 {
774         builtin_regdb_keys =
775                 keyring_alloc(".builtin_regdb_keys",
776                               KUIDT_INIT(0), KGIDT_INIT(0), current_cred(),
777                               ((KEY_POS_ALL & ~KEY_POS_SETATTR) |
778                               KEY_USR_VIEW | KEY_USR_READ | KEY_USR_SEARCH),
779                               KEY_ALLOC_NOT_IN_QUOTA, NULL, NULL);
780         if (IS_ERR(builtin_regdb_keys))
781                 return PTR_ERR(builtin_regdb_keys);
782
783         pr_notice("Loading compiled-in X.509 certificates for regulatory database\n");
784
785 #ifdef CONFIG_CFG80211_USE_KERNEL_REGDB_KEYS
786         load_keys_from_buffer(shipped_regdb_certs, shipped_regdb_certs_len);
787 #endif
788 #ifdef CONFIG_CFG80211_EXTRA_REGDB_KEYDIR
789         if (CONFIG_CFG80211_EXTRA_REGDB_KEYDIR[0] != '\0')
790                 load_keys_from_buffer(extra_regdb_certs, extra_regdb_certs_len);
791 #endif
792
793         return 0;
794 }
795
796 static bool regdb_has_valid_signature(const u8 *data, unsigned int size)
797 {
798         const struct firmware *sig;
799         bool result;
800
801         if (request_firmware(&sig, "regulatory.db.p7s", &reg_pdev->dev))
802                 return false;
803
804         result = verify_pkcs7_signature(data, size, sig->data, sig->size,
805                                         builtin_regdb_keys,
806                                         VERIFYING_UNSPECIFIED_SIGNATURE,
807                                         NULL, NULL) == 0;
808
809         release_firmware(sig);
810
811         return result;
812 }
813
814 static void free_regdb_keyring(void)
815 {
816         key_put(builtin_regdb_keys);
817 }
818 #else
819 static int load_builtin_regdb_keys(void)
820 {
821         return 0;
822 }
823
824 static bool regdb_has_valid_signature(const u8 *data, unsigned int size)
825 {
826         return true;
827 }
828
829 static void free_regdb_keyring(void)
830 {
831 }
832 #endif /* CONFIG_CFG80211_REQUIRE_SIGNED_REGDB */
833
834 static bool valid_regdb(const u8 *data, unsigned int size)
835 {
836         const struct fwdb_header *hdr = (void *)data;
837         const struct fwdb_country *country;
838
839         if (size < sizeof(*hdr))
840                 return false;
841
842         if (hdr->magic != cpu_to_be32(FWDB_MAGIC))
843                 return false;
844
845         if (hdr->version != cpu_to_be32(FWDB_VERSION))
846                 return false;
847
848         if (!regdb_has_valid_signature(data, size))
849                 return false;
850
851         country = &hdr->country[0];
852         while ((u8 *)(country + 1) <= data + size) {
853                 if (!country->coll_ptr)
854                         break;
855                 if (!valid_country(data, size, country))
856                         return false;
857                 country++;
858         }
859
860         return true;
861 }
862
863 static void set_wmm_rule(struct ieee80211_wmm_rule *rule,
864                          struct fwdb_wmm_rule *wmm)
865 {
866         unsigned int i;
867
868         for (i = 0; i < IEEE80211_NUM_ACS; i++) {
869                 rule->client[i].cw_min =
870                         ecw2cw((wmm->client[i].ecw & 0xf0) >> 4);
871                 rule->client[i].cw_max = ecw2cw(wmm->client[i].ecw & 0x0f);
872                 rule->client[i].aifsn =  wmm->client[i].aifsn;
873                 rule->client[i].cot = 1000 * be16_to_cpu(wmm->client[i].cot);
874                 rule->ap[i].cw_min = ecw2cw((wmm->ap[i].ecw & 0xf0) >> 4);
875                 rule->ap[i].cw_max = ecw2cw(wmm->ap[i].ecw & 0x0f);
876                 rule->ap[i].aifsn = wmm->ap[i].aifsn;
877                 rule->ap[i].cot = 1000 * be16_to_cpu(wmm->ap[i].cot);
878         }
879 }
880
881 static int __regdb_query_wmm(const struct fwdb_header *db,
882                              const struct fwdb_country *country, int freq,
883                              u32 *dbptr, struct ieee80211_wmm_rule *rule)
884 {
885         unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
886         struct fwdb_collection *coll = (void *)((u8 *)db + ptr);
887         int i;
888
889         for (i = 0; i < coll->n_rules; i++) {
890                 __be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
891                 unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2;
892                 struct fwdb_rule *rrule = (void *)((u8 *)db + rule_ptr);
893                 struct fwdb_wmm_rule *wmm;
894                 unsigned int wmm_ptr;
895
896                 if (rrule->len < offsetofend(struct fwdb_rule, wmm_ptr))
897                         continue;
898
899                 if (freq >= KHZ_TO_MHZ(be32_to_cpu(rrule->start)) &&
900                     freq <= KHZ_TO_MHZ(be32_to_cpu(rrule->end))) {
901                         wmm_ptr = be16_to_cpu(rrule->wmm_ptr) << 2;
902                         wmm = (void *)((u8 *)db + wmm_ptr);
903                         set_wmm_rule(rule, wmm);
904                         if (dbptr)
905                                 *dbptr = wmm_ptr;
906                         return 0;
907                 }
908         }
909
910         return -ENODATA;
911 }
912
913 int reg_query_regdb_wmm(char *alpha2, int freq, u32 *dbptr,
914                         struct ieee80211_wmm_rule *rule)
915 {
916         const struct fwdb_header *hdr = regdb;
917         const struct fwdb_country *country;
918
919         if (IS_ERR(regdb))
920                 return PTR_ERR(regdb);
921
922         country = &hdr->country[0];
923         while (country->coll_ptr) {
924                 if (alpha2_equal(alpha2, country->alpha2))
925                         return __regdb_query_wmm(regdb, country, freq, dbptr,
926                                                  rule);
927
928                 country++;
929         }
930
931         return -ENODATA;
932 }
933 EXPORT_SYMBOL(reg_query_regdb_wmm);
934
935 struct wmm_ptrs {
936         struct ieee80211_wmm_rule *rule;
937         u32 ptr;
938 };
939
940 static struct ieee80211_wmm_rule *find_wmm_ptr(struct wmm_ptrs *wmm_ptrs,
941                                                u32 wmm_ptr, int n_wmms)
942 {
943         int i;
944
945         for (i = 0; i < n_wmms; i++) {
946                 if (wmm_ptrs[i].ptr == wmm_ptr)
947                         return wmm_ptrs[i].rule;
948         }
949         return NULL;
950 }
951
952 static int regdb_query_country(const struct fwdb_header *db,
953                                const struct fwdb_country *country)
954 {
955         unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
956         struct fwdb_collection *coll = (void *)((u8 *)db + ptr);
957         struct ieee80211_regdomain *regdom;
958         struct ieee80211_regdomain *tmp_rd;
959         unsigned int size_of_regd, i, n_wmms = 0;
960         struct wmm_ptrs *wmm_ptrs;
961
962         size_of_regd = sizeof(struct ieee80211_regdomain) +
963                 coll->n_rules * sizeof(struct ieee80211_reg_rule);
964
965         regdom = kzalloc(size_of_regd, GFP_KERNEL);
966         if (!regdom)
967                 return -ENOMEM;
968
969         wmm_ptrs = kcalloc(coll->n_rules, sizeof(*wmm_ptrs), GFP_KERNEL);
970         if (!wmm_ptrs) {
971                 kfree(regdom);
972                 return -ENOMEM;
973         }
974
975         regdom->n_reg_rules = coll->n_rules;
976         regdom->alpha2[0] = country->alpha2[0];
977         regdom->alpha2[1] = country->alpha2[1];
978         regdom->dfs_region = coll->dfs_region;
979
980         for (i = 0; i < regdom->n_reg_rules; i++) {
981                 __be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
982                 unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2;
983                 struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr);
984                 struct ieee80211_reg_rule *rrule = &regdom->reg_rules[i];
985
986                 rrule->freq_range.start_freq_khz = be32_to_cpu(rule->start);
987                 rrule->freq_range.end_freq_khz = be32_to_cpu(rule->end);
988                 rrule->freq_range.max_bandwidth_khz = be32_to_cpu(rule->max_bw);
989
990                 rrule->power_rule.max_antenna_gain = 0;
991                 rrule->power_rule.max_eirp = be16_to_cpu(rule->max_eirp);
992
993                 rrule->flags = 0;
994                 if (rule->flags & FWDB_FLAG_NO_OFDM)
995                         rrule->flags |= NL80211_RRF_NO_OFDM;
996                 if (rule->flags & FWDB_FLAG_NO_OUTDOOR)
997                         rrule->flags |= NL80211_RRF_NO_OUTDOOR;
998                 if (rule->flags & FWDB_FLAG_DFS)
999                         rrule->flags |= NL80211_RRF_DFS;
1000                 if (rule->flags & FWDB_FLAG_NO_IR)
1001                         rrule->flags |= NL80211_RRF_NO_IR;
1002                 if (rule->flags & FWDB_FLAG_AUTO_BW)
1003                         rrule->flags |= NL80211_RRF_AUTO_BW;
1004
1005                 rrule->dfs_cac_ms = 0;
1006
1007                 /* handle optional data */
1008                 if (rule->len >= offsetofend(struct fwdb_rule, cac_timeout))
1009                         rrule->dfs_cac_ms =
1010                                 1000 * be16_to_cpu(rule->cac_timeout);
1011                 if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr)) {
1012                         u32 wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2;
1013                         struct ieee80211_wmm_rule *wmm_pos =
1014                                 find_wmm_ptr(wmm_ptrs, wmm_ptr, n_wmms);
1015                         struct fwdb_wmm_rule *wmm;
1016                         struct ieee80211_wmm_rule *wmm_rule;
1017
1018                         if (wmm_pos) {
1019                                 rrule->wmm_rule = wmm_pos;
1020                                 continue;
1021                         }
1022                         wmm = (void *)((u8 *)db + wmm_ptr);
1023                         tmp_rd = krealloc(regdom, size_of_regd + (n_wmms + 1) *
1024                                           sizeof(struct ieee80211_wmm_rule),
1025                                           GFP_KERNEL);
1026
1027                         if (!tmp_rd) {
1028                                 kfree(regdom);
1029                                 kfree(wmm_ptrs);
1030                                 return -ENOMEM;
1031                         }
1032                         regdom = tmp_rd;
1033
1034                         wmm_rule = (struct ieee80211_wmm_rule *)
1035                                 ((u8 *)regdom + size_of_regd + n_wmms *
1036                                 sizeof(struct ieee80211_wmm_rule));
1037
1038                         set_wmm_rule(wmm_rule, wmm);
1039                         wmm_ptrs[n_wmms].ptr = wmm_ptr;
1040                         wmm_ptrs[n_wmms++].rule = wmm_rule;
1041                 }
1042         }
1043         kfree(wmm_ptrs);
1044
1045         return reg_schedule_apply(regdom);
1046 }
1047
1048 static int query_regdb(const char *alpha2)
1049 {
1050         const struct fwdb_header *hdr = regdb;
1051         const struct fwdb_country *country;
1052
1053         ASSERT_RTNL();
1054
1055         if (IS_ERR(regdb))
1056                 return PTR_ERR(regdb);
1057
1058         country = &hdr->country[0];
1059         while (country->coll_ptr) {
1060                 if (alpha2_equal(alpha2, country->alpha2))
1061                         return regdb_query_country(regdb, country);
1062                 country++;
1063         }
1064
1065         return -ENODATA;
1066 }
1067
1068 static void regdb_fw_cb(const struct firmware *fw, void *context)
1069 {
1070         int set_error = 0;
1071         bool restore = true;
1072         void *db;
1073
1074         if (!fw) {
1075                 pr_info("failed to load regulatory.db\n");
1076                 set_error = -ENODATA;
1077         } else if (!valid_regdb(fw->data, fw->size)) {
1078                 pr_info("loaded regulatory.db is malformed or signature is missing/invalid\n");
1079                 set_error = -EINVAL;
1080         }
1081
1082         rtnl_lock();
1083         if (WARN_ON(regdb && !IS_ERR(regdb))) {
1084                 /* just restore and free new db */
1085         } else if (set_error) {
1086                 regdb = ERR_PTR(set_error);
1087         } else if (fw) {
1088                 db = kmemdup(fw->data, fw->size, GFP_KERNEL);
1089                 if (db) {
1090                         regdb = db;
1091                         restore = context && query_regdb(context);
1092                 } else {
1093                         restore = true;
1094                 }
1095         }
1096
1097         if (restore)
1098                 restore_regulatory_settings(true);
1099
1100         rtnl_unlock();
1101
1102         kfree(context);
1103
1104         release_firmware(fw);
1105 }
1106
1107 static int query_regdb_file(const char *alpha2)
1108 {
1109         ASSERT_RTNL();
1110
1111         if (regdb)
1112                 return query_regdb(alpha2);
1113
1114         alpha2 = kmemdup(alpha2, 2, GFP_KERNEL);
1115         if (!alpha2)
1116                 return -ENOMEM;
1117
1118         return request_firmware_nowait(THIS_MODULE, true, "regulatory.db",
1119                                        &reg_pdev->dev, GFP_KERNEL,
1120                                        (void *)alpha2, regdb_fw_cb);
1121 }
1122
1123 int reg_reload_regdb(void)
1124 {
1125         const struct firmware *fw;
1126         void *db;
1127         int err;
1128
1129         err = request_firmware(&fw, "regulatory.db", &reg_pdev->dev);
1130         if (err)
1131                 return err;
1132
1133         if (!valid_regdb(fw->data, fw->size)) {
1134                 err = -ENODATA;
1135                 goto out;
1136         }
1137
1138         db = kmemdup(fw->data, fw->size, GFP_KERNEL);
1139         if (!db) {
1140                 err = -ENOMEM;
1141                 goto out;
1142         }
1143
1144         rtnl_lock();
1145         if (!IS_ERR_OR_NULL(regdb))
1146                 kfree(regdb);
1147         regdb = db;
1148         rtnl_unlock();
1149
1150  out:
1151         release_firmware(fw);
1152         return err;
1153 }
1154
1155 static bool reg_query_database(struct regulatory_request *request)
1156 {
1157         if (query_regdb_file(request->alpha2) == 0)
1158                 return true;
1159
1160         if (call_crda(request->alpha2) == 0)
1161                 return true;
1162
1163         return false;
1164 }
1165
1166 bool reg_is_valid_request(const char *alpha2)
1167 {
1168         struct regulatory_request *lr = get_last_request();
1169
1170         if (!lr || lr->processed)
1171                 return false;
1172
1173         return alpha2_equal(lr->alpha2, alpha2);
1174 }
1175
1176 static const struct ieee80211_regdomain *reg_get_regdomain(struct wiphy *wiphy)
1177 {
1178         struct regulatory_request *lr = get_last_request();
1179
1180         /*
1181          * Follow the driver's regulatory domain, if present, unless a country
1182          * IE has been processed or a user wants to help complaince further
1183          */
1184         if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1185             lr->initiator != NL80211_REGDOM_SET_BY_USER &&
1186             wiphy->regd)
1187                 return get_wiphy_regdom(wiphy);
1188
1189         return get_cfg80211_regdom();
1190 }
1191
1192 static unsigned int
1193 reg_get_max_bandwidth_from_range(const struct ieee80211_regdomain *rd,
1194                                  const struct ieee80211_reg_rule *rule)
1195 {
1196         const struct ieee80211_freq_range *freq_range = &rule->freq_range;
1197         const struct ieee80211_freq_range *freq_range_tmp;
1198         const struct ieee80211_reg_rule *tmp;
1199         u32 start_freq, end_freq, idx, no;
1200
1201         for (idx = 0; idx < rd->n_reg_rules; idx++)
1202                 if (rule == &rd->reg_rules[idx])
1203                         break;
1204
1205         if (idx == rd->n_reg_rules)
1206                 return 0;
1207
1208         /* get start_freq */
1209         no = idx;
1210
1211         while (no) {
1212                 tmp = &rd->reg_rules[--no];
1213                 freq_range_tmp = &tmp->freq_range;
1214
1215                 if (freq_range_tmp->end_freq_khz < freq_range->start_freq_khz)
1216                         break;
1217
1218                 freq_range = freq_range_tmp;
1219         }
1220
1221         start_freq = freq_range->start_freq_khz;
1222
1223         /* get end_freq */
1224         freq_range = &rule->freq_range;
1225         no = idx;
1226
1227         while (no < rd->n_reg_rules - 1) {
1228                 tmp = &rd->reg_rules[++no];
1229                 freq_range_tmp = &tmp->freq_range;
1230
1231                 if (freq_range_tmp->start_freq_khz > freq_range->end_freq_khz)
1232                         break;
1233
1234                 freq_range = freq_range_tmp;
1235         }
1236
1237         end_freq = freq_range->end_freq_khz;
1238
1239         return end_freq - start_freq;
1240 }
1241
1242 unsigned int reg_get_max_bandwidth(const struct ieee80211_regdomain *rd,
1243                                    const struct ieee80211_reg_rule *rule)
1244 {
1245         unsigned int bw = reg_get_max_bandwidth_from_range(rd, rule);
1246
1247         if (rule->flags & NL80211_RRF_NO_160MHZ)
1248                 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(80));
1249         if (rule->flags & NL80211_RRF_NO_80MHZ)
1250                 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(40));
1251
1252         /*
1253          * HT40+/HT40- limits are handled per-channel. Only limit BW if both
1254          * are not allowed.
1255          */
1256         if (rule->flags & NL80211_RRF_NO_HT40MINUS &&
1257             rule->flags & NL80211_RRF_NO_HT40PLUS)
1258                 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(20));
1259
1260         return bw;
1261 }
1262
1263 /* Sanity check on a regulatory rule */
1264 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
1265 {
1266         const struct ieee80211_freq_range *freq_range = &rule->freq_range;
1267         u32 freq_diff;
1268
1269         if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
1270                 return false;
1271
1272         if (freq_range->start_freq_khz > freq_range->end_freq_khz)
1273                 return false;
1274
1275         freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
1276
1277         if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
1278             freq_range->max_bandwidth_khz > freq_diff)
1279                 return false;
1280
1281         return true;
1282 }
1283
1284 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
1285 {
1286         const struct ieee80211_reg_rule *reg_rule = NULL;
1287         unsigned int i;
1288
1289         if (!rd->n_reg_rules)
1290                 return false;
1291
1292         if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
1293                 return false;
1294
1295         for (i = 0; i < rd->n_reg_rules; i++) {
1296                 reg_rule = &rd->reg_rules[i];
1297                 if (!is_valid_reg_rule(reg_rule))
1298                         return false;
1299         }
1300
1301         return true;
1302 }
1303
1304 /**
1305  * freq_in_rule_band - tells us if a frequency is in a frequency band
1306  * @freq_range: frequency rule we want to query
1307  * @freq_khz: frequency we are inquiring about
1308  *
1309  * This lets us know if a specific frequency rule is or is not relevant to
1310  * a specific frequency's band. Bands are device specific and artificial
1311  * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"),
1312  * however it is safe for now to assume that a frequency rule should not be
1313  * part of a frequency's band if the start freq or end freq are off by more
1314  * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 10 GHz for the
1315  * 60 GHz band.
1316  * This resolution can be lowered and should be considered as we add
1317  * regulatory rule support for other "bands".
1318  **/
1319 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
1320                               u32 freq_khz)
1321 {
1322 #define ONE_GHZ_IN_KHZ  1000000
1323         /*
1324          * From 802.11ad: directional multi-gigabit (DMG):
1325          * Pertaining to operation in a frequency band containing a channel
1326          * with the Channel starting frequency above 45 GHz.
1327          */
1328         u32 limit = freq_khz > 45 * ONE_GHZ_IN_KHZ ?
1329                         10 * ONE_GHZ_IN_KHZ : 2 * ONE_GHZ_IN_KHZ;
1330         if (abs(freq_khz - freq_range->start_freq_khz) <= limit)
1331                 return true;
1332         if (abs(freq_khz - freq_range->end_freq_khz) <= limit)
1333                 return true;
1334         return false;
1335 #undef ONE_GHZ_IN_KHZ
1336 }
1337
1338 /*
1339  * Later on we can perhaps use the more restrictive DFS
1340  * region but we don't have information for that yet so
1341  * for now simply disallow conflicts.
1342  */
1343 static enum nl80211_dfs_regions
1344 reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1,
1345                          const enum nl80211_dfs_regions dfs_region2)
1346 {
1347         if (dfs_region1 != dfs_region2)
1348                 return NL80211_DFS_UNSET;
1349         return dfs_region1;
1350 }
1351
1352 /*
1353  * Helper for regdom_intersect(), this does the real
1354  * mathematical intersection fun
1355  */
1356 static int reg_rules_intersect(const struct ieee80211_regdomain *rd1,
1357                                const struct ieee80211_regdomain *rd2,
1358                                const struct ieee80211_reg_rule *rule1,
1359                                const struct ieee80211_reg_rule *rule2,
1360                                struct ieee80211_reg_rule *intersected_rule)
1361 {
1362         const struct ieee80211_freq_range *freq_range1, *freq_range2;
1363         struct ieee80211_freq_range *freq_range;
1364         const struct ieee80211_power_rule *power_rule1, *power_rule2;
1365         struct ieee80211_power_rule *power_rule;
1366         u32 freq_diff, max_bandwidth1, max_bandwidth2;
1367
1368         freq_range1 = &rule1->freq_range;
1369         freq_range2 = &rule2->freq_range;
1370         freq_range = &intersected_rule->freq_range;
1371
1372         power_rule1 = &rule1->power_rule;
1373         power_rule2 = &rule2->power_rule;
1374         power_rule = &intersected_rule->power_rule;
1375
1376         freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
1377                                          freq_range2->start_freq_khz);
1378         freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
1379                                        freq_range2->end_freq_khz);
1380
1381         max_bandwidth1 = freq_range1->max_bandwidth_khz;
1382         max_bandwidth2 = freq_range2->max_bandwidth_khz;
1383
1384         if (rule1->flags & NL80211_RRF_AUTO_BW)
1385                 max_bandwidth1 = reg_get_max_bandwidth(rd1, rule1);
1386         if (rule2->flags & NL80211_RRF_AUTO_BW)
1387                 max_bandwidth2 = reg_get_max_bandwidth(rd2, rule2);
1388
1389         freq_range->max_bandwidth_khz = min(max_bandwidth1, max_bandwidth2);
1390
1391         intersected_rule->flags = rule1->flags | rule2->flags;
1392
1393         /*
1394          * In case NL80211_RRF_AUTO_BW requested for both rules
1395          * set AUTO_BW in intersected rule also. Next we will
1396          * calculate BW correctly in handle_channel function.
1397          * In other case remove AUTO_BW flag while we calculate
1398          * maximum bandwidth correctly and auto calculation is
1399          * not required.
1400          */
1401         if ((rule1->flags & NL80211_RRF_AUTO_BW) &&
1402             (rule2->flags & NL80211_RRF_AUTO_BW))
1403                 intersected_rule->flags |= NL80211_RRF_AUTO_BW;
1404         else
1405                 intersected_rule->flags &= ~NL80211_RRF_AUTO_BW;
1406
1407         freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
1408         if (freq_range->max_bandwidth_khz > freq_diff)
1409                 freq_range->max_bandwidth_khz = freq_diff;
1410
1411         power_rule->max_eirp = min(power_rule1->max_eirp,
1412                 power_rule2->max_eirp);
1413         power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
1414                 power_rule2->max_antenna_gain);
1415
1416         intersected_rule->dfs_cac_ms = max(rule1->dfs_cac_ms,
1417                                            rule2->dfs_cac_ms);
1418
1419         if (!is_valid_reg_rule(intersected_rule))
1420                 return -EINVAL;
1421
1422         return 0;
1423 }
1424
1425 /* check whether old rule contains new rule */
1426 static bool rule_contains(struct ieee80211_reg_rule *r1,
1427                           struct ieee80211_reg_rule *r2)
1428 {
1429         /* for simplicity, currently consider only same flags */
1430         if (r1->flags != r2->flags)
1431                 return false;
1432
1433         /* verify r1 is more restrictive */
1434         if ((r1->power_rule.max_antenna_gain >
1435              r2->power_rule.max_antenna_gain) ||
1436             r1->power_rule.max_eirp > r2->power_rule.max_eirp)
1437                 return false;
1438
1439         /* make sure r2's range is contained within r1 */
1440         if (r1->freq_range.start_freq_khz > r2->freq_range.start_freq_khz ||
1441             r1->freq_range.end_freq_khz < r2->freq_range.end_freq_khz)
1442                 return false;
1443
1444         /* and finally verify that r1.max_bw >= r2.max_bw */
1445         if (r1->freq_range.max_bandwidth_khz <
1446             r2->freq_range.max_bandwidth_khz)
1447                 return false;
1448
1449         return true;
1450 }
1451
1452 /* add or extend current rules. do nothing if rule is already contained */
1453 static void add_rule(struct ieee80211_reg_rule *rule,
1454                      struct ieee80211_reg_rule *reg_rules, u32 *n_rules)
1455 {
1456         struct ieee80211_reg_rule *tmp_rule;
1457         int i;
1458
1459         for (i = 0; i < *n_rules; i++) {
1460                 tmp_rule = &reg_rules[i];
1461                 /* rule is already contained - do nothing */
1462                 if (rule_contains(tmp_rule, rule))
1463                         return;
1464
1465                 /* extend rule if possible */
1466                 if (rule_contains(rule, tmp_rule)) {
1467                         memcpy(tmp_rule, rule, sizeof(*rule));
1468                         return;
1469                 }
1470         }
1471
1472         memcpy(&reg_rules[*n_rules], rule, sizeof(*rule));
1473         (*n_rules)++;
1474 }
1475
1476 /**
1477  * regdom_intersect - do the intersection between two regulatory domains
1478  * @rd1: first regulatory domain
1479  * @rd2: second regulatory domain
1480  *
1481  * Use this function to get the intersection between two regulatory domains.
1482  * Once completed we will mark the alpha2 for the rd as intersected, "98",
1483  * as no one single alpha2 can represent this regulatory domain.
1484  *
1485  * Returns a pointer to the regulatory domain structure which will hold the
1486  * resulting intersection of rules between rd1 and rd2. We will
1487  * kzalloc() this structure for you.
1488  */
1489 static struct ieee80211_regdomain *
1490 regdom_intersect(const struct ieee80211_regdomain *rd1,
1491                  const struct ieee80211_regdomain *rd2)
1492 {
1493         int r, size_of_regd;
1494         unsigned int x, y;
1495         unsigned int num_rules = 0;
1496         const struct ieee80211_reg_rule *rule1, *rule2;
1497         struct ieee80211_reg_rule intersected_rule;
1498         struct ieee80211_regdomain *rd;
1499
1500         if (!rd1 || !rd2)
1501                 return NULL;
1502
1503         /*
1504          * First we get a count of the rules we'll need, then we actually
1505          * build them. This is to so we can malloc() and free() a
1506          * regdomain once. The reason we use reg_rules_intersect() here
1507          * is it will return -EINVAL if the rule computed makes no sense.
1508          * All rules that do check out OK are valid.
1509          */
1510
1511         for (x = 0; x < rd1->n_reg_rules; x++) {
1512                 rule1 = &rd1->reg_rules[x];
1513                 for (y = 0; y < rd2->n_reg_rules; y++) {
1514                         rule2 = &rd2->reg_rules[y];
1515                         if (!reg_rules_intersect(rd1, rd2, rule1, rule2,
1516                                                  &intersected_rule))
1517                                 num_rules++;
1518                 }
1519         }
1520
1521         if (!num_rules)
1522                 return NULL;
1523
1524         size_of_regd = sizeof(struct ieee80211_regdomain) +
1525                        num_rules * sizeof(struct ieee80211_reg_rule);
1526
1527         rd = kzalloc(size_of_regd, GFP_KERNEL);
1528         if (!rd)
1529                 return NULL;
1530
1531         for (x = 0; x < rd1->n_reg_rules; x++) {
1532                 rule1 = &rd1->reg_rules[x];
1533                 for (y = 0; y < rd2->n_reg_rules; y++) {
1534                         rule2 = &rd2->reg_rules[y];
1535                         r = reg_rules_intersect(rd1, rd2, rule1, rule2,
1536                                                 &intersected_rule);
1537                         /*
1538                          * No need to memset here the intersected rule here as
1539                          * we're not using the stack anymore
1540                          */
1541                         if (r)
1542                                 continue;
1543
1544                         add_rule(&intersected_rule, rd->reg_rules,
1545                                  &rd->n_reg_rules);
1546                 }
1547         }
1548
1549         rd->alpha2[0] = '9';
1550         rd->alpha2[1] = '8';
1551         rd->dfs_region = reg_intersect_dfs_region(rd1->dfs_region,
1552                                                   rd2->dfs_region);
1553
1554         return rd;
1555 }
1556
1557 /*
1558  * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
1559  * want to just have the channel structure use these
1560  */
1561 static u32 map_regdom_flags(u32 rd_flags)
1562 {
1563         u32 channel_flags = 0;
1564         if (rd_flags & NL80211_RRF_NO_IR_ALL)
1565                 channel_flags |= IEEE80211_CHAN_NO_IR;
1566         if (rd_flags & NL80211_RRF_DFS)
1567                 channel_flags |= IEEE80211_CHAN_RADAR;
1568         if (rd_flags & NL80211_RRF_NO_OFDM)
1569                 channel_flags |= IEEE80211_CHAN_NO_OFDM;
1570         if (rd_flags & NL80211_RRF_NO_OUTDOOR)
1571                 channel_flags |= IEEE80211_CHAN_INDOOR_ONLY;
1572         if (rd_flags & NL80211_RRF_IR_CONCURRENT)
1573                 channel_flags |= IEEE80211_CHAN_IR_CONCURRENT;
1574         if (rd_flags & NL80211_RRF_NO_HT40MINUS)
1575                 channel_flags |= IEEE80211_CHAN_NO_HT40MINUS;
1576         if (rd_flags & NL80211_RRF_NO_HT40PLUS)
1577                 channel_flags |= IEEE80211_CHAN_NO_HT40PLUS;
1578         if (rd_flags & NL80211_RRF_NO_80MHZ)
1579                 channel_flags |= IEEE80211_CHAN_NO_80MHZ;
1580         if (rd_flags & NL80211_RRF_NO_160MHZ)
1581                 channel_flags |= IEEE80211_CHAN_NO_160MHZ;
1582         return channel_flags;
1583 }
1584
1585 static const struct ieee80211_reg_rule *
1586 freq_reg_info_regd(u32 center_freq,
1587                    const struct ieee80211_regdomain *regd, u32 bw)
1588 {
1589         int i;
1590         bool band_rule_found = false;
1591         bool bw_fits = false;
1592
1593         if (!regd)
1594                 return ERR_PTR(-EINVAL);
1595
1596         for (i = 0; i < regd->n_reg_rules; i++) {
1597                 const struct ieee80211_reg_rule *rr;
1598                 const struct ieee80211_freq_range *fr = NULL;
1599
1600                 rr = &regd->reg_rules[i];
1601                 fr = &rr->freq_range;
1602
1603                 /*
1604                  * We only need to know if one frequency rule was
1605                  * was in center_freq's band, that's enough, so lets
1606                  * not overwrite it once found
1607                  */
1608                 if (!band_rule_found)
1609                         band_rule_found = freq_in_rule_band(fr, center_freq);
1610
1611                 bw_fits = cfg80211_does_bw_fit_range(fr, center_freq, bw);
1612
1613                 if (band_rule_found && bw_fits)
1614                         return rr;
1615         }
1616
1617         if (!band_rule_found)
1618                 return ERR_PTR(-ERANGE);
1619
1620         return ERR_PTR(-EINVAL);
1621 }
1622
1623 static const struct ieee80211_reg_rule *
1624 __freq_reg_info(struct wiphy *wiphy, u32 center_freq, u32 min_bw)
1625 {
1626         const struct ieee80211_regdomain *regd = reg_get_regdomain(wiphy);
1627         const struct ieee80211_reg_rule *reg_rule = NULL;
1628         u32 bw;
1629
1630         for (bw = MHZ_TO_KHZ(20); bw >= min_bw; bw = bw / 2) {
1631                 reg_rule = freq_reg_info_regd(center_freq, regd, bw);
1632                 if (!IS_ERR(reg_rule))
1633                         return reg_rule;
1634         }
1635
1636         return reg_rule;
1637 }
1638
1639 const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy,
1640                                                u32 center_freq)
1641 {
1642         return __freq_reg_info(wiphy, center_freq, MHZ_TO_KHZ(20));
1643 }
1644 EXPORT_SYMBOL(freq_reg_info);
1645
1646 const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
1647 {
1648         switch (initiator) {
1649         case NL80211_REGDOM_SET_BY_CORE:
1650                 return "core";
1651         case NL80211_REGDOM_SET_BY_USER:
1652                 return "user";
1653         case NL80211_REGDOM_SET_BY_DRIVER:
1654                 return "driver";
1655         case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1656                 return "country IE";
1657         default:
1658                 WARN_ON(1);
1659                 return "bug";
1660         }
1661 }
1662 EXPORT_SYMBOL(reg_initiator_name);
1663
1664 static uint32_t reg_rule_to_chan_bw_flags(const struct ieee80211_regdomain *regd,
1665                                           const struct ieee80211_reg_rule *reg_rule,
1666                                           const struct ieee80211_channel *chan)
1667 {
1668         const struct ieee80211_freq_range *freq_range = NULL;
1669         u32 max_bandwidth_khz, bw_flags = 0;
1670
1671         freq_range = &reg_rule->freq_range;
1672
1673         max_bandwidth_khz = freq_range->max_bandwidth_khz;
1674         /* Check if auto calculation requested */
1675         if (reg_rule->flags & NL80211_RRF_AUTO_BW)
1676                 max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule);
1677
1678         /* If we get a reg_rule we can assume that at least 5Mhz fit */
1679         if (!cfg80211_does_bw_fit_range(freq_range,
1680                                         MHZ_TO_KHZ(chan->center_freq),
1681                                         MHZ_TO_KHZ(10)))
1682                 bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1683         if (!cfg80211_does_bw_fit_range(freq_range,
1684                                         MHZ_TO_KHZ(chan->center_freq),
1685                                         MHZ_TO_KHZ(20)))
1686                 bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1687
1688         if (max_bandwidth_khz < MHZ_TO_KHZ(10))
1689                 bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1690         if (max_bandwidth_khz < MHZ_TO_KHZ(20))
1691                 bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1692         if (max_bandwidth_khz < MHZ_TO_KHZ(40))
1693                 bw_flags |= IEEE80211_CHAN_NO_HT40;
1694         if (max_bandwidth_khz < MHZ_TO_KHZ(80))
1695                 bw_flags |= IEEE80211_CHAN_NO_80MHZ;
1696         if (max_bandwidth_khz < MHZ_TO_KHZ(160))
1697                 bw_flags |= IEEE80211_CHAN_NO_160MHZ;
1698         return bw_flags;
1699 }
1700
1701 /*
1702  * Note that right now we assume the desired channel bandwidth
1703  * is always 20 MHz for each individual channel (HT40 uses 20 MHz
1704  * per channel, the primary and the extension channel).
1705  */
1706 static void handle_channel(struct wiphy *wiphy,
1707                            enum nl80211_reg_initiator initiator,
1708                            struct ieee80211_channel *chan)
1709 {
1710         u32 flags, bw_flags = 0;
1711         const struct ieee80211_reg_rule *reg_rule = NULL;
1712         const struct ieee80211_power_rule *power_rule = NULL;
1713         struct wiphy *request_wiphy = NULL;
1714         struct regulatory_request *lr = get_last_request();
1715         const struct ieee80211_regdomain *regd;
1716
1717         request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
1718
1719         flags = chan->orig_flags;
1720
1721         reg_rule = freq_reg_info(wiphy, MHZ_TO_KHZ(chan->center_freq));
1722         if (IS_ERR(reg_rule)) {
1723                 /*
1724                  * We will disable all channels that do not match our
1725                  * received regulatory rule unless the hint is coming
1726                  * from a Country IE and the Country IE had no information
1727                  * about a band. The IEEE 802.11 spec allows for an AP
1728                  * to send only a subset of the regulatory rules allowed,
1729                  * so an AP in the US that only supports 2.4 GHz may only send
1730                  * a country IE with information for the 2.4 GHz band
1731                  * while 5 GHz is still supported.
1732                  */
1733                 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1734                     PTR_ERR(reg_rule) == -ERANGE)
1735                         return;
1736
1737                 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1738                     request_wiphy && request_wiphy == wiphy &&
1739                     request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1740                         pr_debug("Disabling freq %d MHz for good\n",
1741                                  chan->center_freq);
1742                         chan->orig_flags |= IEEE80211_CHAN_DISABLED;
1743                         chan->flags = chan->orig_flags;
1744                 } else {
1745                         pr_debug("Disabling freq %d MHz\n",
1746                                  chan->center_freq);
1747                         chan->flags |= IEEE80211_CHAN_DISABLED;
1748                 }
1749                 return;
1750         }
1751
1752         regd = reg_get_regdomain(wiphy);
1753
1754         power_rule = &reg_rule->power_rule;
1755         bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
1756
1757         if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1758             request_wiphy && request_wiphy == wiphy &&
1759             request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1760                 /*
1761                  * This guarantees the driver's requested regulatory domain
1762                  * will always be used as a base for further regulatory
1763                  * settings
1764                  */
1765                 chan->flags = chan->orig_flags =
1766                         map_regdom_flags(reg_rule->flags) | bw_flags;
1767                 chan->max_antenna_gain = chan->orig_mag =
1768                         (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1769                 chan->max_reg_power = chan->max_power = chan->orig_mpwr =
1770                         (int) MBM_TO_DBM(power_rule->max_eirp);
1771
1772                 if (chan->flags & IEEE80211_CHAN_RADAR) {
1773                         chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1774                         if (reg_rule->dfs_cac_ms)
1775                                 chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1776                 }
1777
1778                 return;
1779         }
1780
1781         chan->dfs_state = NL80211_DFS_USABLE;
1782         chan->dfs_state_entered = jiffies;
1783
1784         chan->beacon_found = false;
1785         chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
1786         chan->max_antenna_gain =
1787                 min_t(int, chan->orig_mag,
1788                       MBI_TO_DBI(power_rule->max_antenna_gain));
1789         chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1790
1791         if (chan->flags & IEEE80211_CHAN_RADAR) {
1792                 if (reg_rule->dfs_cac_ms)
1793                         chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1794                 else
1795                         chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1796         }
1797
1798         if (chan->orig_mpwr) {
1799                 /*
1800                  * Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1801                  * will always follow the passed country IE power settings.
1802                  */
1803                 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1804                     wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER)
1805                         chan->max_power = chan->max_reg_power;
1806                 else
1807                         chan->max_power = min(chan->orig_mpwr,
1808                                               chan->max_reg_power);
1809         } else
1810                 chan->max_power = chan->max_reg_power;
1811 }
1812
1813 static void handle_band(struct wiphy *wiphy,
1814                         enum nl80211_reg_initiator initiator,
1815                         struct ieee80211_supported_band *sband)
1816 {
1817         unsigned int i;
1818
1819         if (!sband)
1820                 return;
1821
1822         for (i = 0; i < sband->n_channels; i++)
1823                 handle_channel(wiphy, initiator, &sband->channels[i]);
1824 }
1825
1826 static bool reg_request_cell_base(struct regulatory_request *request)
1827 {
1828         if (request->initiator != NL80211_REGDOM_SET_BY_USER)
1829                 return false;
1830         return request->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE;
1831 }
1832
1833 bool reg_last_request_cell_base(void)
1834 {
1835         return reg_request_cell_base(get_last_request());
1836 }
1837
1838 #ifdef CONFIG_CFG80211_REG_CELLULAR_HINTS
1839 /* Core specific check */
1840 static enum reg_request_treatment
1841 reg_ignore_cell_hint(struct regulatory_request *pending_request)
1842 {
1843         struct regulatory_request *lr = get_last_request();
1844
1845         if (!reg_num_devs_support_basehint)
1846                 return REG_REQ_IGNORE;
1847
1848         if (reg_request_cell_base(lr) &&
1849             !regdom_changes(pending_request->alpha2))
1850                 return REG_REQ_ALREADY_SET;
1851
1852         return REG_REQ_OK;
1853 }
1854
1855 /* Device specific check */
1856 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
1857 {
1858         return !(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS);
1859 }
1860 #else
1861 static enum reg_request_treatment
1862 reg_ignore_cell_hint(struct regulatory_request *pending_request)
1863 {
1864         return REG_REQ_IGNORE;
1865 }
1866
1867 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
1868 {
1869         return true;
1870 }
1871 #endif
1872
1873 static bool wiphy_strict_alpha2_regd(struct wiphy *wiphy)
1874 {
1875         if (wiphy->regulatory_flags & REGULATORY_STRICT_REG &&
1876             !(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG))
1877                 return true;
1878         return false;
1879 }
1880
1881 static bool ignore_reg_update(struct wiphy *wiphy,
1882                               enum nl80211_reg_initiator initiator)
1883 {
1884         struct regulatory_request *lr = get_last_request();
1885
1886         if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
1887                 return true;
1888
1889         if (!lr) {
1890                 pr_debug("Ignoring regulatory request set by %s since last_request is not set\n",
1891                          reg_initiator_name(initiator));
1892                 return true;
1893         }
1894
1895         if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1896             wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) {
1897                 pr_debug("Ignoring regulatory request set by %s since the driver uses its own custom regulatory domain\n",
1898                          reg_initiator_name(initiator));
1899                 return true;
1900         }
1901
1902         /*
1903          * wiphy->regd will be set once the device has its own
1904          * desired regulatory domain set
1905          */
1906         if (wiphy_strict_alpha2_regd(wiphy) && !wiphy->regd &&
1907             initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1908             !is_world_regdom(lr->alpha2)) {
1909                 pr_debug("Ignoring regulatory request set by %s since the driver requires its own regulatory domain to be set first\n",
1910                          reg_initiator_name(initiator));
1911                 return true;
1912         }
1913
1914         if (reg_request_cell_base(lr))
1915                 return reg_dev_ignore_cell_hint(wiphy);
1916
1917         return false;
1918 }
1919
1920 static bool reg_is_world_roaming(struct wiphy *wiphy)
1921 {
1922         const struct ieee80211_regdomain *cr = get_cfg80211_regdom();
1923         const struct ieee80211_regdomain *wr = get_wiphy_regdom(wiphy);
1924         struct regulatory_request *lr = get_last_request();
1925
1926         if (is_world_regdom(cr->alpha2) || (wr && is_world_regdom(wr->alpha2)))
1927                 return true;
1928
1929         if (lr && lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1930             wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
1931                 return true;
1932
1933         return false;
1934 }
1935
1936 static void handle_reg_beacon(struct wiphy *wiphy, unsigned int chan_idx,
1937                               struct reg_beacon *reg_beacon)
1938 {
1939         struct ieee80211_supported_band *sband;
1940         struct ieee80211_channel *chan;
1941         bool channel_changed = false;
1942         struct ieee80211_channel chan_before;
1943
1944         sband = wiphy->bands[reg_beacon->chan.band];
1945         chan = &sband->channels[chan_idx];
1946
1947         if (likely(chan->center_freq != reg_beacon->chan.center_freq))
1948                 return;
1949
1950         if (chan->beacon_found)
1951                 return;
1952
1953         chan->beacon_found = true;
1954
1955         if (!reg_is_world_roaming(wiphy))
1956                 return;
1957
1958         if (wiphy->regulatory_flags & REGULATORY_DISABLE_BEACON_HINTS)
1959                 return;
1960
1961         chan_before = *chan;
1962
1963         if (chan->flags & IEEE80211_CHAN_NO_IR) {
1964                 chan->flags &= ~IEEE80211_CHAN_NO_IR;
1965                 channel_changed = true;
1966         }
1967
1968         if (channel_changed)
1969                 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
1970 }
1971
1972 /*
1973  * Called when a scan on a wiphy finds a beacon on
1974  * new channel
1975  */
1976 static void wiphy_update_new_beacon(struct wiphy *wiphy,
1977                                     struct reg_beacon *reg_beacon)
1978 {
1979         unsigned int i;
1980         struct ieee80211_supported_band *sband;
1981
1982         if (!wiphy->bands[reg_beacon->chan.band])
1983                 return;
1984
1985         sband = wiphy->bands[reg_beacon->chan.band];
1986
1987         for (i = 0; i < sband->n_channels; i++)
1988                 handle_reg_beacon(wiphy, i, reg_beacon);
1989 }
1990
1991 /*
1992  * Called upon reg changes or a new wiphy is added
1993  */
1994 static void wiphy_update_beacon_reg(struct wiphy *wiphy)
1995 {
1996         unsigned int i;
1997         struct ieee80211_supported_band *sband;
1998         struct reg_beacon *reg_beacon;
1999
2000         list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
2001                 if (!wiphy->bands[reg_beacon->chan.band])
2002                         continue;
2003                 sband = wiphy->bands[reg_beacon->chan.band];
2004                 for (i = 0; i < sband->n_channels; i++)
2005                         handle_reg_beacon(wiphy, i, reg_beacon);
2006         }
2007 }
2008
2009 /* Reap the advantages of previously found beacons */
2010 static void reg_process_beacons(struct wiphy *wiphy)
2011 {
2012         /*
2013          * Means we are just firing up cfg80211, so no beacons would
2014          * have been processed yet.
2015          */
2016         if (!last_request)
2017                 return;
2018         wiphy_update_beacon_reg(wiphy);
2019 }
2020
2021 static bool is_ht40_allowed(struct ieee80211_channel *chan)
2022 {
2023         if (!chan)
2024                 return false;
2025         if (chan->flags & IEEE80211_CHAN_DISABLED)
2026                 return false;
2027         /* This would happen when regulatory rules disallow HT40 completely */
2028         if ((chan->flags & IEEE80211_CHAN_NO_HT40) == IEEE80211_CHAN_NO_HT40)
2029                 return false;
2030         return true;
2031 }
2032
2033 static void reg_process_ht_flags_channel(struct wiphy *wiphy,
2034                                          struct ieee80211_channel *channel)
2035 {
2036         struct ieee80211_supported_band *sband = wiphy->bands[channel->band];
2037         struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
2038         const struct ieee80211_regdomain *regd;
2039         unsigned int i;
2040         u32 flags;
2041
2042         if (!is_ht40_allowed(channel)) {
2043                 channel->flags |= IEEE80211_CHAN_NO_HT40;
2044                 return;
2045         }
2046
2047         /*
2048          * We need to ensure the extension channels exist to
2049          * be able to use HT40- or HT40+, this finds them (or not)
2050          */
2051         for (i = 0; i < sband->n_channels; i++) {
2052                 struct ieee80211_channel *c = &sband->channels[i];
2053
2054                 if (c->center_freq == (channel->center_freq - 20))
2055                         channel_before = c;
2056                 if (c->center_freq == (channel->center_freq + 20))
2057                         channel_after = c;
2058         }
2059
2060         flags = 0;
2061         regd = get_wiphy_regdom(wiphy);
2062         if (regd) {
2063                 const struct ieee80211_reg_rule *reg_rule =
2064                         freq_reg_info_regd(MHZ_TO_KHZ(channel->center_freq),
2065                                            regd, MHZ_TO_KHZ(20));
2066
2067                 if (!IS_ERR(reg_rule))
2068                         flags = reg_rule->flags;
2069         }
2070
2071         /*
2072          * Please note that this assumes target bandwidth is 20 MHz,
2073          * if that ever changes we also need to change the below logic
2074          * to include that as well.
2075          */
2076         if (!is_ht40_allowed(channel_before) ||
2077             flags & NL80211_RRF_NO_HT40MINUS)
2078                 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
2079         else
2080                 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
2081
2082         if (!is_ht40_allowed(channel_after) ||
2083             flags & NL80211_RRF_NO_HT40PLUS)
2084                 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
2085         else
2086                 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
2087 }
2088
2089 static void reg_process_ht_flags_band(struct wiphy *wiphy,
2090                                       struct ieee80211_supported_band *sband)
2091 {
2092         unsigned int i;
2093
2094         if (!sband)
2095                 return;
2096
2097         for (i = 0; i < sband->n_channels; i++)
2098                 reg_process_ht_flags_channel(wiphy, &sband->channels[i]);
2099 }
2100
2101 static void reg_process_ht_flags(struct wiphy *wiphy)
2102 {
2103         enum nl80211_band band;
2104
2105         if (!wiphy)
2106                 return;
2107
2108         for (band = 0; band < NUM_NL80211_BANDS; band++)
2109                 reg_process_ht_flags_band(wiphy, wiphy->bands[band]);
2110 }
2111
2112 static void reg_call_notifier(struct wiphy *wiphy,
2113                               struct regulatory_request *request)
2114 {
2115         if (wiphy->reg_notifier)
2116                 wiphy->reg_notifier(wiphy, request);
2117 }
2118
2119 static bool reg_wdev_chan_valid(struct wiphy *wiphy, struct wireless_dev *wdev)
2120 {
2121         struct cfg80211_chan_def chandef;
2122         struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2123         enum nl80211_iftype iftype;
2124
2125         wdev_lock(wdev);
2126         iftype = wdev->iftype;
2127
2128         /* make sure the interface is active */
2129         if (!wdev->netdev || !netif_running(wdev->netdev))
2130                 goto wdev_inactive_unlock;
2131
2132         switch (iftype) {
2133         case NL80211_IFTYPE_AP:
2134         case NL80211_IFTYPE_P2P_GO:
2135                 if (!wdev->beacon_interval)
2136                         goto wdev_inactive_unlock;
2137                 chandef = wdev->chandef;
2138                 break;
2139         case NL80211_IFTYPE_ADHOC:
2140                 if (!wdev->ssid_len)
2141                         goto wdev_inactive_unlock;
2142                 chandef = wdev->chandef;
2143                 break;
2144         case NL80211_IFTYPE_STATION:
2145         case NL80211_IFTYPE_P2P_CLIENT:
2146                 if (!wdev->current_bss ||
2147                     !wdev->current_bss->pub.channel)
2148                         goto wdev_inactive_unlock;
2149
2150                 if (!rdev->ops->get_channel ||
2151                     rdev_get_channel(rdev, wdev, &chandef))
2152                         cfg80211_chandef_create(&chandef,
2153                                                 wdev->current_bss->pub.channel,
2154                                                 NL80211_CHAN_NO_HT);
2155                 break;
2156         case NL80211_IFTYPE_MONITOR:
2157         case NL80211_IFTYPE_AP_VLAN:
2158         case NL80211_IFTYPE_P2P_DEVICE:
2159                 /* no enforcement required */
2160                 break;
2161         default:
2162                 /* others not implemented for now */
2163                 WARN_ON(1);
2164                 break;
2165         }
2166
2167         wdev_unlock(wdev);
2168
2169         switch (iftype) {
2170         case NL80211_IFTYPE_AP:
2171         case NL80211_IFTYPE_P2P_GO:
2172         case NL80211_IFTYPE_ADHOC:
2173                 return cfg80211_reg_can_beacon_relax(wiphy, &chandef, iftype);
2174         case NL80211_IFTYPE_STATION:
2175         case NL80211_IFTYPE_P2P_CLIENT:
2176                 return cfg80211_chandef_usable(wiphy, &chandef,
2177                                                IEEE80211_CHAN_DISABLED);
2178         default:
2179                 break;
2180         }
2181
2182         return true;
2183
2184 wdev_inactive_unlock:
2185         wdev_unlock(wdev);
2186         return true;
2187 }
2188
2189 static void reg_leave_invalid_chans(struct wiphy *wiphy)
2190 {
2191         struct wireless_dev *wdev;
2192         struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2193
2194         ASSERT_RTNL();
2195
2196         list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list)
2197                 if (!reg_wdev_chan_valid(wiphy, wdev))
2198                         cfg80211_leave(rdev, wdev);
2199 }
2200
2201 static void reg_check_chans_work(struct work_struct *work)
2202 {
2203         struct cfg80211_registered_device *rdev;
2204
2205         pr_debug("Verifying active interfaces after reg change\n");
2206         rtnl_lock();
2207
2208         list_for_each_entry(rdev, &cfg80211_rdev_list, list)
2209                 if (!(rdev->wiphy.regulatory_flags &
2210                       REGULATORY_IGNORE_STALE_KICKOFF))
2211                         reg_leave_invalid_chans(&rdev->wiphy);
2212
2213         rtnl_unlock();
2214 }
2215
2216 static void reg_check_channels(void)
2217 {
2218         /*
2219          * Give usermode a chance to do something nicer (move to another
2220          * channel, orderly disconnection), before forcing a disconnection.
2221          */
2222         mod_delayed_work(system_power_efficient_wq,
2223                          &reg_check_chans,
2224                          msecs_to_jiffies(REG_ENFORCE_GRACE_MS));
2225 }
2226
2227 static void wiphy_update_regulatory(struct wiphy *wiphy,
2228                                     enum nl80211_reg_initiator initiator)
2229 {
2230         enum nl80211_band band;
2231         struct regulatory_request *lr = get_last_request();
2232
2233         if (ignore_reg_update(wiphy, initiator)) {
2234                 /*
2235                  * Regulatory updates set by CORE are ignored for custom
2236                  * regulatory cards. Let us notify the changes to the driver,
2237                  * as some drivers used this to restore its orig_* reg domain.
2238                  */
2239                 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
2240                     wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
2241                         reg_call_notifier(wiphy, lr);
2242                 return;
2243         }
2244
2245         lr->dfs_region = get_cfg80211_regdom()->dfs_region;
2246
2247         for (band = 0; band < NUM_NL80211_BANDS; band++)
2248                 handle_band(wiphy, initiator, wiphy->bands[band]);
2249
2250         reg_process_beacons(wiphy);
2251         reg_process_ht_flags(wiphy);
2252         reg_call_notifier(wiphy, lr);
2253 }
2254
2255 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
2256 {
2257         struct cfg80211_registered_device *rdev;
2258         struct wiphy *wiphy;
2259
2260         ASSERT_RTNL();
2261
2262         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2263                 wiphy = &rdev->wiphy;
2264                 wiphy_update_regulatory(wiphy, initiator);
2265         }
2266
2267         reg_check_channels();
2268 }
2269
2270 static void handle_channel_custom(struct wiphy *wiphy,
2271                                   struct ieee80211_channel *chan,
2272                                   const struct ieee80211_regdomain *regd)
2273 {
2274         u32 bw_flags = 0;
2275         const struct ieee80211_reg_rule *reg_rule = NULL;
2276         const struct ieee80211_power_rule *power_rule = NULL;
2277         u32 bw;
2278
2279         for (bw = MHZ_TO_KHZ(20); bw >= MHZ_TO_KHZ(5); bw = bw / 2) {
2280                 reg_rule = freq_reg_info_regd(MHZ_TO_KHZ(chan->center_freq),
2281                                               regd, bw);
2282                 if (!IS_ERR(reg_rule))
2283                         break;
2284         }
2285
2286         if (IS_ERR(reg_rule)) {
2287                 pr_debug("Disabling freq %d MHz as custom regd has no rule that fits it\n",
2288                          chan->center_freq);
2289                 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
2290                         chan->flags |= IEEE80211_CHAN_DISABLED;
2291                 } else {
2292                         chan->orig_flags |= IEEE80211_CHAN_DISABLED;
2293                         chan->flags = chan->orig_flags;
2294                 }
2295                 return;
2296         }
2297
2298         power_rule = &reg_rule->power_rule;
2299         bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
2300
2301         chan->dfs_state_entered = jiffies;
2302         chan->dfs_state = NL80211_DFS_USABLE;
2303
2304         chan->beacon_found = false;
2305
2306         if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2307                 chan->flags = chan->orig_flags | bw_flags |
2308                               map_regdom_flags(reg_rule->flags);
2309         else
2310                 chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
2311
2312         chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
2313         chan->max_reg_power = chan->max_power =
2314                 (int) MBM_TO_DBM(power_rule->max_eirp);
2315
2316         if (chan->flags & IEEE80211_CHAN_RADAR) {
2317                 if (reg_rule->dfs_cac_ms)
2318                         chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
2319                 else
2320                         chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
2321         }
2322
2323         chan->max_power = chan->max_reg_power;
2324 }
2325
2326 static void handle_band_custom(struct wiphy *wiphy,
2327                                struct ieee80211_supported_band *sband,
2328                                const struct ieee80211_regdomain *regd)
2329 {
2330         unsigned int i;
2331
2332         if (!sband)
2333                 return;
2334
2335         for (i = 0; i < sband->n_channels; i++)
2336                 handle_channel_custom(wiphy, &sband->channels[i], regd);
2337 }
2338
2339 /* Used by drivers prior to wiphy registration */
2340 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
2341                                    const struct ieee80211_regdomain *regd)
2342 {
2343         enum nl80211_band band;
2344         unsigned int bands_set = 0;
2345
2346         WARN(!(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG),
2347              "wiphy should have REGULATORY_CUSTOM_REG\n");
2348         wiphy->regulatory_flags |= REGULATORY_CUSTOM_REG;
2349
2350         for (band = 0; band < NUM_NL80211_BANDS; band++) {
2351                 if (!wiphy->bands[band])
2352                         continue;
2353                 handle_band_custom(wiphy, wiphy->bands[band], regd);
2354                 bands_set++;
2355         }
2356
2357         /*
2358          * no point in calling this if it won't have any effect
2359          * on your device's supported bands.
2360          */
2361         WARN_ON(!bands_set);
2362 }
2363 EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
2364
2365 static void reg_set_request_processed(void)
2366 {
2367         bool need_more_processing = false;
2368         struct regulatory_request *lr = get_last_request();
2369
2370         lr->processed = true;
2371
2372         spin_lock(&reg_requests_lock);
2373         if (!list_empty(&reg_requests_list))
2374                 need_more_processing = true;
2375         spin_unlock(&reg_requests_lock);
2376
2377         cancel_crda_timeout();
2378
2379         if (need_more_processing)
2380                 schedule_work(&reg_work);
2381 }
2382
2383 /**
2384  * reg_process_hint_core - process core regulatory requests
2385  * @pending_request: a pending core regulatory request
2386  *
2387  * The wireless subsystem can use this function to process
2388  * a regulatory request issued by the regulatory core.
2389  */
2390 static enum reg_request_treatment
2391 reg_process_hint_core(struct regulatory_request *core_request)
2392 {
2393         if (reg_query_database(core_request)) {
2394                 core_request->intersect = false;
2395                 core_request->processed = false;
2396                 reg_update_last_request(core_request);
2397                 return REG_REQ_OK;
2398         }
2399
2400         return REG_REQ_IGNORE;
2401 }
2402
2403 static enum reg_request_treatment
2404 __reg_process_hint_user(struct regulatory_request *user_request)
2405 {
2406         struct regulatory_request *lr = get_last_request();
2407
2408         if (reg_request_cell_base(user_request))
2409                 return reg_ignore_cell_hint(user_request);
2410
2411         if (reg_request_cell_base(lr))
2412                 return REG_REQ_IGNORE;
2413
2414         if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
2415                 return REG_REQ_INTERSECT;
2416         /*
2417          * If the user knows better the user should set the regdom
2418          * to their country before the IE is picked up
2419          */
2420         if (lr->initiator == NL80211_REGDOM_SET_BY_USER &&
2421             lr->intersect)
2422                 return REG_REQ_IGNORE;
2423         /*
2424          * Process user requests only after previous user/driver/core
2425          * requests have been processed
2426          */
2427         if ((lr->initiator == NL80211_REGDOM_SET_BY_CORE ||
2428              lr->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
2429              lr->initiator == NL80211_REGDOM_SET_BY_USER) &&
2430             regdom_changes(lr->alpha2))
2431                 return REG_REQ_IGNORE;
2432
2433         if (!regdom_changes(user_request->alpha2))
2434                 return REG_REQ_ALREADY_SET;
2435
2436         return REG_REQ_OK;
2437 }
2438
2439 /**
2440  * reg_process_hint_user - process user regulatory requests
2441  * @user_request: a pending user regulatory request
2442  *
2443  * The wireless subsystem can use this function to process
2444  * a regulatory request initiated by userspace.
2445  */
2446 static enum reg_request_treatment
2447 reg_process_hint_user(struct regulatory_request *user_request)
2448 {
2449         enum reg_request_treatment treatment;
2450
2451         treatment = __reg_process_hint_user(user_request);
2452         if (treatment == REG_REQ_IGNORE ||
2453             treatment == REG_REQ_ALREADY_SET)
2454                 return REG_REQ_IGNORE;
2455
2456         user_request->intersect = treatment == REG_REQ_INTERSECT;
2457         user_request->processed = false;
2458
2459         if (reg_query_database(user_request)) {
2460                 reg_update_last_request(user_request);
2461                 user_alpha2[0] = user_request->alpha2[0];
2462                 user_alpha2[1] = user_request->alpha2[1];
2463                 return REG_REQ_OK;
2464         }
2465
2466         return REG_REQ_IGNORE;
2467 }
2468
2469 static enum reg_request_treatment
2470 __reg_process_hint_driver(struct regulatory_request *driver_request)
2471 {
2472         struct regulatory_request *lr = get_last_request();
2473
2474         if (lr->initiator == NL80211_REGDOM_SET_BY_CORE) {
2475                 if (regdom_changes(driver_request->alpha2))
2476                         return REG_REQ_OK;
2477                 return REG_REQ_ALREADY_SET;
2478         }
2479
2480         /*
2481          * This would happen if you unplug and plug your card
2482          * back in or if you add a new device for which the previously
2483          * loaded card also agrees on the regulatory domain.
2484          */
2485         if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
2486             !regdom_changes(driver_request->alpha2))
2487                 return REG_REQ_ALREADY_SET;
2488
2489         return REG_REQ_INTERSECT;
2490 }
2491
2492 /**
2493  * reg_process_hint_driver - process driver regulatory requests
2494  * @driver_request: a pending driver regulatory request
2495  *
2496  * The wireless subsystem can use this function to process
2497  * a regulatory request issued by an 802.11 driver.
2498  *
2499  * Returns one of the different reg request treatment values.
2500  */
2501 static enum reg_request_treatment
2502 reg_process_hint_driver(struct wiphy *wiphy,
2503                         struct regulatory_request *driver_request)
2504 {
2505         const struct ieee80211_regdomain *regd, *tmp;
2506         enum reg_request_treatment treatment;
2507
2508         treatment = __reg_process_hint_driver(driver_request);
2509
2510         switch (treatment) {
2511         case REG_REQ_OK:
2512                 break;
2513         case REG_REQ_IGNORE:
2514                 return REG_REQ_IGNORE;
2515         case REG_REQ_INTERSECT:
2516         case REG_REQ_ALREADY_SET:
2517                 regd = reg_copy_regd(get_cfg80211_regdom());
2518                 if (IS_ERR(regd))
2519                         return REG_REQ_IGNORE;
2520
2521                 tmp = get_wiphy_regdom(wiphy);
2522                 rcu_assign_pointer(wiphy->regd, regd);
2523                 rcu_free_regdom(tmp);
2524         }
2525
2526
2527         driver_request->intersect = treatment == REG_REQ_INTERSECT;
2528         driver_request->processed = false;
2529
2530         /*
2531          * Since CRDA will not be called in this case as we already
2532          * have applied the requested regulatory domain before we just
2533          * inform userspace we have processed the request
2534          */
2535         if (treatment == REG_REQ_ALREADY_SET) {
2536                 nl80211_send_reg_change_event(driver_request);
2537                 reg_update_last_request(driver_request);
2538                 reg_set_request_processed();
2539                 return REG_REQ_ALREADY_SET;
2540         }
2541
2542         if (reg_query_database(driver_request)) {
2543                 reg_update_last_request(driver_request);
2544                 return REG_REQ_OK;
2545         }
2546
2547         return REG_REQ_IGNORE;
2548 }
2549
2550 static enum reg_request_treatment
2551 __reg_process_hint_country_ie(struct wiphy *wiphy,
2552                               struct regulatory_request *country_ie_request)
2553 {
2554         struct wiphy *last_wiphy = NULL;
2555         struct regulatory_request *lr = get_last_request();
2556
2557         if (reg_request_cell_base(lr)) {
2558                 /* Trust a Cell base station over the AP's country IE */
2559                 if (regdom_changes(country_ie_request->alpha2))
2560                         return REG_REQ_IGNORE;
2561                 return REG_REQ_ALREADY_SET;
2562         } else {
2563                 if (wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_IGNORE)
2564                         return REG_REQ_IGNORE;
2565         }
2566
2567         if (unlikely(!is_an_alpha2(country_ie_request->alpha2)))
2568                 return -EINVAL;
2569
2570         if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE)
2571                 return REG_REQ_OK;
2572
2573         last_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
2574
2575         if (last_wiphy != wiphy) {
2576                 /*
2577                  * Two cards with two APs claiming different
2578                  * Country IE alpha2s. We could
2579                  * intersect them, but that seems unlikely
2580                  * to be correct. Reject second one for now.
2581                  */
2582                 if (regdom_changes(country_ie_request->alpha2))
2583                         return REG_REQ_IGNORE;
2584                 return REG_REQ_ALREADY_SET;
2585         }
2586
2587         if (regdom_changes(country_ie_request->alpha2))
2588                 return REG_REQ_OK;
2589         return REG_REQ_ALREADY_SET;
2590 }
2591
2592 /**
2593  * reg_process_hint_country_ie - process regulatory requests from country IEs
2594  * @country_ie_request: a regulatory request from a country IE
2595  *
2596  * The wireless subsystem can use this function to process
2597  * a regulatory request issued by a country Information Element.
2598  *
2599  * Returns one of the different reg request treatment values.
2600  */
2601 static enum reg_request_treatment
2602 reg_process_hint_country_ie(struct wiphy *wiphy,
2603                             struct regulatory_request *country_ie_request)
2604 {
2605         enum reg_request_treatment treatment;
2606
2607         treatment = __reg_process_hint_country_ie(wiphy, country_ie_request);
2608
2609         switch (treatment) {
2610         case REG_REQ_OK:
2611                 break;
2612         case REG_REQ_IGNORE:
2613                 return REG_REQ_IGNORE;
2614         case REG_REQ_ALREADY_SET:
2615                 reg_free_request(country_ie_request);
2616                 return REG_REQ_ALREADY_SET;
2617         case REG_REQ_INTERSECT:
2618                 /*
2619                  * This doesn't happen yet, not sure we
2620                  * ever want to support it for this case.
2621                  */
2622                 WARN_ONCE(1, "Unexpected intersection for country IEs");
2623                 return REG_REQ_IGNORE;
2624         }
2625
2626         country_ie_request->intersect = false;
2627         country_ie_request->processed = false;
2628
2629         if (reg_query_database(country_ie_request)) {
2630                 reg_update_last_request(country_ie_request);
2631                 return REG_REQ_OK;
2632         }
2633
2634         return REG_REQ_IGNORE;
2635 }
2636
2637 bool reg_dfs_domain_same(struct wiphy *wiphy1, struct wiphy *wiphy2)
2638 {
2639         const struct ieee80211_regdomain *wiphy1_regd = NULL;
2640         const struct ieee80211_regdomain *wiphy2_regd = NULL;
2641         const struct ieee80211_regdomain *cfg80211_regd = NULL;
2642         bool dfs_domain_same;
2643
2644         rcu_read_lock();
2645
2646         cfg80211_regd = rcu_dereference(cfg80211_regdomain);
2647         wiphy1_regd = rcu_dereference(wiphy1->regd);
2648         if (!wiphy1_regd)
2649                 wiphy1_regd = cfg80211_regd;
2650
2651         wiphy2_regd = rcu_dereference(wiphy2->regd);
2652         if (!wiphy2_regd)
2653                 wiphy2_regd = cfg80211_regd;
2654
2655         dfs_domain_same = wiphy1_regd->dfs_region == wiphy2_regd->dfs_region;
2656
2657         rcu_read_unlock();
2658
2659         return dfs_domain_same;
2660 }
2661
2662 static void reg_copy_dfs_chan_state(struct ieee80211_channel *dst_chan,
2663                                     struct ieee80211_channel *src_chan)
2664 {
2665         if (!(dst_chan->flags & IEEE80211_CHAN_RADAR) ||
2666             !(src_chan->flags & IEEE80211_CHAN_RADAR))
2667                 return;
2668
2669         if (dst_chan->flags & IEEE80211_CHAN_DISABLED ||
2670             src_chan->flags & IEEE80211_CHAN_DISABLED)
2671                 return;
2672
2673         if (src_chan->center_freq == dst_chan->center_freq &&
2674             dst_chan->dfs_state == NL80211_DFS_USABLE) {
2675                 dst_chan->dfs_state = src_chan->dfs_state;
2676                 dst_chan->dfs_state_entered = src_chan->dfs_state_entered;
2677         }
2678 }
2679
2680 static void wiphy_share_dfs_chan_state(struct wiphy *dst_wiphy,
2681                                        struct wiphy *src_wiphy)
2682 {
2683         struct ieee80211_supported_band *src_sband, *dst_sband;
2684         struct ieee80211_channel *src_chan, *dst_chan;
2685         int i, j, band;
2686
2687         if (!reg_dfs_domain_same(dst_wiphy, src_wiphy))
2688                 return;
2689
2690         for (band = 0; band < NUM_NL80211_BANDS; band++) {
2691                 dst_sband = dst_wiphy->bands[band];
2692                 src_sband = src_wiphy->bands[band];
2693                 if (!dst_sband || !src_sband)
2694                         continue;
2695
2696                 for (i = 0; i < dst_sband->n_channels; i++) {
2697                         dst_chan = &dst_sband->channels[i];
2698                         for (j = 0; j < src_sband->n_channels; j++) {
2699                                 src_chan = &src_sband->channels[j];
2700                                 reg_copy_dfs_chan_state(dst_chan, src_chan);
2701                         }
2702                 }
2703         }
2704 }
2705
2706 static void wiphy_all_share_dfs_chan_state(struct wiphy *wiphy)
2707 {
2708         struct cfg80211_registered_device *rdev;
2709
2710         ASSERT_RTNL();
2711
2712         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2713                 if (wiphy == &rdev->wiphy)
2714                         continue;
2715                 wiphy_share_dfs_chan_state(wiphy, &rdev->wiphy);
2716         }
2717 }
2718
2719 /* This processes *all* regulatory hints */
2720 static void reg_process_hint(struct regulatory_request *reg_request)
2721 {
2722         struct wiphy *wiphy = NULL;
2723         enum reg_request_treatment treatment;
2724
2725         if (reg_request->wiphy_idx != WIPHY_IDX_INVALID)
2726                 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
2727
2728         switch (reg_request->initiator) {
2729         case NL80211_REGDOM_SET_BY_CORE:
2730                 treatment = reg_process_hint_core(reg_request);
2731                 break;
2732         case NL80211_REGDOM_SET_BY_USER:
2733                 treatment = reg_process_hint_user(reg_request);
2734                 break;
2735         case NL80211_REGDOM_SET_BY_DRIVER:
2736                 if (!wiphy)
2737                         goto out_free;
2738                 treatment = reg_process_hint_driver(wiphy, reg_request);
2739                 break;
2740         case NL80211_REGDOM_SET_BY_COUNTRY_IE:
2741                 if (!wiphy)
2742                         goto out_free;
2743                 treatment = reg_process_hint_country_ie(wiphy, reg_request);
2744                 break;
2745         default:
2746                 WARN(1, "invalid initiator %d\n", reg_request->initiator);
2747                 goto out_free;
2748         }
2749
2750         if (treatment == REG_REQ_IGNORE)
2751                 goto out_free;
2752
2753         WARN(treatment != REG_REQ_OK && treatment != REG_REQ_ALREADY_SET,
2754              "unexpected treatment value %d\n", treatment);
2755
2756         /* This is required so that the orig_* parameters are saved.
2757          * NOTE: treatment must be set for any case that reaches here!
2758          */
2759         if (treatment == REG_REQ_ALREADY_SET && wiphy &&
2760             wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
2761                 wiphy_update_regulatory(wiphy, reg_request->initiator);
2762                 wiphy_all_share_dfs_chan_state(wiphy);
2763                 reg_check_channels();
2764         }
2765
2766         return;
2767
2768 out_free:
2769         reg_free_request(reg_request);
2770 }
2771
2772 static bool reg_only_self_managed_wiphys(void)
2773 {
2774         struct cfg80211_registered_device *rdev;
2775         struct wiphy *wiphy;
2776         bool self_managed_found = false;
2777
2778         ASSERT_RTNL();
2779
2780         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2781                 wiphy = &rdev->wiphy;
2782                 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2783                         self_managed_found = true;
2784                 else
2785                         return false;
2786         }
2787
2788         /* make sure at least one self-managed wiphy exists */
2789         return self_managed_found;
2790 }
2791
2792 /*
2793  * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
2794  * Regulatory hints come on a first come first serve basis and we
2795  * must process each one atomically.
2796  */
2797 static void reg_process_pending_hints(void)
2798 {
2799         struct regulatory_request *reg_request, *lr;
2800
2801         lr = get_last_request();
2802
2803         /* When last_request->processed becomes true this will be rescheduled */
2804         if (lr && !lr->processed) {
2805                 reg_process_hint(lr);
2806                 return;
2807         }
2808
2809         spin_lock(&reg_requests_lock);
2810
2811         if (list_empty(&reg_requests_list)) {
2812                 spin_unlock(&reg_requests_lock);
2813                 return;
2814         }
2815
2816         reg_request = list_first_entry(&reg_requests_list,
2817                                        struct regulatory_request,
2818                                        list);
2819         list_del_init(&reg_request->list);
2820
2821         spin_unlock(&reg_requests_lock);
2822
2823         if (reg_only_self_managed_wiphys()) {
2824                 reg_free_request(reg_request);
2825                 return;
2826         }
2827
2828         reg_process_hint(reg_request);
2829
2830         lr = get_last_request();
2831
2832         spin_lock(&reg_requests_lock);
2833         if (!list_empty(&reg_requests_list) && lr && lr->processed)
2834                 schedule_work(&reg_work);
2835         spin_unlock(&reg_requests_lock);
2836 }
2837
2838 /* Processes beacon hints -- this has nothing to do with country IEs */
2839 static void reg_process_pending_beacon_hints(void)
2840 {
2841         struct cfg80211_registered_device *rdev;
2842         struct reg_beacon *pending_beacon, *tmp;
2843
2844         /* This goes through the _pending_ beacon list */
2845         spin_lock_bh(&reg_pending_beacons_lock);
2846
2847         list_for_each_entry_safe(pending_beacon, tmp,
2848                                  &reg_pending_beacons, list) {
2849                 list_del_init(&pending_beacon->list);
2850
2851                 /* Applies the beacon hint to current wiphys */
2852                 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
2853                         wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
2854
2855                 /* Remembers the beacon hint for new wiphys or reg changes */
2856                 list_add_tail(&pending_beacon->list, &reg_beacon_list);
2857         }
2858
2859         spin_unlock_bh(&reg_pending_beacons_lock);
2860 }
2861
2862 static void reg_process_self_managed_hints(void)
2863 {
2864         struct cfg80211_registered_device *rdev;
2865         struct wiphy *wiphy;
2866         const struct ieee80211_regdomain *tmp;
2867         const struct ieee80211_regdomain *regd;
2868         enum nl80211_band band;
2869         struct regulatory_request request = {};
2870
2871         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2872                 wiphy = &rdev->wiphy;
2873
2874                 spin_lock(&reg_requests_lock);
2875                 regd = rdev->requested_regd;
2876                 rdev->requested_regd = NULL;
2877                 spin_unlock(&reg_requests_lock);
2878
2879                 if (regd == NULL)
2880                         continue;
2881
2882                 tmp = get_wiphy_regdom(wiphy);
2883                 rcu_assign_pointer(wiphy->regd, regd);
2884                 rcu_free_regdom(tmp);
2885
2886                 for (band = 0; band < NUM_NL80211_BANDS; band++)
2887                         handle_band_custom(wiphy, wiphy->bands[band], regd);
2888
2889                 reg_process_ht_flags(wiphy);
2890
2891                 request.wiphy_idx = get_wiphy_idx(wiphy);
2892                 request.alpha2[0] = regd->alpha2[0];
2893                 request.alpha2[1] = regd->alpha2[1];
2894                 request.initiator = NL80211_REGDOM_SET_BY_DRIVER;
2895
2896                 nl80211_send_wiphy_reg_change_event(&request);
2897         }
2898
2899         reg_check_channels();
2900 }
2901
2902 static void reg_todo(struct work_struct *work)
2903 {
2904         rtnl_lock();
2905         reg_process_pending_hints();
2906         reg_process_pending_beacon_hints();
2907         reg_process_self_managed_hints();
2908         rtnl_unlock();
2909 }
2910
2911 static void queue_regulatory_request(struct regulatory_request *request)
2912 {
2913         request->alpha2[0] = toupper(request->alpha2[0]);
2914         request->alpha2[1] = toupper(request->alpha2[1]);
2915
2916         spin_lock(&reg_requests_lock);
2917         list_add_tail(&request->list, &reg_requests_list);
2918         spin_unlock(&reg_requests_lock);
2919
2920         schedule_work(&reg_work);
2921 }
2922
2923 /*
2924  * Core regulatory hint -- happens during cfg80211_init()
2925  * and when we restore regulatory settings.
2926  */
2927 static int regulatory_hint_core(const char *alpha2)
2928 {
2929         struct regulatory_request *request;
2930
2931         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2932         if (!request)
2933                 return -ENOMEM;
2934
2935         request->alpha2[0] = alpha2[0];
2936         request->alpha2[1] = alpha2[1];
2937         request->initiator = NL80211_REGDOM_SET_BY_CORE;
2938
2939         queue_regulatory_request(request);
2940
2941         return 0;
2942 }
2943
2944 /* User hints */
2945 int regulatory_hint_user(const char *alpha2,
2946                          enum nl80211_user_reg_hint_type user_reg_hint_type)
2947 {
2948         struct regulatory_request *request;
2949
2950         if (WARN_ON(!alpha2))
2951                 return -EINVAL;
2952
2953         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2954         if (!request)
2955                 return -ENOMEM;
2956
2957         request->wiphy_idx = WIPHY_IDX_INVALID;
2958         request->alpha2[0] = alpha2[0];
2959         request->alpha2[1] = alpha2[1];
2960         request->initiator = NL80211_REGDOM_SET_BY_USER;
2961         request->user_reg_hint_type = user_reg_hint_type;
2962
2963         /* Allow calling CRDA again */
2964         reset_crda_timeouts();
2965
2966         queue_regulatory_request(request);
2967
2968         return 0;
2969 }
2970
2971 int regulatory_hint_indoor(bool is_indoor, u32 portid)
2972 {
2973         spin_lock(&reg_indoor_lock);
2974
2975         /* It is possible that more than one user space process is trying to
2976          * configure the indoor setting. To handle such cases, clear the indoor
2977          * setting in case that some process does not think that the device
2978          * is operating in an indoor environment. In addition, if a user space
2979          * process indicates that it is controlling the indoor setting, save its
2980          * portid, i.e., make it the owner.
2981          */
2982         reg_is_indoor = is_indoor;
2983         if (reg_is_indoor) {
2984                 if (!reg_is_indoor_portid)
2985                         reg_is_indoor_portid = portid;
2986         } else {
2987                 reg_is_indoor_portid = 0;
2988         }
2989
2990         spin_unlock(&reg_indoor_lock);
2991
2992         if (!is_indoor)
2993                 reg_check_channels();
2994
2995         return 0;
2996 }
2997
2998 void regulatory_netlink_notify(u32 portid)
2999 {
3000         spin_lock(&reg_indoor_lock);
3001
3002         if (reg_is_indoor_portid != portid) {
3003                 spin_unlock(&reg_indoor_lock);
3004                 return;
3005         }
3006
3007         reg_is_indoor = false;
3008         reg_is_indoor_portid = 0;
3009
3010         spin_unlock(&reg_indoor_lock);
3011
3012         reg_check_channels();
3013 }
3014
3015 /* Driver hints */
3016 int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
3017 {
3018         struct regulatory_request *request;
3019
3020         if (WARN_ON(!alpha2 || !wiphy))
3021                 return -EINVAL;
3022
3023         wiphy->regulatory_flags &= ~REGULATORY_CUSTOM_REG;
3024
3025         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
3026         if (!request)
3027                 return -ENOMEM;
3028
3029         request->wiphy_idx = get_wiphy_idx(wiphy);
3030
3031         request->alpha2[0] = alpha2[0];
3032         request->alpha2[1] = alpha2[1];
3033         request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
3034
3035         /* Allow calling CRDA again */
3036         reset_crda_timeouts();
3037
3038         queue_regulatory_request(request);
3039
3040         return 0;
3041 }
3042 EXPORT_SYMBOL(regulatory_hint);
3043
3044 void regulatory_hint_country_ie(struct wiphy *wiphy, enum nl80211_band band,
3045                                 const u8 *country_ie, u8 country_ie_len)
3046 {
3047         char alpha2[2];
3048         enum environment_cap env = ENVIRON_ANY;
3049         struct regulatory_request *request = NULL, *lr;
3050
3051         /* IE len must be evenly divisible by 2 */
3052         if (country_ie_len & 0x01)
3053                 return;
3054
3055         if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
3056                 return;
3057
3058         request = kzalloc(sizeof(*request), GFP_KERNEL);
3059         if (!request)
3060                 return;
3061
3062         alpha2[0] = country_ie[0];
3063         alpha2[1] = country_ie[1];
3064
3065         if (country_ie[2] == 'I')
3066                 env = ENVIRON_INDOOR;
3067         else if (country_ie[2] == 'O')
3068                 env = ENVIRON_OUTDOOR;
3069
3070         rcu_read_lock();
3071         lr = get_last_request();
3072
3073         if (unlikely(!lr))
3074                 goto out;
3075
3076         /*
3077          * We will run this only upon a successful connection on cfg80211.
3078          * We leave conflict resolution to the workqueue, where can hold
3079          * the RTNL.
3080          */
3081         if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
3082             lr->wiphy_idx != WIPHY_IDX_INVALID)
3083                 goto out;
3084
3085         request->wiphy_idx = get_wiphy_idx(wiphy);
3086         request->alpha2[0] = alpha2[0];
3087         request->alpha2[1] = alpha2[1];
3088         request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
3089         request->country_ie_env = env;
3090
3091         /* Allow calling CRDA again */
3092         reset_crda_timeouts();
3093
3094         queue_regulatory_request(request);
3095         request = NULL;
3096 out:
3097         kfree(request);
3098         rcu_read_unlock();
3099 }
3100
3101 static void restore_alpha2(char *alpha2, bool reset_user)
3102 {
3103         /* indicates there is no alpha2 to consider for restoration */
3104         alpha2[0] = '9';
3105         alpha2[1] = '7';
3106
3107         /* The user setting has precedence over the module parameter */
3108         if (is_user_regdom_saved()) {
3109                 /* Unless we're asked to ignore it and reset it */
3110                 if (reset_user) {
3111                         pr_debug("Restoring regulatory settings including user preference\n");
3112                         user_alpha2[0] = '9';
3113                         user_alpha2[1] = '7';
3114
3115                         /*
3116                          * If we're ignoring user settings, we still need to
3117                          * check the module parameter to ensure we put things
3118                          * back as they were for a full restore.
3119                          */
3120                         if (!is_world_regdom(ieee80211_regdom)) {
3121                                 pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
3122                                          ieee80211_regdom[0], ieee80211_regdom[1]);
3123                                 alpha2[0] = ieee80211_regdom[0];
3124                                 alpha2[1] = ieee80211_regdom[1];
3125                         }
3126                 } else {
3127                         pr_debug("Restoring regulatory settings while preserving user preference for: %c%c\n",
3128                                  user_alpha2[0], user_alpha2[1]);
3129                         alpha2[0] = user_alpha2[0];
3130                         alpha2[1] = user_alpha2[1];
3131                 }
3132         } else if (!is_world_regdom(ieee80211_regdom)) {
3133                 pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
3134                          ieee80211_regdom[0], ieee80211_regdom[1]);
3135                 alpha2[0] = ieee80211_regdom[0];
3136                 alpha2[1] = ieee80211_regdom[1];
3137         } else
3138                 pr_debug("Restoring regulatory settings\n");
3139 }
3140
3141 static void restore_custom_reg_settings(struct wiphy *wiphy)
3142 {
3143         struct ieee80211_supported_band *sband;
3144         enum nl80211_band band;
3145         struct ieee80211_channel *chan;
3146         int i;
3147
3148         for (band = 0; band < NUM_NL80211_BANDS; band++) {
3149                 sband = wiphy->bands[band];
3150                 if (!sband)
3151                         continue;
3152                 for (i = 0; i < sband->n_channels; i++) {
3153                         chan = &sband->channels[i];
3154                         chan->flags = chan->orig_flags;
3155                         chan->max_antenna_gain = chan->orig_mag;
3156                         chan->max_power = chan->orig_mpwr;
3157                         chan->beacon_found = false;
3158                 }
3159         }
3160 }
3161
3162 /*
3163  * Restoring regulatory settings involves ingoring any
3164  * possibly stale country IE information and user regulatory
3165  * settings if so desired, this includes any beacon hints
3166  * learned as we could have traveled outside to another country
3167  * after disconnection. To restore regulatory settings we do
3168  * exactly what we did at bootup:
3169  *
3170  *   - send a core regulatory hint
3171  *   - send a user regulatory hint if applicable
3172  *
3173  * Device drivers that send a regulatory hint for a specific country
3174  * keep their own regulatory domain on wiphy->regd so that does does
3175  * not need to be remembered.
3176  */
3177 static void restore_regulatory_settings(bool reset_user)
3178 {
3179         char alpha2[2];
3180         char world_alpha2[2];
3181         struct reg_beacon *reg_beacon, *btmp;
3182         LIST_HEAD(tmp_reg_req_list);
3183         struct cfg80211_registered_device *rdev;
3184
3185         ASSERT_RTNL();
3186
3187         /*
3188          * Clear the indoor setting in case that it is not controlled by user
3189          * space, as otherwise there is no guarantee that the device is still
3190          * operating in an indoor environment.
3191          */
3192         spin_lock(&reg_indoor_lock);
3193         if (reg_is_indoor && !reg_is_indoor_portid) {
3194                 reg_is_indoor = false;
3195                 reg_check_channels();
3196         }
3197         spin_unlock(&reg_indoor_lock);
3198
3199         reset_regdomains(true, &world_regdom);
3200         restore_alpha2(alpha2, reset_user);
3201
3202         /*
3203          * If there's any pending requests we simply
3204          * stash them to a temporary pending queue and
3205          * add then after we've restored regulatory
3206          * settings.
3207          */
3208         spin_lock(&reg_requests_lock);
3209         list_splice_tail_init(&reg_requests_list, &tmp_reg_req_list);
3210         spin_unlock(&reg_requests_lock);
3211
3212         /* Clear beacon hints */
3213         spin_lock_bh(&reg_pending_beacons_lock);
3214         list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
3215                 list_del(&reg_beacon->list);
3216                 kfree(reg_beacon);
3217         }
3218         spin_unlock_bh(&reg_pending_beacons_lock);
3219
3220         list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
3221                 list_del(&reg_beacon->list);
3222                 kfree(reg_beacon);
3223         }
3224
3225         /* First restore to the basic regulatory settings */
3226         world_alpha2[0] = cfg80211_world_regdom->alpha2[0];
3227         world_alpha2[1] = cfg80211_world_regdom->alpha2[1];
3228
3229         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3230                 if (rdev->wiphy.regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
3231                         continue;
3232                 if (rdev->wiphy.regulatory_flags & REGULATORY_CUSTOM_REG)
3233                         restore_custom_reg_settings(&rdev->wiphy);
3234         }
3235
3236         regulatory_hint_core(world_alpha2);
3237
3238         /*
3239          * This restores the ieee80211_regdom module parameter
3240          * preference or the last user requested regulatory
3241          * settings, user regulatory settings takes precedence.
3242          */
3243         if (is_an_alpha2(alpha2))
3244                 regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER);
3245
3246         spin_lock(&reg_requests_lock);
3247         list_splice_tail_init(&tmp_reg_req_list, &reg_requests_list);
3248         spin_unlock(&reg_requests_lock);
3249
3250         pr_debug("Kicking the queue\n");
3251
3252         schedule_work(&reg_work);
3253 }
3254
3255 void regulatory_hint_disconnect(void)
3256 {
3257         pr_debug("All devices are disconnected, going to restore regulatory settings\n");
3258         restore_regulatory_settings(false);
3259 }
3260
3261 static bool freq_is_chan_12_13_14(u16 freq)
3262 {
3263         if (freq == ieee80211_channel_to_frequency(12, NL80211_BAND_2GHZ) ||
3264             freq == ieee80211_channel_to_frequency(13, NL80211_BAND_2GHZ) ||
3265             freq == ieee80211_channel_to_frequency(14, NL80211_BAND_2GHZ))
3266                 return true;
3267         return false;
3268 }
3269
3270 static bool pending_reg_beacon(struct ieee80211_channel *beacon_chan)
3271 {
3272         struct reg_beacon *pending_beacon;
3273
3274         list_for_each_entry(pending_beacon, &reg_pending_beacons, list)
3275                 if (beacon_chan->center_freq ==
3276                     pending_beacon->chan.center_freq)
3277                         return true;
3278         return false;
3279 }
3280
3281 int regulatory_hint_found_beacon(struct wiphy *wiphy,
3282                                  struct ieee80211_channel *beacon_chan,
3283                                  gfp_t gfp)
3284 {
3285         struct reg_beacon *reg_beacon;
3286         bool processing;
3287
3288         if (beacon_chan->beacon_found ||
3289             beacon_chan->flags & IEEE80211_CHAN_RADAR ||
3290             (beacon_chan->band == NL80211_BAND_2GHZ &&
3291              !freq_is_chan_12_13_14(beacon_chan->center_freq)))
3292                 return 0;
3293
3294         spin_lock_bh(&reg_pending_beacons_lock);
3295         processing = pending_reg_beacon(beacon_chan);
3296         spin_unlock_bh(&reg_pending_beacons_lock);
3297
3298         if (processing)
3299                 return 0;
3300
3301         reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
3302         if (!reg_beacon)
3303                 return -ENOMEM;
3304
3305         pr_debug("Found new beacon on frequency: %d MHz (Ch %d) on %s\n",
3306                  beacon_chan->center_freq,
3307                  ieee80211_frequency_to_channel(beacon_chan->center_freq),
3308                  wiphy_name(wiphy));
3309
3310         memcpy(&reg_beacon->chan, beacon_chan,
3311                sizeof(struct ieee80211_channel));
3312
3313         /*
3314          * Since we can be called from BH or and non-BH context
3315          * we must use spin_lock_bh()
3316          */
3317         spin_lock_bh(&reg_pending_beacons_lock);
3318         list_add_tail(&reg_beacon->list, &reg_pending_beacons);
3319         spin_unlock_bh(&reg_pending_beacons_lock);
3320
3321         schedule_work(&reg_work);
3322
3323         return 0;
3324 }
3325
3326 static void print_rd_rules(const struct ieee80211_regdomain *rd)
3327 {
3328         unsigned int i;
3329         const struct ieee80211_reg_rule *reg_rule = NULL;
3330         const struct ieee80211_freq_range *freq_range = NULL;
3331         const struct ieee80211_power_rule *power_rule = NULL;
3332         char bw[32], cac_time[32];
3333
3334         pr_debug("  (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp), (dfs_cac_time)\n");
3335
3336         for (i = 0; i < rd->n_reg_rules; i++) {
3337                 reg_rule = &rd->reg_rules[i];
3338                 freq_range = &reg_rule->freq_range;
3339                 power_rule = &reg_rule->power_rule;
3340
3341                 if (reg_rule->flags & NL80211_RRF_AUTO_BW)
3342                         snprintf(bw, sizeof(bw), "%d KHz, %d KHz AUTO",
3343                                  freq_range->max_bandwidth_khz,
3344                                  reg_get_max_bandwidth(rd, reg_rule));
3345                 else
3346                         snprintf(bw, sizeof(bw), "%d KHz",
3347                                  freq_range->max_bandwidth_khz);
3348
3349                 if (reg_rule->flags & NL80211_RRF_DFS)
3350                         scnprintf(cac_time, sizeof(cac_time), "%u s",
3351                                   reg_rule->dfs_cac_ms/1000);
3352                 else
3353                         scnprintf(cac_time, sizeof(cac_time), "N/A");
3354
3355
3356                 /*
3357                  * There may not be documentation for max antenna gain
3358                  * in certain regions
3359                  */
3360                 if (power_rule->max_antenna_gain)
3361                         pr_debug("  (%d KHz - %d KHz @ %s), (%d mBi, %d mBm), (%s)\n",
3362                                 freq_range->start_freq_khz,
3363                                 freq_range->end_freq_khz,
3364                                 bw,
3365                                 power_rule->max_antenna_gain,
3366                                 power_rule->max_eirp,
3367                                 cac_time);
3368                 else
3369                         pr_debug("  (%d KHz - %d KHz @ %s), (N/A, %d mBm), (%s)\n",
3370                                 freq_range->start_freq_khz,
3371                                 freq_range->end_freq_khz,
3372                                 bw,
3373                                 power_rule->max_eirp,
3374                                 cac_time);
3375         }
3376 }
3377
3378 bool reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region)
3379 {
3380         switch (dfs_region) {
3381         case NL80211_DFS_UNSET:
3382         case NL80211_DFS_FCC:
3383         case NL80211_DFS_ETSI:
3384         case NL80211_DFS_JP:
3385                 return true;
3386         default:
3387                 pr_debug("Ignoring uknown DFS master region: %d\n", dfs_region);
3388                 return false;
3389         }
3390 }
3391
3392 static void print_regdomain(const struct ieee80211_regdomain *rd)
3393 {
3394         struct regulatory_request *lr = get_last_request();
3395
3396         if (is_intersected_alpha2(rd->alpha2)) {
3397                 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) {
3398                         struct cfg80211_registered_device *rdev;
3399                         rdev = cfg80211_rdev_by_wiphy_idx(lr->wiphy_idx);
3400                         if (rdev) {
3401                                 pr_debug("Current regulatory domain updated by AP to: %c%c\n",
3402                                         rdev->country_ie_alpha2[0],
3403                                         rdev->country_ie_alpha2[1]);
3404                         } else
3405                                 pr_debug("Current regulatory domain intersected:\n");
3406                 } else
3407                         pr_debug("Current regulatory domain intersected:\n");
3408         } else if (is_world_regdom(rd->alpha2)) {
3409                 pr_debug("World regulatory domain updated:\n");
3410         } else {
3411                 if (is_unknown_alpha2(rd->alpha2))
3412                         pr_debug("Regulatory domain changed to driver built-in settings (unknown country)\n");
3413                 else {
3414                         if (reg_request_cell_base(lr))
3415                                 pr_debug("Regulatory domain changed to country: %c%c by Cell Station\n",
3416                                         rd->alpha2[0], rd->alpha2[1]);
3417                         else
3418                                 pr_debug("Regulatory domain changed to country: %c%c\n",
3419                                         rd->alpha2[0], rd->alpha2[1]);
3420                 }
3421         }
3422
3423         pr_debug(" DFS Master region: %s", reg_dfs_region_str(rd->dfs_region));
3424         print_rd_rules(rd);
3425 }
3426
3427 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
3428 {
3429         pr_debug("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
3430         print_rd_rules(rd);
3431 }
3432
3433 static int reg_set_rd_core(const struct ieee80211_regdomain *rd)
3434 {
3435         if (!is_world_regdom(rd->alpha2))
3436                 return -EINVAL;
3437         update_world_regdomain(rd);
3438         return 0;
3439 }
3440
3441 static int reg_set_rd_user(const struct ieee80211_regdomain *rd,
3442                            struct regulatory_request *user_request)
3443 {
3444         const struct ieee80211_regdomain *intersected_rd = NULL;
3445
3446         if (!regdom_changes(rd->alpha2))
3447                 return -EALREADY;
3448
3449         if (!is_valid_rd(rd)) {
3450                 pr_err("Invalid regulatory domain detected: %c%c\n",
3451                        rd->alpha2[0], rd->alpha2[1]);
3452                 print_regdomain_info(rd);
3453                 return -EINVAL;
3454         }
3455
3456         if (!user_request->intersect) {
3457                 reset_regdomains(false, rd);
3458                 return 0;
3459         }
3460
3461         intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
3462         if (!intersected_rd)
3463                 return -EINVAL;
3464
3465         kfree(rd);
3466         rd = NULL;
3467         reset_regdomains(false, intersected_rd);
3468
3469         return 0;
3470 }
3471
3472 static int reg_set_rd_driver(const struct ieee80211_regdomain *rd,
3473                              struct regulatory_request *driver_request)
3474 {
3475         const struct ieee80211_regdomain *regd;
3476         const struct ieee80211_regdomain *intersected_rd = NULL;
3477         const struct ieee80211_regdomain *tmp;
3478         struct wiphy *request_wiphy;
3479
3480         if (is_world_regdom(rd->alpha2))
3481                 return -EINVAL;
3482
3483         if (!regdom_changes(rd->alpha2))
3484                 return -EALREADY;
3485
3486         if (!is_valid_rd(rd)) {
3487                 pr_err("Invalid regulatory domain detected: %c%c\n",
3488                        rd->alpha2[0], rd->alpha2[1]);
3489                 print_regdomain_info(rd);
3490                 return -EINVAL;
3491         }
3492
3493         request_wiphy = wiphy_idx_to_wiphy(driver_request->wiphy_idx);
3494         if (!request_wiphy)
3495                 return -ENODEV;
3496
3497         if (!driver_request->intersect) {
3498                 if (request_wiphy->regd)
3499                         return -EALREADY;
3500
3501                 regd = reg_copy_regd(rd);
3502                 if (IS_ERR(regd))
3503                         return PTR_ERR(regd);
3504
3505                 rcu_assign_pointer(request_wiphy->regd, regd);
3506                 reset_regdomains(false, rd);
3507                 return 0;
3508         }
3509
3510         intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
3511         if (!intersected_rd)
3512                 return -EINVAL;
3513
3514         /*
3515          * We can trash what CRDA provided now.
3516          * However if a driver requested this specific regulatory
3517          * domain we keep it for its private use
3518          */
3519         tmp = get_wiphy_regdom(request_wiphy);
3520         rcu_assign_pointer(request_wiphy->regd, rd);
3521         rcu_free_regdom(tmp);
3522
3523         rd = NULL;
3524
3525         reset_regdomains(false, intersected_rd);
3526
3527         return 0;
3528 }
3529
3530 static int reg_set_rd_country_ie(const struct ieee80211_regdomain *rd,
3531                                  struct regulatory_request *country_ie_request)
3532 {
3533         struct wiphy *request_wiphy;
3534
3535         if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
3536             !is_unknown_alpha2(rd->alpha2))
3537                 return -EINVAL;
3538
3539         /*
3540          * Lets only bother proceeding on the same alpha2 if the current
3541          * rd is non static (it means CRDA was present and was used last)
3542          * and the pending request came in from a country IE
3543          */
3544
3545         if (!is_valid_rd(rd)) {
3546                 pr_err("Invalid regulatory domain detected: %c%c\n",
3547                        rd->alpha2[0], rd->alpha2[1]);
3548                 print_regdomain_info(rd);
3549                 return -EINVAL;
3550         }
3551
3552         request_wiphy = wiphy_idx_to_wiphy(country_ie_request->wiphy_idx);
3553         if (!request_wiphy)
3554                 return -ENODEV;
3555
3556         if (country_ie_request->intersect)
3557                 return -EINVAL;
3558
3559         reset_regdomains(false, rd);
3560         return 0;
3561 }
3562
3563 /*
3564  * Use this call to set the current regulatory domain. Conflicts with
3565  * multiple drivers can be ironed out later. Caller must've already
3566  * kmalloc'd the rd structure.
3567  */
3568 int set_regdom(const struct ieee80211_regdomain *rd,
3569                enum ieee80211_regd_source regd_src)
3570 {
3571         struct regulatory_request *lr;
3572         bool user_reset = false;
3573         int r;
3574
3575         if (!reg_is_valid_request(rd->alpha2)) {
3576                 kfree(rd);
3577                 return -EINVAL;
3578         }
3579
3580         if (regd_src == REGD_SOURCE_CRDA)
3581                 reset_crda_timeouts();
3582
3583         lr = get_last_request();
3584
3585         /* Note that this doesn't update the wiphys, this is done below */
3586         switch (lr->initiator) {
3587         case NL80211_REGDOM_SET_BY_CORE:
3588                 r = reg_set_rd_core(rd);
3589                 break;
3590         case NL80211_REGDOM_SET_BY_USER:
3591                 r = reg_set_rd_user(rd, lr);
3592                 user_reset = true;
3593                 break;
3594         case NL80211_REGDOM_SET_BY_DRIVER:
3595                 r = reg_set_rd_driver(rd, lr);
3596                 break;
3597         case NL80211_REGDOM_SET_BY_COUNTRY_IE:
3598                 r = reg_set_rd_country_ie(rd, lr);
3599                 break;
3600         default:
3601                 WARN(1, "invalid initiator %d\n", lr->initiator);
3602                 kfree(rd);
3603                 return -EINVAL;
3604         }
3605
3606         if (r) {
3607                 switch (r) {
3608                 case -EALREADY:
3609                         reg_set_request_processed();
3610                         break;
3611                 default:
3612                         /* Back to world regulatory in case of errors */
3613                         restore_regulatory_settings(user_reset);
3614                 }
3615
3616                 kfree(rd);
3617                 return r;
3618         }
3619
3620         /* This would make this whole thing pointless */
3621         if (WARN_ON(!lr->intersect && rd != get_cfg80211_regdom()))
3622                 return -EINVAL;
3623
3624         /* update all wiphys now with the new established regulatory domain */
3625         update_all_wiphy_regulatory(lr->initiator);
3626
3627         print_regdomain(get_cfg80211_regdom());
3628
3629         nl80211_send_reg_change_event(lr);
3630
3631         reg_set_request_processed();
3632
3633         return 0;
3634 }
3635
3636 static int __regulatory_set_wiphy_regd(struct wiphy *wiphy,
3637                                        struct ieee80211_regdomain *rd)
3638 {
3639         const struct ieee80211_regdomain *regd;
3640         const struct ieee80211_regdomain *prev_regd;
3641         struct cfg80211_registered_device *rdev;
3642
3643         if (WARN_ON(!wiphy || !rd))
3644                 return -EINVAL;
3645
3646         if (WARN(!(wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED),
3647                  "wiphy should have REGULATORY_WIPHY_SELF_MANAGED\n"))
3648                 return -EPERM;
3649
3650         if (WARN(!is_valid_rd(rd), "Invalid regulatory domain detected\n")) {
3651                 print_regdomain_info(rd);
3652                 return -EINVAL;
3653         }
3654
3655         regd = reg_copy_regd(rd);
3656         if (IS_ERR(regd))
3657                 return PTR_ERR(regd);
3658
3659         rdev = wiphy_to_rdev(wiphy);
3660
3661         spin_lock(&reg_requests_lock);
3662         prev_regd = rdev->requested_regd;
3663         rdev->requested_regd = regd;
3664         spin_unlock(&reg_requests_lock);
3665
3666         kfree(prev_regd);
3667         return 0;
3668 }
3669
3670 int regulatory_set_wiphy_regd(struct wiphy *wiphy,
3671                               struct ieee80211_regdomain *rd)
3672 {
3673         int ret = __regulatory_set_wiphy_regd(wiphy, rd);
3674
3675         if (ret)
3676                 return ret;
3677
3678         schedule_work(&reg_work);
3679         return 0;
3680 }
3681 EXPORT_SYMBOL(regulatory_set_wiphy_regd);
3682
3683 int regulatory_set_wiphy_regd_sync_rtnl(struct wiphy *wiphy,
3684                                         struct ieee80211_regdomain *rd)
3685 {
3686         int ret;
3687
3688         ASSERT_RTNL();
3689
3690         ret = __regulatory_set_wiphy_regd(wiphy, rd);
3691         if (ret)
3692                 return ret;
3693
3694         /* process the request immediately */
3695         reg_process_self_managed_hints();
3696         return 0;
3697 }
3698 EXPORT_SYMBOL(regulatory_set_wiphy_regd_sync_rtnl);
3699
3700 void wiphy_regulatory_register(struct wiphy *wiphy)
3701 {
3702         struct regulatory_request *lr;
3703
3704         /* self-managed devices ignore external hints */
3705         if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
3706                 wiphy->regulatory_flags |= REGULATORY_DISABLE_BEACON_HINTS |
3707                                            REGULATORY_COUNTRY_IE_IGNORE;
3708
3709         if (!reg_dev_ignore_cell_hint(wiphy))
3710                 reg_num_devs_support_basehint++;
3711
3712         lr = get_last_request();
3713         wiphy_update_regulatory(wiphy, lr->initiator);
3714         wiphy_all_share_dfs_chan_state(wiphy);
3715 }
3716
3717 void wiphy_regulatory_deregister(struct wiphy *wiphy)
3718 {
3719         struct wiphy *request_wiphy = NULL;
3720         struct regulatory_request *lr;
3721
3722         lr = get_last_request();
3723
3724         if (!reg_dev_ignore_cell_hint(wiphy))
3725                 reg_num_devs_support_basehint--;
3726
3727         rcu_free_regdom(get_wiphy_regdom(wiphy));
3728         RCU_INIT_POINTER(wiphy->regd, NULL);
3729
3730         if (lr)
3731                 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
3732
3733         if (!request_wiphy || request_wiphy != wiphy)
3734                 return;
3735
3736         lr->wiphy_idx = WIPHY_IDX_INVALID;
3737         lr->country_ie_env = ENVIRON_ANY;
3738 }
3739
3740 /*
3741  * See http://www.fcc.gov/document/5-ghz-unlicensed-spectrum-unii, for
3742  * UNII band definitions
3743  */
3744 int cfg80211_get_unii(int freq)
3745 {
3746         /* UNII-1 */
3747         if (freq >= 5150 && freq <= 5250)
3748                 return 0;
3749
3750         /* UNII-2A */
3751         if (freq > 5250 && freq <= 5350)
3752                 return 1;
3753
3754         /* UNII-2B */
3755         if (freq > 5350 && freq <= 5470)
3756                 return 2;
3757
3758         /* UNII-2C */
3759         if (freq > 5470 && freq <= 5725)
3760                 return 3;
3761
3762         /* UNII-3 */
3763         if (freq > 5725 && freq <= 5825)
3764                 return 4;
3765
3766         return -EINVAL;
3767 }
3768
3769 bool regulatory_indoor_allowed(void)
3770 {
3771         return reg_is_indoor;
3772 }
3773
3774 bool regulatory_pre_cac_allowed(struct wiphy *wiphy)
3775 {
3776         const struct ieee80211_regdomain *regd = NULL;
3777         const struct ieee80211_regdomain *wiphy_regd = NULL;
3778         bool pre_cac_allowed = false;
3779
3780         rcu_read_lock();
3781
3782         regd = rcu_dereference(cfg80211_regdomain);
3783         wiphy_regd = rcu_dereference(wiphy->regd);
3784         if (!wiphy_regd) {
3785                 if (regd->dfs_region == NL80211_DFS_ETSI)
3786                         pre_cac_allowed = true;
3787
3788                 rcu_read_unlock();
3789
3790                 return pre_cac_allowed;
3791         }
3792
3793         if (regd->dfs_region == wiphy_regd->dfs_region &&
3794             wiphy_regd->dfs_region == NL80211_DFS_ETSI)
3795                 pre_cac_allowed = true;
3796
3797         rcu_read_unlock();
3798
3799         return pre_cac_allowed;
3800 }
3801
3802 void regulatory_propagate_dfs_state(struct wiphy *wiphy,
3803                                     struct cfg80211_chan_def *chandef,
3804                                     enum nl80211_dfs_state dfs_state,
3805                                     enum nl80211_radar_event event)
3806 {
3807         struct cfg80211_registered_device *rdev;
3808
3809         ASSERT_RTNL();
3810
3811         if (WARN_ON(!cfg80211_chandef_valid(chandef)))
3812                 return;
3813
3814         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3815                 if (wiphy == &rdev->wiphy)
3816                         continue;
3817
3818                 if (!reg_dfs_domain_same(wiphy, &rdev->wiphy))
3819                         continue;
3820
3821                 if (!ieee80211_get_channel(&rdev->wiphy,
3822                                            chandef->chan->center_freq))
3823                         continue;
3824
3825                 cfg80211_set_dfs_state(&rdev->wiphy, chandef, dfs_state);
3826
3827                 if (event == NL80211_RADAR_DETECTED ||
3828                     event == NL80211_RADAR_CAC_FINISHED)
3829                         cfg80211_sched_dfs_chan_update(rdev);
3830
3831                 nl80211_radar_notify(rdev, chandef, event, NULL, GFP_KERNEL);
3832         }
3833 }
3834
3835 static int __init regulatory_init_db(void)
3836 {
3837         int err;
3838
3839         err = load_builtin_regdb_keys();
3840         if (err)
3841                 return err;
3842
3843         /* We always try to get an update for the static regdomain */
3844         err = regulatory_hint_core(cfg80211_world_regdom->alpha2);
3845         if (err) {
3846                 if (err == -ENOMEM) {
3847                         platform_device_unregister(reg_pdev);
3848                         return err;
3849                 }
3850                 /*
3851                  * N.B. kobject_uevent_env() can fail mainly for when we're out
3852                  * memory which is handled and propagated appropriately above
3853                  * but it can also fail during a netlink_broadcast() or during
3854                  * early boot for call_usermodehelper(). For now treat these
3855                  * errors as non-fatal.
3856                  */
3857                 pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
3858         }
3859
3860         /*
3861          * Finally, if the user set the module parameter treat it
3862          * as a user hint.
3863          */
3864         if (!is_world_regdom(ieee80211_regdom))
3865                 regulatory_hint_user(ieee80211_regdom,
3866                                      NL80211_USER_REG_HINT_USER);
3867
3868         return 0;
3869 }
3870 #ifndef MODULE
3871 late_initcall(regulatory_init_db);
3872 #endif
3873
3874 int __init regulatory_init(void)
3875 {
3876         reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
3877         if (IS_ERR(reg_pdev))
3878                 return PTR_ERR(reg_pdev);
3879
3880         spin_lock_init(&reg_requests_lock);
3881         spin_lock_init(&reg_pending_beacons_lock);
3882         spin_lock_init(&reg_indoor_lock);
3883
3884         rcu_assign_pointer(cfg80211_regdomain, cfg80211_world_regdom);
3885
3886         user_alpha2[0] = '9';
3887         user_alpha2[1] = '7';
3888
3889 #ifdef MODULE
3890         return regulatory_init_db();
3891 #else
3892         return 0;
3893 #endif
3894 }
3895
3896 void regulatory_exit(void)
3897 {
3898         struct regulatory_request *reg_request, *tmp;
3899         struct reg_beacon *reg_beacon, *btmp;
3900
3901         cancel_work_sync(&reg_work);
3902         cancel_crda_timeout_sync();
3903         cancel_delayed_work_sync(&reg_check_chans);
3904
3905         /* Lock to suppress warnings */
3906         rtnl_lock();
3907         reset_regdomains(true, NULL);
3908         rtnl_unlock();
3909
3910         dev_set_uevent_suppress(&reg_pdev->dev, true);
3911
3912         platform_device_unregister(reg_pdev);
3913
3914         list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
3915                 list_del(&reg_beacon->list);
3916                 kfree(reg_beacon);
3917         }
3918
3919         list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
3920                 list_del(&reg_beacon->list);
3921                 kfree(reg_beacon);
3922         }
3923
3924         list_for_each_entry_safe(reg_request, tmp, &reg_requests_list, list) {
3925                 list_del(&reg_request->list);
3926                 kfree(reg_request);
3927         }
3928
3929         if (!IS_ERR_OR_NULL(regdb))
3930                 kfree(regdb);
3931
3932         free_regdb_keyring();
3933 }