OSDN Git Service

am 2089a65c: am 38d7f755: Merge "libgui: Hook up onFrameReplaced"
[android-x86/frameworks-native.git] / services / inputflinger / EventHub.cpp
1 /*
2  * Copyright (C) 2005 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16
17 #include <assert.h>
18 #include <dirent.h>
19 #include <errno.h>
20 #include <fcntl.h>
21 #include <inttypes.h>
22 #include <memory.h>
23 #include <stdint.h>
24 #include <stdio.h>
25 #include <stdlib.h>
26 #include <string.h>
27 #include <sys/epoll.h>
28 #include <sys/limits.h>
29 #include <sys/inotify.h>
30 #include <sys/ioctl.h>
31 #include <sys/utsname.h>
32 #include <unistd.h>
33
34 #define LOG_TAG "EventHub"
35
36 // #define LOG_NDEBUG 0
37
38 #include "EventHub.h"
39
40 #include <hardware_legacy/power.h>
41
42 #include <cutils/properties.h>
43 #include <openssl/sha.h>
44 #include <utils/Log.h>
45 #include <utils/Timers.h>
46 #include <utils/threads.h>
47 #include <utils/Errors.h>
48
49 #include <input/KeyLayoutMap.h>
50 #include <input/KeyCharacterMap.h>
51 #include <input/VirtualKeyMap.h>
52
53 /* this macro is used to tell if "bit" is set in "array"
54  * it selects a byte from the array, and does a boolean AND
55  * operation with a byte that only has the relevant bit set.
56  * eg. to check for the 12th bit, we do (array[1] & 1<<4)
57  */
58 #define test_bit(bit, array)    (array[bit/8] & (1<<(bit%8)))
59
60 /* this macro computes the number of bytes needed to represent a bit array of the specified size */
61 #define sizeof_bit_array(bits)  ((bits + 7) / 8)
62
63 #define INDENT "  "
64 #define INDENT2 "    "
65 #define INDENT3 "      "
66
67 namespace android {
68
69 static const char *WAKE_LOCK_ID = "KeyEvents";
70 static const char *DEVICE_PATH = "/dev/input";
71
72 /* return the larger integer */
73 static inline int max(int v1, int v2)
74 {
75     return (v1 > v2) ? v1 : v2;
76 }
77
78 static inline const char* toString(bool value) {
79     return value ? "true" : "false";
80 }
81
82 static String8 sha1(const String8& in) {
83     SHA_CTX ctx;
84     SHA1_Init(&ctx);
85     SHA1_Update(&ctx, reinterpret_cast<const u_char*>(in.string()), in.size());
86     u_char digest[SHA_DIGEST_LENGTH];
87     SHA1_Final(digest, &ctx);
88
89     String8 out;
90     for (size_t i = 0; i < SHA_DIGEST_LENGTH; i++) {
91         out.appendFormat("%02x", digest[i]);
92     }
93     return out;
94 }
95
96 static void getLinuxRelease(int* major, int* minor) {
97     struct utsname info;
98     if (uname(&info) || sscanf(info.release, "%d.%d", major, minor) <= 0) {
99         *major = 0, *minor = 0;
100         ALOGE("Could not get linux version: %s", strerror(errno));
101     }
102 }
103
104 // --- Global Functions ---
105
106 uint32_t getAbsAxisUsage(int32_t axis, uint32_t deviceClasses) {
107     // Touch devices get dibs on touch-related axes.
108     if (deviceClasses & INPUT_DEVICE_CLASS_TOUCH) {
109         switch (axis) {
110         case ABS_X:
111         case ABS_Y:
112         case ABS_PRESSURE:
113         case ABS_TOOL_WIDTH:
114         case ABS_DISTANCE:
115         case ABS_TILT_X:
116         case ABS_TILT_Y:
117         case ABS_MT_SLOT:
118         case ABS_MT_TOUCH_MAJOR:
119         case ABS_MT_TOUCH_MINOR:
120         case ABS_MT_WIDTH_MAJOR:
121         case ABS_MT_WIDTH_MINOR:
122         case ABS_MT_ORIENTATION:
123         case ABS_MT_POSITION_X:
124         case ABS_MT_POSITION_Y:
125         case ABS_MT_TOOL_TYPE:
126         case ABS_MT_BLOB_ID:
127         case ABS_MT_TRACKING_ID:
128         case ABS_MT_PRESSURE:
129         case ABS_MT_DISTANCE:
130             return INPUT_DEVICE_CLASS_TOUCH;
131         }
132     }
133
134     // External stylus gets the pressure axis
135     if (deviceClasses & INPUT_DEVICE_CLASS_EXTERNAL_STYLUS) {
136         if (axis == ABS_PRESSURE) {
137             return INPUT_DEVICE_CLASS_EXTERNAL_STYLUS;
138         }
139     }
140
141     // Joystick devices get the rest.
142     return deviceClasses & INPUT_DEVICE_CLASS_JOYSTICK;
143 }
144
145 // --- EventHub::Device ---
146
147 EventHub::Device::Device(int fd, int32_t id, const String8& path,
148         const InputDeviceIdentifier& identifier) :
149         next(NULL),
150         fd(fd), id(id), path(path), identifier(identifier),
151         classes(0), configuration(NULL), virtualKeyMap(NULL),
152         ffEffectPlaying(false), ffEffectId(-1), controllerNumber(0),
153         timestampOverrideSec(0), timestampOverrideUsec(0) {
154     memset(keyBitmask, 0, sizeof(keyBitmask));
155     memset(absBitmask, 0, sizeof(absBitmask));
156     memset(relBitmask, 0, sizeof(relBitmask));
157     memset(swBitmask, 0, sizeof(swBitmask));
158     memset(ledBitmask, 0, sizeof(ledBitmask));
159     memset(ffBitmask, 0, sizeof(ffBitmask));
160     memset(propBitmask, 0, sizeof(propBitmask));
161 }
162
163 EventHub::Device::~Device() {
164     close();
165     delete configuration;
166     delete virtualKeyMap;
167 }
168
169 void EventHub::Device::close() {
170     if (fd >= 0) {
171         ::close(fd);
172         fd = -1;
173     }
174 }
175
176
177 // --- EventHub ---
178
179 const uint32_t EventHub::EPOLL_ID_INOTIFY;
180 const uint32_t EventHub::EPOLL_ID_WAKE;
181 const int EventHub::EPOLL_SIZE_HINT;
182 const int EventHub::EPOLL_MAX_EVENTS;
183
184 EventHub::EventHub(void) :
185         mBuiltInKeyboardId(NO_BUILT_IN_KEYBOARD), mNextDeviceId(1), mControllerNumbers(),
186         mOpeningDevices(0), mClosingDevices(0),
187         mNeedToSendFinishedDeviceScan(false),
188         mNeedToReopenDevices(false), mNeedToScanDevices(true),
189         mPendingEventCount(0), mPendingEventIndex(0), mPendingINotify(false) {
190     acquire_wake_lock(PARTIAL_WAKE_LOCK, WAKE_LOCK_ID);
191
192     mEpollFd = epoll_create(EPOLL_SIZE_HINT);
193     LOG_ALWAYS_FATAL_IF(mEpollFd < 0, "Could not create epoll instance.  errno=%d", errno);
194
195     mINotifyFd = inotify_init();
196     int result = inotify_add_watch(mINotifyFd, DEVICE_PATH, IN_DELETE | IN_CREATE);
197     LOG_ALWAYS_FATAL_IF(result < 0, "Could not register INotify for %s.  errno=%d",
198             DEVICE_PATH, errno);
199
200     struct epoll_event eventItem;
201     memset(&eventItem, 0, sizeof(eventItem));
202     eventItem.events = EPOLLIN;
203     eventItem.data.u32 = EPOLL_ID_INOTIFY;
204     result = epoll_ctl(mEpollFd, EPOLL_CTL_ADD, mINotifyFd, &eventItem);
205     LOG_ALWAYS_FATAL_IF(result != 0, "Could not add INotify to epoll instance.  errno=%d", errno);
206
207     int wakeFds[2];
208     result = pipe(wakeFds);
209     LOG_ALWAYS_FATAL_IF(result != 0, "Could not create wake pipe.  errno=%d", errno);
210
211     mWakeReadPipeFd = wakeFds[0];
212     mWakeWritePipeFd = wakeFds[1];
213
214     result = fcntl(mWakeReadPipeFd, F_SETFL, O_NONBLOCK);
215     LOG_ALWAYS_FATAL_IF(result != 0, "Could not make wake read pipe non-blocking.  errno=%d",
216             errno);
217
218     result = fcntl(mWakeWritePipeFd, F_SETFL, O_NONBLOCK);
219     LOG_ALWAYS_FATAL_IF(result != 0, "Could not make wake write pipe non-blocking.  errno=%d",
220             errno);
221
222     eventItem.data.u32 = EPOLL_ID_WAKE;
223     result = epoll_ctl(mEpollFd, EPOLL_CTL_ADD, mWakeReadPipeFd, &eventItem);
224     LOG_ALWAYS_FATAL_IF(result != 0, "Could not add wake read pipe to epoll instance.  errno=%d",
225             errno);
226
227     int major, minor;
228     getLinuxRelease(&major, &minor);
229     // EPOLLWAKEUP was introduced in kernel 3.5
230     mUsingEpollWakeup = major > 3 || (major == 3 && minor >= 5);
231 }
232
233 EventHub::~EventHub(void) {
234     closeAllDevicesLocked();
235
236     while (mClosingDevices) {
237         Device* device = mClosingDevices;
238         mClosingDevices = device->next;
239         delete device;
240     }
241
242     ::close(mEpollFd);
243     ::close(mINotifyFd);
244     ::close(mWakeReadPipeFd);
245     ::close(mWakeWritePipeFd);
246
247     release_wake_lock(WAKE_LOCK_ID);
248 }
249
250 InputDeviceIdentifier EventHub::getDeviceIdentifier(int32_t deviceId) const {
251     AutoMutex _l(mLock);
252     Device* device = getDeviceLocked(deviceId);
253     if (device == NULL) return InputDeviceIdentifier();
254     return device->identifier;
255 }
256
257 uint32_t EventHub::getDeviceClasses(int32_t deviceId) const {
258     AutoMutex _l(mLock);
259     Device* device = getDeviceLocked(deviceId);
260     if (device == NULL) return 0;
261     return device->classes;
262 }
263
264 int32_t EventHub::getDeviceControllerNumber(int32_t deviceId) const {
265     AutoMutex _l(mLock);
266     Device* device = getDeviceLocked(deviceId);
267     if (device == NULL) return 0;
268     return device->controllerNumber;
269 }
270
271 void EventHub::getConfiguration(int32_t deviceId, PropertyMap* outConfiguration) const {
272     AutoMutex _l(mLock);
273     Device* device = getDeviceLocked(deviceId);
274     if (device && device->configuration) {
275         *outConfiguration = *device->configuration;
276     } else {
277         outConfiguration->clear();
278     }
279 }
280
281 status_t EventHub::getAbsoluteAxisInfo(int32_t deviceId, int axis,
282         RawAbsoluteAxisInfo* outAxisInfo) const {
283     outAxisInfo->clear();
284
285     if (axis >= 0 && axis <= ABS_MAX) {
286         AutoMutex _l(mLock);
287
288         Device* device = getDeviceLocked(deviceId);
289         if (device && !device->isVirtual() && test_bit(axis, device->absBitmask)) {
290             struct input_absinfo info;
291             if(ioctl(device->fd, EVIOCGABS(axis), &info)) {
292                 ALOGW("Error reading absolute controller %d for device %s fd %d, errno=%d",
293                      axis, device->identifier.name.string(), device->fd, errno);
294                 return -errno;
295             }
296
297             if (info.minimum != info.maximum) {
298                 outAxisInfo->valid = true;
299                 outAxisInfo->minValue = info.minimum;
300                 outAxisInfo->maxValue = info.maximum;
301                 outAxisInfo->flat = info.flat;
302                 outAxisInfo->fuzz = info.fuzz;
303                 outAxisInfo->resolution = info.resolution;
304             }
305             return OK;
306         }
307     }
308     return -1;
309 }
310
311 bool EventHub::hasRelativeAxis(int32_t deviceId, int axis) const {
312     if (axis >= 0 && axis <= REL_MAX) {
313         AutoMutex _l(mLock);
314
315         Device* device = getDeviceLocked(deviceId);
316         if (device) {
317             return test_bit(axis, device->relBitmask);
318         }
319     }
320     return false;
321 }
322
323 bool EventHub::hasInputProperty(int32_t deviceId, int property) const {
324     if (property >= 0 && property <= INPUT_PROP_MAX) {
325         AutoMutex _l(mLock);
326
327         Device* device = getDeviceLocked(deviceId);
328         if (device) {
329             return test_bit(property, device->propBitmask);
330         }
331     }
332     return false;
333 }
334
335 int32_t EventHub::getScanCodeState(int32_t deviceId, int32_t scanCode) const {
336     if (scanCode >= 0 && scanCode <= KEY_MAX) {
337         AutoMutex _l(mLock);
338
339         Device* device = getDeviceLocked(deviceId);
340         if (device && !device->isVirtual() && test_bit(scanCode, device->keyBitmask)) {
341             uint8_t keyState[sizeof_bit_array(KEY_MAX + 1)];
342             memset(keyState, 0, sizeof(keyState));
343             if (ioctl(device->fd, EVIOCGKEY(sizeof(keyState)), keyState) >= 0) {
344                 return test_bit(scanCode, keyState) ? AKEY_STATE_DOWN : AKEY_STATE_UP;
345             }
346         }
347     }
348     return AKEY_STATE_UNKNOWN;
349 }
350
351 int32_t EventHub::getKeyCodeState(int32_t deviceId, int32_t keyCode) const {
352     AutoMutex _l(mLock);
353
354     Device* device = getDeviceLocked(deviceId);
355     if (device && !device->isVirtual() && device->keyMap.haveKeyLayout()) {
356         Vector<int32_t> scanCodes;
357         device->keyMap.keyLayoutMap->findScanCodesForKey(keyCode, &scanCodes);
358         if (scanCodes.size() != 0) {
359             uint8_t keyState[sizeof_bit_array(KEY_MAX + 1)];
360             memset(keyState, 0, sizeof(keyState));
361             if (ioctl(device->fd, EVIOCGKEY(sizeof(keyState)), keyState) >= 0) {
362                 for (size_t i = 0; i < scanCodes.size(); i++) {
363                     int32_t sc = scanCodes.itemAt(i);
364                     if (sc >= 0 && sc <= KEY_MAX && test_bit(sc, keyState)) {
365                         return AKEY_STATE_DOWN;
366                     }
367                 }
368                 return AKEY_STATE_UP;
369             }
370         }
371     }
372     return AKEY_STATE_UNKNOWN;
373 }
374
375 int32_t EventHub::getSwitchState(int32_t deviceId, int32_t sw) const {
376     if (sw >= 0 && sw <= SW_MAX) {
377         AutoMutex _l(mLock);
378
379         Device* device = getDeviceLocked(deviceId);
380         if (device && !device->isVirtual() && test_bit(sw, device->swBitmask)) {
381             uint8_t swState[sizeof_bit_array(SW_MAX + 1)];
382             memset(swState, 0, sizeof(swState));
383             if (ioctl(device->fd, EVIOCGSW(sizeof(swState)), swState) >= 0) {
384                 return test_bit(sw, swState) ? AKEY_STATE_DOWN : AKEY_STATE_UP;
385             }
386         }
387     }
388     return AKEY_STATE_UNKNOWN;
389 }
390
391 status_t EventHub::getAbsoluteAxisValue(int32_t deviceId, int32_t axis, int32_t* outValue) const {
392     *outValue = 0;
393
394     if (axis >= 0 && axis <= ABS_MAX) {
395         AutoMutex _l(mLock);
396
397         Device* device = getDeviceLocked(deviceId);
398         if (device && !device->isVirtual() && test_bit(axis, device->absBitmask)) {
399             struct input_absinfo info;
400             if(ioctl(device->fd, EVIOCGABS(axis), &info)) {
401                 ALOGW("Error reading absolute controller %d for device %s fd %d, errno=%d",
402                      axis, device->identifier.name.string(), device->fd, errno);
403                 return -errno;
404             }
405
406             *outValue = info.value;
407             return OK;
408         }
409     }
410     return -1;
411 }
412
413 bool EventHub::markSupportedKeyCodes(int32_t deviceId, size_t numCodes,
414         const int32_t* keyCodes, uint8_t* outFlags) const {
415     AutoMutex _l(mLock);
416
417     Device* device = getDeviceLocked(deviceId);
418     if (device && device->keyMap.haveKeyLayout()) {
419         Vector<int32_t> scanCodes;
420         for (size_t codeIndex = 0; codeIndex < numCodes; codeIndex++) {
421             scanCodes.clear();
422
423             status_t err = device->keyMap.keyLayoutMap->findScanCodesForKey(
424                     keyCodes[codeIndex], &scanCodes);
425             if (! err) {
426                 // check the possible scan codes identified by the layout map against the
427                 // map of codes actually emitted by the driver
428                 for (size_t sc = 0; sc < scanCodes.size(); sc++) {
429                     if (test_bit(scanCodes[sc], device->keyBitmask)) {
430                         outFlags[codeIndex] = 1;
431                         break;
432                     }
433                 }
434             }
435         }
436         return true;
437     }
438     return false;
439 }
440
441 status_t EventHub::mapKey(int32_t deviceId, int32_t scanCode, int32_t usageCode,
442         int32_t* outKeycode, uint32_t* outFlags) const {
443     AutoMutex _l(mLock);
444     Device* device = getDeviceLocked(deviceId);
445
446     if (device) {
447         // Check the key character map first.
448         sp<KeyCharacterMap> kcm = device->getKeyCharacterMap();
449         if (kcm != NULL) {
450             if (!kcm->mapKey(scanCode, usageCode, outKeycode)) {
451                 *outFlags = 0;
452                 return NO_ERROR;
453             }
454         }
455
456         // Check the key layout next.
457         if (device->keyMap.haveKeyLayout()) {
458             if (!device->keyMap.keyLayoutMap->mapKey(
459                     scanCode, usageCode, outKeycode, outFlags)) {
460                 return NO_ERROR;
461             }
462         }
463     }
464
465     *outKeycode = 0;
466     *outFlags = 0;
467     return NAME_NOT_FOUND;
468 }
469
470 status_t EventHub::mapAxis(int32_t deviceId, int32_t scanCode, AxisInfo* outAxisInfo) const {
471     AutoMutex _l(mLock);
472     Device* device = getDeviceLocked(deviceId);
473
474     if (device && device->keyMap.haveKeyLayout()) {
475         status_t err = device->keyMap.keyLayoutMap->mapAxis(scanCode, outAxisInfo);
476         if (err == NO_ERROR) {
477             return NO_ERROR;
478         }
479     }
480
481     return NAME_NOT_FOUND;
482 }
483
484 void EventHub::setExcludedDevices(const Vector<String8>& devices) {
485     AutoMutex _l(mLock);
486
487     mExcludedDevices = devices;
488 }
489
490 bool EventHub::hasScanCode(int32_t deviceId, int32_t scanCode) const {
491     AutoMutex _l(mLock);
492     Device* device = getDeviceLocked(deviceId);
493     if (device && scanCode >= 0 && scanCode <= KEY_MAX) {
494         if (test_bit(scanCode, device->keyBitmask)) {
495             return true;
496         }
497     }
498     return false;
499 }
500
501 bool EventHub::hasLed(int32_t deviceId, int32_t led) const {
502     AutoMutex _l(mLock);
503     Device* device = getDeviceLocked(deviceId);
504     int32_t sc;
505     if (device && mapLed(device, led, &sc) == NO_ERROR) {
506         if (test_bit(sc, device->ledBitmask)) {
507             return true;
508         }
509     }
510     return false;
511 }
512
513 void EventHub::setLedState(int32_t deviceId, int32_t led, bool on) {
514     AutoMutex _l(mLock);
515     Device* device = getDeviceLocked(deviceId);
516     setLedStateLocked(device, led, on);
517 }
518
519 void EventHub::setLedStateLocked(Device* device, int32_t led, bool on) {
520     int32_t sc;
521     if (device && !device->isVirtual() && mapLed(device, led, &sc) != NAME_NOT_FOUND) {
522         struct input_event ev;
523         ev.time.tv_sec = 0;
524         ev.time.tv_usec = 0;
525         ev.type = EV_LED;
526         ev.code = sc;
527         ev.value = on ? 1 : 0;
528
529         ssize_t nWrite;
530         do {
531             nWrite = write(device->fd, &ev, sizeof(struct input_event));
532         } while (nWrite == -1 && errno == EINTR);
533     }
534 }
535
536 void EventHub::getVirtualKeyDefinitions(int32_t deviceId,
537         Vector<VirtualKeyDefinition>& outVirtualKeys) const {
538     outVirtualKeys.clear();
539
540     AutoMutex _l(mLock);
541     Device* device = getDeviceLocked(deviceId);
542     if (device && device->virtualKeyMap) {
543         outVirtualKeys.appendVector(device->virtualKeyMap->getVirtualKeys());
544     }
545 }
546
547 sp<KeyCharacterMap> EventHub::getKeyCharacterMap(int32_t deviceId) const {
548     AutoMutex _l(mLock);
549     Device* device = getDeviceLocked(deviceId);
550     if (device) {
551         return device->getKeyCharacterMap();
552     }
553     return NULL;
554 }
555
556 bool EventHub::setKeyboardLayoutOverlay(int32_t deviceId,
557         const sp<KeyCharacterMap>& map) {
558     AutoMutex _l(mLock);
559     Device* device = getDeviceLocked(deviceId);
560     if (device) {
561         if (map != device->overlayKeyMap) {
562             device->overlayKeyMap = map;
563             device->combinedKeyMap = KeyCharacterMap::combine(
564                     device->keyMap.keyCharacterMap, map);
565             return true;
566         }
567     }
568     return false;
569 }
570
571 static String8 generateDescriptor(InputDeviceIdentifier& identifier) {
572     String8 rawDescriptor;
573     rawDescriptor.appendFormat(":%04x:%04x:", identifier.vendor,
574             identifier.product);
575     // TODO add handling for USB devices to not uniqueify kbs that show up twice
576     if (!identifier.uniqueId.isEmpty()) {
577         rawDescriptor.append("uniqueId:");
578         rawDescriptor.append(identifier.uniqueId);
579     } else if (identifier.nonce != 0) {
580         rawDescriptor.appendFormat("nonce:%04x", identifier.nonce);
581     }
582
583     if (identifier.vendor == 0 && identifier.product == 0) {
584         // If we don't know the vendor and product id, then the device is probably
585         // built-in so we need to rely on other information to uniquely identify
586         // the input device.  Usually we try to avoid relying on the device name or
587         // location but for built-in input device, they are unlikely to ever change.
588         if (!identifier.name.isEmpty()) {
589             rawDescriptor.append("name:");
590             rawDescriptor.append(identifier.name);
591         } else if (!identifier.location.isEmpty()) {
592             rawDescriptor.append("location:");
593             rawDescriptor.append(identifier.location);
594         }
595     }
596     identifier.descriptor = sha1(rawDescriptor);
597     return rawDescriptor;
598 }
599
600 void EventHub::assignDescriptorLocked(InputDeviceIdentifier& identifier) {
601     // Compute a device descriptor that uniquely identifies the device.
602     // The descriptor is assumed to be a stable identifier.  Its value should not
603     // change between reboots, reconnections, firmware updates or new releases
604     // of Android. In practice we sometimes get devices that cannot be uniquely
605     // identified. In this case we enforce uniqueness between connected devices.
606     // Ideally, we also want the descriptor to be short and relatively opaque.
607
608     identifier.nonce = 0;
609     String8 rawDescriptor = generateDescriptor(identifier);
610     if (identifier.uniqueId.isEmpty()) {
611         // If it didn't have a unique id check for conflicts and enforce
612         // uniqueness if necessary.
613         while(getDeviceByDescriptorLocked(identifier.descriptor) != NULL) {
614             identifier.nonce++;
615             rawDescriptor = generateDescriptor(identifier);
616         }
617     }
618     ALOGV("Created descriptor: raw=%s, cooked=%s", rawDescriptor.string(),
619             identifier.descriptor.string());
620 }
621
622 void EventHub::vibrate(int32_t deviceId, nsecs_t duration) {
623     AutoMutex _l(mLock);
624     Device* device = getDeviceLocked(deviceId);
625     if (device && !device->isVirtual()) {
626         ff_effect effect;
627         memset(&effect, 0, sizeof(effect));
628         effect.type = FF_RUMBLE;
629         effect.id = device->ffEffectId;
630         effect.u.rumble.strong_magnitude = 0xc000;
631         effect.u.rumble.weak_magnitude = 0xc000;
632         effect.replay.length = (duration + 999999LL) / 1000000LL;
633         effect.replay.delay = 0;
634         if (ioctl(device->fd, EVIOCSFF, &effect)) {
635             ALOGW("Could not upload force feedback effect to device %s due to error %d.",
636                     device->identifier.name.string(), errno);
637             return;
638         }
639         device->ffEffectId = effect.id;
640
641         struct input_event ev;
642         ev.time.tv_sec = 0;
643         ev.time.tv_usec = 0;
644         ev.type = EV_FF;
645         ev.code = device->ffEffectId;
646         ev.value = 1;
647         if (write(device->fd, &ev, sizeof(ev)) != sizeof(ev)) {
648             ALOGW("Could not start force feedback effect on device %s due to error %d.",
649                     device->identifier.name.string(), errno);
650             return;
651         }
652         device->ffEffectPlaying = true;
653     }
654 }
655
656 void EventHub::cancelVibrate(int32_t deviceId) {
657     AutoMutex _l(mLock);
658     Device* device = getDeviceLocked(deviceId);
659     if (device && !device->isVirtual()) {
660         if (device->ffEffectPlaying) {
661             device->ffEffectPlaying = false;
662
663             struct input_event ev;
664             ev.time.tv_sec = 0;
665             ev.time.tv_usec = 0;
666             ev.type = EV_FF;
667             ev.code = device->ffEffectId;
668             ev.value = 0;
669             if (write(device->fd, &ev, sizeof(ev)) != sizeof(ev)) {
670                 ALOGW("Could not stop force feedback effect on device %s due to error %d.",
671                         device->identifier.name.string(), errno);
672                 return;
673             }
674         }
675     }
676 }
677
678 EventHub::Device* EventHub::getDeviceByDescriptorLocked(String8& descriptor) const {
679     size_t size = mDevices.size();
680     for (size_t i = 0; i < size; i++) {
681         Device* device = mDevices.valueAt(i);
682         if (descriptor.compare(device->identifier.descriptor) == 0) {
683             return device;
684         }
685     }
686     return NULL;
687 }
688
689 EventHub::Device* EventHub::getDeviceLocked(int32_t deviceId) const {
690     if (deviceId == BUILT_IN_KEYBOARD_ID) {
691         deviceId = mBuiltInKeyboardId;
692     }
693     ssize_t index = mDevices.indexOfKey(deviceId);
694     return index >= 0 ? mDevices.valueAt(index) : NULL;
695 }
696
697 EventHub::Device* EventHub::getDeviceByPathLocked(const char* devicePath) const {
698     for (size_t i = 0; i < mDevices.size(); i++) {
699         Device* device = mDevices.valueAt(i);
700         if (device->path == devicePath) {
701             return device;
702         }
703     }
704     return NULL;
705 }
706
707 size_t EventHub::getEvents(int timeoutMillis, RawEvent* buffer, size_t bufferSize) {
708     ALOG_ASSERT(bufferSize >= 1);
709
710     AutoMutex _l(mLock);
711
712     struct input_event readBuffer[bufferSize];
713
714     RawEvent* event = buffer;
715     size_t capacity = bufferSize;
716     bool awoken = false;
717     for (;;) {
718         nsecs_t now = systemTime(SYSTEM_TIME_MONOTONIC);
719
720         // Reopen input devices if needed.
721         if (mNeedToReopenDevices) {
722             mNeedToReopenDevices = false;
723
724             ALOGI("Reopening all input devices due to a configuration change.");
725
726             closeAllDevicesLocked();
727             mNeedToScanDevices = true;
728             break; // return to the caller before we actually rescan
729         }
730
731         // Report any devices that had last been added/removed.
732         while (mClosingDevices) {
733             Device* device = mClosingDevices;
734             ALOGV("Reporting device closed: id=%d, name=%s\n",
735                  device->id, device->path.string());
736             mClosingDevices = device->next;
737             event->when = now;
738             event->deviceId = device->id == mBuiltInKeyboardId ? BUILT_IN_KEYBOARD_ID : device->id;
739             event->type = DEVICE_REMOVED;
740             event += 1;
741             delete device;
742             mNeedToSendFinishedDeviceScan = true;
743             if (--capacity == 0) {
744                 break;
745             }
746         }
747
748         if (mNeedToScanDevices) {
749             mNeedToScanDevices = false;
750             scanDevicesLocked();
751             mNeedToSendFinishedDeviceScan = true;
752         }
753
754         while (mOpeningDevices != NULL) {
755             Device* device = mOpeningDevices;
756             ALOGV("Reporting device opened: id=%d, name=%s\n",
757                  device->id, device->path.string());
758             mOpeningDevices = device->next;
759             event->when = now;
760             event->deviceId = device->id == mBuiltInKeyboardId ? 0 : device->id;
761             event->type = DEVICE_ADDED;
762             event += 1;
763             mNeedToSendFinishedDeviceScan = true;
764             if (--capacity == 0) {
765                 break;
766             }
767         }
768
769         if (mNeedToSendFinishedDeviceScan) {
770             mNeedToSendFinishedDeviceScan = false;
771             event->when = now;
772             event->type = FINISHED_DEVICE_SCAN;
773             event += 1;
774             if (--capacity == 0) {
775                 break;
776             }
777         }
778
779         // Grab the next input event.
780         bool deviceChanged = false;
781         while (mPendingEventIndex < mPendingEventCount) {
782             const struct epoll_event& eventItem = mPendingEventItems[mPendingEventIndex++];
783             if (eventItem.data.u32 == EPOLL_ID_INOTIFY) {
784                 if (eventItem.events & EPOLLIN) {
785                     mPendingINotify = true;
786                 } else {
787                     ALOGW("Received unexpected epoll event 0x%08x for INotify.", eventItem.events);
788                 }
789                 continue;
790             }
791
792             if (eventItem.data.u32 == EPOLL_ID_WAKE) {
793                 if (eventItem.events & EPOLLIN) {
794                     ALOGV("awoken after wake()");
795                     awoken = true;
796                     char buffer[16];
797                     ssize_t nRead;
798                     do {
799                         nRead = read(mWakeReadPipeFd, buffer, sizeof(buffer));
800                     } while ((nRead == -1 && errno == EINTR) || nRead == sizeof(buffer));
801                 } else {
802                     ALOGW("Received unexpected epoll event 0x%08x for wake read pipe.",
803                             eventItem.events);
804                 }
805                 continue;
806             }
807
808             ssize_t deviceIndex = mDevices.indexOfKey(eventItem.data.u32);
809             if (deviceIndex < 0) {
810                 ALOGW("Received unexpected epoll event 0x%08x for unknown device id %d.",
811                         eventItem.events, eventItem.data.u32);
812                 continue;
813             }
814
815             Device* device = mDevices.valueAt(deviceIndex);
816             if (eventItem.events & EPOLLIN) {
817                 int32_t readSize = read(device->fd, readBuffer,
818                         sizeof(struct input_event) * capacity);
819                 if (readSize == 0 || (readSize < 0 && errno == ENODEV)) {
820                     // Device was removed before INotify noticed.
821                     ALOGW("could not get event, removed? (fd: %d size: %" PRId32
822                             " bufferSize: %zu capacity: %zu errno: %d)\n",
823                             device->fd, readSize, bufferSize, capacity, errno);
824                     deviceChanged = true;
825                     closeDeviceLocked(device);
826                 } else if (readSize < 0) {
827                     if (errno != EAGAIN && errno != EINTR) {
828                         ALOGW("could not get event (errno=%d)", errno);
829                     }
830                 } else if ((readSize % sizeof(struct input_event)) != 0) {
831                     ALOGE("could not get event (wrong size: %d)", readSize);
832                 } else {
833                     int32_t deviceId = device->id == mBuiltInKeyboardId ? 0 : device->id;
834
835                     size_t count = size_t(readSize) / sizeof(struct input_event);
836                     for (size_t i = 0; i < count; i++) {
837                         struct input_event& iev = readBuffer[i];
838                         ALOGV("%s got: time=%d.%06d, type=%d, code=%d, value=%d",
839                                 device->path.string(),
840                                 (int) iev.time.tv_sec, (int) iev.time.tv_usec,
841                                 iev.type, iev.code, iev.value);
842
843                         // Some input devices may have a better concept of the time
844                         // when an input event was actually generated than the kernel
845                         // which simply timestamps all events on entry to evdev.
846                         // This is a custom Android extension of the input protocol
847                         // mainly intended for use with uinput based device drivers.
848                         if (iev.type == EV_MSC) {
849                             if (iev.code == MSC_ANDROID_TIME_SEC) {
850                                 device->timestampOverrideSec = iev.value;
851                                 continue;
852                             } else if (iev.code == MSC_ANDROID_TIME_USEC) {
853                                 device->timestampOverrideUsec = iev.value;
854                                 continue;
855                             }
856                         }
857                         if (device->timestampOverrideSec || device->timestampOverrideUsec) {
858                             iev.time.tv_sec = device->timestampOverrideSec;
859                             iev.time.tv_usec = device->timestampOverrideUsec;
860                             if (iev.type == EV_SYN && iev.code == SYN_REPORT) {
861                                 device->timestampOverrideSec = 0;
862                                 device->timestampOverrideUsec = 0;
863                             }
864                             ALOGV("applied override time %d.%06d",
865                                     int(iev.time.tv_sec), int(iev.time.tv_usec));
866                         }
867
868                         // Use the time specified in the event instead of the current time
869                         // so that downstream code can get more accurate estimates of
870                         // event dispatch latency from the time the event is enqueued onto
871                         // the evdev client buffer.
872                         //
873                         // The event's timestamp fortuitously uses the same monotonic clock
874                         // time base as the rest of Android.  The kernel event device driver
875                         // (drivers/input/evdev.c) obtains timestamps using ktime_get_ts().
876                         // The systemTime(SYSTEM_TIME_MONOTONIC) function we use everywhere
877                         // calls clock_gettime(CLOCK_MONOTONIC) which is implemented as a
878                         // system call that also queries ktime_get_ts().
879                         event->when = nsecs_t(iev.time.tv_sec) * 1000000000LL
880                                 + nsecs_t(iev.time.tv_usec) * 1000LL;
881                         ALOGV("event time %" PRId64 ", now %" PRId64, event->when, now);
882
883                         // Bug 7291243: Add a guard in case the kernel generates timestamps
884                         // that appear to be far into the future because they were generated
885                         // using the wrong clock source.
886                         //
887                         // This can happen because when the input device is initially opened
888                         // it has a default clock source of CLOCK_REALTIME.  Any input events
889                         // enqueued right after the device is opened will have timestamps
890                         // generated using CLOCK_REALTIME.  We later set the clock source
891                         // to CLOCK_MONOTONIC but it is already too late.
892                         //
893                         // Invalid input event timestamps can result in ANRs, crashes and
894                         // and other issues that are hard to track down.  We must not let them
895                         // propagate through the system.
896                         //
897                         // Log a warning so that we notice the problem and recover gracefully.
898                         if (event->when >= now + 10 * 1000000000LL) {
899                             // Double-check.  Time may have moved on.
900                             nsecs_t time = systemTime(SYSTEM_TIME_MONOTONIC);
901                             if (event->when > time) {
902                                 ALOGW("An input event from %s has a timestamp that appears to "
903                                         "have been generated using the wrong clock source "
904                                         "(expected CLOCK_MONOTONIC): "
905                                         "event time %" PRId64 ", current time %" PRId64
906                                         ", call time %" PRId64 ".  "
907                                         "Using current time instead.",
908                                         device->path.string(), event->when, time, now);
909                                 event->when = time;
910                             } else {
911                                 ALOGV("Event time is ok but failed the fast path and required "
912                                         "an extra call to systemTime: "
913                                         "event time %" PRId64 ", current time %" PRId64
914                                         ", call time %" PRId64 ".",
915                                         event->when, time, now);
916                             }
917                         }
918                         event->deviceId = deviceId;
919                         event->type = iev.type;
920                         event->code = iev.code;
921                         event->value = iev.value;
922                         event += 1;
923                         capacity -= 1;
924                     }
925                     if (capacity == 0) {
926                         // The result buffer is full.  Reset the pending event index
927                         // so we will try to read the device again on the next iteration.
928                         mPendingEventIndex -= 1;
929                         break;
930                     }
931                 }
932             } else if (eventItem.events & EPOLLHUP) {
933                 ALOGI("Removing device %s due to epoll hang-up event.",
934                         device->identifier.name.string());
935                 deviceChanged = true;
936                 closeDeviceLocked(device);
937             } else {
938                 ALOGW("Received unexpected epoll event 0x%08x for device %s.",
939                         eventItem.events, device->identifier.name.string());
940             }
941         }
942
943         // readNotify() will modify the list of devices so this must be done after
944         // processing all other events to ensure that we read all remaining events
945         // before closing the devices.
946         if (mPendingINotify && mPendingEventIndex >= mPendingEventCount) {
947             mPendingINotify = false;
948             readNotifyLocked();
949             deviceChanged = true;
950         }
951
952         // Report added or removed devices immediately.
953         if (deviceChanged) {
954             continue;
955         }
956
957         // Return now if we have collected any events or if we were explicitly awoken.
958         if (event != buffer || awoken) {
959             break;
960         }
961
962         // Poll for events.  Mind the wake lock dance!
963         // We hold a wake lock at all times except during epoll_wait().  This works due to some
964         // subtle choreography.  When a device driver has pending (unread) events, it acquires
965         // a kernel wake lock.  However, once the last pending event has been read, the device
966         // driver will release the kernel wake lock.  To prevent the system from going to sleep
967         // when this happens, the EventHub holds onto its own user wake lock while the client
968         // is processing events.  Thus the system can only sleep if there are no events
969         // pending or currently being processed.
970         //
971         // The timeout is advisory only.  If the device is asleep, it will not wake just to
972         // service the timeout.
973         mPendingEventIndex = 0;
974
975         mLock.unlock(); // release lock before poll, must be before release_wake_lock
976         release_wake_lock(WAKE_LOCK_ID);
977
978         int pollResult = epoll_wait(mEpollFd, mPendingEventItems, EPOLL_MAX_EVENTS, timeoutMillis);
979
980         acquire_wake_lock(PARTIAL_WAKE_LOCK, WAKE_LOCK_ID);
981         mLock.lock(); // reacquire lock after poll, must be after acquire_wake_lock
982
983         if (pollResult == 0) {
984             // Timed out.
985             mPendingEventCount = 0;
986             break;
987         }
988
989         if (pollResult < 0) {
990             // An error occurred.
991             mPendingEventCount = 0;
992
993             // Sleep after errors to avoid locking up the system.
994             // Hopefully the error is transient.
995             if (errno != EINTR) {
996                 ALOGW("poll failed (errno=%d)\n", errno);
997                 usleep(100000);
998             }
999         } else {
1000             // Some events occurred.
1001             mPendingEventCount = size_t(pollResult);
1002         }
1003     }
1004
1005     // All done, return the number of events we read.
1006     return event - buffer;
1007 }
1008
1009 void EventHub::wake() {
1010     ALOGV("wake() called");
1011
1012     ssize_t nWrite;
1013     do {
1014         nWrite = write(mWakeWritePipeFd, "W", 1);
1015     } while (nWrite == -1 && errno == EINTR);
1016
1017     if (nWrite != 1 && errno != EAGAIN) {
1018         ALOGW("Could not write wake signal, errno=%d", errno);
1019     }
1020 }
1021
1022 void EventHub::scanDevicesLocked() {
1023     status_t res = scanDirLocked(DEVICE_PATH);
1024     if(res < 0) {
1025         ALOGE("scan dir failed for %s\n", DEVICE_PATH);
1026     }
1027     if (mDevices.indexOfKey(VIRTUAL_KEYBOARD_ID) < 0) {
1028         createVirtualKeyboardLocked();
1029     }
1030 }
1031
1032 // ----------------------------------------------------------------------------
1033
1034 static bool containsNonZeroByte(const uint8_t* array, uint32_t startIndex, uint32_t endIndex) {
1035     const uint8_t* end = array + endIndex;
1036     array += startIndex;
1037     while (array != end) {
1038         if (*(array++) != 0) {
1039             return true;
1040         }
1041     }
1042     return false;
1043 }
1044
1045 static const int32_t GAMEPAD_KEYCODES[] = {
1046         AKEYCODE_BUTTON_A, AKEYCODE_BUTTON_B, AKEYCODE_BUTTON_C,
1047         AKEYCODE_BUTTON_X, AKEYCODE_BUTTON_Y, AKEYCODE_BUTTON_Z,
1048         AKEYCODE_BUTTON_L1, AKEYCODE_BUTTON_R1,
1049         AKEYCODE_BUTTON_L2, AKEYCODE_BUTTON_R2,
1050         AKEYCODE_BUTTON_THUMBL, AKEYCODE_BUTTON_THUMBR,
1051         AKEYCODE_BUTTON_START, AKEYCODE_BUTTON_SELECT, AKEYCODE_BUTTON_MODE,
1052 };
1053
1054 status_t EventHub::openDeviceLocked(const char *devicePath) {
1055     char buffer[80];
1056
1057     ALOGV("Opening device: %s", devicePath);
1058
1059     int fd = open(devicePath, O_RDWR | O_CLOEXEC);
1060     if(fd < 0) {
1061         ALOGE("could not open %s, %s\n", devicePath, strerror(errno));
1062         return -1;
1063     }
1064
1065     InputDeviceIdentifier identifier;
1066
1067     // Get device name.
1068     if(ioctl(fd, EVIOCGNAME(sizeof(buffer) - 1), &buffer) < 1) {
1069         //fprintf(stderr, "could not get device name for %s, %s\n", devicePath, strerror(errno));
1070     } else {
1071         buffer[sizeof(buffer) - 1] = '\0';
1072         identifier.name.setTo(buffer);
1073     }
1074
1075     // Check to see if the device is on our excluded list
1076     for (size_t i = 0; i < mExcludedDevices.size(); i++) {
1077         const String8& item = mExcludedDevices.itemAt(i);
1078         if (identifier.name == item) {
1079             ALOGI("ignoring event id %s driver %s\n", devicePath, item.string());
1080             close(fd);
1081             return -1;
1082         }
1083     }
1084
1085     // Get device driver version.
1086     int driverVersion;
1087     if(ioctl(fd, EVIOCGVERSION, &driverVersion)) {
1088         ALOGE("could not get driver version for %s, %s\n", devicePath, strerror(errno));
1089         close(fd);
1090         return -1;
1091     }
1092
1093     // Get device identifier.
1094     struct input_id inputId;
1095     if(ioctl(fd, EVIOCGID, &inputId)) {
1096         ALOGE("could not get device input id for %s, %s\n", devicePath, strerror(errno));
1097         close(fd);
1098         return -1;
1099     }
1100     identifier.bus = inputId.bustype;
1101     identifier.product = inputId.product;
1102     identifier.vendor = inputId.vendor;
1103     identifier.version = inputId.version;
1104
1105     // Get device physical location.
1106     if(ioctl(fd, EVIOCGPHYS(sizeof(buffer) - 1), &buffer) < 1) {
1107         //fprintf(stderr, "could not get location for %s, %s\n", devicePath, strerror(errno));
1108     } else {
1109         buffer[sizeof(buffer) - 1] = '\0';
1110         identifier.location.setTo(buffer);
1111     }
1112
1113     // Get device unique id.
1114     if(ioctl(fd, EVIOCGUNIQ(sizeof(buffer) - 1), &buffer) < 1) {
1115         //fprintf(stderr, "could not get idstring for %s, %s\n", devicePath, strerror(errno));
1116     } else {
1117         buffer[sizeof(buffer) - 1] = '\0';
1118         identifier.uniqueId.setTo(buffer);
1119     }
1120
1121     // Fill in the descriptor.
1122     assignDescriptorLocked(identifier);
1123
1124     // Make file descriptor non-blocking for use with poll().
1125     if (fcntl(fd, F_SETFL, O_NONBLOCK)) {
1126         ALOGE("Error %d making device file descriptor non-blocking.", errno);
1127         close(fd);
1128         return -1;
1129     }
1130
1131     // Allocate device.  (The device object takes ownership of the fd at this point.)
1132     int32_t deviceId = mNextDeviceId++;
1133     Device* device = new Device(fd, deviceId, String8(devicePath), identifier);
1134
1135     ALOGV("add device %d: %s\n", deviceId, devicePath);
1136     ALOGV("  bus:        %04x\n"
1137          "  vendor      %04x\n"
1138          "  product     %04x\n"
1139          "  version     %04x\n",
1140         identifier.bus, identifier.vendor, identifier.product, identifier.version);
1141     ALOGV("  name:       \"%s\"\n", identifier.name.string());
1142     ALOGV("  location:   \"%s\"\n", identifier.location.string());
1143     ALOGV("  unique id:  \"%s\"\n", identifier.uniqueId.string());
1144     ALOGV("  descriptor: \"%s\"\n", identifier.descriptor.string());
1145     ALOGV("  driver:     v%d.%d.%d\n",
1146         driverVersion >> 16, (driverVersion >> 8) & 0xff, driverVersion & 0xff);
1147
1148     // Load the configuration file for the device.
1149     loadConfigurationLocked(device);
1150
1151     // Figure out the kinds of events the device reports.
1152     ioctl(fd, EVIOCGBIT(EV_KEY, sizeof(device->keyBitmask)), device->keyBitmask);
1153     ioctl(fd, EVIOCGBIT(EV_ABS, sizeof(device->absBitmask)), device->absBitmask);
1154     ioctl(fd, EVIOCGBIT(EV_REL, sizeof(device->relBitmask)), device->relBitmask);
1155     ioctl(fd, EVIOCGBIT(EV_SW, sizeof(device->swBitmask)), device->swBitmask);
1156     ioctl(fd, EVIOCGBIT(EV_LED, sizeof(device->ledBitmask)), device->ledBitmask);
1157     ioctl(fd, EVIOCGBIT(EV_FF, sizeof(device->ffBitmask)), device->ffBitmask);
1158     ioctl(fd, EVIOCGPROP(sizeof(device->propBitmask)), device->propBitmask);
1159
1160     // See if this is a keyboard.  Ignore everything in the button range except for
1161     // joystick and gamepad buttons which are handled like keyboards for the most part.
1162     bool haveKeyboardKeys = containsNonZeroByte(device->keyBitmask, 0, sizeof_bit_array(BTN_MISC))
1163             || containsNonZeroByte(device->keyBitmask, sizeof_bit_array(KEY_OK),
1164                     sizeof_bit_array(KEY_MAX + 1));
1165     bool haveGamepadButtons = containsNonZeroByte(device->keyBitmask, sizeof_bit_array(BTN_MISC),
1166                     sizeof_bit_array(BTN_MOUSE))
1167             || containsNonZeroByte(device->keyBitmask, sizeof_bit_array(BTN_JOYSTICK),
1168                     sizeof_bit_array(BTN_DIGI));
1169     if (haveKeyboardKeys || haveGamepadButtons) {
1170         device->classes |= INPUT_DEVICE_CLASS_KEYBOARD;
1171     }
1172
1173     // See if this is a cursor device such as a trackball or mouse.
1174     if (test_bit(BTN_MOUSE, device->keyBitmask)
1175             && test_bit(REL_X, device->relBitmask)
1176             && test_bit(REL_Y, device->relBitmask)) {
1177         device->classes |= INPUT_DEVICE_CLASS_CURSOR;
1178     }
1179
1180     // See if this is a touch pad.
1181     // Is this a new modern multi-touch driver?
1182     if (test_bit(ABS_MT_POSITION_X, device->absBitmask)
1183             && test_bit(ABS_MT_POSITION_Y, device->absBitmask)) {
1184         // Some joysticks such as the PS3 controller report axes that conflict
1185         // with the ABS_MT range.  Try to confirm that the device really is
1186         // a touch screen.
1187         if (test_bit(BTN_TOUCH, device->keyBitmask) || !haveGamepadButtons) {
1188             device->classes |= INPUT_DEVICE_CLASS_TOUCH | INPUT_DEVICE_CLASS_TOUCH_MT;
1189         }
1190     // Is this an old style single-touch driver?
1191     } else if (test_bit(BTN_TOUCH, device->keyBitmask)
1192             && test_bit(ABS_X, device->absBitmask)
1193             && test_bit(ABS_Y, device->absBitmask)) {
1194         device->classes |= INPUT_DEVICE_CLASS_TOUCH;
1195     // Is this a BT stylus?
1196     } else if ((test_bit(ABS_PRESSURE, device->absBitmask) ||
1197                 test_bit(BTN_TOUCH, device->keyBitmask))
1198             && !test_bit(ABS_X, device->absBitmask)
1199             && !test_bit(ABS_Y, device->absBitmask)) {
1200         device->classes |= INPUT_DEVICE_CLASS_EXTERNAL_STYLUS;
1201         // Keyboard will try to claim some of the buttons but we really want to reserve those so we
1202         // can fuse it with the touch screen data, so just take them back. Note this means an
1203         // external stylus cannot also be a keyboard device.
1204         device->classes &= ~INPUT_DEVICE_CLASS_KEYBOARD;
1205     }
1206
1207     // See if this device is a joystick.
1208     // Assumes that joysticks always have gamepad buttons in order to distinguish them
1209     // from other devices such as accelerometers that also have absolute axes.
1210     if (haveGamepadButtons) {
1211         uint32_t assumedClasses = device->classes | INPUT_DEVICE_CLASS_JOYSTICK;
1212         for (int i = 0; i <= ABS_MAX; i++) {
1213             if (test_bit(i, device->absBitmask)
1214                     && (getAbsAxisUsage(i, assumedClasses) & INPUT_DEVICE_CLASS_JOYSTICK)) {
1215                 device->classes = assumedClasses;
1216                 break;
1217             }
1218         }
1219     }
1220
1221     // Check whether this device has switches.
1222     for (int i = 0; i <= SW_MAX; i++) {
1223         if (test_bit(i, device->swBitmask)) {
1224             device->classes |= INPUT_DEVICE_CLASS_SWITCH;
1225             break;
1226         }
1227     }
1228
1229     // Check whether this device supports the vibrator.
1230     if (test_bit(FF_RUMBLE, device->ffBitmask)) {
1231         device->classes |= INPUT_DEVICE_CLASS_VIBRATOR;
1232     }
1233
1234     // Configure virtual keys.
1235     if ((device->classes & INPUT_DEVICE_CLASS_TOUCH)) {
1236         // Load the virtual keys for the touch screen, if any.
1237         // We do this now so that we can make sure to load the keymap if necessary.
1238         status_t status = loadVirtualKeyMapLocked(device);
1239         if (!status) {
1240             device->classes |= INPUT_DEVICE_CLASS_KEYBOARD;
1241         }
1242     }
1243
1244     // Load the key map.
1245     // We need to do this for joysticks too because the key layout may specify axes.
1246     status_t keyMapStatus = NAME_NOT_FOUND;
1247     if (device->classes & (INPUT_DEVICE_CLASS_KEYBOARD | INPUT_DEVICE_CLASS_JOYSTICK)) {
1248         // Load the keymap for the device.
1249         keyMapStatus = loadKeyMapLocked(device);
1250     }
1251
1252     // Configure the keyboard, gamepad or virtual keyboard.
1253     if (device->classes & INPUT_DEVICE_CLASS_KEYBOARD) {
1254         // Register the keyboard as a built-in keyboard if it is eligible.
1255         if (!keyMapStatus
1256                 && mBuiltInKeyboardId == NO_BUILT_IN_KEYBOARD
1257                 && isEligibleBuiltInKeyboard(device->identifier,
1258                         device->configuration, &device->keyMap)) {
1259             mBuiltInKeyboardId = device->id;
1260         }
1261
1262         // 'Q' key support = cheap test of whether this is an alpha-capable kbd
1263         if (hasKeycodeLocked(device, AKEYCODE_Q)) {
1264             device->classes |= INPUT_DEVICE_CLASS_ALPHAKEY;
1265         }
1266
1267         // See if this device has a DPAD.
1268         if (hasKeycodeLocked(device, AKEYCODE_DPAD_UP) &&
1269                 hasKeycodeLocked(device, AKEYCODE_DPAD_DOWN) &&
1270                 hasKeycodeLocked(device, AKEYCODE_DPAD_LEFT) &&
1271                 hasKeycodeLocked(device, AKEYCODE_DPAD_RIGHT) &&
1272                 hasKeycodeLocked(device, AKEYCODE_DPAD_CENTER)) {
1273             device->classes |= INPUT_DEVICE_CLASS_DPAD;
1274         }
1275
1276         // See if this device has a gamepad.
1277         for (size_t i = 0; i < sizeof(GAMEPAD_KEYCODES)/sizeof(GAMEPAD_KEYCODES[0]); i++) {
1278             if (hasKeycodeLocked(device, GAMEPAD_KEYCODES[i])) {
1279                 device->classes |= INPUT_DEVICE_CLASS_GAMEPAD;
1280                 break;
1281             }
1282         }
1283
1284         // Disable kernel key repeat since we handle it ourselves
1285         unsigned int repeatRate[] = {0,0};
1286         if (ioctl(fd, EVIOCSREP, repeatRate)) {
1287             ALOGW("Unable to disable kernel key repeat for %s: %s", devicePath, strerror(errno));
1288         }
1289     }
1290
1291     // If the device isn't recognized as something we handle, don't monitor it.
1292     if (device->classes == 0) {
1293         ALOGV("Dropping device: id=%d, path='%s', name='%s'",
1294                 deviceId, devicePath, device->identifier.name.string());
1295         delete device;
1296         return -1;
1297     }
1298
1299     // Determine whether the device has a mic.
1300     if (deviceHasMicLocked(device)) {
1301         device->classes |= INPUT_DEVICE_CLASS_MIC;
1302     }
1303
1304     // Determine whether the device is external or internal.
1305     if (isExternalDeviceLocked(device)) {
1306         device->classes |= INPUT_DEVICE_CLASS_EXTERNAL;
1307     }
1308
1309     if (device->classes & (INPUT_DEVICE_CLASS_JOYSTICK | INPUT_DEVICE_CLASS_DPAD)
1310             && device->classes & INPUT_DEVICE_CLASS_GAMEPAD) {
1311         device->controllerNumber = getNextControllerNumberLocked(device);
1312         setLedForController(device);
1313     }
1314
1315     // Register with epoll.
1316     struct epoll_event eventItem;
1317     memset(&eventItem, 0, sizeof(eventItem));
1318     eventItem.events = EPOLLIN;
1319     if (mUsingEpollWakeup) {
1320         eventItem.events |= EPOLLWAKEUP;
1321     }
1322     eventItem.data.u32 = deviceId;
1323     if (epoll_ctl(mEpollFd, EPOLL_CTL_ADD, fd, &eventItem)) {
1324         ALOGE("Could not add device fd to epoll instance.  errno=%d", errno);
1325         delete device;
1326         return -1;
1327     }
1328
1329     String8 wakeMechanism("EPOLLWAKEUP");
1330     if (!mUsingEpollWakeup) {
1331 #ifndef EVIOCSSUSPENDBLOCK
1332         // uapi headers don't include EVIOCSSUSPENDBLOCK, and future kernels
1333         // will use an epoll flag instead, so as long as we want to support
1334         // this feature, we need to be prepared to define the ioctl ourselves.
1335 #define EVIOCSSUSPENDBLOCK _IOW('E', 0x91, int)
1336 #endif
1337         if (ioctl(fd, EVIOCSSUSPENDBLOCK, 1)) {
1338             wakeMechanism = "<none>";
1339         } else {
1340             wakeMechanism = "EVIOCSSUSPENDBLOCK";
1341         }
1342     }
1343
1344     // Tell the kernel that we want to use the monotonic clock for reporting timestamps
1345     // associated with input events.  This is important because the input system
1346     // uses the timestamps extensively and assumes they were recorded using the monotonic
1347     // clock.
1348     //
1349     // In older kernel, before Linux 3.4, there was no way to tell the kernel which
1350     // clock to use to input event timestamps.  The standard kernel behavior was to
1351     // record a real time timestamp, which isn't what we want.  Android kernels therefore
1352     // contained a patch to the evdev_event() function in drivers/input/evdev.c to
1353     // replace the call to do_gettimeofday() with ktime_get_ts() to cause the monotonic
1354     // clock to be used instead of the real time clock.
1355     //
1356     // As of Linux 3.4, there is a new EVIOCSCLOCKID ioctl to set the desired clock.
1357     // Therefore, we no longer require the Android-specific kernel patch described above
1358     // as long as we make sure to set select the monotonic clock.  We do that here.
1359     int clockId = CLOCK_MONOTONIC;
1360     bool usingClockIoctl = !ioctl(fd, EVIOCSCLOCKID, &clockId);
1361
1362     ALOGI("New device: id=%d, fd=%d, path='%s', name='%s', classes=0x%x, "
1363             "configuration='%s', keyLayout='%s', keyCharacterMap='%s', builtinKeyboard=%s, "
1364             "wakeMechanism=%s, usingClockIoctl=%s",
1365          deviceId, fd, devicePath, device->identifier.name.string(),
1366          device->classes,
1367          device->configurationFile.string(),
1368          device->keyMap.keyLayoutFile.string(),
1369          device->keyMap.keyCharacterMapFile.string(),
1370          toString(mBuiltInKeyboardId == deviceId),
1371          wakeMechanism.string(), toString(usingClockIoctl));
1372
1373     addDeviceLocked(device);
1374     return 0;
1375 }
1376
1377 void EventHub::createVirtualKeyboardLocked() {
1378     InputDeviceIdentifier identifier;
1379     identifier.name = "Virtual";
1380     identifier.uniqueId = "<virtual>";
1381     assignDescriptorLocked(identifier);
1382
1383     Device* device = new Device(-1, VIRTUAL_KEYBOARD_ID, String8("<virtual>"), identifier);
1384     device->classes = INPUT_DEVICE_CLASS_KEYBOARD
1385             | INPUT_DEVICE_CLASS_ALPHAKEY
1386             | INPUT_DEVICE_CLASS_DPAD
1387             | INPUT_DEVICE_CLASS_VIRTUAL;
1388     loadKeyMapLocked(device);
1389     addDeviceLocked(device);
1390 }
1391
1392 void EventHub::addDeviceLocked(Device* device) {
1393     mDevices.add(device->id, device);
1394     device->next = mOpeningDevices;
1395     mOpeningDevices = device;
1396 }
1397
1398 void EventHub::loadConfigurationLocked(Device* device) {
1399     device->configurationFile = getInputDeviceConfigurationFilePathByDeviceIdentifier(
1400             device->identifier, INPUT_DEVICE_CONFIGURATION_FILE_TYPE_CONFIGURATION);
1401     if (device->configurationFile.isEmpty()) {
1402         ALOGD("No input device configuration file found for device '%s'.",
1403                 device->identifier.name.string());
1404     } else {
1405         status_t status = PropertyMap::load(device->configurationFile,
1406                 &device->configuration);
1407         if (status) {
1408             ALOGE("Error loading input device configuration file for device '%s'.  "
1409                     "Using default configuration.",
1410                     device->identifier.name.string());
1411         }
1412     }
1413 }
1414
1415 status_t EventHub::loadVirtualKeyMapLocked(Device* device) {
1416     // The virtual key map is supplied by the kernel as a system board property file.
1417     String8 path;
1418     path.append("/sys/board_properties/virtualkeys.");
1419     path.append(device->identifier.name);
1420     if (access(path.string(), R_OK)) {
1421         return NAME_NOT_FOUND;
1422     }
1423     return VirtualKeyMap::load(path, &device->virtualKeyMap);
1424 }
1425
1426 status_t EventHub::loadKeyMapLocked(Device* device) {
1427     return device->keyMap.load(device->identifier, device->configuration);
1428 }
1429
1430 bool EventHub::isExternalDeviceLocked(Device* device) {
1431     if (device->configuration) {
1432         bool value;
1433         if (device->configuration->tryGetProperty(String8("device.internal"), value)) {
1434             return !value;
1435         }
1436     }
1437     return device->identifier.bus == BUS_USB || device->identifier.bus == BUS_BLUETOOTH;
1438 }
1439
1440 bool EventHub::deviceHasMicLocked(Device* device) {
1441     if (device->configuration) {
1442         bool value;
1443         if (device->configuration->tryGetProperty(String8("audio.mic"), value)) {
1444             return value;
1445         }
1446     }
1447     return false;
1448 }
1449
1450 int32_t EventHub::getNextControllerNumberLocked(Device* device) {
1451     if (mControllerNumbers.isFull()) {
1452         ALOGI("Maximum number of controllers reached, assigning controller number 0 to device %s",
1453                 device->identifier.name.string());
1454         return 0;
1455     }
1456     // Since the controller number 0 is reserved for non-controllers, translate all numbers up by
1457     // one
1458     return static_cast<int32_t>(mControllerNumbers.markFirstUnmarkedBit() + 1);
1459 }
1460
1461 void EventHub::releaseControllerNumberLocked(Device* device) {
1462     int32_t num = device->controllerNumber;
1463     device->controllerNumber= 0;
1464     if (num == 0) {
1465         return;
1466     }
1467     mControllerNumbers.clearBit(static_cast<uint32_t>(num - 1));
1468 }
1469
1470 void EventHub::setLedForController(Device* device) {
1471     for (int i = 0; i < MAX_CONTROLLER_LEDS; i++) {
1472         setLedStateLocked(device, ALED_CONTROLLER_1 + i, device->controllerNumber == i + 1);
1473     }
1474 }
1475
1476 bool EventHub::hasKeycodeLocked(Device* device, int keycode) const {
1477     if (!device->keyMap.haveKeyLayout()) {
1478         return false;
1479     }
1480     
1481     Vector<int32_t> scanCodes;
1482     device->keyMap.keyLayoutMap->findScanCodesForKey(keycode, &scanCodes);
1483     const size_t N = scanCodes.size();
1484     for (size_t i=0; i<N && i<=KEY_MAX; i++) {
1485         int32_t sc = scanCodes.itemAt(i);
1486         if (sc >= 0 && sc <= KEY_MAX && test_bit(sc, device->keyBitmask)) {
1487             return true;
1488         }
1489     }
1490     
1491     return false;
1492 }
1493
1494 status_t EventHub::mapLed(Device* device, int32_t led, int32_t* outScanCode) const {
1495     if (!device->keyMap.haveKeyLayout()) {
1496         return NAME_NOT_FOUND;
1497     }
1498
1499     int32_t scanCode;
1500     if(device->keyMap.keyLayoutMap->findScanCodeForLed(led, &scanCode) != NAME_NOT_FOUND) {
1501         if(scanCode >= 0 && scanCode <= LED_MAX && test_bit(scanCode, device->ledBitmask)) {
1502             *outScanCode = scanCode;
1503             return NO_ERROR;
1504         }
1505     }
1506     return NAME_NOT_FOUND;
1507 }
1508
1509 status_t EventHub::closeDeviceByPathLocked(const char *devicePath) {
1510     Device* device = getDeviceByPathLocked(devicePath);
1511     if (device) {
1512         closeDeviceLocked(device);
1513         return 0;
1514     }
1515     ALOGV("Remove device: %s not found, device may already have been removed.", devicePath);
1516     return -1;
1517 }
1518
1519 void EventHub::closeAllDevicesLocked() {
1520     while (mDevices.size() > 0) {
1521         closeDeviceLocked(mDevices.valueAt(mDevices.size() - 1));
1522     }
1523 }
1524
1525 void EventHub::closeDeviceLocked(Device* device) {
1526     ALOGI("Removed device: path=%s name=%s id=%d fd=%d classes=0x%x\n",
1527          device->path.string(), device->identifier.name.string(), device->id,
1528          device->fd, device->classes);
1529
1530     if (device->id == mBuiltInKeyboardId) {
1531         ALOGW("built-in keyboard device %s (id=%d) is closing! the apps will not like this",
1532                 device->path.string(), mBuiltInKeyboardId);
1533         mBuiltInKeyboardId = NO_BUILT_IN_KEYBOARD;
1534     }
1535
1536     if (!device->isVirtual()) {
1537         if (epoll_ctl(mEpollFd, EPOLL_CTL_DEL, device->fd, NULL)) {
1538             ALOGW("Could not remove device fd from epoll instance.  errno=%d", errno);
1539         }
1540     }
1541
1542     releaseControllerNumberLocked(device);
1543
1544     mDevices.removeItem(device->id);
1545     device->close();
1546
1547     // Unlink for opening devices list if it is present.
1548     Device* pred = NULL;
1549     bool found = false;
1550     for (Device* entry = mOpeningDevices; entry != NULL; ) {
1551         if (entry == device) {
1552             found = true;
1553             break;
1554         }
1555         pred = entry;
1556         entry = entry->next;
1557     }
1558     if (found) {
1559         // Unlink the device from the opening devices list then delete it.
1560         // We don't need to tell the client that the device was closed because
1561         // it does not even know it was opened in the first place.
1562         ALOGI("Device %s was immediately closed after opening.", device->path.string());
1563         if (pred) {
1564             pred->next = device->next;
1565         } else {
1566             mOpeningDevices = device->next;
1567         }
1568         delete device;
1569     } else {
1570         // Link into closing devices list.
1571         // The device will be deleted later after we have informed the client.
1572         device->next = mClosingDevices;
1573         mClosingDevices = device;
1574     }
1575 }
1576
1577 status_t EventHub::readNotifyLocked() {
1578     int res;
1579     char devname[PATH_MAX];
1580     char *filename;
1581     char event_buf[512];
1582     int event_size;
1583     int event_pos = 0;
1584     struct inotify_event *event;
1585
1586     ALOGV("EventHub::readNotify nfd: %d\n", mINotifyFd);
1587     res = read(mINotifyFd, event_buf, sizeof(event_buf));
1588     if(res < (int)sizeof(*event)) {
1589         if(errno == EINTR)
1590             return 0;
1591         ALOGW("could not get event, %s\n", strerror(errno));
1592         return -1;
1593     }
1594     //printf("got %d bytes of event information\n", res);
1595
1596     strcpy(devname, DEVICE_PATH);
1597     filename = devname + strlen(devname);
1598     *filename++ = '/';
1599
1600     while(res >= (int)sizeof(*event)) {
1601         event = (struct inotify_event *)(event_buf + event_pos);
1602         //printf("%d: %08x \"%s\"\n", event->wd, event->mask, event->len ? event->name : "");
1603         if(event->len) {
1604             strcpy(filename, event->name);
1605             if(event->mask & IN_CREATE) {
1606                 openDeviceLocked(devname);
1607             } else {
1608                 ALOGI("Removing device '%s' due to inotify event\n", devname);
1609                 closeDeviceByPathLocked(devname);
1610             }
1611         }
1612         event_size = sizeof(*event) + event->len;
1613         res -= event_size;
1614         event_pos += event_size;
1615     }
1616     return 0;
1617 }
1618
1619 status_t EventHub::scanDirLocked(const char *dirname)
1620 {
1621     char devname[PATH_MAX];
1622     char *filename;
1623     DIR *dir;
1624     struct dirent *de;
1625     dir = opendir(dirname);
1626     if(dir == NULL)
1627         return -1;
1628     strcpy(devname, dirname);
1629     filename = devname + strlen(devname);
1630     *filename++ = '/';
1631     while((de = readdir(dir))) {
1632         if(de->d_name[0] == '.' &&
1633            (de->d_name[1] == '\0' ||
1634             (de->d_name[1] == '.' && de->d_name[2] == '\0')))
1635             continue;
1636         strcpy(filename, de->d_name);
1637         openDeviceLocked(devname);
1638     }
1639     closedir(dir);
1640     return 0;
1641 }
1642
1643 void EventHub::requestReopenDevices() {
1644     ALOGV("requestReopenDevices() called");
1645
1646     AutoMutex _l(mLock);
1647     mNeedToReopenDevices = true;
1648 }
1649
1650 void EventHub::dump(String8& dump) {
1651     dump.append("Event Hub State:\n");
1652
1653     { // acquire lock
1654         AutoMutex _l(mLock);
1655
1656         dump.appendFormat(INDENT "BuiltInKeyboardId: %d\n", mBuiltInKeyboardId);
1657
1658         dump.append(INDENT "Devices:\n");
1659
1660         for (size_t i = 0; i < mDevices.size(); i++) {
1661             const Device* device = mDevices.valueAt(i);
1662             if (mBuiltInKeyboardId == device->id) {
1663                 dump.appendFormat(INDENT2 "%d: %s (aka device 0 - built-in keyboard)\n",
1664                         device->id, device->identifier.name.string());
1665             } else {
1666                 dump.appendFormat(INDENT2 "%d: %s\n", device->id,
1667                         device->identifier.name.string());
1668             }
1669             dump.appendFormat(INDENT3 "Classes: 0x%08x\n", device->classes);
1670             dump.appendFormat(INDENT3 "Path: %s\n", device->path.string());
1671             dump.appendFormat(INDENT3 "Descriptor: %s\n", device->identifier.descriptor.string());
1672             dump.appendFormat(INDENT3 "Location: %s\n", device->identifier.location.string());
1673             dump.appendFormat(INDENT3 "ControllerNumber: %d\n", device->controllerNumber);
1674             dump.appendFormat(INDENT3 "UniqueId: %s\n", device->identifier.uniqueId.string());
1675             dump.appendFormat(INDENT3 "Identifier: bus=0x%04x, vendor=0x%04x, "
1676                     "product=0x%04x, version=0x%04x\n",
1677                     device->identifier.bus, device->identifier.vendor,
1678                     device->identifier.product, device->identifier.version);
1679             dump.appendFormat(INDENT3 "KeyLayoutFile: %s\n",
1680                     device->keyMap.keyLayoutFile.string());
1681             dump.appendFormat(INDENT3 "KeyCharacterMapFile: %s\n",
1682                     device->keyMap.keyCharacterMapFile.string());
1683             dump.appendFormat(INDENT3 "ConfigurationFile: %s\n",
1684                     device->configurationFile.string());
1685             dump.appendFormat(INDENT3 "HaveKeyboardLayoutOverlay: %s\n",
1686                     toString(device->overlayKeyMap != NULL));
1687         }
1688     } // release lock
1689 }
1690
1691 void EventHub::monitor() {
1692     // Acquire and release the lock to ensure that the event hub has not deadlocked.
1693     mLock.lock();
1694     mLock.unlock();
1695 }
1696
1697
1698 }; // namespace android