OSDN Git Service

SurfaceFlinger: add support for secure displays
[android-x86/frameworks-native.git] / services / surfaceflinger / SurfaceFlinger.cpp
1 /*
2  * Copyright (C) 2007 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16
17 #define ATRACE_TAG ATRACE_TAG_GRAPHICS
18
19 #include <stdint.h>
20 #include <sys/types.h>
21 #include <errno.h>
22 #include <math.h>
23 #include <dlfcn.h>
24
25 #include <EGL/egl.h>
26 #include <GLES/gl.h>
27
28 #include <cutils/log.h>
29 #include <cutils/properties.h>
30
31 #include <binder/IPCThreadState.h>
32 #include <binder/IServiceManager.h>
33 #include <binder/MemoryHeapBase.h>
34 #include <binder/PermissionCache.h>
35
36 #include <ui/DisplayInfo.h>
37
38 #include <gui/BitTube.h>
39 #include <gui/BufferQueue.h>
40 #include <gui/GuiConfig.h>
41 #include <gui/IDisplayEventConnection.h>
42 #include <gui/SurfaceTextureClient.h>
43
44 #include <ui/GraphicBufferAllocator.h>
45 #include <ui/PixelFormat.h>
46 #include <ui/UiConfig.h>
47
48 #include <utils/misc.h>
49 #include <utils/String8.h>
50 #include <utils/String16.h>
51 #include <utils/StopWatch.h>
52 #include <utils/Trace.h>
53
54 #include <private/android_filesystem_config.h>
55
56 #include "clz.h"
57 #include "DdmConnection.h"
58 #include "DisplayDevice.h"
59 #include "Client.h"
60 #include "EventThread.h"
61 #include "GLExtensions.h"
62 #include "Layer.h"
63 #include "LayerDim.h"
64 #include "LayerScreenshot.h"
65 #include "SurfaceFlinger.h"
66
67 #include "DisplayHardware/FramebufferSurface.h"
68 #include "DisplayHardware/GraphicBufferAlloc.h"
69 #include "DisplayHardware/HWComposer.h"
70
71
72 #define EGL_VERSION_HW_ANDROID  0x3143
73
74 #define DISPLAY_COUNT       1
75
76 namespace android {
77 // ---------------------------------------------------------------------------
78
79 const String16 sHardwareTest("android.permission.HARDWARE_TEST");
80 const String16 sAccessSurfaceFlinger("android.permission.ACCESS_SURFACE_FLINGER");
81 const String16 sReadFramebuffer("android.permission.READ_FRAME_BUFFER");
82 const String16 sDump("android.permission.DUMP");
83
84 // ---------------------------------------------------------------------------
85
86 SurfaceFlinger::SurfaceFlinger()
87     :   BnSurfaceComposer(), Thread(false),
88         mTransactionFlags(0),
89         mTransactionPending(false),
90         mAnimTransactionPending(false),
91         mLayersRemoved(false),
92         mRepaintEverything(0),
93         mBootTime(systemTime()),
94         mVisibleRegionsDirty(false),
95         mHwWorkListDirty(false),
96         mDebugRegion(0),
97         mDebugDDMS(0),
98         mDebugDisableHWC(0),
99         mDebugDisableTransformHint(0),
100         mDebugInSwapBuffers(0),
101         mLastSwapBufferTime(0),
102         mDebugInTransaction(0),
103         mLastTransactionTime(0),
104         mBootFinished(false)
105 {
106     ALOGI("SurfaceFlinger is starting");
107
108     // debugging stuff...
109     char value[PROPERTY_VALUE_MAX];
110
111     property_get("debug.sf.showupdates", value, "0");
112     mDebugRegion = atoi(value);
113
114     property_get("debug.sf.ddms", value, "0");
115     mDebugDDMS = atoi(value);
116     if (mDebugDDMS) {
117         if (!startDdmConnection()) {
118             // start failed, and DDMS debugging not enabled
119             mDebugDDMS = 0;
120         }
121     }
122     ALOGI_IF(mDebugRegion, "showupdates enabled");
123     ALOGI_IF(mDebugDDMS, "DDMS debugging enabled");
124 }
125
126 void SurfaceFlinger::onFirstRef()
127 {
128     mEventQueue.init(this);
129
130     run("SurfaceFlinger", PRIORITY_URGENT_DISPLAY);
131
132     // Wait for the main thread to be done with its initialization
133     mReadyToRunBarrier.wait();
134 }
135
136
137 SurfaceFlinger::~SurfaceFlinger()
138 {
139     EGLDisplay display = eglGetDisplay(EGL_DEFAULT_DISPLAY);
140     eglMakeCurrent(display, EGL_NO_SURFACE, EGL_NO_SURFACE, EGL_NO_CONTEXT);
141     eglTerminate(display);
142 }
143
144 void SurfaceFlinger::binderDied(const wp<IBinder>& who)
145 {
146     // the window manager died on us. prepare its eulogy.
147
148     // restore initial conditions (default device unblank, etc)
149     initializeDisplays();
150
151     // restart the boot-animation
152     startBootAnim();
153 }
154
155 sp<ISurfaceComposerClient> SurfaceFlinger::createConnection()
156 {
157     sp<ISurfaceComposerClient> bclient;
158     sp<Client> client(new Client(this));
159     status_t err = client->initCheck();
160     if (err == NO_ERROR) {
161         bclient = client;
162     }
163     return bclient;
164 }
165
166 sp<IBinder> SurfaceFlinger::createDisplay(const String8& displayName,
167         bool secure)
168 {
169     class DisplayToken : public BBinder {
170         sp<SurfaceFlinger> flinger;
171         virtual ~DisplayToken() {
172              // no more references, this display must be terminated
173              Mutex::Autolock _l(flinger->mStateLock);
174              flinger->mCurrentState.displays.removeItem(this);
175              flinger->setTransactionFlags(eDisplayTransactionNeeded);
176          }
177      public:
178         DisplayToken(const sp<SurfaceFlinger>& flinger)
179             : flinger(flinger) {
180         }
181     };
182
183     sp<BBinder> token = new DisplayToken(this);
184
185     Mutex::Autolock _l(mStateLock);
186     DisplayDeviceState info(DisplayDevice::DISPLAY_VIRTUAL);
187     info.displayName = displayName;
188     info.isSecure = secure;
189     mCurrentState.displays.add(token, info);
190
191     return token;
192 }
193
194 sp<IBinder> SurfaceFlinger::getBuiltInDisplay(int32_t id) {
195     if (uint32_t(id) >= DisplayDevice::NUM_DISPLAY_TYPES) {
196         ALOGE("getDefaultDisplay: id=%d is not a valid default display id", id);
197         return NULL;
198     }
199     return mDefaultDisplays[id];
200 }
201
202 sp<IGraphicBufferAlloc> SurfaceFlinger::createGraphicBufferAlloc()
203 {
204     sp<GraphicBufferAlloc> gba(new GraphicBufferAlloc());
205     return gba;
206 }
207
208 void SurfaceFlinger::bootFinished()
209 {
210     const nsecs_t now = systemTime();
211     const nsecs_t duration = now - mBootTime;
212     ALOGI("Boot is finished (%ld ms)", long(ns2ms(duration)) );
213     mBootFinished = true;
214
215     // wait patiently for the window manager death
216     const String16 name("window");
217     sp<IBinder> window(defaultServiceManager()->getService(name));
218     if (window != 0) {
219         window->linkToDeath(static_cast<IBinder::DeathRecipient*>(this));
220     }
221
222     // stop boot animation
223     // formerly we would just kill the process, but we now ask it to exit so it
224     // can choose where to stop the animation.
225     property_set("service.bootanim.exit", "1");
226 }
227
228 void SurfaceFlinger::deleteTextureAsync(GLuint texture) {
229     class MessageDestroyGLTexture : public MessageBase {
230         GLuint texture;
231     public:
232         MessageDestroyGLTexture(GLuint texture)
233             : texture(texture) {
234         }
235         virtual bool handler() {
236             glDeleteTextures(1, &texture);
237             return true;
238         }
239     };
240     postMessageAsync(new MessageDestroyGLTexture(texture));
241 }
242
243 status_t SurfaceFlinger::selectConfigForAttribute(
244         EGLDisplay dpy,
245         EGLint const* attrs,
246         EGLint attribute, EGLint wanted,
247         EGLConfig* outConfig)
248 {
249     EGLConfig config = NULL;
250     EGLint numConfigs = -1, n=0;
251     eglGetConfigs(dpy, NULL, 0, &numConfigs);
252     EGLConfig* const configs = new EGLConfig[numConfigs];
253     eglChooseConfig(dpy, attrs, configs, numConfigs, &n);
254
255     if (n) {
256         if (attribute != EGL_NONE) {
257             for (int i=0 ; i<n ; i++) {
258                 EGLint value = 0;
259                 eglGetConfigAttrib(dpy, configs[i], attribute, &value);
260                 if (wanted == value) {
261                     *outConfig = configs[i];
262                     delete [] configs;
263                     return NO_ERROR;
264                 }
265             }
266         } else {
267             // just pick the first one
268             *outConfig = configs[0];
269             delete [] configs;
270             return NO_ERROR;
271         }
272     }
273     delete [] configs;
274     return NAME_NOT_FOUND;
275 }
276
277 class EGLAttributeVector {
278     struct Attribute;
279     class Adder;
280     friend class Adder;
281     KeyedVector<Attribute, EGLint> mList;
282     struct Attribute {
283         Attribute() {};
284         Attribute(EGLint v) : v(v) { }
285         EGLint v;
286         bool operator < (const Attribute& other) const {
287             // this places EGL_NONE at the end
288             EGLint lhs(v);
289             EGLint rhs(other.v);
290             if (lhs == EGL_NONE) lhs = 0x7FFFFFFF;
291             if (rhs == EGL_NONE) rhs = 0x7FFFFFFF;
292             return lhs < rhs;
293         }
294     };
295     class Adder {
296         friend class EGLAttributeVector;
297         EGLAttributeVector& v;
298         EGLint attribute;
299         Adder(EGLAttributeVector& v, EGLint attribute)
300             : v(v), attribute(attribute) {
301         }
302     public:
303         void operator = (EGLint value) {
304             if (attribute != EGL_NONE) {
305                 v.mList.add(attribute, value);
306             }
307         }
308         operator EGLint () const { return v.mList[attribute]; }
309     };
310 public:
311     EGLAttributeVector() {
312         mList.add(EGL_NONE, EGL_NONE);
313     }
314     void remove(EGLint attribute) {
315         if (attribute != EGL_NONE) {
316             mList.removeItem(attribute);
317         }
318     }
319     Adder operator [] (EGLint attribute) {
320         return Adder(*this, attribute);
321     }
322     EGLint operator [] (EGLint attribute) const {
323        return mList[attribute];
324     }
325     // cast-operator to (EGLint const*)
326     operator EGLint const* () const { return &mList.keyAt(0).v; }
327 };
328
329 EGLConfig SurfaceFlinger::selectEGLConfig(EGLDisplay display, EGLint nativeVisualId) {
330     // select our EGLConfig. It must support EGL_RECORDABLE_ANDROID if
331     // it is to be used with WIFI displays
332     EGLConfig config;
333     EGLint dummy;
334     status_t err;
335
336     EGLAttributeVector attribs;
337     attribs[EGL_SURFACE_TYPE]               = EGL_WINDOW_BIT;
338     attribs[EGL_RECORDABLE_ANDROID]         = EGL_TRUE;
339     attribs[EGL_FRAMEBUFFER_TARGET_ANDROID] = EGL_TRUE;
340     attribs[EGL_RED_SIZE]                   = 8;
341     attribs[EGL_GREEN_SIZE]                 = 8;
342     attribs[EGL_BLUE_SIZE]                  = 8;
343
344     err = selectConfigForAttribute(display, attribs, EGL_NONE, EGL_NONE, &config);
345     if (!err)
346         goto success;
347
348     // maybe we failed because of EGL_FRAMEBUFFER_TARGET_ANDROID
349     ALOGW("no suitable EGLConfig found, trying without EGL_FRAMEBUFFER_TARGET_ANDROID");
350     attribs.remove(EGL_FRAMEBUFFER_TARGET_ANDROID);
351     err = selectConfigForAttribute(display, attribs,
352             EGL_NATIVE_VISUAL_ID, nativeVisualId, &config);
353     if (!err)
354         goto success;
355
356     // maybe we failed because of EGL_RECORDABLE_ANDROID
357     ALOGW("no suitable EGLConfig found, trying without EGL_RECORDABLE_ANDROID");
358     attribs.remove(EGL_RECORDABLE_ANDROID);
359     err = selectConfigForAttribute(display, attribs,
360             EGL_NATIVE_VISUAL_ID, nativeVisualId, &config);
361     if (!err)
362         goto success;
363
364     // allow less than 24-bit color; the non-gpu-accelerated emulator only
365     // supports 16-bit color
366     ALOGW("no suitable EGLConfig found, trying with 16-bit color allowed");
367     attribs.remove(EGL_RED_SIZE);
368     attribs.remove(EGL_GREEN_SIZE);
369     attribs.remove(EGL_BLUE_SIZE);
370     err = selectConfigForAttribute(display, attribs,
371             EGL_NATIVE_VISUAL_ID, nativeVisualId, &config);
372     if (!err)
373         goto success;
374
375     // this EGL is too lame for Android
376     ALOGE("no suitable EGLConfig found, giving up");
377
378     return 0;
379
380 success:
381     if (eglGetConfigAttrib(display, config, EGL_CONFIG_CAVEAT, &dummy))
382         ALOGW_IF(dummy == EGL_SLOW_CONFIG, "EGL_SLOW_CONFIG selected!");
383     return config;
384 }
385
386 EGLContext SurfaceFlinger::createGLContext(EGLDisplay display, EGLConfig config) {
387     // Also create our EGLContext
388     EGLint contextAttributes[] = {
389 #ifdef EGL_IMG_context_priority
390 #ifdef HAS_CONTEXT_PRIORITY
391 #warning "using EGL_IMG_context_priority"
392             EGL_CONTEXT_PRIORITY_LEVEL_IMG, EGL_CONTEXT_PRIORITY_HIGH_IMG,
393 #endif
394 #endif
395             EGL_NONE, EGL_NONE
396     };
397     EGLContext ctxt = eglCreateContext(display, config, NULL, contextAttributes);
398     ALOGE_IF(ctxt==EGL_NO_CONTEXT, "EGLContext creation failed");
399     return ctxt;
400 }
401
402 void SurfaceFlinger::initializeGL(EGLDisplay display) {
403     GLExtensions& extensions(GLExtensions::getInstance());
404     extensions.initWithGLStrings(
405             glGetString(GL_VENDOR),
406             glGetString(GL_RENDERER),
407             glGetString(GL_VERSION),
408             glGetString(GL_EXTENSIONS),
409             eglQueryString(display, EGL_VENDOR),
410             eglQueryString(display, EGL_VERSION),
411             eglQueryString(display, EGL_EXTENSIONS));
412
413     glGetIntegerv(GL_MAX_TEXTURE_SIZE, &mMaxTextureSize);
414     glGetIntegerv(GL_MAX_VIEWPORT_DIMS, mMaxViewportDims);
415
416     glPixelStorei(GL_UNPACK_ALIGNMENT, 4);
417     glPixelStorei(GL_PACK_ALIGNMENT, 4);
418     glEnableClientState(GL_VERTEX_ARRAY);
419     glShadeModel(GL_FLAT);
420     glDisable(GL_DITHER);
421     glDisable(GL_CULL_FACE);
422
423     struct pack565 {
424         inline uint16_t operator() (int r, int g, int b) const {
425             return (r<<11)|(g<<5)|b;
426         }
427     } pack565;
428
429     const uint16_t protTexData[] = { pack565(0x03, 0x03, 0x03) };
430     glGenTextures(1, &mProtectedTexName);
431     glBindTexture(GL_TEXTURE_2D, mProtectedTexName);
432     glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
433     glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
434     glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
435     glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
436     glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, 1, 1, 0,
437             GL_RGB, GL_UNSIGNED_SHORT_5_6_5, protTexData);
438
439     // print some debugging info
440     EGLint r,g,b,a;
441     eglGetConfigAttrib(display, mEGLConfig, EGL_RED_SIZE,   &r);
442     eglGetConfigAttrib(display, mEGLConfig, EGL_GREEN_SIZE, &g);
443     eglGetConfigAttrib(display, mEGLConfig, EGL_BLUE_SIZE,  &b);
444     eglGetConfigAttrib(display, mEGLConfig, EGL_ALPHA_SIZE, &a);
445     ALOGI("EGL informations:");
446     ALOGI("vendor    : %s", extensions.getEglVendor());
447     ALOGI("version   : %s", extensions.getEglVersion());
448     ALOGI("extensions: %s", extensions.getEglExtension());
449     ALOGI("Client API: %s", eglQueryString(display, EGL_CLIENT_APIS)?:"Not Supported");
450     ALOGI("EGLSurface: %d-%d-%d-%d, config=%p", r, g, b, a, mEGLConfig);
451     ALOGI("OpenGL ES informations:");
452     ALOGI("vendor    : %s", extensions.getVendor());
453     ALOGI("renderer  : %s", extensions.getRenderer());
454     ALOGI("version   : %s", extensions.getVersion());
455     ALOGI("extensions: %s", extensions.getExtension());
456     ALOGI("GL_MAX_TEXTURE_SIZE = %d", mMaxTextureSize);
457     ALOGI("GL_MAX_VIEWPORT_DIMS = %d x %d", mMaxViewportDims[0], mMaxViewportDims[1]);
458 }
459
460 status_t SurfaceFlinger::readyToRun()
461 {
462     ALOGI(  "SurfaceFlinger's main thread ready to run. "
463             "Initializing graphics H/W...");
464
465     // initialize EGL for the default display
466     mEGLDisplay = eglGetDisplay(EGL_DEFAULT_DISPLAY);
467     eglInitialize(mEGLDisplay, NULL, NULL);
468
469     // Initialize the H/W composer object.  There may or may not be an
470     // actual hardware composer underneath.
471     mHwc = new HWComposer(this,
472             *static_cast<HWComposer::EventHandler *>(this));
473
474     // initialize the config and context
475     EGLint format = mHwc->getVisualID();
476     mEGLConfig  = selectEGLConfig(mEGLDisplay, format);
477     mEGLContext = createGLContext(mEGLDisplay, mEGLConfig);
478
479     LOG_ALWAYS_FATAL_IF(mEGLContext == EGL_NO_CONTEXT,
480             "couldn't create EGLContext");
481
482     // initialize our non-virtual displays
483     for (size_t i=0 ; i<DisplayDevice::NUM_DISPLAY_TYPES ; i++) {
484         DisplayDevice::DisplayType type((DisplayDevice::DisplayType)i);
485         mDefaultDisplays[i] = new BBinder();
486         wp<IBinder> token = mDefaultDisplays[i];
487
488         // set-up the displays that are already connected
489         if (mHwc->isConnected(i) || type==DisplayDevice::DISPLAY_PRIMARY) {
490             // All non-virtual displays are currently considered secure.
491             bool isSecure = true;
492             mCurrentState.displays.add(token, DisplayDeviceState(type));
493             sp<FramebufferSurface> fbs = new FramebufferSurface(*mHwc, i);
494             sp<SurfaceTextureClient> stc = new SurfaceTextureClient(
495                         static_cast< sp<ISurfaceTexture> >(fbs->getBufferQueue()));
496             sp<DisplayDevice> hw = new DisplayDevice(this,
497                     type, isSecure, token, stc, fbs, mEGLConfig);
498             if (i > DisplayDevice::DISPLAY_PRIMARY) {
499                 // FIXME: currently we don't get blank/unblank requests
500                 // for displays other than the main display, so we always
501                 // assume a connected display is unblanked.
502                 ALOGD("marking display %d as acquired/unblanked", i);
503                 hw->acquireScreen();
504             }
505             mDisplays.add(token, hw);
506         }
507     }
508
509     //  we need a GL context current in a few places, when initializing
510     //  OpenGL ES (see below), or creating a layer,
511     //  or when a texture is (asynchronously) destroyed, and for that
512     //  we need a valid surface, so it's convenient to use the main display
513     //  for that.
514     sp<const DisplayDevice> hw(getDefaultDisplayDevice());
515
516     //  initialize OpenGL ES
517     DisplayDevice::makeCurrent(mEGLDisplay, hw, mEGLContext);
518     initializeGL(mEGLDisplay);
519
520     // start the EventThread
521     mEventThread = new EventThread(this);
522     mEventQueue.setEventThread(mEventThread);
523
524     // initialize our drawing state
525     mDrawingState = mCurrentState;
526
527
528     // We're now ready to accept clients...
529     mReadyToRunBarrier.open();
530
531     // set initial conditions (e.g. unblank default device)
532     initializeDisplays();
533
534     // start boot animation
535     startBootAnim();
536
537     return NO_ERROR;
538 }
539
540 int32_t SurfaceFlinger::allocateHwcDisplayId(DisplayDevice::DisplayType type) {
541     return (uint32_t(type) < DisplayDevice::NUM_DISPLAY_TYPES) ?
542             type : mHwc->allocateDisplayId();
543 }
544
545 void SurfaceFlinger::startBootAnim() {
546     // start boot animation
547     property_set("service.bootanim.exit", "0");
548     property_set("ctl.start", "bootanim");
549 }
550
551 uint32_t SurfaceFlinger::getMaxTextureSize() const {
552     return mMaxTextureSize;
553 }
554
555 uint32_t SurfaceFlinger::getMaxViewportDims() const {
556     return mMaxViewportDims[0] < mMaxViewportDims[1] ?
557             mMaxViewportDims[0] : mMaxViewportDims[1];
558 }
559
560 // ----------------------------------------------------------------------------
561
562 bool SurfaceFlinger::authenticateSurfaceTexture(
563         const sp<ISurfaceTexture>& surfaceTexture) const {
564     Mutex::Autolock _l(mStateLock);
565     sp<IBinder> surfaceTextureBinder(surfaceTexture->asBinder());
566
567     // Check the visible layer list for the ISurface
568     const LayerVector& currentLayers = mCurrentState.layersSortedByZ;
569     size_t count = currentLayers.size();
570     for (size_t i=0 ; i<count ; i++) {
571         const sp<LayerBase>& layer(currentLayers[i]);
572         sp<LayerBaseClient> lbc(layer->getLayerBaseClient());
573         if (lbc != NULL) {
574             wp<IBinder> lbcBinder = lbc->getSurfaceTextureBinder();
575             if (lbcBinder == surfaceTextureBinder) {
576                 return true;
577             }
578         }
579     }
580
581     // Check the layers in the purgatory.  This check is here so that if a
582     // SurfaceTexture gets destroyed before all the clients are done using it,
583     // the error will not be reported as "surface XYZ is not authenticated", but
584     // will instead fail later on when the client tries to use the surface,
585     // which should be reported as "surface XYZ returned an -ENODEV".  The
586     // purgatorized layers are no less authentic than the visible ones, so this
587     // should not cause any harm.
588     size_t purgatorySize =  mLayerPurgatory.size();
589     for (size_t i=0 ; i<purgatorySize ; i++) {
590         const sp<LayerBase>& layer(mLayerPurgatory.itemAt(i));
591         sp<LayerBaseClient> lbc(layer->getLayerBaseClient());
592         if (lbc != NULL) {
593             wp<IBinder> lbcBinder = lbc->getSurfaceTextureBinder();
594             if (lbcBinder == surfaceTextureBinder) {
595                 return true;
596             }
597         }
598     }
599
600     return false;
601 }
602
603 status_t SurfaceFlinger::getDisplayInfo(const sp<IBinder>& display, DisplayInfo* info) {
604     int32_t type = BAD_VALUE;
605     for (int i=0 ; i<DisplayDevice::NUM_DISPLAY_TYPES ; i++) {
606         if (display == mDefaultDisplays[i]) {
607             type = i;
608             break;
609         }
610     }
611
612     if (type < 0) {
613         return type;
614     }
615
616     const HWComposer& hwc(getHwComposer());
617     if (!hwc.isConnected(type)) {
618         return NAME_NOT_FOUND;
619     }
620
621     float xdpi = hwc.getDpiX(type);
622     float ydpi = hwc.getDpiY(type);
623
624     // TODO: Not sure if display density should handled by SF any longer
625     class Density {
626         static int getDensityFromProperty(char const* propName) {
627             char property[PROPERTY_VALUE_MAX];
628             int density = 0;
629             if (property_get(propName, property, NULL) > 0) {
630                 density = atoi(property);
631             }
632             return density;
633         }
634     public:
635         static int getEmuDensity() {
636             return getDensityFromProperty("qemu.sf.lcd_density"); }
637         static int getBuildDensity()  {
638             return getDensityFromProperty("ro.sf.lcd_density"); }
639     };
640
641     if (type == DisplayDevice::DISPLAY_PRIMARY) {
642         // The density of the device is provided by a build property
643         float density = Density::getBuildDensity() / 160.0f;
644         if (density == 0) {
645             // the build doesn't provide a density -- this is wrong!
646             // use xdpi instead
647             ALOGE("ro.sf.lcd_density must be defined as a build property");
648             density = xdpi / 160.0f;
649         }
650         if (Density::getEmuDensity()) {
651             // if "qemu.sf.lcd_density" is specified, it overrides everything
652             xdpi = ydpi = density = Density::getEmuDensity();
653             density /= 160.0f;
654         }
655         info->density = density;
656
657         // TODO: this needs to go away (currently needed only by webkit)
658         sp<const DisplayDevice> hw(getDefaultDisplayDevice());
659         info->orientation = hw->getOrientation();
660         getPixelFormatInfo(hw->getFormat(), &info->pixelFormatInfo);
661     } else {
662         // TODO: where should this value come from?
663         static const int TV_DENSITY = 213;
664         info->density = TV_DENSITY / 160.0f;
665         info->orientation = 0;
666     }
667
668     info->w = hwc.getWidth(type);
669     info->h = hwc.getHeight(type);
670     info->xdpi = xdpi;
671     info->ydpi = ydpi;
672     info->fps = float(1e9 / hwc.getRefreshPeriod(type));
673
674     // All non-virtual displays are currently considered secure.
675     info->secure = true;
676
677     return NO_ERROR;
678 }
679
680 // ----------------------------------------------------------------------------
681
682 sp<IDisplayEventConnection> SurfaceFlinger::createDisplayEventConnection() {
683     return mEventThread->createEventConnection();
684 }
685
686 // ----------------------------------------------------------------------------
687
688 void SurfaceFlinger::waitForEvent() {
689     mEventQueue.waitMessage();
690 }
691
692 void SurfaceFlinger::signalTransaction() {
693     mEventQueue.invalidate();
694 }
695
696 void SurfaceFlinger::signalLayerUpdate() {
697     mEventQueue.invalidate();
698 }
699
700 void SurfaceFlinger::signalRefresh() {
701     mEventQueue.refresh();
702 }
703
704 status_t SurfaceFlinger::postMessageAsync(const sp<MessageBase>& msg,
705         nsecs_t reltime, uint32_t flags) {
706     return mEventQueue.postMessage(msg, reltime);
707 }
708
709 status_t SurfaceFlinger::postMessageSync(const sp<MessageBase>& msg,
710         nsecs_t reltime, uint32_t flags) {
711     status_t res = mEventQueue.postMessage(msg, reltime);
712     if (res == NO_ERROR) {
713         msg->wait();
714     }
715     return res;
716 }
717
718 bool SurfaceFlinger::threadLoop() {
719     waitForEvent();
720     return true;
721 }
722
723 void SurfaceFlinger::onVSyncReceived(int type, nsecs_t timestamp) {
724     if (mEventThread == NULL) {
725         // This is a temporary workaround for b/7145521.  A non-null pointer
726         // does not mean EventThread has finished initializing, so this
727         // is not a correct fix.
728         ALOGW("WARNING: EventThread not started, ignoring vsync");
729         return;
730     }
731     if (uint32_t(type) < DisplayDevice::NUM_DISPLAY_TYPES) {
732         // we should only receive DisplayDevice::DisplayType from the vsync callback
733         mEventThread->onVSyncReceived(type, timestamp);
734     }
735 }
736
737 void SurfaceFlinger::onHotplugReceived(int type, bool connected) {
738     if (mEventThread == NULL) {
739         // This is a temporary workaround for b/7145521.  A non-null pointer
740         // does not mean EventThread has finished initializing, so this
741         // is not a correct fix.
742         ALOGW("WARNING: EventThread not started, ignoring hotplug");
743         return;
744     }
745
746     if (uint32_t(type) < DisplayDevice::NUM_DISPLAY_TYPES) {
747         Mutex::Autolock _l(mStateLock);
748         if (connected == false) {
749             mCurrentState.displays.removeItem(mDefaultDisplays[type]);
750         } else {
751             DisplayDeviceState info((DisplayDevice::DisplayType)type);
752             mCurrentState.displays.add(mDefaultDisplays[type], info);
753         }
754         setTransactionFlags(eDisplayTransactionNeeded);
755
756         // Defer EventThread notification until SF has updated mDisplays.
757     }
758 }
759
760 void SurfaceFlinger::eventControl(int disp, int event, int enabled) {
761     getHwComposer().eventControl(disp, event, enabled);
762 }
763
764 void SurfaceFlinger::onMessageReceived(int32_t what) {
765     ATRACE_CALL();
766     switch (what) {
767     case MessageQueue::INVALIDATE:
768         handleMessageTransaction();
769         handleMessageInvalidate();
770         signalRefresh();
771         break;
772     case MessageQueue::REFRESH:
773         handleMessageRefresh();
774         break;
775     }
776 }
777
778 void SurfaceFlinger::handleMessageTransaction() {
779     uint32_t transactionFlags = peekTransactionFlags(eTransactionMask);
780     if (transactionFlags) {
781         handleTransaction(transactionFlags);
782     }
783 }
784
785 void SurfaceFlinger::handleMessageInvalidate() {
786     ATRACE_CALL();
787     handlePageFlip();
788 }
789
790 void SurfaceFlinger::handleMessageRefresh() {
791     ATRACE_CALL();
792     preComposition();
793     rebuildLayerStacks();
794     setUpHWComposer();
795     doDebugFlashRegions();
796     doComposition();
797     postComposition();
798 }
799
800 void SurfaceFlinger::doDebugFlashRegions()
801 {
802     // is debugging enabled
803     if (CC_LIKELY(!mDebugRegion))
804         return;
805
806     const bool repaintEverything = mRepaintEverything;
807     for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) {
808         const sp<DisplayDevice>& hw(mDisplays[dpy]);
809         if (hw->canDraw()) {
810             // transform the dirty region into this screen's coordinate space
811             const Region dirtyRegion(hw->getDirtyRegion(repaintEverything));
812             if (!dirtyRegion.isEmpty()) {
813                 // redraw the whole screen
814                 doComposeSurfaces(hw, Region(hw->bounds()));
815
816                 // and draw the dirty region
817                 glDisable(GL_TEXTURE_EXTERNAL_OES);
818                 glDisable(GL_TEXTURE_2D);
819                 glDisable(GL_BLEND);
820                 glColor4f(1, 0, 1, 1);
821                 const int32_t height = hw->getHeight();
822                 Region::const_iterator it = dirtyRegion.begin();
823                 Region::const_iterator const end = dirtyRegion.end();
824                 while (it != end) {
825                     const Rect& r = *it++;
826                     GLfloat vertices[][2] = {
827                             { r.left,  height - r.top },
828                             { r.left,  height - r.bottom },
829                             { r.right, height - r.bottom },
830                             { r.right, height - r.top }
831                     };
832                     glVertexPointer(2, GL_FLOAT, 0, vertices);
833                     glDrawArrays(GL_TRIANGLE_FAN, 0, 4);
834                 }
835                 hw->compositionComplete();
836                 hw->swapBuffers(getHwComposer());
837             }
838         }
839     }
840
841     postFramebuffer();
842
843     if (mDebugRegion > 1) {
844         usleep(mDebugRegion * 1000);
845     }
846
847     HWComposer& hwc(getHwComposer());
848     if (hwc.initCheck() == NO_ERROR) {
849         status_t err = hwc.prepare();
850         ALOGE_IF(err, "HWComposer::prepare failed (%s)", strerror(-err));
851     }
852 }
853
854 void SurfaceFlinger::preComposition()
855 {
856     bool needExtraInvalidate = false;
857     const LayerVector& currentLayers(mDrawingState.layersSortedByZ);
858     const size_t count = currentLayers.size();
859     for (size_t i=0 ; i<count ; i++) {
860         if (currentLayers[i]->onPreComposition()) {
861             needExtraInvalidate = true;
862         }
863     }
864     if (needExtraInvalidate) {
865         signalLayerUpdate();
866     }
867 }
868
869 void SurfaceFlinger::postComposition()
870 {
871     const LayerVector& currentLayers(mDrawingState.layersSortedByZ);
872     const size_t count = currentLayers.size();
873     for (size_t i=0 ; i<count ; i++) {
874         currentLayers[i]->onPostComposition();
875     }
876 }
877
878 void SurfaceFlinger::rebuildLayerStacks() {
879     // rebuild the visible layer list per screen
880     if (CC_UNLIKELY(mVisibleRegionsDirty)) {
881         ATRACE_CALL();
882         mVisibleRegionsDirty = false;
883         invalidateHwcGeometry();
884
885         const LayerVector& currentLayers(mDrawingState.layersSortedByZ);
886         for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) {
887             Region opaqueRegion;
888             Region dirtyRegion;
889             Vector< sp<LayerBase> > layersSortedByZ;
890             const sp<DisplayDevice>& hw(mDisplays[dpy]);
891             const Transform& tr(hw->getTransform());
892             const Rect bounds(hw->getBounds());
893             if (hw->canDraw()) {
894                 SurfaceFlinger::computeVisibleRegions(currentLayers,
895                         hw->getLayerStack(), dirtyRegion, opaqueRegion);
896
897                 const size_t count = currentLayers.size();
898                 for (size_t i=0 ; i<count ; i++) {
899                     const sp<LayerBase>& layer(currentLayers[i]);
900                     const Layer::State& s(layer->drawingState());
901                     if (s.layerStack == hw->getLayerStack()) {
902                         Region drawRegion(tr.transform(
903                                 layer->visibleNonTransparentRegion));
904                         drawRegion.andSelf(bounds);
905                         if (!drawRegion.isEmpty()) {
906                             layersSortedByZ.add(layer);
907                         }
908                     }
909                 }
910             }
911             hw->setVisibleLayersSortedByZ(layersSortedByZ);
912             hw->undefinedRegion.set(bounds);
913             hw->undefinedRegion.subtractSelf(tr.transform(opaqueRegion));
914             hw->dirtyRegion.orSelf(dirtyRegion);
915         }
916     }
917 }
918
919 void SurfaceFlinger::setUpHWComposer() {
920     HWComposer& hwc(getHwComposer());
921     if (hwc.initCheck() == NO_ERROR) {
922         // build the h/w work list
923         if (CC_UNLIKELY(mHwWorkListDirty)) {
924             mHwWorkListDirty = false;
925             for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) {
926                 sp<const DisplayDevice> hw(mDisplays[dpy]);
927                 const int32_t id = hw->getHwcDisplayId();
928                 if (id >= 0) {
929                     const Vector< sp<LayerBase> >& currentLayers(
930                         hw->getVisibleLayersSortedByZ());
931                     const size_t count = currentLayers.size();
932                     if (hwc.createWorkList(id, count) == NO_ERROR) {
933                         HWComposer::LayerListIterator cur = hwc.begin(id);
934                         const HWComposer::LayerListIterator end = hwc.end(id);
935                         for (size_t i=0 ; cur!=end && i<count ; ++i, ++cur) {
936                             const sp<LayerBase>& layer(currentLayers[i]);
937                             layer->setGeometry(hw, *cur);
938                             if (mDebugDisableHWC || mDebugRegion) {
939                                 cur->setSkip(true);
940                             }
941                         }
942                     }
943                 }
944             }
945         }
946
947         // set the per-frame data
948         for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) {
949             sp<const DisplayDevice> hw(mDisplays[dpy]);
950             const int32_t id = hw->getHwcDisplayId();
951             if (id >= 0) {
952                 const Vector< sp<LayerBase> >& currentLayers(
953                     hw->getVisibleLayersSortedByZ());
954                 const size_t count = currentLayers.size();
955                 HWComposer::LayerListIterator cur = hwc.begin(id);
956                 const HWComposer::LayerListIterator end = hwc.end(id);
957                 for (size_t i=0 ; cur!=end && i<count ; ++i, ++cur) {
958                     /*
959                      * update the per-frame h/w composer data for each layer
960                      * and build the transparent region of the FB
961                      */
962                     const sp<LayerBase>& layer(currentLayers[i]);
963                     layer->setPerFrameData(hw, *cur);
964                 }
965             }
966         }
967
968         status_t err = hwc.prepare();
969         ALOGE_IF(err, "HWComposer::prepare failed (%s)", strerror(-err));
970     }
971 }
972
973 void SurfaceFlinger::doComposition() {
974     ATRACE_CALL();
975     const bool repaintEverything = android_atomic_and(0, &mRepaintEverything);
976     for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) {
977         const sp<DisplayDevice>& hw(mDisplays[dpy]);
978         if (hw->canDraw()) {
979             // transform the dirty region into this screen's coordinate space
980             const Region dirtyRegion(hw->getDirtyRegion(repaintEverything));
981             if (!dirtyRegion.isEmpty()) {
982                 // repaint the framebuffer (if needed)
983                 doDisplayComposition(hw, dirtyRegion);
984             }
985             hw->dirtyRegion.clear();
986             hw->flip(hw->swapRegion);
987             hw->swapRegion.clear();
988         }
989         // inform the h/w that we're done compositing
990         hw->compositionComplete();
991     }
992     postFramebuffer();
993 }
994
995 void SurfaceFlinger::postFramebuffer()
996 {
997     ATRACE_CALL();
998
999     const nsecs_t now = systemTime();
1000     mDebugInSwapBuffers = now;
1001
1002     HWComposer& hwc(getHwComposer());
1003     if (hwc.initCheck() == NO_ERROR) {
1004         if (!hwc.supportsFramebufferTarget()) {
1005             // EGL spec says:
1006             //   "surface must be bound to the calling thread's current context,
1007             //    for the current rendering API."
1008             DisplayDevice::makeCurrent(mEGLDisplay,
1009                     getDefaultDisplayDevice(), mEGLContext);
1010         }
1011         hwc.commit();
1012     }
1013
1014     for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) {
1015         sp<const DisplayDevice> hw(mDisplays[dpy]);
1016         const Vector< sp<LayerBase> >& currentLayers(hw->getVisibleLayersSortedByZ());
1017         hw->onSwapBuffersCompleted(hwc);
1018         const size_t count = currentLayers.size();
1019         int32_t id = hw->getHwcDisplayId();
1020         if (id >=0 && hwc.initCheck() == NO_ERROR) {
1021             HWComposer::LayerListIterator cur = hwc.begin(id);
1022             const HWComposer::LayerListIterator end = hwc.end(id);
1023             for (size_t i = 0; cur != end && i < count; ++i, ++cur) {
1024                 currentLayers[i]->onLayerDisplayed(hw, &*cur);
1025             }
1026         } else {
1027             for (size_t i = 0; i < count; i++) {
1028                 currentLayers[i]->onLayerDisplayed(hw, NULL);
1029             }
1030         }
1031     }
1032
1033     mLastSwapBufferTime = systemTime() - now;
1034     mDebugInSwapBuffers = 0;
1035 }
1036
1037 void SurfaceFlinger::handleTransaction(uint32_t transactionFlags)
1038 {
1039     ATRACE_CALL();
1040
1041     Mutex::Autolock _l(mStateLock);
1042     const nsecs_t now = systemTime();
1043     mDebugInTransaction = now;
1044
1045     // Here we're guaranteed that some transaction flags are set
1046     // so we can call handleTransactionLocked() unconditionally.
1047     // We call getTransactionFlags(), which will also clear the flags,
1048     // with mStateLock held to guarantee that mCurrentState won't change
1049     // until the transaction is committed.
1050
1051     transactionFlags = getTransactionFlags(eTransactionMask);
1052     handleTransactionLocked(transactionFlags);
1053
1054     mLastTransactionTime = systemTime() - now;
1055     mDebugInTransaction = 0;
1056     invalidateHwcGeometry();
1057     // here the transaction has been committed
1058 }
1059
1060 void SurfaceFlinger::handleTransactionLocked(uint32_t transactionFlags)
1061 {
1062     const LayerVector& currentLayers(mCurrentState.layersSortedByZ);
1063     const size_t count = currentLayers.size();
1064
1065     /*
1066      * Traversal of the children
1067      * (perform the transaction for each of them if needed)
1068      */
1069
1070     if (transactionFlags & eTraversalNeeded) {
1071         for (size_t i=0 ; i<count ; i++) {
1072             const sp<LayerBase>& layer = currentLayers[i];
1073             uint32_t trFlags = layer->getTransactionFlags(eTransactionNeeded);
1074             if (!trFlags) continue;
1075
1076             const uint32_t flags = layer->doTransaction(0);
1077             if (flags & Layer::eVisibleRegion)
1078                 mVisibleRegionsDirty = true;
1079         }
1080     }
1081
1082     /*
1083      * Perform display own transactions if needed
1084      */
1085
1086     if (transactionFlags & eDisplayTransactionNeeded) {
1087         // here we take advantage of Vector's copy-on-write semantics to
1088         // improve performance by skipping the transaction entirely when
1089         // know that the lists are identical
1090         const KeyedVector<  wp<IBinder>, DisplayDeviceState>& curr(mCurrentState.displays);
1091         const KeyedVector<  wp<IBinder>, DisplayDeviceState>& draw(mDrawingState.displays);
1092         if (!curr.isIdenticalTo(draw)) {
1093             mVisibleRegionsDirty = true;
1094             const size_t cc = curr.size();
1095                   size_t dc = draw.size();
1096
1097             // find the displays that were removed
1098             // (ie: in drawing state but not in current state)
1099             // also handle displays that changed
1100             // (ie: displays that are in both lists)
1101             for (size_t i=0 ; i<dc ; i++) {
1102                 const ssize_t j = curr.indexOfKey(draw.keyAt(i));
1103                 if (j < 0) {
1104                     // in drawing state but not in current state
1105                     if (!draw[i].isMainDisplay()) {
1106                         // Call makeCurrent() on the primary display so we can
1107                         // be sure that nothing associated with this display
1108                         // is current.
1109                         const sp<const DisplayDevice> hw(getDefaultDisplayDevice());
1110                         DisplayDevice::makeCurrent(mEGLDisplay, hw, mEGLContext);
1111                         mDisplays.removeItem(draw.keyAt(i));
1112                         getHwComposer().disconnectDisplay(draw[i].type);
1113                         mEventThread->onHotplugReceived(draw[i].type, false);
1114                     } else {
1115                         ALOGW("trying to remove the main display");
1116                     }
1117                 } else {
1118                     // this display is in both lists. see if something changed.
1119                     const DisplayDeviceState& state(curr[j]);
1120                     const wp<IBinder>& display(curr.keyAt(j));
1121                     if (state.surface->asBinder() != draw[i].surface->asBinder()) {
1122                         // changing the surface is like destroying and
1123                         // recreating the DisplayDevice, so we just remove it
1124                         // from the drawing state, so that it get re-added
1125                         // below.
1126                         mDisplays.removeItem(display);
1127                         mDrawingState.displays.removeItemsAt(i);
1128                         dc--; i--;
1129                         // at this point we must loop to the next item
1130                         continue;
1131                     }
1132
1133                     const sp<DisplayDevice> disp(getDisplayDevice(display));
1134                     if (disp != NULL) {
1135                         if (state.layerStack != draw[i].layerStack) {
1136                             disp->setLayerStack(state.layerStack);
1137                         }
1138                         if ((state.orientation != draw[i].orientation)
1139                                 || (state.viewport != draw[i].viewport)
1140                                 || (state.frame != draw[i].frame))
1141                         {
1142                             disp->setProjection(state.orientation,
1143                                     state.viewport, state.frame);
1144                         }
1145
1146                         // Walk through all the layers in currentLayers,
1147                         // and update their transform hint.
1148                         //
1149                         // TODO: we could be much more clever about which
1150                         // layers we touch and how often we do these updates
1151                         // (e.g. only touch the layers associated with this
1152                         // display, and only on a rotation).
1153                         for (size_t i = 0; i < count; i++) {
1154                             const sp<LayerBase>& layerBase = currentLayers[i];
1155                             layerBase->updateTransformHint();
1156                         }
1157                     }
1158                 }
1159             }
1160
1161             // find displays that were added
1162             // (ie: in current state but not in drawing state)
1163             for (size_t i=0 ; i<cc ; i++) {
1164                 if (draw.indexOfKey(curr.keyAt(i)) < 0) {
1165                     const DisplayDeviceState& state(curr[i]);
1166                     bool isSecure = false;
1167
1168                     sp<FramebufferSurface> fbs;
1169                     sp<SurfaceTextureClient> stc;
1170                     if (!state.isVirtualDisplay()) {
1171
1172                         ALOGE_IF(state.surface!=NULL,
1173                                 "adding a supported display, but rendering "
1174                                 "surface is provided (%p), ignoring it",
1175                                 state.surface.get());
1176
1177                         // All non-virtual displays are currently considered
1178                         // secure.
1179                         isSecure = true;
1180
1181                         // for supported (by hwc) displays we provide our
1182                         // own rendering surface
1183                         fbs = new FramebufferSurface(*mHwc, state.type);
1184                         stc = new SurfaceTextureClient(
1185                                 static_cast< sp<ISurfaceTexture> >(
1186                                         fbs->getBufferQueue()));
1187                     } else {
1188                         if (state.surface != NULL) {
1189                             stc = new SurfaceTextureClient(state.surface);
1190                         }
1191                         isSecure = state.isSecure;
1192                     }
1193
1194                     const wp<IBinder>& display(curr.keyAt(i));
1195                     if (stc != NULL) {
1196                         sp<DisplayDevice> hw = new DisplayDevice(this,
1197                                 state.type, isSecure, display, stc, fbs,
1198                                 mEGLConfig);
1199                         hw->setLayerStack(state.layerStack);
1200                         hw->setProjection(state.orientation,
1201                                 state.viewport, state.frame);
1202                         hw->setDisplayName(state.displayName);
1203                         mDisplays.add(display, hw);
1204                         mEventThread->onHotplugReceived(state.type, true);
1205                     }
1206                 }
1207             }
1208         }
1209     }
1210
1211     /*
1212      * Perform our own transaction if needed
1213      */
1214
1215     const LayerVector& previousLayers(mDrawingState.layersSortedByZ);
1216     if (currentLayers.size() > previousLayers.size()) {
1217         // layers have been added
1218         mVisibleRegionsDirty = true;
1219     }
1220
1221     // some layers might have been removed, so
1222     // we need to update the regions they're exposing.
1223     if (mLayersRemoved) {
1224         mLayersRemoved = false;
1225         mVisibleRegionsDirty = true;
1226         const size_t count = previousLayers.size();
1227         for (size_t i=0 ; i<count ; i++) {
1228             const sp<LayerBase>& layer(previousLayers[i]);
1229             if (currentLayers.indexOf(layer) < 0) {
1230                 // this layer is not visible anymore
1231                 // TODO: we could traverse the tree from front to back and
1232                 //       compute the actual visible region
1233                 // TODO: we could cache the transformed region
1234                 const Layer::State& s(layer->drawingState());
1235                 Region visibleReg = s.transform.transform(
1236                         Region(Rect(s.active.w, s.active.h)));
1237                 invalidateLayerStack(s.layerStack, visibleReg);
1238             }
1239         }
1240     }
1241
1242     commitTransaction();
1243 }
1244
1245 void SurfaceFlinger::commitTransaction()
1246 {
1247     if (!mLayersPendingRemoval.isEmpty()) {
1248         // Notify removed layers now that they can't be drawn from
1249         for (size_t i = 0; i < mLayersPendingRemoval.size(); i++) {
1250             mLayersPendingRemoval[i]->onRemoved();
1251         }
1252         mLayersPendingRemoval.clear();
1253     }
1254
1255     mDrawingState = mCurrentState;
1256     mTransactionPending = false;
1257     mAnimTransactionPending = false;
1258     mTransactionCV.broadcast();
1259 }
1260
1261 void SurfaceFlinger::computeVisibleRegions(
1262         const LayerVector& currentLayers, uint32_t layerStack,
1263         Region& outDirtyRegion, Region& outOpaqueRegion)
1264 {
1265     ATRACE_CALL();
1266
1267     Region aboveOpaqueLayers;
1268     Region aboveCoveredLayers;
1269     Region dirty;
1270
1271     outDirtyRegion.clear();
1272
1273     size_t i = currentLayers.size();
1274     while (i--) {
1275         const sp<LayerBase>& layer = currentLayers[i];
1276
1277         // start with the whole surface at its current location
1278         const Layer::State& s(layer->drawingState());
1279
1280         // only consider the layers on the given later stack
1281         if (s.layerStack != layerStack)
1282             continue;
1283
1284         /*
1285          * opaqueRegion: area of a surface that is fully opaque.
1286          */
1287         Region opaqueRegion;
1288
1289         /*
1290          * visibleRegion: area of a surface that is visible on screen
1291          * and not fully transparent. This is essentially the layer's
1292          * footprint minus the opaque regions above it.
1293          * Areas covered by a translucent surface are considered visible.
1294          */
1295         Region visibleRegion;
1296
1297         /*
1298          * coveredRegion: area of a surface that is covered by all
1299          * visible regions above it (which includes the translucent areas).
1300          */
1301         Region coveredRegion;
1302
1303         /*
1304          * transparentRegion: area of a surface that is hinted to be completely
1305          * transparent. This is only used to tell when the layer has no visible
1306          * non-transparent regions and can be removed from the layer list. It
1307          * does not affect the visibleRegion of this layer or any layers
1308          * beneath it. The hint may not be correct if apps don't respect the
1309          * SurfaceView restrictions (which, sadly, some don't).
1310          */
1311         Region transparentRegion;
1312
1313
1314         // handle hidden surfaces by setting the visible region to empty
1315         if (CC_LIKELY(layer->isVisible())) {
1316             const bool translucent = !layer->isOpaque();
1317             Rect bounds(layer->computeBounds());
1318             visibleRegion.set(bounds);
1319             if (!visibleRegion.isEmpty()) {
1320                 // Remove the transparent area from the visible region
1321                 if (translucent) {
1322                     const Transform tr(s.transform);
1323                     if (tr.transformed()) {
1324                         if (tr.preserveRects()) {
1325                             // transform the transparent region
1326                             transparentRegion = tr.transform(s.transparentRegion);
1327                         } else {
1328                             // transformation too complex, can't do the
1329                             // transparent region optimization.
1330                             transparentRegion.clear();
1331                         }
1332                     } else {
1333                         transparentRegion = s.transparentRegion;
1334                     }
1335                 }
1336
1337                 // compute the opaque region
1338                 const int32_t layerOrientation = s.transform.getOrientation();
1339                 if (s.alpha==255 && !translucent &&
1340                         ((layerOrientation & Transform::ROT_INVALID) == false)) {
1341                     // the opaque region is the layer's footprint
1342                     opaqueRegion = visibleRegion;
1343                 }
1344             }
1345         }
1346
1347         // Clip the covered region to the visible region
1348         coveredRegion = aboveCoveredLayers.intersect(visibleRegion);
1349
1350         // Update aboveCoveredLayers for next (lower) layer
1351         aboveCoveredLayers.orSelf(visibleRegion);
1352
1353         // subtract the opaque region covered by the layers above us
1354         visibleRegion.subtractSelf(aboveOpaqueLayers);
1355
1356         // compute this layer's dirty region
1357         if (layer->contentDirty) {
1358             // we need to invalidate the whole region
1359             dirty = visibleRegion;
1360             // as well, as the old visible region
1361             dirty.orSelf(layer->visibleRegion);
1362             layer->contentDirty = false;
1363         } else {
1364             /* compute the exposed region:
1365              *   the exposed region consists of two components:
1366              *   1) what's VISIBLE now and was COVERED before
1367              *   2) what's EXPOSED now less what was EXPOSED before
1368              *
1369              * note that (1) is conservative, we start with the whole
1370              * visible region but only keep what used to be covered by
1371              * something -- which mean it may have been exposed.
1372              *
1373              * (2) handles areas that were not covered by anything but got
1374              * exposed because of a resize.
1375              */
1376             const Region newExposed = visibleRegion - coveredRegion;
1377             const Region oldVisibleRegion = layer->visibleRegion;
1378             const Region oldCoveredRegion = layer->coveredRegion;
1379             const Region oldExposed = oldVisibleRegion - oldCoveredRegion;
1380             dirty = (visibleRegion&oldCoveredRegion) | (newExposed-oldExposed);
1381         }
1382         dirty.subtractSelf(aboveOpaqueLayers);
1383
1384         // accumulate to the screen dirty region
1385         outDirtyRegion.orSelf(dirty);
1386
1387         // Update aboveOpaqueLayers for next (lower) layer
1388         aboveOpaqueLayers.orSelf(opaqueRegion);
1389
1390         // Store the visible region in screen space
1391         layer->setVisibleRegion(visibleRegion);
1392         layer->setCoveredRegion(coveredRegion);
1393         layer->setVisibleNonTransparentRegion(
1394                 visibleRegion.subtract(transparentRegion));
1395     }
1396
1397     outOpaqueRegion = aboveOpaqueLayers;
1398 }
1399
1400 void SurfaceFlinger::invalidateLayerStack(uint32_t layerStack,
1401         const Region& dirty) {
1402     for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) {
1403         const sp<DisplayDevice>& hw(mDisplays[dpy]);
1404         if (hw->getLayerStack() == layerStack) {
1405             hw->dirtyRegion.orSelf(dirty);
1406         }
1407     }
1408 }
1409
1410 void SurfaceFlinger::handlePageFlip()
1411 {
1412     Region dirtyRegion;
1413
1414     bool visibleRegions = false;
1415     const LayerVector& currentLayers(mDrawingState.layersSortedByZ);
1416     const size_t count = currentLayers.size();
1417     for (size_t i=0 ; i<count ; i++) {
1418         const sp<LayerBase>& layer(currentLayers[i]);
1419         const Region dirty(layer->latchBuffer(visibleRegions));
1420         const Layer::State& s(layer->drawingState());
1421         invalidateLayerStack(s.layerStack, dirty);
1422     }
1423
1424     mVisibleRegionsDirty |= visibleRegions;
1425 }
1426
1427 void SurfaceFlinger::invalidateHwcGeometry()
1428 {
1429     mHwWorkListDirty = true;
1430 }
1431
1432
1433 void SurfaceFlinger::doDisplayComposition(const sp<const DisplayDevice>& hw,
1434         const Region& inDirtyRegion)
1435 {
1436     Region dirtyRegion(inDirtyRegion);
1437
1438     // compute the invalid region
1439     hw->swapRegion.orSelf(dirtyRegion);
1440
1441     uint32_t flags = hw->getFlags();
1442     if (flags & DisplayDevice::SWAP_RECTANGLE) {
1443         // we can redraw only what's dirty, but since SWAP_RECTANGLE only
1444         // takes a rectangle, we must make sure to update that whole
1445         // rectangle in that case
1446         dirtyRegion.set(hw->swapRegion.bounds());
1447     } else {
1448         if (flags & DisplayDevice::PARTIAL_UPDATES) {
1449             // We need to redraw the rectangle that will be updated
1450             // (pushed to the framebuffer).
1451             // This is needed because PARTIAL_UPDATES only takes one
1452             // rectangle instead of a region (see DisplayDevice::flip())
1453             dirtyRegion.set(hw->swapRegion.bounds());
1454         } else {
1455             // we need to redraw everything (the whole screen)
1456             dirtyRegion.set(hw->bounds());
1457             hw->swapRegion = dirtyRegion;
1458         }
1459     }
1460
1461     doComposeSurfaces(hw, dirtyRegion);
1462
1463     // update the swap region and clear the dirty region
1464     hw->swapRegion.orSelf(dirtyRegion);
1465
1466     // swap buffers (presentation)
1467     hw->swapBuffers(getHwComposer());
1468 }
1469
1470 void SurfaceFlinger::doComposeSurfaces(const sp<const DisplayDevice>& hw, const Region& dirty)
1471 {
1472     const int32_t id = hw->getHwcDisplayId();
1473     HWComposer& hwc(getHwComposer());
1474     HWComposer::LayerListIterator cur = hwc.begin(id);
1475     const HWComposer::LayerListIterator end = hwc.end(id);
1476
1477     const bool hasGlesComposition = hwc.hasGlesComposition(id) || (cur==end);
1478     if (hasGlesComposition) {
1479         DisplayDevice::makeCurrent(mEGLDisplay, hw, mEGLContext);
1480
1481         // set the frame buffer
1482         glMatrixMode(GL_MODELVIEW);
1483         glLoadIdentity();
1484
1485         // Never touch the framebuffer if we don't have any framebuffer layers
1486         const bool hasHwcComposition = hwc.hasHwcComposition(id);
1487         if (hasHwcComposition) {
1488             // when using overlays, we assume a fully transparent framebuffer
1489             // NOTE: we could reduce how much we need to clear, for instance
1490             // remove where there are opaque FB layers. however, on some
1491             // GPUs doing a "clean slate" glClear might be more efficient.
1492             // We'll revisit later if needed.
1493             glClearColor(0, 0, 0, 0);
1494             glClear(GL_COLOR_BUFFER_BIT);
1495         } else {
1496             const Region region(hw->undefinedRegion.intersect(dirty));
1497             // screen is already cleared here
1498             if (!region.isEmpty()) {
1499                 // can happen with SurfaceView
1500                 drawWormhole(hw, region);
1501             }
1502         }
1503     }
1504
1505     /*
1506      * and then, render the layers targeted at the framebuffer
1507      */
1508
1509     const Vector< sp<LayerBase> >& layers(hw->getVisibleLayersSortedByZ());
1510     const size_t count = layers.size();
1511     const Transform& tr = hw->getTransform();
1512     if (cur != end) {
1513         // we're using h/w composer
1514         for (size_t i=0 ; i<count && cur!=end ; ++i, ++cur) {
1515             const sp<LayerBase>& layer(layers[i]);
1516             const Region clip(dirty.intersect(tr.transform(layer->visibleRegion)));
1517             if (!clip.isEmpty()) {
1518                 switch (cur->getCompositionType()) {
1519                     case HWC_OVERLAY: {
1520                         if ((cur->getHints() & HWC_HINT_CLEAR_FB)
1521                                 && i
1522                                 && layer->isOpaque()
1523                                 && hasGlesComposition) {
1524                             // never clear the very first layer since we're
1525                             // guaranteed the FB is already cleared
1526                             layer->clearWithOpenGL(hw, clip);
1527                         }
1528                         break;
1529                     }
1530                     case HWC_FRAMEBUFFER: {
1531                         layer->draw(hw, clip);
1532                         break;
1533                     }
1534                     case HWC_FRAMEBUFFER_TARGET: {
1535                         // this should not happen as the iterator shouldn't
1536                         // let us get there.
1537                         ALOGW("HWC_FRAMEBUFFER_TARGET found in hwc list (index=%d)", i);
1538                         break;
1539                     }
1540                 }
1541             }
1542             layer->setAcquireFence(hw, *cur);
1543         }
1544     } else {
1545         // we're not using h/w composer
1546         for (size_t i=0 ; i<count ; ++i) {
1547             const sp<LayerBase>& layer(layers[i]);
1548             const Region clip(dirty.intersect(
1549                     tr.transform(layer->visibleRegion)));
1550             if (!clip.isEmpty()) {
1551                 layer->draw(hw, clip);
1552             }
1553         }
1554     }
1555 }
1556
1557 void SurfaceFlinger::drawWormhole(const sp<const DisplayDevice>& hw,
1558         const Region& region) const
1559 {
1560     glDisable(GL_TEXTURE_EXTERNAL_OES);
1561     glDisable(GL_TEXTURE_2D);
1562     glDisable(GL_BLEND);
1563     glColor4f(0,0,0,0);
1564
1565     const int32_t height = hw->getHeight();
1566     Region::const_iterator it = region.begin();
1567     Region::const_iterator const end = region.end();
1568     while (it != end) {
1569         const Rect& r = *it++;
1570         GLfloat vertices[][2] = {
1571                 { r.left,  height - r.top },
1572                 { r.left,  height - r.bottom },
1573                 { r.right, height - r.bottom },
1574                 { r.right, height - r.top }
1575         };
1576         glVertexPointer(2, GL_FLOAT, 0, vertices);
1577         glDrawArrays(GL_TRIANGLE_FAN, 0, 4);
1578     }
1579 }
1580
1581 ssize_t SurfaceFlinger::addClientLayer(const sp<Client>& client,
1582         const sp<LayerBaseClient>& lbc)
1583 {
1584     // attach this layer to the client
1585     size_t name = client->attachLayer(lbc);
1586
1587     // add this layer to the current state list
1588     Mutex::Autolock _l(mStateLock);
1589     mCurrentState.layersSortedByZ.add(lbc);
1590
1591     return ssize_t(name);
1592 }
1593
1594 status_t SurfaceFlinger::removeLayer(const sp<LayerBase>& layer)
1595 {
1596     Mutex::Autolock _l(mStateLock);
1597     status_t err = purgatorizeLayer_l(layer);
1598     if (err == NO_ERROR)
1599         setTransactionFlags(eTransactionNeeded);
1600     return err;
1601 }
1602
1603 status_t SurfaceFlinger::removeLayer_l(const sp<LayerBase>& layerBase)
1604 {
1605     ssize_t index = mCurrentState.layersSortedByZ.remove(layerBase);
1606     if (index >= 0) {
1607         mLayersRemoved = true;
1608         return NO_ERROR;
1609     }
1610     return status_t(index);
1611 }
1612
1613 status_t SurfaceFlinger::purgatorizeLayer_l(const sp<LayerBase>& layerBase)
1614 {
1615     // First add the layer to the purgatory list, which makes sure it won't
1616     // go away, then remove it from the main list (through a transaction).
1617     ssize_t err = removeLayer_l(layerBase);
1618     if (err >= 0) {
1619         mLayerPurgatory.add(layerBase);
1620     }
1621
1622     mLayersPendingRemoval.push(layerBase);
1623
1624     // it's possible that we don't find a layer, because it might
1625     // have been destroyed already -- this is not technically an error
1626     // from the user because there is a race between Client::destroySurface(),
1627     // ~Client() and ~ISurface().
1628     return (err == NAME_NOT_FOUND) ? status_t(NO_ERROR) : err;
1629 }
1630
1631 uint32_t SurfaceFlinger::peekTransactionFlags(uint32_t flags)
1632 {
1633     return android_atomic_release_load(&mTransactionFlags);
1634 }
1635
1636 uint32_t SurfaceFlinger::getTransactionFlags(uint32_t flags)
1637 {
1638     return android_atomic_and(~flags, &mTransactionFlags) & flags;
1639 }
1640
1641 uint32_t SurfaceFlinger::setTransactionFlags(uint32_t flags)
1642 {
1643     uint32_t old = android_atomic_or(flags, &mTransactionFlags);
1644     if ((old & flags)==0) { // wake the server up
1645         signalTransaction();
1646     }
1647     return old;
1648 }
1649
1650 void SurfaceFlinger::setTransactionState(
1651         const Vector<ComposerState>& state,
1652         const Vector<DisplayState>& displays,
1653         uint32_t flags)
1654 {
1655     ATRACE_CALL();
1656     Mutex::Autolock _l(mStateLock);
1657     uint32_t transactionFlags = 0;
1658
1659     if (flags & eAnimation) {
1660         // For window updates that are part of an animation we must wait for
1661         // previous animation "frames" to be handled.
1662         while (mAnimTransactionPending) {
1663             status_t err = mTransactionCV.waitRelative(mStateLock, s2ns(5));
1664             if (CC_UNLIKELY(err != NO_ERROR)) {
1665                 // just in case something goes wrong in SF, return to the
1666                 // caller after a few seconds.
1667                 ALOGW_IF(err == TIMED_OUT, "setTransactionState timed out "
1668                         "waiting for previous animation frame");
1669                 mAnimTransactionPending = false;
1670                 break;
1671             }
1672         }
1673     }
1674
1675     size_t count = displays.size();
1676     for (size_t i=0 ; i<count ; i++) {
1677         const DisplayState& s(displays[i]);
1678         transactionFlags |= setDisplayStateLocked(s);
1679     }
1680
1681     count = state.size();
1682     for (size_t i=0 ; i<count ; i++) {
1683         const ComposerState& s(state[i]);
1684         sp<Client> client( static_cast<Client *>(s.client.get()) );
1685         transactionFlags |= setClientStateLocked(client, s.state);
1686     }
1687
1688     if (transactionFlags) {
1689         // this triggers the transaction
1690         setTransactionFlags(transactionFlags);
1691
1692         // if this is a synchronous transaction, wait for it to take effect
1693         // before returning.
1694         if (flags & eSynchronous) {
1695             mTransactionPending = true;
1696         }
1697         if (flags & eAnimation) {
1698             mAnimTransactionPending = true;
1699         }
1700         while (mTransactionPending) {
1701             status_t err = mTransactionCV.waitRelative(mStateLock, s2ns(5));
1702             if (CC_UNLIKELY(err != NO_ERROR)) {
1703                 // just in case something goes wrong in SF, return to the
1704                 // called after a few seconds.
1705                 ALOGW_IF(err == TIMED_OUT, "setTransactionState timed out!");
1706                 mTransactionPending = false;
1707                 break;
1708             }
1709         }
1710     }
1711 }
1712
1713 uint32_t SurfaceFlinger::setDisplayStateLocked(const DisplayState& s)
1714 {
1715     ssize_t dpyIdx = mCurrentState.displays.indexOfKey(s.token);
1716     if (dpyIdx < 0)
1717         return 0;
1718
1719     uint32_t flags = 0;
1720     DisplayDeviceState& disp(mCurrentState.displays.editValueAt(dpyIdx));
1721     if (disp.isValid()) {
1722         const uint32_t what = s.what;
1723         if (what & DisplayState::eSurfaceChanged) {
1724             if (disp.surface->asBinder() != s.surface->asBinder()) {
1725                 disp.surface = s.surface;
1726                 flags |= eDisplayTransactionNeeded;
1727             }
1728         }
1729         if (what & DisplayState::eLayerStackChanged) {
1730             if (disp.layerStack != s.layerStack) {
1731                 disp.layerStack = s.layerStack;
1732                 flags |= eDisplayTransactionNeeded;
1733             }
1734         }
1735         if (what & DisplayState::eDisplayProjectionChanged) {
1736             if (disp.orientation != s.orientation) {
1737                 disp.orientation = s.orientation;
1738                 flags |= eDisplayTransactionNeeded;
1739             }
1740             if (disp.frame != s.frame) {
1741                 disp.frame = s.frame;
1742                 flags |= eDisplayTransactionNeeded;
1743             }
1744             if (disp.viewport != s.viewport) {
1745                 disp.viewport = s.viewport;
1746                 flags |= eDisplayTransactionNeeded;
1747             }
1748         }
1749     }
1750     return flags;
1751 }
1752
1753 uint32_t SurfaceFlinger::setClientStateLocked(
1754         const sp<Client>& client,
1755         const layer_state_t& s)
1756 {
1757     uint32_t flags = 0;
1758     sp<LayerBaseClient> layer(client->getLayerUser(s.surface));
1759     if (layer != 0) {
1760         const uint32_t what = s.what;
1761         if (what & layer_state_t::ePositionChanged) {
1762             if (layer->setPosition(s.x, s.y))
1763                 flags |= eTraversalNeeded;
1764         }
1765         if (what & layer_state_t::eLayerChanged) {
1766             // NOTE: index needs to be calculated before we update the state
1767             ssize_t idx = mCurrentState.layersSortedByZ.indexOf(layer);
1768             if (layer->setLayer(s.z)) {
1769                 mCurrentState.layersSortedByZ.removeAt(idx);
1770                 mCurrentState.layersSortedByZ.add(layer);
1771                 // we need traversal (state changed)
1772                 // AND transaction (list changed)
1773                 flags |= eTransactionNeeded|eTraversalNeeded;
1774             }
1775         }
1776         if (what & layer_state_t::eSizeChanged) {
1777             if (layer->setSize(s.w, s.h)) {
1778                 flags |= eTraversalNeeded;
1779             }
1780         }
1781         if (what & layer_state_t::eAlphaChanged) {
1782             if (layer->setAlpha(uint8_t(255.0f*s.alpha+0.5f)))
1783                 flags |= eTraversalNeeded;
1784         }
1785         if (what & layer_state_t::eMatrixChanged) {
1786             if (layer->setMatrix(s.matrix))
1787                 flags |= eTraversalNeeded;
1788         }
1789         if (what & layer_state_t::eTransparentRegionChanged) {
1790             if (layer->setTransparentRegionHint(s.transparentRegion))
1791                 flags |= eTraversalNeeded;
1792         }
1793         if (what & layer_state_t::eVisibilityChanged) {
1794             if (layer->setFlags(s.flags, s.mask))
1795                 flags |= eTraversalNeeded;
1796         }
1797         if (what & layer_state_t::eCropChanged) {
1798             if (layer->setCrop(s.crop))
1799                 flags |= eTraversalNeeded;
1800         }
1801         if (what & layer_state_t::eLayerStackChanged) {
1802             // NOTE: index needs to be calculated before we update the state
1803             ssize_t idx = mCurrentState.layersSortedByZ.indexOf(layer);
1804             if (layer->setLayerStack(s.layerStack)) {
1805                 mCurrentState.layersSortedByZ.removeAt(idx);
1806                 mCurrentState.layersSortedByZ.add(layer);
1807                 // we need traversal (state changed)
1808                 // AND transaction (list changed)
1809                 flags |= eTransactionNeeded|eTraversalNeeded;
1810             }
1811         }
1812     }
1813     return flags;
1814 }
1815
1816 sp<ISurface> SurfaceFlinger::createLayer(
1817         ISurfaceComposerClient::surface_data_t* params,
1818         const String8& name,
1819         const sp<Client>& client,
1820        uint32_t w, uint32_t h, PixelFormat format,
1821         uint32_t flags)
1822 {
1823     sp<LayerBaseClient> layer;
1824     sp<ISurface> surfaceHandle;
1825
1826     if (int32_t(w|h) < 0) {
1827         ALOGE("createLayer() failed, w or h is negative (w=%d, h=%d)",
1828                 int(w), int(h));
1829         return surfaceHandle;
1830     }
1831
1832     //ALOGD("createLayer for (%d x %d), name=%s", w, h, name.string());
1833     switch (flags & ISurfaceComposerClient::eFXSurfaceMask) {
1834         case ISurfaceComposerClient::eFXSurfaceNormal:
1835             layer = createNormalLayer(client, w, h, flags, format);
1836             break;
1837         case ISurfaceComposerClient::eFXSurfaceBlur:
1838         case ISurfaceComposerClient::eFXSurfaceDim:
1839             layer = createDimLayer(client, w, h, flags);
1840             break;
1841         case ISurfaceComposerClient::eFXSurfaceScreenshot:
1842             layer = createScreenshotLayer(client, w, h, flags);
1843             break;
1844     }
1845
1846     if (layer != 0) {
1847         layer->initStates(w, h, flags);
1848         layer->setName(name);
1849         ssize_t token = addClientLayer(client, layer);
1850         surfaceHandle = layer->getSurface();
1851         if (surfaceHandle != 0) {
1852             params->token = token;
1853             params->identity = layer->getIdentity();
1854         }
1855         setTransactionFlags(eTransactionNeeded);
1856     }
1857
1858     return surfaceHandle;
1859 }
1860
1861 sp<Layer> SurfaceFlinger::createNormalLayer(
1862         const sp<Client>& client,
1863         uint32_t w, uint32_t h, uint32_t flags,
1864         PixelFormat& format)
1865 {
1866     // initialize the surfaces
1867     switch (format) {
1868     case PIXEL_FORMAT_TRANSPARENT:
1869     case PIXEL_FORMAT_TRANSLUCENT:
1870         format = PIXEL_FORMAT_RGBA_8888;
1871         break;
1872     case PIXEL_FORMAT_OPAQUE:
1873 #ifdef NO_RGBX_8888
1874         format = PIXEL_FORMAT_RGB_565;
1875 #else
1876         format = PIXEL_FORMAT_RGBX_8888;
1877 #endif
1878         break;
1879     }
1880
1881 #ifdef NO_RGBX_8888
1882     if (format == PIXEL_FORMAT_RGBX_8888)
1883         format = PIXEL_FORMAT_RGBA_8888;
1884 #endif
1885
1886     sp<Layer> layer = new Layer(this, client);
1887     status_t err = layer->setBuffers(w, h, format, flags);
1888     if (CC_LIKELY(err != NO_ERROR)) {
1889         ALOGE("createNormalLayer() failed (%s)", strerror(-err));
1890         layer.clear();
1891     }
1892     return layer;
1893 }
1894
1895 sp<LayerDim> SurfaceFlinger::createDimLayer(
1896         const sp<Client>& client,
1897         uint32_t w, uint32_t h, uint32_t flags)
1898 {
1899     sp<LayerDim> layer = new LayerDim(this, client);
1900     return layer;
1901 }
1902
1903 sp<LayerScreenshot> SurfaceFlinger::createScreenshotLayer(
1904         const sp<Client>& client,
1905         uint32_t w, uint32_t h, uint32_t flags)
1906 {
1907     sp<LayerScreenshot> layer = new LayerScreenshot(this, client);
1908     return layer;
1909 }
1910
1911 status_t SurfaceFlinger::onLayerRemoved(const sp<Client>& client, SurfaceID sid)
1912 {
1913     /*
1914      * called by the window manager, when a surface should be marked for
1915      * destruction.
1916      *
1917      * The surface is removed from the current and drawing lists, but placed
1918      * in the purgatory queue, so it's not destroyed right-away (we need
1919      * to wait for all client's references to go away first).
1920      */
1921
1922     status_t err = NAME_NOT_FOUND;
1923     Mutex::Autolock _l(mStateLock);
1924     sp<LayerBaseClient> layer = client->getLayerUser(sid);
1925
1926     if (layer != 0) {
1927         err = purgatorizeLayer_l(layer);
1928         if (err == NO_ERROR) {
1929             setTransactionFlags(eTransactionNeeded);
1930         }
1931     }
1932     return err;
1933 }
1934
1935 status_t SurfaceFlinger::onLayerDestroyed(const wp<LayerBaseClient>& layer)
1936 {
1937     // called by ~ISurface() when all references are gone
1938     status_t err = NO_ERROR;
1939     sp<LayerBaseClient> l(layer.promote());
1940     if (l != NULL) {
1941         Mutex::Autolock _l(mStateLock);
1942         err = removeLayer_l(l);
1943         if (err == NAME_NOT_FOUND) {
1944             // The surface wasn't in the current list, which means it was
1945             // removed already, which means it is in the purgatory,
1946             // and need to be removed from there.
1947             ssize_t idx = mLayerPurgatory.remove(l);
1948             ALOGE_IF(idx < 0,
1949                     "layer=%p is not in the purgatory list", l.get());
1950         }
1951         ALOGE_IF(err<0 && err != NAME_NOT_FOUND,
1952                 "error removing layer=%p (%s)", l.get(), strerror(-err));
1953     }
1954     return err;
1955 }
1956
1957 // ---------------------------------------------------------------------------
1958
1959 void SurfaceFlinger::onInitializeDisplays() {
1960     // reset screen orientation
1961     Vector<ComposerState> state;
1962     Vector<DisplayState> displays;
1963     DisplayState d;
1964     d.what = DisplayState::eDisplayProjectionChanged;
1965     d.token = mDefaultDisplays[DisplayDevice::DISPLAY_PRIMARY];
1966     d.orientation = DisplayState::eOrientationDefault;
1967     d.frame.makeInvalid();
1968     d.viewport.makeInvalid();
1969     displays.add(d);
1970     setTransactionState(state, displays, 0);
1971     onScreenAcquired(getDefaultDisplayDevice());
1972 }
1973
1974 void SurfaceFlinger::initializeDisplays() {
1975     class MessageScreenInitialized : public MessageBase {
1976         SurfaceFlinger* flinger;
1977     public:
1978         MessageScreenInitialized(SurfaceFlinger* flinger) : flinger(flinger) { }
1979         virtual bool handler() {
1980             flinger->onInitializeDisplays();
1981             return true;
1982         }
1983     };
1984     sp<MessageBase> msg = new MessageScreenInitialized(this);
1985     postMessageAsync(msg);  // we may be called from main thread, use async message
1986 }
1987
1988
1989 void SurfaceFlinger::onScreenAcquired(const sp<const DisplayDevice>& hw) {
1990     ALOGD("Screen acquired, type=%d flinger=%p", hw->getDisplayType(), this);
1991     if (hw->isScreenAcquired()) {
1992         // this is expected, e.g. when power manager wakes up during boot
1993         ALOGD(" screen was previously acquired");
1994         return;
1995     }
1996
1997     hw->acquireScreen();
1998     int32_t type = hw->getDisplayType();
1999     if (type < DisplayDevice::NUM_DISPLAY_TYPES) {
2000         // built-in display, tell the HWC
2001         getHwComposer().acquire(type);
2002
2003         if (type == DisplayDevice::DISPLAY_PRIMARY) {
2004             // FIXME: eventthread only knows about the main display right now
2005             mEventThread->onScreenAcquired();
2006         }
2007     }
2008     mVisibleRegionsDirty = true;
2009     repaintEverything();
2010 }
2011
2012 void SurfaceFlinger::onScreenReleased(const sp<const DisplayDevice>& hw) {
2013     ALOGD("Screen released, type=%d flinger=%p", hw->getDisplayType(), this);
2014     if (!hw->isScreenAcquired()) {
2015         ALOGD(" screen was previously released");
2016         return;
2017     }
2018
2019     hw->releaseScreen();
2020     int32_t type = hw->getDisplayType();
2021     if (type < DisplayDevice::NUM_DISPLAY_TYPES) {
2022         if (type == DisplayDevice::DISPLAY_PRIMARY) {
2023             // FIXME: eventthread only knows about the main display right now
2024             mEventThread->onScreenReleased();
2025         }
2026
2027         // built-in display, tell the HWC
2028         getHwComposer().release(type);
2029     }
2030     mVisibleRegionsDirty = true;
2031     // from this point on, SF will stop drawing on this display
2032 }
2033
2034 void SurfaceFlinger::unblank(const sp<IBinder>& display) {
2035     class MessageScreenAcquired : public MessageBase {
2036         SurfaceFlinger& mFlinger;
2037         sp<IBinder> mDisplay;
2038     public:
2039         MessageScreenAcquired(SurfaceFlinger& flinger,
2040                 const sp<IBinder>& disp) : mFlinger(flinger), mDisplay(disp) { }
2041         virtual bool handler() {
2042             const sp<DisplayDevice> hw(mFlinger.getDisplayDevice(mDisplay));
2043             if (hw == NULL) {
2044                 ALOGE("Attempt to unblank null display %p", mDisplay.get());
2045             } else if (hw->getDisplayType() >= DisplayDevice::NUM_DISPLAY_TYPES) {
2046                 ALOGW("Attempt to unblank virtual display");
2047             } else {
2048                 mFlinger.onScreenAcquired(hw);
2049             }
2050             return true;
2051         }
2052     };
2053     sp<MessageBase> msg = new MessageScreenAcquired(*this, display);
2054     postMessageSync(msg);
2055 }
2056
2057 void SurfaceFlinger::blank(const sp<IBinder>& display) {
2058     class MessageScreenReleased : public MessageBase {
2059         SurfaceFlinger& mFlinger;
2060         sp<IBinder> mDisplay;
2061     public:
2062         MessageScreenReleased(SurfaceFlinger& flinger,
2063                 const sp<IBinder>& disp) : mFlinger(flinger), mDisplay(disp) { }
2064         virtual bool handler() {
2065             const sp<DisplayDevice> hw(mFlinger.getDisplayDevice(mDisplay));
2066             if (hw == NULL) {
2067                 ALOGE("Attempt to blank null display %p", mDisplay.get());
2068             } else if (hw->getDisplayType() >= DisplayDevice::NUM_DISPLAY_TYPES) {
2069                 ALOGW("Attempt to blank virtual display");
2070             } else {
2071                 mFlinger.onScreenReleased(hw);
2072             }
2073             return true;
2074         }
2075     };
2076     sp<MessageBase> msg = new MessageScreenReleased(*this, display);
2077     postMessageSync(msg);
2078 }
2079
2080 // ---------------------------------------------------------------------------
2081
2082 status_t SurfaceFlinger::dump(int fd, const Vector<String16>& args)
2083 {
2084     const size_t SIZE = 4096;
2085     char buffer[SIZE];
2086     String8 result;
2087
2088     if (!PermissionCache::checkCallingPermission(sDump)) {
2089         snprintf(buffer, SIZE, "Permission Denial: "
2090                 "can't dump SurfaceFlinger from pid=%d, uid=%d\n",
2091                 IPCThreadState::self()->getCallingPid(),
2092                 IPCThreadState::self()->getCallingUid());
2093         result.append(buffer);
2094     } else {
2095         // Try to get the main lock, but don't insist if we can't
2096         // (this would indicate SF is stuck, but we want to be able to
2097         // print something in dumpsys).
2098         int retry = 3;
2099         while (mStateLock.tryLock()<0 && --retry>=0) {
2100             usleep(1000000);
2101         }
2102         const bool locked(retry >= 0);
2103         if (!locked) {
2104             snprintf(buffer, SIZE,
2105                     "SurfaceFlinger appears to be unresponsive, "
2106                     "dumping anyways (no locks held)\n");
2107             result.append(buffer);
2108         }
2109
2110         bool dumpAll = true;
2111         size_t index = 0;
2112         size_t numArgs = args.size();
2113         if (numArgs) {
2114             if ((index < numArgs) &&
2115                     (args[index] == String16("--list"))) {
2116                 index++;
2117                 listLayersLocked(args, index, result, buffer, SIZE);
2118                 dumpAll = false;
2119             }
2120
2121             if ((index < numArgs) &&
2122                     (args[index] == String16("--latency"))) {
2123                 index++;
2124                 dumpStatsLocked(args, index, result, buffer, SIZE);
2125                 dumpAll = false;
2126             }
2127
2128             if ((index < numArgs) &&
2129                     (args[index] == String16("--latency-clear"))) {
2130                 index++;
2131                 clearStatsLocked(args, index, result, buffer, SIZE);
2132                 dumpAll = false;
2133             }
2134         }
2135
2136         if (dumpAll) {
2137             dumpAllLocked(result, buffer, SIZE);
2138         }
2139
2140         if (locked) {
2141             mStateLock.unlock();
2142         }
2143     }
2144     write(fd, result.string(), result.size());
2145     return NO_ERROR;
2146 }
2147
2148 void SurfaceFlinger::listLayersLocked(const Vector<String16>& args, size_t& index,
2149         String8& result, char* buffer, size_t SIZE) const
2150 {
2151     const LayerVector& currentLayers = mCurrentState.layersSortedByZ;
2152     const size_t count = currentLayers.size();
2153     for (size_t i=0 ; i<count ; i++) {
2154         const sp<LayerBase>& layer(currentLayers[i]);
2155         snprintf(buffer, SIZE, "%s\n", layer->getName().string());
2156         result.append(buffer);
2157     }
2158 }
2159
2160 void SurfaceFlinger::dumpStatsLocked(const Vector<String16>& args, size_t& index,
2161         String8& result, char* buffer, size_t SIZE) const
2162 {
2163     String8 name;
2164     if (index < args.size()) {
2165         name = String8(args[index]);
2166         index++;
2167     }
2168
2169     const LayerVector& currentLayers = mCurrentState.layersSortedByZ;
2170     const size_t count = currentLayers.size();
2171     for (size_t i=0 ; i<count ; i++) {
2172         const sp<LayerBase>& layer(currentLayers[i]);
2173         if (name.isEmpty()) {
2174             snprintf(buffer, SIZE, "%s\n", layer->getName().string());
2175             result.append(buffer);
2176         }
2177         if (name.isEmpty() || (name == layer->getName())) {
2178             layer->dumpStats(result, buffer, SIZE);
2179         }
2180     }
2181 }
2182
2183 void SurfaceFlinger::clearStatsLocked(const Vector<String16>& args, size_t& index,
2184         String8& result, char* buffer, size_t SIZE) const
2185 {
2186     String8 name;
2187     if (index < args.size()) {
2188         name = String8(args[index]);
2189         index++;
2190     }
2191
2192     const LayerVector& currentLayers = mCurrentState.layersSortedByZ;
2193     const size_t count = currentLayers.size();
2194     for (size_t i=0 ; i<count ; i++) {
2195         const sp<LayerBase>& layer(currentLayers[i]);
2196         if (name.isEmpty() || (name == layer->getName())) {
2197             layer->clearStats();
2198         }
2199     }
2200 }
2201
2202 /*static*/ void SurfaceFlinger::appendSfConfigString(String8& result)
2203 {
2204     static const char* config =
2205             " [sf"
2206 #ifdef NO_RGBX_8888
2207             " NO_RGBX_8888"
2208 #endif
2209 #ifdef HAS_CONTEXT_PRIORITY
2210             " HAS_CONTEXT_PRIORITY"
2211 #endif
2212 #ifdef NEVER_DEFAULT_TO_ASYNC_MODE
2213             " NEVER_DEFAULT_TO_ASYNC_MODE"
2214 #endif
2215 #ifdef TARGET_DISABLE_TRIPLE_BUFFERING
2216             " TARGET_DISABLE_TRIPLE_BUFFERING"
2217 #endif
2218             "]";
2219     result.append(config);
2220 }
2221
2222 void SurfaceFlinger::dumpAllLocked(
2223         String8& result, char* buffer, size_t SIZE) const
2224 {
2225     // figure out if we're stuck somewhere
2226     const nsecs_t now = systemTime();
2227     const nsecs_t inSwapBuffers(mDebugInSwapBuffers);
2228     const nsecs_t inTransaction(mDebugInTransaction);
2229     nsecs_t inSwapBuffersDuration = (inSwapBuffers) ? now-inSwapBuffers : 0;
2230     nsecs_t inTransactionDuration = (inTransaction) ? now-inTransaction : 0;
2231
2232     /*
2233      * Dump library configuration.
2234      */
2235     result.append("Build configuration:");
2236     appendSfConfigString(result);
2237     appendUiConfigString(result);
2238     appendGuiConfigString(result);
2239     result.append("\n");
2240
2241     /*
2242      * Dump the visible layer list
2243      */
2244     const LayerVector& currentLayers = mCurrentState.layersSortedByZ;
2245     const size_t count = currentLayers.size();
2246     snprintf(buffer, SIZE, "Visible layers (count = %d)\n", count);
2247     result.append(buffer);
2248     for (size_t i=0 ; i<count ; i++) {
2249         const sp<LayerBase>& layer(currentLayers[i]);
2250         layer->dump(result, buffer, SIZE);
2251     }
2252
2253     /*
2254      * Dump the layers in the purgatory
2255      */
2256
2257     const size_t purgatorySize = mLayerPurgatory.size();
2258     snprintf(buffer, SIZE, "Purgatory state (%d entries)\n", purgatorySize);
2259     result.append(buffer);
2260     for (size_t i=0 ; i<purgatorySize ; i++) {
2261         const sp<LayerBase>& layer(mLayerPurgatory.itemAt(i));
2262         layer->shortDump(result, buffer, SIZE);
2263     }
2264
2265     /*
2266      * Dump Display state
2267      */
2268
2269     snprintf(buffer, SIZE, "Displays (%d entries)\n", mDisplays.size());
2270     result.append(buffer);
2271     for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) {
2272         const sp<const DisplayDevice>& hw(mDisplays[dpy]);
2273         hw->dump(result, buffer, SIZE);
2274     }
2275
2276     /*
2277      * Dump SurfaceFlinger global state
2278      */
2279
2280     snprintf(buffer, SIZE, "SurfaceFlinger global state:\n");
2281     result.append(buffer);
2282
2283     HWComposer& hwc(getHwComposer());
2284     sp<const DisplayDevice> hw(getDefaultDisplayDevice());
2285     const GLExtensions& extensions(GLExtensions::getInstance());
2286     snprintf(buffer, SIZE, "GLES: %s, %s, %s\n",
2287             extensions.getVendor(),
2288             extensions.getRenderer(),
2289             extensions.getVersion());
2290     result.append(buffer);
2291
2292     snprintf(buffer, SIZE, "EGL : %s\n",
2293             eglQueryString(mEGLDisplay, EGL_VERSION_HW_ANDROID));
2294     result.append(buffer);
2295
2296     snprintf(buffer, SIZE, "EXTS: %s\n", extensions.getExtension());
2297     result.append(buffer);
2298
2299     hw->undefinedRegion.dump(result, "undefinedRegion");
2300     snprintf(buffer, SIZE,
2301             "  orientation=%d, canDraw=%d\n",
2302             hw->getOrientation(), hw->canDraw());
2303     result.append(buffer);
2304     snprintf(buffer, SIZE,
2305             "  last eglSwapBuffers() time: %f us\n"
2306             "  last transaction time     : %f us\n"
2307             "  transaction-flags         : %08x\n"
2308             "  refresh-rate              : %f fps\n"
2309             "  x-dpi                     : %f\n"
2310             "  y-dpi                     : %f\n",
2311             mLastSwapBufferTime/1000.0,
2312             mLastTransactionTime/1000.0,
2313             mTransactionFlags,
2314             1e9 / hwc.getRefreshPeriod(HWC_DISPLAY_PRIMARY),
2315             hwc.getDpiX(HWC_DISPLAY_PRIMARY),
2316             hwc.getDpiY(HWC_DISPLAY_PRIMARY));
2317     result.append(buffer);
2318
2319     snprintf(buffer, SIZE, "  eglSwapBuffers time: %f us\n",
2320             inSwapBuffersDuration/1000.0);
2321     result.append(buffer);
2322
2323     snprintf(buffer, SIZE, "  transaction time: %f us\n",
2324             inTransactionDuration/1000.0);
2325     result.append(buffer);
2326
2327     /*
2328      * VSYNC state
2329      */
2330     mEventThread->dump(result, buffer, SIZE);
2331
2332     /*
2333      * Dump HWComposer state
2334      */
2335     snprintf(buffer, SIZE, "h/w composer state:\n");
2336     result.append(buffer);
2337     snprintf(buffer, SIZE, "  h/w composer %s and %s\n",
2338             hwc.initCheck()==NO_ERROR ? "present" : "not present",
2339                     (mDebugDisableHWC || mDebugRegion) ? "disabled" : "enabled");
2340     result.append(buffer);
2341     hwc.dump(result, buffer, SIZE);
2342
2343     /*
2344      * Dump gralloc state
2345      */
2346     const GraphicBufferAllocator& alloc(GraphicBufferAllocator::get());
2347     alloc.dump(result);
2348 }
2349
2350 const Vector< sp<LayerBase> >&
2351 SurfaceFlinger::getLayerSortedByZForHwcDisplay(int disp) {
2352     // Note: mStateLock is held here
2353     return getDisplayDevice( getBuiltInDisplay(disp) )->getVisibleLayersSortedByZ();
2354 }
2355
2356 bool SurfaceFlinger::startDdmConnection()
2357 {
2358     void* libddmconnection_dso =
2359             dlopen("libsurfaceflinger_ddmconnection.so", RTLD_NOW);
2360     if (!libddmconnection_dso) {
2361         return false;
2362     }
2363     void (*DdmConnection_start)(const char* name);
2364     DdmConnection_start =
2365             (typeof DdmConnection_start)dlsym(libddmconnection_dso, "DdmConnection_start");
2366     if (!DdmConnection_start) {
2367         dlclose(libddmconnection_dso);
2368         return false;
2369     }
2370     (*DdmConnection_start)(getServiceName());
2371     return true;
2372 }
2373
2374 status_t SurfaceFlinger::onTransact(
2375     uint32_t code, const Parcel& data, Parcel* reply, uint32_t flags)
2376 {
2377     switch (code) {
2378         case CREATE_CONNECTION:
2379         case SET_TRANSACTION_STATE:
2380         case BOOT_FINISHED:
2381         case BLANK:
2382         case UNBLANK:
2383         {
2384             // codes that require permission check
2385             IPCThreadState* ipc = IPCThreadState::self();
2386             const int pid = ipc->getCallingPid();
2387             const int uid = ipc->getCallingUid();
2388             if ((uid != AID_GRAPHICS) &&
2389                     !PermissionCache::checkPermission(sAccessSurfaceFlinger, pid, uid)) {
2390                 ALOGE("Permission Denial: "
2391                         "can't access SurfaceFlinger pid=%d, uid=%d", pid, uid);
2392                 return PERMISSION_DENIED;
2393             }
2394             break;
2395         }
2396         case CAPTURE_SCREEN:
2397         {
2398             // codes that require permission check
2399             IPCThreadState* ipc = IPCThreadState::self();
2400             const int pid = ipc->getCallingPid();
2401             const int uid = ipc->getCallingUid();
2402             if ((uid != AID_GRAPHICS) &&
2403                     !PermissionCache::checkPermission(sReadFramebuffer, pid, uid)) {
2404                 ALOGE("Permission Denial: "
2405                         "can't read framebuffer pid=%d, uid=%d", pid, uid);
2406                 return PERMISSION_DENIED;
2407             }
2408             break;
2409         }
2410     }
2411
2412     status_t err = BnSurfaceComposer::onTransact(code, data, reply, flags);
2413     if (err == UNKNOWN_TRANSACTION || err == PERMISSION_DENIED) {
2414         CHECK_INTERFACE(ISurfaceComposer, data, reply);
2415         if (CC_UNLIKELY(!PermissionCache::checkCallingPermission(sHardwareTest))) {
2416             IPCThreadState* ipc = IPCThreadState::self();
2417             const int pid = ipc->getCallingPid();
2418             const int uid = ipc->getCallingUid();
2419             ALOGE("Permission Denial: "
2420                     "can't access SurfaceFlinger pid=%d, uid=%d", pid, uid);
2421             return PERMISSION_DENIED;
2422         }
2423         int n;
2424         switch (code) {
2425             case 1000: // SHOW_CPU, NOT SUPPORTED ANYMORE
2426             case 1001: // SHOW_FPS, NOT SUPPORTED ANYMORE
2427                 return NO_ERROR;
2428             case 1002:  // SHOW_UPDATES
2429                 n = data.readInt32();
2430                 mDebugRegion = n ? n : (mDebugRegion ? 0 : 1);
2431                 invalidateHwcGeometry();
2432                 repaintEverything();
2433                 return NO_ERROR;
2434             case 1004:{ // repaint everything
2435                 repaintEverything();
2436                 return NO_ERROR;
2437             }
2438             case 1005:{ // force transaction
2439                 setTransactionFlags(
2440                         eTransactionNeeded|
2441                         eDisplayTransactionNeeded|
2442                         eTraversalNeeded);
2443                 return NO_ERROR;
2444             }
2445             case 1006:{ // send empty update
2446                 signalRefresh();
2447                 return NO_ERROR;
2448             }
2449             case 1008:  // toggle use of hw composer
2450                 n = data.readInt32();
2451                 mDebugDisableHWC = n ? 1 : 0;
2452                 invalidateHwcGeometry();
2453                 repaintEverything();
2454                 return NO_ERROR;
2455             case 1009:  // toggle use of transform hint
2456                 n = data.readInt32();
2457                 mDebugDisableTransformHint = n ? 1 : 0;
2458                 invalidateHwcGeometry();
2459                 repaintEverything();
2460                 return NO_ERROR;
2461             case 1010:  // interrogate.
2462                 reply->writeInt32(0);
2463                 reply->writeInt32(0);
2464                 reply->writeInt32(mDebugRegion);
2465                 reply->writeInt32(0);
2466                 reply->writeInt32(mDebugDisableHWC);
2467                 return NO_ERROR;
2468             case 1013: {
2469                 Mutex::Autolock _l(mStateLock);
2470                 sp<const DisplayDevice> hw(getDefaultDisplayDevice());
2471                 reply->writeInt32(hw->getPageFlipCount());
2472             }
2473             return NO_ERROR;
2474         }
2475     }
2476     return err;
2477 }
2478
2479 void SurfaceFlinger::repaintEverything() {
2480     android_atomic_or(1, &mRepaintEverything);
2481     signalTransaction();
2482 }
2483
2484 // ---------------------------------------------------------------------------
2485
2486 status_t SurfaceFlinger::renderScreenToTexture(uint32_t layerStack,
2487         GLuint* textureName, GLfloat* uOut, GLfloat* vOut)
2488 {
2489     Mutex::Autolock _l(mStateLock);
2490     return renderScreenToTextureLocked(layerStack, textureName, uOut, vOut);
2491 }
2492
2493 status_t SurfaceFlinger::renderScreenToTextureLocked(uint32_t layerStack,
2494         GLuint* textureName, GLfloat* uOut, GLfloat* vOut)
2495 {
2496     ATRACE_CALL();
2497
2498     if (!GLExtensions::getInstance().haveFramebufferObject())
2499         return INVALID_OPERATION;
2500
2501     // get screen geometry
2502     // FIXME: figure out what it means to have a screenshot texture w/ multi-display
2503     sp<const DisplayDevice> hw(getDefaultDisplayDevice());
2504     const uint32_t hw_w = hw->getWidth();
2505     const uint32_t hw_h = hw->getHeight();
2506     GLfloat u = 1;
2507     GLfloat v = 1;
2508
2509     // make sure to clear all GL error flags
2510     while ( glGetError() != GL_NO_ERROR ) ;
2511
2512     // create a FBO
2513     GLuint name, tname;
2514     glGenTextures(1, &tname);
2515     glBindTexture(GL_TEXTURE_2D, tname);
2516     glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
2517     glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
2518     glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB,
2519             hw_w, hw_h, 0, GL_RGB, GL_UNSIGNED_BYTE, 0);
2520     if (glGetError() != GL_NO_ERROR) {
2521         while ( glGetError() != GL_NO_ERROR ) ;
2522         GLint tw = (2 << (31 - clz(hw_w)));
2523         GLint th = (2 << (31 - clz(hw_h)));
2524         glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB,
2525                 tw, th, 0, GL_RGB, GL_UNSIGNED_BYTE, 0);
2526         u = GLfloat(hw_w) / tw;
2527         v = GLfloat(hw_h) / th;
2528     }
2529     glGenFramebuffersOES(1, &name);
2530     glBindFramebufferOES(GL_FRAMEBUFFER_OES, name);
2531     glFramebufferTexture2DOES(GL_FRAMEBUFFER_OES,
2532             GL_COLOR_ATTACHMENT0_OES, GL_TEXTURE_2D, tname, 0);
2533
2534     DisplayDevice::setViewportAndProjection(hw);
2535
2536     // redraw the screen entirely...
2537     glDisable(GL_TEXTURE_EXTERNAL_OES);
2538     glDisable(GL_TEXTURE_2D);
2539     glClearColor(0,0,0,1);
2540     glClear(GL_COLOR_BUFFER_BIT);
2541     glMatrixMode(GL_MODELVIEW);
2542     glLoadIdentity();
2543     const Vector< sp<LayerBase> >& layers(hw->getVisibleLayersSortedByZ());
2544     const size_t count = layers.size();
2545     for (size_t i=0 ; i<count ; ++i) {
2546         const sp<LayerBase>& layer(layers[i]);
2547         layer->draw(hw);
2548     }
2549
2550     hw->compositionComplete();
2551
2552     // back to main framebuffer
2553     glBindFramebufferOES(GL_FRAMEBUFFER_OES, 0);
2554     glDeleteFramebuffersOES(1, &name);
2555
2556     *textureName = tname;
2557     *uOut = u;
2558     *vOut = v;
2559     return NO_ERROR;
2560 }
2561
2562 // ---------------------------------------------------------------------------
2563
2564 status_t SurfaceFlinger::captureScreenImplLocked(const sp<IBinder>& display,
2565         sp<IMemoryHeap>* heap,
2566         uint32_t* w, uint32_t* h, PixelFormat* f,
2567         uint32_t sw, uint32_t sh,
2568         uint32_t minLayerZ, uint32_t maxLayerZ)
2569 {
2570     ATRACE_CALL();
2571
2572     status_t result = PERMISSION_DENIED;
2573
2574     if (!GLExtensions::getInstance().haveFramebufferObject()) {
2575         return INVALID_OPERATION;
2576     }
2577
2578     // get screen geometry
2579     sp<const DisplayDevice> hw(getDisplayDevice(display));
2580     const uint32_t hw_w = hw->getWidth();
2581     const uint32_t hw_h = hw->getHeight();
2582
2583     // if we have secure windows on this display, never allow the screen capture
2584     if (hw->getSecureLayerVisible()) {
2585         ALOGW("FB is protected: PERMISSION_DENIED");
2586         return PERMISSION_DENIED;
2587     }
2588
2589     if ((sw > hw_w) || (sh > hw_h)) {
2590         ALOGE("size mismatch (%d, %d) > (%d, %d)", sw, sh, hw_w, hw_h);
2591         return BAD_VALUE;
2592     }
2593
2594     sw = (!sw) ? hw_w : sw;
2595     sh = (!sh) ? hw_h : sh;
2596     const size_t size = sw * sh * 4;
2597     const bool filtering = sw != hw_w || sh != hw_h;
2598
2599 //    ALOGD("screenshot: sw=%d, sh=%d, minZ=%d, maxZ=%d",
2600 //            sw, sh, minLayerZ, maxLayerZ);
2601
2602     // make sure to clear all GL error flags
2603     while ( glGetError() != GL_NO_ERROR ) ;
2604
2605     // create a FBO
2606     GLuint name, tname;
2607     glGenRenderbuffersOES(1, &tname);
2608     glBindRenderbufferOES(GL_RENDERBUFFER_OES, tname);
2609     glRenderbufferStorageOES(GL_RENDERBUFFER_OES, GL_RGBA8_OES, sw, sh);
2610
2611     glGenFramebuffersOES(1, &name);
2612     glBindFramebufferOES(GL_FRAMEBUFFER_OES, name);
2613     glFramebufferRenderbufferOES(GL_FRAMEBUFFER_OES,
2614             GL_COLOR_ATTACHMENT0_OES, GL_RENDERBUFFER_OES, tname);
2615
2616     GLenum status = glCheckFramebufferStatusOES(GL_FRAMEBUFFER_OES);
2617
2618     if (status == GL_FRAMEBUFFER_COMPLETE_OES) {
2619
2620         // invert everything, b/c glReadPixel() below will invert the FB
2621         GLint  viewport[4];
2622         glGetIntegerv(GL_VIEWPORT, viewport);
2623         glViewport(0, 0, sw, sh);
2624         glMatrixMode(GL_PROJECTION);
2625         glPushMatrix();
2626         glLoadIdentity();
2627         glOrthof(0, hw_w, hw_h, 0, 0, 1);
2628         glMatrixMode(GL_MODELVIEW);
2629
2630         // redraw the screen entirely...
2631         glClearColor(0,0,0,1);
2632         glClear(GL_COLOR_BUFFER_BIT);
2633
2634         const Vector< sp<LayerBase> >& layers(hw->getVisibleLayersSortedByZ());
2635         const size_t count = layers.size();
2636         for (size_t i=0 ; i<count ; ++i) {
2637             const sp<LayerBase>& layer(layers[i]);
2638             const uint32_t z = layer->drawingState().z;
2639             if (z >= minLayerZ && z <= maxLayerZ) {
2640                 if (filtering) layer->setFiltering(true);
2641                 layer->draw(hw);
2642                 if (filtering) layer->setFiltering(false);
2643             }
2644         }
2645
2646         // check for errors and return screen capture
2647         if (glGetError() != GL_NO_ERROR) {
2648             // error while rendering
2649             result = INVALID_OPERATION;
2650         } else {
2651             // allocate shared memory large enough to hold the
2652             // screen capture
2653             sp<MemoryHeapBase> base(
2654                     new MemoryHeapBase(size, 0, "screen-capture") );
2655             void* const ptr = base->getBase();
2656             if (ptr != MAP_FAILED) {
2657                 // capture the screen with glReadPixels()
2658                 ScopedTrace _t(ATRACE_TAG, "glReadPixels");
2659                 glReadPixels(0, 0, sw, sh, GL_RGBA, GL_UNSIGNED_BYTE, ptr);
2660                 if (glGetError() == GL_NO_ERROR) {
2661                     *heap = base;
2662                     *w = sw;
2663                     *h = sh;
2664                     *f = PIXEL_FORMAT_RGBA_8888;
2665                     result = NO_ERROR;
2666                 }
2667             } else {
2668                 result = NO_MEMORY;
2669             }
2670         }
2671         glViewport(viewport[0], viewport[1], viewport[2], viewport[3]);
2672         glMatrixMode(GL_PROJECTION);
2673         glPopMatrix();
2674         glMatrixMode(GL_MODELVIEW);
2675     } else {
2676         result = BAD_VALUE;
2677     }
2678
2679     // release FBO resources
2680     glBindFramebufferOES(GL_FRAMEBUFFER_OES, 0);
2681     glDeleteRenderbuffersOES(1, &tname);
2682     glDeleteFramebuffersOES(1, &name);
2683
2684     hw->compositionComplete();
2685
2686 //    ALOGD("screenshot: result = %s", result<0 ? strerror(result) : "OK");
2687
2688     return result;
2689 }
2690
2691
2692 status_t SurfaceFlinger::captureScreen(const sp<IBinder>& display,
2693         sp<IMemoryHeap>* heap,
2694         uint32_t* width, uint32_t* height, PixelFormat* format,
2695         uint32_t sw, uint32_t sh,
2696         uint32_t minLayerZ, uint32_t maxLayerZ)
2697 {
2698     if (CC_UNLIKELY(display == 0))
2699         return BAD_VALUE;
2700
2701     if (!GLExtensions::getInstance().haveFramebufferObject())
2702         return INVALID_OPERATION;
2703
2704     class MessageCaptureScreen : public MessageBase {
2705         SurfaceFlinger* flinger;
2706         sp<IBinder> display;
2707         sp<IMemoryHeap>* heap;
2708         uint32_t* w;
2709         uint32_t* h;
2710         PixelFormat* f;
2711         uint32_t sw;
2712         uint32_t sh;
2713         uint32_t minLayerZ;
2714         uint32_t maxLayerZ;
2715         status_t result;
2716     public:
2717         MessageCaptureScreen(SurfaceFlinger* flinger, const sp<IBinder>& display,
2718                 sp<IMemoryHeap>* heap, uint32_t* w, uint32_t* h, PixelFormat* f,
2719                 uint32_t sw, uint32_t sh,
2720                 uint32_t minLayerZ, uint32_t maxLayerZ)
2721             : flinger(flinger), display(display),
2722               heap(heap), w(w), h(h), f(f), sw(sw), sh(sh),
2723               minLayerZ(minLayerZ), maxLayerZ(maxLayerZ),
2724               result(PERMISSION_DENIED)
2725         {
2726         }
2727         status_t getResult() const {
2728             return result;
2729         }
2730         virtual bool handler() {
2731             Mutex::Autolock _l(flinger->mStateLock);
2732             result = flinger->captureScreenImplLocked(display,
2733                     heap, w, h, f, sw, sh, minLayerZ, maxLayerZ);
2734             return true;
2735         }
2736     };
2737
2738     sp<MessageBase> msg = new MessageCaptureScreen(this,
2739             display, heap, width, height, format, sw, sh, minLayerZ, maxLayerZ);
2740     status_t res = postMessageSync(msg);
2741     if (res == NO_ERROR) {
2742         res = static_cast<MessageCaptureScreen*>( msg.get() )->getResult();
2743     }
2744     return res;
2745 }
2746
2747 // ---------------------------------------------------------------------------
2748
2749 SurfaceFlinger::LayerVector::LayerVector() {
2750 }
2751
2752 SurfaceFlinger::LayerVector::LayerVector(const LayerVector& rhs)
2753     : SortedVector<sp<LayerBase> >(rhs) {
2754 }
2755
2756 int SurfaceFlinger::LayerVector::do_compare(const void* lhs,
2757     const void* rhs) const
2758 {
2759     // sort layers per layer-stack, then by z-order and finally by sequence
2760     const sp<LayerBase>& l(*reinterpret_cast<const sp<LayerBase>*>(lhs));
2761     const sp<LayerBase>& r(*reinterpret_cast<const sp<LayerBase>*>(rhs));
2762
2763     uint32_t ls = l->currentState().layerStack;
2764     uint32_t rs = r->currentState().layerStack;
2765     if (ls != rs)
2766         return ls - rs;
2767
2768     uint32_t lz = l->currentState().z;
2769     uint32_t rz = r->currentState().z;
2770     if (lz != rz)
2771         return lz - rz;
2772
2773     return l->sequence - r->sequence;
2774 }
2775
2776 // ---------------------------------------------------------------------------
2777
2778 SurfaceFlinger::DisplayDeviceState::DisplayDeviceState()
2779     : type(DisplayDevice::DISPLAY_ID_INVALID) {
2780 }
2781
2782 SurfaceFlinger::DisplayDeviceState::DisplayDeviceState(DisplayDevice::DisplayType type)
2783     : type(type), layerStack(0), orientation(0) {
2784     viewport.makeInvalid();
2785     frame.makeInvalid();
2786 }
2787
2788 // ---------------------------------------------------------------------------
2789
2790 }; // namespace android