OSDN Git Service

ed91d44c4b3b65760779245f365ad5163f40782f
[android-x86/frameworks-native.git] / services / surfaceflinger / SurfaceFlinger.cpp
1 /*
2  * Copyright (C) 2007 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16
17 #define ATRACE_TAG ATRACE_TAG_GRAPHICS
18
19 #include <stdint.h>
20 #include <sys/types.h>
21 #include <errno.h>
22 #include <math.h>
23 #include <dlfcn.h>
24
25 #include <EGL/egl.h>
26 #include <GLES/gl.h>
27
28 #include <cutils/log.h>
29 #include <cutils/properties.h>
30
31 #include <binder/IPCThreadState.h>
32 #include <binder/IServiceManager.h>
33 #include <binder/MemoryHeapBase.h>
34 #include <binder/PermissionCache.h>
35
36 #include <ui/DisplayInfo.h>
37
38 #include <gui/BitTube.h>
39 #include <gui/BufferQueue.h>
40 #include <gui/IDisplayEventConnection.h>
41 #include <gui/SurfaceTextureClient.h>
42
43 #include <ui/GraphicBufferAllocator.h>
44 #include <ui/PixelFormat.h>
45
46 #include <utils/String8.h>
47 #include <utils/String16.h>
48 #include <utils/StopWatch.h>
49 #include <utils/Trace.h>
50
51 #include <private/android_filesystem_config.h>
52
53 #include "clz.h"
54 #include "DdmConnection.h"
55 #include "DisplayDevice.h"
56 #include "Client.h"
57 #include "EventThread.h"
58 #include "GLExtensions.h"
59 #include "Layer.h"
60 #include "LayerDim.h"
61 #include "LayerScreenshot.h"
62 #include "SurfaceFlinger.h"
63
64 #include "DisplayHardware/FramebufferSurface.h"
65 #include "DisplayHardware/HWComposer.h"
66
67
68 #define EGL_VERSION_HW_ANDROID  0x3143
69
70 #define DISPLAY_COUNT       1
71
72 namespace android {
73 // ---------------------------------------------------------------------------
74
75 const String16 sHardwareTest("android.permission.HARDWARE_TEST");
76 const String16 sAccessSurfaceFlinger("android.permission.ACCESS_SURFACE_FLINGER");
77 const String16 sReadFramebuffer("android.permission.READ_FRAME_BUFFER");
78 const String16 sDump("android.permission.DUMP");
79
80 // ---------------------------------------------------------------------------
81
82 SurfaceFlinger::SurfaceFlinger()
83     :   BnSurfaceComposer(), Thread(false),
84         mTransactionFlags(0),
85         mTransationPending(false),
86         mLayersRemoved(false),
87         mRepaintEverything(0),
88         mBootTime(systemTime()),
89         mVisibleRegionsDirty(false),
90         mHwWorkListDirty(false),
91         mDebugRegion(0),
92         mDebugDDMS(0),
93         mDebugDisableHWC(0),
94         mDebugDisableTransformHint(0),
95         mDebugInSwapBuffers(0),
96         mLastSwapBufferTime(0),
97         mDebugInTransaction(0),
98         mLastTransactionTime(0),
99         mBootFinished(false)
100 {
101     ALOGI("SurfaceFlinger is starting");
102
103     // debugging stuff...
104     char value[PROPERTY_VALUE_MAX];
105
106     property_get("debug.sf.showupdates", value, "0");
107     mDebugRegion = atoi(value);
108
109     property_get("debug.sf.ddms", value, "0");
110     mDebugDDMS = atoi(value);
111     if (mDebugDDMS) {
112         if (!startDdmConnection()) {
113             // start failed, and DDMS debugging not enabled
114             mDebugDDMS = 0;
115         }
116     }
117     ALOGI_IF(mDebugRegion, "showupdates enabled");
118     ALOGI_IF(mDebugDDMS, "DDMS debugging enabled");
119 }
120
121 void SurfaceFlinger::onFirstRef()
122 {
123     mEventQueue.init(this);
124
125     run("SurfaceFlinger", PRIORITY_URGENT_DISPLAY);
126
127     // Wait for the main thread to be done with its initialization
128     mReadyToRunBarrier.wait();
129 }
130
131
132 SurfaceFlinger::~SurfaceFlinger()
133 {
134     EGLDisplay display = eglGetDisplay(EGL_DEFAULT_DISPLAY);
135     eglMakeCurrent(display, EGL_NO_SURFACE, EGL_NO_SURFACE, EGL_NO_CONTEXT);
136     eglTerminate(display);
137 }
138
139 void SurfaceFlinger::binderDied(const wp<IBinder>& who)
140 {
141     // the window manager died on us. prepare its eulogy.
142
143     // restore initial conditions (default device unblank, etc)
144     initializeDisplays();
145
146     // restart the boot-animation
147     startBootAnim();
148 }
149
150 sp<ISurfaceComposerClient> SurfaceFlinger::createConnection()
151 {
152     sp<ISurfaceComposerClient> bclient;
153     sp<Client> client(new Client(this));
154     status_t err = client->initCheck();
155     if (err == NO_ERROR) {
156         bclient = client;
157     }
158     return bclient;
159 }
160
161 sp<IBinder> SurfaceFlinger::createDisplay()
162 {
163     class DisplayToken : public BBinder {
164         sp<SurfaceFlinger> flinger;
165         virtual ~DisplayToken() {
166              // no more references, this display must be terminated
167              Mutex::Autolock _l(flinger->mStateLock);
168              flinger->mCurrentState.displays.removeItem(this);
169              flinger->setTransactionFlags(eDisplayTransactionNeeded);
170          }
171      public:
172         DisplayToken(const sp<SurfaceFlinger>& flinger)
173             : flinger(flinger) {
174         }
175     };
176
177     sp<BBinder> token = new DisplayToken(this);
178
179     Mutex::Autolock _l(mStateLock);
180     DisplayDeviceState info(DisplayDevice::DISPLAY_VIRTUAL);
181     mCurrentState.displays.add(token, info);
182
183     return token;
184 }
185
186 sp<IBinder> SurfaceFlinger::getBuiltInDisplay(int32_t id) {
187     if (uint32_t(id) >= DisplayDevice::NUM_DISPLAY_TYPES) {
188         ALOGE("getDefaultDisplay: id=%d is not a valid default display id", id);
189         return NULL;
190     }
191     return mDefaultDisplays[id];
192 }
193
194 sp<IGraphicBufferAlloc> SurfaceFlinger::createGraphicBufferAlloc()
195 {
196     sp<GraphicBufferAlloc> gba(new GraphicBufferAlloc());
197     return gba;
198 }
199
200 void SurfaceFlinger::bootFinished()
201 {
202     const nsecs_t now = systemTime();
203     const nsecs_t duration = now - mBootTime;
204     ALOGI("Boot is finished (%ld ms)", long(ns2ms(duration)) );
205     mBootFinished = true;
206
207     // wait patiently for the window manager death
208     const String16 name("window");
209     sp<IBinder> window(defaultServiceManager()->getService(name));
210     if (window != 0) {
211         window->linkToDeath(static_cast<IBinder::DeathRecipient*>(this));
212     }
213
214     // stop boot animation
215     // formerly we would just kill the process, but we now ask it to exit so it
216     // can choose where to stop the animation.
217     property_set("service.bootanim.exit", "1");
218 }
219
220 void SurfaceFlinger::deleteTextureAsync(GLuint texture) {
221     class MessageDestroyGLTexture : public MessageBase {
222         GLuint texture;
223     public:
224         MessageDestroyGLTexture(GLuint texture)
225             : texture(texture) {
226         }
227         virtual bool handler() {
228             glDeleteTextures(1, &texture);
229             return true;
230         }
231     };
232     postMessageAsync(new MessageDestroyGLTexture(texture));
233 }
234
235 status_t SurfaceFlinger::selectConfigForPixelFormat(
236         EGLDisplay dpy,
237         EGLint const* attrs,
238         PixelFormat format,
239         EGLConfig* outConfig)
240 {
241     EGLConfig config = NULL;
242     EGLint numConfigs = -1, n=0;
243     eglGetConfigs(dpy, NULL, 0, &numConfigs);
244     EGLConfig* const configs = new EGLConfig[numConfigs];
245     eglChooseConfig(dpy, attrs, configs, numConfigs, &n);
246     for (int i=0 ; i<n ; i++) {
247         EGLint nativeVisualId = 0;
248         eglGetConfigAttrib(dpy, configs[i], EGL_NATIVE_VISUAL_ID, &nativeVisualId);
249         if (nativeVisualId>0 && format == nativeVisualId) {
250             *outConfig = configs[i];
251             delete [] configs;
252             return NO_ERROR;
253         }
254     }
255     delete [] configs;
256     return NAME_NOT_FOUND;
257 }
258
259 EGLConfig SurfaceFlinger::selectEGLConfig(EGLDisplay display, EGLint nativeVisualId) {
260     // select our EGLConfig. It must support EGL_RECORDABLE_ANDROID if
261     // it is to be used with WIFI displays
262     EGLConfig config;
263     EGLint dummy;
264     status_t err;
265     EGLint attribs[] = {
266             EGL_SURFACE_TYPE,           EGL_WINDOW_BIT,
267             EGL_RECORDABLE_ANDROID,     EGL_TRUE,
268             EGL_NONE
269     };
270     err = selectConfigForPixelFormat(display, attribs, nativeVisualId, &config);
271     if (err) {
272         // maybe we failed because of EGL_RECORDABLE_ANDROID
273         ALOGW("couldn't find an EGLConfig with EGL_RECORDABLE_ANDROID");
274         attribs[2] = EGL_NONE;
275         err = selectConfigForPixelFormat(display, attribs, nativeVisualId, &config);
276     }
277     ALOGE_IF(err, "couldn't find an EGLConfig matching the screen format");
278     if (eglGetConfigAttrib(display, config, EGL_CONFIG_CAVEAT, &dummy) == EGL_TRUE) {
279         ALOGW_IF(dummy == EGL_SLOW_CONFIG, "EGL_SLOW_CONFIG selected!");
280     }
281     return config;
282 }
283
284 EGLContext SurfaceFlinger::createGLContext(EGLDisplay display, EGLConfig config) {
285     // Also create our EGLContext
286     EGLint contextAttributes[] = {
287 #ifdef EGL_IMG_context_priority
288 #ifdef HAS_CONTEXT_PRIORITY
289 #warning "using EGL_IMG_context_priority"
290             EGL_CONTEXT_PRIORITY_LEVEL_IMG, EGL_CONTEXT_PRIORITY_HIGH_IMG,
291 #endif
292 #endif
293             EGL_NONE, EGL_NONE
294     };
295     EGLContext ctxt = eglCreateContext(display, config, NULL, contextAttributes);
296     ALOGE_IF(ctxt==EGL_NO_CONTEXT, "EGLContext creation failed");
297     return ctxt;
298 }
299
300 void SurfaceFlinger::initializeGL(EGLDisplay display, const sp<DisplayDevice>& hw) {
301     EGLBoolean result = DisplayDevice::makeCurrent(display, hw, mEGLContext);
302     if (!result) {
303         ALOGE("Couldn't create a working GLES context. check logs. exiting...");
304         exit(0);
305     }
306
307     GLExtensions& extensions(GLExtensions::getInstance());
308     extensions.initWithGLStrings(
309             glGetString(GL_VENDOR),
310             glGetString(GL_RENDERER),
311             glGetString(GL_VERSION),
312             glGetString(GL_EXTENSIONS),
313             eglQueryString(display, EGL_VENDOR),
314             eglQueryString(display, EGL_VERSION),
315             eglQueryString(display, EGL_EXTENSIONS));
316
317     glGetIntegerv(GL_MAX_TEXTURE_SIZE, &mMaxTextureSize);
318     glGetIntegerv(GL_MAX_VIEWPORT_DIMS, mMaxViewportDims);
319
320     glPixelStorei(GL_UNPACK_ALIGNMENT, 4);
321     glPixelStorei(GL_PACK_ALIGNMENT, 4);
322     glEnableClientState(GL_VERTEX_ARRAY);
323     glShadeModel(GL_FLAT);
324     glDisable(GL_DITHER);
325     glDisable(GL_CULL_FACE);
326
327     struct pack565 {
328         inline uint16_t operator() (int r, int g, int b) const {
329             return (r<<11)|(g<<5)|b;
330         }
331     } pack565;
332
333     const uint16_t protTexData[] = { pack565(0x03, 0x03, 0x03) };
334     glGenTextures(1, &mProtectedTexName);
335     glBindTexture(GL_TEXTURE_2D, mProtectedTexName);
336     glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
337     glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
338     glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
339     glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
340     glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, 1, 1, 0,
341             GL_RGB, GL_UNSIGNED_SHORT_5_6_5, protTexData);
342
343     // print some debugging info
344     EGLint r,g,b,a;
345     eglGetConfigAttrib(display, mEGLConfig, EGL_RED_SIZE,   &r);
346     eglGetConfigAttrib(display, mEGLConfig, EGL_GREEN_SIZE, &g);
347     eglGetConfigAttrib(display, mEGLConfig, EGL_BLUE_SIZE,  &b);
348     eglGetConfigAttrib(display, mEGLConfig, EGL_ALPHA_SIZE, &a);
349     ALOGI("EGL informations:");
350     ALOGI("vendor    : %s", extensions.getEglVendor());
351     ALOGI("version   : %s", extensions.getEglVersion());
352     ALOGI("extensions: %s", extensions.getEglExtension());
353     ALOGI("Client API: %s", eglQueryString(display, EGL_CLIENT_APIS)?:"Not Supported");
354     ALOGI("EGLSurface: %d-%d-%d-%d, config=%p", r, g, b, a, mEGLConfig);
355     ALOGI("OpenGL ES informations:");
356     ALOGI("vendor    : %s", extensions.getVendor());
357     ALOGI("renderer  : %s", extensions.getRenderer());
358     ALOGI("version   : %s", extensions.getVersion());
359     ALOGI("extensions: %s", extensions.getExtension());
360     ALOGI("GL_MAX_TEXTURE_SIZE = %d", mMaxTextureSize);
361     ALOGI("GL_MAX_VIEWPORT_DIMS = %d x %d", mMaxViewportDims[0], mMaxViewportDims[1]);
362 }
363
364 status_t SurfaceFlinger::readyToRun()
365 {
366     ALOGI(  "SurfaceFlinger's main thread ready to run. "
367             "Initializing graphics H/W...");
368
369     // initialize EGL
370     mEGLDisplay = eglGetDisplay(EGL_DEFAULT_DISPLAY);
371     eglInitialize(mEGLDisplay, NULL, NULL);
372
373     // Initialize the main display
374     // create native window to main display
375     sp<FramebufferSurface> fbs = FramebufferSurface::create();
376     if (fbs == NULL) {
377         ALOGE("Display subsystem failed to initialize. check logs. exiting...");
378         exit(0);
379     }
380
381     sp<SurfaceTextureClient> stc(new SurfaceTextureClient(
382             static_cast<sp<ISurfaceTexture> >(fbs->getBufferQueue())));
383
384     // initialize the config and context
385     int format;
386     ANativeWindow* const anw = stc.get();
387     anw->query(anw, NATIVE_WINDOW_FORMAT, &format);
388     mEGLConfig  = selectEGLConfig(mEGLDisplay, format);
389     mEGLContext = createGLContext(mEGLDisplay, mEGLConfig);
390
391     // initialize our main display hardware
392
393     for (size_t i=0 ; i<DisplayDevice::NUM_DISPLAY_TYPES ; i++) {
394         mDefaultDisplays[i] = new BBinder();
395         mCurrentState.displays.add(mDefaultDisplays[i],
396                 DisplayDeviceState((DisplayDevice::DisplayType)i));
397     }
398     sp<DisplayDevice> hw = new DisplayDevice(this,
399             DisplayDevice::DISPLAY_PRIMARY,
400             mDefaultDisplays[DisplayDevice::DISPLAY_PRIMARY],
401             anw, fbs, mEGLConfig);
402     mDisplays.add(mDefaultDisplays[DisplayDevice::DISPLAY_PRIMARY], hw);
403
404     //  initialize OpenGL ES
405     initializeGL(mEGLDisplay, hw);
406
407     // start the EventThread
408     mEventThread = new EventThread(this);
409     mEventQueue.setEventThread(mEventThread);
410
411     // initialize the H/W composer
412     mHwc = new HWComposer(this,
413             *static_cast<HWComposer::EventHandler *>(this),
414             fbs->getFbHal());
415
416     // initialize our drawing state
417     mDrawingState = mCurrentState;
418
419     // We're now ready to accept clients...
420     mReadyToRunBarrier.open();
421
422     // set initial conditions (e.g. unblank default device)
423     initializeDisplays();
424
425     // start boot animation
426     startBootAnim();
427
428     return NO_ERROR;
429 }
430
431 int32_t SurfaceFlinger::allocateHwcDisplayId(DisplayDevice::DisplayType type) {
432     return (uint32_t(type) < DisplayDevice::NUM_DISPLAY_TYPES) ?
433             type : mHwc->allocateDisplayId();
434 }
435
436 void SurfaceFlinger::startBootAnim() {
437     // start boot animation
438     property_set("service.bootanim.exit", "0");
439     property_set("ctl.start", "bootanim");
440 }
441
442 uint32_t SurfaceFlinger::getMaxTextureSize() const {
443     return mMaxTextureSize;
444 }
445
446 uint32_t SurfaceFlinger::getMaxViewportDims() const {
447     return mMaxViewportDims[0] < mMaxViewportDims[1] ?
448             mMaxViewportDims[0] : mMaxViewportDims[1];
449 }
450
451 // ----------------------------------------------------------------------------
452
453 bool SurfaceFlinger::authenticateSurfaceTexture(
454         const sp<ISurfaceTexture>& surfaceTexture) const {
455     Mutex::Autolock _l(mStateLock);
456     sp<IBinder> surfaceTextureBinder(surfaceTexture->asBinder());
457
458     // Check the visible layer list for the ISurface
459     const LayerVector& currentLayers = mCurrentState.layersSortedByZ;
460     size_t count = currentLayers.size();
461     for (size_t i=0 ; i<count ; i++) {
462         const sp<LayerBase>& layer(currentLayers[i]);
463         sp<LayerBaseClient> lbc(layer->getLayerBaseClient());
464         if (lbc != NULL) {
465             wp<IBinder> lbcBinder = lbc->getSurfaceTextureBinder();
466             if (lbcBinder == surfaceTextureBinder) {
467                 return true;
468             }
469         }
470     }
471
472     // Check the layers in the purgatory.  This check is here so that if a
473     // SurfaceTexture gets destroyed before all the clients are done using it,
474     // the error will not be reported as "surface XYZ is not authenticated", but
475     // will instead fail later on when the client tries to use the surface,
476     // which should be reported as "surface XYZ returned an -ENODEV".  The
477     // purgatorized layers are no less authentic than the visible ones, so this
478     // should not cause any harm.
479     size_t purgatorySize =  mLayerPurgatory.size();
480     for (size_t i=0 ; i<purgatorySize ; i++) {
481         const sp<LayerBase>& layer(mLayerPurgatory.itemAt(i));
482         sp<LayerBaseClient> lbc(layer->getLayerBaseClient());
483         if (lbc != NULL) {
484             wp<IBinder> lbcBinder = lbc->getSurfaceTextureBinder();
485             if (lbcBinder == surfaceTextureBinder) {
486                 return true;
487             }
488         }
489     }
490
491     return false;
492 }
493
494 status_t SurfaceFlinger::getDisplayInfo(const sp<IBinder>& display, DisplayInfo* info) {
495     // TODO: this is mostly here only for compatibility
496     //       the display size is needed but the display metrics should come from elsewhere
497     if (display != mDefaultDisplays[ISurfaceComposer::eDisplayIdMain]) {
498         // TODO: additional displays not yet supported
499         return BAD_INDEX;
500     }
501
502     const HWComposer& hwc(getHwComposer());
503     float xdpi = hwc.getDpiX();
504     float ydpi = hwc.getDpiY();
505
506     // TODO: Not sure if display density should handled by SF any longer
507     class Density {
508         static int getDensityFromProperty(char const* propName) {
509             char property[PROPERTY_VALUE_MAX];
510             int density = 0;
511             if (property_get(propName, property, NULL) > 0) {
512                 density = atoi(property);
513             }
514             return density;
515         }
516     public:
517         static int getEmuDensity() {
518             return getDensityFromProperty("qemu.sf.lcd_density"); }
519         static int getBuildDensity()  {
520             return getDensityFromProperty("ro.sf.lcd_density"); }
521     };
522     // The density of the device is provided by a build property
523     float density = Density::getBuildDensity() / 160.0f;
524     if (density == 0) {
525         // the build doesn't provide a density -- this is wrong!
526         // use xdpi instead
527         ALOGE("ro.sf.lcd_density must be defined as a build property");
528         density = xdpi / 160.0f;
529     }
530     if (Density::getEmuDensity()) {
531         // if "qemu.sf.lcd_density" is specified, it overrides everything
532         xdpi = ydpi = density = Density::getEmuDensity();
533         density /= 160.0f;
534     }
535
536     sp<const DisplayDevice> hw(getDefaultDisplayDevice());
537     info->w = hw->getWidth();
538     info->h = hw->getHeight();
539     info->xdpi = xdpi;
540     info->ydpi = ydpi;
541     info->fps = float(1e9 / hwc.getRefreshPeriod());
542     info->density = density;
543     info->orientation = hw->getOrientation();
544     // TODO: this needs to go away (currently needed only by webkit)
545     getPixelFormatInfo(hw->getFormat(), &info->pixelFormatInfo);
546     return NO_ERROR;
547 }
548
549 // ----------------------------------------------------------------------------
550
551 sp<IDisplayEventConnection> SurfaceFlinger::createDisplayEventConnection() {
552     return mEventThread->createEventConnection();
553 }
554
555 void SurfaceFlinger::connectDisplay(const sp<ISurfaceTexture>& surface) {
556
557     sp<IBinder> token;
558     { // scope for the lock
559         Mutex::Autolock _l(mStateLock);
560         token = mExtDisplayToken;
561     }
562
563     if (token == 0) {
564         token = createDisplay();
565     }
566
567     { // scope for the lock
568         Mutex::Autolock _l(mStateLock);
569         if (surface == 0) {
570             // release our current display. we're guarantee to have
571             // a reference to it (token), while we hold the lock
572             mExtDisplayToken = 0;
573         } else {
574             mExtDisplayToken = token;
575         }
576
577         DisplayDeviceState& info(mCurrentState.displays.editValueFor(token));
578         info.surface = surface;
579         setTransactionFlags(eDisplayTransactionNeeded);
580     }
581 }
582
583 // ----------------------------------------------------------------------------
584
585 void SurfaceFlinger::waitForEvent() {
586     mEventQueue.waitMessage();
587 }
588
589 void SurfaceFlinger::signalTransaction() {
590     mEventQueue.invalidate();
591 }
592
593 void SurfaceFlinger::signalLayerUpdate() {
594     mEventQueue.invalidate();
595 }
596
597 void SurfaceFlinger::signalRefresh() {
598     mEventQueue.refresh();
599 }
600
601 status_t SurfaceFlinger::postMessageAsync(const sp<MessageBase>& msg,
602         nsecs_t reltime, uint32_t flags) {
603     return mEventQueue.postMessage(msg, reltime);
604 }
605
606 status_t SurfaceFlinger::postMessageSync(const sp<MessageBase>& msg,
607         nsecs_t reltime, uint32_t flags) {
608     status_t res = mEventQueue.postMessage(msg, reltime);
609     if (res == NO_ERROR) {
610         msg->wait();
611     }
612     return res;
613 }
614
615 bool SurfaceFlinger::threadLoop() {
616     waitForEvent();
617     return true;
618 }
619
620 void SurfaceFlinger::onVSyncReceived(int type, nsecs_t timestamp) {
621     if (uint32_t(type) < DisplayDevice::NUM_DISPLAY_TYPES) {
622         // we should only receive DisplayDevice::DisplayType from the vsync callback
623         const wp<IBinder>& token(mDefaultDisplays[type]);
624         mEventThread->onVSyncReceived(token, timestamp);
625     }
626 }
627
628 void SurfaceFlinger::eventControl(int event, int enabled) {
629     getHwComposer().eventControl(event, enabled);
630 }
631
632 void SurfaceFlinger::onMessageReceived(int32_t what) {
633     ATRACE_CALL();
634     switch (what) {
635     case MessageQueue::INVALIDATE:
636         handleMessageTransaction();
637         handleMessageInvalidate();
638         signalRefresh();
639         break;
640     case MessageQueue::REFRESH:
641         handleMessageRefresh();
642         break;
643     }
644 }
645
646 void SurfaceFlinger::handleMessageTransaction() {
647     uint32_t transactionFlags = peekTransactionFlags(eTransactionMask);
648     if (transactionFlags) {
649         handleTransaction(transactionFlags);
650     }
651 }
652
653 void SurfaceFlinger::handleMessageInvalidate() {
654     ATRACE_CALL();
655     handlePageFlip();
656 }
657
658 void SurfaceFlinger::handleMessageRefresh() {
659     ATRACE_CALL();
660     preComposition();
661     rebuildLayerStacks();
662     setUpHWComposer();
663     doDebugFlashRegions();
664     doComposition();
665     postComposition();
666 }
667
668 void SurfaceFlinger::doDebugFlashRegions()
669 {
670     // is debugging enabled
671     if (CC_LIKELY(!mDebugRegion))
672         return;
673
674     const bool repaintEverything = mRepaintEverything;
675     for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) {
676         const sp<DisplayDevice>& hw(mDisplays[dpy]);
677         if (hw->canDraw()) {
678             // transform the dirty region into this screen's coordinate space
679             const Region dirtyRegion(hw->getDirtyRegion(repaintEverything));
680             if (!dirtyRegion.isEmpty()) {
681                 // redraw the whole screen
682                 doComposeSurfaces(hw, Region(hw->bounds()));
683
684                 // and draw the dirty region
685                 glDisable(GL_TEXTURE_EXTERNAL_OES);
686                 glDisable(GL_TEXTURE_2D);
687                 glDisable(GL_BLEND);
688                 glColor4f(1, 0, 1, 1);
689                 const int32_t height = hw->getHeight();
690                 Region::const_iterator it = dirtyRegion.begin();
691                 Region::const_iterator const end = dirtyRegion.end();
692                 while (it != end) {
693                     const Rect& r = *it++;
694                     GLfloat vertices[][2] = {
695                             { r.left,  height - r.top },
696                             { r.left,  height - r.bottom },
697                             { r.right, height - r.bottom },
698                             { r.right, height - r.top }
699                     };
700                     glVertexPointer(2, GL_FLOAT, 0, vertices);
701                     glDrawArrays(GL_TRIANGLE_FAN, 0, 4);
702                 }
703                 hw->compositionComplete();
704                 // FIXME
705                 if (hw->getDisplayType() >= DisplayDevice::DISPLAY_VIRTUAL) {
706                     eglSwapBuffers(mEGLDisplay, hw->getEGLSurface());
707                 }
708             }
709         }
710     }
711
712     postFramebuffer();
713
714     if (mDebugRegion > 1) {
715         usleep(mDebugRegion * 1000);
716     }
717 }
718
719 void SurfaceFlinger::preComposition()
720 {
721     bool needExtraInvalidate = false;
722     const LayerVector& currentLayers(mDrawingState.layersSortedByZ);
723     const size_t count = currentLayers.size();
724     for (size_t i=0 ; i<count ; i++) {
725         if (currentLayers[i]->onPreComposition()) {
726             needExtraInvalidate = true;
727         }
728     }
729     if (needExtraInvalidate) {
730         signalLayerUpdate();
731     }
732 }
733
734 void SurfaceFlinger::postComposition()
735 {
736     const LayerVector& currentLayers(mDrawingState.layersSortedByZ);
737     const size_t count = currentLayers.size();
738     for (size_t i=0 ; i<count ; i++) {
739         currentLayers[i]->onPostComposition();
740     }
741 }
742
743 void SurfaceFlinger::rebuildLayerStacks() {
744     // rebuild the visible layer list per screen
745     if (CC_UNLIKELY(mVisibleRegionsDirty)) {
746         ATRACE_CALL();
747         mVisibleRegionsDirty = false;
748         invalidateHwcGeometry();
749         const LayerVector& currentLayers(mDrawingState.layersSortedByZ);
750         for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) {
751             const sp<DisplayDevice>& hw(mDisplays[dpy]);
752             const Transform& tr(hw->getTransform());
753             const Rect bounds(hw->getBounds());
754
755             Region opaqueRegion;
756             Region dirtyRegion;
757             computeVisibleRegions(currentLayers,
758                     hw->getLayerStack(), dirtyRegion, opaqueRegion);
759
760             Vector< sp<LayerBase> > layersSortedByZ;
761             const size_t count = currentLayers.size();
762             for (size_t i=0 ; i<count ; i++) {
763                 const sp<LayerBase>& layer(currentLayers[i]);
764                 const Layer::State& s(layer->drawingState());
765                 if (s.layerStack == hw->getLayerStack()) {
766                     Region visibleRegion(tr.transform(layer->visibleRegion));
767                     visibleRegion.andSelf(bounds);
768                     if (!visibleRegion.isEmpty()) {
769                         layersSortedByZ.add(layer);
770                     }
771                 }
772             }
773             hw->setVisibleLayersSortedByZ(layersSortedByZ);
774             hw->undefinedRegion.set(bounds);
775             hw->undefinedRegion.subtractSelf(tr.transform(opaqueRegion));
776             hw->dirtyRegion.orSelf(dirtyRegion);
777         }
778     }
779 }
780
781 void SurfaceFlinger::setUpHWComposer() {
782     HWComposer& hwc(getHwComposer());
783     if (hwc.initCheck() == NO_ERROR) {
784         // build the h/w work list
785         const bool workListsDirty = mHwWorkListDirty;
786         mHwWorkListDirty = false;
787         for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) {
788             sp<const DisplayDevice> hw(mDisplays[dpy]);
789             const int32_t id = hw->getHwcDisplayId();
790             if (id >= 0) {
791                 const Vector< sp<LayerBase> >& currentLayers(
792                     hw->getVisibleLayersSortedByZ());
793                 const size_t count = currentLayers.size();
794                 if (hwc.createWorkList(id, count) >= 0) {
795                     HWComposer::LayerListIterator cur = hwc.begin(id);
796                     const HWComposer::LayerListIterator end = hwc.end(id);
797                     for (size_t i=0 ; cur!=end && i<count ; ++i, ++cur) {
798                         const sp<LayerBase>& layer(currentLayers[i]);
799
800                         if (CC_UNLIKELY(workListsDirty)) {
801                             layer->setGeometry(hw, *cur);
802                             if (mDebugDisableHWC || mDebugRegion) {
803                                 cur->setSkip(true);
804                             }
805                         }
806
807                         /*
808                          * update the per-frame h/w composer data for each layer
809                          * and build the transparent region of the FB
810                          */
811                         layer->setPerFrameData(hw, *cur);
812                     }
813                 }
814             }
815         }
816         status_t err = hwc.prepare();
817         ALOGE_IF(err, "HWComposer::prepare failed (%s)", strerror(-err));
818     }
819 }
820
821 void SurfaceFlinger::doComposition() {
822     ATRACE_CALL();
823     const bool repaintEverything = android_atomic_and(0, &mRepaintEverything);
824     for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) {
825         const sp<DisplayDevice>& hw(mDisplays[dpy]);
826         if (hw->canDraw()) {
827             // transform the dirty region into this screen's coordinate space
828             const Region dirtyRegion(hw->getDirtyRegion(repaintEverything));
829             if (!dirtyRegion.isEmpty()) {
830                 // repaint the framebuffer (if needed)
831                 doDisplayComposition(hw, dirtyRegion);
832             }
833             hw->dirtyRegion.clear();
834             hw->flip(hw->swapRegion);
835             hw->swapRegion.clear();
836         }
837         // inform the h/w that we're done compositing
838         hw->compositionComplete();
839     }
840     postFramebuffer();
841 }
842
843 void SurfaceFlinger::postFramebuffer()
844 {
845     ATRACE_CALL();
846
847     const nsecs_t now = systemTime();
848     mDebugInSwapBuffers = now;
849
850     HWComposer& hwc(getHwComposer());
851     if (hwc.initCheck() == NO_ERROR) {
852         // FIXME: EGL spec says:
853         //   "surface must be bound to the calling thread's current context,
854         //    for the current rendering API."
855         DisplayDevice::makeCurrent(mEGLDisplay, getDefaultDisplayDevice(), mEGLContext);
856         hwc.commit();
857     }
858
859     for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) {
860         sp<const DisplayDevice> hw(mDisplays[dpy]);
861         const Vector< sp<LayerBase> >& currentLayers(hw->getVisibleLayersSortedByZ());
862         const size_t count = currentLayers.size();
863         int32_t id = hw->getHwcDisplayId();
864         if (id >=0 && hwc.initCheck() == NO_ERROR) {
865             HWComposer::LayerListIterator cur = hwc.begin(id);
866             const HWComposer::LayerListIterator end = hwc.end(id);
867             for (size_t i = 0; cur != end && i < count; ++i, ++cur) {
868                 currentLayers[i]->onLayerDisplayed(hw, &*cur);
869             }
870         } else {
871             for (size_t i = 0; i < count; i++) {
872                 currentLayers[i]->onLayerDisplayed(hw, NULL);
873             }
874         }
875     }
876
877     mLastSwapBufferTime = systemTime() - now;
878     mDebugInSwapBuffers = 0;
879 }
880
881 void SurfaceFlinger::handleTransaction(uint32_t transactionFlags)
882 {
883     ATRACE_CALL();
884
885     Mutex::Autolock _l(mStateLock);
886     const nsecs_t now = systemTime();
887     mDebugInTransaction = now;
888
889     // Here we're guaranteed that some transaction flags are set
890     // so we can call handleTransactionLocked() unconditionally.
891     // We call getTransactionFlags(), which will also clear the flags,
892     // with mStateLock held to guarantee that mCurrentState won't change
893     // until the transaction is committed.
894
895     transactionFlags = getTransactionFlags(eTransactionMask);
896     handleTransactionLocked(transactionFlags);
897
898     mLastTransactionTime = systemTime() - now;
899     mDebugInTransaction = 0;
900     invalidateHwcGeometry();
901     // here the transaction has been committed
902 }
903
904 void SurfaceFlinger::handleTransactionLocked(uint32_t transactionFlags)
905 {
906     const LayerVector& currentLayers(mCurrentState.layersSortedByZ);
907     const size_t count = currentLayers.size();
908
909     /*
910      * Traversal of the children
911      * (perform the transaction for each of them if needed)
912      */
913
914     if (transactionFlags & eTraversalNeeded) {
915         for (size_t i=0 ; i<count ; i++) {
916             const sp<LayerBase>& layer = currentLayers[i];
917             uint32_t trFlags = layer->getTransactionFlags(eTransactionNeeded);
918             if (!trFlags) continue;
919
920             const uint32_t flags = layer->doTransaction(0);
921             if (flags & Layer::eVisibleRegion)
922                 mVisibleRegionsDirty = true;
923         }
924     }
925
926     /*
927      * Perform display own transactions if needed
928      */
929
930     if (transactionFlags & eDisplayTransactionNeeded) {
931         // here we take advantage of Vector's copy-on-write semantics to
932         // improve performance by skipping the transaction entirely when
933         // know that the lists are identical
934         const KeyedVector<  wp<IBinder>, DisplayDeviceState>& curr(mCurrentState.displays);
935         const KeyedVector<  wp<IBinder>, DisplayDeviceState>& draw(mDrawingState.displays);
936         if (!curr.isIdenticalTo(draw)) {
937             mVisibleRegionsDirty = true;
938             const size_t cc = curr.size();
939                   size_t dc = draw.size();
940
941             // find the displays that were removed
942             // (ie: in drawing state but not in current state)
943             // also handle displays that changed
944             // (ie: displays that are in both lists)
945             for (size_t i=0 ; i<dc ; i++) {
946                 const ssize_t j = curr.indexOfKey(draw.keyAt(i));
947                 if (j < 0) {
948                     // in drawing state but not in current state
949                     if (!draw[i].isMainDisplay()) {
950                         mDisplays.removeItem(draw.keyAt(i));
951                     } else {
952                         ALOGW("trying to remove the main display");
953                     }
954                 } else {
955                     // this display is in both lists. see if something changed.
956                     const DisplayDeviceState& state(curr[j]);
957                     const wp<IBinder>& display(curr.keyAt(j));
958                     if (state.surface->asBinder() != draw[i].surface->asBinder()) {
959                         // changing the surface is like destroying and
960                         // recreating the DisplayDevice, so we just remove it
961                         // from the drawing state, so that it get re-added
962                         // below.
963                         mDisplays.removeItem(display);
964                         mDrawingState.displays.removeItemsAt(i);
965                         dc--; i--;
966                         // at this point we must loop to the next item
967                         continue;
968                     }
969
970                     const sp<DisplayDevice>& disp(getDisplayDevice(display));
971                     if (disp != NULL) {
972                         if (state.layerStack != draw[i].layerStack) {
973                             disp->setLayerStack(state.layerStack);
974                         }
975                         if (state.orientation != draw[i].orientation) {
976                             disp->setOrientation(state.orientation);
977                         }
978                         if (state.viewport != draw[i].viewport) {
979                             disp->setViewport(state.viewport);
980                         }
981                         if (state.frame != draw[i].frame) {
982                             disp->setFrame(state.frame);
983                         }
984                     }
985                 }
986             }
987
988             // find displays that were added
989             // (ie: in current state but not in drawing state)
990             for (size_t i=0 ; i<cc ; i++) {
991                 if (draw.indexOfKey(curr.keyAt(i)) < 0) {
992                     const DisplayDeviceState& state(curr[i]);
993                     if (state.surface != NULL) {
994                         sp<SurfaceTextureClient> stc(
995                                 new SurfaceTextureClient(state.surface));
996                         const wp<IBinder>& display(curr.keyAt(i));
997                         sp<DisplayDevice> disp = new DisplayDevice(this,
998                                 state.type, display, stc, 0, mEGLConfig);
999                         disp->setLayerStack(state.layerStack);
1000                         disp->setOrientation(state.orientation);
1001                         disp->setViewport(state.viewport);
1002                         disp->setFrame(state.frame);
1003                         mDisplays.add(display, disp);
1004                     }
1005                 }
1006             }
1007         }
1008     }
1009
1010     /*
1011      * Perform our own transaction if needed
1012      */
1013
1014     const LayerVector& previousLayers(mDrawingState.layersSortedByZ);
1015     if (currentLayers.size() > previousLayers.size()) {
1016         // layers have been added
1017         mVisibleRegionsDirty = true;
1018     }
1019
1020     // some layers might have been removed, so
1021     // we need to update the regions they're exposing.
1022     if (mLayersRemoved) {
1023         mLayersRemoved = false;
1024         mVisibleRegionsDirty = true;
1025         const size_t count = previousLayers.size();
1026         for (size_t i=0 ; i<count ; i++) {
1027             const sp<LayerBase>& layer(previousLayers[i]);
1028             if (currentLayers.indexOf(layer) < 0) {
1029                 // this layer is not visible anymore
1030                 // TODO: we could traverse the tree from front to back and
1031                 //       compute the actual visible region
1032                 // TODO: we could cache the transformed region
1033                 Layer::State front(layer->drawingState());
1034                 Region visibleReg = front.transform.transform(
1035                         Region(Rect(front.active.w, front.active.h)));
1036                 invalidateLayerStack(front.layerStack, visibleReg);
1037             }
1038         }
1039     }
1040
1041     commitTransaction();
1042 }
1043
1044 void SurfaceFlinger::commitTransaction()
1045 {
1046     if (!mLayersPendingRemoval.isEmpty()) {
1047         // Notify removed layers now that they can't be drawn from
1048         for (size_t i = 0; i < mLayersPendingRemoval.size(); i++) {
1049             mLayersPendingRemoval[i]->onRemoved();
1050         }
1051         mLayersPendingRemoval.clear();
1052     }
1053
1054     mDrawingState = mCurrentState;
1055     mTransationPending = false;
1056     mTransactionCV.broadcast();
1057 }
1058
1059 void SurfaceFlinger::computeVisibleRegions(
1060         const LayerVector& currentLayers, uint32_t layerStack,
1061         Region& outDirtyRegion, Region& outOpaqueRegion)
1062 {
1063     ATRACE_CALL();
1064
1065     Region aboveOpaqueLayers;
1066     Region aboveCoveredLayers;
1067     Region dirty;
1068
1069     outDirtyRegion.clear();
1070
1071     size_t i = currentLayers.size();
1072     while (i--) {
1073         const sp<LayerBase>& layer = currentLayers[i];
1074
1075         // start with the whole surface at its current location
1076         const Layer::State& s(layer->drawingState());
1077
1078         // only consider the layers on the given later stack
1079         if (s.layerStack != layerStack)
1080             continue;
1081
1082         /*
1083          * opaqueRegion: area of a surface that is fully opaque.
1084          */
1085         Region opaqueRegion;
1086
1087         /*
1088          * visibleRegion: area of a surface that is visible on screen
1089          * and not fully transparent. This is essentially the layer's
1090          * footprint minus the opaque regions above it.
1091          * Areas covered by a translucent surface are considered visible.
1092          */
1093         Region visibleRegion;
1094
1095         /*
1096          * coveredRegion: area of a surface that is covered by all
1097          * visible regions above it (which includes the translucent areas).
1098          */
1099         Region coveredRegion;
1100
1101
1102         // handle hidden surfaces by setting the visible region to empty
1103         if (CC_LIKELY(!(s.flags & layer_state_t::eLayerHidden) && s.alpha)) {
1104             const bool translucent = !layer->isOpaque();
1105             Rect bounds(layer->computeBounds());
1106             visibleRegion.set(bounds);
1107             if (!visibleRegion.isEmpty()) {
1108                 // Remove the transparent area from the visible region
1109                 if (translucent) {
1110                     Region transparentRegionScreen;
1111                     const Transform tr(s.transform);
1112                     if (tr.transformed()) {
1113                         if (tr.preserveRects()) {
1114                             // transform the transparent region
1115                             transparentRegionScreen = tr.transform(s.transparentRegion);
1116                         } else {
1117                             // transformation too complex, can't do the
1118                             // transparent region optimization.
1119                             transparentRegionScreen.clear();
1120                         }
1121                     } else {
1122                         transparentRegionScreen = s.transparentRegion;
1123                     }
1124                     visibleRegion.subtractSelf(transparentRegionScreen);
1125                 }
1126
1127                 // compute the opaque region
1128                 const int32_t layerOrientation = s.transform.getOrientation();
1129                 if (s.alpha==255 && !translucent &&
1130                         ((layerOrientation & Transform::ROT_INVALID) == false)) {
1131                     // the opaque region is the layer's footprint
1132                     opaqueRegion = visibleRegion;
1133                 }
1134             }
1135         }
1136
1137         // Clip the covered region to the visible region
1138         coveredRegion = aboveCoveredLayers.intersect(visibleRegion);
1139
1140         // Update aboveCoveredLayers for next (lower) layer
1141         aboveCoveredLayers.orSelf(visibleRegion);
1142
1143         // subtract the opaque region covered by the layers above us
1144         visibleRegion.subtractSelf(aboveOpaqueLayers);
1145
1146         // compute this layer's dirty region
1147         if (layer->contentDirty) {
1148             // we need to invalidate the whole region
1149             dirty = visibleRegion;
1150             // as well, as the old visible region
1151             dirty.orSelf(layer->visibleRegion);
1152             layer->contentDirty = false;
1153         } else {
1154             /* compute the exposed region:
1155              *   the exposed region consists of two components:
1156              *   1) what's VISIBLE now and was COVERED before
1157              *   2) what's EXPOSED now less what was EXPOSED before
1158              *
1159              * note that (1) is conservative, we start with the whole
1160              * visible region but only keep what used to be covered by
1161              * something -- which mean it may have been exposed.
1162              *
1163              * (2) handles areas that were not covered by anything but got
1164              * exposed because of a resize.
1165              */
1166             const Region newExposed = visibleRegion - coveredRegion;
1167             const Region oldVisibleRegion = layer->visibleRegion;
1168             const Region oldCoveredRegion = layer->coveredRegion;
1169             const Region oldExposed = oldVisibleRegion - oldCoveredRegion;
1170             dirty = (visibleRegion&oldCoveredRegion) | (newExposed-oldExposed);
1171         }
1172         dirty.subtractSelf(aboveOpaqueLayers);
1173
1174         // accumulate to the screen dirty region
1175         outDirtyRegion.orSelf(dirty);
1176
1177         // Update aboveOpaqueLayers for next (lower) layer
1178         aboveOpaqueLayers.orSelf(opaqueRegion);
1179
1180         // Store the visible region is screen space
1181         layer->setVisibleRegion(visibleRegion);
1182         layer->setCoveredRegion(coveredRegion);
1183     }
1184
1185     outOpaqueRegion = aboveOpaqueLayers;
1186 }
1187
1188 void SurfaceFlinger::invalidateLayerStack(uint32_t layerStack,
1189         const Region& dirty) {
1190     for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) {
1191         const sp<DisplayDevice>& hw(mDisplays[dpy]);
1192         if (hw->getLayerStack() == layerStack) {
1193             hw->dirtyRegion.orSelf(dirty);
1194         }
1195     }
1196 }
1197
1198 void SurfaceFlinger::handlePageFlip()
1199 {
1200     Region dirtyRegion;
1201
1202     bool visibleRegions = false;
1203     const LayerVector& currentLayers(mDrawingState.layersSortedByZ);
1204     const size_t count = currentLayers.size();
1205     for (size_t i=0 ; i<count ; i++) {
1206         const sp<LayerBase>& layer(currentLayers[i]);
1207         const Region dirty(layer->latchBuffer(visibleRegions));
1208         Layer::State s(layer->drawingState());
1209         invalidateLayerStack(s.layerStack, dirty);
1210     }
1211
1212     mVisibleRegionsDirty |= visibleRegions;
1213 }
1214
1215 void SurfaceFlinger::invalidateHwcGeometry()
1216 {
1217     mHwWorkListDirty = true;
1218 }
1219
1220
1221 void SurfaceFlinger::doDisplayComposition(const sp<const DisplayDevice>& hw,
1222         const Region& inDirtyRegion)
1223 {
1224     Region dirtyRegion(inDirtyRegion);
1225
1226     // compute the invalid region
1227     hw->swapRegion.orSelf(dirtyRegion);
1228
1229     uint32_t flags = hw->getFlags();
1230     if (flags & DisplayDevice::SWAP_RECTANGLE) {
1231         // we can redraw only what's dirty, but since SWAP_RECTANGLE only
1232         // takes a rectangle, we must make sure to update that whole
1233         // rectangle in that case
1234         dirtyRegion.set(hw->swapRegion.bounds());
1235     } else {
1236         if (flags & DisplayDevice::PARTIAL_UPDATES) {
1237             // We need to redraw the rectangle that will be updated
1238             // (pushed to the framebuffer).
1239             // This is needed because PARTIAL_UPDATES only takes one
1240             // rectangle instead of a region (see DisplayDevice::flip())
1241             dirtyRegion.set(hw->swapRegion.bounds());
1242         } else {
1243             // we need to redraw everything (the whole screen)
1244             dirtyRegion.set(hw->bounds());
1245             hw->swapRegion = dirtyRegion;
1246         }
1247     }
1248
1249     doComposeSurfaces(hw, dirtyRegion);
1250
1251     // FIXME: we need to call eglSwapBuffers() on displays that have
1252     // GL composition and only on those.
1253     // however, currently hwc.commit() already does that for the main
1254     // display (if there is a hwc) and never for the other ones
1255     if (hw->getDisplayType() >= DisplayDevice::DISPLAY_VIRTUAL ||
1256             getHwComposer().initCheck() != NO_ERROR) {
1257         // FIXME: EGL spec says:
1258         //   "surface must be bound to the calling thread's current context,
1259         //    for the current rendering API."
1260         eglSwapBuffers(mEGLDisplay, hw->getEGLSurface());
1261     }
1262
1263     // update the swap region and clear the dirty region
1264     hw->swapRegion.orSelf(dirtyRegion);
1265 }
1266
1267 void SurfaceFlinger::doComposeSurfaces(const sp<const DisplayDevice>& hw, const Region& dirty)
1268 {
1269     const int32_t id = hw->getHwcDisplayId();
1270     HWComposer& hwc(getHwComposer());
1271     HWComposer::LayerListIterator cur = hwc.begin(id);
1272     const HWComposer::LayerListIterator end = hwc.end(id);
1273
1274     const bool hasGlesComposition = hwc.hasGlesComposition(id) || (cur==end);
1275     if (hasGlesComposition) {
1276         DisplayDevice::makeCurrent(mEGLDisplay, hw, mEGLContext);
1277
1278         // set the frame buffer
1279         glMatrixMode(GL_MODELVIEW);
1280         glLoadIdentity();
1281
1282         // Never touch the framebuffer if we don't have any framebuffer layers
1283         const bool hasHwcComposition = hwc.hasHwcComposition(id);
1284         if (hasHwcComposition) {
1285             // when using overlays, we assume a fully transparent framebuffer
1286             // NOTE: we could reduce how much we need to clear, for instance
1287             // remove where there are opaque FB layers. however, on some
1288             // GPUs doing a "clean slate" glClear might be more efficient.
1289             // We'll revisit later if needed.
1290             glClearColor(0, 0, 0, 0);
1291             glClear(GL_COLOR_BUFFER_BIT);
1292         } else {
1293             const Region region(hw->undefinedRegion.intersect(dirty));
1294             // screen is already cleared here
1295             if (!region.isEmpty()) {
1296                 // can happen with SurfaceView
1297                 drawWormhole(hw, region);
1298             }
1299         }
1300     }
1301
1302     /*
1303      * and then, render the layers targeted at the framebuffer
1304      */
1305
1306     const Vector< sp<LayerBase> >& layers(hw->getVisibleLayersSortedByZ());
1307     const size_t count = layers.size();
1308     const Transform& tr = hw->getTransform();
1309     if (cur != end) {
1310         // we're using h/w composer
1311         for (size_t i=0 ; i<count && cur!=end ; ++i, ++cur) {
1312             const sp<LayerBase>& layer(layers[i]);
1313             const Region clip(dirty.intersect(tr.transform(layer->visibleRegion)));
1314             if (!clip.isEmpty()) {
1315                 switch (cur->getCompositionType()) {
1316                     case HWC_OVERLAY: {
1317                         if ((cur->getHints() & HWC_HINT_CLEAR_FB)
1318                                 && i
1319                                 && layer->isOpaque()
1320                                 && hasGlesComposition) {
1321                             // never clear the very first layer since we're
1322                             // guaranteed the FB is already cleared
1323                             layer->clearWithOpenGL(hw, clip);
1324                         }
1325                         break;
1326                     }
1327                     case HWC_FRAMEBUFFER: {
1328                         layer->draw(hw, clip);
1329                         break;
1330                     }
1331                 }
1332             }
1333             layer->setAcquireFence(hw, *cur);
1334         }
1335     } else {
1336         // we're not using h/w composer
1337         for (size_t i=0 ; i<count ; ++i) {
1338             const sp<LayerBase>& layer(layers[i]);
1339             const Region clip(dirty.intersect(
1340                     tr.transform(layer->visibleRegion)));
1341             if (!clip.isEmpty()) {
1342                 layer->draw(hw, clip);
1343             }
1344         }
1345     }
1346 }
1347
1348 void SurfaceFlinger::drawWormhole(const sp<const DisplayDevice>& hw,
1349         const Region& region) const
1350 {
1351     glDisable(GL_TEXTURE_EXTERNAL_OES);
1352     glDisable(GL_TEXTURE_2D);
1353     glDisable(GL_BLEND);
1354     glColor4f(0,0,0,0);
1355
1356     const int32_t height = hw->getHeight();
1357     Region::const_iterator it = region.begin();
1358     Region::const_iterator const end = region.end();
1359     while (it != end) {
1360         const Rect& r = *it++;
1361         GLfloat vertices[][2] = {
1362                 { r.left,  height - r.top },
1363                 { r.left,  height - r.bottom },
1364                 { r.right, height - r.bottom },
1365                 { r.right, height - r.top }
1366         };
1367         glVertexPointer(2, GL_FLOAT, 0, vertices);
1368         glDrawArrays(GL_TRIANGLE_FAN, 0, 4);
1369     }
1370 }
1371
1372 ssize_t SurfaceFlinger::addClientLayer(const sp<Client>& client,
1373         const sp<LayerBaseClient>& lbc)
1374 {
1375     // attach this layer to the client
1376     size_t name = client->attachLayer(lbc);
1377
1378     // add this layer to the current state list
1379     Mutex::Autolock _l(mStateLock);
1380     mCurrentState.layersSortedByZ.add(lbc);
1381
1382     return ssize_t(name);
1383 }
1384
1385 status_t SurfaceFlinger::removeLayer(const sp<LayerBase>& layer)
1386 {
1387     Mutex::Autolock _l(mStateLock);
1388     status_t err = purgatorizeLayer_l(layer);
1389     if (err == NO_ERROR)
1390         setTransactionFlags(eTransactionNeeded);
1391     return err;
1392 }
1393
1394 status_t SurfaceFlinger::removeLayer_l(const sp<LayerBase>& layerBase)
1395 {
1396     ssize_t index = mCurrentState.layersSortedByZ.remove(layerBase);
1397     if (index >= 0) {
1398         mLayersRemoved = true;
1399         return NO_ERROR;
1400     }
1401     return status_t(index);
1402 }
1403
1404 status_t SurfaceFlinger::purgatorizeLayer_l(const sp<LayerBase>& layerBase)
1405 {
1406     // First add the layer to the purgatory list, which makes sure it won't
1407     // go away, then remove it from the main list (through a transaction).
1408     ssize_t err = removeLayer_l(layerBase);
1409     if (err >= 0) {
1410         mLayerPurgatory.add(layerBase);
1411     }
1412
1413     mLayersPendingRemoval.push(layerBase);
1414
1415     // it's possible that we don't find a layer, because it might
1416     // have been destroyed already -- this is not technically an error
1417     // from the user because there is a race between Client::destroySurface(),
1418     // ~Client() and ~ISurface().
1419     return (err == NAME_NOT_FOUND) ? status_t(NO_ERROR) : err;
1420 }
1421
1422 uint32_t SurfaceFlinger::peekTransactionFlags(uint32_t flags)
1423 {
1424     return android_atomic_release_load(&mTransactionFlags);
1425 }
1426
1427 uint32_t SurfaceFlinger::getTransactionFlags(uint32_t flags)
1428 {
1429     return android_atomic_and(~flags, &mTransactionFlags) & flags;
1430 }
1431
1432 uint32_t SurfaceFlinger::setTransactionFlags(uint32_t flags)
1433 {
1434     uint32_t old = android_atomic_or(flags, &mTransactionFlags);
1435     if ((old & flags)==0) { // wake the server up
1436         signalTransaction();
1437     }
1438     return old;
1439 }
1440
1441 void SurfaceFlinger::setTransactionState(
1442         const Vector<ComposerState>& state,
1443         const Vector<DisplayState>& displays,
1444         uint32_t flags)
1445 {
1446     Mutex::Autolock _l(mStateLock);
1447     uint32_t transactionFlags = 0;
1448
1449     size_t count = displays.size();
1450     for (size_t i=0 ; i<count ; i++) {
1451         const DisplayState& s(displays[i]);
1452         transactionFlags |= setDisplayStateLocked(s);
1453     }
1454
1455     count = state.size();
1456     for (size_t i=0 ; i<count ; i++) {
1457         const ComposerState& s(state[i]);
1458         sp<Client> client( static_cast<Client *>(s.client.get()) );
1459         transactionFlags |= setClientStateLocked(client, s.state);
1460     }
1461
1462     if (transactionFlags) {
1463         // this triggers the transaction
1464         setTransactionFlags(transactionFlags);
1465
1466         // if this is a synchronous transaction, wait for it to take effect
1467         // before returning.
1468         if (flags & eSynchronous) {
1469             mTransationPending = true;
1470         }
1471         while (mTransationPending) {
1472             status_t err = mTransactionCV.waitRelative(mStateLock, s2ns(5));
1473             if (CC_UNLIKELY(err != NO_ERROR)) {
1474                 // just in case something goes wrong in SF, return to the
1475                 // called after a few seconds.
1476                 ALOGW_IF(err == TIMED_OUT, "closeGlobalTransaction timed out!");
1477                 mTransationPending = false;
1478                 break;
1479             }
1480         }
1481     }
1482 }
1483
1484 uint32_t SurfaceFlinger::setDisplayStateLocked(const DisplayState& s)
1485 {
1486     uint32_t flags = 0;
1487     DisplayDeviceState& disp(mCurrentState.displays.editValueFor(s.token));
1488     if (disp.isValid()) {
1489         const uint32_t what = s.what;
1490         if (what & DisplayState::eSurfaceChanged) {
1491             if (disp.surface->asBinder() != s.surface->asBinder()) {
1492                 disp.surface = s.surface;
1493                 flags |= eDisplayTransactionNeeded;
1494             }
1495         }
1496         if (what & DisplayState::eLayerStackChanged) {
1497             if (disp.layerStack != s.layerStack) {
1498                 disp.layerStack = s.layerStack;
1499                 flags |= eDisplayTransactionNeeded;
1500             }
1501         }
1502         if (what & DisplayState::eOrientationChanged) {
1503             if (disp.orientation != s.orientation) {
1504                 disp.orientation = s.orientation;
1505                 flags |= eDisplayTransactionNeeded;
1506             }
1507         }
1508         if (what & DisplayState::eFrameChanged) {
1509             if (disp.frame != s.frame) {
1510                 disp.frame = s.frame;
1511                 flags |= eDisplayTransactionNeeded;
1512             }
1513         }
1514         if (what & DisplayState::eViewportChanged) {
1515             if (disp.viewport != s.viewport) {
1516                 disp.viewport = s.viewport;
1517                 flags |= eDisplayTransactionNeeded;
1518             }
1519         }
1520     }
1521     return flags;
1522 }
1523
1524 uint32_t SurfaceFlinger::setClientStateLocked(
1525         const sp<Client>& client,
1526         const layer_state_t& s)
1527 {
1528     uint32_t flags = 0;
1529     sp<LayerBaseClient> layer(client->getLayerUser(s.surface));
1530     if (layer != 0) {
1531         const uint32_t what = s.what;
1532         if (what & layer_state_t::ePositionChanged) {
1533             if (layer->setPosition(s.x, s.y))
1534                 flags |= eTraversalNeeded;
1535         }
1536         if (what & layer_state_t::eLayerChanged) {
1537             // NOTE: index needs to be calculated before we update the state
1538             ssize_t idx = mCurrentState.layersSortedByZ.indexOf(layer);
1539             if (layer->setLayer(s.z)) {
1540                 mCurrentState.layersSortedByZ.removeAt(idx);
1541                 mCurrentState.layersSortedByZ.add(layer);
1542                 // we need traversal (state changed)
1543                 // AND transaction (list changed)
1544                 flags |= eTransactionNeeded|eTraversalNeeded;
1545             }
1546         }
1547         if (what & layer_state_t::eSizeChanged) {
1548             if (layer->setSize(s.w, s.h)) {
1549                 flags |= eTraversalNeeded;
1550             }
1551         }
1552         if (what & layer_state_t::eAlphaChanged) {
1553             if (layer->setAlpha(uint8_t(255.0f*s.alpha+0.5f)))
1554                 flags |= eTraversalNeeded;
1555         }
1556         if (what & layer_state_t::eMatrixChanged) {
1557             if (layer->setMatrix(s.matrix))
1558                 flags |= eTraversalNeeded;
1559         }
1560         if (what & layer_state_t::eTransparentRegionChanged) {
1561             if (layer->setTransparentRegionHint(s.transparentRegion))
1562                 flags |= eTraversalNeeded;
1563         }
1564         if (what & layer_state_t::eVisibilityChanged) {
1565             if (layer->setFlags(s.flags, s.mask))
1566                 flags |= eTraversalNeeded;
1567         }
1568         if (what & layer_state_t::eCropChanged) {
1569             if (layer->setCrop(s.crop))
1570                 flags |= eTraversalNeeded;
1571         }
1572         if (what & layer_state_t::eLayerStackChanged) {
1573             // NOTE: index needs to be calculated before we update the state
1574             ssize_t idx = mCurrentState.layersSortedByZ.indexOf(layer);
1575             if (layer->setLayerStack(s.layerStack)) {
1576                 mCurrentState.layersSortedByZ.removeAt(idx);
1577                 mCurrentState.layersSortedByZ.add(layer);
1578                 // we need traversal (state changed)
1579                 // AND transaction (list changed)
1580                 flags |= eTransactionNeeded|eTraversalNeeded;
1581             }
1582         }
1583     }
1584     return flags;
1585 }
1586
1587 sp<ISurface> SurfaceFlinger::createLayer(
1588         ISurfaceComposerClient::surface_data_t* params,
1589         const String8& name,
1590         const sp<Client>& client,
1591        uint32_t w, uint32_t h, PixelFormat format,
1592         uint32_t flags)
1593 {
1594     sp<LayerBaseClient> layer;
1595     sp<ISurface> surfaceHandle;
1596
1597     if (int32_t(w|h) < 0) {
1598         ALOGE("createLayer() failed, w or h is negative (w=%d, h=%d)",
1599                 int(w), int(h));
1600         return surfaceHandle;
1601     }
1602
1603     //ALOGD("createLayer for (%d x %d), name=%s", w, h, name.string());
1604     switch (flags & ISurfaceComposerClient::eFXSurfaceMask) {
1605         case ISurfaceComposerClient::eFXSurfaceNormal:
1606             layer = createNormalLayer(client, w, h, flags, format);
1607             break;
1608         case ISurfaceComposerClient::eFXSurfaceBlur:
1609         case ISurfaceComposerClient::eFXSurfaceDim:
1610             layer = createDimLayer(client, w, h, flags);
1611             break;
1612         case ISurfaceComposerClient::eFXSurfaceScreenshot:
1613             layer = createScreenshotLayer(client, w, h, flags);
1614             break;
1615     }
1616
1617     if (layer != 0) {
1618         layer->initStates(w, h, flags);
1619         layer->setName(name);
1620         ssize_t token = addClientLayer(client, layer);
1621         surfaceHandle = layer->getSurface();
1622         if (surfaceHandle != 0) {
1623             params->token = token;
1624             params->identity = layer->getIdentity();
1625         }
1626         setTransactionFlags(eTransactionNeeded);
1627     }
1628
1629     return surfaceHandle;
1630 }
1631
1632 sp<Layer> SurfaceFlinger::createNormalLayer(
1633         const sp<Client>& client,
1634         uint32_t w, uint32_t h, uint32_t flags,
1635         PixelFormat& format)
1636 {
1637     // initialize the surfaces
1638     switch (format) {
1639     case PIXEL_FORMAT_TRANSPARENT:
1640     case PIXEL_FORMAT_TRANSLUCENT:
1641         format = PIXEL_FORMAT_RGBA_8888;
1642         break;
1643     case PIXEL_FORMAT_OPAQUE:
1644 #ifdef NO_RGBX_8888
1645         format = PIXEL_FORMAT_RGB_565;
1646 #else
1647         format = PIXEL_FORMAT_RGBX_8888;
1648 #endif
1649         break;
1650     }
1651
1652 #ifdef NO_RGBX_8888
1653     if (format == PIXEL_FORMAT_RGBX_8888)
1654         format = PIXEL_FORMAT_RGBA_8888;
1655 #endif
1656
1657     sp<Layer> layer = new Layer(this, client);
1658     status_t err = layer->setBuffers(w, h, format, flags);
1659     if (CC_LIKELY(err != NO_ERROR)) {
1660         ALOGE("createNormalLayer() failed (%s)", strerror(-err));
1661         layer.clear();
1662     }
1663     return layer;
1664 }
1665
1666 sp<LayerDim> SurfaceFlinger::createDimLayer(
1667         const sp<Client>& client,
1668         uint32_t w, uint32_t h, uint32_t flags)
1669 {
1670     sp<LayerDim> layer = new LayerDim(this, client);
1671     return layer;
1672 }
1673
1674 sp<LayerScreenshot> SurfaceFlinger::createScreenshotLayer(
1675         const sp<Client>& client,
1676         uint32_t w, uint32_t h, uint32_t flags)
1677 {
1678     sp<LayerScreenshot> layer = new LayerScreenshot(this, client);
1679     return layer;
1680 }
1681
1682 status_t SurfaceFlinger::onLayerRemoved(const sp<Client>& client, SurfaceID sid)
1683 {
1684     /*
1685      * called by the window manager, when a surface should be marked for
1686      * destruction.
1687      *
1688      * The surface is removed from the current and drawing lists, but placed
1689      * in the purgatory queue, so it's not destroyed right-away (we need
1690      * to wait for all client's references to go away first).
1691      */
1692
1693     status_t err = NAME_NOT_FOUND;
1694     Mutex::Autolock _l(mStateLock);
1695     sp<LayerBaseClient> layer = client->getLayerUser(sid);
1696
1697     if (layer != 0) {
1698         err = purgatorizeLayer_l(layer);
1699         if (err == NO_ERROR) {
1700             setTransactionFlags(eTransactionNeeded);
1701         }
1702     }
1703     return err;
1704 }
1705
1706 status_t SurfaceFlinger::onLayerDestroyed(const wp<LayerBaseClient>& layer)
1707 {
1708     // called by ~ISurface() when all references are gone
1709     status_t err = NO_ERROR;
1710     sp<LayerBaseClient> l(layer.promote());
1711     if (l != NULL) {
1712         Mutex::Autolock _l(mStateLock);
1713         err = removeLayer_l(l);
1714         if (err == NAME_NOT_FOUND) {
1715             // The surface wasn't in the current list, which means it was
1716             // removed already, which means it is in the purgatory,
1717             // and need to be removed from there.
1718             ssize_t idx = mLayerPurgatory.remove(l);
1719             ALOGE_IF(idx < 0,
1720                     "layer=%p is not in the purgatory list", l.get());
1721         }
1722         ALOGE_IF(err<0 && err != NAME_NOT_FOUND,
1723                 "error removing layer=%p (%s)", l.get(), strerror(-err));
1724     }
1725     return err;
1726 }
1727
1728 // ---------------------------------------------------------------------------
1729
1730 void SurfaceFlinger::onInitializeDisplays() {
1731     // reset screen orientation
1732     Vector<ComposerState> state;
1733     Vector<DisplayState> displays;
1734     DisplayState d;
1735     d.what = DisplayState::eOrientationChanged;
1736     d.token = mDefaultDisplays[DisplayDevice::DISPLAY_PRIMARY];
1737     d.orientation = DisplayState::eOrientationDefault;
1738     displays.add(d);
1739     setTransactionState(state, displays, 0);
1740
1741     // XXX: this should init default device to "unblank" and all other devices to "blank"
1742     onScreenAcquired();
1743 }
1744
1745 void SurfaceFlinger::initializeDisplays() {
1746     class MessageScreenInitialized : public MessageBase {
1747         SurfaceFlinger* flinger;
1748     public:
1749         MessageScreenInitialized(SurfaceFlinger* flinger) : flinger(flinger) { }
1750         virtual bool handler() {
1751             flinger->onInitializeDisplays();
1752             return true;
1753         }
1754     };
1755     sp<MessageBase> msg = new MessageScreenInitialized(this);
1756     postMessageAsync(msg);  // we may be called from main thread, use async message
1757 }
1758
1759
1760 void SurfaceFlinger::onScreenAcquired() {
1761     ALOGD("Screen about to return, flinger = %p", this);
1762     sp<const DisplayDevice> hw(getDefaultDisplayDevice()); // XXX: this should be per DisplayDevice
1763     getHwComposer().acquire();
1764     hw->acquireScreen();
1765     mEventThread->onScreenAcquired();
1766     mVisibleRegionsDirty = true;
1767     repaintEverything();
1768 }
1769
1770 void SurfaceFlinger::onScreenReleased() {
1771     ALOGD("About to give-up screen, flinger = %p", this);
1772     sp<const DisplayDevice> hw(getDefaultDisplayDevice()); // XXX: this should be per DisplayDevice
1773     if (hw->isScreenAcquired()) {
1774         mEventThread->onScreenReleased();
1775         hw->releaseScreen();
1776         getHwComposer().release();
1777         // from this point on, SF will stop drawing
1778     }
1779 }
1780
1781 void SurfaceFlinger::unblank() {
1782     class MessageScreenAcquired : public MessageBase {
1783         SurfaceFlinger* flinger;
1784     public:
1785         MessageScreenAcquired(SurfaceFlinger* flinger) : flinger(flinger) { }
1786         virtual bool handler() {
1787             flinger->onScreenAcquired();
1788             return true;
1789         }
1790     };
1791     sp<MessageBase> msg = new MessageScreenAcquired(this);
1792     postMessageSync(msg);
1793 }
1794
1795 void SurfaceFlinger::blank() {
1796     class MessageScreenReleased : public MessageBase {
1797         SurfaceFlinger* flinger;
1798     public:
1799         MessageScreenReleased(SurfaceFlinger* flinger) : flinger(flinger) { }
1800         virtual bool handler() {
1801             flinger->onScreenReleased();
1802             return true;
1803         }
1804     };
1805     sp<MessageBase> msg = new MessageScreenReleased(this);
1806     postMessageSync(msg);
1807 }
1808
1809 // ---------------------------------------------------------------------------
1810
1811 status_t SurfaceFlinger::dump(int fd, const Vector<String16>& args)
1812 {
1813     const size_t SIZE = 4096;
1814     char buffer[SIZE];
1815     String8 result;
1816
1817     if (!PermissionCache::checkCallingPermission(sDump)) {
1818         snprintf(buffer, SIZE, "Permission Denial: "
1819                 "can't dump SurfaceFlinger from pid=%d, uid=%d\n",
1820                 IPCThreadState::self()->getCallingPid(),
1821                 IPCThreadState::self()->getCallingUid());
1822         result.append(buffer);
1823     } else {
1824         // Try to get the main lock, but don't insist if we can't
1825         // (this would indicate SF is stuck, but we want to be able to
1826         // print something in dumpsys).
1827         int retry = 3;
1828         while (mStateLock.tryLock()<0 && --retry>=0) {
1829             usleep(1000000);
1830         }
1831         const bool locked(retry >= 0);
1832         if (!locked) {
1833             snprintf(buffer, SIZE,
1834                     "SurfaceFlinger appears to be unresponsive, "
1835                     "dumping anyways (no locks held)\n");
1836             result.append(buffer);
1837         }
1838
1839         bool dumpAll = true;
1840         size_t index = 0;
1841         size_t numArgs = args.size();
1842         if (numArgs) {
1843             if ((index < numArgs) &&
1844                     (args[index] == String16("--list"))) {
1845                 index++;
1846                 listLayersLocked(args, index, result, buffer, SIZE);
1847                 dumpAll = false;
1848             }
1849
1850             if ((index < numArgs) &&
1851                     (args[index] == String16("--latency"))) {
1852                 index++;
1853                 dumpStatsLocked(args, index, result, buffer, SIZE);
1854                 dumpAll = false;
1855             }
1856
1857             if ((index < numArgs) &&
1858                     (args[index] == String16("--latency-clear"))) {
1859                 index++;
1860                 clearStatsLocked(args, index, result, buffer, SIZE);
1861                 dumpAll = false;
1862             }
1863         }
1864
1865         if (dumpAll) {
1866             dumpAllLocked(result, buffer, SIZE);
1867         }
1868
1869         if (locked) {
1870             mStateLock.unlock();
1871         }
1872     }
1873     write(fd, result.string(), result.size());
1874     return NO_ERROR;
1875 }
1876
1877 void SurfaceFlinger::listLayersLocked(const Vector<String16>& args, size_t& index,
1878         String8& result, char* buffer, size_t SIZE) const
1879 {
1880     const LayerVector& currentLayers = mCurrentState.layersSortedByZ;
1881     const size_t count = currentLayers.size();
1882     for (size_t i=0 ; i<count ; i++) {
1883         const sp<LayerBase>& layer(currentLayers[i]);
1884         snprintf(buffer, SIZE, "%s\n", layer->getName().string());
1885         result.append(buffer);
1886     }
1887 }
1888
1889 void SurfaceFlinger::dumpStatsLocked(const Vector<String16>& args, size_t& index,
1890         String8& result, char* buffer, size_t SIZE) const
1891 {
1892     String8 name;
1893     if (index < args.size()) {
1894         name = String8(args[index]);
1895         index++;
1896     }
1897
1898     const LayerVector& currentLayers = mCurrentState.layersSortedByZ;
1899     const size_t count = currentLayers.size();
1900     for (size_t i=0 ; i<count ; i++) {
1901         const sp<LayerBase>& layer(currentLayers[i]);
1902         if (name.isEmpty()) {
1903             snprintf(buffer, SIZE, "%s\n", layer->getName().string());
1904             result.append(buffer);
1905         }
1906         if (name.isEmpty() || (name == layer->getName())) {
1907             layer->dumpStats(result, buffer, SIZE);
1908         }
1909     }
1910 }
1911
1912 void SurfaceFlinger::clearStatsLocked(const Vector<String16>& args, size_t& index,
1913         String8& result, char* buffer, size_t SIZE) const
1914 {
1915     String8 name;
1916     if (index < args.size()) {
1917         name = String8(args[index]);
1918         index++;
1919     }
1920
1921     const LayerVector& currentLayers = mCurrentState.layersSortedByZ;
1922     const size_t count = currentLayers.size();
1923     for (size_t i=0 ; i<count ; i++) {
1924         const sp<LayerBase>& layer(currentLayers[i]);
1925         if (name.isEmpty() || (name == layer->getName())) {
1926             layer->clearStats();
1927         }
1928     }
1929 }
1930
1931 void SurfaceFlinger::dumpAllLocked(
1932         String8& result, char* buffer, size_t SIZE) const
1933 {
1934     // figure out if we're stuck somewhere
1935     const nsecs_t now = systemTime();
1936     const nsecs_t inSwapBuffers(mDebugInSwapBuffers);
1937     const nsecs_t inTransaction(mDebugInTransaction);
1938     nsecs_t inSwapBuffersDuration = (inSwapBuffers) ? now-inSwapBuffers : 0;
1939     nsecs_t inTransactionDuration = (inTransaction) ? now-inTransaction : 0;
1940
1941     /*
1942      * Dump the visible layer list
1943      */
1944     const LayerVector& currentLayers = mCurrentState.layersSortedByZ;
1945     const size_t count = currentLayers.size();
1946     snprintf(buffer, SIZE, "Visible layers (count = %d)\n", count);
1947     result.append(buffer);
1948     for (size_t i=0 ; i<count ; i++) {
1949         const sp<LayerBase>& layer(currentLayers[i]);
1950         layer->dump(result, buffer, SIZE);
1951     }
1952
1953     /*
1954      * Dump the layers in the purgatory
1955      */
1956
1957     const size_t purgatorySize = mLayerPurgatory.size();
1958     snprintf(buffer, SIZE, "Purgatory state (%d entries)\n", purgatorySize);
1959     result.append(buffer);
1960     for (size_t i=0 ; i<purgatorySize ; i++) {
1961         const sp<LayerBase>& layer(mLayerPurgatory.itemAt(i));
1962         layer->shortDump(result, buffer, SIZE);
1963     }
1964
1965     /*
1966      * Dump Display state
1967      */
1968
1969     for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) {
1970         const sp<const DisplayDevice>& hw(mDisplays[dpy]);
1971         snprintf(buffer, SIZE,
1972                 "+ DisplayDevice[%u]\n"
1973                 "   id=%x, layerStack=%u, (%4dx%4d), orient=%2d (type=%08x), "
1974                 "flips=%u, secure=%d, numLayers=%u, v:[%d,%d,%d,%d], f:[%d,%d,%d,%d]\n",
1975                 dpy,
1976                 hw->getDisplayType(), hw->getLayerStack(),
1977                 hw->getWidth(), hw->getHeight(),
1978                 hw->getOrientation(), hw->getTransform().getType(),
1979                 hw->getPageFlipCount(),
1980                 hw->getSecureLayerVisible(),
1981                 hw->getVisibleLayersSortedByZ().size(),
1982                 hw->getViewport().left, hw->getViewport().top, hw->getViewport().right, hw->getViewport().bottom,
1983                 hw->getFrame().left, hw->getFrame().top, hw->getFrame().right, hw->getFrame().bottom);
1984
1985         result.append(buffer);
1986     }
1987
1988     /*
1989      * Dump SurfaceFlinger global state
1990      */
1991
1992     snprintf(buffer, SIZE, "SurfaceFlinger global state:\n");
1993     result.append(buffer);
1994
1995     HWComposer& hwc(getHwComposer());
1996     sp<const DisplayDevice> hw(getDefaultDisplayDevice());
1997     const GLExtensions& extensions(GLExtensions::getInstance());
1998     snprintf(buffer, SIZE, "GLES: %s, %s, %s\n",
1999             extensions.getVendor(),
2000             extensions.getRenderer(),
2001             extensions.getVersion());
2002     result.append(buffer);
2003
2004     snprintf(buffer, SIZE, "EGL : %s\n",
2005             eglQueryString(mEGLDisplay, EGL_VERSION_HW_ANDROID));
2006     result.append(buffer);
2007
2008     snprintf(buffer, SIZE, "EXTS: %s\n", extensions.getExtension());
2009     result.append(buffer);
2010
2011     hw->undefinedRegion.dump(result, "undefinedRegion");
2012     snprintf(buffer, SIZE,
2013             "  orientation=%d, canDraw=%d\n",
2014             hw->getOrientation(), hw->canDraw());
2015     result.append(buffer);
2016     snprintf(buffer, SIZE,
2017             "  last eglSwapBuffers() time: %f us\n"
2018             "  last transaction time     : %f us\n"
2019             "  transaction-flags         : %08x\n"
2020             "  refresh-rate              : %f fps\n"
2021             "  x-dpi                     : %f\n"
2022             "  y-dpi                     : %f\n",
2023             mLastSwapBufferTime/1000.0,
2024             mLastTransactionTime/1000.0,
2025             mTransactionFlags,
2026             1e9 / hwc.getRefreshPeriod(),
2027             hwc.getDpiX(),
2028             hwc.getDpiY());
2029     result.append(buffer);
2030
2031     snprintf(buffer, SIZE, "  eglSwapBuffers time: %f us\n",
2032             inSwapBuffersDuration/1000.0);
2033     result.append(buffer);
2034
2035     snprintf(buffer, SIZE, "  transaction time: %f us\n",
2036             inTransactionDuration/1000.0);
2037     result.append(buffer);
2038
2039     /*
2040      * VSYNC state
2041      */
2042     mEventThread->dump(result, buffer, SIZE);
2043
2044     /*
2045      * Dump HWComposer state
2046      */
2047     snprintf(buffer, SIZE, "h/w composer state:\n");
2048     result.append(buffer);
2049     snprintf(buffer, SIZE, "  h/w composer %s and %s\n",
2050             hwc.initCheck()==NO_ERROR ? "present" : "not present",
2051                     (mDebugDisableHWC || mDebugRegion) ? "disabled" : "enabled");
2052     result.append(buffer);
2053     hwc.dump(result, buffer, SIZE, hw->getVisibleLayersSortedByZ());
2054
2055     /*
2056      * Dump gralloc state
2057      */
2058     const GraphicBufferAllocator& alloc(GraphicBufferAllocator::get());
2059     alloc.dump(result);
2060     hw->dump(result);
2061 }
2062
2063 bool SurfaceFlinger::startDdmConnection()
2064 {
2065     void* libddmconnection_dso =
2066             dlopen("libsurfaceflinger_ddmconnection.so", RTLD_NOW);
2067     if (!libddmconnection_dso) {
2068         return false;
2069     }
2070     void (*DdmConnection_start)(const char* name);
2071     DdmConnection_start =
2072             (typeof DdmConnection_start)dlsym(libddmconnection_dso, "DdmConnection_start");
2073     if (!DdmConnection_start) {
2074         dlclose(libddmconnection_dso);
2075         return false;
2076     }
2077     (*DdmConnection_start)(getServiceName());
2078     return true;
2079 }
2080
2081 status_t SurfaceFlinger::onTransact(
2082     uint32_t code, const Parcel& data, Parcel* reply, uint32_t flags)
2083 {
2084     switch (code) {
2085         case CREATE_CONNECTION:
2086         case SET_TRANSACTION_STATE:
2087         case BOOT_FINISHED:
2088         case BLANK:
2089         case UNBLANK:
2090         {
2091             // codes that require permission check
2092             IPCThreadState* ipc = IPCThreadState::self();
2093             const int pid = ipc->getCallingPid();
2094             const int uid = ipc->getCallingUid();
2095             if ((uid != AID_GRAPHICS) &&
2096                     !PermissionCache::checkPermission(sAccessSurfaceFlinger, pid, uid)) {
2097                 ALOGE("Permission Denial: "
2098                         "can't access SurfaceFlinger pid=%d, uid=%d", pid, uid);
2099                 return PERMISSION_DENIED;
2100             }
2101             break;
2102         }
2103         case CAPTURE_SCREEN:
2104         {
2105             // codes that require permission check
2106             IPCThreadState* ipc = IPCThreadState::self();
2107             const int pid = ipc->getCallingPid();
2108             const int uid = ipc->getCallingUid();
2109             if ((uid != AID_GRAPHICS) &&
2110                     !PermissionCache::checkPermission(sReadFramebuffer, pid, uid)) {
2111                 ALOGE("Permission Denial: "
2112                         "can't read framebuffer pid=%d, uid=%d", pid, uid);
2113                 return PERMISSION_DENIED;
2114             }
2115             break;
2116         }
2117     }
2118
2119     status_t err = BnSurfaceComposer::onTransact(code, data, reply, flags);
2120     if (err == UNKNOWN_TRANSACTION || err == PERMISSION_DENIED) {
2121         CHECK_INTERFACE(ISurfaceComposer, data, reply);
2122         if (CC_UNLIKELY(!PermissionCache::checkCallingPermission(sHardwareTest))) {
2123             IPCThreadState* ipc = IPCThreadState::self();
2124             const int pid = ipc->getCallingPid();
2125             const int uid = ipc->getCallingUid();
2126             ALOGE("Permission Denial: "
2127                     "can't access SurfaceFlinger pid=%d, uid=%d", pid, uid);
2128             return PERMISSION_DENIED;
2129         }
2130         int n;
2131         switch (code) {
2132             case 1000: // SHOW_CPU, NOT SUPPORTED ANYMORE
2133             case 1001: // SHOW_FPS, NOT SUPPORTED ANYMORE
2134                 return NO_ERROR;
2135             case 1002:  // SHOW_UPDATES
2136                 n = data.readInt32();
2137                 mDebugRegion = n ? n : (mDebugRegion ? 0 : 1);
2138                 invalidateHwcGeometry();
2139                 repaintEverything();
2140                 return NO_ERROR;
2141             case 1004:{ // repaint everything
2142                 repaintEverything();
2143                 return NO_ERROR;
2144             }
2145             case 1005:{ // force transaction
2146                 setTransactionFlags(
2147                         eTransactionNeeded|
2148                         eDisplayTransactionNeeded|
2149                         eTraversalNeeded);
2150                 return NO_ERROR;
2151             }
2152             case 1006:{ // send empty update
2153                 signalRefresh();
2154                 return NO_ERROR;
2155             }
2156             case 1008:  // toggle use of hw composer
2157                 n = data.readInt32();
2158                 mDebugDisableHWC = n ? 1 : 0;
2159                 invalidateHwcGeometry();
2160                 repaintEverything();
2161                 return NO_ERROR;
2162             case 1009:  // toggle use of transform hint
2163                 n = data.readInt32();
2164                 mDebugDisableTransformHint = n ? 1 : 0;
2165                 invalidateHwcGeometry();
2166                 repaintEverything();
2167                 return NO_ERROR;
2168             case 1010:  // interrogate.
2169                 reply->writeInt32(0);
2170                 reply->writeInt32(0);
2171                 reply->writeInt32(mDebugRegion);
2172                 reply->writeInt32(0);
2173                 reply->writeInt32(mDebugDisableHWC);
2174                 return NO_ERROR;
2175             case 1013: {
2176                 Mutex::Autolock _l(mStateLock);
2177                 sp<const DisplayDevice> hw(getDefaultDisplayDevice());
2178                 reply->writeInt32(hw->getPageFlipCount());
2179             }
2180             return NO_ERROR;
2181         }
2182     }
2183     return err;
2184 }
2185
2186 void SurfaceFlinger::repaintEverything() {
2187     android_atomic_or(1, &mRepaintEverything);
2188     signalTransaction();
2189 }
2190
2191 // ---------------------------------------------------------------------------
2192
2193 status_t SurfaceFlinger::renderScreenToTexture(uint32_t layerStack,
2194         GLuint* textureName, GLfloat* uOut, GLfloat* vOut)
2195 {
2196     Mutex::Autolock _l(mStateLock);
2197     return renderScreenToTextureLocked(layerStack, textureName, uOut, vOut);
2198 }
2199
2200 status_t SurfaceFlinger::renderScreenToTextureLocked(uint32_t layerStack,
2201         GLuint* textureName, GLfloat* uOut, GLfloat* vOut)
2202 {
2203     ATRACE_CALL();
2204
2205     if (!GLExtensions::getInstance().haveFramebufferObject())
2206         return INVALID_OPERATION;
2207
2208     // get screen geometry
2209     // FIXME: figure out what it means to have a screenshot texture w/ multi-display
2210     sp<const DisplayDevice> hw(getDefaultDisplayDevice());
2211     const uint32_t hw_w = hw->getWidth();
2212     const uint32_t hw_h = hw->getHeight();
2213     GLfloat u = 1;
2214     GLfloat v = 1;
2215
2216     // make sure to clear all GL error flags
2217     while ( glGetError() != GL_NO_ERROR ) ;
2218
2219     // create a FBO
2220     GLuint name, tname;
2221     glGenTextures(1, &tname);
2222     glBindTexture(GL_TEXTURE_2D, tname);
2223     glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
2224     glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
2225     glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB,
2226             hw_w, hw_h, 0, GL_RGB, GL_UNSIGNED_BYTE, 0);
2227     if (glGetError() != GL_NO_ERROR) {
2228         while ( glGetError() != GL_NO_ERROR ) ;
2229         GLint tw = (2 << (31 - clz(hw_w)));
2230         GLint th = (2 << (31 - clz(hw_h)));
2231         glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB,
2232                 tw, th, 0, GL_RGB, GL_UNSIGNED_BYTE, 0);
2233         u = GLfloat(hw_w) / tw;
2234         v = GLfloat(hw_h) / th;
2235     }
2236     glGenFramebuffersOES(1, &name);
2237     glBindFramebufferOES(GL_FRAMEBUFFER_OES, name);
2238     glFramebufferTexture2DOES(GL_FRAMEBUFFER_OES,
2239             GL_COLOR_ATTACHMENT0_OES, GL_TEXTURE_2D, tname, 0);
2240
2241     // redraw the screen entirely...
2242     glDisable(GL_TEXTURE_EXTERNAL_OES);
2243     glDisable(GL_TEXTURE_2D);
2244     glClearColor(0,0,0,1);
2245     glClear(GL_COLOR_BUFFER_BIT);
2246     glMatrixMode(GL_MODELVIEW);
2247     glLoadIdentity();
2248     const Vector< sp<LayerBase> >& layers(hw->getVisibleLayersSortedByZ());
2249     const size_t count = layers.size();
2250     for (size_t i=0 ; i<count ; ++i) {
2251         const sp<LayerBase>& layer(layers[i]);
2252         layer->draw(hw);
2253     }
2254
2255     hw->compositionComplete();
2256
2257     // back to main framebuffer
2258     glBindFramebufferOES(GL_FRAMEBUFFER_OES, 0);
2259     glDeleteFramebuffersOES(1, &name);
2260
2261     *textureName = tname;
2262     *uOut = u;
2263     *vOut = v;
2264     return NO_ERROR;
2265 }
2266
2267 // ---------------------------------------------------------------------------
2268
2269 status_t SurfaceFlinger::captureScreenImplLocked(const sp<IBinder>& display,
2270         sp<IMemoryHeap>* heap,
2271         uint32_t* w, uint32_t* h, PixelFormat* f,
2272         uint32_t sw, uint32_t sh,
2273         uint32_t minLayerZ, uint32_t maxLayerZ)
2274 {
2275     ATRACE_CALL();
2276
2277     status_t result = PERMISSION_DENIED;
2278
2279     if (!GLExtensions::getInstance().haveFramebufferObject()) {
2280         return INVALID_OPERATION;
2281     }
2282
2283     // get screen geometry
2284     sp<const DisplayDevice> hw(getDisplayDevice(display));
2285     const uint32_t hw_w = hw->getWidth();
2286     const uint32_t hw_h = hw->getHeight();
2287
2288     // if we have secure windows on this display, never allow the screen capture
2289     if (hw->getSecureLayerVisible()) {
2290         ALOGW("FB is protected: PERMISSION_DENIED");
2291         return PERMISSION_DENIED;
2292     }
2293
2294     if ((sw > hw_w) || (sh > hw_h)) {
2295         ALOGE("size mismatch (%d, %d) > (%d, %d)", sw, sh, hw_w, hw_h);
2296         return BAD_VALUE;
2297     }
2298
2299     sw = (!sw) ? hw_w : sw;
2300     sh = (!sh) ? hw_h : sh;
2301     const size_t size = sw * sh * 4;
2302     const bool filtering = sw != hw_w || sh != hw_h;
2303
2304 //    ALOGD("screenshot: sw=%d, sh=%d, minZ=%d, maxZ=%d",
2305 //            sw, sh, minLayerZ, maxLayerZ);
2306
2307     // make sure to clear all GL error flags
2308     while ( glGetError() != GL_NO_ERROR ) ;
2309
2310     // create a FBO
2311     GLuint name, tname;
2312     glGenRenderbuffersOES(1, &tname);
2313     glBindRenderbufferOES(GL_RENDERBUFFER_OES, tname);
2314     glRenderbufferStorageOES(GL_RENDERBUFFER_OES, GL_RGBA8_OES, sw, sh);
2315
2316     glGenFramebuffersOES(1, &name);
2317     glBindFramebufferOES(GL_FRAMEBUFFER_OES, name);
2318     glFramebufferRenderbufferOES(GL_FRAMEBUFFER_OES,
2319             GL_COLOR_ATTACHMENT0_OES, GL_RENDERBUFFER_OES, tname);
2320
2321     GLenum status = glCheckFramebufferStatusOES(GL_FRAMEBUFFER_OES);
2322
2323     if (status == GL_FRAMEBUFFER_COMPLETE_OES) {
2324
2325         // invert everything, b/c glReadPixel() below will invert the FB
2326         glViewport(0, 0, sw, sh);
2327         glMatrixMode(GL_PROJECTION);
2328         glPushMatrix();
2329         glLoadIdentity();
2330         glOrthof(0, hw_w, hw_h, 0, 0, 1);
2331         glMatrixMode(GL_MODELVIEW);
2332
2333         // redraw the screen entirely...
2334         glClearColor(0,0,0,1);
2335         glClear(GL_COLOR_BUFFER_BIT);
2336
2337         const Vector< sp<LayerBase> >& layers(hw->getVisibleLayersSortedByZ());
2338         const size_t count = layers.size();
2339         for (size_t i=0 ; i<count ; ++i) {
2340             const sp<LayerBase>& layer(layers[i]);
2341             const uint32_t z = layer->drawingState().z;
2342             if (z >= minLayerZ && z <= maxLayerZ) {
2343                 if (filtering) layer->setFiltering(true);
2344                 layer->draw(hw);
2345                 if (filtering) layer->setFiltering(false);
2346             }
2347         }
2348
2349         // check for errors and return screen capture
2350         if (glGetError() != GL_NO_ERROR) {
2351             // error while rendering
2352             result = INVALID_OPERATION;
2353         } else {
2354             // allocate shared memory large enough to hold the
2355             // screen capture
2356             sp<MemoryHeapBase> base(
2357                     new MemoryHeapBase(size, 0, "screen-capture") );
2358             void* const ptr = base->getBase();
2359             if (ptr) {
2360                 // capture the screen with glReadPixels()
2361                 ScopedTrace _t(ATRACE_TAG, "glReadPixels");
2362                 glReadPixels(0, 0, sw, sh, GL_RGBA, GL_UNSIGNED_BYTE, ptr);
2363                 if (glGetError() == GL_NO_ERROR) {
2364                     *heap = base;
2365                     *w = sw;
2366                     *h = sh;
2367                     *f = PIXEL_FORMAT_RGBA_8888;
2368                     result = NO_ERROR;
2369                 }
2370             } else {
2371                 result = NO_MEMORY;
2372             }
2373         }
2374         glViewport(0, 0, hw_w, hw_h);
2375         glMatrixMode(GL_PROJECTION);
2376         glPopMatrix();
2377         glMatrixMode(GL_MODELVIEW);
2378     } else {
2379         result = BAD_VALUE;
2380     }
2381
2382     // release FBO resources
2383     glBindFramebufferOES(GL_FRAMEBUFFER_OES, 0);
2384     glDeleteRenderbuffersOES(1, &tname);
2385     glDeleteFramebuffersOES(1, &name);
2386
2387     hw->compositionComplete();
2388
2389 //    ALOGD("screenshot: result = %s", result<0 ? strerror(result) : "OK");
2390
2391     return result;
2392 }
2393
2394
2395 status_t SurfaceFlinger::captureScreen(const sp<IBinder>& display,
2396         sp<IMemoryHeap>* heap,
2397         uint32_t* width, uint32_t* height, PixelFormat* format,
2398         uint32_t sw, uint32_t sh,
2399         uint32_t minLayerZ, uint32_t maxLayerZ)
2400 {
2401     if (CC_UNLIKELY(display == 0))
2402         return BAD_VALUE;
2403
2404     if (!GLExtensions::getInstance().haveFramebufferObject())
2405         return INVALID_OPERATION;
2406
2407     class MessageCaptureScreen : public MessageBase {
2408         SurfaceFlinger* flinger;
2409         sp<IBinder> display;
2410         sp<IMemoryHeap>* heap;
2411         uint32_t* w;
2412         uint32_t* h;
2413         PixelFormat* f;
2414         uint32_t sw;
2415         uint32_t sh;
2416         uint32_t minLayerZ;
2417         uint32_t maxLayerZ;
2418         status_t result;
2419     public:
2420         MessageCaptureScreen(SurfaceFlinger* flinger, const sp<IBinder>& display,
2421                 sp<IMemoryHeap>* heap, uint32_t* w, uint32_t* h, PixelFormat* f,
2422                 uint32_t sw, uint32_t sh,
2423                 uint32_t minLayerZ, uint32_t maxLayerZ)
2424             : flinger(flinger), display(display),
2425               heap(heap), w(w), h(h), f(f), sw(sw), sh(sh),
2426               minLayerZ(minLayerZ), maxLayerZ(maxLayerZ),
2427               result(PERMISSION_DENIED)
2428         {
2429         }
2430         status_t getResult() const {
2431             return result;
2432         }
2433         virtual bool handler() {
2434             Mutex::Autolock _l(flinger->mStateLock);
2435             result = flinger->captureScreenImplLocked(display,
2436                     heap, w, h, f, sw, sh, minLayerZ, maxLayerZ);
2437             return true;
2438         }
2439     };
2440
2441     sp<MessageBase> msg = new MessageCaptureScreen(this,
2442             display, heap, width, height, format, sw, sh, minLayerZ, maxLayerZ);
2443     status_t res = postMessageSync(msg);
2444     if (res == NO_ERROR) {
2445         res = static_cast<MessageCaptureScreen*>( msg.get() )->getResult();
2446     }
2447     return res;
2448 }
2449
2450 // ---------------------------------------------------------------------------
2451
2452 SurfaceFlinger::LayerVector::LayerVector() {
2453 }
2454
2455 SurfaceFlinger::LayerVector::LayerVector(const LayerVector& rhs)
2456     : SortedVector<sp<LayerBase> >(rhs) {
2457 }
2458
2459 int SurfaceFlinger::LayerVector::do_compare(const void* lhs,
2460     const void* rhs) const
2461 {
2462     // sort layers per layer-stack, then by z-order and finally by sequence
2463     const sp<LayerBase>& l(*reinterpret_cast<const sp<LayerBase>*>(lhs));
2464     const sp<LayerBase>& r(*reinterpret_cast<const sp<LayerBase>*>(rhs));
2465
2466     uint32_t ls = l->currentState().layerStack;
2467     uint32_t rs = r->currentState().layerStack;
2468     if (ls != rs)
2469         return ls - rs;
2470
2471     uint32_t lz = l->currentState().z;
2472     uint32_t rz = r->currentState().z;
2473     if (lz != rz)
2474         return lz - rz;
2475
2476     return l->sequence - r->sequence;
2477 }
2478
2479 // ---------------------------------------------------------------------------
2480
2481 SurfaceFlinger::DisplayDeviceState::DisplayDeviceState()
2482     : type(DisplayDevice::DISPLAY_ID_INVALID) {
2483 }
2484
2485 SurfaceFlinger::DisplayDeviceState::DisplayDeviceState(DisplayDevice::DisplayType type)
2486     : type(type), layerStack(0), orientation(0) {
2487     viewport.makeInvalid();
2488     frame.makeInvalid();
2489 }
2490
2491 // ---------------------------------------------------------------------------
2492
2493 GraphicBufferAlloc::GraphicBufferAlloc() {}
2494
2495 GraphicBufferAlloc::~GraphicBufferAlloc() {}
2496
2497 sp<GraphicBuffer> GraphicBufferAlloc::createGraphicBuffer(uint32_t w, uint32_t h,
2498         PixelFormat format, uint32_t usage, status_t* error) {
2499     sp<GraphicBuffer> graphicBuffer(new GraphicBuffer(w, h, format, usage));
2500     status_t err = graphicBuffer->initCheck();
2501     *error = err;
2502     if (err != 0 || graphicBuffer->handle == 0) {
2503         if (err == NO_MEMORY) {
2504             GraphicBuffer::dumpAllocationsToSystemLog();
2505         }
2506         ALOGE("GraphicBufferAlloc::createGraphicBuffer(w=%d, h=%d) "
2507              "failed (%s), handle=%p",
2508                 w, h, strerror(-err), graphicBuffer->handle);
2509         return 0;
2510     }
2511     return graphicBuffer;
2512 }
2513
2514 // ---------------------------------------------------------------------------
2515
2516 }; // namespace android